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KÄHLER–EINSTEIN METRICS ON STABLE VARIETIES
AND LOG CANONICAL PAIRS

Robert J. Berman and Henri Guenancia

Abstract. Let X be a canonically polarized variety, i.e. a complex projective vari-
ety such that its canonical class KX defines an ample Q-line bundle, and satisfying
the conditions G1 and S2. Our main result says that X admits a Kähler–Einstein
metric iff X has semi-log canonical singularities i.e. iff X is a stable variety in the
sense of Kollár–Shepherd-Barron and Alexeev (whose moduli spaces are known to
be compact). By definition a Kähler–Einstein metric in this singular context simply
means a Kähler–Einstein on the regular locus of X with volume equal to the alge-
braic volume of KX , i.e. the top intersection number of KX . We also show that such
a metric is uniquely determined and extends to define a canonical positive current
in c1(KX). Combined with recent results of Odaka our main result shows that X
admits a Kähler–Einstein metric iff X is K-stable, which thus confirms the Yau–
Tian–Donaldson conjecture in this general setting of (possibly singular) canonically
polarized varieties. More generally, our results are shown to hold in the setting of
log minimal varieties and they also generalize some prior results concerning Kähler–
Einstein metrics on quasi-projective varieties.
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1 Introduction

According to the seminal works of Aubin [Aub78] and Yau [Yau78] any canonically
polarized compact complex manifold X (i.e. X is a non-singular projective algebraic
variety such that the canonical line bundle KX is ample) admits a unique Kähler–
Einstein metric ω in the first Chern class c1(KX).One of the main goals of the present
paper is to extend this result to the case when X is singular or more precisely when
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X has semi-log canonical singularities. A major motivation comes from the fact
that such singular varieties are used to compactify the moduli space of canonically
polarized manifolds—a subject where there has been great progress in the last years
in connection to the (log) Minimal Model Program (MMP) in birational algebraic
geometry [Kol,Kov12]. The varieties in question are usually referred to as stable
varieties (or canonical models) as they are the higher dimensional generalization of
the classical notion of stable curves of genus g > 1, which form the Deligne–Mumford
compactification of the moduli space of non-singular genus g curves [Kol,Kov12]. It
is a classical fact that any stable curve admits a unique Kähler–Einstein metric on its
regular part, whose total area is equal to the (arithmetic) degree of the curve X (see
the section on stable curves further in this Introduction for more details). Our first
(and main) result gives a generalization of this fact to the higher dimensional setting:

Theorem A. Let X be a projective complex algebraic variety with semi-log canon-
ical singularities such that KX is ample. Then there exists a Kähler metric ω on the
regular locus Xreg, satisfying

Ricω = −ω
and such that the volume of (Xreg, ω) coincides with the volume ofKX , i.e.

∫
Xreg

ωn =
c1(KX)n. Moreover, the metric extends to define a current ω in c1(KX) which is
uniquely determined by X.

We will refer to the current ω in the previous theorem as the (singular) Kähler–
Einstein metric on X. Moreover, the current ω will be shown to be of finite energy,
in the sense of [GZ07,BBGZ09] and as discussed in the last section of the present
paper this allows one to define a canonical (singular) Weil–Petersson metric on the
compact moduli space in terms of Deligne pairings. The notion of semi-log canonical
singularities of a varietyX—which is the most general class of singularities appearing
in the (log) Minimal Model Program—will be recalled below. For the moment let
us just point out that the definition involves two ingredients: first a condition which
makes sure that the canonical divisor KX is defined as a Q-Cartier divisor (i.e. Q-line
bundle) which is in particular needed to make so sense of the notion of ampleness of
KX and secondly, the definition of semi-log canonical singularities involves a bound
on the discrepancies of X on any resolution of singularities.

In fact, we will conversely show that if KX is ample and the variety X admits a
Kähler–Einstein metric thenX has semi-log canonical singularities and this brings us
to our second motivation for studying Kähler–Einstein metrics in the the singular
setting, namely the Yau–Tian–Donaldson conjecture. Recall that this conjecture
concerns polarized algebraic manifolds (X,L), i.e. algebraic manifolds together with
an ample line bundle L → X and it says that the first Chern class c1(L) of L contains
a Kähler metric ω with constant scalar curvature if and only if (X,L) is K-stable.
The latter notion of stability is of algebro-geometric nature and can be seen as an
asymptotic form of the classical notions of Chow and Hilbert stability appearing in
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Geometric Invariant Theory (GIT). However, while the notion of K-stability makes
equal sense when X is singular it is less clear how to give a proper definition of a
constant scalar curvature metric for a singular polarized variety (X,L). But, as it
turns out, the situation becomes more transparent in the case when L is equal to KX

or its dual, the anti-canonical bundle −KX . The starting point is the basic fact that,
when X is smooth, a Kähler metric in ω in c1(±KX) has constant scalar curvature
on all of X precisely when it has constant Ricci curvature, i.e. when ω is a Kähler–
Einstein metric. Various generalizations of Kähler–Einstein metrics to the singular
setting have been proposed in the literature, see e.g. [EGZ09,BEGZ10,BBEGZ11]
etc. In this paper we will adopt the definition which appears in the formulation
of the previous theorem (see also Section 3), i.e. a positive current in c1(±KX) is
said to define a (singular) Kähler–Einstein metric if defines a bona fide Kähler–
Einstein metric on the regular locus Xreg and if its total volume there coincides
with the algebraic top intersection number of c1(±KX). This definition, first used in
the Fano case in [BBEGZ11], has the virtue of generalizing all previously proposed
definitions, regardless of the sign of the canonical line bundle. Combing our results
with recent results of Odaka [Oda13b,Oda11], which say that a canonically polarized
variety has semi-log canonical singularities precisely when (X,KX) is K-stable, gives
the following theorem, which can be seen as a confirmation of the generalized form
of the Yau–Tian–Donaldson conjecture for canonically polarized varieties (satisfying
the conditions G1 and S2, cf. Theorem 3.10 for a more precise statement):

Theorem B. Let X be a complex projective variety such that KX is ample. Then
X admits a Kähler–Einstein metric if and only if (X,KX) is K-stable.

It may also be illuminating to compare this result with the case when L := −KX

is ample (i.e.X is Fano). Then it was shown in [Ber12], in the general singular setting,
that the existence of a Kähler–Einstein metric indeed implies K-(poly)stability. As
for the converse it was finally settled very recently in the deep works by Chen–
Donaldson–Sun [CDS12a,CDS12b,CDS13] and Tian [Tia13], independently, in the
case when X is smooth. The existence problem in the singular case is still open in
general, except for the toric case [BB12]; cf. also [OSS12] for a related problem in
the case of singular del Pezzo surfaces.

