
Geom. Funct. Anal. Vol. 25 (2015) 134–179
DOI: 10.1007/s00039-015-0314-y
Published online February 10, 2015
c© 2015 Springer Basel GAFA Geometric And Functional Analysis

CUBULATING HYPERBOLIC FREE-BY-CYCLIC GROUPS:
THE GENERAL CASE

Mark F. Hagen and Daniel T. Wise

Abstract. Let Φ: F → F be an automorphism of the finite-rank free group F .
Suppose that G = F �Φ Z is word-hyperbolic. Then G acts freely and cocompactly
on a CAT(0) cube complex.
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Introduction

The goal of this paper is to prove:

Theorem A. Let Φ: F → F be an automorphism of the finite-rank free group F
and suppose that G = F �Φ Z is word-hyperbolic. Then G acts freely and cocom-
pactly on a CAT(0) cube complex.

It follows thatG ∼= F�ΦZ is cocompactly cubulated if and only if Φ is atoroidal in
the sense that no iterate of Φ stabilizes a nontrivial conjugacy class in F (see [BH92,
Bri00]). Combining Theorem A with a result of Agol [Ago13] thus shows that the
mapping torus of an atoroidal automorphism is virtually the fundamental group of a
compact special cube complex, and is therefore virtually a subgroup of a right-angled
Artin group [HW08]. This reveals considerable structural information about G: for
instance G is Z-linear and its quasiconvex subgroups are separable. Since it implies
that G acts properly and cocompactly on a CAT(0) space, Theorem A also extends
the class of hyperbolic groups known to be CAT(0). Note that Gromov [Gro87] has
raised the question of whether this class includes all hyperbolic groups.

Theorem A generalizes part of the main result of [HW13], which cubulates the
hyperbolic group G ∼= F �Φ Z when Φ has an irreducible train track representative
φ : V → V , where V is some finite graph. In the present paper, we attempt to follow
the scheme laid out in [HW13] in the situation where φ is an improved relative train
track map in the sense of [BFH00]. Loosely speaking, the procedure is the same:
we construct a collection of quasiconvex codimension-1 subgroups of G and then
apply Sageev’s [Sag95] construction via the boundary cubulation result of [BW13a],
which provides a G-finite subcollection of walls on whose dual cube complex G acts
freely and cocompactly. The codimension-1 subgroups are constructed by building
immersed walls in the mapping torus X of φ. However, that φ is a relative train
track map, rather than an irreducible train track map, introduces considerable tech-
nical challenges; much of the paper is devoted to verifying that one can still obtain
quasiconvex walls in this situation (see Section 3.3), and that certain building blocks
needed to build a wall separating the endpoints of a given geodesic are available (see
Section 4). The improved relative train track machinery of Bestvina–Feighn–Handel,
and its progeny, are used extensively; the main tools are [BFH00, Thm. 5.1.5] and the
splitting lemma, which we state as Lemma 1.18 in the form given by Levitt [Lev09,
Lem. 6.5].

Although there is not yet a systematic answer to the general question of which
free-by-Z groups are cubulated, there are several reasonable lines along which The-
orem A might generalize. First, it appears that many of the arguments in this paper
continue to hold under the weaker hypothesis that G is hyperbolic to an appropriate
collection of peripheral subgroups. Although [GL07] provides a canonical peripheral
structure for any G ∼= F � Z, the peripheral subgroups are polynomially growing
subgroups, so that cubulating the peripherals is no easier in general than cubulat-
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ing arbitrary free-by-Z groups. However, we expect that the methods of the current
paper could be extended to solve the following problem:

Problem B. Let G = 〈F, t|tft−1 = Φ(f): f ∈ F 〉, where Φ: F → F is an auto-
morphism of a finite-rank free group F . Suppose that G is hyperbolic relative to a
finite collection P of Z

2 subgroups. Show that G acts freely, metrically properly, and
relatively cocompactly (in the sense of [HW14]) on a CAT(0) cube complex.

One difficulty in solving Problem B is avoiding the assumption that V contains
no nontrivial closed Nielsen path, which is a consequence of hyperbolicity. A more
serious difficulty is that in the relatively hyperbolic case, one must allow walls to
cut through polynomial strata while maintaining quasi-isometric embeddedness.

Although some form of (relative) hyperbolicity is probably necessary to achieve
a (relatively) cocompact cubulation except in very special situations (compare the
obstructions to cocompact cubulation in [Wis14,HP13]), it is natural to ask for
which polynomially-growing automorphisms Φ the group G acts freely on a (possibly
infinite-dimensional) CAT(0) cube complex. Even Gersten’s famous non-CAT(0)
free-by-Z group, introduced in [Ger94], was shown in [Wis14] to admit such an
action, so there is more work to be done in this direction.

Problem C. Let Φ: F → F be a monomorphism and suppose the ascending HNN
extension G = F∗Φ is word-hyperbolic. Show that G acts freely and cocompactly on
a CAT(0) cube complex.

This was resolved when Φ is irreducible, F is finitely-generated, and G is hyper-
bolic in [HW13]. With few exceptions, our argument handles relative train track
maps that are not π1-surjective, but our results rely on the relative train track
technology available when Φ is an isomorphism; we point the reader to [DV96] for
generalizations of this technology that exist when Φ is not necessarily π1-surjective.

Summary of the paper In Section 1, we define terminology and notation related
to mapping tori of relative train track maps of graphs, which are the main objects
with which we will work. In particular, in Section 1.2, we define a collection of R-
trees associated to a relative train track map; these seem to coincide with the stable
trees introduced in [BFH97] and play a very important role in ensuring that the
codimension-1 subgroups that we use are quasiconvex and in cutting geodesics.

A relative train track map φ : V → V defined on the finite graph V comes
equipped with a φ-invariant filtration V 0 ⊂ · · · ⊂ V h̄ = V of V by subgraphs. There
is thus a filtration of the mapping torus X of φ by complexes Xi that are mapping
tori of the restrictions of φ to the various V i. As explained below, it is important
that, for each component K of certain Xi (those for which the ith stratum has
Perron–Frobenius eigenvalue 1), the subgroup of G corresponding to K is quasi-
isometrically embedded; see Theorem 2.1. This is proved using disc diagrams in
Section 2.

In Section 3, we describe a family of immersed walls W → X. The construction
generalizes that in [HW13]. As in that paper, each immersed wall is the union of
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a nucleus consisting of subgraphs of a graph E parallel to V , and tunnels, which
are immersed rooted trees T → X whose leaves and root attach to the nucleus and
whose depth is the tunnel length of W . As in [HW13], the tunnel length is one of
two parameters determining W . The other is the set of primary busts, i.e. points in
E whose complementary components form the nuclei. One must choose the primary
busts so that the nucleus subgroups are quasiconvex in G. In the irreducible case,
this is accomplished by positioning a primary bust in each edge, so that the nuclei are
contained in stars of vertices. In the present more general case, however, doing this
introduces problematic large coarse intersections between distinct tunnels. Instead,
primary busts appear in the exponential edges—those belonging to strata whose
associated Perron–Frobenius eigenvalue exceeds 1—and other edges are left intact;
this explains the necessity of Theorem 2.1. Section 3.3 gives conditions ensuring that
the stabilizer of im(˜W → ˜X) is a quasiconvex codimension-1 subgroup of G.

The bulk of the proof of Theorem A is contained in the proof of Proposition 5.2,
which allows us to invoke the cubulation criterion of [BW13a]. Section 5 is devoted to
establishing this proposition, which requires us to find, for any bi-infinite geodesic
γ in G, an immersed wall W → X such that the stabilizer of im(˜W → ˜X) is a
quasiconvex, codimension-1 subgroup of G whose boundary separates the endpoints
of γ in ∂G. The more difficult case is that in which γ is deviating, i.e. “transverse” to
the forward flow on ˜X induced by φ. The argument in this case relies on Corollary 4.5,
whose proof makes use of the improved relative train track technology developed
in [BFH00]; this discussion occupies Section 4.

Readers familiar with the relative train track map technology will understand
that this is a quite complicated gadget which nevertheless appropriately covers all
of the issues that arise when studying an automorphism. Since our proof is married
to this technology, and this technology is in turn significantly more complicated than
the theory of train track maps, it is not surprising that our proof is significantly more
complex than the argument in the irreducible case.

1 Mapping Tori of Relative Train Track Maps

Let φ : V → V be a continuous map from a graph V to itself and suppose that
φ(Vertices(V )) ⊆ Vertices(V ) and φ maps each edge of V to a nontrivial combina-
torial path. For each L ∈ N, the map φL : V → V also has these properties. The
mapping torus of φL is the space

XL = V × [0, L]
/

{(v, L) ∼ (φL(v), 0) : v ∈ V }.

We identify V with V × {0} ⊂ XL.
We let X denote X1 and le//t G = π1X. The space X admits the following

cell structure. The set of 0-cells of X is Vertices(V ). The 1-cells are of two types:
vertical 1-cells are the 1-cells of V . For each 0-cell a of V , there is a horizontal 1-cell
ta which is the image of {a} × [0, 1]. The horizontal 1-cell ta is oriented so that
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{a} × [0, 1]→ ta is orientation-preserving, where {a} × [0, 1] has initial point (a, 0).
For each vertical 1-cell e of X, with endpoints a, b, there is a 2-cell Re with attaching
map t−1

a etbφ(e)−1. The interior of Re is the image of Int(e)× (0, 1).
The map V × [0, L] → X that sends (v, r) to the image of (φ�r�(v), r − 
r�)

under V × [0, 1] → X induces a map XL → X. Indeed, any two representatives in
V × [0, L] of a point in XL get sent to the same point since (v, L) maps to the image
of (φL(v), 0).

For L ∈ N, the space XL has a cell structure induced by XL → X. A 1-cell of XL

is vertical or horizontal according to whether its image is vertical or horizontal. The
horizontal 1-cells of XL are oriented so that XL → X preserves their orientation. As
usual, for each L ∈ N, the universal cover ˜XL of XL inherits a cell structure from
XL.

Let S be the mapping torus of the identity map from a single vertex s to itself.
The graph S is homeomorphic to a circle and has a single directed horizontal edge.
The map V → {s} induces a quotient X → S, where the point represented by (v, r)
maps to (s, r). This yields a map q : ˜X → ˜

S of universal covers, where ˜

S is regarded
as a subdivided copy of R with 0-skeleton Z.

For each n ∈ Z, let ˜Vn = q−1(n), and let ˜En = q−1(n + 1
2). The map XL → X

induces a map ˜XL → ˜X. We record the following facts for use in Section 5:

Remark 1.1. For each n ∈ Z, the inclusion ˜VnL → ˜X lifts to an embedding ˜VnL →
˜XL and the same is true for ˜EnL. We also use qL : ˜XL → ˜

S to denote the composition
˜XL → ˜X

q→ ˜

S.
The map ˜XL → ˜X is combinatorial and is a (1, L)-quasi-isometry relative to

the metrics described in Section 1.4. This quasi-isometry induces a homeomorphism
∂ ˜XL → ∂ ˜X.

Definition 1.2 (Midsegment, leaf). Let e be a vertical edge of ˜X. For any p ∈ e,
the midsegment tp → ˜X is the closure in ˜X of p× (0, 1) ⊂ Re where Re is the 2-cell

of ˜X based at e. Note that horizontal 1-cells are midsegments. Each midsegment
is mapped by q to an edge of ˜

S, and midsegments are oriented so that this map
preserves orientation. A leaf is the subspace consisting of all points in an equivalence
class of the transitive closure of the relation in which two points of ˜X are related if
they lie on the same midsegment. The leaf L is regular if L ∩ ˜X0 = ∅ and singular
otherwise. Let Lx denote the leaf containing x ∈ ˜X.

Remark 1.3 (Leaves are trees). In the case of interest, where φ is a relative train
track map, each leaf L is a directed tree: its vertices are the points of L∩

(

∪n∈Z
˜Vn

)

and its edges are midsegments. Each vertex of L has exactly one outgoing edge,
while the map q shows that there is no directed cycle in L. The subspace L ⊂ ˜X
is homeomorphic to this abstract graph because of the local finiteness provided by
Lemma 1.15.
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Definition 1.4 (Forward path, flow). A forward path is a path σ in a leaf such that
q ◦ σ is injective. The length |σ| of σ is |q ◦ σ|. For any x ∈ ˜X and r ∈ [0,∞), there
exists a unique forward path of length r with initial point x, and there also exists a
unique forward path whose initial point x maps to [q(x),∞).

Define ψ : ˜X×[0,∞)→ ˜X by ψ(x, r) is the endpoint of the forward path of length
r with initial point x. For any fixed r ≥ 0, define ψr : ˜X → ˜X by ψr(x) = ψ(x, r).

Definition 1.5. A point v ∈ V is m-periodic for m ≥ 1 if φm(v) = v, and periodic
if it is m-periodic for some m. A point ṽ ∈ ˜Vn is periodic if it maps to a periodic
point in V . A periodic line � in ˜X is a line in a leaf such that Stab(�) �= {1}. Note
that for each n ∈ Z, the point � ∩ ˜Vn is periodic. A point x ∈ ˜X is regular if Lx is
regular, and singular otherwise. The point x ∈ X is regular or singular according to
whether its lifts to ˜X are regular or singular.

1.1 Improved relative train track maps

Definition 1.6 (Relative train track map, strata). Let ∅ = V 0
� V 1

� · · · � V h̄ =
V be a filtration of V by subgraphs and let Si = Cl

(

V i − V i−1
)

. Let φ : V → V
be a tight relative train track map in the sense of [BH92]. This means that φ sends
vertices to vertices and edges to combinatorial paths, and that each of the following
holds (the terms “exponential stratum” and “i-legal” and the tightening [[Q]] of a
path Q are defined below):

(1) Each V i is φ-invariant.
(2) For each edge e in an exponentially growing stratum Si ⊂ V i, the path φ(e)

starts and ends with an edge of Si.
(3) For each exponentially growing Si+1 and each nontrivial immersed path P → V i

starting and ending in Si+1 ∩ V i, the path φ(P ) is essential, in the sense that
[[φ(P )]] is nontrivial.

(4) For each exponentially growing Si and each legal path P → Si, the path φ(P )
is i-legal.

The tightening [[Q]] of a combinatorial path Q in V is the immersed path in V
that is path-homotopic to Q. A path Q = e1 . . . ek in V is legal if φn(ei) and φn(e−1

i+1)
have distinct initial edges for all n ≥ 0. A path Q = e1 . . . ek is i-legal if for all n ≥ 0
and 1 ≤ j < k, the paths φn(ej) and φn(e−1

j+1) cannot have the same initial edge f

unless f ⊂ V i−1.
Ordering the edges of Si arbitrarily, let Mi be the matrix whose jk-entry is the

number of times the jth edge of Si traverses the kth edge of Si under the map
φ. By choosing a filtration that is maximal in the sense of [BH92, Sec. 5], we can
assume that the matrix Mi is either a zero matrix or irreducible. In the irreducible
case, let λi ≥ 1 be the largest eigenvalue of Mi. If λi > 1, then the stratum Si is
exponentially growing. If λi = 1, then Si is polynomially growing, and otherwise
Mi = 0 and we say Si is a zero stratum.
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Notation 1.7. We refer to an edge of Si, or to an edge of ˜X mapping to an edge
of Si, as an Si-edge.

Remark 1.8. A periodic regular point in V either lies in the interior of an expo-
nential edge, or lies in the interior of an edge e such that φm(e) = e for some m ≥ 1.

Let Xi denote the mapping torus of φ|V i . Let {Xij} be the set of components of
Xi. For each i, j, let ˜Xij denote the universal cover of Xij . When Xij ⊆ Xi′j′

, there
are many lifts of ˜Xij to ˜Xi′j′

. Since these lifts are embeddings, we often refer to the
image of the lift of interest as ˜Xij .

Definition 1.9 (Lengths of vertical edges). For each edge e of the exponential or
polynomial stratum Si, we define the length ωe of e to be the magnitude of the
projection of the basis vector corresponding to e onto the λi-eigenspace. If Si is a
zero-stratum, we let ωe = 1.

For the remainder of this text, we restrict to the case in which the relative train
track map φ enjoys some of the properties of [BFH00, Thm. 5.1.5]. A periodic Nielsen
path is an essential path P → V such that [[φk(P )]] = P for some k > 0. If k = 1,
then P is a Nielsen path.

Definition 1.10 (Improved relative train track map). The relative train track map
φ : V → V is improved if:

(1) If Si is a zero stratum, then Si+1 is exponentially growing.
(2) If Si is a zero stratum, then Si is the union of the contractible components of

V i.
(3) If Si is a polynomially growing stratum, then Si consists of a single edge e, and

φ(e) = eP , where P is a closed path in V i−1 whose initial point is fixed by φ. If
P is trivial, then e is a periodic edge.

