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REGULARITY OF AREA MINIMIZING CURRENTS I:
GRADIENT LP ESTIMATES

Camillo De Lellis and Emanuele Spadaro

Abstract. In a series of papers, including the present one, we give a new, shorter
proof of Almgren’s partial regularity theorem for area minimizing currents in a Rie-
mannian manifold, with a slight improvement on the regularity assumption for the
latter. This note establishes a new a priori estimate on the excess measure of an
area minimizing current, together with several statements concerning approxima-
tions with Lipschitz multiple valued graphs. Our new a priori estimate is a higher
integrability type result, which has a counterpart in the theory of Dir-minimizing
multiple valued functions and plays a key role in estimating the accuracy of the
Lipschitz approximations.

1 Foreword: a new proof of Almgren’s partial regularity

In the present work we continue the investigations started in [LS11b,LS14], which
together with the forthcoming papers [LS13a,LS13b] lead to a proof of the following
theorem.

Theorem 1.1. Let Σ ⊂ R
m+n be a C3,ε0 submanifold for some ε0 > 0 and T an

m-dimensional area minimizing integral current in Σ. Then, there is a closed set
Sing(T ) of Hausdorff dimension at most m − 2 such that T is a C3,ε0 embedded
submanifold in Σ \ (spt(∂T ) ∪ Sing(T )).

Theorem 1.1 was first proved by Almgren in his monumental work [Alm00],
assuming slightly better regularity on Σ, namely Σ ∈ C5. The improvement itself is
therefore not so significant, but our proof, besides being much shorter, introduces
new ideas and establishes several new results, which we hope will provide useful
tools for further investigations in the area. Indeed, although we still follow Almgren’s
program and use many of his groundbreaking discoveries, the main steps are achieved
in a more efficient way thanks to new estimates and techniques. A striking example
is the construction of the so-called center manifold, which is by far the most intricate
part of Almgren’s work and the least explored, in spite of its importance: in this
respect, our construction in [LS13a] is considerably simpler and shorter than [Alm00,
Chapter 4], and establishes better results.

Some of our improvements are more transparent, although not substantially sim-
pler, when Σ = R

m+n and in a book in preparation [Lel14] we will provide a complete
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and self-contained account of Theorem 1.1 under such assumption. Moreover, build-
ing on our understanding of the various issues involved to the analysis of higher
codimension singularities, we plan to tackle Chang’s improvement [Cha88], which
shows that Sing(T ) consists of isolated points when m = 2. His arguments rely
on a center manifold construction which does not match exactly the statements of
[Alm00] and it is not fully justified, but only briefly sketched in the appendix of
[Cha88]. In [LSS13], instead, we give a detailed, simple construction for such center
manifold and a complete proof of this refined regularity result.

An alternative route to Chang’s result for J-holomorphic currents in symplectic
manifolds has been given recently in [RT04,RT09]. The interest in the regularity
theory for this class of area minimizing two-dimensional currents has been gener-
ated by the seminal paper of Taubes [Tau00] on the equivalence between Gromov
and Seiberg–Witten invariants, where it plays an important role. Moreover, the pa-
pers [RT04,RT09] have stimulated a lot of activity in the area, cf., for example,
[BR12,PR10,Riv04a,Riv04b]. In [BR12] Bellettini and Rivière proved that, when T
is a special Lagrangian cone in R

6, Sing(T ) consists of finitely many half-lines meet-
ing at the origin. This is, to our knowledge, the only result of its type not covered by
the Almgren–Chang works. We believe that the Bellettini–Rivière regularity theorem
can be extended to general three-dimensional area minimizing cones in any space di-
mension, combining the techniques developed in [LS11b,LS13a,LS13b,LS14,LSS13].
Most of the proofs in [BR12,PR10,Riv04a,Riv04b,RT04,RT09,Tau00] take advan-
tage of two specific assumptions, the underlying almost complex structure and the
two-dimensionality of the objects of study. Nonetheless these works have had a pro-
found influence on our research.

1.1 A blow-up proof: a very brief overview. In the rest of this foreword
we will give a rough outline of the proof of Theorem 1.1, highlighting the contents
of this note and the way it merges with its companion papers [LS13a,LS13b], while
comparing them to [Alm00]. Our discussion will be based on a well-known class
of examples for which the statement of Theorem 1.1 is optimal, namely singular
holomorphic curve of C

2. As it was first observed by Federer (cf. [Fed69, 5.4.19]),
the integral currents induced by holomorphic subvarieties of C

n (with their natural
orientation) are area minimizing.

We denote by DQ(T ) the set of points in spt(T ) \ spt(∂T ) where the density
of a current T equals the natural number Q ≥ 1. One first pioneering contri-
bution by Almgren is an elementary, but very clever, generalization of Federer’s
reduction argument, which has been widely used in several contexts (see [Sim83,
Theorem 35.3] and [Whi97]). This argument implies that, if T is area minimiz-
ing, then spt(T ) \ (∪QDQ(T ) ∪ spt(∂T )) has Hausdorff dimension at most m − 3.
Thus, to prove Theorem 1.1 it suffices to show that the Hausdorff dimension of
SingQ(T ) := Sing(T )∩DQ(T ) is at most m− 2. Since the “classical” regularity the-
ory ensures that T is a C1,α submanifold in the neighborhood of any point x ∈ D1(T ),
it is natural to argue by induction on Q.
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Let us therefore consider the case Q = 2 and a point x ∈ D2(T ). By the
monotonicity formula, in some neighborhood U of x, ‖T‖-almost all points have
density 1 or 2. If the points of density 1 are a set of ‖T‖-measure zero, by the
classical regularity theory x is a regular point for T . So any x ∈ Sing2(T ) must
be surrounded by many points of density 1, as it is, for instance, for the complex
curve {z2 = w3} ⊂ C

2 at x = 0. On the other hand, in such an example 0 is an
isolated singularity, whereas, if T were to contradict Theorem 1.1, by standard mea-
sure theoretic arguments there would be a point x ∈ Sing2(T ) surrounded by many
points of density 2. From now on we argue by contradiction and assume that this
happens for some area minimizing T at the point 0 ∈ D2(T ). Moreover, by known
facts in geometric measure theory, we can reduce the contradiction to the case that,
for a suitable sequence of radii rk ↓ 0, the homothetic rescalings of the current T
by a factor 1/rk (from now on denoted by Tk) converge to a double copy of an
m-dimensional plane, while at the same time D2(Tk) remains rather large.

It was first recognized by De Giorgi that the convergence of Tk to a single copy of
a flat plane implies that spt(Tk) can be well approximated by the graph of Lipschitz
functions which are “almost harmonic”. However, the example {z2 = w3} ⊂ C

2

shows that this is not always the case if the limiting plane has higher multiplic-
ity. Motivated by this fact, Almgren undertook in [Alm00] the strikingly ambitious
program of giving a rather complete existence and regularity theory for multiple
valued functions minimizing a suitable generalization of the Dirichlet energy, called
Dir-minimizers. The crowning achievement of this theory is that, except for a closed
set of codimension at most 2, Dir-minimizers can be locally decomposed in classical
(i.e. single-valued) non-intersecting harmonic sheets (possibly counted with multi-
plicity). Such “linear theory” is developed in [Alm00, Chapter 2] and revisited in our
paper [LS11b]. Moreover, it is complemented by several technical statements linking
the multiple valued graphs to the integral currents, a task which is accomplished in
Almgren [Alm00, Chapter 1] and in [LS14] by us (we refer to the introduction to
our previous two papers [LS11b,LS14] for more details).

The guiding idea in the contradiction argument is to approximate the currents
Tk with Lipschitz 2-valued functions and, after a suitable renormalization of their
Dirichlet energy, show that they converge to a Dir-minimizer. If the limit inherits
a large singular set from the currents Tk, then it contradicts the linear regularity
theory. Obviously, this strategy requires suitable approximations of area minimizing
currents with multiple valued graphs, accomplished by Almgren [Alm00, Chapter 3]
and by us in the present paper. If one follows our approach, the convergence of
these approximations to a Dir-minimizer can be concluded in a rather direct way.
However, we cannot expect that such limit inherits the singular set of the current.
For example, given the complex curve {(z, w) : (z−w2)2 = w5} ⊂ C

2, any reasonable
approximations of homothetic rescalings of this algebraic variety in a neighborhood
of the origin converge to a double copy of the classical holomorphic graph {(w,w2) :
w ∈ C}, which has lost the singularity at the origin.
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In order to perform the blow-up argument, we then need to “modulate lower order
regularities out”. This is accomplished by the construction of a center manifold (see
[Alm00, Chapter 4] and [LS13a]): such an object is a regular C3,α submanifold which
is very close to the average of the sheets of the current at any scale where the latter is
“very collapsed”. The final blow-up argument is then carried over to a new sequence
of 2-valued approximations of Tk, performed on the normal bundles of the center
manifolds (see [Alm00, Chapter 5] and [LS13b]). By a delicate unique continuation
principle, based on a new monotonicity formula discovered by Almgren, a suitable
normalization of the latter approximations does converge to a Dir-minimizer which
would be forced to have a large singular set, reaching the desired contradiction.
This final step builds upon very delicate computations, which thus require a lot
of accuracy in the construction of the center manifold, that in turn needs very
good estimates on the approximation results of this note. Thus, unlike the two
works [LS11b,LS14], which can be considered separately, the present paper and
[LS13a,LS13b] are intimately interconnected.

1.2 Our contribution; or, what is new. In their overall structure, our five
papers match bijectively the five chapters of [Alm00]. Moreover, it is clear that the
ultimate reason for the success of the program is the very same prodigious and cel-
ebrated discovery of Almgren: the monotonicity of the frequency function and its
astonishing robustness, which enters twice in the plan: at the very beginning, in the
linear regularity theory, and at the end, in the convergence of the final approxima-
tions (cf. [LS11b,LS13b]).

So, what is new in our proof? Aside from finer details, which are explained in
the introductions to each of our papers, there are some new contributions which
come at a higher level. Our investigations started with the idea that the machinery
developed in metric analysis and metric geometry in the last 30 years could reduce
the complexity of several arguments in Almgren’s program. This is, indeed, the
case at many levels in the two papers [LS11b,LS14] and in this note. Approaching
vast parts of Almgren’s theory with these tools, we not only get shorter and more
transparent proofs, but often also achieve stronger analytic estimates, which give
a better starting point for the PDE parts of the program. Moreover, as it often
happens when “abstract nonsense” simplifies preexisting mathematical theories, such
machinery provides also a better insight to the material of [Alm00], as it highlights
the important points in the proofs therein.

However, this alone would not explain the shortness of our papers compared to
[Alm00, Chapters 3,4,5]. The other important reason is that we also derive some
fundamental, new “hard” estimates. A primary example is the present paper, where
the main a priori estimate is a new higher integrability result, which comes from
a Gehring-type argument and is inspired by a simple remark in the linear theory
(the higher integrability of gradients of Dir-minimizers) which to our knowledge is
not observed in Almgren’s monograph. Similar instances are present in the papers
[LS13a,LS13b], where some new quantities and guiding principles are introduced
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(for instance, the “modified frequency” function in [LS13b] and the “splitting-before-
tilting” principle in [LS13a], inspired by [Riv04b]), which probably lead to the im-
provement on the regularity assumptions of the ambient manifold Σ. In all these
cases we provide more efficient tools compared to [Alm00] and invoke more PDE
theory at several levels, drawing connections with fairly classical concepts from other
areas of analysis (such as maximal functions, Lipschitz truncations, elliptic systems,
Sobolev capacity). Unfortunately we do not understand Almgren’s arguments at a
sufficiently deep level to draw a fine parallel between our papers [LS13a,LS13b] and
the last two chapters of his book, where the intricacy of the arguments in [Alm00]
is almost prohibitive. It remains the fact that our papers are much more accessible,
and we hope that in the near future our work will be used to penetrate further in
the richness and beauty of Almgren’s monograph and to go beyond Theorem 1.1.

Several other colleagues and friends have contributed with important scientific
conversations at some specific stage, for which they will be acknowledged specifically
in the various papers. In particular, for this first one we are grateful to Stefano
Bianchini, Sergio Conti, Matteo Focardi, Jonas Hirsch and Luca Spolaor for very
useful discussions and comments.

This work was carried over several years and the authors wish to thank many
institutions where they spent very productive visits, namely: the University of Rome
La Sapienza, the Scuola Normale Superiore and the University of Pisa, the Max
Planck Institute for Mathematics in the Sciences and the University of Leipzig, the
University of Zürich, the SISSA in Trieste, the University of Warwick and, most of
all, Princeton University, which hosted the first author during his last sabbatical.
We also acknowledge the support of the ERC grant RAM, ERC 306247.

We finally thank the anonymous referee for his/her careful reading and very
valuable suggestions, which contributed to a substantial improvement of the initial
manuscript.

2 Introduction

2.1 A priori gradient Lp estimate. In order to state the main results, we
start specifying some assumptions, which will hold throughout the paper. For the
notation concerning submanifolds Σ ⊂ R

m+n we refer to [LS14, Section 1]. With
Br(p) and Br(x) we denote, respectively, the open ball with radius r and center p in
R
m+n and the open ball with radius r and center x in R

m. Cr(x) will always denote
the cylinder Br(x)×R

n and the point x will be omitted when it is the origin. In fact,
by a slight abuse of notation, we will often treat the center x as a point in R

m+n,
avoiding the correct, but more cumbersome, (x, 0). Let ei be the unit vectors in the
standard basis, π0 the (oriented) plane R

m × {0} and �π0 the m-vector e1 ∧ . . . ∧ em
orienting it. We denote by p and p⊥ the orthogonal projections onto, respectively,
π0 and its orthogonal complement π⊥

0 . In some cases we need orthogonal projections
onto other planes π and their orthogonal complements π⊥, for which we use the
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notation pπ and p⊥
π . For what concerns integral currents we use the definitions and

the notation of [Sim83].

Assumption 2.1. Σ ⊂ R
m+n is a C2 submanifold of dimension m+ n̄ = m+n− l,

which is the graph of an entire function Ψ : R
m+n̄ → R

l and satisfies the bounds

‖DΨ‖0 ≤ c0 and A := ‖AΣ‖0 ≤ c0, (2.1)

where c0 is a positive (small) dimensional constant. T is an integral current of
dimensionm with bounded support contained in Σ and which, for some open cylinder
C4r(x) (with r ≤ 1) and some positive integer Q, satisfies

p�T = Q �B4r(x)� and ∂T C4r(x) = 0. (2.2)

If we say that T is area minimizing we then mean that it is area-minimizing in
Σ ∩ C4r(x), namely that M(T ) ≤ M(T + ∂S) for any integral S with spt(S) ⊂
Σ ∩C4r(x).

Definition 2.2. (Excess measure). For a current T as in Assumption 2.1 we define
the cylindrical excess E(T,C4r(x)), the excess measure eT and its density dT :

E(T,Cr(x)) :=
‖T‖(Cr(x))
ωmrm

−Q,
eT (A) := ‖T‖(A× R

n)−Q |A| for every Borel A ⊂ Br(x),
dT (y) := lim sup

s→0

eT (Bs(y))
ωm sm

= lim sup
s→0

E(T,Cs(y)),

where ωm is the measure of the m-dimensional unit ball (the subscripts T will be
omitted if clear from the context).

Since T has finite mass, the function d is naturally an L1 function. However, we
can show the following higher integrability estimate when T is, in addition, area
minimizing. We call it a gradient Lp estimate because we will show that d coincides
with the gradient of an appropriate Lipschitz function on a large region.

Theorem 2.3. (Gradient Lp estimate). There exist constants p1 > 1 and C, ε10 > 0
(depending on m,n, n̄,Q) with the following property. Let T be as in Assumption
2.1 in the cylinder C4. If T is area minimizing and E = E(T,C4) < ε10, then∫

{d≤1}∩B2

dp1 ≤ C Ep1−1
(
E + A2

)
. (2.3)

In the case Q = 1 or n̄ = 1, it follows from the classical regularity theory
(essentially due to De Giorgi, cf. [Gio61]) that T is a C1,α submanifold in C2.
However, when min{Q, n̄} ≥ 2, T is not necessarily regular and Theorem 2.3 gives
in fact an a priori regularity estimate: in this case (2.3) cannot be improved (except
for optimizing the constants p1, C and ε10). Indeed, for Q = m = 2, Σ = R

4 and
p1 = 2, (2.3) is false no matter how large ε−1

10 and C are chosen (cf. [Lel10, Section
6.2]).

In order to prove Theorem 2.3 we develop the following tools:
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(a) a general scheme to approximate integer rectifiable currents with multiple val-
ued functions, relying heavily on the “metric analysis” of [LS11b] and on a
modified “Jerrard–Soner” BV estimate for the slicing of currents (cf. Proposi-
tion 3.2);

(b) a simple and robust harmonic approximation of area minimizing currents with
multiple valued functions (cf. Theorem 5.2);

(c) the higher integrability of the gradient of Dir-minimizing multiple valued func-
tions (cf. Theorem 6.1—see also [Spa10] for a different proof and related re-
sults).

In turn, Theorem 2.3 will be combined with (a) to achieve a very accurate approx-
imation result for area minimizing current, stated in Theorem 2.4. This theorem and
some corollaries of our analysis play a fundamental role in the papers [LS13a,LS13b]
and, as explained in the Foreword, have a counterpart in [Alm00, Chapter 3]. How-
ever, our derivation of Theorem 2.4 differs substantially from Almgren’s and when
we use some of his ideas, as it is for the existence of the almost projection ρ� of
Section 8, we give independent arguments for the main steps of the proof.

2.2 Strong approximation of area minimizing currents. Concerning mul-
tiple valued functions we will follow the notation and terminology of [LS11b,LS14]. In
particular, a Q-valued function is a map f (usually defined over a measurable subset
Ω of R

m) taking values in the space AQ(Rn) of unordered Q-tuples of points in R
n,

denoted by
∑

i �Pi�. AQ(Rn) can be equipped with a natural metric G (cf. [LS11b,
Definition 0.2]) and for f measurable there exist measurable functions fi : Ω→ R

n

such that f(x) =
∑

i �fi(x)� ∀x ∈ Ω (cf. [LS11b, Proposition 0.4]). The functions fi
are not uniquely determined, but in using this notation we assume to have fixed some
suitable fi’s. Moreover, if f is Lipschitz, resp. f ∈W 1,2(Ω,AQ(Rn)) (cf. [LS11b, De-
finition 0.5]) and Ω is open, then there exist measurable functions Dfi ∈ L∞, resp.
L2, such that

∑
i �Dfi(x)� is the approximate differential of f (cf. [LS11b, Defin-

ition 2.6]) at a.e. x. In fact in this case the fi’s and Dfi’s can be chosen so that
the first are approximately differentiable a.e. and the second are their approximate
differentials in the classical sense (cf. [LS14, Lemma 1.1]). The Dirichlet energy of f
is then Dir(f,Ω) :=

∫
Ω |Df |2, where |Df |2 :=

∑
i |Dfi|2. Following [LS14, Definition

1.10], we denote by Gf the integer rectifiable current, in R
m+n, naturally associated

to the graph of a Lipschitz Q-valued map f : R
m ⊃ A→ AQ(Rn). Moreover, we will

use the notation osc (f) for the quantity infp supx G(f(x), Q �p�).

Theorem 2.4. (Almgren’s strong approximation). There exist constants C, γ1, ε1 >
0 (depending on m,n, n̄,Q) with the following property. Assume that T is area mini-
mizing, satisfies Assumption 2.1 in the cylinder C4r(x) and E = E(T,C4 r(x)) < ε1.
Then, there is a map f : Br(x) → AQ(Rn), with spt(f(x)) ⊂ Σ for every x, and a
closed set K ⊂ Br(x) such that
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Lip(f) ≤ CEγ1 , (2.4)
Gf (K × R

n) = T (K × R
n) and |Br(x) \K| ≤ C Eγ1

(
E + r2 A2

)
rm, (2.5)∣∣∣∣∣‖T‖(Cσ r(x))−Qωm (σ r)m− 1

2

∫
Bσ r(x)

|Df |2
∣∣∣∣∣≤ C Eγ1

(
E+r2 A2

)
rm ∀ 0 < σ≤ 1.