Coming back to the present setting we point out that the starting point of our
approach is that, after passing to a suitable resolution of singularities, we may as well
assume that the variety X is smooth if we work in the setting of log pairs (X,D),
where D is a Q-divisor on X with simple normal crossings (SNC) and where the role
of the canonical line bundle is played by the log canonical line bundle KX+D (which
appears as the pull-back to the resolution of the original canonical line bundle). In
this notation the original variety has semi-log canonical singularities precisely when
the log pair (X,D) is log canonical (lc) in the usual sense of the Minimal Model
Program, i.e. the coefficients of D are at most equal to one (but negative coefficients
are allowed). However, it should be stressed that for this gain in regularity we have,
of course, to pay a loss of positivity: even if the original canonical line bundle is
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ample, the corresponding log canonical line bundle is only semi-ample (and big) on
the resolution, since it is trivial along the exceptional divisors of the corresponding
resolution.

The upshot is that the natural setting for our results is the setting of log smooth
log canonical pairs (X,D) such that the log canonical line bundle KX +D is semi-
ample and big. To any such pair we will associate a canonical Kähler–Einstein metric
ω in the sense that ω is a current in the first Chern class c1(KX +D) such that ω
restricts to a bona fide Kähler–Einstein metric on a Zariski open set of X and such
that, globally onX, the current defined by the divisorD gives a singular contribution
to the Ricci curvature of ω.

Theorem C. Let X be a Kähler manifold and D a simple normal crossings R−
divisor on X with coefficients in ]−∞, 1] such that KX +D is semi-positive and big
(i.e. (KX +D)n > 0). Then there exists a unique current ω in c1(KX +D) which is
smooth on a Zariski open set U of X and such that

Ricω = −ω + [D]

holds on X in the weak sense and
∫
U ω

n = (KX + D)n. More precisely, U can be
taken to be the complement of D in the ample locus of KX +D. Moreover, any such
current ω on X automatically has finite energy.

Recall that the ample locus of a big line bundle L may be defined as the Zariski
open set whose complement is the augmented base locus of L, i.e. the intersection of
all effective Q-divisors E such that L − E is ample. In particular, if Y is a variety
with semi-log canonical singularities and π : (X,D) → Y is a log resolution of
the normalization (endowed with its conductor), then the exceptional locus of π is
contained in the augmented base locus of KX + D and hence Theorem C above
indeed implies Theorem A.

The existence proof of Theorem C (and its generalizations described below) will
be divided into two parts: in the first part we construct a variational solution with
finite energy, by adapting the variational techniques developed in [BBGZ09] to the
present setting. Then, in the second part, we show that the variational solutions have
appropriate regularity using a priori Laplacian estimates, building on the works
of Aubin [Aub78] and Yau [Yau78] and ramifications of their work by Kobayashi
[Kob84] and Tian–Yau [TY87] to the setting of quasi-projective varieties—in par-
ticular we will be relying on Yau’s maximum principle. For the second part we will
need to perturb the line bundle L := KX +D (to make it ample) and regularize the
klt part of the divisor D (to make the divisor purely log canonical).

It is interesting to note that, so far, we are not able of proving Theorem C
without using the variational method, i.e. relying only on a priori estimates. The
reason is that our estimates on the potential of the solution near Supp(D) are not
good enough to extend it directly as a current with full Monge–Ampère mass, so as
to get the Kähler–Einstein metric of (X,D).
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Let us also point out that the variational part of our proof only requiresKX+D to
be big and thus produces a unique singular Kähler–Einstein metric of finite energy
on any variety of log general type. As for the regularity part it applies as long
as the corresponding log canonical ring is finitely generated. In fact, according to
one of the fundamental conjectures of the general log minimal model program the
latter finiteness property always holds. Note that for log canonical pairs, the finite
generation is known to hold for n � 4, cf. [K+92,Fuj10] and the references therein.
We also recall that in the case of varieties of log general type with log terminal
singularities (which in our notation means that Dlc vanishes) the finite generation
in question was established in the seminal work [BCHM10] and Kähler–Einstein
metrics were first constructed in [EGZ09].

In the last section of the paper some applications of Theorem A are given. First,
we explain the link with Yau–Tian–Donaldson as we indicated above in Theorem B.
Then, we give a short analytic proof of the fact that the automorphism group of a
normal stable variety is finite (see [FG12] or [BHPS12] for algebro-geometric proofs
of more general results in this spirit, cf. also [Miy83]). We also discuss the problem
of deducing Miyaoka–Yau type inequalities from Theorem A.

Further comparison with previous results

Stable curves. A stable curve, as defined by [DM69], is a reduced one equidimen-
sional projective scheme over C with only nodes as singularities and with finite
automorphism group. The latter finiteness assumption can be replaced with various
equivalent conditions, for example that the canonical sheaf of X is ample or in differ-
ential geometric terms: every connected component of Xreg = X \{nodes} is covered
by the disk. In turn, this is equivalent to asking that every connected component of
Xreg admits a complete hyperbolic metric.

As above, the higher dimensional analogue of Deligne–Mumford stable curves are
the so-called stable varieties which are reduced equidimensional complex projective
schemes with semi-log canonical singularities (i.e. double normal crossing singulari-
ties in codimension one, and log canonical singularities in higher codimension) and
ample canonical bundle. In the light of the discussion above one could be tempted
to believe that the regular locus of a stable variety can always be endowed with a
complete Kähler–Einstein metric. However, this is not the case, mainly because of
the singularities in codimension � 2 (the relationship between the completeness of
the metric and the singularities of the variety will be analyzed in [GW], and has
also been largely investigated in the recent work of Song [Son14] that appeared after
the first version of this article). Indeed, our main result (cf. Theorem 3.10) says
that if we are given a scheme X (reduced, equidimensional, complex and projective)
whose only singularities in codimension one are double normal crossings and such
that KX is ample, then X has semi-log canonical singularities (i.e. X is stable) if
and only if Xreg admits a Kähler–Einstein metric ω with negative curvature such
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that Volω(Xreg) = c1(KX)n. This volume condition replaces in higher dimension the
completeness condition, which does not hold in general. Further, this condition was
known for a long time to be equivalent to the other ones in the one dimensional case
already, see e.g. [HK13, Section 1].

Quasi-projective varieties. Theorem C also extends some of the results of Wu in
[Wu08,Wu09], concerning the setting of Kähler–Einstein metrics on quasi-projective
projective varieties of the form X0 := X −D, where X is smooth and D is reduced
SNC divisor. We recall that the case whenKX+D is ample was independently settled
by Kobayashi [Kob84] and Tian–Yau [TY87]. The case when X is an orbifold and
KX +D is semi-ample and big was considered by Tian–Yau in [TY87] and as later
shown by Yau [Yau93] the corresponding Kähler–Einstein metric is then complete on
X0. (in the orbifold sense). However, in our general setting the metric will typically
not be complete on the regular locus. This is only partly due to the klt singularities
(which generalize orbifold singularities)—there is also a complication coming from
the presence of negative coefficients on a resolution.