(4) φ is eg-aperiodic in the sense of [BFH00].
(5) Every periodic Nielsen path is a Nielsen path.

1.2 The R-trees Yij. For each i, j, fix a lift ˜Xij in ˜X. Note that ˜X h̄1 = ˜X.
For each n ∈ Z, let ˜V ij

n be the tree isomorphic to ˜Vn ∩ ˜Xij . We pseudometrize ˜V ij
n

as follows: for each edge ẽ of ˜V ij
n , let e be its image in V i. If e belongs to Si, we let

|ẽ| = ωeλ
−n
i , and otherwise |ẽ| = 0. We let dij

n be the resulting path-pseudometric
on ˜V ij

n .

Construction 1.11 (The spaces Y ij). For each i, j, we now construct a space Y ij

associated ˜Xij . The nature of Y ij depends on whether Si is exponentially or poly-
nomially growing. We will also construct a map ρij : ˜Xij → Y ij . It will be clear from
the construction that for all g ∈ G and all i, j, we have the following commutative
diagram, where ρg

ij is the map defined below for g ˜Xij and s is a dilation by a power
of λi:
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˜Xij g ˜Xij

Y ij Y ij

��
g

��
� �
� �
� �
� �

ρij

��
� �
� �
� �
� �

ρg
ij

��
s

Exponentially growing strata. Suppose that Si is an exponentially growing stratum.
Let Y ij

0 be the set of leaves of ˜Xij and define a pseudometric dij
∞ by the following

limit, which exists since dij
n (L ∩ ˜V ij

n ,L′ ∩ ˜V ij
n ) is nonincreasing, nonnegative, and

finite for sufficiently large n:

dij
∞(L,L′) = lim

n→∞ dij
n

(

L ∩ ˜V ij
n ,L′ ∩ ˜V ij

n

)

.

The quotient Y ij of Y ij
0 obtained by identifying points at distance 0 is an R-tree

with a π1X
ij-action by homeomorphisms, and there is a π1X

ij-equivariant map
ρij : ˜Xij → Y ij sending each point to the leaf containing it. Since ρij is distance non-
increasing on each vertical edge, the pasting lemma implies that ρij is continuous.
The subgroup of F stabilizing ˜Xij acts by isometries on Y ij . We refer to Y ij as a
grade-i R-tree. Note that X = X h̄1 and we have a map ρ = ρh̄1 : ˜X → Y h̄1.

Polynomially growing strata. Let e be the unique edge of a polynomially growing
stratum Si. Let Re be the 2-cell whose boundary path is t−1etP−1e−1, where t is a
horizontal edge and P is a path in V i−1. Observe that the component Xij containing
e is a graph of spaces whose vertex-spaces are the mapping tori of the components of
V i− Int(e) that intersect e, and whose unique edge space is the union of the interior
of Re and the interior of e. There is a map Xi → C, where C is a connected graph
with one edge, sending each vertex space to the corresponding vertex and sending
Int(e) homeomorphically to the open edge. This induces a map ρij : ˜Xij → Y ij ,
where Y ij is defined to be the Bass–Serre tree associated to Xij → C. Again, ρij is
π1X

ij-equivariant and continuous.

Zero strata. We will not require an R-tree in this situation.

Remark 1.12. Since V is compact and φ is a π1-isomorphism, Lemma 2.4 below
implies that ˜V ij

n has a unique unbounded component n, i, j, although we shall not
use this fact.

A point x ∈ V i has grade k if k is the minimal integer such that φn(x) ∈ V k for
some n > 0. Note that φm(x) is then in V k for all m ≥ n. The grade of a lift of x to
˜V ij is the grade of x. The grade of x is denoted by grade(x).

Regular points are dense in V by countability of the set of singular points. Sin-
gular points are not dense when there are periodic edges. Nevertheless, the following
is a consequence of irreducibility of the transition matrices:
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Lemma 1.13. Let Si be an exponential stratum and let e be an Si-edge. Every point
x ∈ e such that Sgrade(x) is exponential is the limit of a sequence of singular points.

Lemma 1.14 (Si-edges i-embed). Suppose Si is a nonzero stratum. Let e ⊂ ˜V ij
0 be

an edge whose image lies in Si. Then ρij is injective on the set of regular grade-i
points of e.

Proof. Let e ⊂ Si be an edge and let x, x′ ∈ e be grade-i points. For any n ≥ 1, the
path φn(e) is a concatenation of Si-edges and V i−1-edges. Each Si-edge of φn(e) lies
in [[φn(e)]]. Indeed, when Si is polynomial, φn(e) = eQ, for some Q → V i−1, so the
claim is immediate. When Si is exponential, consider a path u1Pu2, where u1, u2

are edges of Si and P is an essential path in V i−1. For each n ≥ 0, the path φn(P )
is essential by Definition 1.6.(3), and hence the terminal Si-edge of φn(u1) and the
initial Si-edge of φn(u2) do not fold with each other. It follows that no two successive
Si-edges in φn(e) can fold, and hence all Si-edges of φn(e) appear in [[φn(e)]].

If Si is polynomial, then ˜Xij → Y ij is a homeomorphism on e, and is in particular
injective on the set of grade-i points. (In fact, the set of grade-i points in e is
nonempty if and only if φ(e) = e).

Let x, x′ be distinct grade-i points of e, with Si exponential. We claim that
there exists n such that φn(e) contains an Si-edge f between φn(x), φn(x′). By
Lemma 1.13, there exists n′ > 0 such that φn′

(x), φn′
(x′) lie in distinct open edges

q, q′. Since x, x′ have grade i, the edges q, q′ are in Si. As Si is exponential, then
since φ(q) starts and ends with an Si-edge, by the definition of a relative train track
map, the claim holds for some n ≥ n′ + 1.

For any m ≥ 0, we have dij
m+n(φm+n(x), φm+n(x′)) ≥ ωfλ

m
i , whence d∞(Lx,Lx′)

≥ ωf , since limm→∞ |φm(f)| = ωf for each Si-edge f , by construction, and since
φm+n(x), φm+n(x′) are separated in [[φm+n(e)]] by [[φm(f)]]. ��

Lemma 1.15 (Bounded leaf-intersection). For each edge ẽ ⊂ ˜V ij
n and each regular

z ∈ ẽ, the intersection Lz ∩ ẽ is finite.

Proof. Suppose that ẽ maps to an edge e of Si, since otherwise the claim is true
by induction on i; in the base case there are no edges. If z has grade i, then by
Lemma 1.14, |Lz ∩ ẽ| = 1.

Suppose that Si is exponential and that grade(z) < i. For any n ≥ 0, write
φn(e) = P1Q1 . . . PkQkPk+1, where each Pj is a nontrivial immersed path in Si and
each Qj is an essential path in V i−1. As discussed in the proof of Lemma 1.14, each
Pj embeds in [[φn(e)]] and the images of Pj , Pk in [[φn(e)]] have disjoint interiors for
j �= k. Suppose j1 < j2 and let x1, x2 ∈ Qj1 , Qj2 . Then for j1 < k ≤ j2, every regular
leaf intersecting Pk separates x1, x2, and hence Lz intersects at most one of the Qj ,
since distinct leaves are disjoint.

Let [a, b] ⊂ e denote the smallest interval containing Lz ∩ e. Choose n such
that φn(a) ∈ V grade(a) and φn(b) ∈ V grade(b). If φn([a, b]) ⊂ Qj for some j, then
we are done by induction. Thus φn(a) and φn(b) lie in different V i−1 subpaths of
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φn(e). Hence a Pj separates them, whence some Si-edge separates them. Hence some
grade i leaf separates them and thus separates points of Lz ∩ e that are arbitrarily
close to a, b which is impossible.

Suppose now that Si is polynomial and grade(z) < i. Hence e is not periodic,
and thus contains no grade-i points. Thus φ(e) = eP for some nontrivial closed path
P in V i−1. Again, let [a, b] ⊂ e be the smallest interval containing Lz ∩e. If [a, b] lies
in Int(e), then φk([a, b]) ⊂ V i−1 for some k ≥ 1 by compactness, whence the claim
follows by induction. Hence suppose that a is the initial vertex of e.

For some k ≥ 1, the path [[φk([a, b])]] = eQ is a basic path in the sense of [BFH00,
Def. 4.1.3], where Q is a path in V i−1. By [BFH00, Thm. 5.1.5.ne-(iii)], together
with the fact that there are no nontrivial closed Nielsen paths since Φ is atoroidal,
there exists n ≥ 1 such that [[φn(eQ)]] splits as a concatenation eQ′. Hence the image
in X of the leaf Lz cannot cross both (φn+k)−1(e) ⊂ e and (φn+k)−1(Q′) ⊂ e, which
contradicts that a and b are limits of points in e ∩ Lz. ��

Definition 1.16. Let y ∈ Y ij . The grade of y is min{grade(x) : ρij(x) = y}.

Lemma 1.17. Let y ∈ Y ij and let e be an Sk-edge of ˜Xij . If k < i then ρij(e)
consists of a single point, and is thus either equal to or disjoint from y. If k = i,
then ρ−1

ij (y) ∩ e is:

(1) Empty or a single point if grade(y) = i.
(2) Empty or a closed interval if grade(y) < i.

In particular, ρ−1
ij (y) ∩ e is connected.

Proof. Si is exponential. Statement (1) holds by Lemma 1.14. To prove State-
ment (2), it suffices to prove that ρ−1

ij (y) ∩ e is connected if grade(y) < k = i.
Let [a, b] ⊆ e be the smallest closed subinterval containing ρ−1

ij (y) ∩ e and note that
ρij(a) = ρij(b) = y. Choose n so that φn(a) ∈ V grade(a) and φn(b) ∈ V grade(b).
Observe that φn(e) = P1Q1 . . . PkQkPk+1, where each Pj is a nontrivial path in
Si and each Qj is a path in V i−1. If φn(a) and φn(b) are separated by some Pj ,
then by Lemma 4.6 their images in Y ij are separated by a grade-i point ρij(q),
where q ∈ (a, b) is an arbitrary grade-i point in Pj . This contradicts the fact that
ρij(a) = ρij(b) = y. Hence φn([a, b]) ⊂ Qj for some j, and ρij collapses Qj to a
point.

Si is polynomial. If k < i, then e belongs to a vertex space, so ρij(e) is a single
vertex. If k = i, then ρij is injective on e and hence the preimage has at most one
point. ��

1.3 The splitting lemma. The following is a rephrasing of Lemma 6.5 of
[Lev09], which splits into [BFH00, Lem. 4.1.4, Lem. 4.2.6, Lem. 5.5.1].

Lemma 1.18 (Splitting lemma). Let V be a graph and let φ : V → V be an improved
relative train track map preserving a filtration V 0 ⊂ · · · ⊂ V �. Let P → V i be a
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path such that [[P ]] traverses an edge of the stratum Si = Cl
(

V i − V i−1
)

. Then
there exists n0 such that [[φn0(P )]] is a concatenation Q1 . . . Qk, where each Qs is of
one of the following types:

(1) a Nielsen path;
(2) an edge of Si;
(3) an initial or terminal subinterval of an edge of Si, when s ∈ {1, k};
(4) a path in V i−1.

Moreover, for all n ≥ n0, the immersed path [[φn(P )]] is equal to a concatenation of
the paths [[φn−n0(Qs)]].

In the above situation, we say that P , or rather [[φn0(P )]], splits as Q1 . . . Qk.

Lemma 1.19. Within the framework of Lemma 1.18, if Case (2) or (3) holds for
some Qs in the splitting Q1 . . . Qk of [[φn0(P )]], then the endpoints of P have distinct
images in Y ij .

Proof. Grade-i points arbitrarily close to the endpoints of Qs map to distinct points
in Y ij by Lemma 1.14. They provide a positive lower bound on the distance between
the endpoints of ρij ◦ P by Lemma 1.18 and the definition of dYij . ��

Lemma [Bri00, Lem. 3.4] states:

Lemma 1.20. Let G be word-hyperbolic. Let Si be an exponential stratum. There
does not exist an indivisible periodic Nielsen path containing an edge of Si and
having both endpoints in V i−1 ∩ Si.

The proof of Lemma 4.12 requires the following reshaped consequence of
Lemma 1.20:

Lemma 1.21. Let G be word-hyperbolic. Let Si be an exponential stratum and let
Q → V be an indivisible periodic Nielsen path with initial point in V i−1 ∩ Si and
terminal point in Si. Then Q cannot traverse an edge of Si.

Proof. Let q, p be the initial and terminal points of Q, with q ∈ V i−1 ∩ Si, so that
q is a vertex and p is a periodic point in Si with period n ≥ 1. Add to the 0-
skeleton of V each of the points p, φ(p), . . . , φn−1(p), and define a new φ-invariant
filtration of V as follows: for j < i − 1, let (V ′)j = V j , so that (S′)j = Sj . Let
(V ′)i−1 = V i−1 ∪ {φk(p)}n−1

k=0 , and let (V ′)j = V j for j > i− 1. Either p [and hence
each φk(p)] was already in V i−1, or p is an isolated point of (V ′)i−1 and (S′)i = Si.
We also note that p is a component of (S′)i−1 in the latter case.

For each k, we have φk(p) ∈ (V ′)i−1 ∩ (S′)i and q ∈ (V ′)i−1 ∩ (S′)i. Indeed, since
V i is φ-invariant and p ∈ Si, we have (S′)j = Sj for all j. The claim now follows
from Lemma 1.20, once we verify the following:

(1) φ is a tight relative train track map with respect to (V ′)0 ⊆ (V ′)1 ⊆ · · · ⊆ (V ′)h̄.
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(2) For each j, the subgraph (S′)j is a zero stratum if and only if it is the union
of all of the contractible components of (V ′)j .

Property (2) follows from the corresponding fact about the original strata Sj , since
each (S′)j is obtained from Sj by adding a (possibly empty) discrete set. To verify
Property (1), first note that each (V ′)j is φ-invariant, since V j is φ-invariant and
{φk(p)} is φ-invariant. Since each (V ′)j is a subdivision of V j , the new filtration is
maximal in the sense of [BH92, Section 5], i.e. each transition matrix is either the
zero matrix or irreducible, and we can thus refer to each (S′)j as being exponential,
polynomial, or zero as usual. Each (S′)j is exponential [polynomial, zero] if and only
if Sj is exponential [polynomial, zero]. From this it is easily verified that φ, together
with the new filtration, is a tight relative train track map. Finally, φ remains e.g.-
aperiodic. Indeed, let f be an edge of Si. Since Mi is aperiodic, for all edges f ′ of Si,
for all periodic points p ∈ f , all ε > 0, and all sufficiently large k, the φk-images of a
length-ε subpath of f starting or ending at p traverses f ′. It follows that if f is the
concatenation of edges f ′′ of (S′)i, then each φk(f ′′) traverses f ′ for all sufficiently
large k, so φ is eg-aperiodic with respect to the new filtration. ��

Lemma 1.22. Let P → V be a non-Nielsen path. There exists no ≥ 0 such that
[[φno+n(P )]] = [[φn(Q1)]] . . . [[φn(Qk)]] for all n ≥ 0, where some Qi is an exponential
edge.

Proof. This is proven by induction on h̄. By Lemma 1.18, there exists no ≥ 0 such
that [[φno(P )]] = Q1 . . . Qk and for all n ≥ no, we have [[φn(P )]] = [[φn−no(Q1)]] . . .
[[φn−no(Qk)]] and each Qs is either a Nielsen path, an edge of Si, or a path in V i−1.
Since P is not a Nielsen path, some Qs is not a Nielsen path. If Qs is an exponential
edge, we are done. If Qs is a path in V i−1, the claim follows by induction. It remains
to consider the case in which Si is a polynomial stratum consisting of a single edge
f , and Qs = f . Applying Lemma 1.18 to φ(f) yields n1 ≥ 0 such that [[φn1(f)]] splits
as a concatenation U1 . . . U�. Since f is not a Nielsen path, � > 1, so there exists
some Us with Us �= f and Us not a Nielsen path. Hence Us is a path in V i−1. Thus,
by induction, [[φn(P )]] traverses an exponential edge for all sufficiently large n. ��

The following is related to Theorem 3.7 and will be used in Section 5.

Lemma 1.23. Let φ : V → V be an improved train track map with V finite and
π1X word-hyperbolic. Let e be an edge of a polynomial stratum so that φ(e) = eP
as in Definition 1.10. Then either P is trivial or [[φn(P )]] traverses an edge in an
exponential stratum for all sufficiently large n.

Proof. Since P is closed, hyperbolicity implies that P is not a Nielsen path, and so
the claim follows from Lemma 1.22. ��

1.4 Metric on ˜X

Proposition 1.24. There exists a geodesic metric d on ˜X such that G acts properly
and cocompactly on ( ˜X, d) and the map q : ˜X → R is 1-Lipschitz. Moreover, forward
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paths are convex and the intersection of a geodesic and a cell has finitely many
components.