(2.6)

If in addition h(T,C4r(x), π0) := sup{|p⊥(x)−p⊥(y)| : x, y ∈ spt(T )∩C4r(x)} ≤ r,
then

osc (f) ≤ Ch(T,C4r(x), π0) + C(E1/2 + rA) r. (2.7)

The gain of a small power Eγ1 in the three estimates (2.4)–(2.6) plays a crucial
role in the papers [LS13a,LS13b]. When Q = 1 and Σ = R

m+1, this approximation
theorem was first proved by De Giorgi [Gio61]. In the generality above it appears in
the big regularity paper for the first time (cf. [Alm00, Sections 3.28–3.30]). Its proof
is an elementary consequence of Theorem 7.1 and the Lipschitz approximation algo-
rithm mentioned above. In turn Theorem 7.1 will be derived from Theorem 2.3 using
a suitable competitor argument. In the case Q = 1, the competitor is the convolu-
tion of (a first) Lipschitz approximation with a smooth kernel, a classical argument
which in fact appears already in De Giorgi’s seminal paper [Gio61], although in a
slightly different form (cf. [LS11a, Appendix]).

Here we need a similar approach in the framework of multiple valued functions.
However, since AQ(Rn) is highly nonlinear, it is not possible to regularize directly
by convolution. We exploit at this point a key idea of Almgren, embedding AQ(Rn)
in an Euclidean space and using some suitable “almost projections” ρ�δ . Our proof
of the existence of these almost projections is however different from the one given
by Almgren in [Alm00, Theorem 1.3] and, indeed, gives better bounds in terms of
the relevant parameters (see Proposition 7.2).

2.3 Harmonic approximation. A second ingredient which in [LS13a,LS13b]
will play a key role is the harmonic approximation of Theorem 2.6 below [already
mentioned in (b) above]. In order to state it we need to set some notation about the
ambient manifold Σ.

Remark 2.5. (Estimates on Ψ in good Cartesian coordinates). Assume that T is
as in Assumption 2.1 in the cylinder C4r(x). If E := E(T,C4r(x)) is smaller than
a geometric constant, we can assume, without loss of generality, that the function
Ψ : R

m+n̄ → R
l parameterizing Σ satisfies Ψ(x) = 0, ‖DΨ‖0 ≤ C E

1/2 + CAr and
‖D2Ψ‖0 ≤ CA. Indeed observe that

E = E(T,C4r(x)) =
1

2ωm (4r)m

∫
C4r(x)

|�T (y)− �π0|2 d‖T‖(y).

Thus, we can fix a point p ∈ spt(T ) ∩C4r(x) such that |�T (p)− �π0| ≤ C E1/2. Then,
we can find an associated rotation O ∈ O(m + n) such that O� �T (p) = �π0 and
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|O| ≤ C E
1/2. It follows that π := O(TpΣ) is a (m+ n̄)-dimensional plane such that

π0 ⊂ π and ‖π−TpΣ‖ ≤ CE1/2. We choose new coordinates so that π0 remains equal
to R

m×{0} but R
m+n̄×{0} equals π. Since the excess E is assumed to be sufficiently

small, we can write Σ as the graph of a function Ψ : π → π⊥. If (z,Ψ(z)) = p,
then |DΨ(z)| ≤ C‖TpΣ − R

m+n̄ × {0}‖ ≤ CE
1/2. However, ‖D2Ψ‖0 ≤ CA and so

‖DΨ‖0 ≤ CE
1/2 + CAr. Moreover, Ψ(x) = 0 is achieved translating the system of

reference by a vector orthogonal to R
m+n̄ × {0} and, hence, belonging to {0} ×R

n.

From now on, we will often consider Q-valued maps y �→ w(y) ∈ AQ(Rn) =
AQ(Rn̄×R

l) which take the form w(y) =
∑

i �(ui(y),Ψ(y, ui(y))�, where u =
∑

i �ui�
is evidently a map taking values in AQ(Rn̄). For w we will then use the short-
hand notation w = (u,Ψ(y, u)). We also recall the notation for the average map
η : AQ(Rn)→ R

n defined by

AQ(Rn) � T =
Q∑
i=1

�Pi� �→ η(T ) :=
1
Q

Q∑
i=1

Pi ∈ R
n.

Theorem 2.6. (Harmonic approximation). Let γ1 be the constant of Theorem 2.4.
Then, for every η̄, δ̄ > 0, there is a positive constant ε̄1 with the following property.
Assume that T is as in Theorem 2.4, E := E(T,C4 r(x)) < ε̄1 and rA ≤ E

1/4+δ̄.
If f is the map in Theorem 2.4 and we fix Cartesian coordinates as in Remark
2.5, then there exists a Dir-minimizing function u : Br(x) → AQ(Rn̄) such that
w := (u,Ψ(y, u)) satisfies

r−2

∫
Br(x)

G(f, w)2 +
∫
Br(x)

(|Df | − |Dw|)2 +
∫
Br(x)

|D(η ◦ f)−D(η ◦w)|2 ≤ η̄ E rm.
(2.8)

This theorem is the multi-valued analog of De Giorgi’s harmonic approximation
(cf. [Gio61]). We prove it via a compactness argument which, although very close in
spirit to De Giorgi’s original one, is to our knowledge new (even when n = n̄ = 1).
Indeed, it uses neither the monotonicity formula nor a regularization by convolution
of the Lipschitz approximation, and we expect it to be useful in different contexts.
2.4 Persistence of Q-points. A major ingredient in [LS13b] is the persistence
of points of maximal multiplicity in the approximation of Theorem 2.4, when inter-
preted in a suitable “limiting sense”. If the current T has a point of density Q, f
must satisfy the following integral bound (even though f might have no values of
multiplicity Q).

Theorem 2.7. (Persistence of Q-points). For every δ̂, C� > 0, there is s̄ ∈]0, 1
2 [ such

that, for every s < s̄, there exists ε̂(s, C∗, δ̂) > 0 with the following property. If T is
as in Theorem 2.4, E := E(T,C4 r(x)) < ε̂, r2A2 ≤ C�E and Θ(T, (p, q)) = Q at
some (p, q) ∈ Cr/2(x), then the approximation f of Theorem 2.4 satisfies∫

Bsr(p)
G(f,Q �η ◦ f�)2 ≤ δ̂smr2+mE. (2.9)
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2.5 A remark on notation. Finally we remark that we follow closely the
notation of [LS11b,LS14], except for a subtle point. We denote by ξ the map in
[LS11b, Corollary 2.2], which there was denoted by ξBW , since the symbol ξ was in
fact used for the “precursor map”of [LS11b, Theorem 2.1]. So, here ξ : AQ(Rn) →
R
N(Q,n) is an injective function satisfying the following three properties:

(i) Lip(ξ) ≤ 1;
(ii) Lip(ξ−1|Q) ≤ C(n,Q), where Q = ξ(AQ);
(iii) |Df | = |D(ξ ◦ f)| almost everywhere for every f ∈W 1,2(Ω,AQ).

This “improved” ξ was suggested by Brian White and appears for the first time in
[Cha88]. The conclusion (iii) above is actually not explicitly stated in [LS11b], but it
follows easily: indeed [LS11b, Corollary 2.2] implies the identity |Df | = |D(ξ ◦f)| at
every point of differentiability of a Lipschitz map and, hence, almost everywhere. The
case of a general f ∈W 1,2(Ω,AQ) can then be concluded from [LS11b, Proposition
2.5].

We will use the notation C and c for generic positive dimensional constants,
which may possibly change from line to line: we will always understand that these
constants depends only on the dimensional parameters m, n̄, n,Q, c0 of Assumption
2.1.

3 Lipschitz approximation

To begin with, we develop a robust algorithm to approximate currents T as in
Assumption 2.1 with graphs of multiple valued functions. Following the work of
Ambrosio and Kirchheim [AK00], we view the slice map x �→ 〈T,p, x〉 as a function
taking values in the space I0(Rn) of zero-dimensional integral currents. A key es-
timate of Jerrard and Soner (cf. [AK00,JS02]) implies that this map has bounded
variation in the metric sense introduced by Ambrosio [Amb90]. On the other hand,
following [LS11b], Q-valued functions can be viewed as Sobolev maps taking values
into (a subset of) I0(Rn). Thus, finding Lipschitz multiple valued approximations
of T can be seen as a particular case of the more general task of finding Lipschitz
approximations of BV maps with a fairly general target space.

Definition 3.1. (Maximal function of the excess measure). Given a current T as
in Assumption 2.1 we introduce the “non-centered” maximal function of eT :

meT (y) := sup
y∈Bs(w)⊂B4r(x)

eT (Bs(w))
ωm sm

= sup
y∈Bs(w)⊂B4r(x)

E(T,Cs(w)).

We can now state the main result of the section, which provides the first Lipschitz
approximation for rectifiable currents.

Proposition 3.2. (Lipschitz approximation). There exists a constant C > 0 with
the following property. Let T and Ψ be as in Assumption 2.1 in the cylinder C4s(x).
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Set E = E(T,C4s(x)), let 0 < δ11 < 1 be such that 16mE < δ11, and define

K :=
{
meT < δ11

} ∩B3s(x).

Then, there is u ∈ Lip(B3s(x),AQ(Rn)) such that spt(u(y)) ⊂ Σ for every y ∈
B3s(x) and

Lip(u) ≤ C (δ1/2
11 + ‖DΨ‖0

)
, osc (u) ≤ Ch(T,C4s(x), π0) + Cs‖DΨ‖0,

Gu (K × R
n) = T (K × R

n),

|Br(x) \K| ≤ 10m

δ11
eT
(
{meT > 2−mδ11} ∩Br+r0s(x)

)
∀ r ≤ 3 s, (3.1)

where r0 = 16 m
√
E/δ11 < 1.

The proof of the proposition is based on a BV estimate which differs from the
ones of [AK00,JS02]. Note that we do not assume that T is area minimizing. Indeed,
even the assumption (2.2) could be relaxed, but we do not pursue this issue here.

3.1 The modified Jerrard–Soner estimate. Recall that each element S ∈
I0(Rm+n) is simply a finite sum of Dirac deltas, S =

∑h
i=1wi δzi

, where h ∈ N,
wi ∈ {−1, 1} and the zi’s are (not necessarily distinct) points in R

m+n. Let T be
a current as in Assumption 2.1 in the cylinder C4. The slicing map x �→ 〈T,p, x〉
takes values in I0(Rm+n) and is characterized by (cf. [Sim83, Section 28]):

∫
B4

〈T,p, x〉 (ϕ)dx = T (ϕdx) for every ϕ ∈ C∞
c (C4). (3.2)

Moreover spt(〈T,p, x〉) ⊆ p−1({x}) and therefore 〈T,p, x〉 =
∑

iwi δ(x,yi). The as-
sumption (2.2) guarantees that

∑
iwi = Q for almost every x. In order to state our

BV estimate, we consider the push-forwards of 〈T,p, x〉 into the vertical directions:

Tx := p⊥
�

( 〈T,p, x〉 ) ∈ I0(Rn). (3.3)

It follows from (3.2) that the currents Tx are characterized through the identity:
∫
B4

Tx(ψ)ϕ(x) dx = T (ϕ(x)ψ(y) dx) for every ϕ ∈ C∞
c (B4), ψ ∈ C∞

c (Rn). (3.4)

Proposition 3.3. (BV estimate). Assume T satisfies Assumption 2.1 in C4 (i.e.
r = 1 and x = 0 in Assumption 2.1). For every ψ ∈ C∞

c (Rn), set Φψ(x) := Tx(ψ).
If ‖Dψ‖∞ ≤ 1, then Φψ ∈ BV (B4) and satisfies

(|DΦψ|(A)
)2 ≤ 2m2 eT (A) ‖T‖(A× R

n) for every Borel set A ⊆ B4. (3.5)

Note that in the usual Jerrard-Soner estimate the RHS of (3.5) would be (‖T‖(A×
R
n))2.
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Proof. It is enough to prove (3.5) for every open set A ⊆ B4. To this aim, recall
that:

|DΦψ|(A) = sup
{∫

A
Φψ(x) divϕ(x) dx : ϕ ∈ C∞

c (A,Rm), ‖ϕ‖∞ ≤ 1
}
. (3.6)

For any smooth vector field ϕ we have (divϕ(x)) dx = dΞ, where

Ξ =
∑
j

ϕj dx̂
j and dx̂j = (−1)j−1dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxm.

From (3.4) and the assumption ∂T C4 = 0 in (2.2), we conclude that

∫
A

Φψ(x) divϕ(x) dx =
∫
B4

Tx(ψ)divϕ(x) dx = T (ψ divϕdx)

= T (ψ dΞ) = T (d(ψ Ξ))− T (dψ ∧ Ξ) = −T (dψ ∧ Ξ). (3.7)

Observe that the m-form dψ ∧ Ξ has no dx component, since

dψ ∧ Ξ =
m∑
j=1

n∑
i=1

∂ψ

dyi
(y)ϕj(x) dyi ∧ dx̂j . (3.8)

Write �T = 〈�T , �π0〉�π0 + �S. Then,

(T (dψ ∧ Ξ))2=
(∫
〈�S, dψ ∧ Ξ〉 d‖T‖

)2≤‖|dψ ∧ Ξ|‖2∞‖T‖(A× R
n)
∫
A×Rn

|�S|2 d ‖T‖ ,

(| · | denotes the norms on Λm and Λm induced by the natural inner products 〈, 〉).
Since |�S|2 = 1− 〈�T , �π0〉2 ≤ 2− 2〈�T , �π0〉, we have

∫
A×Rn

|�S|2 d ‖T‖ ≤ 2
∫
A×Rn

(
1− 〈�T , �π0〉

)
d ‖T‖ = 2 eT (A).

Moreover, by (3.8), ‖|dψ ∧ Ξ|‖∞ ≤ m ‖Dψ‖∞ ‖ϕ‖∞ ≤ m. Summarizing, we get

∫
A

Φψ(x) divϕ(x) dx ≤ (2m2 eT (A) ‖T‖(A× R
n)
)1/2 ∀ϕ ∈ C∞

c (A,Rm), ‖ϕ‖∞ ≤ 1.

Taking the supremum over ϕ’s we conclude (3.5) through (3.6). ��
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3.2 Proof of Proposition 3.2. Since the statement is invariant under transla-
tions and dilations, without loss of generality we assume x = 0 and s = 1. Consider
the slices Tx := p⊥

� 〈T,p, x〉 ∈ I0(Rn) and recall that ‖T‖(A × R
n) ≥ ∫AM(Tx) dx

for every open set A (cf. [Sim83, Lemma 28.5]). Therefore,

M(Tx) ≤ lim
r→0

‖T‖(Cr(x))
ωm rm

≤meT (x) +Q for almost every x.

Since δ11 < 1, we infer M(Tx) < Q+ 1 for a.e. x ∈ K. There are, then, Q functions
gi : K → R

n such that Tx =
∑Q

i=1 δgi(x) for a.e. x ∈ K. Define g : K �→ AQ(Rn) as
g :=

∑
i �gi� and fix ψ ∈ C∞

c (Rn). Proposition 3.3 gives

(|DΦψ|(Br(y)))2≤2m2 eT (Br(y)) ‖T‖(Cr(y))=2m2 eT (Br(y))
(
Q|Br(y)|+eT (Br(y))

)
.

Hence, if we define the maximal function

m|DΦψ|(x) := sup
x∈Br(y)⊂B4r

|DΦψ|(Br(y))
|Br(y)| ,

we conclude that

(m|DΦψ|(x))2 ≤ 2mmeT (x)2 + 2mQmeT (x) ≤ Cδ11 for every x ∈ K.
Therefore, the theory of BV functions gives a dimensional constant C such that

|Φψ(x)− Φψ(y)| ≤ C δ1/2
11 |x− y| ∀x, y ∈ K Lebesgue points of Φψ, (3.9)

(see for instance [EG92, Section 6.6.2]: although in that reference the authors use the
centered maximal function, the proof works obviously also in our context). Consider
next the Wasserstein distance of exponent 1 on 0-dimensional integral currents S1,
S2:

W1(S1, S2) := sup
{〈S1 − S2, ψ〉 : ψ ∈ C1(Rn), ‖Dψ‖∞ ≤ 1

}
. (3.10)

Obviously, when S1 =
∑

i �S1i� , S2 =
∑

i �S2i� ∈ AQ(Rn), the supremum in (3.10)
can be taken over a suitable countable subset of ψ ∈ C∞

c (Rn), chosen independently
of the Si’s. Moreover, we have that

W1(S1, S2) = min
σ∈PQ

∑
i

|S1i − S2σ(i)| ≥ min
σ∈PQ

(∑
i

|S1i − S2σ(i)|2
)1/2

= G(S1, S2).

(3.11)
So G(g(x), g(y)) ≤ C δ

1/2
11 |x − y| for a.e. x, y ∈ K. (The first equality in (3.11) is

well-known, but not easy to find in the literature. It can be derived by suitably mod-
ifying the arguments of [Fed69, 4.1.12]. Another quick derivation is the following.
Consider the set Π of probability measures π on R

n×R
n of the form

∑
i,j cijδ(S1i,S2j),

where the matrix of coefficients cij consists of nonnegative entries with
∑

k ckj = 1
and

∑
k cik = 1 for every i and j, i.e. it is a doubly stochastic matrix. It then

follows from the Kantorovich duality, see for instance [Vil03, Theorem 1.14], that
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W1(S1, S2) = minπ∈Π

∫ |x− y| dπ(x, y). Observe however that
∫ |x− y| dπ(x, y) is a

linear function of the coefficients cij : the space of such matrices, also called Birk-
hoff polytope, is a compact convex set and so the minimum is attained on the
subset of extremal points. By the classical Birkhoff-von Neumann theorem this set
consists of the permutations matrices (see [Bir46]) and so minπ∈Π

∫ |x − y| dπ =
minσ∈PQ

∑
i |S1i − S2σ(i)|).

Next, write g(x) =
∑

i �(hi(x),Ψ(x, hi(x)))�. Obviously x �→ h(x) :=
∑

i �hi(x)� ∈
AQ(Rn̄) is a Lipschitz map on K with Lipschitz constant ≤ C δ1/2

11 . Recalling [LS11b,
Theorem 1.7], we can extend it to a map ū ∈ Lip(B3,AQ(Rn̄)) satisfying Lip(ū) ≤
C δ

1/2
11 and osc (ū) ≤ Cosc (h). Set finally u(x) =

∑
i �(ūi(x),Ψ(x, ūi(x)))�. We start

showing the Lipschitz bound. Fix x1, x2 ∈ B3 and assume, without loss of generality,
that G(ū(x1), ū(x2))2 =

∑
i |ūi(x1)− ūi(x2)|2. Then

G(u(x1), u(x2))2 ≤
∑
i

∣∣(ūi(x1),Ψ(x1, ūi(x1)))− (ūi(x2),Ψ(x2, ūi(x2)))
∣∣2

≤ 2
∑
i

((
1 + ‖DyΨ‖20

)
|ūi(x1)− ūi(x2)|2 + ‖DxΨ‖20|x1 − x2|2

)

≤ 2
(
1 + ‖DΨ‖20

)
G(ū(x1), ū(x2))2 + 2‖DΨ‖20|x1 − x2|2

≤ C
(
δ11 + ‖DΨ‖20

)
|x1 − x2|2.

As for the L∞ bound, let η > 0 be arbitrary and p ∈ R
n̄ be such that osc(ū) ≤

supx∈B3
G(ū(x), Q �p�) + η. Proceeding as above

osc(u)2 ≤ sup
x∈B3

G(u(x), Q �(p,Ψ(0, p))�)2

≤ 2 sup
x∈B3

((
1 + ‖DΨ‖20

)
G(ū(x), Q �p�)2 + ‖DΨ‖20|x|2

)

≤ 4
(
1 + ‖DΨ‖20

)(
osc(ū)2 + η2

)
+ 18 ‖DΨ‖20.