To illustrate this we recall that a standard example of log canonical pairs (X,D)
is given by the Borel–Baily compactification X := X0 ∪D of an arithmetic quotient,
i.e. X0 = B/Γ, where B is a bounded symmetric domain and Γ is discrete subgroup
of the automorphism group of B. In this case any toroidal resolution X ′ has the
property that the corresponding divisor D′ on the resolution is reduced (and hence
purely log canonical) if Γ is neat, i.e. if there are no fixed points. The corresponding
Kähler–Einstein metric on X0 is the complete one induced from the corresponding
metric on B, constructed in [CY80,MY83]. When Γ has fixed points these give rise
to an additional fractional klt part D′

klt in D′ so that the corresponding Kähler–
Einstein metric is only complete in the orbifold sense [TY87]. However, for general
log canonical singularity (X,D) the klt part D′

klt of D′ may not be fractional or more
seriously: it may contain negative coefficients and the main novelty of the present
paper is to show how to deal with this problem by combining a variational approach
with a priori estimates.

Behaviour at the boundary. It is also interesting to compare with the case when
the pair (X,D) is log smooth with KX +D ample and with D effective and klt (i.e.
with coefficients in [0, 1[), where very precise regularity results have been obtained
recently. For example, in [Bre11,CGP13,JMR11,GP13] it is shown that the corre-
sponding Kähler–Einstein metric ω has conical singularities along D (sometimes also
called edge singularities in the literature), thus confirming a previous conjecture of
Tian. As for the mixed case when the coefficient 1 is also allowed in D it was stud-
ied in [Gue12,GP13], where it was shown that ω has mixed cone and Poincaré type
singularities. A common theme in these results is that singularities of the metric
ω are encoded by a suitable local model (with cone or Poincaré type singularities)
determined by D. However, the difficulty in the situation studied in the present pa-
per is the presence of negative coefficients in D and the associated loss of positivity
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which appears when we pass to a log resolution of a singular variety X. It would be
very interesting if one could associate local models to this situation as well, but this
seems very challenging even in the case when X has canonical singularities.

We should mention that the behaviour of the Kähler–Einstein metric of a log
canonical pair (X,D) such that KX +D is ample and D is effective will be investi-
gated in [GW]. As a consequence of the results therein, the Kähler–Einstein metric
of a stable variety is equivalent to the cusp metric near the ordinary double points.

Organization of the paper

• Section 2: We introduce the preliminary material that we will need, concern-
ing the pluripotential theoretic setting of singular metrics on line bundles over
varieties which are not necessarily normal.

• Section 3: Here we give the definition of a Kähler–Einstein metric on a canonically
polarized variety X and more generally on a log pair (X,D). As we explain
a purely differential-geometric definition can be given which only involves the
regular locus Xreg of X. But, as we show, the corresponding metric automatically
extends in a unique manner to define a singular current on X (which will allow
us to prove the uniqueness of the Kähler–Einstein metric, later on in Section 4).
We first treat the case when X has log canonical (and hence normal singularities)
and then the general case of a variety X with semi-log singularities. Anyway, as
we recall, the latter case reduces to the former (if one works in the setting of
pairs) if one passes to the normalization.

• Section 4: We prove the uniqueness and existence of a weak Kähler–Einstein
metric in the general setting of varieties of log general type. The existence is
proved by adapting the variational approach to complex Monge–Ampère equa-
tions introduced in [BBGZ09] to the present setting. This method produces a
singular Kähler–Einstein metric with finite energy (the new feature here com-
pared to [BBGZ09] is that the reference measure does not have an L1 density).
We also use the variational approach to establish a stability result for the solu-
tions to the equations induced from an (ample) perturbation of the log canonical
line bundle on a resolution.

• Section 5: Here we establish the smoothness of the Kähler–Einstein metric, pro-
duced by the variational approach, on the regular locus of the variety X (or more
generally, the pair (X,D)). The proof uses a perturbation argument in order to
reduce the problem the original setting of Kobayashi and Tian–Yau, combined
with a priori estimates. But it should be stressed that in order to control the C 0

norms we need to invoke the variational stability result proved in the previous
section.

• Section 6: We give some applications to automorphism groups and show how to
deduce the Yau–Tian–Donaldson conjecture for canonically polarized varieties
from our results.

• Section 7: The paper is concluded with a brief outlook on possible applications
to Miyaoka–Yau types inequalities, as well as the Weil-Peterson geometry of the
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moduli space of stable varieties. These applications will require a more detailed
regularity analysis of the Kähler–Einstein metrics that we leave for the future.

2 Preliminaries

We collect here some useful tools or notions that we are going to work with in this
paper. We start with a compact Kähler manifold X of dimension n, and we consider
a class α ∈ H1,1(X,R) which is big. By definition, this means that α lies in the
interior of the pseudo-effective cone, so that there exists a Kähler current T ∈ α,
that is a current which dominates some smooth positive form ω on X. We fix θ, a
smooth representative of α.

The ample locus. An important invariant attached to α is the ample locus of α,
denoted Amp(α), and introduced in [Bou04, Section 3.5]. This is the largest Zariski
open subset U of X such that for all x ∈ U , there exists a Kähler current Tx ∈ α
with analytic singularities such that Tx is smooth in an (analytic) neighbourhood of
x. Its complement, called the augmented base locus, is usually denoted by B+(α).
In the case when α = c1(L) is the Chern class of a line bundle, it is known (see e.g.
[BBP10]) that:

B+(L) =
⋂

L=A+E
Aample, E�0

Supp(E)

Currents with minimal singularities. We will be very brief about this well-known
notion, and refer e.g. to [Bou04, Section 2.8], [BBGZ09, Section 1], [Ber09] or [BD12]
for more details and recent results.

By definition, if T, T ′ are two positive closed currents in the same cohomology
class α, we say that T is less singular than T ′ if the local potentials ϕ,ϕ′ of these
currents satisfy ϕ′ � ϕ+O(1). It is clear that this definition does not depend on the
choice of the local potentials, so that the definition is consistent. In each (pseudo-
effective) cohomology class α, one can find a positive closed current Tmin which
will be less singular than all the other ones; this current is not unique in general;
only its class of singularities is. Such a current will be called current with minimal
singularities.

One way to find such a current is to pick θ ∈ α a smooth representative, and
define then, following Demailly, the upper envelope

Vθ := sup{ϕ θ-psh, ϕ � 0 on X}

Once observed that Vθ is θ-psh (in particular upper semi-continuous), it becomes
clear that θ + ddcVθ has minimal singularities.
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Non-pluripolar Monge–Ampère operator. In the paper [BEGZ10], the au-
thors define the non-pluripolar product T �→ 〈Tn〉 of any closed positive (1, 1)-
current T ∈ α, which is shown to be a well-defined measure on X putting no mass
on pluripolar sets, and extending the usual Monge–Ampère operator for Kähler
forms (or having merely bounded potentials, cf. [BT87]). Let us note that when
T is a smooth positive form ω on a Zariski dense open subset Ω ⊂ X, then its
Monge–Ampère 〈Tn〉 is simply the extension by 0 of the measure ωn defined on Ω.