Proof. Fix an assignment of a positive length ωe to each edge e of V .

Temporary subdivision. Each 2-cell Re has boundary path etφ̃(e)−1t−1, where e
is a vertical edge in some ˜Vn and t is horizontal. For each temporary 0-cell x ∈
ψ−1

1 (˜V 0
n+1) ∩ e, we add a temporary 1-cell, namely the midsegment joining x to

ψ1(x). The temporary 2-cells are components of the complement in Re of the closed
temporary 1-cells and vertical 1-cells. By performing this construction on each 2-cell,
we obtain a G-invariant subdivision of ˜X.

Weights on 1-cells. We assign to each horizontal (temporary or non-temporary)
1-cell a length

η ≥ max

⎛

⎝

⎧

⎨

⎩

∑

f∈Edges(φ(e))

ωf : e ∈ Edges(V )

⎫

⎬

⎭

∪ {ωe : e ∈ Edges(V )}

⎞

⎠ .

Defining a metric. Regard the temporary 2-cell R, with edge e at right, as a copy
of [0, η]× [0, ωe]. Let De denote the length of the left vertical boundary subpath of
R. For (x1, y1), (x2, y2) ∈ R, we let

dR((x1, y1), (x2, y2)) = |x1 − x2|+ η−1ω−1
e [min(x1, x2)(ωe −De) +De] |y1 − y2|.

A horizontal path in R joining (x1, y) to (x2, y) has length dR((x1, y), (x2, y)) =
|x1 − x2| and a vertical path in R joining (x, y1) to (x, y2) has length

dR((x, y1), (x, y2)) = η−1ω−1
e [x(ωe −De) +De] |y1 − y2|.

The length of a concatenation of finitely many horizontal and vertical paths in R is
the sum of the lengths of these paths. Note that dR is a geodesic metric, since for
any (x1, y1), (x2, y2) ∈ R, the distance dR((x1, y1), (x2, y2)) is equal to the length of
a path in R joining (x1, y1) to (x2, y2) that is the concatenation of a vertical path
and a horizontal path or vice versa.

An eligible path is a path γ → ˜X that decomposes as a concatenation γ =
A0A1 . . . Ak, where each Ai is a geodesic of a temporary 2-cell Ri. Let ai, bi be
the endpoints of Ai. Then the length of γ is |γ| =

∑

i dRi
(ai, bi). For x, y ∈ ˜X,

we let d(x, y) = inf{|γ|}, where γ varies over all eligible paths joining x, y. This
is obviously symmetric, and the triangle inequality holds since the concatenation of
eligible paths is eligible. Let x, y ∈ ˜X. If x, y do not lie in a common closed temporary
cell, then any eligible path from x to y intersects a closed (possibly temporary) 1-cell
not containing x. Hence d(x, y) is bounded below by the minimum distance in the
finitely many temporary 2-cells containing x from x to the set of closed 1-cells not
containing x. If x, y lie in a common temporary cell R, then any eligible path from
x to y either leaves R, and hence has positive length as above, or has length at least
dR(x, y).
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Completeness. The length space ( ˜X, d) is complete. Indeed, if (xn) is a Cauchy
sequence in ˜X, then by local finiteness of ˜X, the sequence (xn) is partitioned into
finitely many subsequences, each of which lies in a single closed temporary 2-cell.
The metric on each temporary 2-cell is complete, so each of these subsequences
converges to a point in ˜X, and these points coincide since (xn) is Cauchy.

˜X is a geodesic space. This will follow from the Hopf–Rinow theorem once we
establish that ( ˜X, d) is locally compact. To this end, we claim that the identity
˜X → ( ˜X, d) is a homeomorphism. Regarding each closed 2-cell R of ˜X as a Euclidean
unit square, the identity R ↪→ (R, d) is bi-Lipschitz and thus continuous, and hence
a homeomorphism since R is compact and (R, d) is Hausdorff. Since ˜X is covered
by the locally finite collection of closed 2-cells, it follows that ˜X and ( ˜X, d) are
homeomorphic.

Forward paths are convex. A forward path σ is isometrically embedded since q : ˜X→
˜

S is distance non-increasing and |q(σ)| = |σ|. To show that σ is convex, let σ′ be a
geodesic intersecting σ in its endpoints u, v. Since |σ| = |σ′|, we have q(σ) = q(σ′),
and that the restriction of q to σ′ is injective. Indeed, for any x, y ∈ σ′, we have
that dσ′(x, y) ≥ |q(x) − q(y)|. If q(x) = q(y), then |σ′| ≥ |σ| + d

˜X(x, y). Moreover,
no nontrivial initial subpath of σ′ lies in a horizontal 1-cell, for we would then either
have q(σ′) �= q(σ), or σ′ ∩ σ would contain points other than u and v.

For each open 2-cell or open horizontal 1-cell c, we have that c ∩ σ′ is the q-
preimage in σ′ of an open interval in ˜

S, and hence c ∩ σ′ is open in σ′. There exists
a 2-cell or horizontal 1-cell R whose interior contains the (nonempty) interior of an
initial subpath σ′′ of σ′. Indeed, the finitely many cells whose closures contain u have
interiors that intersect σ′ in open sets for 2-cells or horizontal 1-cells and singletons
for vertical 1-cells, since q|σ′ is injective. There are finitely many singletons by local
finiteness at u, and hence the initial open subinterval of σ′ consists of a single
intersection of the first type, since σ′ is connected. This must be an open path in
a 2-cell as noted earlier. Since σ′′ is not horizontal, |σ′′| > dR(u, p), where p is the
terminal point of σ′′. This implies that |σ′| > |σ|, a contradiction.

Intersections of 1-cells with geodesics. Let e be a vertical 1-cell and suppose that
γ ∩ e has at least t + 1 components, where t is the “thickness” of ˜X, i.e. the max-
imum number of temporary 2-cells intersecting a vertical 1-cell. Then there exists
a temporary 2-cell R containing e and non-vertical subpaths σ, σ′ of γ emanating
from distinct components of γ ∩ e. The choice of η ensures that this contradicts the
fact that γ is a geodesic. Hence there are at most t components of γ ∩ e.

Intersections of 2-cells with geodesics. A geodesic γ has connected intersection with
each midsegment, by convexity of forward paths. Let R be a temporary 2-cell. First
observe that γ intersects each midsegment of R in a possibly empty interval, by
convexity of forward paths. By considering the total number of possible endpoints
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of arcs of γ ∩ R, we see that γ ∩ R has at most 4t + 2 endpoints and hence finitely
many components. ��

When G is word-hyperbolic, we always denote by δ a constant such that ( ˜X, d)
is δ-hyperbolic. For simplicity, we will rescale the metric d by η−1, so that horizontal
edges have unit length. We will refer to this new metric by d and to the (rescaled)
length of each vertical edge e as ωe.

Remark 1.25. We assume that d has been defined using the edge-lengths ωe assigned
to vertical edges in Construction 1.11; recall that each vertical edge was assigned
exactly one positive length. However, any other metric satisfying the conclusions
of Proposition 1.24 could be used in the remainder of the paper. In fact, one can
relax the requirement that forward paths be convex, requiring only that they are
uniformly quasiconvex.

2 Quasiconvexity of Polynomial Subtrees

Theorem 2.1. Let φ : V → V be an improved relative train track map with π1X
hyperbolic and let C ⊂ V be a connected subgraph none of whose edges belong to
exponential strata. Then ˜C ⊂ ˜V0 is quasi-isometrically embedded in ˜X.

Proof. We argue by induction on the length of the filtration V 0 ⊂ V 1 ⊂ · · · ⊂ V h̄ =
V . If Sh̄ is an exponential stratum, then C ⊂ V h̄−1. By Proposition 2.7, each compo-
nent X h̄−1

o of the mapping torus X h̄−1 of φ|V h̄−1 has the property that ˜X h̄−1
o quasi-

isometrically embeds in ˜X. The subgraph C is contained in someX h̄−1
o . By induction,

˜C is quasi-isometrically embedded in ˜X h̄−1◦ , and thus ˜C quasi-isometrically embeds
in ˜X.

Consider the case in which Sh̄ is a polynomial stratum, which consists of a single
edge e since φ is an improved relative train track map. Let P → V be the path such
that φ(e) = eP .

Let Re be the (closed) 2-cell based at e, with boundary path t−1
1 et2P

−1e−1,
where t1, t2 are horizontal edges. Then X splits as a graph of spaces where the
vertex spaces are the components of X h̄−1 and the unique edge space is the cylinder
Int(Re) ∪ Int(e).

Consider the corresponding splitting of π1X over a cyclic group Z; the vertex
groups are isomorphic to the various π1X

h̄−1
o and are hyperbolic since π1X is hyper-

bolic and the edge group is cyclic. The two inclusions of Z into the vertex groups
do not have nontrivially-intersecting conjugates. Moreover, Z is maximal cyclic, and
hence malnormal, since its generator has translation length 1 in R.

By induction, for each X h̄−1
o , the intersection Co = C ∩X h̄−1

o has the property
that ˜Co is quasi-isometrically embedded in ˜X h̄−1

o . In the special case when e �⊂ C,
there is a unique Co = C, and ˜C quasi-isometrically embeds in ˜X as above. In
general, C = C1 ∪ e ∪ C2, where C1, C2 are the (possibly equal) intersections of C
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with the components of X h̄−1. As above, the claim holds for C1, C2. The result now
holds for C by [BW13b, Thm. 4.13].

Let Sh̄ be a 0-stratum and let C ′ be the union of all components of V h̄−1 ∩ C
that are intersections of C with non-contractible components of V h̄−1. Let J =
Cl (C − C ′). By Lemma 2.2, each component of J is a tree whose intersection with
C is a single vertex. We note that it follows that C ′ is connected since C is. By
induction, ˜C ′ ⊂ ˜X is quasi-isometrically embedded, and ˜C is contained in the R-
neighborhood of ˜C ′, where R is the maximum diameter of a component of J . ��

Lemma 2.2. Let V be a finite connected graph and let φ : V → V induce an iso-
morphism of π1V . Let V ′ be a φ-invariant subgraph whose components are not
contractible. Let P → V be an immersed path satisfying one of the following:

(1) P starts and ends on V ′ and φ(P ) is path-homotopic into V ′; or
(2) P is a closed path and φ(P ) is homotopic into V ′.

Then P is homotopic into V ′.

Proof. Let ̂V → V be a finite cover such that φ lifts to a map ̂φ : ̂V → ̂V and such
that, in case (1), P lifts to an embedded path ̂P , and in case (2), some power of P
lifts to an embedded closed path ̂P . Let ̂V ′ be the entire preimage of V ′ in ̂V and
note that ̂φ(̂V ′) ⊆ ̂V ′. The map ̂φ induces maps on homology, yielding the following
commutative diagram:

For 1 ≤ i ≤ 7, the ith vertical map from the left will be called fi. Since f1 is
an epimorphism and f2, f4 are monomorphisms, the map f3 is a monomorphism.
Hence f6 is a monomorphism: if two distinct components of ̂V ′ mapped to the same
component, then since H1(̂V ′) �= 0, the map f3 would fail to be injective. Hence f6 is
an isomorphism. Since f4 and f6 are epimorphisms and f7 is a monomorphism, f5 is
an epimorphism and hence an isomorphism. Observe that ̂P represents a nontrivial
element of H1(̂V , ̂V ′). On the other hand, if φ(P ) were homotopic into V ′, then
[̂φ( ̂P )] = 0 in H1(V̂ , V̂ ′), so [ ̂P ] = 0. ��

Lemma 2.3. Let Si be a zero stratum. Then no nontrivial immersed path in Si

starts and ends on non-contractible components of V i−1.

Proof. Let P → Si be a nontrivial immersed path with endpoints in V i−1. Since Si

is a zero stratum, φ(P ) ⊂ V i−1. By Lemma 2.2, applied to the graph V h̄ and the
φ-invariant subgraph V i−1, we have that P is path-homotopic into V i−1. Thus P is
trivial. ��
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The following lemma occasionally provides an alternative way of supporting some
of our arguments, but we have not (yet) used it. For example, in view of Lemma 2.4,
Lemma 2.2 could have been applied in the proof of Theorem 3.7 without being
mediated by Lemma 2.3.

Lemma 2.4. Let φ be a π1-isomorphism. For each i and each non-contractible com-
ponent U of V i, there exists a unique component U ′ of V i such that the map
φ|U : U → U ′ is a π1-isomorphism, and φ−1(U ′) ⊆ U .

Proof. Suppose that there are distinct non-contractible components U1, U2 mapping
by φ to U . By passing to a power if necessary, we assume that U1 = U . Let P be an
essential closed path in U2, so that φ(P ) is path-homotopic into U . By Lemma 2.2,
P is homotopic into U , a contradiction. Hence φ permutes the non-contractible com-
ponents of V i, so by passing to a power if necessary, we can assume that φ preserves
each noncontractible component and preserve the basepoint in each component U .
Suppose that φ : U → U does not induce an isomorphism of fundamental groups.
Then there exists g ∈ π1U − imφ�, contradicting Lemma 2.5. ��

Lemma 2.5. Let φ : F → F be an automorphisms of a finitely generated group. Let
H ≤ F be separable φ-invariant subgroup. Then φ(H) = H.

Proof. Let g ∈ H − φ(H) and let F → F be a finite quotient in which ḡ �∈ H
and such that ker(F → F ) is φ-invariant. Then φ descends to an automorphism
φ̄ : F → F , and φ̄(H) ⊆ H. By finiteness, φ̄|H is an isomorphism, contradicting that
φ̄(ḡ) ∈ φ̄(H). ��

2.1 Top stratum exponential. In this subsection, it will be convenient to
work with the usual graph metric on ˜X1 rather than with the metric d. A combi-
natorial geodesic in ˜X is a shortest path in ˜X1 joining a given pair of vertices and
traversing edges at unit speed.

Definition 2.6 (Dual curves). Let D → X be a disk diagram and consider a lift
D → ˜X. A horizontal dual curve in D is a component of the preimage of a leaf of
˜X. A vertical dual curve in D is a component of the preimage in D of some ˜En.
Suppose that D has minimal area for its boundary path. Then each dual curve is
an arc. Indeed, horizontal and vertical dual curves map to trees, and so if a dual
curve contains a cycle then there is a cancellable pair of 2-cells and so the area of D
can be reduced without affecting its boundary path. A dual curve K is dual to each
1-cell that it intersects; note that a horizontal dual curve is dual to vertical 1-cells
and a vertical dual curve is dual to horizontal 1-cells. Each horizontal 1-cell in D is
dual to a dual curve, and each horizontal 1-cell is dual to continuously many dual
curves. Observe that if K is a dual curve, then each of its endpoints lies on ∂D. If
K is a horizontal dual curve, then K inherits a directed graph structure from the
leaf to which it maps. In this case, since the area of D is minimal and each vertex
of a leaf has one outgoing edge, there is at most one degree-1 vertex of K with an
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incoming midsegment. We say that K ends at the 1-cell intersecting K in such a
vertex of K, and that K starts at the other endpoint of K. Finally, the union N(K)
of all closed 2-cells of D intersecting K is the carrier of K.

Proposition 2.7. Let S = Cl (V − V ′) be an exponential stratum, and let X ′ ⊂ X
be the mapping torus of φ|V ′ . Then for each component X ′

o of X ′, each lift ˜X ′
o ⊂ ˜X

is quasi-isometrically embedded.

Proof. We may assume, without loss of generality, that no component of V ′ is con-
tractible. This will enable us to invoke Lemma 2.8, which relies on Lemma 2.2.
Indeed, let W be the subgraph of V consisting of its non-contractible components
and let Y be the mapping torus of φ|W . It suffices to prove that for each component
Yo of Y , the inclusion ˜Yo ↪→ ˜X is a quasi-isometric embedding.

A minimal-area disc diagram. Let γ → ˜X be a combinatorial geodesic of ˜X with
endpoints on ˜X ′

o and let γ′ → ˜X ′
o be a combinatorial path joining the endpoints of

γ, so that γγ′ is the boundary path of a disc diagram D → ˜X. Assume that D has
minimal area among all disc diagrams constructed in this way from γ (in particular,
γ′ is allowed to vary among paths of ˜X ′

o joining the endpoints of γ). It is sufficient to
prove the result in the case in which γ and γ′ do not have any common edges. Denote
by |γ|V , |γ′|V the number of vertical edges in γ, γ′ and by |γ|H, |γ′|H the number of
horizontal edges in γ, γ′.

We shall repeatedly use the following consequence of the minimality of the area
of D: let R be a 2-cell of D whose image under D → ˜X → X is in X ′. Then no
1-cell of the boundary path of R can lie on γ′, for otherwise we could modify γ′

and replace D by a proper subdiagram not including R, contradicting minimality of
area. See Figure 1.