Since osc(h) ≤ h(T,C4, π0), the estimate on osc(u) follows letting η ↓ 0.
The identity Gu (K×R

n) = T (K×R
n) is a consequence of u(x) = Tx for a.e.

x ∈ K. Indeed, recall that both T and Gu are rectifiable and observe that 〈�T , �π0〉 �= 0
‖T‖-a.e. on K × R

n, because meT < ∞ on K. Similarly, 〈�Gu, �π0〉 �= 0 ‖Gu‖-a.e.
on K × R

n, by [LS14, Proposition 1.4]. Thus, (Gu − T ) K × R
n = 0 if and only if

(Gu − T ) dx1K×Rn = 0. The latter identity follows from the slicing formula and
the property 〈T,p, x〉 = 〈Gu,p, x〉 =

∑
i δ(x,ui(x)), valid for a.e. x ∈ K.

Finally, for each x ∈ Br \ K choose a ball x ∈ Bx = Br(x)(y(x)) ⊂ B4 such
that eT (Bx) ≥ 2−mδ11ωmr(x)m. By the 5r-Covering theorem, we choose balls B̂i =
B5r(xi)(y(xi)) which cover Br \K and such that the balls Bxi are pairwise disjoint.
We then conclude
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|Br \K| ≤ 10mδ−1
11 eT

(⋃
i

Bxi

)
. (3.12)

Fix y ∈ Bxi . Since Bxi ⊂ B4, we have 2−mδ11ωmr(xi)m ≤ eT (Bxi) ≤ eT (B4) =
4mωmE, which implies 2r(xi) ≤ r0 < 1. Thus, y ∈ Br+r0 ⊂ B4. By definition of
meT we obviously have meT (y) ≥ 2−mδ11. So ∪iBxi ⊂ Br+r0 ∩ {meT > 2−mδ11}
and (3.12) implies (3.1).

4 Patching multiple valued graphs

In this section we prove some complementary results to the theory of multiple valued
functions as exposed in [LS11b,LS14]. In particular, we show here a concentration
compactness principle for Q-valued functions, and give an algorithm to construct
suitable competitors for the Dirichlet energy, which will be also used in [LS13b]. We
first introduce some terminology.

Definition 4.1. (Translating sheets). Let Ω ⊂ R
m be a bounded open set. A se-

quence of maps {hk}i∈N ⊂W 1,2(Ω,AQ(Rn)) is called a sequence of translating sheets
if there are:

(a) integers J ≥ 1 and Q1, . . . , QJ ≥ 1 satisfying
∑J

j=1Qj = Q,
(b) vectors yjk ∈ R

n (for j ∈ {1, . . . , J} and k ∈ N) with

lim
k
|yjk − yik| = +∞ ∀i �= j, (4.1)

(c) and maps ζj ∈W 1,2(Ω,AQj
) for j ∈ {1, . . . , J},

such that hk =
∑J

j=1�τyj
k
◦ ζj�, where for any generic y ∈ R

n we denote by τy :
AQ(Rn)→ AQ(Rn) the translation map (cp. [LS11b, Section 3.3.3])

AQ(Rn) � T =
∑
i

�Pi� �→ τy(T ) :=
∑
i

�Pi − y� ∈ AQ(Rn).

Remark 4.2. Assume that hk, Qj , y
j
k and ζk satisfy all the requirements of Defini-

tion 4.1 except for (4.1). Up to subsequences and relabellings, assume that y1
k − y2

k

converges to a vector 2ȳ. We can replace

• the integers Q1 and Q2 with Q′ = Q1 +Q2;
• the vectors y1

k and yk2 with y′
k = (y1

k + y2
k)/2;

• the maps ζ1 and ζ2 with ζ ′ :=
�
τȳ ◦ ζ1

�
+

�
τ−ȳ ◦ ζ2

�
.

The new collections Q′, Q3, . . . , QJ , y′
k, y

3
k, . . . , y

J
k and ζ ′, ζ3, . . . , ζJ , and the function

h′
k := �ζ ′� +

∑J
j=3

�
ζj

�
, satisfy again all the requirements of Definition 4.1 except,

possibly, for (4.1). Moreover, ‖G(h′
k, hk)‖L2 → 0 and |Dh′

k| = |Dhk|. Obviously, we
can iterate this procedure only a finite number of times, obtaining a subsequence of
translating sheets ĥk asymptotic to hk in the L2 distance with |Dĥk| = |Dhk|.
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4.1 Concentration compactness. Translating sheets give a useful device to
recover a suitable “compactness statement” for sequences of maps with equi-bounded
energy.

Proposition 4.3. (Concentration compactness). Let Ω ⊂ R
m be a Lipschitz bounded

open set and (gk)k∈N ⊂ W 1,2(Ω,AQ) a sequence of functions with supk
∫
Ω |Dgk|2 <

∞. Then, there exist a subsequence (not relabeled) and a sequence of translating
sheets hk such that ‖G(gk, hk)‖L2 → 0 and the following inequalities hold for every
open Ω′ ⊂ Ω and any sequence of measurable sets Jk with |Jk| → 0:

lim inf
k→+∞

(∫
Ω′\Jk

|Dgk|2 −
∫

Ω′
|Dhk|2

)
≥ 0 (4.2)

lim sup
k→+∞

∫
Ω

(|Dgk| − |Dhk|)2 ≤ lim sup
k

∫
Ω

(|Dgk|2 − |Dhk|2) . (4.3)

Proof. We start proving, by induction on Q, the existence of translating sheets {hk}
(and a subsequence) with ‖G(hk, gk)‖L2 → 0 and satisfying the following additional
property. If J,Qj , y

j
k and ζj are as in Definition 4.1, then there are Qj valued

functions wjk such that, after setting fk =
∑

j

�
wjk

�
, we have

‖G(fk, gk)‖L2 + |{gk �= fk}| → 0, ‖G(τ−yj
k
◦ wjk, ζj)‖L2 → 0 and |Dfk| ≤ |Dgk|.

(4.4)
If Q = 1 the claim with fk = gk is an easy corollary of the Poincaré inequality and

the compact embedding W 1,2 ↪→ L2. Assuming that the claim holds for any Q∗ < Q,
we prove it for Q. By the generalized Poincaré inequality [LS11b, Proposition 2.12],
there exist points ḡk ∈ AQ(Rn) and a real number M such that

∫
Ω
G(gk, ḡk)2 ≤ C

∫
Ω
|Dgk|2 ≤M <∞ ∀ k ∈ N.

Recall the separation s(T ) and the diameter d(T ) of a point T =
∑

i �Pi� introduced
in [LS11b, Definition 3.4]: s(T ) := min

{|Pi−Pj | : Pi �= Pj
}

and d(T ) := max{|Pi−
Pj |}. We distinguish between to cases.

Case 1: lim infk d(ḡk) < ∞. After passing to a subsequence, we find yk ∈ R
n such

that the functions τyk
◦ gk are equi-bounded in the W 1,2-metric. By the Sobolev

embedding [LS11b, Proposition 2.11], there exists a Q-valued map ζ ∈ W 1,2 such
that τyk

◦ gk → ζ in L2(Ω).

Case 2: limk d(ḡk) = +∞. By [LS11b, Lemma 3.8] there are points Sk ∈ AQ such
that

β d(ḡk) ≤ s(Sk) < +∞ and G(Sk, ḡk) ≤ s(Sk)/32,

where β is a dimensional constant. Write Sk =
∑J

i=1 κi
�
P ik

�
, with P ik �= P jk for

i �= j. Both J and κi may depend on k but they have a finite range: therefore, after
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extracting a subsequence, we can assume that they do not depend on k. Set next
rk = s(Sk)

16 and let ϑk be the retraction of AQ(Rn) into Brk
(Sk) provided by [LS11b,

Lemma 3.7]. Clearly, the functions f̂k = ϑk ◦ gk satisfy |Df̂k| ≤ |Dgk| and there are
κi-valued functions zik such that

f̂k =
J∑
i=1

�
zik

�
, with ‖G(zik, κi

�
P ik

�
)‖∞ ≤ rk.

Since κi < Q, we apply the inductive hypothesis to each sequence (zik)k and, using
Remark 4.2 reach a subsequence (not relabeled) of f̂k, a sequence of translating
sheets hk and corresponding functions fk which satisfy (4.4) with f̂k replacing gk.

We next claim that (4.4) holds even for gk, i.e. that limk (‖G(fk, gk)‖L2+
|{fk �= gk}|) = 0. To this aim, recall first that{

gk �= f̂k

}
= {G (gk, Sk) > rk} ⊆ {G (gk, ḡk) > rk/2} .

Thus,∣∣∣
{
gk �= f̂k

}∣∣∣ ≤ | {G (gk, ḡk) > rk/2} | ≤ C

r2k

∫
{G(gk,ḡk)>

rk
2 }
G (gk, ḡk)

2 ≤ CM

(d(ḡk))2
.

(4.5)
Since d(ḡk)→ +∞ and (4.4) holds with f̂k replacing gk, we conclude |{fk �= gk}| → 0.
Next, since ϑk(ḡk) = ḡk and Lip(ϑk) = 1, we have G(f̂k, ḡk) ≤ G(gk, ḡk). Therefore,
by the Sobolev embedding and the Poincaré inequality, for any p ∈]2, 2∗[, we infer∫

Ω
G(f̂k, gk)2 =

∫
{gk �=f̂k}

G(f̂k, gk)2 ≤ 2
∫

{f̂k �=gk}
G(f̂k, ḡk)2 + 2

∫
{f̂k �=gk}

G(ḡk, gk)2

≤ 4
∫

{f̂k �=gk}
G(ḡk, gk)2 ≤ C ‖G (gk, ḡk)‖2Lp

∣∣∣
{
f̂k �= gk

}∣∣∣1− 2
p

(4.5)

≤ CM1−2/p

d(ḡk)2−4/p

∫
Ω
|Dgk|2.

Since d(ḡk) diverges, this shows ‖G(f̂k, gk)‖L2 → 0 and by inductive hypothesis that
‖G(fk, gk)‖L2 → 0.

We now show that (4.2) and (4.3) are consequences of (4.4). For each j we
consider the corresponding embedding ξj : AQj

(Rn) → R
N(Qj ,n) and, by a slight

abuse of notation, we drop the j subscript. Then, we conclude that ξ ◦ τ−yj
k
◦wjk →

ξ ◦ ζj in L2 and ‖D(ξ ◦ τ−yj
k
◦ wjk)‖L2 is a bounded sequence, from which

D(ξ ◦ τ−yj
k
◦ wjk) ⇀ D(ξ ◦ ζj) in L2(Ω). (4.6)

If Jk is a sequence of measurable sets with |Jk| ↓ 0, then 1Ω′\Jk
→ 1Ω′ in L2(Ω) and

it follows from (4.6) that

D(ξ ◦ τ−yj
k
◦ wjk)1Ω′\Jk

⇀ D(ξ ◦ ζj)1Ω′ in L2(Ω) ,
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and, hence,

Dir(ζj ,Ω′)=
∫

Ω′
|D(ξ ◦ ζj)|2≤ lim inf

k

∫
Ω′\Jk

|D(ξ ◦ τ−yj
k
◦ wjk)|2=lim inf

k

∫
Ω′\Jk

|Dwjk|2.

Summing over j, we obtain (4.2). As for (4.3), set Jk := {gk �= fk}. Thus,

∫
Ω\Jk

(|Dgk| − |Dhk|)2 ≤
∑
j

∫
Ω\Jk

(∣∣∣Dwjk
∣∣∣− |Dζj |

)2

=
∑
j

∫
Ω\Jk

(∣∣∣∣D
(

ξ ◦ τ−yj
k
◦ wjk

)∣∣∣∣− |D(ξ ◦ ζj)|
)2

≤
∑
j

∫
Ω\Jk

∣∣∣∣∣D
(
ξ ◦ τ−yj

k
◦ wjk

)
−D(ξ ◦ ζj)

∣∣∣∣∣
2

=
∑
j

∫
Ω\Jk

⎛
⎝
∣∣∣∣∣D
(
ξ ◦ τ−yj

k
◦ wjk

)∣∣∣∣∣
2

+ |D(ξ ◦ ζj)|2

−2D
(
ξ ◦ τ−yj

k
◦ wjk

)
·D(ξ ◦ ζj)

)
. (4.7)

Therefore, by (4.6) (and taking into account that |Jk| → 0) one gets

lim sup
k→+∞

∫
Ω\Jk

(|Dgk| − |Dhk|)2

≤ lim
k→+∞

∑
j

∫
Ω\Jk

(∣∣∣D
(
ξ ◦ τ−yj

k
◦ wjk

)∣∣∣2 + |D(ξ ◦ ζj)|2

− 2D
(
ξ ◦ τ−yj

k
◦ wjk

)
·D(ξ ◦ ζj)

)

= lim sup
k→+∞

∫
Ω\Jk

∑
j

∣∣∣∣∣D
(
ξ ◦ τ−yj

k
◦ wjk

)∣∣∣∣∣
2

−
∫

Ω

∑
j

|D(ξ ◦ ζj)|2

= lim sup
k→+∞

∫
Ω\Jk

|Dgk|2 −
∫

Ω
|Dhk|2. (4.8)

On the other hand, since |Jk| → 0 we conclude

lim sup
k→∞

∫
Jk

(|Dgk| − |Dhk|)2 = lim sup
k→∞

∫
Jk

|Dgk|2.

Observe that, after passing to a subsequence, we can actually assume that all limsups
are in fact limits. Summing (4.8) and the last equation we then conclude (4.3). ��
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4.2 Dirichlet competitors. We consider next a standard procedure to con-
struct competitors for the Dirichlet energy of a sequence of functions with equi-
bounded energy.

Proposition 4.4. (Construction of a competitor). Consider two radii 1 ≤ r0 <
r1 < 4 and maps gk, hk ∈ W 1,2(Br1 ,AQ(Rn)) such that {hk}k is a sequence of
translating sheets,

sup
k

Dir(gk, Br1) < +∞ and ‖G(gk, hk)‖L2(Br1\Br0 ) → 0.

For every η > 0, there exist r ∈]r0, r1[, a subsequence of {gk}k (not relabeled) and
functions Hk ∈ W 1,2(Br1 ,AQ(Rn)) such that Hk|Br1\Br

= gk|Br1\Br
and

Dir(Hk, Br1) ≤ Dir(hk, Br1) + η. In addition, there is a dimensional constant C
and a constant C∗ (depending on η and the two sequences, but not on k) such that

Lip(Hk) ≤ C∗ (Lip(gk) + 1), (4.9)
‖G(Hk, hk)‖L2(Br) ≤ CDir(gk, Br) + CDir(Hk, Br), (4.10)

‖η ◦Hk‖L1(Br1) ≤ C∗ ‖η ◦ gk‖L1(Br1 ) + C‖η ◦ hk‖L1(Br1). (4.11)

In order to prove the proposition, we need to recall the following two lemmas,
which are slight variants of [LS11b, Proposition 4.4] and [LS11b, Lemma 2.15].

Lemma 4.5. (Lipschitz approximation). Let f ∈W 1,2(Br,AQ). Then, for every ε >
0, there exists fε ∈ Lip(Br,AQ) such that
∫
Br

G(f, fε)2 +
∫
Br

(|Df | − |Dfε|)2 +
∫
Br

(|D(η ◦ f)| − |D(η ◦ fε)|
)2 ≤ ε. (4.12)

If f |∂Br
∈W 1,2(∂Br,AQ), then fε can be chosen to satisfy also

∫
∂Br

G(f, fε)2 +
∫
∂Br

(|Df | − |Dfε|)2 ≤ ε. (4.13)

Proof. By an obvious scaling argument we can assume r = 1. We start noticing
that (4.12) is a corollary of [LS11b, Proposition 4.4]. On the other hand, if f |∂B1 ∈
W 1,2(∂B1), we extend the map to B2 by setting f(x) = f( x|x|) if |x| ≥ 1. We then
can apply [LS11b, Proposition 2.5] to find a sequence of Lipschitz maps fk such that
fk → f strongly in W 1,2(B2). Given δ > 0, define the maps f δ(x) = f((1 + δ)x)
and f δk (x) = fk((1 + δ)x). Obviously, f δk → f δ strongly in W 1,2(B1) and f δ → f
strongly in W 1,2(B1) as δ ↓ 0. By a standard Fubini argument, for each j we can find
a δj < 1

j and a subsequence {fk,j}k such that fk,j |∂B1+δj
→ f |∂B1+δj

(i.e. f δj

k,j |∂B1 →
f δj |∂B1 = f |∂B1) strongly in W 1,2(∂B1+δj

) as k ↑ ∞. By standard diagonal argument
we can arrange the subsequences so that {fk,j} ⊃ {fk,j+1}. Thus, a suitable diagonal
sequence f̄j := f

δj

k(j),j has the property that f̄j → f in W 1,2(B1) and f̄j |∂B1 → f |∂B1

in W 1,2(∂B1).
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Lemma 4.6. (Interpolation). There exists a constant C0 = C0(m,n,Q) > 0 with the
following property. Assume r ∈]1, 3[, f ∈W 1,2(Br,AQ) and g ∈W 1,2(∂Br,AQ) are
given maps such that f |∂Br

∈ W 1,2(∂Br,AQ). Then, for every ε ∈]0, r[ there exists
a function h ∈W 1,2(Br,AQ) such that h|∂Br

= g and
∫
Br

|Dh|2 ≤
∫
Br

|Df |2 + ε

∫
∂Br

(|Dτf |2 + |Dτg|2
)

+
C0

ε

∫
∂Br

G(f, g)2, (4.14)

Lip(h) ≤ C0

{
Lip(f) + Lip(g) + ε−1 sup

∂Br

G(f, g)
}
, (4.15)

∫
Br

|η ◦ h| ≤ C0

∫
∂Br

|η ◦ g|+ C0

∫
Br

|η ◦ f |, (4.16)

(here Dτ denotes the tangential derivative).

Proof. The first conclusion is an obvious corollary of [LS11b, Lemma 2.15]. It is then
straightforward to see that the map constructed in the proof of [LS11b, Lemma
2.15] satisfies also (4.15). As for the final claim, let ḡ :=

∑
�gi − η ◦ g�, f̄ :=∑

�fi − η ◦ f� and consider the interpolation map h̄ between f̄ and ḡ given by
[LS11b, Lemma 2.15]. Set ĥ =

∑
i�h̄i − η ◦ h̄� and observe that Lip(ĥ) ≤ Lip(h̄)

and Dir(ĥ) ≤ Dir(h̄). We apply again [LS11b, Lemma 2.15] in the case Q = 1 to
η ◦ f and η ◦ g, and get the interpolation u. It is then easy to check that the map
h :=

∑
i�ĥi + u� has all the desired properties. ��

Proof (of Proposition 4.4). Set for simplicity Ak := ‖G(gk, hk)‖L2(Br1\Br0 ) and Bk :=
‖η ◦gk‖L1(Br1 ). If Ak ≡ 0, then there is nothing to prove and so we can assume that,
for a subsequence, not relabeled, Ak > 0. Assuming that for yet another subsequence
(not relabeled) Bk > 0, we consider the function

ψk(r) :=
∫
∂Br

(|Dgk|2 + |Dhk|2
)

+A−2
k

∫
∂Br

G(gk, hk)2 +B−1
k

∫
∂Br

|η ◦ gk|. (4.17)

By assumption lim infk
∫ r1
r0
ψk(r) dr <∞. So, by Fatou’s Lemma, there is r ∈ ]r0, r1[

and a subsequence, not relabeled, such that limk ψk(r) <∞. Thus, for some M > 0
we have ∫

∂Br

G(gk, hk)2 → 0, (4.18)

Dir(hk, ∂Br) + Dir(gk, ∂Br) ≤M, (4.19)∫
∂Br

|η ◦ gk| ≤M ‖η ◦ gk‖L1(Br1). (4.20)

In case Bk = 0 for all k large enough, we define ψk dropping the last summand in
(4.17) and reach the same conclusion.