Given now a θ-psh function ϕ, one defines its non-pluripolar Monge–Ampère by
MA(ϕ) := 〈(θ + ddcϕ)n〉. Then one can check easily from the construction that the
total mass of MA(ϕ) is less than or equal to the volume vol(α) of the class α (cf.
[Bou02]):

∫

X
MA(ϕ) � vol(α)

A particular class of θ-psh functions that appears naturally is the one for which
the last inequality is an equality. We will say that such functions (or the associated
currents) have full Monge–Ampère mass. For example, θ-psh functions with minimal
singularities have full Monge–Ampère mass (cf. [BEGZ10, Theorem 1.16]).

Plurisubharmonic functions on complex spaces. Here again, we just intend
to give a short overview of the extension of the pluripotential theory to (reduced)
complex Kähler spaces. A very good reference is [Dem85], or [EGZ09, Section 5]
which is written in relation to singular Kähler–Einstein metric. We also refer to the
preliminary parts of [Var89] or [FS90].

The data of a reduced complex space X includes the data of the sheaves of
continuous and holomorphic functions. So the first object we would like to give a
sense to is the sheaf C ∞

X of smooth functions. It may be defined as the restriction of
smooth functions in some local embeddings of X in some Cn. One defines similarly
the sheaves of smooth (p, q)-forms A p,q

X which carry the differentials d, ∂, ∂̄ satisfy-
ing the usual rules; the space of currents is by definition the dual of the space of
differential forms as in the smooth case. The sheaves complexes that are induced
(Dolbeault, de Rham, etc.) are however not exact in general.

Another important sheaf is the one of pluriharmonic functions. They are defined
to be smooth functions locally equal to the imaginary part of some holomorphic
functions. One can show (see e.g [FS90]) that a continuous function which is pluri-
harmonic on Xreg in the usual sense is automatically pluriharmonic on X. We denote
by PHX the sheaf of real-valued pluriharmonic functions on X.

Let us move on to psh functions now. There are actually two possible definitions
which extend the usual one for complex manifolds. The first one, introduced by
Grauert and Remmert, mimics the one in the smooth case: we will say that a function
ϕ : X → R ∪ {−∞} is plurisubharmonic if it is upper semi-continuous and if for
all holomorphic map f : Δ → X from the unit disc in C, the function ϕ ◦ f is
subharmonic.
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We could also introduce a more local definition: a function ϕ : X → R ∪ {−∞}
is strongly plurisubharmonic if in any local embeddings iα : X ⊃ Uα ↪→ Cn, ϕ is
the restriction of a psh function defined an open set Ωi ⊂ Cn containing iα(Uα), if
X = ∪αUα is an open covering.

Clearly, a strongly psh function is also psh. Actually, Fornaess and Narasimhan
[FN80] showed that these notions coincide: a function on X is psh if and only if
it is strongly psh. On normal spaces one still has a Riemann extension theorem
for psh functions, thanks to [GR56]. More precisely, if X is normal, Y � X is any
proper analytic subspace, and ϕ : X \ Y → R ∪ {−∞} is psh, then ϕ extends to a
(unique) psh function on X if and only if it is locally bounded above near the points
of Y , condition which is always realized if Y has codimension at least two in X. In
particular, if X is normal, the data of a psh function on X is equivalent to the data
of a psh function on Xreg.

Moreover, one can show (cf [BEG13, Lemma 3.6.1]) that a pluriharmonic function
on Xreg automatically extends to a pluriharmonic function on X.

On non-normal spaces, one has to be more cautious, and it is convenient to
introduce the notion of weakly psh function. Let X be a reduced complex space,
and ν : Xν → X its normalization. We say that a function ϕ : X → R ∪ {−∞} is
weakly psh if ν∗ϕ = ϕ ◦ ν is psh. It is not hard to see that a weakly psh function
ϕ induces a bona fide psh function on Xreg which is locally bounded from above
near the points of Xsing. Conversely, any psh function on Xreg which is locally upper
bounded extends to a weakly psh function on X. On a normal space, a weakly
psh function is of course psh, but in general these notions are different: consider
X = {zw = 0} ⊂ C2, and ϕ(x) = 0 or 1 according to the connected component
of x ∈ X. We refer to [Dem85, Théorème 1.10] for equivalent characterizations of
weakly psh functions and conditions on a weakly psh function that ensure that it is
already psh.

Finally, one can check that a (strongly) psh function ϕ on a complex space
X is always locally integrable with respect to the area measure induced by any
local embedding of X in Cn (note that this is stronger than saying that ϕ is locally
integrable on Xreg with respect to some volume form). Moreover, a locally integrable
function ϕ is (almost everywhere) weakly psh if and only if it is locally bounded from
above and ddcϕ is a positive current.

Weights and Chern classes. From now on, X will be a normal complex space
unless stated otherwise.

The definition of a (smooth) Kähler form is rather natural: it is a smooth real
(1, 1)-form written locally as ddcψ for some (smooth) strictly psh function ψ; equiv-
alently this is locally the restriction of a Kähler form in a embedding in Cn. Note
that we could interpret this definition in terms of hermitian metrics on the Zariski
tangent bundle of X, cf. [Var89].

Let us now consider a line bundle L on X. A smooth hermitian metric h on L
is defined as in the smooth case: using trivialisations τα : L|Uα

�−→ Uα × C, we just
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ask h to be written as h(v) = |τα(v)|2e−ϕα(z) where ϕα is a smooth function on Uα.
We say that the data φ := {(Uα, ϕα)} is a weight on L, so that it is equivalent to
consider a weight or an hermitian metric.

Observe that if (gαβ : Uα ∩ Uβ → C∗) is the cocycle in H1(X,O∗
X) determined

by the τα’s (more precisely τα ◦ τ−1
β (z, v) = (z, gαβv)), then we have necessarily

ϕβ − ϕα = log |gαβ |2. In particular, the forms ddcϕα glue to a global smooth (1, 1)-
form on X called curvature of (L, h) and denoted by c1(L, h). This forms lives
naturally in the space H0(X,C ∞

X /PHX), and using the exact sequence

0 −→ PHX −→ C ∞
X −→ C∞

X /PHX −→ 0

one may attach to (L, h) a class ĉ1(L, h) ∈ H1(X,PHX). It is then easy to see that
this class actually does not depend on the choice of h, so we will denote it by ĉ1(L). If
X is smooth, H1(X,PHX)  H1,1(X,R), and it is well-known that ĉ1(L) coincides
with the image of L ∈ H1(X,O∗

X) in H2(X,Z) via the connecting morphism induced
by the exponential exact sequence

0 −→ Z −→ OX
e2iπ·−→ O∗

X −→ 0.