Counting horizontal edges in γ′. By Lemma 2.8 below, no dual curve has both ends
on γ′. Hence every vertical dual curve L with an end on γ′ has an end on γ, whence
|γ′|H ≤ |γ|H.

Figure 1: Each of the dual curves shown is impossible in a minimal-area diagram. The bold
2-cell at left must not map to X ′
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Figure 2: Carriers of vertical dual curves in a minimal-area disc diagram have connected
intersection with γ′. The base edge of a 2-cell cannot lie on γ′, by minimality of the area of
D, since V ′ is φ-invariant

Connected intersection of γ′ with dual curve-carriers. For each vertical dual curve
K in D, the intersection N(K) ∩ γ′ is connected since otherwise there would be
a vertical dual curve starting and ending on γ′, contradicting Lemma 2.8. Indeed,
if the path σ between successive components of N(K) ∩ γ′ were entirely vertical,
then we could obtain a smaller diagram by removing the subdiagram between σ and
N(K). It follows that for each vertical dual curve K such that N(K) ∩ γ′ �= ∅, the
intersection N(K)∩γ′ is a subpath of γ′ of the form ν, νt−1, or tν, where ν is a path
mapping to V ′ under the map D → ˜X → X and t is a horizontal edge dual to K.
See Figure 2.

Uniformly bounding |ν|. There exists M , depending only on φ, so that |ν| ≤M for
each vertical path ν above. Indeed, by the pigeonhole principle, if |ν| is sufficiently
large, there must be two 2-cells R1, R2 of N(K) whose base vertical 1-cells e1, e2
are oriented in the same direction and respectively map to edges e, ge in ˜X, where
g ∈ π1V . Moreover, R1, R2 can be chosen so that R1 ∩ ν and R2 ∩ ν contain 1-cells
f, gf respectively. Let P → N(K) be an immersed vertical path in D joining the
initial vertex of e1 to that of e2. The closed path P → D → ˜X → X is a closed path
in V . Since D has minimal area and hence N(K) has no cancellable pair, there is a
decomposition P = ABA′, where A→ V and A′ → V are inverse, and where B → V

is shortest with this property. The image of the path P → V
φ→ V is homotopic into

V ′ since it is homotopic to the image of a subpath of ν. By Lemma 2.2.(2), P → V
is homotopic into V ′, and hence B is homotopic into V ′. Since B is immersed, the
nontrivial path B must be contained in V ′. Thus there is a 2-cell mapping to X ′

and sharing a 1-cell with ν. Thus minimality of D is contradicted if |ν| is too large.

Conclusion. We conclude that

|γ′| = |γ′|H + |γ′|V ≤ |γ|H +M |γ|H ≤ (M + 1)|γ|.

The proposition follows from the above inequality, since each of ˜X and ˜X ′
o, with the

metric d of Proposition 1.24, is quasi-isometric to its 1-skeleton. ��
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Figure 3: No vertical dual curve starts and ends on γ′

Lemma 2.8. Suppose that no component of V ′ is contractible. Let D → ˜X be a disc
diagram with boundary path γγ′, where γ is a geodesic starting and ending on ˜X ′

o

and γ′ is a path in ˜X ′
o. Suppose that D has minimal area among all such diagrams,

with γ fixed and γ′ allowed to vary. Then each vertical dual curve has at most one
end on γ′.

Proof. Let K be a vertical dual curve starting and ending on γ′, dual to horizontal
1-cells t1, t2. Let Q be the subpath of γ′ between t1, t2, so that t−1

1 Qt2 is a subpath
of γ′. Let P → N(K)→ D be the vertical immersed path joining the initial points
of t1, t2. Consider the case in which t1, t2 are oriented away from Q. If P maps to
X ′, then D does not have minimal area since we can replace t−1

1 Qt2 by the path
P ′ → N(K) → D mapping to φ̃(P ) in γ′; see Figure 3. Hence suppose that some
edge e in P does not map by D → ˜X → X to an edge in V ′. As shown below, any
horizontal dual curve L ending on Int(e) emanates from the interior of an edge f
of Q. This leads to a contradiction since f does not map to V ′, for otherwise the
image of f ∩L in V ′ would map by φ|L| into the image of Int(e), which is not in the
φ-invariant subgraph V ′. Finally, L cannot intersect P in some other point. Indeed,
if it does, then since the initial and terminal midsegments of L are directed toward
K, there are consecutive midsegments of L that are both directed away from their
common vertex. The 2-cells containing these midsegments fold together in the map
D → X, contradicting minimality of the area of D.

Now suppose that t1, t2 are oriented toward Q. Assume that K is innermost in
the sense that Q does not contain horizontal 1-cells. The path P → ˜X → X is a
path in V . Suppose that P → X is not path-homotopic within V into V ′. Then
φ(P ) is not path-homotopic into V ′ by Lemma 2.2. But φ(P ) is path-homotopic
to Q, which maps to V ′. Thus P maps to V ′ and we can reduce the area of D by
replacing t1Qt−1

2 by P . ��

3 Immersed Walls, Walls, Approximations

3.1 Immersed walls

Definition 3.1 (Tunnel). Each leaf is a directed tree by Remark 1.3 in which each
vertex has a unique outgoing edge. Let n ∈ Z, L ∈ N, and x̃ ∈ ˜En. The tunnel TL(x̃)
of length L rooted at x̃ is the union of all forward paths of length L that terminate
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Figure 4: A tunnel T3(x̃) and the 2-cells intersecting it

at x̃. Equivalently, TL(x̃) = ∪r∈[0,L]ψ
−1
r (x̃). An (immersed) tunnel in X is a map

TL(x̃) ↪→ ˜X → X, where TL(x̃) is a tunnel, and the root of this tunnel is the image
x ∈ X of x̃. See Figure 4.

Let {d1, . . . , dr} be regular points of E and let L ≥ 0. For simplicity, we shall

assume that for all i �= j, we have φL(di) �= dj . Let φ̇ be the map E → V
φ→

V → E, where the first and last maps are the obvious isomorphisms. For each i,
let {dij} = (φ̇L)−1({di}). Let E� be the graph containing E − {di, dij}, where i, j
vary, such that E� − (E − {di, dij}) consists of end vertices, namely vertices

←−
di ,
−→
di

associated to di and
←−
d ij ,
−→
d ij associated to dij and isolated extra vertices d̈i for

each di that is L-periodic. There is a map E� → E that is an inclusion on Int(E�)
and sends

←−
d i,
−→
d i, d̈i to di and

←−
d ij ,
−→
d ij to dij . The vertices

←−
d ij ,
−→
d ij are “named”

so that φ maps the half-open interval bounded at
←−
d ij [resp.

−→
d ij ] to the half-open

interval bounded at
←−
d i [resp.

−→
d i]. Observe that there is a map E� → X which is

the inclusion on E − {di, dij}. Each di is a primary bust and each dij is a secondary
bust.

Remark 3.2. Beginning in Section 3.3, the set {d1, . . . , dr} is always chosen so that
each di is periodic, and L is a multiple of the period of each di. Hence di �= djk when
i �= j but such that for all i, there exists k such that di = dik. However, the method
of constructing immersed walls described presently does not require periodicity of
primary busts. In practice, we will only use collections of primary busts that allow
us to build a wall for any choice of L, i.e. we choose {di} so that for all n ≥ 0 and
all i �= j, we have φn(di) �= φn(dj).

For each i, let Ti be the length-L tunnel rooted at di and let
←−
T i,
−→
T i be copies

of Ti. We define W • to be the following quotient of E� �
⊔

i(
←−
T i �

−→
T i). If di is not

L-periodic, attach the root of
←−
T i to

←−
d i and that of

−→
T i to

−→
d i. Likewise, attach the

dij leaf of
←−
T i [resp.

−→
T i] to the end vertex

−→
d ij [resp.

←−
d ij ]. For each i such that di

is L-periodic, attach
←−
T i as above. The tunnel

−→
T i is attached by identifying its root

with d̈i, identifying each
←−
d ik �=

←−
d i with the dik leaf of

−→
T i, and identifying d̈i with

the dij-leaf of
−→
T i, where dij is the unique secondary bust such that dij = di. See

Figure 5.
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Figure 5: Part of the immersed wall W → X near an L-periodic primary bust

The map W • → X is induced by the maps Ti → X and the map E� → E ⊂ X.
An immersed wall is a component W of W •. Regarding E� as a subspace of W , each
component of E� is a nucleus of W .

Proposition 3.3. The map W • → X extends to a local homeomorphism [−1, 1] �

W • → X of a [−1, 1]-bundle, where we identify W • with {0} ×W •.

Proof. Since E has a neighborhood homeomorphic to [−1, 1] × E, there is a local
homeomorphism (E − {di, dij}) × [−1, 1] → X with E − {di, dij} identified with
(E − {di, dij}) × {0}. The same is true for each

←−
T i,
−→
T i, as discussed above. These

neighborhoods can be chosen so that the images of the various
←−
T i × [−1, 1] → X

and
−→
T i × [−1, 1] → X are pairwise disjoint, except where some di = djk. For each

d ∈ {←−d i,
−→
d i,
←−
d ij ,
−→
d ij}, we have a local homeomorphism d × [−1, 1]2 → X with

d identified with d × (0, 0). The square whose image is centered at d intersects
Ti × [−1, 1] in [−1, 0] × [−1, 1] and intersects [−1, 1] × (E − {d�, d�k}) in [−1, 1] ×
([−1, 0)�(0, 1]). At d̈i, the neighborhood [−1, 1]×−→T i intersects itself at [−1, 1]×{d̈i},
and we combine to obtain a product neighborhood. Hence these neighborhoods can
be chosen so that their union is a [−1, 1]-bundle over W •. See Figure 6. ��

Lemma 3.4. Let x1, . . . , xk ∈ V be periodic regular points, with one in each expo-
nential edge. Then for all sufficiently large L, each xi is separated from each vertex
by a point in (φL)−1({xj}). Moreover, suppose a ∈ V has the following property:

for each i and each embedded path P → V joining a to xi, and any lift ˜P → ˜X,
the forward rays emanating from the endpoints of ˜P have bounded coarse inter-
section. Then for all sufficiently large L, each xi is separated from a by a point in
(φL)−1({xj}).

Proof. Let P be an essential path from xi to some b ∈ V . Suppose first that
b ∈ Vertices(V ). By Lemma 1.18, there exists LP such that for all L ≥ LP , we
have [[φL(P )]] = [[φL(Q1)]] . . . [[φL(Qn)]], where Q1 must be a subinterval of an expo-
nential edge joining φL(xi) to a vertex, since periodicity ensures that grade(xi) = k,
where Sk is the exponential stratum containing xi. For sufficiently large L, we see
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Figure 6: A schematic picture of an immersed wall when busts are not L-periodic

that [[φL(Q1)]] traverses an exponential edge containing some xj . Thus (φL)−1(xj)
contains a point separating xi from b.

Now suppose that b = a. The bounded overlap hypothesis ensures that P is not
a Nielsen path, so Lemma 1.22 implies that for some LP ≥ 0 and all L ≥ LP , the
path [[φL(P )]] traverses an exponential edge, and the claim follows as above from the
fact that each exponential edge contains some xj . Note that the first assertion used
periodicity of the xi, but the second did not. ��

Remark 3.5 (Zoology of nuclei). We actually use the following consequence of
Lemma 3.4. Let W → X be an immersed wall constructed by positioning exactly
one primary bust in each exponential edge, and no primary busts elsewhere. When
the tunnel length is sufficiently large, each primary bust is separated from each ver-
tex by at least one secondary bust. It follows that each nucleus C of W is of one of
the following three types: first, C could be a proper subinterval of an exponentially-
growing edge of E, bounded by a primary bust and a secondary bust, so that there
is one incoming and one outgoing tunnel incident to C. Second, C could consist of
a proper subinterval of an arbitrary edge, bounded by two secondary busts. Finally,
C could be homeomorphic to a graph that does not contain an entire exponential
edge of E, but which contains at least one vertex (and might contain one or more
polynomial or zero edges). In this case, all busts bounding C are secondary. The
number of nuclei of the second type grows as we vary W by letting the tunnel length
grow while fixing the primary busts. However, the number of nuclei of the other
types is eventually constant. We also note that when the periods of the various xi

divide L, then among the nuclei of the first type are trivial nuclei that are lifts of
the extra vertices ẍi used in constructing the wall.

3.2 Walls in ˜X. Let W → X be an immersed wall with tunnel-length L. For
each lift ˜W → ˜X of the universal cover ˜W →W , letW = im(˜W → ˜X) and letHW =
Stab(W ), which acts cocompactly on W . A nucleus of W is a component of W ∩ ˜En
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Figure 7: Part of a wall and its approximation. A knockout and its approximation are bold.
When the primary busts are L-periodic, the wall contains some periodic lines, and hence
the approximation does also

for some n ∈ Z. Since ˜W → ˜X is an embedding on vertical subtrees, each nucleus of
W is isomorphic to the universal cover of a nucleus of W . Each tunnel of W lifts to
˜W and embeds in ˜X. A knockout K is a component of W ∩ q−1([nL+ 1

2 , (n+ 1)L])
for some n ∈ Z. Equivalently, K is a maximal connected subspace K ⊂W with the
property that for each tunnel TL(x) of W , we have ψ−1

r (x) �∈ K for r < 1
2 .

Definition 3.6 (Approximation). The approximation A(W ) of W is defined to be
ψL− 1

2
(W ). Similarly, for each tunnel TL(x) of W , the approximation of TL(x) is

A(TL(x)) = ψL− 1
2
(TL(x)). Note that A(TL(x)) is the forward path of length L with

initial point x. For each knockout K ⊂ q−1([nL+ 1
2 , (n+ 1)L]), the approximation

A(K) = ψL− 1
2
(K) is the closure of a component of the complement in ˜Vn of the

preimage of {d′
i} under ˜X → X, where d′

i ∈ V is the image of di under the obvious
isomorphism E → V . See Figure 7.

Let dA be the graph metric on A(W ), where each vertical edge e has length ωe

and midsegments have unit length, so that Proposition 1.24 implies that A(T ) is
isometrically embedded in ˜X for each tunnel T of W .

3.3 Quasiconvex walls when tunnels are long. By Theorem 2.1, there exist
constants μ1 ≥ 1, μ2 ≥ 0 such that for each connected subspace C of V that does
not contain a complete exponential edge, any lift ˜C → ˜X of the inclusion C → X
is a (μ1, μ2)-quasi-isometric embedding, where ˜C has the graph metric with vertical
edges assigned lengths as above. There exists a constant R = R(μ1, μ2) such that if
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�, �′ are bi-infinite forward paths intersecting ˜C, then either d
˜C( ˜C ∩ �, ˜C ∩ �′) ≤ R,

or N3δ(�) ∩ N3δ(�′) = ∅. This follows from a thin quadrilateral argument using
the uniform bound on coarse intersection between ˜V0 and any forward path. A
slow subtree S is a connected subspace of ˜V0 that does not contain any complete
exponential edges.

Theorem 3.7. Let B ≥ 0 and let {x1, . . . , xk} be a set of periodic regular points
such that:

(1) {x1, . . . , xk} consists of exactly one point in the interior of each exponential edge.
(2) Let x̃ip, x̃jq be any distinct lifts of xi, xj to a slow subtree S, and let �ip, �jq be

the periodic lines containing x̃ip, x̃jq. Then diam(N3δ(�ip) ∩N3δ(�jq)) ≤ B.
Then there exist L0 ≥ 0, κ1 ≥ 1, κ2 ≥ 0, depending only on B, such that if W → X
is an immersed wall with primary busts x1, . . . , xk and tunnel-length L ≥ L0, then
A(W ) ↪→ ˜X is a (κ1, κ2)-quasi-isometric embedding.

Proof. Let γ be a geodesic of A(W ) such that γ = α0β0 . . . αkβkαk+1, where each
αi is a (possibly trivial) geodesic of A(K) for some knockout K and each βi is a
path in A(T ) for some tunnel T , with |βi| = L for i ≥ 1 (there are cases where
γ starts with β0 and/or ends with βk, in which case these paths may have length
less than L). Regarding A(W ) as a subspace of ˜X, each βi is a geodesic of ˜X since
it is a forward path. As explained above, Theorem 3.7 implies that each αi is a
(μ1, μ2)-quasigeodesic of ˜X since W was constructed using a primary bust in each
exponential edge and therefore each A(K) is contained in a slow subtree.