Let ζj be the blocks of the translating sheets hk as in Definition 4.1. We apply
Lemma 4.5 to each ζj and find Lipschitz functions ζjη satisfying the conclusion of
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the lemma with ε̄1 = ε̄1(η,M) > 0 (which will be chosen later). We also choose
a standard radial convolution kernel ϕ in R

m and a small parameter ρ̄ (also to be
chosen later). Then, set

hk,η :=
J∑
j=1

�
τyj

k
◦ ζjη

�
and h̄k,η :=

Q∑
i=1

�(hk,η)i − η ◦ hk,η + (η ◦ hk) ∗ ϕρ̄�,

and choose ρ̄ so small that

Q2‖η ◦ hk − (η ◦ hk) ∗ ϕρ̄‖2L2 ≤ ε̄1, (4.21)∫
Br

(|D(η ◦ hk)|2 − |D(η ◦ hk ∗ ϕρ̄)|2
) ≤ ε̄1. (4.22)

Note that this is possible because, from the fact that hk is a sequence of translating
sheets, it follows that η ◦ hk(x) = F (x) + pk for some F ∈ W 1,2 and a sequence of
vectors pk ∈ R

n. Therefore (η◦hk)∗ϕρ̄ = F ∗ϕρ̄+pk andD(η◦hk)∗ϕρ̄ = DF ∗ϕρ̄, and
(4.21) and (4.22) follows if ρ̄ is sufficiently small by the usual convolution estimates.
In particular by very rough estimates,

‖G(gk, h̄k,η)‖L2

(4.21)

≤ ‖G(gk, hk)‖L2 + 2‖G(hk, hk,η)‖L2 + ε̄1 ≤ o(1) + 3 ε̄1, (4.23)
Dir(h̄k,η, ∂Br) ≤ 2M + 2 ε̄1 (4.24)

and

Dir(h̄k,η, Br) =
∑
i

∫
Br

|D(hk,η)i −D(η ◦ hk,η) +D(η ◦ hk ∗ ϕρ̄)|2

=
∫
Br

(|Dhk,η|2 −Q|D(η ◦ hk,η)|2 +Q|D(η ◦ hk ∗ ϕρ̄)|2
)

= Dir(hk,η, Br) +Q

∫
Br

(|D(η ◦ hk)|2 − |D(η ◦ hk,η)|2
)

+Q

∫
Br

(|D(η ◦ hk ∗ ϕρ̄)|2 − |D(η ◦ hk)|2
)

(4.12),(4.22)

≤ Dir(hk,η, Br) + 2Q ε̄1. (4.25)

We can then apply Lemma 4.6 to h̄k,η and gk with ε̄2 = ε̄2(η,M) > 0, and get (up
to subsequences) maps Hk satisfying Hk|∂Br

= gk|∂Br
and

Dir (Hk, Br) ≤Dir
(
h̄k,η, Br

)
+ε̄2 Dir

(
h̄k,η, ∂Br

)
+ε̄2 Dir(gk, ∂Br)

+
C0

ε̄2

∫
∂Br

G (h̄k,η, gk)2

≤ Dir(hk, Br) +Qε̄1 + 3 ε̄2 (M + ε̄1) + 3C0 ε̄
−1
2 ε̄1
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where in the last line we have used (4.18), (4.19) and (4.23)–(4.25). An appro-
priate choice of the parameters ε1 and ε2 gives the desired bound Dir (Hk, Br) ≤
Dir(hk, Br) + η.

Observe next that, by construction, lim supk Lip(h̄k,η) ≤ C∗, for some constant
which depends on η and the two sequences, but not on k. Moreover,

‖G(h̄k,η, gk)‖L∞(∂Br) ≤ ‖G(h̄k,η, gk)‖L2(∂Br) + CLip(gk) + CLip(h̄k,η).

Thus (4.9) follows from (4.15).
Finally, (4.10) follows from the Poincaré inequality applied to G(Hk, gk) (which

vanishes identically on ∂Br), and (4.11) follows from (4.16), because of (4.20) and
‖η ◦ h̄k,η‖L1(Br) = ‖(η ◦ hk) ∗ ϕρ̄‖L1(Br) ≤ ‖η ◦ hk‖L1(Br1 ) if ρ̄ is also chosen small
enough such that r + ρ̄ < r1. ��

5 Harmonic approximation

In what follows we will always apply Proposition 3.2 with δ11 = E2β and under a
certain scaling of A.

Definition 5.1. (Eβ-Lipschitz approximation). Let β ∈ (0, 1
2m

)
, T be as in Propo-

sition 3.2 such that 32E(1−2β)/m < 1 and sA ≤ E1/4+δ for some δ > 0. If the coordi-
nates are fixed as in Remark 2.5, the map u given by Proposition 3.2 for δ11 = E2β

is then called the Eβ-Lipschitz approximation of T in C3s(x) and will be denoted by
f .

In this section we prove that, if T is also area minimizing, the corresponding Eβ-
Lipschitz approximation is close to a Dir-minimizing function w. This comes with
an o(E)-improvement of the estimates in Proposition 3.2.

Theorem 5.2. (First harmonic approximation). For every η1, δ > 0 and every β ∈
(0, 1

2m), there exist constants ε12, C12 > 0 with the following property. Let T be as in
Assumption 2.1 in C4s(x) and assume it is area minimizing. If E = E(T,C4s(x)) ≤
ε12 and sA ≤ E1/4+δ, then the Eβ-Lipschitz approximation f in C3s(x) satisfies∫

B2s(x)\K
|Df |2 ≤ η1E ωm (4 s)m = η1 eT (B4s(x)). (5.1)

Moreover, if we consider the coordinates of Remark 2.5, there exists a Dir-minimizing
function u : B2s(x) → AQ(Rn̄) such that the map B2s(x) � y �→ w = (u,Ψ(y, u))
satisfies

s−2

∫
B2s(x)

G(f, w)2 +
∫
B2s(x)

(|Df | − |Dw|)2 ≤ η1E ωm (4 s)m = η1 eT (B4s(x)),

(5.2)∫
B2s(x)

|D(η ◦ f)−D(η ◦ w)|2 ≤ η1E ωm (4 s)m = η1 eT (B4s(x)).

(5.3)
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Remark 5.3. (Isoperimetric inequality). If S ⊂ R
m+n is an integral current of

dimension m − 1 with ∂S = 0, then there is an m-dimensional integral current
R ⊂ R

m+n such that ∂R = S and M(R) ≤ CM(S)m/(m−1), where the constant C
is only dimensional (see [Sim83, Theorem 30.1]). It is also well-known that, when
spt(S) ⊂ Σ and Σ is as in Assumption 2.1 the same inequality holds for some R̄ with
spt(R̄) ⊂ Σ and ∂R̄ = S, with a dimensional constant C which depends additionally
on the constant c0. This can be easily seen as follows: let q : R

m+n → R
m+n̄ be the

orthogonal projection and Λ : R
m+n → Σ be the map Λ(p) = (q(p),Ψ(q(p))). Λ is a

global Lipschitz retraction of R
m+n onto Σ which is the identity on Σ: thus we can

simply set R̄ = Λ�R.

Remark 5.4. (Taylor expansion of the mass). There are dimensional constants
c, C > 0 such that the following holds. Let V ⊂ R

m be a bounded measurable set
and let u : V → AQ(Rn) be a Lipschitz function with Lip(u) ≤ c. Denote by Gu the
integer rectifiable current associated to the graph of u as in [LS14, Definition 1.10].
Then, the following Taylor expansion of the mass of Gu holds:

M(Gu) = Q |V |+
∫
V

|Du|2
2

+
∫
V

∑
i

R(Dui),

where R : R
n×m → R is a C1 function satisfying |R(D)| = |D|3 L(D) for some

positive function L such that L(0) = 0 and Lip(L) ≤ C. This Taylor expansion is
proven in [LS14, Corollary 3.3] (although the corollary is stated for V open, the
proof works obviously when V is merely measurable).

Remark 5.5. There exists a dimensional constant c > 0 such that, if E ≤ c, then
the Eβ-Lipschitz approximation satisfies the following estimates:

Lip(f) ≤ C Eβ, (5.4)∫
B3s(x)

|Df |2 ≤ C E sm. (5.5)

Indeed (5.4) follows from Proposition 3.2, Remark 2.5 and ‖DΨ‖0 ≤ C(E1/2 +A) ≤
C Eβ by the choice of β and the scaling of A. While (5.5) follows from Remark 5.4
since for E sufficiently small∫

B3s(x)

∑
i

R(Dfi) ≤ C E2β

∫
B3s(x)

|Df |2 < 1
4

∫
B3s(x)

|Df |2,

and therefore∫
B3s(x)

|Df |2 ≤ C (M(Gf C3s(x))−Qωm (3 s)m)

≤ C (M(T C3s(x))−Qωm (3 s)m) + CM(Gf (B3s(x) \K)× R
n)

≤ C E sm + C E2β |B3s(x) \K| ≤ C E sm.
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Equation (5.5) is therefore a rather simple corollary of the “maximal function trun-
cation” argument employed in Proposition 3.2. Other approximation schemes give
instead worse bounds for the Lipschitz constant of the approximating map, cf. for
instance [Sim83, Theorem 5.1.1].

Proof (of Theorem 5.2). By rescaling and translating, it is not restrictive to as-
sume that x = 0 and s = 1. Thus, by Remark 2.5 we can assume Ψ(0) = 0,
‖DΨ‖0 ≤ C(E1/2 + A) and ‖D2Ψ‖0 ≤ A. The proof of (5.1) is by contradiction.
Assume there exist a constant c1 > 0, a sequence of currents (Tk)k∈N satisfying
Assumption 2.1 and area minimizing, ambient manifolds Σk (parametrized by Ψk,
with second fundamental forms bounded by Ak) and corresponding Eβk -Lipschitz
approximations (fk)k∈N such that

Ek := E(Tk,C4)→ 0, Ak ≤ E
1/4+δ
k and

∫
B2\Kk

|Dfk|2 ≥ c1Ek, (5.6)

where Kk := {x ∈ B3 : meTk
(x) < E2β

k }. Set Γk := {x ∈ B4 : meTk
(x) ≤ 2−mE2β

k }
and observe that Γk ∩B3 ⊂ Kk. From Proposition 3.2, it follows that

Lip(fk) ≤ CEβk , (5.7)

|Br \Kk| ≤ CE−2β
k eT

(
Br+r0(k) \ Γk

)
for every r ≤ 3, (5.8)

where r0(k) = 16E(1−2β)/m
k < 1

2 . We also assume

Ψk(0) = 0 and ‖DΨk‖0 + ‖D2Ψk‖0 ≤ CE
1/4+δ
k . (5.9)

Then, (5.6), (5.7) and (5.8) give

c1Ek ≤
∫
B2\Kk

|Dfk|2 ≤ C eTk
(Bs \ Γk) ∀ s ∈ [52 , 3

]
.

Setting c2 := c1/(2C), we have 2c2Ek ≤ eTk
(Bs \Γk) = eTk

(Bs)−eTk
(Bs∩Γk), thus

leading to
eTk

(Γk ∩Bs) ≤ eTk
(Bs)− 2 c2Ek. (5.10)

Next observe that ωm4mEk = eTk
(B4) ≥ eTk

(Bs). Therefore, by the Taylor expan-
sion in Remark 5.4, Equation (5.10) and Ek ↓ 0, it follows that, for every s ∈ [5/2, 3],
∫

Γk∩Bs

|Dfk|2
2

≤
(
1 + C E2β

k

)
eTk

(Γk ∩Bs)

≤
(
1 + C E2β

k

) (
eTk

(Bs)− 2 c2Ek
)
≤ eTk

(Bs)− c2Ek. (5.11)

Our aim is to show that (5.11) contradicts the minimizing property of Tk. To
construct a competitor we write fk(x) =

∑
i

�
f ik(x)

� ∈ AQ(Rn̄ × R
l), and de-

note by (f ik)
′(x) the first n̄ components of the points f ik(x). This induces a map
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f ′
k :=

∑
i

�
(f ik)

′� taking values into AQ(Rn̄). Observe that, since f ik(x) are indeed
points of the manifold Σk

fk =
∑
i

�
((f ik)

′(x),Ψk(x, (f ik)
′(x)))

�
. (5.12)

We consider gk := Ek
−1/2f ′

k. Since by Remark 5.5 supk Dir(gk, B3) < ∞ and |B3 \
Γk| → 0, by Proposition 4.3 we can find a subsequence (not relabelled) of translating
sheets hk satisfying (4.2)–(4.3) and ‖G(gk, hk)‖L2(B3) → 0. In particular, we are in
the position to apply Proposition 4.4 to gk and hk, with r0 = 5

2 , r1 = 3 and η = c2
4 ,

and find r ∈ (5
2 , 3
)

and competitor functions Hk satisfying Hk|B3\Br
= gk|B3\Br

,

Dir(Hk, Br) ≤ Dir(hk, Br) +
c2
4
, (5.13)

Lip(Hk) ≤ C∗Eβ−1/2
k (5.14)

‖G(Hk, gk)‖L2(Br) ≤ C∗ Dir(gk, Br) + C Dir(Hk, Br) ≤M <∞. (5.15)

Moreover, Proposition 4.3 implies that, for k is large enough,

Dir(hk, Br) ≤ Dir(gk, Br ∩ Γk) +
c2
4

(5.11)

≤ eTk
(Br)
Ek

− 3c2
4
Ek. (5.16)

Note that (5.14) follows from (4.9) observing that Eβ−1/2
k ↑ ∞: thus C∗ depends on

c2 and the two chosen sequences, but not on k. From now on, although this and
similar constants are not dimensional, we will keep denoting them by C, with the
understanding that they do not depend on k. Note that, from (5.7) and (5.8), one
gets

‖Tk −Gfk
‖(C3) ≤ ‖Tk‖((B3 \Kk)× R

n) + ‖Gfk
‖((B3 \Kk)× R

n)
≤ Q |B3 \Kk|+ Ek +Q |B3 \Kk|+ C |B3 \Kk|Lip(fk)

≤ Ek + C E1−2β
k ≤ C E1−2β

k . (5.17)

Let (z, y) be coordinates on R
m × R

n and consider the function ϕ(z, y) = |z| and
the slice 〈Tk −Gfk

, ϕ, r〉. Observe that, by the coarea formula and Fatou’s lemma,
∫ 3

r
lim inf

k
E2β−1
k M(〈Tk −Gfk

, ϕ, s〉) ds ≤ lim inf
k

E2β−1
k ‖Tk −Gfk

‖(C3) ≤ C.

Therefore, for some r̄ ∈ (r, 3) and a subsequence, not relabeled, M
( 〈Tk −Gfk

, ϕ, r̄〉 )
≤ C E1−2β

k .
Let now vk := Ek

1/2Hk|Br̄
, uk := (vk,Ψk(x, vk)) and consider the current Zk :=

Guk
Cr̄. Since uk|∂Br̄

= fk|∂Br̄
, one gets ∂Zk = 〈Gfk

, ϕ, r̄〉 and, hence, M(∂(Tk Cr̄

−Zk)) ≤ CE1−2β
k . We define

Sk = Tk (C4 \Cr̄) + Zk +Rk. (5.18)
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where (cp. Remark 5.3) Rk is an integral current supported in Σk such that

∂Rk = ∂(Tk Cr̄ − Zk) and M(Rk) ≤ CE
(1−2β)m

m−1

k .

Sk is supported in Σk and ∂Sk = ∂(Tk C4). We now show that, since β < 1
2m , for

k large enough, the mass of Sk is smaller than that of Tk. To this aim we write

Dir(uk, Br̄)−Dir(fk, Br̄ ∩ Γk) =
∫
Br̄

|Dvk|2 −
∫
Br̄∩Γk

|Df ′
k|2

︸ ︷︷ ︸
I1

+
∫
Br̄

|D(Ψk(x, vk))|2 −
∫
Br̄

|D(Ψk(x, f ′
k))|2

︸ ︷︷ ︸
I2

+
∫
Br̄\Γk

|D(Ψk(x, f ′
k))|2

︸ ︷︷ ︸
I3

.

The first term is estimated by (5.13) and (4.2): recalling that vk = E
1/2
k Hk and

f ′
k = E

1/2
k gk (but also that the two functions coincide onBr̄\Br) we achieve I1 ≤ c2

2 Ek
for k large enough. For what concerns the second, we proceed as follows. First we
write

I2 =
∑

i

∫
Br̄

(D(Ψk(x, uk(x))i −D(Ψk(x, f ′
k(x))i) : (D(Ψk(x, uk(x))i +D(Ψk(x, f ′

k(x))i).

Next, recalling the chain rule [LS11b, Proposition 1.12], we get
∣∣D(Ψk(x, uk(x))i +D(Ψk(x, f ′

k(x))i
∣∣ ≤ C‖DxΨk‖0 + C‖DuΨk‖0(Lip(uk) + Lip(f ′

k))
(5.9)

≤ CE
1/4+δ
k .

Using the letter inequality, the chain rule and (5.9), once again we achieve

I2 ≤ C E1/4+δ
k

∫
Br̄

(∑
i

∣∣∣DxΨk

(
x, vik(x)

)
−DxΨk

(
x, (f ik)

′(x)
)∣∣∣

+ ‖DuΨk‖0
(|Dvk|+ |Df ′

k|
))

≤ C E1/4+δ
k ‖D2Ψk‖0

∫
Br̄

G(vk, f ′
k) + C E

1/2+2δ
k

∫
Br̄

(|Dvk|+ |Df ′
k|
)

≤ C E1/2+2δ
k E

1/2
k + C E1+2δ

k ≤ CE1+2δ
k . (5.19)

Finally, I3 ≤ C‖DΨk‖2∞|B3 \ Γk| ≤ CE1+β
k . Thus, for k large enough we achieve

I2 + I3 ≤ c2
4 Ek, thereby reaching Dir(uk, Br̄)−Dir(fk, Br̄ ∩ Γk) ≤ 3c2

4 Ek. Hence,
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M(Sk)−M(Tk) ≤M(Zk) + CM(Rk)−M(Tk Cr̄)

≤ Q |Br̄|+
∫
Br̄

|Duk|2
2

+ C E1+2β
k + C E

(1−2 β)m

m−1

k −Q|Br̄| − eTk
(Br̄)

≤
∫
Br̄∩Γk

|Dfk|2
2

+
3
4
c2Ek + C E1+2β

k + C E
(1−2 β)m

m−1

k − eTk
(Br̄)

(5.11)

≤ − c2Ek
4

+ C E1+β
k + C E

(1−2 β)m

m−1

k < 0, (5.20)

as soon as Ek is small enough. This gives the desired contradiction and proves (5.1).
For what concerns (5.2) and (5.3), we argue similarly. Without loss of generality

we assume x = 0 and s = 1. Hence, we let (Tk)k, (Σk)k and (Ψk)k be sequences with
vanishing Ek := E(Tk,C4) and satisfying (5.9), but contradicting (5.2) or (5.3). So,
being fk the Eβk -Lipschitz approximations, we know that, for any sequence of Dir-
minimizing functions ūk which we might choose, when we set wk = (ūk,Ψk(x, ūk))
we will have

lim inf
k

E−1
k

∫
B2

(G(fk, wk)2 + (|Dfk| − |Dwk|)2 + |D(η ◦ fk − η ◦ wk)|2
)

︸ ︷︷ ︸
=:I(k)

> 0.

(5.21)
As in the previous argument we introduce the maps f ′

k satisfying (5.12), the normal-
ized functions gk = E

−1/2
k f ′

k and, after extraction of a subsequence, the translating
sheets hk satisfying (4.2)–(4.3) and ‖G(gk, hk)‖L2(B3) → 0. We next claim that

(i) limk

∫
B2
|Dgk|2 =

∫
B2
|Dhk0 |2, for any k0 (recall that

∫
B2
|Dhk|2 is constant);

(ii) hk is Dir-minimizing in B2.