This sequence also exists on any (even non-reduced) complex space, so that c1(L) ∈
H2(X,Z) is well-defined; it will be more convenient for us to look at the image of
c1(L) in H2(X,R) however. To relate it to ĉ1(L), we may use the following exact
sequence:

0 −→ R −→ OX
−2Im(·)−→ PHX −→ 0. (2.1)

It is not hard to check that the connecting morphism H1(X,PHX) → H2(X,R)
sends ĉ1(L) to c1(L) as expected.

We will also have to consider singular weights, which are by definition couples
φ := {(Uα, ϕα)} where Uα is covering of X trivializing L, and ϕα are locally inte-
grable on Uα, satisfying ϕβ − ϕα = log |gαβ |2 on Uα ∩ Uβ. The associated curvature
current, denoted by ddcφ, is well-defined on X. The weight is said psh if the ϕα are,
in which case ddcφ is a positive current. Moreover, we can proceed as in the smooth
case to attach to ddcφ a class ĉ1(L) ∈ H1(X,PHX) (consider φ as a section of the
sheaf L1

loc/PHX and use the natural exact sequence), whose image in H2(X,R) via
the long exact sequence in cohomology induced by (2.1) is c1(L). Therefore when φ
is a singular weight on L, we may say that ddcφ is a current in c1(L).

We claim that a (possibly singular) psh weight φ on L|Xreg
—and thus a psh

weight in the usual sense—automatically extends to a (unique) psh weight φ̃ on L.
Indeed, by Grauert and Remmert’s theorem, the ϕα’s defined on Uα ∩Xreg extend
to a psh function ϕ̃α on the whole Uα, which is moreover defined by ϕ̃α(z0) =
lim supXreg�z→z0 ϕα(z). Therefore, the relation ϕ̃β = ϕ̃α + log |gαβ |2 is immediately
satisfied on the whole Uα ∩ Uβ, which proves the claim.

If we get back to the non-normal case, we can define psh weights using weakly
psh functions instead of psh functions. So the general philosophy is that we always
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pull-back our objects to the normalization where things behave better, and the
notions downstairs are defined and studied upstairs. For example, we can define on
a normal variety the analogue of the non-pluripolar product and consider Monge–
Ampère equations as in the smooth case (cf. [BBEGZ11, Section 1.1–1.2]. Then, if
we write them on a non-normal variety, they have to be thought as pulled-back to
the normalization.

Log canonical pairs. Following the by now common terminology of Mori theory
and the minimal model program (cf. e.g. [KM98]), a pair (X,D) is by definition a
complex normal projective variety X carrying a Weil Q-divisor D (not necessarily
effective). We will say that the pair (X,D) is a log canonical pair if KX +D (which
is a priori defined as a Weil divisor) is Q-Cartier, and if for some (or equivalently
any) log resolution π : X ′ → X, we have:

KX′ = π∗(KX +D) +
∑

aiEi

where Ei are either exceptional divisors or components of the strict transform of D,
and the coefficients ai satisfy the inequality ai � −1.

3 Singular Kähler–Einstein metrics

3.1 Kähler–Einstein metrics on pairs. In this section, we will consider log
pairs (X,D) where X is a complex normal projective variety, D is a Weil divisor, and
KX +D is assumed to be Q-Cartier. On Xreg, D = D|Xreg

is a Cartier divisor, there-
fore there exists a psh weight φD on Xreg satisfying ddcφD = [D|Xreg

], where [D|Xreg
]

stands for the current of integration along D|Xreg
. The first definition concerns the

Ricci curvature of currents:

Definition 3.1. Let ω be a positive current on Xreg; we say that ω is admissible if
it satisfies:

1. Its non-pluripolar product 〈ωn〉 defines a (locally) absolutely continuous mea-
sure on Xreg with respect to dz ∧ dz̄, where z = (zi) are local holomorphic
coordinates.

2. The function log(〈ωn〉/dz ∧ dz̄) belongs to L1
loc(Xreg).

In that case, we define (on Xreg) the Ricci curvature of ω by setting Ricω :=
−ddc log〈ωn〉.

Another way of thinking of this is to interpret the positive measure 〈ωn〉|Xreg
as

a singular metric on −KXreg whose curvature is Ricω by definition.

The measure eφ for φ a weight on KX . In the same spirit, we will use the conve-
nient but somehow abusive notation eφ for φ a weight on KX (whenever the latter
is defined as a Q-line bundle) to refer to the positive measure eϕzdz ∧ dz̄ defined on
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Xreg and extended by 0 to X; where ϕz is the expression on some trivializing chart of
Xreg (and hence of KXreg too) of φ. In particular, for φ a psh weight on KX +D, the
measure eφ−φD can easily be pulled-back to any log resolution (π,X ′, D′) of (X,D)
(we pull it back over Xreg \ Supp(D) and then extend it by 0), where it become
eφ◦π−φD′ .

We may now introduce the notion of (negatively curved) Kähler–Einstein metric
attached to a pair (X,D):

Definition 3.2. Let (X,D) be a log pair; we say that a positive admissible current
ω is a Kähler–Einstein metric with negative curvature for (X,D) if:

1. Ricω = −ω + [D] on Xreg,
2.
∫
Xreg

〈ωn〉 = c1(KX +D)n.

These conditions are sufficient to show that a Kähler–Einstein metric is a global
solution of a Monge–Ampère equation. More precisely, we have the following:

Proposition 3.3. Let (X,D) be a log pair, and ω be a Kähler–Einstein metric for
(X,D). Then φ := log〈ωn〉 + φD extends to X as a psh weight with full Monge–
Ampère mass on KX +D, solution of

〈(ddcφ)n〉 = eφ−φD .

Conversely, any psh weight φ on KX +D with full Monge–Ampère mass solution of
the equation above induces a Kähler–Einstein metric ω := ddcφ for (X,D).

Proof. On Xreg, we have ddcφ = ω thus φ is a psh weight on (KX + D)|Xreg
, and

thanks to a theorem of Grauert and Remmert, it extends through Xsing which has
codimension at least 2. Clearly, we have ω = ddcφ on X, and by condition 2. in
the definition of a Kähler–Einstein metric, φ has full Monge–Ampère mass. Then by
definition, the two (non-pluripolar) measures 〈(ddcφ)n〉 and eφ−φD coincide.

For the converse, let ω := ddcφ; clearly condition 2. is satisfied. Moreover, φ
and φD are locally integrable, so that ω is admissible and Ricω = −ddc(φ− φD) =
−ω + [D]. ��

This proposition shows that the different definitions of what should be a singular
Kähler–Einstein metric, appearing e.g. in [Ber11,BEGZ10,CGP13,EGZ09] etc. co-
incide. Moreover, one could equally define positively curved Kähler–Einstein metrics
in an equivalent way as in [BBEGZ11]. In particular this object, intrinsically defined
on X, can also be seen on any log resolution in the usual way; in practice, we will
most of the time work on log resolutions when dealing with existence or smoothness
questions.