Without loss of generality, B exceeds diam(N3δ(˜Vn) ∩ N3δ(�)), where � is any
forward path and n ∈ Z. It follows by analyzing a thin quasigeodesic quadrilateral
that for each r ≥ 0, there exists Br ≥ 0, depending only on μ1, μ2, such that

diam(N3δ+r(βi) ∩ αi) ≤ Br, diam(N3δ+r(βi) ∩ αi−1) ≤ Br

for all i, since each αi lies in some slow subtree S and is therefore a uniform quasi-
geodesic. Our other hypothesis on B shows that Br can be chosen so that

diam(N3δ+r(βi) ∩ βi+1) ≤ Br

for all i. By Lemma 3.8, there exists L0 ≥ 0 such that if L ≥ L0, then

‖γ‖ ≥ |γ|
4μ1
− μ2

2
,

where ‖γ‖ denotes the distance in ˜X between the endpoints of γ.
It remains to consider geodesics of A(W ) of the form γ = β0α1 . . . αkβkαk+1,

where |β0| < L, and γ = β0α1 . . . αkβk, where |β0|, |βk| < L. In either case, applying
the above argument shows that γ is a (κ1, κ2)-quasigeodesic with κ1 = 4μ1 and
κ2 = μ2

2 + 2L0(1 + 1
4μ1

). ��

The following is a special case of [HW13, Lem. 4.3]:
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Lemma 3.8. Let Z be δ-hyperbolic and let P = α0β1α1 . . . βkαk be a path in Z
such that each βi is a geodesic and each αi is a (μ1, μ2)-quasigeodesic. Suppose that
for each r ≥ 0 there exists Br ≥ 0 such that for all i, each intersection below has
diameter ≤ Br:

N3δ+r(βi) ∩ βi+1, N3δ+r(βi) ∩ αi, N3δ+r(βi) ∩ αi+1.

Then there exists L0 = L0(B0) such that, if |βi| ≥ L0 for each i, then ‖P‖ ≥
1

4μ1
|P | − μ2

2 .

A wall in ˜X is a connected subspace Y ⊂ ˜X such that ˜X − Y has exactly two
components.

Theorem 3.9. Let B, {d1, . . . , dk} satisfy the hypotheses of Theorem 3.7. Then
there exists L1 ≥ L0, depending only on B, such that if W → X is an immersed
wall with primary busts d1, . . . , dk and tunnel-length L ≥ L1, then

(1) A(W ) is a tree.
(2) W is a wall in ˜X.

Proof. Any immersed path P in A(W ) either lies in A(K) for some knockout K,
or traverses A(T ) for some tunnel T . In the former case, P cannot be closed since
A(K) is a tree. In the latter case, |P | ≥ L, where L is the tunnel-length. It follows
from Theorem 3.7 that if L ≥ L1 = max{L0, κ1κ2 + κ1} then a path Q of the latter
type cannot be closed. This establishes assertion (1).

To prove assertion (2), since H1( ˜X) = 0, it suffices to show that W has a neigh-
borhood homeomorphic to W × [−1, 1], with W identified with W ×{0}. By Propo-
sition 3.3, there is a local homeomorphism [−1, 1] �W → X. Each local homeomor-
phism [−ε, ε] �W → X lifts to a local homeomorphism [−ε, ε]×˜W → ˜X. Choosing
ε > 0 sufficiently small would make [−ε, ε]×˜W → ˜X a covering map onto its image
unless there are tunnels T0, Tk of ˜W , mapping to a tunnel T of W such that the
nuclei ˜C0, ˜Ck containing the roots of T0, Tk have distinct images in ˜X.

Let ˜P → ˜W be a path joining T0 to Tk and suppose that T0, Tk are chosen among
all lifts of T so that ˜P does not pass through any other lift of T . Let P → W be
the composition ˜P → ˜W → W . Depending on the positions of the endpoints of ˜P ,
assertion (1) because A(P ) contains a cycle in A(W ). Indeed, let x be the root of
T . Then A(P ) starts and ends on opposite sides of A(x) ∈ A(W ). ��

Theorem 3.9 implies that the codimension-1 subgroups we will use to cubulate
G are free.

4 Cutting Deviating Geodesics with Leaves

The goal of this section is to prove Corollary 4.5. In this section, we will work with
geodesics and geodesic rays of the graph ˜X1 with its graph-metric, i.e. combinatorial
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geodesics. Let R be the graph homeomorphic to R with R0 = Z, and let R+ ⊂ R
be the subgraph corresponding to [0,∞).

Definition 4.1 (κ-quasigeodesic). The paths γ, γ′ : [0, T ]→ ˜X are said to κ-fellow-
travel if for all t ∈ [0, T ], we have d(γ(t), γ′(t)) ≤ κ. Let I ⊆ R be a (possibly
unbounded) subinterval. A κ-quasigeodesic is a path γ : I → ˜X such that, for all
a, b ∈ I with a ≤ b, the path γ|[a,b] κ-fellow-travels with a geodesic from γ(a) to γ(b)
after affine reparameterization to identify their domains. Thus each bounded subpath
of γ has image at Hausdorff distance ≤ κ from a geodesic joining its endpoints.

As usual, a (μ1, μ2)-quasigeodesic is a (μ1, μ2)-quasi-isometric embedding of an
interval in ˜X. Any κ-quasigeodesic is a (μ′

1, μ
′
2)-quasigeodesic for some μ′

1 ≥ 1, μ′
2 ≥ 0

depending on κ. Conversely, if γ is a (μ1, μ2)-quasigeodesic then γ is a
κ-quasigeodesic for some κ, after reparameterizing by precomposing with a non-
decreasing proper continuous map from some interval to I.

Definition 4.2 (Leaflike, deviating). The ξ-quasigeodesic γ : R→ ˜X is (M,σ)-like
if γ contains a subpath that (2δ + ξ)-fellow-travels with a subpath of the forward
path σ that is the concatenation of M midsegments. If γ is not (M,σ)-like, then γ
is (M,σ)-deviating. If γ is (M,σ)-deviating for some fixed M and all σ, then γ is
M -deviating. If γ is M -deviating for some M , then γ is deviating If γ is (M,σ)-like
for some σ, then γ is leaflike.

Note that since geodesics of ˜X1 are uniform quasigeodesics of ( ˜X, d), the property
of being leaflike or deviating is independent of the metric, although the constants
change.

Definition 4.3 (Push-crop). Let γ : R→ ˜X be a quasigeodesic. A bi-infinite embed-
ded quasigeodesic in ψp(γ) is a push-crop of γ and is denoted γ	

p .

Note that if γ is a κ-quasigeodesic, then γ	
p is a (κ+ p)-quasigeodesic.

Lemma 4.4. Let γ → ˜X be an M -deviating κ-quasigeodesic. For each p ≥ 0, there
exists a constant M ′ = M ′(M, δ, κ, p) such that γ	

p is (M ′, σ)-deviating for any
forward path σ intersecting γ at a point a and γ	

p at a point d = ψp(a).

Proof. Let κ′ = κ + p. Let c ∈ γ	
p lie in the (2δ + κ′)-neighborhood of some e ∈ σ.

We shall find M ′′ = M ′′(M,p) so that d(c, d) ≤ M ′′. The existence of M ′ follows
since we will have bounded the diameter of γ	

p ∩N2δ+κ′(σ), and hence the diameter
of the projection of this intersection to σ. Let b ∈ γ be chosen so that ψp(b) = c. Let
σb be the forward path joining b, c.

Since γ is M -deviating, there exists κ′′ = κ′′(κ,M) such that cbad and cbae
are κ′′-quasigeodesics. If cbad is a subpath of cbae, we have d(c, d) ≤ 2δ + κ′ + κ′′.
Otherwise, d(c, d) ≤ |cba| + p since d(a, d) ≤ p. In this case, |cba| ≤ d(c, e) +
κ′′ + p, and we obtain d(c, d) ≤ 2δ + κ′ + κ′′ + 2p. Since κ′ = (κ, p), we have the
desired M ′. ��
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Corollary 4.5 (Strong level separation). Let γ : R → ˜X be a combinatorial geo-
desic that is M -deviating for some M . Then there exists N ≥ 0 and a periodic
regular point y ∈ ˜X1, mapping into an edge of an exponential stratum, such that
for all sufficiently large L ≥ 0, the forward path σy of length L emanating from y
has the following properties:

(1) γ	
N is (M ′, σy)-deviating for some M ′.

(2) |γ	
N ∩ σy| is finite and odd.

(3) d
˜S
(q(y), q(γ	

N ∩ σy)) > 12(M ′ + δ).

Proof. By Lemma 4.13 below, there exists a periodic regular point y∗ ∈ ˜X, mapping
to an interior point of an exponential edge of V , such that Ly∗ has odd-cardinality
intersection with γ. Let � be the periodic line containing y∗. Choose N ≥ 0 suf-
ficiently large so that Ly∗ ∩ γ	

N = � ∩ γ	
N . This set has odd cardinality since Ly∗

has odd-cardinality intersection with any combinatorial quasigeodesic fellowtravel-
ing with γ. Without loss of generality, y∗ ∈ γ	

N .
The quasigeodesic γ	

N is (M ′, σy)-deviating by Lemma 4.4. There is a periodic
point y ∈ � ∩

⋃

n≤q(y∗)
˜Vn such that d

˜S
(q(y∗), q(y)) > 12(M ′ + δ). Choosing σy to

be the forward path of length L > d
˜S
(q(y∗), q(y)) with initial point y completes the

proof. ��

4.1 Cutting lines in R-trees

Lemma 4.6. Let a ∈ ˜Xij and let a ∈ Int(e) for some edge e. If grade(a) = i, then
ρij(e)− ρij(a) has exactly two components.

Note that the hypotheses of the lemma imply that Si is exponential, or Si is
polynomial and consists of the single edge e, and φ(e) = e.

Proof of Lemma 4.6. The conclusion follows from the definition of Y ij when Si is a
polynomial stratum. Hence suppose that Si is exponential. We regard e as a copy of
[0, 1] denote by α ∈ (0, 1) the point corresponding to a. Consider the function f(t) =
dij

∞(ρij(0), ρij(t)). We will show that f is non-decreasing and f(α+ ε) > f(α− ε) for
all sufficiently small ε > 0.

Observe that for all n ≥ 0, all Si-edges of ψn(e) lie on the arc from ψn(e(0))
to ψn(e(1)) in the order that they occur in the path ψn(e). Moreover, all edges in
the image of ψn(e) that do not lie on this arc have weight 0. It follows that f is
strictly increasing on grade-i points of e as well as points of e whose images under
φ̃ are endpoints of Si-edges. By Lemma 1.13, distinct grade-i points have φn-images
in distinct Si-edges for sufficiently large n. To see that f is nondecreasing on all
points, note that f(t1) − f(t2) = f(t′1) − f(t′2) for appropriate grade-i points t′1, t′2
mapping to grade-i points. Suppose that f(α − ε) = f(α + ε). As above, we can
assume that e(α± ε) map to grade-i points of Si. The conclusion follows since f is
strictly monotonic on such points. ��
Definition 4.7 (Transverse). Let T be an R-tree. The map θ : R→ T is transverse
to y ∈ T if for each p ∈ θ−1(y), there exists ε > 0 such that θ((p − ε, p)) and
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θ((p, p+ ε)) lie in distinct components of T − {y}. Note that if θ is transverse to y,
then θ−1(y) is a discrete set.

The following is [HW13, Lem. 6.9]; we repeat the proof verbatim:

Lemma 4.8. Let T be an R-tree. Let T0 ⊆ T have the property that T − {y} has
two components for each y ∈ T0 and each open arc of T contains a point of T0. Let
θ : R → T or θ : R+ → T be a continuous map. Suppose θ is transverse to every
point in T0. Moreover, suppose that each edge e of the domain of θ has connected
intersection with the preimage of each point in T . Then one of the following holds:

(1) There exists a nontrivial arc α ⊂ T such that |θ−1(y)| is odd for all y ∈ α ∩ T0.
(2) There exists y ∈ T with θ−1(y) having infinitely many components.
(3) For each r ≥ 0, there exists yr ∈ T such that diam(θ−1(yr)) ≥ r.

Proof. For each p ∈ R, we denote by p̄ its image in T and by |θ−1(x)| the number
of components of the preimage of x ∈ T in R.

We now show that either (3) holds or im(θ) is locally compact since each point
of θ(R) has a neighborhood intersecting the images of only finitely many edges. We
first claim that either (3) holds, or for each edge e of R, there are (uniformly) finitely
many edges f such that θ(f) ∩ θ(e) �= ∅. Indeed, if there are points in im(θ) with
arbitrarily many complementary components, then there are fibers in R consisting
of arbitrarily many closed subintervals of distinct edges and so conclusion (3) holds.
Second, choose a point p ∈ T . Our first claim shows that the set {ej}j∈J of edges
with p ∈ θ(ei) is finite, and so for each i ∈ J we can choose εi > 0 such that the
εi-neighborhood of p in θ(ei) is disjoint from the image of each edge not in {ej}j∈J .
Let ε = mini εi. Then the ε-neighborhood of p in im(θ) lies in ∪iθ(ei) and thus
intersects the images of only finitely many edges.

There exist sequences {ai} and {bi} in R = (−∞,∞) converging to ∞ and
−∞ respectively, whose images are sequences {āi} and {b̄i} that converge to points
ā∞ and b̄∞ in im(θ) ∪ ∂ im(θ). Indeed, since im(θ) is a locally compact R-tree,
im(θ) ∪ ∂ im(θ) is compact by [BH99, Exmp. II.8.11.(5)].

Suppose ā∞ �= b̄∞. Let α be a nontrivial arc between ā∞ and b̄∞. Note that θ−1(c̄)
has either odd or infinite cardinality for each c̄ ∈ α ∩ T0, since it must separate ai

from bi for all but finitely many i. Hence either conclusion (1) or (2) holds.
Suppose ā∞ and b̄∞ are equal to the same point p̄∞. Let ō denote the image of

the basepoint o of R. We can assume that p̄∞ ∈ ∂θ(R) since, as above, either (3)
holds or each point of. (R) has a neighborhood intersecting the images of finitely
many edges. The intersections ōāi ∩ ōp̄∞ converge to the segment ōp̄∞. The same
holds for ōb̄i. We use this to choose a new pair of sequences {a′

i} and {b′i} that
still converge to ±∞, and with the additional property that ā′

i = b̄′i. We do this by
choosing the image points far out in ōp̄∞. We have thus found arbitrarily distant
points in R with the same images, verifying conclusion (3).

In the case of a ray θ : R+ → T , we produce {ai} and ā∞ as above, and then
argue in the same way, replacing b̄∞ by ō. ��
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4.2 Separating endpoints of geodesics with leaves

Lemma 4.9. Let x ∈ ˜Xij be a grade-i regular point, and let y ∈ ˜Xij satisfy ρij(x) =
ρij(y). Then either Lx = Ly or y is a grade-i regular periodic point and x is periodic.

Proof. Let σx, σy be the forward rays emanating from x, y. Either Lx = Ly or, by
Lemma 4.12, σx, σy are joined by a lift of the concatenation Q1 . . . Qr of indivisible
Nielsen paths, with each Qs having an initial and terminal subpath which is a non-
trivial Si-edge-part and starting and ending in Si. The endpoint of Q1 is a grade-i
regular periodic point by Lemma 1.21. The claim thus follows by induction on r. ��

Lemma 4.10. Let Si be a nonzero stratum. Let I be an unbounded connected sub-
graph of R and let η : I → ˜Xij be an M -deviating combinatorial quasigeodesic
satisfying conclusion (1) of Lemma 4.8, where T0 is the set of images of regular
points when Si is polynomial and the set of images of grade-i regular points when
Si is exponential. Then there exists an exponential stratum Si′

, with i′ ≤ i, and a
periodic point y ∈ Si′

such that for some lift ỹ of y, the leaf Lỹ has the property
that |Lỹ ∩ η| is finite and odd.

Proof. We first treat the case in which Si is an exponential stratum. We then prove
the lemma by induction on h̄ in the case where Si is polynomial.

Exponential case. By hypothesis, there exists an arc α in im(ρij ◦ η) such that for
all grade-i regular points a ∈ α, the set ρ−1

ij (a) ∩ η has finite, odd cardinality. The
claim follows from Lemma 4.9 since α contains images of grade-i periodic points.

Polynomial case. Observe that Y ij is the Bass–Serre tree associated to a splitting
of ˜Xij as a tree of spaces, where the vertex spaces have the form ˜X(i−1)j′

and the
open edge spaces are homeomorphic to Int(ẽ× T ), where ẽ is a lift of the edge e of
Si and T is a tree. The edge e has the property that φ(e) = eP for some path P of
V i−1, and we orient e accordingly. Observe that the arc β provided by Lemma 4.8
can be chosen to be a combinatorial path of length 1 or 2.

For each vertex space ˜X(i−1)j′
, an incident edge space is incoming if the terminal

vertex of one of the associated lifts of e is on ˜X(i−1)j′
. Observe that the union of

˜X(i−1)j′
and its incoming open edge spaces is the union of leaves of ˜Xij . Moreover,

if |P | = 0, then each vertex space and edge space is the union of leaves of ˜Xij .
Suppose that β consists of a single edge e1 of Y ij . Then η contains a deviating

sub-ray ẽ−1α, where α belongs to some ˜X(i−1)j′
and ẽ is an edge mapping to e1.