If (i) is false, then there is a positive constant c2 such that, for any r ∈ [5/2, 3],∫
Br

|Dhk|2
2

≤
∫
Br

|Dgk|2
2
− c2 ≤ eTk

(Br)
Ek

− c2
2
, (5.22)

provided k large enough (where the last inequality is again an effect of the Taylor
expansion of Remark 5.4). We next define the competitor currents Sk as in the
argument leading to (5.20): this latter inequality is reached thanks to (5.22), which
substitutes (5.11) and (5.16). On the other hand (5.20) contradicts the minimizing
property of Tk. If (ii) is false, then hk is not Dir-minimizing in B2. This implies
that one of the ζj in the translating sheets hk is not Dir-minimizing in B2. Indeed,
in the opposite case, by [LS11b, Theorem 3.9], ‖G(ζj , Q �0�)‖C0(B2) <∞ and, since
hk =

∑
i�τyi

k
◦ ζi� and |yik−yjk| → ∞ for i �= j, by the maximum principle of [LS11b,

Proposition 3.5], hk would be Dir-minimizing. Thus, for some ζj we can find a
competitor ζ̂j with less energy in the ball B2. So the functions Fk =

∑
j�τyj

k
◦ ζ̂j�

satisfy, for any r ∈ [5/2, 3],∫
Br

|DFk|2
2

≤
∫
Br

|Dhk|2
2

− c2 = lim
k

∫
Br

|Dgk|2
2
− c2 ≤ eT (Br)

Ek
− c2

2
(5.23)
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provided k is large enough (here c2 > 0 is some constant independent of r and k).
On the other hand Fk = hk on B3 \ B5/2 and therefore ‖G(Fk, gk)‖L2(B3\B5/2) → 0.
We then construct the competitor current Sk of (5.18): this time we use, however,
the map Fk in place of hk to construct Hk via Proposition 4.4 and we reach the
contradiction (5.20) using (5.23) in place of (5.11) and (5.16).

We next set ūk := E
1/2
k hk and we aim at showing that, for wk = (ūk,Ψk(x, ūk)),

I(k)→ 0, a contradiction to (5.21). Observe first that, by ‖G(gk, hk)‖L2 → 0, we have
D(ξ◦gk)−D(ξ◦hk)⇀ 0 in L2 (recall the definition of ξ in Section 2.5). On the other
hand, recall that D(ξ ◦ hk) is actually a single function, independent of k, because
hk is a sequence of translating sheets. So, (i) and the identities |D(ξ ◦ gk)| = |Dgk|,
|D(ξ ◦ hk)| = |Dhk| imply that D(ξ ◦ gk)−D(ξ ◦ hk) converge strongly to 0 in L2.
If we next set ĥk =

∑
i

�
hik − η ◦ hk

�
and ĝk =

∑
i

�
gik − η ◦ gk

�
, we obviously have

‖G(ĥk, ĝk)‖L2 + ‖η ◦ hk − η ◦ gk‖L2 → 0. Recall however that the Dirichlet energy
enjoys the splitting

Dir(gk) = Q

∫
|D(η ◦ gk)|2 + Dir(ĝk) Dir(hk) = Q

∫
|D(η ◦ hk)|2 + Dir(ĥk).

So (i) implies that the Dirichlet energies of η ◦ gk and ĝk converge, respectively, to
those of η ◦ hk and ĥk (which, we recall again, are independent of k because the
hk’s are translating sheets). We thus infer that D(η ◦ hk)−D(η ◦ gk) converges to
0 strongly in L2.

Coming back to wk we observe that

E−1
k

∫
B2

G(wk, fk)2 ≤ (2 + Lip(DΨ)2)E−1
k

∫
B2

G(ūk, f ′
k)

2 = C

∫
B2

G(hk, gk)2 → 0.

(5.24)
So,

lim sup
k

I(k) ≤ 2 lim sup
k

∫
B2

(|Dgk| − |Dhk|)2 + |D(η ◦ gk − η ◦ hk)|2
)

+ C(Q) lim sup
k

E−1
k

∫
B2

G (D(Ψ(x, f ′
k)
)
, D(Ψ(x, ūk)))2

≤ C lim sup
k

E−1
k

∫
B2

G (D(Ψ(x, f ′
k)
)
, D(Ψ(x, ūk)))2 = lim sup

k
E−1
k J(k).

(5.25)

Recalling the chain rule of [LS11b, Proposition 1.12], we have

D
(
Ψ(x, f ′

k)
)
(x) =

∑
i

�
DxΨ(x, (f ik)

′(x)) +DvΨ(x, (f ik)
′(x)) ·D(f ik)

′(x)
�

D (Ψ(x, ūk)) (x) =
∑
i

�
DxΨ(x, ūik(x)) +DvΨ(x, ūik(x)) ·Dūik(x)

�
.
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So we can estimate

J(k) ≤ CLip(DxΨ)2
∫
B2

G (f ′
k, ūk

)2 + C‖DΨ‖20
∫
B2

(|Df ′
k|2 + |Dūk|2

) (5.9)

≤ CE
3/2+2δ
k .

We therefore conclude that E−1
k J(k) → 0 and thus I(k) → 0, which contradicts

(5.21). ��

6 Gradient Lp estimate

In this section we prove Theorem 2.3. The result is a consequence of an higher inte-
grability estimate for the gradient of Dir-minimizing functions, the o(E)-improved
estimate for the excess measure given in Proposition 6.4 and a very careful “covering
and stopping radius” argument (cf. [Spa12] for an exposition in a more elementary
context).

6.1 Higher integrability of the gradient of Dir-minimizers. Most of the
energy of a Dir-minimizer lies where the gradient is relatively small. We prove indeed
the following a priori estimate (cf. [Spa10] for a different proof and some improve-
ments).

Theorem 6.1. (Higher integrability of Dir-minimizers). There exists p10 > 2 such
that, for every Ω′ ⊂⊂ Ω ⊂ R

m open domains, there is a constant C > 0 such that

‖Du‖Lp10 (Ω′) ≤ C ‖Du‖L2(Ω) for every Dir-minimizing u ∈W 1,2(Ω,AQ(Rn)).
(6.1)

Proof. The statement is a corollary of Proposition 6.2 below and a Gehring type
lemma, cf. [GM79, Proposition 5.1]. ��

Proposition 6.2. Let 2 (m−1)
m < p11 < 2. Then, there exists C = C(m,n,Q, p11)

such that, for every u : Ω→ AQ Dir-minimizing, the following holds

(
−
∫
Br(x)

|Du|2
)1/2

≤C
(
−
∫
B2r(x)

|Du|p11
)1/p11

∀ x ∈ Ω, ∀ r < min
{
1,dist(x, ∂Ω)/2

}
.

Proof. Since the estimate is invariant under translations and rescalings, it is enough
to prove it for x = 0 and r = 1. We assume, therefore Ω = B2. Let u : Ω→ AQ(Rn)
be Dir-minimizing and let F = ξ ◦u : Ω→ Q ⊂ R

N . Denote by F̄ ∈ R
N the average

of F on B2. By Fubini’s theorem and the Poincaré inequality, there exists s ∈ [1, 2]
such that∫

∂Bs

(|F − F̄ |p11 + |DF |p11) ≤ C
∫
B2

(|F − F̄ |p11 + |DF |p11) ≤ C‖DF‖p11Lp11 (B2)
.
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Consider F |∂Bs
. Since 1

2 >
1
p11
− 1

2 (m−1) , we can use the embedding W 1,p11(∂Bs) ↪→
H1/2(∂Bs) (see, for example, [Ada75]). Hence, we infer that

∥∥F − F̄∥∥
H1/2(∂Bs)

≤ C ‖DF‖Lp11 (B2)
. (6.2)

Let F̂ be the harmonic extension of F |∂Bs
in Bs. It is well known (one could, for

example, use the result in [Ada75] on the half-space together with a partition of
unity) that

‖DF̂‖L2(Bs) ≤ C(m) min
p∈RN

‖F̂ − p‖H1/2(∂Bs)

(6.2)

≤ C ‖DF‖Lp11 (B2)
. (6.3)

Consider the map ρ of [LS11b, Theorem 2.1]. Since ρ ◦ F̂ |∂Bs
= u|∂Bs

and ρ ◦ F̂
takes values in Q, by the minimizing property of u and the Lipschitz continuity of
ξ, ξ−1 and ρ, we conclude:

(∫
B1

|Du|2
)1/2

≤C
(∫

Bs

|DF̂ |2
)1/2

≤C
(∫

B2

|DF |p11
)1/p11

=C
(∫

B2

|Du|p11
)1/p11

.

��

Remark 6.3. Proposition 6.2 can be proved in several different ways, which are
based on more common test function arguments: cf. the intrinsic proof (i.e. which
does not use the biLipschitz embedding ξ) in [Spa10] or the usual Caccioppoli’s
inequality for quasi minima [Giu03, Theorem 6.5].

6.2 Improved excess estimate. The higher integrability of the Dir-minimizing
functions and the harmonic approximation lead to the following estimate, which we
call “weak” since we will improve it in Theorem 7.1.

Proposition 6.4. (Weak excess estimate). For every η10 > 0, there exists ε13 >
0 with the following property. Let T be area minimizing and assume it satisfies
Assumption 2.1 in C4s(x). If E = E(T,C4s(x)) ≤ ε13, then

eT (A) ≤ η10E s
m + CA2 sm+2, (6.4)

for every A ⊂ Bs(x) Borel with |A| ≤ ε13|Bs(x)|.

Proof. Without loss of generality, we can assume s = 1 and x = 0. We distinguish
the two regimes: E ≤ A2 and A2 ≤ E. In the former, clearly eT (A) ≤ C E ≤ CA2.
In the latter, we let f be the E

1
4m -Lipschitz approximation of T in C3 and, arguing

as for the proof of Theorem 5.2, we find a radius r ∈ (1, 2) and a current R such
that

∂R = 〈T −Gf , ϕ, r〉 and M(R) ≤ CE(1− 1
2m

) m

m−1 .
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Therefore, by the Taylor expansion in Remark 5.4, we have:

‖T‖(Cr)≤M(Gf Cr +R)≤‖Gf‖(Cr)+C E
2m−1
2m−2≤Q |Br|+

∫
Br

|Df |2
2

+ C E1+γ ,

(6.5)

where γ = 1
2m . On the other hand, using again the Taylor expansion for the part of

the current which coincides with the graph of f , we deduce as well that

‖T‖((Br ∩K)× R
n) ≥ Q |Br ∩K|+

∫
Br∩K

|Df |2
2
− C E1+γ . (6.6)

Subtracting (6.6) from (6.5), we deduce

eT (Br \K) ≤
∫
Br\K

|Df |2
2

+ CE1+γ . (6.7)

If ε13 is chosen small enough, we infer from (6.7) and (5.1) in Theorem 5.2 that

eT (Br \K) ≤ η E + CE1+γ , (6.8)

for a suitable η > 0 to be chosen. Let now A ⊂ B1 be such that |A| ≤ ε13 ωm.
Combining (6.8) with the Taylor expansion, we have

eT (A) ≤ eT (A \K) +
∫
A

|Df |2
2

+ C E1+γ ≤
∫
A

|Df |2
2

+ η E + CE1+γ . (6.9)

If ε13 is small enough, we can again apply Theorem 5.2. Using the coordinates of
Remark 2.5, there is a Dir-minimizing u such that |Df | is close in L2 (with an error
ηE) to |Dw| with w = (u,Ψ(x, u)) and by Remark 5.5 Dir(u) ≤ CE. On the other
hand |Dw(x)| ≤ (1+ ‖DΨ‖0)|Du|+ ‖DΨ‖0. Since ‖DΨ‖0 ≤ CE1/2, by Theorem 6.1
‖|Dw|‖Lp10(B1) ≤ CE1/2. Therefore,

eT (A)
(4.2)

≤
∫
A
|Dw|2 + 3 η E + CE1+γ ≤ C

(
|A|1−2/p10 + η

)
E + CE1+γ . (6.10)

Hence, if ε13 and η are suitably chosen, (6.4) follows from (6.10). ��

6.3 Proof of Theorem 2.3. We assume without loss of generality that E > 0
and divide the proof into two steps.

Step 1. There exist constants γ ≥ 2m and � > 0 such that, for every c ∈
[1, (γ E)−1] and s ∈ [2, 4] with s̄ = s+ 4 c−1/m ≤ 4, we have

∫
{γ cE≤d≤1}∩Bs

d ≤ γ−�
∫
{

c E

γ
≤d≤1

}
∩Bs̄

d + C c−2/m A2. (6.11)
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In order to prove it, let NB be the constant in Besicovich’s covering theorem
[EG92, Section 1.5.2] and choose N ∈ N so large that NB < 2N−1. Let ε13 be as in
Proposition 6.4 when we choose η10 = 2−2m−N , and set

γ = max{2m, ε−1
13 } and � = min

{
− logγ(NB/2N−1),

1
2m

}
.

Let c and s be any real numbers as above. For almost every x ∈ {γ cE ≤ d ≤ 1}∩Bs,
there exists rx such that

E(T,C4rx
(x)) ≤ cE and E(T,Ct(x)) ≥ cE ∀t ∈]0, 4 rx[. (6.12)

Indeed, since d(x) = limr→0E(T,Cr(x)) ≥ γ cE ≥ 2mcE and

E(T,Ct(x)) =
eT (Bt(x))
ωm tm

≤ 4mE
tm

≤ cE for t ≥ 4
m
√
c
,

we just choose 4rx = min{t ≤ 4/ m
√
c : E(T,Ct(x)) ≤ cE}. Note also that rx ≤

1/ m
√
c. Consider the current T in C4rx

(x). Setting A = {γ cE ≤ d} ∩ B4rx
(x), we

have that

E(T,C4rx
(x)) ≤ cE ≤ E

γ E
≤ ε13 and |A| ≤ cE |B4rx

(x)|
γ cE

≤ ε13|B4rx
(x)|.

Hence, we can apply Proposition 6.4 to T C4rx
(x) to get∫

Brx(x)∩{γ cE≤d≤1}
d ≤

∫
A

d ≤ eT (A) ≤ 2−2m−N eT (B4rx
(x)) + C rm+2

x A2

≤ 2−2m−N (4 rx)m ωmE(T,C4rx
(x)) + C rm+2

x A2

(5.12)

≤ 2−N eT (Brx
(x)) + C rm+2

x A2. (6.13)

Thus,

eT (Brx
(x)) =

∫
Brx(x)∩{d>1}

d +
∫
Brx(x)∩

{
c E

γ
≤d≤1

} d +
∫
Brx(x)∩

{
d< c E

γ

} d

≤
∫
A

d +
∫
Brx (x)∩

{
c E

γ
≤d≤1

} d +
cE

γ
ωm r

m
x

(5.12),(5.13)

≤ (
2−N + γ−1

)
eT (Brx

(x))+C rm+2
x A2+

∫
Brx (x)∩

{
c E

γ
≤d≤1

} d.

(6.14)

Therefore, recalling that γ ≥ 2m ≥ 4, from (6.13) and (6.14) we infer:∫
Brx(x)∩{γ cE≤d≤1}

d ≤ 2−N

1− 2−N − γ−1

∫
Brx(x)∩

{
c E

γ
≤d≤1

}d + C rm+2
x A2

≤ 2−N+1

∫
Brx(x)∩

{
c E

γ
≤d≤1

}d + C rm+2
x A2.
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By Besicovich’s covering theorem, we choose NB families of disjoint balls Brx
(x)

whose union covers {γ cE ≤ d ≤ 1} ∩ Bs and, since as already noticed rx ≤ 1/ m
√
c

for every x, we conclude:
∫

{γ cE≤d≤1}∩Bs

d ≤ NB 2−N+1

∫
{

c E

γ
≤d≤1

}
∩Bs+ 2

m√c

d + C c−
2
m A2,

which, for the above defined �, implies (6.11).
Step 2. We iterate (6.11) in order to conclude (2.3). Denote by L the largest

integer smaller than 2−1
(
(logγ E−1)− 1

)
, sL = 2 and recursively sk = sk+1 +2 γ− 2k

m

for k ∈ {L− 1, . . . , 1}. Notice that, since γ ≥ 2m, sk < 4 for every k. Thus, we can
apply (6.11) with c = γ2k, s = sk and s̄ = sk−1 to conclude
∫

{γ2k+1 E≤d≤1}∩Bsk

d ≤ γ−�
∫

{γ2k−1 E≤d≤1}∩Bsk−1

d + C γ− 4 k

m A2 ∀ k ∈ {2, . . . , L}.

In particular, iterating this estimate we get

∫
{γ2 k+1 E≤d≤1}∩B2

d ≤ γ−(k−1) �

∫
{γ E≤d≤1}∩Bs1

d + CA2
k−2∑
�=0

γ−( 4 (k−�)
m

+� �). (6.15)

Set A0 = {d < γ E}, Ak = {γ2k−1E ≤ d < γ2k+1E} for k = 1, . . . , L, and
AL+1 = {γ2L+1E ≤ d ≤ 1}. Since ∪Ak = {d ≤ 1}, for p1 < 1 + �

2 ≤ 1 + 1
m , we

conclude:
∫
B2∩{d≤1}

dp1 =
L+1∑
k=0

∫
Ak∩B2

dp1 ≤
∑
k

γ(2 k+1) (p1−1)Ep1−1

∫
Ak∩B2

d

(5.15)

≤ C
∑
k

γk (2 (p1−1)−�)Ep1 +C
∑
k

k−2∑
�=0

γk(2 (p1−1)− 4
m

)+� ( 4
m

−�)Ep1−1 A2

≤ CEp1 + C
∑
k

γk(2(p1−1)−�)Ep1−1 A2. ��

7 Almgren’s approximation theorem

In this section we show how Theorem 2.3 gives a simple proof of the approximation
result in Theorem 2.4. The key point is the following theorem.

Theorem 7.1. (Almgren’s strong excess estimate). There are constants ε11, γ11, C >
0 (depending on m,n, n̄,Q) with the following property. Assume T satisfies Assump-
tion 2.1 in C4 and is area minimizing. If E = E(T,C4) < ε11, then

eT (A) ≤ C (Eγ11 + |A|γ11
) (
E + A2

)
for every Borel A ⊂ B 9

8
. (7.1)
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This estimate complements (2.3) enabling to control the excess in the region
where d > 1. We call it strong Almgren’s estimate because a similar formula can
be found in the big regularity paper (cf. [Alm00, Sections 3.24–3.26 & 3.30(8)])
and is a strengthened version of Proposition 6.4. To achieve (7.1) we construct a
suitable competitor to estimate the size of the set K where the graph of the Eβ-
Lipschitz approximation f differs from T . Following Almgren, we embed AQ in a
large Euclidean space, via a biLipschitz embedding ξ. We then regularize ξ ◦ f by
convolution and project it back onto Q = ξ(AQ). To avoid loss of energy we need a
rather special “almost projection” ρ�δ .

Proposition 7.2. For every n̄, Q ∈ N \ {0} there are geometric constants δ0, C >
0 with the following property. For every δ ∈]0, δ0[ there is ρ�δ : R

N(Q,n̄) → Q =
ξ(AQ(Rn̄)) such that |ρ�δ(P ) − P | ≤ C δ8

−n̄Q

for all P ∈ Q and, for every u ∈
W 1,2(Ω,RN ), the following holds:∫
|D(ρ�δ◦u)|2 ≤

(
1 + C δ8

−n̄Q−1
)∫

{dist(u,Q)≤δn̄Q+1}
|Du|2+C

∫
{dist(u,Q)>δn̄Q+1}

|Du|2.
(7.2)

The proof of Proposition 7.2 is postponed to the next section. Here we show
Theorem 7.1 and hence conclude the Theorems 2.4 and 2.6. Theorem 2.3 enters
crucially in the argument when estimating the second summand of (7.2) for the
regularization of ξ ◦ f .