Note also that we could have chosen to define a Kähler–Einstein metric attached
to a pair (X,D) (say satisfying KX + D ample) to be a smooth Kähler metric
ω on Xreg \ Supp(D) which extends to an admissible current on Xreg satisfying
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there Ricω = −ω + [D] and the mass condition
(∫

Xreg
〈ωn〉 =

) ∫
Xreg\Supp(D) ω

n =
c1(KX +D)n.

Then, our regularity Theorem (say combined with Proposition 6.1) shows a pos-
teriori that this definition would have coincided with Definition 3.2.

Let us also mention that in the case of a log smooth log canonical pair (X,D),
the same proof as [Gue12, Proposition 2.5] combined with [GW] will show that the
data of a negatively curved Kähler–Einstein on (X,D) is equivalent to giving an
admissible current ω on X \ Supp(D) such that:

• Ricω = −ω on X \ Supp(D),
• There exists C > 0 such that

C−1dV �
∏

aj<1

|sj |2aj ·
∏

ak=1

(|sk|2 log2 |sk|2) ωn � CdV

for some volume form dV on X, and where D =
∑
aiDi, si is a defining section

of Di.

3.2 Kähler–Einstein metrics on stable varieties. Stable varieties, as con-
sidered e.g. in [KSB88,Ale96,Kar00,Kol,Kov12] are the appropriate singular vari-
eties to look at if one wants to compactify the moduli space of canonically polarized
projective varieties (cf. also [Vie95]). Before giving the precise definition of a stable
variety, we explain very briefly that notion and give the connection with Kähler–
Einstein theory. In the next section, we will give a more detailed account of the type
of singularities involved.

So first of all, we will consider complex varieties that are Gorenstein in codimen-
sion 1 (this condition replaces regularity in codimension 1 for normal varieties) and
satisfy the condition S2 of Serre. Basically, the singularities in codimension 1 of our
varieties are those of the union of two coordinate hyperplanes (“double crossing”),
so it is important to be aware that such varieties are in general not irreducible, and
hence their normalization will not be connected.

Now we want to recast them in the context given by the singularities of the min-
imal model program (MMP); so we consider such a variety X and its normalization
ν : Xν → X. One can write ν∗KX = KXν + D for some reduced divisor D called
the conductor of ν; it sits above the codimension 1 component of the singular locus
of X. We then say that X has semi log canonical singularities if the pair (Xν , D) is
log canonical in the usual sense. The generalization of the notion of stable curve is
given by the following definition:

Definition 3.4. A projective variety X is called stable if X has semi-log canonical
singularities, and KX is an ample Q-line bundle.

There is a subtlety for the definition of KX , but we refer to Section 3.3 for
appropriate explanations. It is actually possible to define the notion of Kähler–
Einstein metric for a stable variety:
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Definition 3.5. Let X be a stable variety. A Kähler–Einstein metric on X is a
positive admissible current ω on Xreg such that:

1. Ricω = −ω on Xreg,
2.
∫
Xreg

〈ωn〉 = c1(KX)n.

In the non-normal case however, psh weight do not automatically extend across
the singularities, so that it is not clear that the Kähler–Einstein metric will extend
as a positive current on KX satisfying the usual Monge–Ampère equation globally.
Actually, this is the case as shows the following proposition:

Proposition 3.6. Let X be a stable variety, and ω a Kähler–Einstein metric on X.
Then the weight φ := logωn extends to X as a weakly psh weight on KX solution
of the Monge–Ampère equation 〈(ddcφ)n〉 = eφ.

Proof. Taking the ddc of each side in the definition of φ and using the Ricci equa-
tion, we find ω = ddcφ on Xreg, and therefore φ satisfies 〈(ddcφ)n〉 = 〈ωn〉 = eφ.
Pulling back this equation to normalization Xν , we find a psh weight φ′ = ν∗φ on
c1(ν∗KX)|ν−1(Xreg) solution of 〈(ddcφ′)n〉 = eφ

′−φD where D is the conductor of the
normalization. As we work inside Xν

reg and the integral
∫
ν−1(Xreg)

eφ
′−φD is finite, we

infer from Lemma 3.7 below that φ′ extends (as a psh weight) across Dreg. So φ′

induces a psh weight on c1(ν∗KX)|Xν
reg\Dsing

, and by normality of Xν , it extends to
the whole Xν , which means precisely that φ extends as a weakly psh weight on KX .
The expected Monge–Ampère equation holds automatically on X (or equivalently
on X ′) since both measures 〈(ddcφ)n〉 and eφ put no mass on Xsing by definition.

��
In the previous proof, we used the following extension result:

Lemma 3.7. Let U be a neighbourhood of 0 ∈ Cn, H = {z1 = 0} ⊂ Cn, and ϕ be a
psh function defined on U \H. We assume that the integral

∫

U\H

eϕ

|z1|2 dV

is finite. Then ϕ extends across H, and more precisely ϕ tends to −∞ near H.

Proof. (thanks to Bo Berndtsson for providing us with this elegant proof) Assume,
to get a contradiction, that ϕ does not tend to −∞ near H, and let V := U \H. Then
we can find a sequence (xk) of points in V converging to H such that ϕ(xk) � −C
for some constant C. We write xk = (x1,k, . . . , xn,k), and we set rk = |x1,k|/2; the
sequence (rk) converges to 0, and if Dk denotes the polydisk centered at xk with
polyradius (rk, δ, . . . , δ) for some fixed δ > 0, then we have Dk ⊂ V .

Using the mean value inequality for ϕ at xk, we find:

−C � 1
vol(Dk)

∫

Dk

ϕdV.



1698 R. J. BERMAN AND H. GUENANCIA GAFA

Therefore, using Jensen’s inequality, we obtain, up to modifying C by a normaliza-
tion factor depending only on the dimension n:

e−C �
∫

Dk

eϕdV

r2kδ
2(n−1)

but on Dk, |z1| � 3rk so

e−C
′ �

∫

Dk

eϕdV

|z1|2

for C ′ = C+log 9−2(n−1) log δ. As the measure of Dk goes to zero when k → +∞,
it shows that the integral

∫
U\H

eϕ

|z1|2dV is infinite, which is absurd. ��

3.3 Singularities of stable varieties. In this paragraph, we intend to give a
more precise overview of the notion of semi-log canonical singularities. As we will
just touch on this topic, we refer to the nice survey [Kov12] for a broader study.
Other good references are [Kol,KSB88].

In the following, X will always be a reduced and equidimensional scheme of finite
type over C, and we set n := dimX. We emphasize again on the fact that X will
not be irreducible in general.

The conditions G1 and S2. As we saw earlier, we need a canonical sheaf. The
condition G1 will guarantee its existence, and the condition S2 will (among other
things) ensure its uniqueness.