Suppose that L is a regular leaf of ˜Xij having odd intersection with α. Then L
has odd intersection with η. The existence of such a periodic grade-i regular leaf L
follows by induction and Lemma 4.11, since α ⊂ ˜X(i−1)j′

.
It remains to consider the case where β is the union of edges e1, e2 meeting at a

vertex v. Then e1, e2 lift to edges ẽ, ẽ′ of η that are joined by a path μ in the vertex
space ˜X(i−1)j′

mapping to v. Without loss of generality, ẽμẽ′ is a vertical path.
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Suppose that v is terminal in both e1, e2. Then [[ψn(ẽ)ψn(μ)ψn(ẽ′)]] is unbounded
as n → ∞, since ẽμẽ′ maps to an essential closed path and G is word-hyperbolic.
Applying Lemma 1.18 to ẽμẽ′, we see that there is an exponential stratum Si′

containing an edge f such that every regular leaf dual to some lift f̃ of f has odd
intersection with ẽμẽ′ and hence with η.

Suppose that v is initial in both e1, e2. As above, applying Lemma 1.18 to μ
yields an exponential edge f̃ whose dual regular leaves have odd intersection with μ
and thus with η.

Finally, consider the case in which v is terminal in e1 and initial in e2 and let ẽμẽ′

be as above, except that μ may now be trivial. If the image e of ẽ in V is periodic,
then μ must be nontrivial since e cannot be a closed path by hyperbolicity of G. We
can therefore argue exactly as above, applying Lemma 1.18 to μẽ′. Hence suppose
that φ(e) = eP with P nontrivial. Applying Lemma 1.18 to ẽμ and arguing as above
completes the proof. ��

By Proposition 2.7, there exists K ′′ = K ′′( ˜X) such that for all i, j, each subspace
˜Xij ⊂ ˜X has the property that each combinatorial geodesic of ˜Xij is a combinatorial
K ′′-quasigeodesic of ˜X.

Lemma 4.11. Let Si be a nonzero stratum. Let T0 denote the set of images of
regular points of Y ij when Si is a polynomial stratum and the set of images of
regular grade-i points when Si is an exponential stratum. Let γ : I → ˜Xij be an M -
deviating combinatorial geodesic or geodesic ray of ˜Xij . Suppose that conclusion (1)
of Lemma 4.8, with the appropriate set T0, does not hold for ρij ◦ γ : I → Y ij . Then
there exists an embedded combinatorial K ′′-quasigeodesic η such that η fellowtravels
with γ and η ⊂ ˜Xi′j′

for some i′ < i.

Proof. The exponential case. Suppose that Si is an exponential stratum. Consider
the composition of ρij : ˜Xij → Y ij with γ. By Lemma 4.6, ρij ◦ γ is transverse to
regular points. By Lemma 1.17, fibers of ρij intersect edges of γ in connected sets.
Therefore, by Lemma 4.8 with T0 the set of images of grade-i regular points, one of
the following holds:
• Conclusion (1) of Lemma 4.8 holds.
• Conclusion (3) of Lemma 4.8 holds, i.e. for all r ≥ 0 and each subray γ+ ⊂ γ,

there exists yr ∈ Y ij such that diam(ρ−1
ij (yr) ∩ γ+) > r.

Choosing pairs of forward rays. In the second case, since γ is a K ′′-quasigeodesic,
for each r ≥ 0, there exist forward rays σ1, σ2, originating on γ, with ρij(σ1) = ρij(σ2)
and d

˜X(σ1 ∩ γ, σ2 ∩ γ) > r.

Distant forward rays flow lower. For each such σ1, σ2, one of the following holds
by Lemma 4.12:

(1) σ1, σ2 fellowtravel;
(2) σ1, σ2 contain subrays lying in ˜Xi′j′

with i′ < i.
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There exists r0 such that situation (1) is impossible when r ≥ r0. Indeed, the
quadrilateral determined by long initial segments of σ1, σ2, a geodesic joining their
endpoints, and the subtended part of γ is uniformly thin, which forces γ to fellow-
travel with σ1 or σ2 for a long interval when r is sufficiently large, contradicting that
γ is M -deviating.

Hence situation (2) holds for all r ≥ r0, so that we have forward rays σ1(r), σ2(r)
that both contain subrays lying in ˜Xirjr with ir < i and intersect γ in points at
distance at least r−M . Let γr be the smallest closed interval in γ containing ρ−1

ij (yr).
When γr is bounded, we choose σ1(r), σ2(r) to be the forward rays emanating from
its initial and terminal points. When γr is a ray, we choose σ1(r) to be the forward
ray emanating from its initial point, and σ2(r) to be the forward ray emanating
from an arbitrary point at distance at least r from the initial point of γr in γ. When
γr = γ, we choose σ1(r), σ2(r) arbitrarily so that their distance in γ is at least r.

Preimage intervals are nested. Assume for some r, r′ ≥ r0 that yr �= yr′ . Let γ′′′

be the smallest closed interval containing γr ∪ γr′ . Without loss of generality, γ′′′

starts at σ1(r) ∩ γ and ends at σ2(r′) ∩ γ. Then yr, yr′ are separated by ρij(L) for
all grade-i regular leaves whose images are in some arc. Clearly |L∩ γ′′′| is odd. The
leaf L cannot intersect γ − γ′′′ when min(r, r′) ≥ M ′, where M ′ is large compared
to the deviation constant M . Indeed, when γr ∩ γr′ = ∅, deviation prevents L from
intersecting γ − γ′′′, and when γr ∩ γr′ �= ∅, since L separates each endpoint of γr

from each endpoint of γr′ , each of the three intervals having exactly one endpoint
from each of γr, γr′ contains a point of L. Another application of M -deviation now
shows that L cannot intersect γ − γ′′′. Hence |γ ∩ L| is odd, whence the endpoints
of ρij ◦ γ are distinct, contradicting our hypothesis. Hence if yr �= yr′ , then γr′ ⊆ γr

or vice versa.

The bi-infinite case. Suppose that γ = ∪rγr. For any r, let σ′
1(r), σ

′
2(r) be finite

subpaths of σ1(r), σ2(r) that start on γ and end in ˜Xirjr . Since γ is M -deviating,
there exists K ′ = K ′(M) such that P = σ′

1(r)
−1γrσ

′
2(r) is a K ′-quasigeodesic. Let Q

be a geodesic of ˜Xirjr joining the endpoints of P . Since it lies in ˜Xirjr , the path Q is
a K ′′-quasigeodesic. Hence, for any s ≥ 0, choosing r sufficiently large ensures that
γ has a subpath of length at least s that K = (2δ+2K ′′)-fellowtravels with a length-
(s−2δ−2K ′′) subpath of Q. Since K is independent of s, and since { ˜Xpq} is a locally
finite collection, König’s lemma now yields i′ < i, and j′, and a K-quasigeodesic η
that fellow-travels with γ and lies in ˜Xi′j′

.

Rays of different types. The remaining possibility is that γ = γ+ ∪ γ−, where γ±

are rays such that conclusion (3) of Lemma 4.8 applies to γ− but conclusion (3) of
Lemma 4.8 does not hold apply to γ+. Without loss of generality, γ−∩γ+ ∈ ρ−1

ij (yr).
Let J be the length-M ′ subinterval of γ+ beginning at γ− ∩ γ+. Choose an arc
α ⊂ ρij(Cl (γ+ − J)) such that for all a ∈ α that are images of grade-i regular
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points, ρ−1
ij (a)∩Cl (γ − J) has odd cardinality. Then ρ−1

ij (a)∩γ has odd cardinality.
Indeed, no point of γ− maps to a, by the fact that intervals of length at least M ′

containing preimages of distinct points must nest. Our choice of α guarantees that
no point of J maps to a.

The polynomial case. Let γ and i be as above, but suppose that Si is polynomial.
If conclusion (1) of Lemma 4.8 does not hold, then, arguing as in “rays of different
types” above, it remains to consider the case where for each p ≥ 0, there exists
a vertex vp of Y ij such that ρij(γ(np)) = vp = ρij(γ(−mp)) for some mp, np ≥ p.
Arguing as in the above bi-infinite case, using Proposition 2.7, shows that γ fellow-
travels with a uniform quasigeodesic of ˜X that lies in some ˜Xi′j′

with i′ < i. ��

Lemma 4.12. Let Si be a nonzero stratum. Let σ1, σ2 be forward rays in ˜Xij that
do not lie in the same leaf. Then one of the following holds:

(1) σ1, σ2 are joined by a lift of the concatenation Q1 . . . Qr of indivisible Nielsen
paths, with each Qs having an initial and terminal subpath which is a nontrivial
Si-edge-part and starting and ending in Si. Hence σ1, σ2 are at finite Hausdorff
distance in ( ˜X, d);

(2) there exists i′ < i such that σ1, σ2 have subrays lying in a common ˜Xi′j′
;

(3) ρij(σ1) �= ρij(σ2).

Proof. The polynomial case. Suppose that Si is a polynomial stratum consisting of
a single edge e. The paths σ1, σ2 eventually lie in vertex-spaces of ˜Xij when e is
expanding. In this case, if these vertex spaces are equal then (2) holds; otherwise (3)
holds. This argument also works when e is non-expanding, unless both σ1, σ2 have
subrays that lie in a common edge-space, in which case (3) holds. The remainder of
the proof therefore assumes that Si is an exponential stratum.

A minimally-decomposed path. Suppose that ρij(σ1) = ρij(σ2), and we denote this
point by z. Let P be a vertical geodesic joining σ1 to σ2. By replacing P by some
[[ψa(P )]], we can assume that P∩ρ−1

ij (z) has a minimal number of components. Hence
P = Z0Q1Z1Q2 . . . Zr where each Zk is such a component. Minimality ensures that
leaves intersecting Qs cannot intersect Qt for s �= t. For later convenience, we can
assume that a ≥ n0, where n0 is the maximum exponent from Lemma 1.18 applied
to the various Qs.

Observe that when r = 0 and P = Z0, conclusion (2) holds, by Lemmas 1.14 and
1.18. We therefore assume that r ≥ 1.

By maximality of Zs−1, the subpath of Qs from its initial point to its first internal
vertex is a nontrivial interval of an edge of Si and more specifically, any nontrivial
subpath of Qs beginning at its initial point contains a grade-i point. The same holds
for a terminal subpath of Qs.

Each Qs is an indivisible Nielsen path. Our choice of a ensures that Qs → V splits
as a concatenation U1 . . . Uq of paths, each of which is either a subpath of an edge of
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Si, a path in V i−1, or a Nielsen path. If U1 is a Nielsen path then U1 = Qs, since the
endpoints of the Nielsen path U1 have the same image in Y ij , while the interior of
Qs contains no point of ρ−1

ij (z). By the definition of Zs−1, the path U1 cannot be a
path in V s−1. Finally, suppose U1 is an initial or terminal subpath of an Si-edge. As
shown above, every subpath of U1 beginning at its initial point contains a grade-i
point; Lemma 1.19 implies that the endpoints of Qs have distinct images in Y ij ,
which is impossible. Hence Qs is a Nielsen path, and is indivisible since Qs has no
interior point mapping to z. Hence if each Zs is trivial, then P is the concatenation
of Nielsen paths, whence σ1, σ2 fellowtravel.

Applying Lemma 1.21. Suppose that ρ−1
ij (z) has a nontrivial component in P .

Without loss of generality, there exists s ∈ {1, . . . , r} so that Zs−1 is nontrivial.
Hence, as shown above, the path Qs → V is an indivisible Nielsen path joining a
point qs ∈ Zs−1 to a periodic point ps ∈ Si. Lemmas 1.18 and 1.14 imply that there
exists n > 0 such that ψn(Zs−1) lies in some ˜X(i−1)j′

. Hence Qs is an indivisible
Nielsen path with initial point in V i−1 ∩ Si and terminal point in Si. But then Qs

traverses an edge of Si, contradicting Lemma 1.21. ��

The main lemma of this subsection is:

Lemma 4.13. Let γ : R → ˜X be a combinatorial geodesic that is M -deviating for
some M . Then there exists a periodic regular point y∗ ∈ ˜X, mapping to an interior
point of an exponential edge of V , such that Ly∗ has odd-cardinality intersection
with γ.

Proof. Let K be the constant from Lemma 4.11. Let i be minimal such that γ lies
in a regular neighborhood of ˜Xij for some j. Minimality implies that Si is a nonzero
stratum since otherwise either ˜Xij is coarsely equal to some ˜X(i−1)j′

or is a horizontal
line. Since ˜Xij is uniformly quasi-isometrically embedded by Proposition 2.7, and
since ˜X is locally finite, γ fellow-travels with an embedded K ′′-quasigeodesic η in ˜X
that is a geodesic of ˜Xij .

By Lemma 4.11 and minimality of i, conclusion (1) of Lemma 4.8 holds. Applying
Lemma 4.10 to η, we see that there exists an exponential stratum Si′

and a periodic
regular point y∗ ∈ ˜X mapping into Si′

such that Ly∗ has odd-cardinality intersection
with η. Since γ and η are bi-infinite, deviating, and fellowtravel, Ly∗ must also have
odd-cardinality intersection with γ. ��

5 Cutting Geodesics

Let W ⊂ ˜X be a wall arising from an immersed wall W → X, and suppose that
A(W ) is quasiconvex in ˜X. Let

←−
W,
−→
W be the closures of the two components of

˜X −W . Then ∂W = ∂A(W ) is a closed subspace of ∂ ˜X and ∂ ˜X ∼= ∂
←−
W ∪∂W ∂

−→
W .

The wall W cuts the quasigeodesic γ : R → ˜X if the endpoints γ±∞ of γ in ∂ ˜X do
not both lie in

←−
W or

−→
W . The following is [BW13a, Thm. 1.4]:
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Theorem 5.1. Let G be a one-ended word-hyperbolic group. Suppose that for all
distinct points p, q ∈ ∂G, there exists a quasiconvex codimension-1 subgroup H ≤ G
such that p and q lie in distinct components of ∂G− ∂H. Then G acts properly and
cocompactly on a CAT(0) cube complex.

Since any two distinct points in ∂ ˜X are the endpoints of a bi-infinite geodesic
γ, the main result of this section is the following, which will allow us to apply
Theorem 5.1.

Proposition 5.2. Let φ : V → V be an improved relative train track map and
suppose thatG is word-hyperbolic, whereX is the mapping torus of φ. Let γ : R→ ˜X
be a geodesic. Then there exists a quasiconvex wall W ⊂ ˜X that cuts γ.

Proof. This follows immediately from Propositions 5.12 and 5.14. ��

We can now complete the proof of the main theorem:

Proof of Theorem A. By [Wis11, Lem. 12.5], it suffices to prove the claim for G′ =
F �Φk Z for some k ≥ 1. Letting k be chosen, using [BFH00, Thm. 5.1.5], so that
Φk admits an improved tight relative train track representative, the claim follows
immediately from Proposition 5.2 and Theorem 5.1. ��

5.1 A(W ) as a wall in ˜XL. We refer the reader to Remark 1.1, and the
discussion preceding it, describing ˜XL. Let W → X be an immersed wall with
tunnel-length L, and let ˜W → ˜X be a lift with the property that each nucleus of ˜X
maps to q−1(LZ+ 1

2). Then A(W ) ↪→ ˜X lifts to an embedding A(W )→ ˜XL and we
also use the notation A(W ) for the image of this embedding. Moreover, if A(W ) is
quasi-isometrically embedded in ˜X, then it is quasi-isometrically embedded in ˜XL.
Finally, each nucleus of W lifts to ˜XL since ˜XL → ˜X restricts to an isomorphism of
trees on q−1

L (LZ) and q−1
L (LZ + 1

2). Note, however, that W does not in general lift
to ˜XL.

The reason for considering A(W ) as a subspace of ˜XL is that although A(W ) is
not a wall in ˜X, its lift A(W ) ⊂ ˜XL does provide a wall that we now describe.

Definition 5.3 (Discrepancy zone). Let ˜C be a nucleus of W and let A( ˜C) be its
approximation. Then there is an embedding ˜C× [12 , L)→ ˜XL whose closure is called
a discrepancy zone.