7.1 Regularization by convolution. Here we construct the competitor.

Proposition 7.3. Let β1 ∈
(
0, 1

2m

)
and T be an area minimizing current satisfying

Assumption 2.1 in C4. Let f be its Eβ1-Lipschitz approximation. Then, there exist
constants ε̄12, γ12, C > 0 and a subset of radii B ⊂ [9/8, 2] with |B| > 1/2 with the
following properties. If E(T,C4) ≤ ε̄12, for every σ ∈ B, there exists a Q-valued
function g ∈ Lip(Bσ,AQ) such that

g|∂Bσ
= f |∂Bσ

, Lip(g) ≤ C Eβ1 , spt(g(x)) ⊂ Σ ∀x ∈ Bσ,
and ∫

Bσ

|Dg|2 ≤
∫
Bσ∩K

|Df |2 + C Eγ12
(
E + A2

)
. (7.3)

Proof. By Remark 2.5 we assume that Ψ(0) = 0, ‖DΨ‖0 ≤ C(E1/2 + A) and
‖D2Ψ‖0 ≤ CA. Since |Df |2 ≤ C dT ≤ CE2β1 ≤ 1 on K, by Theorem 2.3 there
is q1 = 2 p1 > 2 such that

‖|Df |‖2Lq1(K∩B2)
≤ C E1−1/p1(E + A2)1/p1 ≤ C(E + A2). (7.4)

Given two (vector-valued) functions h1 and h2 and two radii 0 < r̄ < r, we denote
by lin(h1, h2) the linear interpolation in Br \ B̄r̄ between h1|∂Br

and h2|∂Br̄
. More

precisely, if (θ, t) ∈ S
m−1 × [0,∞) are spherical coordinates, then

lin(h1, h2)(θ, t) =
r − t
r − r̄ h2(θ, t) +

t− s
r − r̄ h1(θ, t).
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Next, let δ > 0 and ε > 0 be two parameters and let 1 < r1 < r2 < r3 < 2 be three
radii, all to be chosen later. To keep the notation simple, we will write ρ� in place of
ρ�δ . Let ϕ ∈ C∞

c (B1) be a standard (nonnegative!) mollifier. We also use the notation
f(x) = (f1(x), f2(x)) ∈ AQ(Rn̄ × R

l) meaning that f(x) =
∑

i

�
(f i1(x), f

i
2(x))

�

with (f i1(x), f
i
2(x)) ∈ R

n̄ × R
l and the maps f1 and f2 are then given by fj(x) =∑

i

�
f ij(x)

�
. This does not create confusion in “ordering the sheets”: since the points

f i(x) belong to Σ we have indeed the relation f j2 (x) = Ψ(x, f j1 (x)). We moreover set
f ′ := ξ ◦ f1. Recall the map ρ of [LS11b, Theorem 2.1] and define:

g′ :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
E ρ ◦ lin

(
f ′√
E
,ρ�
(
f ′√
E

))
in Br3 \Br2 ,√

E ρ ◦ lin
(
ρ�
(
f ′√
E

)
,ρ�
(
f ′√
E
∗ ϕε
))

in Br2 \Br1 ,√
E ρ�

(
f ′√
E
∗ ϕε
)

in Br1 .

(7.5)

Finally set g1 := ξ−1 ◦ g′ and g :=
∑

i

�
(gi1,Ψ(x, gi1))

�
. We claim that, for σ := r3

in a suitable set B ⊂ [9/8, 2] with |B| > 1/2, we can choose r2 = r3 − s and
r1 = r2 − s so that g satisfies the conclusion of the proposition. Some computations
will be simplified taking into account that our choice of the parameters will imply
the following inequalities:

δ2·8−n̄Q ≤ s, ε ≤ s and E1−2β1 ≤ εm. (7.6)

We start noticing that clearly g|∂Br3
= f |∂Br3

. As for the Lipschitz constant, it
suffices to estimate the Lipschitz constant of g′. This can be easily done observing
that:
⎧⎪⎨
⎪⎩

Lip(g′) ≤ C Lip(f ′ ∗ ϕε) ≤ C Lip(f ′) ≤ C Eβ1 in Br1 ,

Lip(g′) ≤ C Lip(f ′) + C
‖f ′−f ′∗ϕε‖

L∞
s ≤ C(1 + ε

s) Lip(f ′) ≤ C Eβ1 in Br2 \Br1 ,
Lip(g′) ≤ C Lip(f ′) + C E1/2 δ8

−n̄Q

s ≤ C Eβ1 + C E1/2 ≤ C Eβ1 in Br3 \Br2 .

In the first inequality of the last line we have used that, sinceQ is a cone, E−1/2f ′(x) ∈
Q for every x: therefore |ρ�(f ′/E1/2)− f ′/E1/2| ≤ Cδ8−n̄Q

. We pass now to estimate
the Dirichlet energy of g.

Step 1. Energy in Br3 \Br2. By Section 2.5, the energy of the first component g1
coincides with the (classical!) Dirichlet energy of g′. By Proposition 7.2, |ρ�(P )−P | ≤
C δ8

−n̄Q

for all P ∈ Q. Thus, elementary estimates on the linear interpolation give
∫
Br3\Br2

|Dg′|2 ≤ C E

(r3 − r2)2
∫
Br3\Br2

∣∣∣ f ′√
E
− ρ�

(
f ′√
E

)∣∣∣2 + C

∫
Br3\Br2

|Df ′|2

+ C

∫
Br3\Br2

|D(ρ� ◦ f ′)|2 ≤ C
∫
Br3\Br2

|Df ′|2 + C E s−1 δ2·8−n̄Q

.

(7.7)
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As for g2, we compute Dgi2(x) = DxΨ(x, gi1(x)) +DuΨ(x, gi1(x))Dg
i
1(x) and so∫

Br3\Br2

|Dg2|2 ≤ C s (E + A2) , (7.8)

where we used the estimate ‖Dg2‖0 ≤ C ‖DΨ‖0 ≤ C(E1/2 + A).
Step 2. Energy in Br2 \Br1. Here, using the same interpolation inequality and a

standard estimate on convolutions of W 1,2 functions, we get∫
Br2\Br1

|Dg′|2 ≤ C
∫
Br2+ε\Br1−ε

|Df ′|2 +
C

(r2 − r1)2
∫
Br2\Br1

|f ′ − ϕε ∗ f ′|2

≤ C
∫
Br2+ε\Br1−ε

|Df ′|2 + C ε2s−2

∫
B3

|Df ′|2

≤ C
∫
Br2+ε\Br1−ε

|Df ′|2 + C ε2E s−2. (7.9)

Similarly, for the second component we have that∫
Br2+ε\Br1−ε

|Dg2|2 ≤ C (A2 + E) s. (7.10)

Step 3. Energy in Br1. Define Z :=
{

dist
(
f ′√
E
∗ ϕε,Q

)
> δn̄Q+1

}
and use (7.2)

to get∫
Br1

|Dg′|2 ≤
(
1 +C δ8

−n̄Q−1
)∫

Br1\Z

∣∣D (f ′ ∗ ϕε
)∣∣2 +C

∫
Z

∣∣D (f ′ ∗ ϕε
)∣∣2 =: I1 + I2.

(7.11)
We consider I1 and I2 separately. For I1 we first observe the elementary inequality

‖D(f ′ ∗ ϕε)‖2L2 ≤ ‖|Df ′| ∗ ϕε‖2L2 ≤ ‖(|Df ′|1K) ∗ ϕε‖2L2 + ‖(|Df ′|1Kc) ∗ ϕε‖2L2

+ 2‖(|Df ′|1K) ∗ ϕε‖L2‖(|Df ′|1Kc) ∗ ϕε‖L2 , (7.12)

where Kc is the complement of K in B3. Recalling r1 + ε ≤ r1 + s = r2 we estimate
the first summand in (7.12) as follows:

‖(|Df ′|1K) ∗ ϕε‖2L2(Br1) ≤
∫
Br1+ε

(|Df ′|1K
)2 ≤

∫
Br2∩K

|Df ′|2. (7.13)

To treat the other terms recall that Lip(f ′) ≤ C Eβ1 and |Kc| ≤ C E1−2β1 :

‖(|Df ′|1Kc)∗ϕε‖2L2(Br1) ≤ CE2β1‖1Kc ∗ϕε‖2L2 ≤ CE2β1 ‖1Kc‖2L1 ‖ϕε‖2L2 ≤ CE2−2β1

εm
.

(7.14)
Putting (7.13) and (7.14) in (7.12) and recalling E1−2β1 ≤ εm and

∫ |Df ′|2 ≤ CE,
we get

I1 ≤
∫
Br2∩K

|Df ′|2 + C δ8
−n̄Q−1

E + C ε−m/2E
3/2−β1 . (7.15)
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For what concerns I2, first we argue as for I1, splitting in K and Kc, to deduce that

I2 ≤ C
∫
Z

(
(|Df ′|1K) ∗ ϕε

)2 + C ε−m/2E
3/2−β1 . (7.16)

Then, regarding the first summand in (7.16), we note that

|Z| δ2n̄Q+2 ≤
∫
Br1

∣∣∣ f ′√
E
∗ ϕε − f ′√

E

∣∣∣2 ≤ C ε2. (7.17)

Since |Df ′| ≤ |Df | (and recalling that q1 = 2p1 > 2), we use (7.4) to obtain
∫
Z

(
(|Df ′|1K) ∗ ϕε

)2≤|Z| p1−1
p1 ‖(|Df ′|1K) ∗ ϕε‖2Lq1≤C

( ε

δn̄Q+1

) 2 (p1−1)
p1 ‖|Df ′|‖2Lq1(K)

≤ C
( ε

δn̄Q+1

) 2 (p1−1)
p1 (E + A2) . (7.18)

Gathering all the estimates together, (7.11), (7.15), (7.16) and (7.18) give
∫
Br1

|Dg′|2 ≤
∫
Br2∩K

|Df ′|2 +C

(
Eδ8

−n̄Q−1
+
E

3/2−β1

εm/2
+(E+A2)

( ε

δn̄Q+1

) 2 (p1−1)
p1

)
.

(7.19)
On the other hand, for what concerns g2 we can estimate as follows∫
Br1

|Dg2|2 =
∫
Br1

|Df2|2 +
∑
i

∫
Br1

(
Dgi2 −Df i2

) · (Dgi2 +Df i2
)

≤
∫
Br1∩K

|Df2|2 +
∫
Br1\K

|Df2|2 + C
(
A + E

1
2
)∑

i

∫
Br1

∣∣Dgi2 −Df i2∣∣ .
(7.20)

We already observed that |Df2| ≤ C(A+E1/2), leading to the estimate
∫
Kc |Df2|2 ≤

C(A2 + E)|Kc| ≤ C(A2 + E)E1−2β1 . As for the latter summand we compute
∣∣Dgi2 −Df i2∣∣ ≤ ∣∣DxΨ(x, gi1)−DxΨ(x, f i1)

∣∣
+
∣∣DuΨ(x, gi1(x))Dg

i
1

∣∣+ ∣∣DuΨ(x, f i1(x))Df
i
1

∣∣
≤ CAG(g1, f1) + C

(
A + E

1/2
)
Eβ1 .

We next estimate ‖G(g1, f1)‖∞ ≤ Cg′′ − f ′‖∞ and

‖g′ − f ′‖∞ ≤ C
√
E
(∥∥∥ρ∗

(
f ′√
E
∗ ϕε
)
− ρ∗

(
f ′√
E

)∥∥∥
∞

+
∥∥∥ρ∗
(
f ′√
E

)
− f ′√

E

∥∥∥
∞

)

≤C Lip(ρ∗) ‖f ′ ∗ ϕε − f ′‖L∞+C E1/2δ8
−n̄Q≤C Eβ1 ε+C E1/2δ8

−n̄Q≤CEβ1 .

We therefore conclude∫
Br1

|Dg2|2 ≤
∫
Br1∩K

|Df2|2 + C(A2 + E)Eβ1 . (7.21)
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Final estimate. Since |Dg|2 = |Dg′|2 + |Dg2|2, summing (7.7), (7.8), (7.9), (7.10),
(7.19) and (7.21) (and recalling ε < s), we conclude
∫
Br3

|Dg|2 ≤
∫
Br1∩K

|Df |2 + C

∫
Br1+3s\Br1−s

|Df ′|2 + C(A + E2)(s+ Eβ1)

+ C E

(
δ8

−n̄Q−1
+
ε2

s2
+
δ2·8−n̄Q

s
+
E

1/2−β1

εm/2
+
(
1+A2E−1

) ( ε

δn̄Q+1

) 2 (p1−1)
p1

)
.

We set ε = Ea, δ = Eb and s = Ec, where

a =
1− 2β1

2m
, b =

1− 2β1

4m (n̄ Q+ 1)
and c =

1− 2β1

8n̄Q 4m (n̄ Q+ 1)
.

This choice respects (7.6). Assume E is small enough so that s ≤ 1
16 . Now, if C > 0

is a sufficiently large constant, there is a set B′ ⊂ [9/8, 29
16 ] with |B′| > 1/2 such that,

∫
Br1+3s\Br1−s

|Df ′|2 ≤ C s
∫
B2

|Df ′|2 ≤ C E1+c for every r1 ∈ B′.

Indeed by integrating in polar coordinates and by Fubini’s theorem we have that
∫ 29

16

9
8

dr

∫
Br+3s\Br−s

|Df ′|2 =
∫ 29

16

9
8

dr

∫ r+3s

r−s
dt

∫
∂Bt

|Df ′|2dHn−1

≤ 4 s
∫ 2

9
8
−s
dt

∫
∂Bt

|Df ′|2dHn−1 ≤ 4 s
∫
B2

|Df ′|2,

from which the conclusion follows for C big enough:
∣∣∣∣∣
{
r ∈
[
9
8
,
29
16

]
:
∫
Br+3s\Br−s

|Df ′|2 ≥ C s
∫
B2

|Df ′|2
}∣∣∣∣∣

≤ 1
C s
∫
B2
|Df ′|2

∫ 29
16

9
8

dr

∫
Br+3s\Br−s

|Df ′|2 ≤ 4
C
<

1
8
.

For σ = r3 ∈ B = 2s+B′ we then conclude, for some γ(β1, n̄, n,m,Q) > 0,
∫
Bσ

|Dg|2 ≤
∫
Bσ∩K

|Df |2 + CEγ(E + A2). ��

7.2 Proof of Theorem 7.1. Choose β1 = 1
4m and consider the set B ⊂ [9/8, 2]

given in Proposition 7.3. Using the coarea formula and the isoperimetric inequality
(the argument and the map ϕ are the same in the proof of Theorem 5.2 and that of
Proposition 6.4), we find s ∈ B and an integer rectifiable current R such that

∂R = 〈T −Gf , ϕ, s〉 and M(R) ≤ CE 2m−1
2m−2 .
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Since g|∂Bs
= f |∂Bs

and g takes values in Σ, we can use g in place of f in the
estimates and, arguing as before (see e.g. the proof of Theorem 6.4), we get, for a
suitable γ > 0:

‖T‖(Cs) ≤ Q |Bs|+
∫
Bs

|Dg|2
2

+CE1+γ
(6.3)

≤ Q |Bs|+
∫
Bs∩K

|Df |2
2

+CEγ(E+A2).

(7.22)
On the other hand, by Taylor’s expansion in Remark 5.4,

‖T‖(Cs) = ‖T‖((Bs \K)× R
n) + ‖Gf‖((Bs ∩K)× R

n)

≥ ‖T‖((Bs \K)× R
n) +Q |K ∩Bs|+

∫
K∩Bs

|Df |2
2
− C E1+γ . (7.23)

Hence, from (7.22) and (7.23), we get eT (Bs \K) ≤ C Eγ (E + A2).
This is enough to conclude the proof. Indeed, let A ⊂ B9/8 be a Borel set. Using

the higher integrability of |Df | in K (see (7.4)) and possibly selecting a smaller
γ > 0, we get

eT (A) ≤ eT (A ∩K) + eT (A \K) ≤
∫
A∩K

|Df |2
2

+ C Eγ
(
E + A2

)

≤ C |A ∩K|
p1−1

p1

(∫
A∩K

|Df |q1
)2/q1

+ C Eγ
(
E + A2

)

≤ C |A|
p1−1

p1

(
E + A2

)
+ C Eγ

(
E + A2

)
. ��

7.3 Proofs of Theorems 2.4 and 2.6. As usual we assume, w.l.o.g., r = 1 and
x = 0. Choose β11 < min{ 1

2m ,
γ11

2(1+γ11)
}, where γ11 is the constant in Theorem 7.1.

Let f be the Eβ11-Lipschitz approximation of T . Clearly (2.4) follows directly from
Proposition 3.2 if γ1 < β11. Set next A :=

{
meT > 2−mE2β11

}∩B9/8. By Proposition
3.2, |A| ≤ CE1−2β11 . If ε1 is sufficiently small, apply (3.1) and estimate (7.1) to A
to conclude:

|B1 \K| ≤ C E−2β11 eT (A) ≤ C Eγ11−2β11(1+γ11)(E + A2).

By our choice of γ11 and β11, this gives (2.5) for some positive γ1. Finally, set
S = Gf . Recalling the strong Almgren estimate (7.1) and the Taylor expansion in
Remark 5.4, we conclude: for every 0 < σ ≤ 1

∣∣∣∣‖T‖(Cσ)−Qσm ωm −
∫
Bσ

|Df |2
2

∣∣∣∣ ≤ eT (Bσ \K)+

eS(Bσ \K) +
∣∣∣∣eS(Bσ)−

∫
Bσ

|Df |2
2

∣∣∣∣
≤ C Eγ11(E + A2) + C |Bσ \K|+ C Lip(f)2

∫
Bσ

|Df |2 ≤ C Eγ1(E + A2).
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The L∞ bound follows from Proposition 3.2 recalling that, by Remark 2.5, we can
assume ‖DΨ‖0 ≤ C(E1/2+A). Finally, Theorem 2.6 is a special case of Theorem 5.2,
since the map f in Theorem 2.4 is the Eγ1-Lipschitz approximation of T . ��

8 The “almost” projections ρ�
δ

In this section we show the existence of the maps ρ�δ in Proposition 7.2. Compared to
the original ones introduced by Almgren, our ρ�δ ’s have the advantage of depending
on a single parameter. Our proof is different from Almgren’s and gives more explicit
estimates, relying heavily on the following simple corollary of Kirszbraun’s theorem.

Lemma 8.1. Let f : Ω ⊂ R
N1 → C ⊂ R

N2 be a Lipschitz function and assume that
C is closed and convex. Then, there is an extension f̂ of f to the whole R

N1 which
preserves the Lipschitz constant and takes values in C.

To prove Lemma 8.1 it suffices to take the map f̃ of the classical statement of
Kirszbraun’s theorem (see [Fed69, Theorem 2.10.43]) which takes values in R

N2 and
compose it with the orthogonal projection πC onto the convex closed set C, which
is a 1-Lipschitz map in R

N2 .

Proof (of Proposition 7.2). The proof consists of four parts: the first one is a de-
tailed description of the set Q, whereas the remaining three give a rather explicit
construction in this order:

(1) first we specify ρ�δ on Q: the resulting map will be called ρ�;
(2) then we extend it to a map ρ� on QδnQ+1 , the δnQ+1-neighborhood of Q; ρ�

will satisfy Lip(ρ�) ≤ 1 +Cδ8
−n̄Q−1

and |ρ�(P )−P | ≤ Cδ8−n̄Q

for every p ∈ Q;
(3) we then extend it to all R

N keeping its Lipschitz constant bounded.

(3) follows easily from (2): we consider ξ−1 ◦ ρ� : Qδn̄Q+1 → AQ and a Lipschitz
extension h : R

N → AQ of it with Lip(h) ≤ C, using [LS11b, Theorem 1.7]. Our
map is then ρ�δ := ξ ◦ h. Then (7.2) is an easy consequence of (2), (3) and the chain
rule.

The description of Q and the proofs of (1) and (2) are given in the next subsec-
tions.

From now on we use n instead of n̄ to simplify the notation.

8.1 Conical simplicial structure of Q. We first prove that Q is the union of
families {Fi}nQi=0 of sets, the “i-dimensional faces” of Q, with the following properties:

(p1) Q = ∪i ∪F∈Fi
F ;

(p2) F := ∪iFi is a collection of finitely many disjoint sets;
(p3) each face F ∈ Fi is a convex open i-dimensional cone, where open means that

for every x ∈ F there exists an i-dimensional disk D with x ∈ D ⊂ F ;
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(p4) for each F ∈ Fi, F̄ \ F is the union of some elements of ∪j<iFj .
(p5) for each i < k ≤ nQ and for each F ∈ Fi, there exists G ∈ Fk such that F ⊂ Ḡ.

Remark 8.2. With a small abuse of notation ∂F will denote F \ F for any F ∈ F .