If X is Cohen–Macaulay (for every x ∈ X, the depth of OX,x is equal to its Krull
dimension), then X admits a dualizing sheaf ωX . We say that X is Gorenstein if X is
Cohen–Macaulay and ωX is a line bundle. We say that X is G1 if X is Gorenstein in
codimension 1, which means that there is an open subset U ⊂ X which is Gorenstein
and satisfies codimX(X \ U) � 2.

We say that X satisfies the condition S2 of Serre if for all x ∈ X, we have
depth(OX,x) � min{ht(mX,x), 2}, where ht(mX,x) = codim(x̄) denotes the height of
the maximal ideal mX,x of OX,x. This condition is equivalent to saying that for each
closed subset i : Z ↪→ X of codimension at least two, the natural map OX → i∗OX\Z
is an isomorphism.

If X is G1 and S2, and U ⊂ X is a Gorenstein open subset whose complement has
codimension at least 2, one can then define the canonical sheaf ωX by ωX := j∗ωU
where j : U ↪→ X is the open embedding, and ωU is the dualizing sheaf of U . By
definition, this is a rank one reflexive sheaf. When X is projective, we know that it
admits a dualizing sheaf; as it is reflexive, it coincides with ωX by the S2 condition.

We would like to have an interpretation of ωX , or at least ωU in terms of Weil
divisors as in the normal case where we define the Weil divisor KX as the closure
of some Weil divisor representing the line bundle KXreg . But we have to be more
cautious in the non normal case as it is not clear how we should extend a Weil
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divisor given on Xreg. Actually, this is where the G1 conditions appears: as ωU is a
line bundle, or equivalently a Cartier divisor, we may choose a Weil divisorKU whose
support does not contain any component of Xsing of codimension 1 and represent ωU
(write ωU as the difference of two very ample line bundles). Then we define KX to
be the closure of KU . Clearly, the divisorial sheaf OX(KX) is reflexive, and coincides
with ωU = ωX |U on U , so that by the S2 condition, we get:

ωX  OX(KX).

In fact, if ω[m]
X denotes the mth reflexive power of ωX , the same arguments yield

ω
[m]
X  OX(mKX). Therefore, the Weil divisor KX is Q-Cartier if and only if ωX is

a Q-line bundle, i.e. ω[m]
X is a line bundle for some m > 0.

Conductors and slc singularities. Let now X be a (reduced) scheme, and ν : Xν →
X its normalization. We recall that if X is not irreducible, its normalization is
defined to be the disjoint union of the normalization of its irreducible components.
The conductor ideal

condX := HomOX
(ν∗OXν ,OX)

is the largest ideal sheaf on X that is also an ideal sheaf on Xν . If we think of the
case where B is the integral closure of some integral ring A, then we can easily see
that HomA(B,A) injects in A (via the evaluation at 1), and the image of this map
is the annihilator AnnA(B/A) = {f ∈ A; fB ⊂ A}, or equivalently the largest ideal
I ⊂ A that is also an ideal in B.

Coming back to the case of varieties, we will denote by condXν the conductor
seen as an ideal sheaf on Xν , and we define the conductor subschemes as CX :=
SpecX(OX/condX) and CXν := SpecXν (OXν/condXν ). If X is S2, then one can
show that these schemes have pure codimension 1 (and hence define Weil divisors)
but they are in general not reduced (e.g. the cusp y2 = x3).

If KX is Q-Cartier and X is demi-normal (i.e. X is S2 and has only double
crossing singularities in codimension 1, cf. [Kol]), we have the following relation:

ν∗KX = KXν + CXν . (3.1)

The proof of this identity goes as follows: first, using the demi-normality assumption,
we may assume that the only singularities of X are double normal crossings. Then,
using the universal property of the dualizing sheaf (which coincide with the canonical
sheaf as we observed above) and the projection formula, we have ν∗ωXν = ωX(−CX).
We pull-back this relation to Xν using the fact that the sheaf OX(−CX) becomes
precisely OXν (−CXν ). By the assumptions on the singularities, the latter sheaf is
actually an invertible sheaf so that we get the expected identity (cf. point 8 in [Kol]).
As we will explain below, we do not want to assume a priori that our varieties are
demi-normal. Therefore, it may happen that CXν is not Cartier, and the formula
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(3.1) may not be true anymore. So whenever we will deal with Kähler–Einstein
on those varieties, we will have to apply the arguments on a log-resolution of the
normalization instead of the normalization itself. Anyway, this will not cause any
trouble.

An important point is that whenever the conductor is reduced, then necessarily
X is seminormal (i.e. every finite morphism X ′ → X (with X ′ reduced) that is a
bijection on points is an isomorphism); moreover, a seminormal scheme which is
G1 and S2 has only double crossing singularities in codimension 1, i.e. it is demi-
normal. We refer to [Tra70,GT80,KSS10]) for the previous assertions. This leads to
the following definition:

Definition 3.8. We will say that X has semi-log canonical singularities if:

1. X is G1 and S2,
2. KX is Q-Cartier,
3. The pair (Xν , CXν ) is log-canonical.

If X has semi-log canonical singularities (slc), then CXν is necessarily reduced,
and therefore the codimension 1 singularities of X are only double crossing as we ex-
plained above. This assumption is usually added in the definitions (cf. [Kol,Kov12]),
but we may keep it or not without any change. This justifies the seemingly different
definition given in the previous section. Finally, we can give the definition of a stable
variety:

Definition 3.9. We say that X is stable if

1. X is projective,
2. X has semi-log canonical singularities,
3. KX is Q-ample.

Singularities and Kähler–Einstein metrics: a summary. If we take a closer look at
the proof of Proposition 3.6, we see that we did not use all of the properties of a
stable variety to see that a Kähler–Einstein metric always extend. Actually, we just
used the fact that the conductor was a divisor. Therefore, using the existence and
regularity results that we are going to prove in the next sections, and the restriction
on the singularities of a pair carrying a Kähler–Einstein metric (cf. Proposition 6.1),
we can summarize the problem of the existence of a Kähler–Einstein metric on a
stable variety in the following statement:

Theorem 3.10. Let X be a reduced n-equidimensional projective scheme over C,
satisfying the conditions G1 and S2, and such that KX is an ample Q-line bundle.
Then the following are equivalent:

1. There exists a Kähler form ω on Xreg such that Ricω = −ω and
∫
Xreg

ωn =
c1(KX)n,

2. There exists ω as above which extends to define a positive current in c1(KX),
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3. X has semi-log canonical singularities, i.e. X is stable.
Moreover, by the results of Odaka [Oda13b,Oda11], the latter condition is
equivalent to:

4. The pair (X,KX) is K-stable.

Proof. The proofs of these results lie at various places in this paper:
1 ⇔ 2 is a consequence of Proposition 3.6 as we mentioned above.
1 ⇒ 3 is the content of Proposition 6.1.
3 ⇒ 1 is the main result of this paper, obtained as a combination of the results in
Sections 4 and 5. ��

4 Variational solutions

4.1 General setting. Consider the following general setting: X is a compact
Kähler manifold and [ω] a big class, with ω smooth (but not necessarily positive).
We say that a function u ∈ PSH(X,ω) has full Monge–Ampère mass, and we will
write u ∈ E(X,ω), if the total mass of MA(u) is equal to the volume of the class [ω],
where the volume in question may be defined by V := vol([ω]) :=

∫
X MA(umin), for

umin any element in PSH(X,ω) with minimal singularities, cf. Section 2.