Each discrepancy zone Z has a boundary consisting of ˜C ∪A( ˜C) together with a
collection of forward paths of length L− 1

2 beginning at the primary and secondary

bust points bounding ˜C. These forward paths lie in tunnels or tunnel-approximations
according to whether their initial points are secondary or primary busts. (Note
that if L is a multiple of the periods of the primary bust points, then each tunnel-
approximation also lies in a tunnel.) See Figure 8.
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Figure 8: Two discrepancy zones are shaded. In the discrepancy zone at right, the starred
vertex, and each point of the horizontal path in the discrepancy zone to its right, is in general
a tree whose edges belong to polynomial or zero strata

Let
←−
WL,

−→
WL be the preimages of the halfspaces

←−
W,
−→
W under the map ˜XL → ˜X

and let Z be the union of all discrepancy zones in ˜XL. Let
←−
A=
←−
WL ∪ Z and let

−→
A=

Cl
(−→
WL − Z

)

. It is straightforward to verify that
←−
A ∪−→A= ˜XL and

←−
A ∩−→A=A(W ).

Definition 5.4 (Exceptional zone, narrow exceptional zones). A discrepancy zone
Z is exceptional if the boundary of Z has nonempty intersection with the interior of
A(T ) for some tunnel T , as at left in Figure 8. The exceptional zone Z, projecting
to [12 +n,L+n] ⊂ ˜

S, is narrow if q−1
L ([12 +n, 3L

4 +n])∩Z contains no vertex. The wall

W has narrow exceptional zones if each of the exceptional zones in ˜XL determined
by A(W ) ⊂ ˜XL is narrow.

Remark 5.5 (Degenerate exceptional zones). When T is a tunnel of W that termi-
nates at a trivial nucleus, then A(T ) has a length-(L− 1

2) subpath that coincides with
a path in the tunnel T ′ emanating from the same trivial nucleus; in this case, the
exceptional zone bounded by A(T ), T ′, the trivial nucleus and its (trivial) approx-
imation has empty interior and is degenerate. This should be viewed as a limiting
case of the scenario shown at the left in Figure 8. Degenerate and non-degenerate
exceptional zones are treated in the same way in all arguments.

Definition 5.6 (Long 2-cell). For each vertical edge e of XL, let Ro
e,L be the image

of Int(e)× [0, L) in XL. The closure of a lift of Ro
e,L to ˜XL is a subcomplex called a

long 2-cell.

Lemma 5.7. Let φ : V → V be an improved relative train track map with π1X
word-hyperbolic. Let y1, . . . , yk be periodic regular points with exactly one in each
exponential edge. Let p be the least common multiple of the periods of the yi. Then
for all sufficiently large n ≥ 1, there exists an immersed wall W → X with tunnel-
length L = np and primary busts y1, . . . , yk such that W is a wall in ˜X with narrow
exceptional zones.

Proof. If L is sufficiently large, Lemma 3.4 implies that for all vertices v ∈ V and
all primary busts yi, there exists a secondary bust separating v from yi. Hence a
nucleus C of W is of one of the following two types:
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(1) C contains a primary bust. In this case, C is properly contained in the interior
of an edge of E corresponding to an edge of V in an exponential stratum. If C
is contained in an exceptional zone, then C must be of this type.

(2) C does not contain a primary bust. In this case, C is a finite tree, whose complete
edges are periodic edges, and whose leaves are all interior points of exponential
edges. In this case, the discrepancy zone containing C is non-exceptional.

Let C be a nucleus of type (1), with ˜C contained in an exceptional zone Z inside
the long 2-cell based at the exponential edge e. Since each yi is periodic, the set
{φn(yi) : n ∈ N, 1 ≤ i ≤ k} is finite. Hence the set P of embedded paths in V joining
points of the form φn(yi) to vertices is finite. Let K ∈ N be chosen so that for
any P ∈ P, the path φK(P ) contains a complete exponential edge. The constant K
exists for the following reason: by definition, each P ∈ P has the form αQ, where α
is a nontrivial subinterval of an exponential edge, and there are finitely many such
α. For each α, there exists Kα such that φKα(α) ends with a complete exponential
edge, and we take K = max{Kα}.

Let L ≥ 4K. Suppose that there is a vertex v ∈ q−1
L ([12 +n, 3L

4 +n])∩Z. Then the
geodesic path joining the endpoints of q−1

L (L−K+n)∩Z begins with some P ∈ P,
since the initial point of this path is a periodic point on the tunnel-approximation
part of ∂Z. The path φK(P ) lies in A( ˜C) and traverses a complete exponential edge,
which is impossible. ��

5.2 “Lifting” paths from ˜X to ˜XL.

Construction 5.8 (Lifted augmentation). Let γ → ˜X be an embedded path. Then
γ is covered by a set R of 2-cells. We then have γ = . . . A−1A0A1 . . ., where each
Ai is a subpath of γ that starts and ends on ˜X1 and lies in a 2-cell Ri ∈ R and
Ri �= Ri+1 for all i. Such a decomposition can be seen to exist by expressing γ as
the concatenation of its intersections with 2-cells.

Each Ri lifts to ˜XL, yielding a lift ̂Ai of Ai. The map ˜XL → ˜X is one-to-one
on ∪i∈ZInt( ̂Ai) and at most two-to-one on the remaining points of ∪i∈Z

̂Ai. Let â be
the initial point of ̂Aj+1 and let â′ be the terminal point of ̂Aj . If â �= â′, then let
̂Q, ̂Q′ be the minimal forward paths emanating from â, â′ that end in q−1

L (LZ), so
̂Q, ̂Q′ have a common endpoint called an apex. The corresponding lifted augmenta-
tion γ̂� of γ is the union ∪i

̂Ai concatenated with all such paths ̂Q′
̂Q−1. We refer to

each ̂Q′
̂Q−1 as a lifted backtrack. Note that if γ is a quasigeodesic then the image

of γ̂� under ˜XL → ˜X is a quasigeodesic consisting of γ together with some interpo-
lated backtracks of length at most L. There is a parametrization of γ̂� making it a
quasigeodesic of ˜XL. Moreover:
(1) For any finite collection {f1, . . . , fn} of vertical edges of γ, and any lifts f̂1, . . . , f̂n

of these edges to ˜XL, there exists a lifted augmentation γ̂� containing f̂1, . . . , f̂n.
(2) For any forward subpath σ′ ⊂ γ whose endpoints lie in q−1(LZ), the unique lift

σ̂′ of σ′ to ˜XL extends to a lifted augmentation γ̂� of γ, in the sense that σ̂′ is
a subpath of γ̂� .
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Note that since Aj , Aj+1 start and end in ˜X1, if γ is combinatorial, then the paths
̂Q, ̂Q′ are in ˜X1

L.

5.3 Deviating geodesics. In this section, we prove a technical statement that
helps us to construct quasiconvex walls. Recall that a slow subtree S is a connected
subspace of ˜V0 that does not contain any complete exponential edges.

Proposition 5.9. Let x0 ∈ V be a periodic point in the interior of an exponential
edge. Then there exist periodic points x1, . . . , xk, one in each exponential edge of
V , and a constant B = B(x0, . . . , xk) < ∞, such that for all i ≥ 0, j ≥ 1, and
any distinct lifts x̃ip, x̃jq of xi, xj to a slow subtree S, the periodic lines �ip and �jq
containing x̃ip, x̃jq satisfy

diam(N3δ(�ip) ∩N3δ(�jq)) ≤ B.

Definition 5.10 (Flows). For each i, j, let � ˜Xij� be the set of points x ∈ ˜X for
which there exists n ≥ 0 with ψn(x) ∈ ˜Xij . When Si is nonzero, ρij extends to

� ˜Xij� by defining ρij(x) = ρij(ψn(x)).
Let γ → ˜X1 be a path and consider ˜Xij ⊂ ˜X with Si nonzero. Then γ flows into

˜Xij if γ ⊂ � ˜Xij�.

The proof of Proposition 5.9 requires the following lemma.

Lemma 5.11. Let B be a ball in S. For all x0 ∈ V , there exist periodic regular
points x1, . . . , xk, one in each exponential edge of V , such that for all i, j ≥ 0, and
any distinct lifts x̃ip, x̃jq of xi, xj to B, we have

dYab(ρab(x̃ip), ρab(x̃jq)) ≥ ε,

where ε = ε(x0, . . . , xk) > 0 and a is the smallest value for which there exists b with
x̃ip, x̃jq ∈ � ˜Xab�.

Proof. We first establish that for any x ∈ V , and any distinct lifts x̃, x̃′ ∈ S of x, we
have ρab(x̃) �= ρab(x̃′). If Sa is an exponential stratum, this follows from Lemma 4.12;
indeed, Lemma 4.12.(1) is excluded since G is hyperbolic, and hence V contains not
closed Nielsen path. Lemma 4.12.(2) is excluded by minimality of a. If Sa is a
polynomial stratum, then ρab(x̃), ρab(x̃′) are distinct. Indeed, if ρab(x̃) = ρab(x̃′) is
a vertex of Yab, then the minimality of a is contradicted. If ρab(x̃) = ρab(x̃′) is an
interior point of an edge E, then x̃ = gx̃′, where g ∈ π1V ∩ Stab(E), since x̃, x̃′ are
lifts of x to S. Hence g = 1.

We now argue by induction. By the above discussion, the claim is true for k = 0.
Suppose that x0, . . . , xt have been chosen, for some t < k, so that ρab(x̃ip) �= ρab(x̃jq)
for all distinct lifts x̃ip, x̃jq of xi, xj to B, with 0 ≤ i, j ≤ t. Let e0 be the edge
containing x0 and for 1 ≤ i ≤ t, let ei be the exponential edge containing xi. Let
et+1 �∈ {ei : 1 ≤ i ≤ t} be an exponential edge. We will now choose xt+1 ∈ Int(et+1)
with the desired properties.
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Let a be such that et+1 belongs to Sa. Let K be the number of Sa-edges whose
interiors intersect B. Then for any ˜Xab and y ∈ Yab, there are at most K grade-a
points in ρ−1

ab (y) ∩B.
Let

Q =

∣

∣

∣

∣

∣

⋃

b∈B
{ρab(x̃ip) : 0 ≤ i ≤ t, 1 ≤ p ≤ pi}

∣

∣

∣

∣

∣

,

where pi is the number of lifts of xi to B and B is the finite set of b such that
˜Xab ∩B �= ∅.

Choose m ∈ N such that et+1 intersects at least KQ + 1 φ-orbits of m-periodic
points (all such points necessarily have grade a). This choice is possible because,
for arbitrarily large m, the number of m-periodic points in et+1 is approximately
Cλm

a for some C > 0, while the claimed φ-orbits exist as long as there are at least
(KQ + 1)m periodic points in et+1 with period m. For each such m-periodic point
u, a lifted orbit of u is the set of all lifts to B of all points φk(u) with 0 ≤ k < m.
Note that if u, u′ are m-periodic points with distinct φ-orbits, then their lifted orbits
are disjoint since their projections to V are distinct φ-orbits of the same cardinality
and are hence disjoint. By the pigeonhole principle, there exists an m-periodic point
xt+1 ∈ et+1 with the desired property. Indeed, the points ρab(x̃ip) with i < t+1, b ∈ B
exclude at most KQ grade-a points from the KQ+1 disjoint lifted orbits of grade-a
periodic points. Hence ρab(x̃(t+1)p) �= ρab(x̃jq) for all distinct lifts x̃(t+1)p and x̃jq of
xt+1 and xj . ��

Proof of Proposition 5.9. Choose x1, . . . , xk to satisfy the conclusion of Lemma 5.11.
Let i, j ≥ 0 and let x̃ip, x̃jq be distinct lifts of xi, xj to S. First suppose that x̃ip and
x̃jq lie in some fixed ball B of S. Let a be the smallest value for which there exists
b such that x̃ip, x̃jq ∈ � ˜Xab�. By hypothesis and by minimality of a, the stratum Sa

is exponential.

Forward divergence computation. For ε > 0 from Lemma 5.11,

dYab(ρab(x̃ip), ρab(x̃jq)) ≥ ε.

Since x̃ip, x̃jq flow into ˜Xab, there exists k ≥ 0 such that

dYab(ρab(x̃ip), ρab(x̃jq)) = lim
n→∞ dab

n (ψn+k(x̃ip), ψn+k(x̃jq)).

Hence for all sufficiently large n,

d
˜Vn+k

(ψn+k(x̃ip), ψn+k(x̃jq)) ≥
λn

aε

2
.

Since λa > 1, there exists B′ ≥ 0 such that

diam(N3δ({ψn(x̃ip) : n ≥ 0})) ∩ diam(N3δ({ψn(x̃jq) : n ≥ 0})) ≤ B′.
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Exploiting periodicity. The existence of B with the desired property follows because
�ip, �jq are periodic.

Lifts in different translates of B. Suppose x̃ip, x̃jq are arbitrary distinct lifts of xi, xj

to S. Let yi, yj ∈ �ip, �jq respectively, and suppose that d(yi, yj) ≤ 3δ. Then there is
a uniform upper bound on d(x̃ip, x̃jq) whence we can assume that x̃ip, x̃jq lie in some
translate of a fixed ball B of S, and we can argue as above. Indeed, by Theorem 2.1,
a geodesic α of S joining x̃ip, x̃jq is a uniform quasigeodesic, and, since it is vertical,
α has bounded coarse intersection with �ip and �jq. Considering the quasigeodesic
quadrilateral formed by α and the path �′ipyiyj�

′
jq, where �′ip, �

′
jq are subpaths of

�ip, �jq, yields a contradiction unless |α| is bounded by some uniform constant, and
we take B to be a ball sufficiently large that any such α in S lies in a translate
of B. ��

Proposition 5.12. Let α : R → ˜X be a deviating geodesic. Then there exists a
quasiconvex wall W ⊂ ˜X that cuts α.

Proof. Let γ → ˜X be a combinatorial geodesic that fellowtravels with α, so that γ is
a uniform quasigeodesic of ( ˜X, d) and is M -deviating, where M depends only on the
deviation constant of α. By Corollary 4.5, there exists a regular leaf L, containing a
periodic regular point y ∈ ˜X1 in an exponential edge, such that for some fixedN ≥ 0,
the push-crop γ	

N in ψN ◦ γ is an (M ′, σ)-deviating embedded ν-quasigeodesic, for
some ν ≥ 1 and M ′ = M ′(M,N) and any forward path σ intersecting γ	

N . Moreover,
γ	

N fellow-travels with γ and has the following properties:

(1) For any sufficiently long forward path σy emanating from y, the intersection
P = γ	

N ∩ σy consists of an odd number of points. In particular, P does not
change as σy is further elongated.

(2) γ	
N ∩L = P, and γ	

N contains two subrays lying in distinct components of ˜X−L.
(3) No subpath of γ	

N of length more than M ′′ fellow-travels at distance 2δ+ ν with
a subpath of a forward path emanating from y, where M ′′ = M ′′(M ′, δ, ν).

(4) d(y,P) > 12(max{M ′,M ′′}+ δ).

Let e1 be the exponential edge of V containing the image of y. Choose periodic
regular points y1, y2, . . . , yk, one in each exponential edge of V and with y mapping
to y1, satisfying the conclusion of Proposition 5.9.

Then by Proposition 3.7 there exists L0 ≥ 0 such that if W → X is an immersed
wall with primary busts at the points y1, . . . , yk and tunnel length L ≥ L0, then
A(W ) is (μ1, μ2)-quasi-isometrically embedded in ˜X, where the μi are indepen-
dent of L. Moreover, by Theorem 3.9, there exists L1 ≥ L0 such that A(W ) is
a tree and W is a wall when L ≥ L1. Let L2 = max{L1, 12(max{M ′,M ′′} +
δ) + d(y,P)}. (The specific choice of L2 is an artifact of the proof of Lemma 3.8;
see e.g. [HW13,HW15]). ��
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Figure 9: Cutting a push-crop with an approximation and hence with a wall. The set P
consists of five bold points

Claim 1. Let W → X be an immersed wall with primary busts {y1, . . . , yk} and
tunnel length L ≥ L2. Let W = im(˜W → ˜X), where ˜W → ˜X is the lift containing
the primary bust y. Then the inclusions γ	

N → ˜X and A(W ) ↪→ ˜X induce an injective
quasi-isometric embedding γ	

N ∨P A(W )→ ˜X.

Proof of Claim 1. This follows from Lemma 3.8 since L ≥ L2. See Figure 9.

Let W be a wall satisfying the hypotheses of Claim 1. By translating, we can
assume that q(y) = 0. We can assume that L ≥ L2 is divisible by the least common
multiple of the periods of the points yi, to support a later application of Lemma 5.7.

Let ̂γ	
� be a lifted augmentation of γ	

N . Note that there is a forward flow ˜XL → ˜XL

defined exactly as in Definition 1.4. Let η̂ be an embedded bi-infinite quasigeodesic
in ˜XL obtained by flowing ̂γ	

� forward a distance L and then removing backtracks.
Let η denote the composition of η̂ with ˜XL → ˜X.

Claim 2. There exist nontrivial intervals I, I ′ ⊂ η̂ such that I ⊂ ←−A, and I ′ ⊂ −→A,
and each point in the preimage of ψL(P) under η̂ ↪→ ˜XL → ˜X separates Int(I) and
Int(I ′).