So, F0 = {0}; F1 consists of finitely many half-lines meeting at 0, i.e. of sets
of type lv = {λ v : λ ∈]0,+∞[} for v ∈ S

N−1; F2 consists of finitely many two-
dimensional “infinite triangles” delimited by pairs of half lines lv1 , lv2 ∈ F1 and by
{0}; and so on. To prove this statement, first of all we recall the construction of ξ (see
[LS11b, 2.1.2]). After selecting a suitable finite collection of non zero vectors {ek}hk=1

(in general h > n), we define the linear map L : R
nQ → R

N with N := hQ > nQ
given by

L(P1, . . . , PQ) :=
(
P1 · e1, . . . , PQ · e1︸ ︷︷ ︸

w1

, P1 · e2, . . . , PQ · e2︸ ︷︷ ︸
w2

, . . . , P1 · eh, . . . , PQ · eh︸ ︷︷ ︸
wh

)
.

Then, we consider the map O : R
N → R

N which maps (w1 . . . , wh) into the vector
(v1, . . . , vh) where each vi is obtained from wi ordering its components in increasing
order. Note that the composition O ◦ L : (Rn)Q → R

N is now invariant under the
action of the symmetric group PQ. Therefore, ξ is simply the induced map on
AQ = (Rn)Q/PQ and Q = ξ(AQ) = O(V ) where V := L(RnQ). Moreover, since
the vectors ei’s span R

n (cf. [LS11b, 2.1.2]), the map L is injective and thus V is an
nQ-dimensional subspace.

Consider the following equivalence relation ∼ on V :

(w1, . . . , wh) ∼ (z1, . . . , zh) if

{
wij = wik ⇔ zij = zik
wij > wik ⇔ zij > zik

∀ i, j, k , (8.1)

where wi = (wi1, . . . , w
i
Q) and zi = (zi1, . . . , z

i
Q): if w ∼ z, then O rearranges their

components with the same permutation. We let E denote the set of corresponding
equivalence classes in V and C := {L−1(E) : E ∈ E}. The following fact is an
obvious consequence of definition (8.1):

L(P ) ∼ L(S) if and only if L(Pπ(1), . . . , Pπ(Q)) ∼ L(Sπ(1), . . . , Sπ(Q)) ∀ π ∈PQ .

Thus, π(C) ∈ C for every C ∈ C and every π ∈ PQ. Since ξ is injective and is
induced by O ◦ L, it follows that, for every pair E1, E2 ∈ E , either O(E1) = O(E2)
or O(E1)∩O(E2) = ∅. Therefore, the family F := {O(E) : E ∈ E} is a partition of
Q.

Clearly, each E ∈ E is a convex cone. Let i be its dimension and D any i-
dimensional disk D ⊂ E. Denote by x the center of D and let y be any other point
of E. Then, by (8.1), the point z = y−ε(x−y) = (1+ε) y−ε x belongs as well to E
for any ε > 0 sufficiently small. The convex envelope of D ∪ {z}, which is contained
in E, contains in turn an i-dimensional disk centered in y: therefore E is an open
convex cone. Since O|E is a linear injective map, F = O(E) is an open convex cone
of dimension i. Therefore, F satisfies (p1)–(p3).

Next notice that, having fixed w ∈ E, a point z belongs to Ē \ E if and only if
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(1) wij ≥ wik implies zij ≥ zik for every i, j and k;
(2) there exists r, s and t such that wrs > wrt and zrs = zrt .

Thus, if d is the dimension of E, ∂E := E \ E (cf. Remark 8.2) is the union of
some elements of ∪j<dEj , where with Ej we denote the j-dimensional elements of E .
Observe that, since O is continuous, we must have F ⊃ O(E). On the other hand, if
x ∈ F and xk → x is a sequence contained in F , then there is a sequence {yk} ⊂ E
with O(yk) = xk. By the definition of O the sequence {yk} is bounded and hence,
up to subsequence, we can assume that it converges to y ∈ F : thus O(y) = x and
O(E) = F . On the other hand, for equivalence classes E1, E2 of different dimension
we necessarily have O(E1)∩O(E2) = ∅. Thus O(∂E)∩O(E) = ∅, i.e. ∂F = O(∂E),
which shows (p4).

For what concerns (p5) we show first that if L(P ) = z ∈ E ∈ E is such that zij �=
zik for all i and for all j �= k, then O(E) ∈ FnQ. Indeed, if t < 1/4 mini,j �=k |zij − zik|,
then L(P + v) ∈ E for every v ∈ Bt(0) ⊂ R

nQ, i.e. E is an (nQ)-dimensional convex
cone. Therefore it follows that for every F ∈ Fi with i < nQ there exists G ∈ FnQ
such that F ⊂ Ḡ. To show this claim it is enough to prove that, if F = O(E)
and L(P ) = z ∈ E, then z is the limit of points w ∈ V such that wij �= wik for
all i, j, k, which can be easily proved by a simple perturbation argument. Next, we
argue inductively on k: knowing that F ∈ Fi is contained in G for some G ∈ Fk
with k > i + 1, we show that there is H ∈ Fk−1 such that F ⊂ H. Observe indeed
that F ⊂ ∂G = G \ G and that, for dimensional reasons, G \ G must be contained
in the closure of those H ∈ Fk−1 such that H ⊂ G. Let H ∈ Fk−1 be such that
F ∩H �= ∅. Consider E,K ∈ E such that F = O(E) and H = O(K). Let x ∈ E such
that O(x) ∈ F ∩H and z ∈ K. We then must have that xik ≥ xij whenever zik > zij
and that xik = xij whenever zik = zij . By the very definition of ∼, the same property
holds even if we replace x with another element ξ ∈ E. Therefore the open segment
]ξ, z[ must be contained in K, which in turn implies that ξ ∈ K. Thus we conclude
F ⊂ H.

8.2 Construction of ρ�. The main building block in the construction of ρ� is
given by the following lemma.

Lemma 8.3. For τ ∈]0, 1
4 [ and any D ∈ N \ {0} consider the map Φτ : R

D → R
D

defined by:

Φτ (x) =

⎧⎪⎨
⎪⎩

0 if |x| ≤ τ√
τ |x|−τ√

τ−τ
x
|x| if τ ≤ |x| ≤ √τ

x if |x| ≥ √τ .
Then |Φτ (x)− x| ≤ τ and Lip(Φτ ) ≤ 1 + 2

√
τ .

Proof. The proofs of the two claims are straightforward computations. First Φτ (x) =
x if |x| ≥ √τ and |Φτ (x)− x| = |x| ≤ τ if |x| ≤ τ . For τ ≤ |x| ≤ √τ we compute

|Φτ (x)− x| =
∣∣∣√τ (|x|−τ)√

τ−τ − |x|
∣∣∣ = τ

√
τ−|x|√
τ−τ ≤ τ.
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Next we show that |DΦτ (x) · v| ≤ (1+2
√
τ)|v| at any point of differentiability. This

inequality obviously imply the claimed Lipschitz constant estimate because Φτ is
Lipschitz and its domain of definition is a convex set. The inequality is, moreover,
obvious when |x| < τ and |x| > √τ . For τ < |x| < √τ , we can compute

DΦτ (x) =
1− τ

|x|
1−√τ Id +

τ
|x|

1−√τ
x

|x| ⊗
x

|x| .

The matrix is symmetric with positive eigenvalues (because |x| > τ) and the maximal
eigenvalue is (1−√τ)−1 ≤ 1 + 2

√
τ , thereby proving our claim.

8.2.1 Special coordinates, conical sections and separation. Let Sk be the k-
dimensional skeleton of Q, i.e. the union of F ∈ Fk and denote by (Sk)σ its σ-
neighborhood {x : dist(x, Sk) < σ}. Incidentally, (Sk)σ contains (Si)σ for every
i < k.

Definition 8.4. (Coordinates and conical sections). Fix any face F ∈ Fk and in-
troduce Cartesian coordinates (y, z) ∈ R

k ×R
N−k in such a way that F ⊂ R

k ×{0}.
For a positive constant c̃ consider the cone C (F ) := {(y, z) ∈ Q : (y, 0) ∈ F, |z| ≤
c̃dist((y, 0), Sk−1)}. For any p = (y, 0) ∈ F we set Vp := ({y} × R

N−k) ∩ C (F ).

Note that, if c̃ is sufficiently small, we will have the following property

C (F ) ∩ C (G) �= ∅ =⇒ either F ⊂ G or G ⊂ F .

For every constants a, b > 0, k = 1 . . . , nQ− 1 and F ∈ Fk, we fix coordinates as in
Definition 8.4 and denote by Fa,b the sets

Fa,b :=
{
(y, z) : |z| ≤ a, (y, 0) ∈ F \ (Sk−1)b}.

For the faces F ∈ FnQ of maximal dimension and for every a > 0, F�,a denotes the
set F�,a := F \ (SnQ−1)a. The following lemma is an obvious corollary of the linear
simplicial and conical structures of Q.

Lemma 8.5. There is a constant c̄ > 0 (independent of a, b below) with the following
property. Assume F and G are two distinct k dimensional faces.

• If k = nQ, a > 0, x ∈ F�,a and x′ ∈ G�,a, then |x− x′| ≥ c̄a;
• If k < nQ, b/a > c̄−1, x ∈ Fa,b and x′ ∈ Ga,b, then |x− x′| ≥ c̄b.

Moreover, if F ∈ Fk, H ∈ Fi with i > k and F �⊂ ∂H (cf. Remark 8.2), then
|x− x′| ≥ c̄a for every x ∈ H and x′ ∈ F \ (Sk−1)a.
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8.2.2 The domains Dom(fk). Next we choose constants ck := δ8
−nQ+k

. If δ is
small enough, each family {F2

√
ck,c2k−1

}F∈Fk
with k < nQ is made by pairwise disjoint

sets, which are at least c̄c2k−1 far apart, where c̄ is the constant of Lemma 8.5, and
it holds F2

√
ck,c2k−1

⊂ C (F ) ⊂ Q. We are ready to define the map ρ� := ρ�|Q
inductively “from the top to the bottom”. More precisely we will define a family
of maps {fk}k∈{0,...,nQ} on domains Dom(fk) ⊂ Q starting from fnQ and ending
with f0 = ρ�. We first explicitly define Dom(fk) := Q \ (Sk−1)ck−1 for k > 0 and
Dom(f0) = Q, and in order to simplify our notation we then agree that c−1 = δ8

−nQ−1

and S−1 = (S−1)c−1 = ∅. Note that Dom(fk+1) �⊂ Dom(fk). It is obvious that

Dom(fk) =

(
Dom(fk+1) ∪

⋃
F∈Fk

F2
√
ck,c2k−1

)
\ (Sk−1)ck−1 . (8.2)

Indeed, if x ∈ Dom(fk) \ Dom(fk+1) we then must have dist(x, Sk) < ck and
dist(x, Sk−1) ≥ ck−1. Let q ∈ Sk be such that |x − q| < ck. Since dist(x, Sk−1) ≥
ck−1 > ck, the point q must necessarily belong to a k-dimensional face F . Fix coor-
dinates as in Definition 8.4. If x = (y, z), we then obviously have |z| < ck ≤ 2

√
ck.

On the other hand dist((y, 0), Sk−1) ≥ dist(x, Sk−1) − |z| ≥ ck−1 − ck > c2k−1. This
shows that x ∈ F2

√
ck,c2k−1

.

8.2.3 The maps fk. On Dom(fnQ) we define fnQ = Id and specify next the
procedure to define fk knowing fk+1. Along the procedure we claim inductively the
following.

Assumption 8.6. (Inductive step). The map fk+1 has the following three proper-
ties.

(ak+1) Lip(fk+1) ≤ 1 + Cc
1/2
k+1 and |fk+1(x)− x| ≤ C ck+1.

(bk+1) Consider i ≤ k+ 1, an i-dimensional face F , the cone C (F ) in Definition 8.4
and the corresponding coordinates. Then, fk+1 factorizes on Dom(fk+1) ∩
C (F ) as

fk+1(y, z) =
(
y, hFk+1(y, z)

) ∈ R
i × R

N−i. (8.3)

(ck+1) For every G ∈ Fi with i ≥ k+1, fk+1 maps Dom(fk+1)∩{x : dist(x,G) < δ}
into G. Moreover the restriction of fk+1 to Gci,ck

is the orthogonal projection
onto G.

The constants involved depend on k but not on the parameter δ and since the
process is iterated finitely many times, we will not keep track of such dependence.
Note that fnQ satisfies (anQ), (bnQ) and (cnQ) trivially, because it is the iden-
tity map. Given fk+1 we next show how to construct fk. For every p ∈ G ∈ Fk
with p /∈ (Sk−1)c2k−1

, set coordinates as in Definition 8.4 and consider the cone
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Wp := {(y, z) ∈ Vp : |z| ≤ 2
√
ck}. Let now Φτ be the map of Lemma 8.3 with

τ = 2ck. The function fk is defined in Wp by

fk(x) = fk(y, z) := (y, hFk (y, z)) :=

{
(y, 0) for |z| ≤ τ/2 = ck,(
y,Φτ (hFk+1(y, z))

)
otherwise.

(8.4)
If q ∈ Dom(fk) does not belong to any Wp as above, then we set fk+1(q) = fk(q).

Observe that the definition above gives values to fk on a set which is larger than
Dom(fk): this will be useful to carry on some of the estimates, but we insist that
Assumption 8.6 will only be checked on Dom(fk).

8.2.4 Well-definition and continuity. Consider a point q ∈ Dom(fk). If q is not
contained in F2

√
ck,c2k−1

for some k-dimensional face, then by (8.2) it is contained in
the domain of fk+1 and thus fk(q) is defined. If q is contained in F2

√
ck,c2k−1

for some
k-dimensional face, then q belongs to some Wp as above. Let q = (y, z). If |z| ≤ ck,
then fk(q) is defined; otherwise, since dist(q, Sk) ≥ ck, we infer that q ∈ Dom(fk+1)
and fk(q) is also defined.

As for the continuity, fix (y, z) ∈ Wp ∩ Dom(fk) with p = (y, 0) ∈ F ∈ Fk. If
|z| = ck, then by (ak+1) we have |hFk+1(y, z)| ≤ |z| + Cck+1 ≤ τ/2 + Cτ8. For δ
sufficiently small this obviously implies |hFk+1(y, z)| ≤ τ and thus, by the definition
of Φτ , Φτ (hFk+1(y, z)) = 0. On the other hand, if |z| = 2

√
ck, then |hFk+1(y, z)| ≥

|z| − Cck+1 = 2
√
ck − Cc8k ≥

√
2ck and thus Φτ (hFk+1(y, z)) = hFk+1(y, z). Therefore

under this assumption we have fk+1(q) = fk(q).
We next check that fk maps Dom(fk) into Q. This is true by induction where fk

coincides with fk+1. Fix therefore a point q in some Wp ∩Dom(fk) with p ∈ F ∈ Fk
and let G be the i-dimensional face containing q with i > k. Then, fk+1(q) belongs to
a face G, by Assumption 8.6. By the estimate in (ak+1) and the assumption (bk+1),
the face G must intersect C (F ) and thus F ⊂ Ḡ. Observe that, by the properties of
Φτ and by the inductive assumption (bk+1), fk(q) is mapped in the segment joining
fk+1(q) and q and thus must belong to G.

8.2.5 The inductive conclusions (ck) and (bk). The first claim of (ck) is simple to
prove: as noticed, if a point q ∈ Dom(fk) belongs also to Dom(fk+1), then fk maps it
into the closure of the face containing q. If the point is not contained in Dom(fk+1),
then it must be contained in the ck-neighborhood of some k-dimensional face F and
hence it is mapped into F : when this happens F is a portion of the boundary of the
face containing q. Next, fix a face G ∈ Fi. If i = k, by the very definition of fk, we
have that the restriction of fk to Dom(fk)∩Gck,ck−1 is the orthogonal projection onto
G. If i > k, we actually have that fk = fk+1 on Dom(fk)\ (Sk)2√

ck
⊃ Q\ (Si−1)ck−1 .

Fix now an i-dimensional face L with i ≤ k, consider coordinates R
i×R

n−i as in
Definition 8.4 and the corresponding C (L). If q = (y, 0) ∈ L, the condition (bk) is
equivalent to saying that Vq∩Dom(fk) gets mapped into {(y, 0)}×R

N−i. Fix a point



1876 C. DE LELLIS AND E. SPADARO GAFA

q̃ ∈ Vq. If fk+1(q̃) = fk(q̃) there is nothing to prove. Otherwise it turns out that there
is a k-dimensional face F such that q̃ ∈ C (F ). But then we necessarily have L ⊂ F̄ .
So, set coordinates R

i × R
k−i × R

n−k so that at the same time L ⊂ R
i × {0} × {0}

and F ⊂ R
i × R

k−i × {0}. Thus, (y, 0, 0) is the coordinate of q and (y, z, w) that
of q̃. According to our definition of fk, fk(q̃) = (y, z, w′) for some w′, which indeed
implies the desired claim.

8.2.6 C0 estimate. Observe that, for every x where fk coincides with fk+1, we
have |fk(x)−x| ≤ Cck+1 ≤ Cc8k. Instead, for any point x where fk is newly defined,
we distinguish the following two cases: either x = (y, z) with |z| ≤ ck, in which case
|fk(x) − x| ≤ ck; or x = (y, z) with |z| > ck, and then by the estimates of Lemma
8.3 and the triangle inequality we have

|fk(x)− x| ≤ |fk+1(x)− fk(x)|+ |fk+1(x)− x| ≤ Cck+1 + τ ≤ Cck+1 + 2ck.

8.2.7 Lipschitz estimate. We fix x, x′ ∈ Dom(fk) and, apart from the trivial one
fk(x) = fk+1(x) and fk(x′) = fk+1(x′), we distinguish three cases.

Case 1: x, x′ ∈ G2
√
ck,c2k−1

for some k-dimensional face G. Choosing coordinates
as in Definition 8.4, we set x = (y, z) and x′ = (y′, z′). If both |z|, |z′| ≤ τ

2 , then
|fk(x)− fk(x′)| = |y − y′| ≤ |x− x′|. If |z| ≥ τ

2 and |z′| ≥ τ
2 , then

|fk(x)− fk(x′)|2 ≤ |y − y′|2 + (1 + 2τ 1/2)2
∣∣hFk+1(y, z)− hFk+1(y

′, z′)
∣∣2

≤ (1 + 2τ 1/2)2
(
|y − y′|2 +

∣∣hFk+1(y, z)− hFk+1(y
′, z′)

∣∣2)

= (1+
√

2ck)2|fk+1(x)−fk+1(x′)|2≤(1+
√

2ck)2(1 + C
√
ck+1)2|x−x′|2.

If |z| ≤ τ
2 and |z′| > τ

2 , let z̃ be the point with |z̃| = τ
2 on the segment joining z

and z′, and x̃ = (y, z̃). Observe that fk(x̃) = fk(x) = (y, 0) and that |x̃ − x′|2 =
|y− y′|2 + |z′− z̃|2 ≤ |y− y′|2 + |z− z′|2 ≤ |x−x′|2. On the other hand we have just
shown |fk(x′)− fk(x̃)| ≤ (1 + Cc

1/2
k )|x′ − x̃|.

Case 2: x ∈ F2
√
ck,c2k−1

, x′ ∈ G2
√
ck,c2k−1

for distinct F,G ∈ Fk. By Lemma 8.5,

|x− x′| ≥ c̄ c2k−1 ≥ c̄c
1/4
k . On the other hand, we also have, by the C0 estimate,

|fk(x)− fk(x′)| ≤ |x− x′|+ Cck ≤
(
1 + Cc

3/4
k

)
|x− x′|.

Case 3: x ∈ G2
√
ck,c2k−1

for some k-dimensional face G and fk(x′) = fk+1(x′). With-
out loss of generality we assume

• G ∈ Fk;
• x′ �∈ G2

√
ck,c2k−1

;
• x′ ∈ H for some face H (of dimension i > k).

We have two possibilities.
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Case 3a: G �⊂ H. Consider the closed set G̃ := G \ (Sk−1)c2k−1
. By Lemma 8.5

dist(x′, G̃) ≥ c̄c2k−1 and thus |x − x′| ≥ c̄c2k−1 − 2
√
ck ≥ c̄

2c
2
k−1. We can therefore

argue as in Case 2.
Case 3b: G ⊂ H. We then have two possibilities. The first is that x ∈ Dom(fk+1).

Since fk(x′) = fk+1(x′), we have |fk(x′) − x′| ≤ Cck+1 = Cc8k. We use the co-
ordinates of Definition 8.4 and (ak+1) to conclude fk(x′) = fk+1(y′, z′) = (y′′, z′′)
with |z′′| ≥ |z′| − C c8k ≥ 2

√
ck − C c8k ≥

√
2ck. We can therefore write fk(x′) =

(y′′,Φτ (z′′)) [because Φτ (z′′) = z′′] and, hence, recalling fk(x) = (y,Φτ (hFk+1(y, z)))
and fk+1(x) = (y, hFk+1(y, z)),

∣∣fk(x′)− fk(x)
∣∣2 ≤ |y − y′′|2 + (1 + 2

√
τ)2
∣∣hFk+1(y, z)− z′′∣∣2

≤ (1 + 2
√
τ)2
∣∣fk+1(x)− fk+1(x′)

∣∣2 .
We therefore conclude |fk(x′)− fk(x)| ≤ (1 + Cτ

1/2)|x′ − x| ≤ (1 + Cc
1/2
k )|x′ − x|.

The second possibility is that x is not in the domain of definition of fk+1. In
that case x is at distance ck from G and thus |x−x′| ≥ √ck. We then conclude that
|fk(x)− fk(x′)| ≤ |x− x′|+ C ck ≤ (1 + C

√
ck)|x− x′|.

8.2.8 Summary. After nQ steps, we get a function f0 = ρ� : Q → Q which
satisfies

Lip(ρ�) ≤ 1 + C δ8
−nQ−1

and |ρ�(x)− x| ≤ C δ8−nQ

, (8.5)

ρ�({x : dist(x, F ) ≤ δ}) ⊂ F for every F ∈ Fk, (8.6)

ρ� : F
δ,c

1/8
0
→ F is the orthogonal projection on F for every F ∈ Fk. (8.7)

8.3 The extension ρ� of ρ� to QδnQ+1. Next we extend the map ρ� : Q → Q
to the δnQ+1-neighborhood of Q, keeping the estimate (8.5). We first observe that,
since the number of all the faces is finite, when δ is small enough, there exists a
constant C = C(N) with the following property. Consider two distinct faces F and
H in Fi. If x, y are two points contained, respectively, in Fδi+1 \ ∪j<i ∪G∈Fj

Gδj+1

and Hδi+1 \ ∪j<i ∪G∈Fj
Gδj+1 , then

dist(x, y) ≥ C δi. (8.8)

Similarly if F ∈ Fl and H ∈ Fi with l < i and F �⊂ H̄, then for every x ∈ Fδl+1 and
y ∈ Hδi+1 \ ∪j<i ∪G∈Fj

Gδj+1 it holds

dist(x, y) ≥ C δi. (8.9)

The extension ρ� is defined inductively, but this time “from the bottom to the top”.
The first extension g0 is identically 0 on Bδ(0) (note that this is feasible because
ρ� ≡ 0 in Bδ(0) ∩ Q). Now we come to the inductive step. Suppose we have an
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extension g� of ρ�, defined on the union of the δ�+1-neighborhoods of the �-skeletons
S�, for � ∈ {0, . . . , k}, i.e.

Lk := Q∪Bδ(0) ∪
k⋃
�=1

⋃
F∈F�

Fδ�+1 .

Assume inductively that Lip(gk) ≤ 1 + C δ8
−nQ−1

and assume that gk maps any
δj+1-neighborhood of any j-dimensional face into its closure, when j ≤ k. Then, we
define the extension of gk to Lk+1 in the following way. For every face F ∈ Fk+1, we
set

gk+1 :=

⎧⎪⎨
⎪⎩

ρ� on Q,
gk on (Sk)δk+1 ∩ Fδk+2 ,

pF on {x ∈ R
N : pF (x) ∈ Fδ,1} ∩ Fδk+2 ,

(8.10)

where pF stands for the orthogonal projection on F (recall that by (8.7) ρ� = pF
on F ∩ Fδk+2,1). Consider now a face F as above and U(F ) the union of all the
δj+1-neighborhoods of the j-dimensional faces which belong to F . As defined above,
gk+1 maps a portion of U(F ) into F . We can use Lemma 8.1 to extend gk+1 to
U(F ) keeping the same Lipschitz constant, which we now compute. This constant is
obviously smaller than 1+Cδ8

−nQ−1
on the domain ((Sk)δk+1∩Fδk+2)∪F by inductive

hypothesis. The same constant is 1 on {x ∈ R
N : pF (x) ∈ Fδ,1}∩Fδk+2 . Consider now

a point x ∈ {x ∈ R
N : pF (x) ∈ Fδ,1} ∩Fδk+2 and a point y ∈ F ∪ ((Sk)δk+1 ∩Fδk+2).

If y �∈ (Sk)c1/80
, then necessarily y ∈ F and we then have

|gk+1(x)− gk+1(y)| = |pF (x)− y| = |pF (x)− pF (y)| ≤ |x− y|.

Otherwise we have |x− y| ≥ 1− c1/8
0 = 1− δ8−nQ−1

and we can write

|gk+1(x)− gk+1(y)| ≤ |gk+1(x)− y|+ Cc0 ≤ |x− y|+ δk+2 + Cc0

≤
(

1 +
δk+2 + Cc0

1− Cc1/8
0

)
|x− y| ≤ (1 + Cδ8

−nQ−1
)|x− y|.

Note that, if x ∈ U(F1) ∩ U(F2) for two distinct F1, F2 ∈ Fk+1, then x ∈ Lk.
Thus, the map gk+1 is continuous. We next bound the global Lipschitz constant
of gk+1. Indeed consider points x ∈ U(F1) \ U(F2) and y ∈ U(F2) \ U(F1) for
two distinct Fi ∈ Fk+1. Since by (8.8) and (8.9) |x − y| ≥ C δk+1, we easily see
that

|gk+1(x)− gk+1(y)| ≤ |gk+1(x)− gk+1(pF1(x))|+ |gk+1(pF1(x))− gk+1(pF2(y))|
+ |gk+1(pF2(y))− gk+1(y)|
≤ 2(1 + Cδ8

−nQ−1
) δk+2 + |ρ�(pF1(x))− ρ�(pF2(y))|

≤ 2(1 + Cδ8
−nQ−1

) δk+2 + (1 + C δ8
−nQ−1

)|pF1(x)− pF2(y)|
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≤ 2(1 + Cδ8
−nQ−1

) δk+2 + (1 + C δ8
−nQ−1

)
(
|x− y|+ 2 δk+2

)

≤ (1 + C δ8
−nQ−1

) |x− y|.
Next, consider the case x ∈ Q\U(F ), y ∈ U(F ). If |x−y| ≥ δk+1, we can then argue
as above and (considering that gk+1(x) = ρ�(x)) we bound

|gk+1(x)− gk+1(y)| ≤ (1 + Cδ8
−nQ−1

) δk+2 + |ρ�(x)− ρ�(pF (y))|
≤ (1 + Cδ8

−nQ−1
)
(
δk+2 + |x− pF (y)|

)
≤(1 + Cδ8

−nQ−1
)
(
δk+2 + |x− y|+ δk+2

)

≤ (1 + C δ8
−nQ−1

) |x− y|.
We therefore assume |x − y| ≤ δk+1. Observe also that, if y �∈ {x ∈ R

N : pF (x) ∈
Fδ,1} ∩ Fδk+2 , then gk+1(y) = gk(y) and since gk+1(x) = ρ�(x) = gk(x), we know
the Lipschitz bound by inductive assumption. We therefore conclude that x ∈
Fδk+2+δk+1,1−δk+1 . Assuming δ0 small enough, δk+2 + δk+1 ≤ δ and 1 − δk+1 ≥
δ8

−nQ−1
= c

1/8
0 , therefore x ∈ F

δ,c
1/8
0

. By (8.7) we then have |gk+1(x) − gk+1(y)| =
|pF (x)− pF (y)| ≤ |x− y|.

Since Q and the union of the U(Fi) is the domain of definition of gk+1, this
shows Lip(gk+1) ≤ 1+C δ8

−nQ−1
. Note that by construction we also have that U(F )

is mapped into F , which is the other inductive hypothesis.
After making the step above nQ times we arrive to a map gnQ which extends ρ�

and is defined in a δnQ+1-neighborhood of Q. This is the map ρ�. ��

9 Persistence of Q-points: proof of Theorem 2.7

Proof (of Theorem 2.7). As usual, by scaling and translating we assume x = 0
and r = 1. According to [LS11b, Theorem 3.9], there are constants C̄(m,n,Q),
κ(m,n,Q) > 0 such that

sup
x �=y∈B1/2

G(w(x), w(y))
|y − x|κ ≤ C̄(Dir(w))

1
2 for any Dir-minimizer w : B1 → AQ(Rn).

(9.1)
The final choice of s̄ will be specified at the very end, but for the moment we impose
s̄ < 1

4 .
Fix now s < s̄ and C� as in the statement and assume by contradiction that, no

matter how small we choose ε̂ > 0, there are a current T and a submanifold Σ as in
Theorem 2.4 and a point (p, q) ∈ C1/2 satisfying:

(a) E := E(T,C4) < ε̂ and A2 ≤ C�E;
(b) Θ(T, (p, q)) = Q;
(c) the Eγ1-approximation f (which is the map of Theorem 2.4) violates (2.9), that

is ∫
Bs(p)

G(f,Q �η ◦ f�)2 > δ̂smE. (9.2)
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Set δ̄ = 1
4 and fix η̄ > 0 (whose choice will be specified later). By (a), for a suitably

small ε̂ we can apply Theorem 2.6 in the coordinates of Remark 2.5: we let u be the
corresponding Dir-minimizer and w = (u,Ψ(x, u)). If η̄ and ε̂ are suitably small, we
have ∫

Bs(p)
G(w,Q �η ◦ w�)2 ≥ 3δ̂

4 s
mE,

and sup
{
Dir(f),Dir(w)} ≤ CE (here we use Remark 5.5). Thus there is p̄ ∈ Bs(p)

with G(w(p̄), Q �η ◦ w(p̄)�)2 ≥ 3δ̂
4ωm

E and, by (9.1), we conclude

g(x) := G(w(x), Q �η ◦ w(x)�) ≥
(

3δ̂
4ωm

E
)1/2 − 2 (CE)1/2C̄s̄κ ≥

(
δ̂
2E
)1/2

, (9.3)

where we assume that s̄ is chosen small enough in order to satisfy the last inequality.
Setting h(x) := G(f(x), Q �η ◦ f(x)�), we recall that we have∫

Bs(p)
|h− g|2 ≤ C η̄E.

Consider therefore the set A :=
{
h >

(
δ̂
4E
)1/2}. If η̄ is sufficiently small, we can

assume that |Bs(p) \A| < 1
8 |Bs|. Further, define Ā := A ∩K, where K is the set of

Theorem 2.4. Assuming ε̂ is sufficiently small we ensure |Bs(p) \ Ā| < 1
4 |Bs|. Let N

be the smallest integer such that N δ̂E
64Qs ≥ s

2 . Set σi := s− i δ̂E
64Qs for i ∈ {0, 1 . . . , N}

and consider, for i ≤ N − 1, the annuli Ci := Bσi
(p) \ Bσi+1(p). If ε̂ is sufficiently

small, we can assume that N ≥ 2 and σN ≥ s
4 . For at least one of these annuli we

must have |Ā ∩ Ci| ≥ 1
2 |Ci|. We then let σ := σi be the corresponding outer radius

and we denote by C the corresponding annulus.
Consider now a point x ∈ C ∩ Ā and let Tx be the slice 〈T,p, x〉. Since Ā ⊂ K,

for a.e. x ∈ Ā we have Tx =
∑Q

i=1 �(x, fi(x))�. Moreover, there exist i and j such
that |fi(x)− fj(x)|2 ≥ 1

QG(f(x), �η ◦ f(x)�)2 ≥ δ̂
4QE (recall that x ∈ Ā ⊂ A). When

x ∈ C and the points (x, y) and (x, z) belong both to Bσ((p, q)), we must have

|y − z|2 ≤ 4
(
σ2 −

(
σ − δ̂E

64Qs

)2 ) ≤ σδ̂E
8Qs ≤ δ̂E

8Q .

Thus, for x ∈ Ā∩C at least one of the points (x, fi(x)) is not contained in Bσ((p, q)).
We conclude therefore

‖T‖(Cσ(p) \Bσ((p, q))) ≥ |C ∩ Ā| ≥ 1
2
|C| = ωm

2

(
σm −

(
σ − δ̂E

64Qs

)m)

≥ ωm
2
σm
(
1−
(
1− δ̂E

64Qsσ

)m)
. (9.4)

Recall that, for τ sufficiently small, (1 − τ)m ≤ 1 − mτ
2 . Since σ ≥ s

4 , if ε̂ is chosen
sufficiently small we can therefore conclude

‖T‖(Cσ(p) \Bσ(p)) ≥ ωmσ
mδ̂E

256Qsσ
≥ ωm

1024Q
δ̂Eσm−2 = c0δ̂Eσ

m−2. (9.5)
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Next, by Theorems 2.4 and 2.6,

‖T‖(Cσ(p)) ≤ Qωmσm + CE1+γ1 + η̄E +
∫
Bσ(p)

|Dw|2
2

. (9.6)

Moreover, as shown in [LS11b, Section 3.3] (cf. [LS11b, Proposition 3.10]), we have∫
Bσ(p)

|Dw|2 ≤ ‖DΨ‖2σm + C

∫
Bσ(p)

|Du|2 ≤ C(1 + C�)Eσm + CDir(u)σm−2+2κ,

(9.7)
[for some constants κ and C depending only on m, n and Q; in fact the exponent κ
is the one of (9.1)]. Combining (9.5), (9.6) and (9.7), we conclude

‖T‖(Bσ((p, q))) ≤ Qωmσm+(η̄+C(1+C�)σm)E+CE1+γ1+CEσm−2+2κ−c0σm−2δ̂E.
(9.8)

Next, by the monotonicity formula, ρ �→ exp(CA2ρ2)ρ−m‖T‖(Bρ((p, q))) is a
monotone function (indeed, the usual monotonicity formula of the theory of varifolds
with bounded mean curvature gives the monotonicity of ρ �→ exp(CAρ)ρ−m‖T‖
(Bρ((p, q))), cf. [Sim83, Theorem 17.6]); the slight improvement needed in this proof
follows from minor modifications of the usual argument but, since we have not been
able to find a reference, we provide a proof in Lemma A.1 in the appendix). Us-
ing A2 ≤ C�E, Θ(T, (p, q)) = Q and the Taylor expansion of the exponential, we
conclude

‖T‖(Bσ((p, q))) ≥ Qωmσm − CC�Eσm+2. (9.9)

Combining (9.8) and (9.9) we conclude

C(1 + C�)σ2 + (η̄ + CEγ1 )σ2−m + Cσ2κ ≥ c0δ̂. (9.10)

Recalling that σ ≤ s < s̄, we can, finally, specify s̄: it is chosen so that C(1+C�)s̄2+
Cs̄2κ is smaller than c0

2 δ̂. Combined with (9.3) this choice of s̄ depends, therefore,
only upon δ̂. (9.10) becomes then

(η̄ + CEγ1)σ2−m ≥ c0
2 δ̂. (9.11)

Next, recall that σ ≥ s
4 . We then choose ε̂ so that (η̄ + Cε̂γ1)( s4)2−m ≤ c0

4 δ̂. This
choice is incompatible with (9.11), thereby reaching a contradiction: for this choice
of the parameter ε̂ (which in fact depends only upon δ̂ and s) the conclusion of the
Theorem, i.e. (2.9), must then be valid. ��
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A Monotonicity formula

Lemma A.1. There is a constant C depending only on m, n and n̄ with the following prop-
erty. If Σ ⊂ R

m+n is a C2 (m + n̄)-dimensional submanifold with ‖AΣ‖∞ ≤ A and T an
m-dimensional integer-rectifiable current supported in Σ which is stationary in Σ, then for
every ξ ∈ Σ the function ρ �→ exp(CA2ρ2)ρ−m‖T‖(Bρ(ξ)) is monotone on the interval ]0, ρ̄[,
where ρ̄ := min{dist(x, spt(∂T )), (CA)−1}.

Proof. The argument is a minor variant of the classical proof of the monotonicity formula
for varifolds with bounded mean curvature due to Allard (cf. [All72]). Here the stronger
hypothesis that T is stationary in a C2-submanifold allows a better estimate of the relevant
error term. Without loss of generality assume ξ = 0, let s ∈]0, ρ̄[ and ϕ ∈ C1

c (]− 1, 1[) with
ϕ ≡ 1 in a neighborhood of 0. For each x ∈ Σ let px : R

m+n → TxΣ be the orthogonal pro-
jection onto the tangent space to Σ in x and consider the vector field Xs(x) := ϕ( |x|

s )px(x).
Note that Xs is tangent to Σ and thus δT (Xs) = 0. In order to compute δT (Xs), consider
at ‖T‖-a.e. x ∈ spt(T ) an orthonormal frame e1, . . . , em with e1 ∧ . . .∧ em = �T . It turns out
that

δT (Xs) =
∫

div�TXs d‖T‖ =
∫ ∑

i

〈Dei
Xs, ei〉 d‖T‖.

Next, at any x ∈ Σ let ν1, . . . , νl (l = n− n̄) be an orthonormal frame orthogonal to Σ. Since
px(x) = x−∑j〈x, νj〉νj and 〈ei, νj〉 = 0, we compute:

div�TXs(x) =
∑

i

[
Dei

(
ϕ
(

|x|
s

))
〈x, ei〉+ ϕ

(
|x|
s

)
〈Dei

x, ei〉
]

︸ ︷︷ ︸
I

−ϕ
(

|x|
s

)∑
i,j

〈x, νj〉〈Dei
νj , ei〉

︸ ︷︷ ︸
II

.

I is the usual expression appearing in the proof of the standard monotonicity formula for
stationary varifolds. If we use the notation r for the function x �→ |x| and ∇⊥r for the
orthogonal projection on the orthogonal complement of Span{e1, . . . , em}, we find I =
mϕ( r

s ) + r
sϕ

′( r
s )(1 − |∇⊥r|2) (see for instance [Lel12, (2.2)]). In order to bound II, we

first observe that 〈Dei
νj , ei〉 = −〈A(ei, ei), νj〉. Next, since r ≤ (CA)−1, if C is chosen suf-

ficiently large we can assume that the geodesic segment of Σ connecting 0 and x has length
� < 2r. Denote by γ : [0, �]→ Σ a parametrization by arc-length of such a segment. Then,

〈x, νj(x)〉 =
∫ �

0

〈γ̇(σ), νj(γ(�))〉 dσ =
∫ �

0

〈γ̇(σ), [νj(γ(�))− νj(γ(σ))]〉︸ ︷︷ ︸
g(σ)

dσ, (A.1)

and observe that

|g′(σ)| ≤ 2
∣∣∣∣ ddσ γ̇(σ)

∣∣∣∣+
∣∣∣∣〈γ̇(σ),

d

dσ
νj(γ(σ))〉

∣∣∣∣ ≤ 3|A(γ̇(σ), γ̇(σ))|.

Since g(�) = 0, integrating the latter inequality we conclude |g(σ)| ≤ 3�A ≤ 6rA, which in
turn, together with (A.1), gives |x · νj(x)| ≤ 12r2A.
Putting all estimates together, we achieve the inequality |II| ≤ Cϕ( r

s )r2A2. From here on
we can follow the usual strategy leading to the monotonicity formula (cf. [Sim83] or [Lel12,
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Proof of Theorem 2.1]): letting the test function ϕ converge from below to the indicator
function of ]− 1, 1[, after few manipulations we achieve the inequality

d

ds

‖T‖(Bs)
sm

≥ −CA2s
‖T‖(Bs)
sm

,

which leads to the desired claim. ��
Remark A.2. The proof can be easily extended to varifolds which are stationary in Σ.
In fact the argument above can be considerably shortened using directly the Monotonicity
Formula of Section 5 in [All72].
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