Proof of Claim 2. Let T be the tunnel of W such that A(T ) ∩ γ	
N = P. Let ˜M be

the nucleus intersecting A(T ), so that A(T ) terminates at A(˜M). (Observe that ˜M
may or may not be trivial, depending on which lift of W → X we have chosen to
produce W .) Since it has an incoming tunnel, namely T , the nucleus ˜M is necessarily
a subinterval of the interior of an exponential edge, and hence there is a tunnel T ′

of W such that the terminal length-L
2 subpath of A(T ), the spaces ˜M,A(˜M), and a

forward path in T ′ bound an exceptional zone. By our choice of L and Lemma 5.7,
P admits the following description: there is an odd-cardinality set of edges such that
P consists of one interior point from each of these edges, and each of these edges
also intersects T ′ in a unique point, so that T ′ ∩ γ	

N is a finite set P ′ in one-to-one
correspondence with P. Let Q = ψL(P ′). Then |Q| = |P| and Q is the image in
˜X of η−1(A(T ′)). Hence A(T ′) ⊂ ˜XL intersects η̂ in a set ̂Q mapping bijectively
to Q. The claim now follows since all primary busts are regular and each tunnel-
approximation forms part of the boundary of an exceptional zone by Remark 3.5.
See Figure 10. ��
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Figure 10: The relationship between γ�
N , η, and A(W ) in ˜X. The bracketed intervals are the

images of I, I ′ under ˜XL → ˜X. The path θ from the proof of Claim 3 contains the terminal
part of A(T ); we reach a contradiction by showing that θ must also contain A(T ′)

Claim 3. A(W ) ∩ η̂ = ̂Q.

Proof of Claim 3. Suppose not. Then since ˜XL → ˜X restricts to a bijection on
A(W ), there exists p ∈ A(W ) ∩ im(η) such that p �∈ Q. Hence there is a forward
path υ of length L emanating from some p′ ∈ γ	

N and ending at p, as shown in
Figure 10. Let θ be a geodesic of A(W ) joining p to a point a ∈ P, and let � be the
subpath of γ	

N joining a to p′. Then �υ is a uniform quasigeodesic (i.e. the quasi-
isometry constants depend only on the quasi-isometry and deviation constants of
γ	

N ), and θ is a quasigeodesic with quasi-isometry constants independent of L. Hence
�υ fellowtravels with θ at distance independent of L. It follows that |�| is bounded
above by a constant independent of L. Hence, if L is sufficiently large, we have that
p lies at horizontal distance at least L

4 from any nucleus approximation in A(W ),
since |υ| = L and since the same is true of p′ (by the bound on |�|). Suppose that
for some tunnel T ′′ �= T attached to ˜M , we have that θ contains A(T ′′). Then θ
contains a point, namely the terminal point of A(T ′′), at distance at least L

4 from �υ,
contradicting fellowtraveling when L is sufficiently large. Hence there must be a path
in A(˜M) joining the terminal point of A(T ) to some point of υ. This contradicts the
fact that � intersects the level containing T ′ an odd number of times. [Alternatively,
we could have chosen W so that ˜M is a trivial nucleus, and hence A(˜M) is a single
point, which also rules out such a vertical path.] ��

By Claims 2 and 3, η̂ contains disjoint rays η̂1, η̂2 that lie in
←−
A,
−→
A respectively.

By definition, η̂ fellowtravels with ̂γ	
� , whence, by Claim 1 and the fact that ˜XL → ˜X

is a quasi-isometry, the points [η̂1], [η̂2] ∈ ∂ ˜XL are separated by ∂A(W ), from which
it follows that W cuts γ. ��
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5.4 Leaflike geodesics

Proposition 5.13. Let xo ∈ V . Let S ⊂ ˜V0 be a connected subspace that does
not contain an entire exponential edge, and let x̃o ∈ S be a lift of xo. Then there
exist periodic regular points x1, . . . , xk, one in each exponential edge of V , and
B = B(xo, . . . , xk) ≥ 0, such that for all distinct lifts x̃ip, x̃jq of xi, xj to S, with
i, j ≥ 1, we have

diam(N3δ(�ip) ∩ �jq) ≤ B, (1)

where �ip, �jq are the periodic lines containing x̃ip and x̃jq respectively. Moreover
there exists B′, such that the xi can be chosen so that for all �ip as above, we have

diam(N3δ(�ip) ∩ σo) ≤ B′, (2)

where σo is any forward path beginning at x̃o.

Proof. Choose x1, . . . , xk, one in each exponential edge, satisfying the conclusion of
Lemma 5.11 with respect to the point xo and a ball B of S containing x̃o whose
translates cover S. Exactly as explained in the proof of Proposition 5.9, it suffices
to consider lifts x̃ip, x̃jq in B.

For i, j ≥ 1, since xi, xj lie in the interiors of exponential edges, using the forward
divergence computation and exploiting periodicity as in the proof of Proposition 5.9
establishes assertion (1).

We now compare �ip to σo, where x̃ip, x̃o ∈ B. By Lemma 5.11,

dYab(ρab(x̃o), ρab(x̃ip)) ≥ ε,

where a is minimal so that �ip ⊂ ˜Xab and σo contains a subray in ˜Xab for some b.
If Sa is an exponential stratum, then applying the forward divergence computation
from the proof of Proposition 5.9 establishes assertion (2). It remains to consider
the case in which Sa is a polynomial stratum consisting of a single edge e with
φn(xo) ∈ Int(e) for some n ≥ 0. By minimality of a, we have φ(e) = e. For each
exponential edge ẽi of B, there is at most one periodic regular point x̃′ such that
the periodic line �x′ containing x′ contains a subray fellowtraveling with σo. Indeed,
this follows from Lemma 1.14. Hence, as long as the points x1, . . . , xk ∈ V were
chosen so that they are not images of any of these finitely many problematic points
x̃′ ∈ B, we see that assertion (2) holds. (Note that there are at most K problematic
points, where K is the constant from the proof of Lemma 5.11, i.e. the number of
exponential edges in B). ��

Proposition 5.14. Let γ : R → ˜X be a geodesic that is not M -deviating for any
M ≥ 0. Then there exists a wall W that cuts γ.

Proof. Since γ is not M -deviating for any M , we can assume, by replacing γ with
an embedded uniform quasigeodesic if necessary, that for each M ≥ 0, there is a
forward subpath of γ of length M . Hence there is an increasing sequence {Mi} of
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natural numbers and a sequence {ỹi} of points in ∪n
˜Vn such that the forward path

σi of length Mi beginning at ỹi lies in γ. Moreover, by passing if necessary to a
subsequence, we can assume that yi → xo as i → ∞, where yi is the image of ỹi in
V and xo is some point of V .

Let x1, . . . , xk ∈ V be periodic regular points obtained by applying Proposi-
tion 5.13 to the point xo and some specified lift x̃o of xo. Let B,B′ be the constants
from Proposition 5.13. Let W → X be an immersed wall whose primary busts are
x1, . . . , xk, so that each exponential edge contains exactly one primary bust.

By Theorem 3.7, there is a constant L0 = L0(B) such that if the tunnel length
L of W exceeds L0, then A(W ) is quasiconvex in ˜X. Moreover, Theorem 3.9 yields
L1 = L1(B) ≥ L0 so that if L ≥ L1, then W is a wall in ˜X.

Suppose that β′, β′′ are quasigeodesics, with fixed quasi-isometry constants, whose
3δ-coarse intersection is bounded by B′, and let the endpoints of β′, β′′ be joined by
a κ-quasigeodesic β, where κ is the constant provided by Theorem 2.1, and suppose
that the 3δ-coarse intersection between β and each of β′ and β′′ is also bounded
by B′. Then there exists a constant m = m(B′) such that β′ββ′′ is a quasigeodesic
provided |β′|, |β′′| ≥ m, with quasi-isometry constant independent of these lengths.

By Lemma 3.4, there exists L2 ≥ L1 such that if L ≥ L2, then every primary bust
in V is separated from xo, φ(xo), . . . , φm(xo) by a secondary bust. Finally, choose W
so that L ≥ max{m,L2}.

Let σ be the forward ray emanating from x̃o. Choose a lift ˜W → ˜X so that
ψm(x̃o) lies in the interior of a (nontrivial) nucleus ˜C belonging to a knockout ˜K

of the resulting wall W = im(˜W → ˜X). Hence A(W ) intersects σ in the point
p = ψL+m(x̃o), so that the inclusion A(W )→ ˜X and the embedding σ → ˜X induce
a map A(W )∨p σ → ˜X. This map is a quasi-isometric embedding. Indeed, for each
such tunnel T of W such that A(T ) and σ are joined by a path in A( ˜K), the fact
that every primary bust is separated from ψm(x̃o) by a secondary bust implies that
A(T ) is outgoing from A( ˜K), i.e. it travels in the direction of increasing q. Hence
the 3δ-coarse intersection between A(T ) and σ is bounded by B′. Hence, by our
choice of m and L, any path β′ββ′′ is a uniform quasigeodesic, where β′ is a path in
A(W ), and β is a path in A( ˜K), and β′′ is a subpath of σ. It follows from the proof
of Theorem 3.9.(1) that A(W ) ∨p σ → ˜X is an embedding provided L ≥ L3, where
L3 ≥ L2 depends only on B,B′. See Figure 11.

Since yi → xo, there exists i so that Mi ≥ m+3L and so that, by translating σ if
necessary, σi fellow-travels at distance ε with the initial length-(m+3L) subpath of σ,
where ε is less than the distance in ˜C from ψm(x̃o) to any vertex. Let p′ = A( ˜K)∩σi,
so that the images of A(W )∨pσ → ˜X and A(W )∨p′σi → ˜X lie at Hausdorff distance
less than ε. Hence there is an injective quasi-isometric embedding A(W )∨p′ γ → ˜X.

Any path in γ beginning at p′ has an initial horizontal subpath of length at least
max{L +m, 2L}. Let σ′

i be a subpath of σi extending L to the left and right of p′

and hence starting and ending in q−1(LZ). Let γ̂� be a lifted augmentation of γ
containing the unique lift σ̂′

i of σ′
i to ˜XL. Let p̂′ be the lift of p′ in σ̂′

i. Then we have
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Figure 11: Cutting a leaflike geodesic. The bold subpath of γ fellow-travels very closely with
the path β′′ mentioned in the proof

an injective quasi-isometric embedding A(W )∨p̂′ γ̂� → ˜XL. Since p̂′ lies in a nucleus-
approximation, and the intervals in γ̂� immediately succeeding and preceding p̂′ lie
in distinct halfspaces of ˜XL associated to A(W ), it follows that γ̂� contains two
rays, one in each halfspace, neither of which lies at bounded distance from A(W ).
Applying the quasi-isometry ˜XL → ˜X and noting that W is coarsely equal to A(W )
shows that W cuts γ. ��

Remark 5.15 (Periodicity of busts). The proofs of Propositions 5.12 and 5.14 could
have been carried out using walls whose primary busts are not periodic, as is done
in [HW13]; one again uses Proposition 5.9 and chooses the primary bust points
extremely close to the periodic points obtained from that proposition. This simplifies
matters slightly, since the immersed walls no longer need extra vertices, and there
are no trivial nuclei. However, this simplification is outweighed by the care that
must be taken when using non-periodic busts to first choose the periodic points and
busts, then choose L, and then slightly perturb the busts.

Acknowledgments

This is based upon work supported by the NSF under Grant Number NSF 1045119
and by NSERC. We thank the referee for helpful comments and corrections.

References

[Ago13] I. Agol. The virtual Haken conjecture (with an appendix by Ian Agol, Daniel
Groves and Jason Manning). Documenta Mathematica Journal der DMV, 18
(2013),1045–1087.

[BFH97] M. Bestvina, M. Feighn and M. Handel. Laminations, trees, and irreducible
automorphisms of free groups. Geometric and Functional Analysis (2)7 (1997),
215–244.

[BFH00] M. Bestvina, M. Feighn and M. Handel. The Tits alternative for Out(Fn)
I: dynamics of exponentially-growing automorphisms. Annals of Mathematics 151
(2000), 517–623.

[BH92] M. Bestvina and M. Handel. Train tracks and automorphisms of free groups.
Annals of Mathematics 135 (1992), 1–51.



GAFA CUBULATING HYPERBOLIC FREE-BY-CYCLIC GROUPS 179

[BH99] M.R. Bridson and A. Haefliger. Metric Spaces of Non-Positive Curvature.
Springer, Berlin (1999).

[Bri00] P. Brinkmann. Hyperbolic automorphisms of free groups. Geometric and Func-
tional Analysis (5)10 (2000), 1071–1089.

[BW13a] N. Bergeron and D.T. Wise. A boundary criterion for cubulation. The Amer-
ican Journal of Mathematics (3)134 (2012), 843–859. doi:10.1353/ajm.2012.0020

[BW13b] H. Bigdely and D.T. Wise. Quasiconvexity and relatively hyperbolic groups
that split. Michigan Mathematical Journal (2)62 (2013), 387–406.

[DV96] W. Dicks and E. Ventura. The Group Fixed by a Family of Injective Endo-
morphisms of a Free Group. Contemporary Mathematics. American Mathematical
Society, Providence (1996).

[Ger94] S.M. Gersten. The automorphism group of a free group is not a CAT(0) group.
Proceedings of the American Mathematical Society 121 (1994), 999–1002.

[GL07] F. Gautero and M. Lustig. The mapping-torus of a free group automorphism
is hyperbolic relative to the canonical subgroups of polynomial growth (2007),
arXiv:0707.0822.

[Gro87] M. Gromov. Hyperbolic groups. In: Essays in Group Theory, Math. Sci. Res.
Inst. Publ., Vol. 8, pp. 75–263. Springer, New York (1987).

[HP13] M.F. Hagen and P. Przytycki. Cocompactly cubulated graph manifolds. Israel
Journal of Mathematics (2013), 1–11. arXiv:1311.2084. (To appear).

[HW14] G.C. Hruska and D.T. Wise. Finiteness properties of cubulated groups. Com-
positio Mathematica (3)150 (2014), 453–506. doi:10.1112/S0010437X13007112.

[HW08] F. Haglund and D.T. Wise. Special cube complexes. Geometric and Functional
Analysis (5)17, 1551–1620.

[HW15] T. Hsu and D.T. Wise. Cubulating malnormal amalgams. Inventiones mathe-
maticae (199)2 (2015), 293–331.

[HW13] M.F. Hagen and D.T. Wise. Cubulating hyperbolic free-by-cyclic groups: the
irreducible case (2013), 1–39. arXiv:1311.2084. (Preprint)

[Lev09] G. Levitt. Counting growth types of automorphisms of free groups. Geometric
and Functional Analysis (4)19 (2009), 1119–1146.

[Sag95] M. Sageev. Ends of group pairs and non-positively curved cube complexes.
Proceedings of the London Mathematical Society (3)71 (1995), 585–617.

[Wis14] D.T. Wise. Cubular tubular groups. Transactions of the American Mathematical
Society 366 (2014), 5503–5521. doi:10.1090/S0002-9947-2014-06065-0.

[Wis11] D.T. Wise. The structure of groups with a quasiconvex hierarchy (2011), 205.
(Preprint)

Mark F. Hagen, Department of Mathematics, University of Michigan, Ann Arbor, MI,
USA markfhagen@gmail.com
Daniel T. Wise, Department of Mathematics and Statistics, McGill University, Montreal,
QC, Canada wise@math.mcgill.ca

Received: June 12, 2014
Accepted: November 23, 2014

http://dx.doi.org/10.1353/ajm.2012.0020
http://arxiv.org/abs/0707.0822
http://arxiv.org/abs/1311.2084
http://dx.doi.org/10.1112/S0010437X13007112
http://arxiv.org/abs/1311.2084
http://dx.doi.org/10.1090/S0002-9947-2014-06065-0

	Cubulating hyperbolic free-by-cyclic groups: the general case
	Abstract
	1 Mapping Tori of Relative Train Track Maps
	1.1 Improved relative train track maps
	1.2 The mathbbR-trees mathcalYij.
	1.3 The splitting lemma.
	1.4 Metric on widetildeX

	2 Quasiconvexity of Polynomial Subtrees
	2.1 Top stratum exponential.

	3 Immersed Walls, Walls, Approximations
	3.1 Immersed walls
	3.2 Walls in widetildeX.
	3.3 Quasiconvex walls when tunnels are long.

	4 Cutting Deviating Geodesics with Leaves
	4.1 Cutting lines in mathbbR-trees
	4.2 Separating endpoints of geodesics with leaves

	5 Cutting Geodesics
	5.1 (overlineW) as a wall in widetildeX L.
	5.2 ``Lifting'' paths from widetildeX to widetildeXL.
	5.3 Deviating geodesics.
	5.4 Leaflike geodesics

	Acknowledgments
	References