We now recall an important subspace of E(X,ω) denoted by E1(X,ω), and con-
sisting of functions with finite energy. The energy E(u) of an ω-psh function u (not
necessarily in E(X,ω)) is defined in the following way (cf. [GZ07,BEGZ10,BBGZ09]
for more details—the energy is sometimes denoted by E in the aforementioned pa-
pers).

First, if u ∈ PSH(X,ω) has minimal singularities, we set

E(u) :=
1

(n+ 1)V

n∑

j=0

∫

X
(u− Vθ) MA

(

u(j), V
(n−j)
θ

)

where MA is the mixed non-pluripolar Monge–Ampère operator. If now u is any
ω-psh function, we defined

E(u) := inf{E(v) | v ∈ PSH(X,ω) with minimal singularities, v � u}.
Then we set E1(X,ω) := {u ∈ PSH(X,ω), E(u) > −∞}. Actually, [BEGZ10,
Proposition 2.11] gives another characterization of this last space: a function u ∈
PSH(X,ω) belongs to E1(X,ω) if and only if u ∈ E(X,ω) and

∫
X(u− Vθ)MA(u) <

+∞ (and for any u ∈ E(X,ω), the explicit integral formula for E(u) above is still
valid). Using this result, it becomes clear that E1(X,ω) ⊂ E(X,ω) as announced.

We should finally add that E is an upper-semicontinuous (usc) concave func-
tional on PSH(X,ω), and that it is the normalized primitive of the Monge–Ampère
operator, i.e.

(dE)u =
1
V

MA(u)n. (4.1)
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4.2 Uniqueness. Given a measure μ on X (possible non-finite) we consider the
following MA-equation for u ∈ PSH(X,ω) attached to the pair (ω, μ) :

ωnu = euμ, (4.2)

where ωnu := MA(u) is the non-pluripolar Monge–Ampère operator as before. This
equation is equivalent to the following normalized MA-equation on E(X,ω)/R :

ωnu
V

=
euμ
∫
euμ

, (4.3)

The equivalence follows immediately from the R-invariance of the latter equation
and the substitution u �→ u − log

∫
euμ which maps solutions of Equation (4.2) to

solutions of the Equation (4.3).

Proposition 4.1. Any two solutions u and v of the MA-equation (4.2) such that
u and v are in E(X) coincide.

Proof. This is an immediate consequence of the comparison principle [BEGZ10,
Corollary 2.3]: if u and v are in E(X) then

∫

{u<v}
MA(v) �

∫

{u<v}
MA(u).

But the MA above then forces u = v a.e w.r.t. the measure μ. Since μ cannot charge
pluripolar sets (as MA(u) does not) it follows that u = v away from a pluripolar set
and hence everywhere, by basic properties of psh functions. ��
4.3 Existence results for log canonical pairs. Let (X,D) be a log canonical
pair such that the log canonical divisor KX +D is big. Assume that (X,D) is a log
smooth, i.e. X is smooth and

D =
∑

i

ciDi

is a normal crossing divisor with ci ∈] − ∞, 1]. To the pair (X,D) we can associate
the following Kähler–Einstein type equation for a metric φ on L := KX +D :

(ddcφ)n = eφ−φD , (4.4)

where φD =
∑

i ci log |si|2 and si are sections cutting out the divisors Di above.

Theorem 4.2. There is a unique finite energy solution φ to the equation above.

Proof. The proof is a modification of the variational approach in [BBGZ09] (concern-
ing the case when D is trivial). To explain this we fix a smooth form ω ∈ c1(KX+D).
Then the equation above is equivalent to a Monge–Ampère equation for an ω-psh
function u :

ωnu = euμ, (4.5)
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where the measure μ is of the form μ = ρdV for a function ρ in L1−δ(X) (but ρ is
not in L1(X)!). We let

L(u) := − log
∫
euμ.

Then, at least formally, solutions of Equation (4.5) are critical points of the func-
tional

G(u) := E(u)+L(u).

in view of the Equation (4.1) satisfied by E . L also defines an usc concave functional
on PSH(X,ω) and we let L(X,ω) := {L > −∞} (the upper semi-continuity follows
from Fatou’s lemma).

Note that Lemma 4.3 below guarantees that the intersection E1(X,ω) ∩ L(X,ω)
is non-empty. Hence, G(u) is not identically equal to −∞ on its domain of definition
that we will take to be E1(X,ω) (equipped with the usual L1(X)-topology).

Next, we observe that

G(u) � E(u) −
∫
uμ0 + C ′′ (4.6)

Indeed, since μ � Cμ0, where μ0 is finite measure on X integrating all quasi-psh
functions on X (in our case we may take μ0 = ‖s′‖dV for some holomorphic section
s′ defined by the negative coefficients of D) :

∫
euμ � C

∫
euμ0

and hence

L(u) � C ′ − log
∫
euμ0 � C ′′ −

∫
uμ0

using Jensen’s inequality, which proves (4.6). In particular, G(u) is bounded from
above. Indeed, by scaling invariance we may assume that supX u = 0 and then use
that, by basic compactness properties of ω-psh functions, supu �

∫
uμ0 + C.

Let now uj ∈ E1(X,ω) be a sequence such that

G(uj) → sup
E1(X,ω)

G := S < ∞.

Again, by the scale invariance of G we may assume that supX uj = 0. In particular,

L(uj) � S/2 − E(uj)

for j > j0. But, by (4.6), E(uj) is bounded from below and hence there is a constant
C such that

E(uj) � −C, L(uj) � −C.
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Let now u∗ be a limit point of uj . By upper-semicontinuity we have that

E(u) � −C, L(u) � −C.
Finally, we note that u∗ satisfies the Equation (4.5) by applying the projection
argument from [BBGZ09] as follows. Fixing v ∈ C∞(X) let f(t) := Eω(Pω(u∗ +
tv)) + L(u∗ + tv), where

Pω(u)(x) := sup{v(x) : v � u, v ∈ PSH(X,ω)}
(note that f(t) is finite for any t). The functional L(u) is decreasing in u and hence
the sup of f(t) on R is attained for t = 0. Now Eω◦Pω is differentiable with differential
MA(Pωu) at u [BBGZ09]. Hence, the condition df/dt = 0 for t = 0 gives that the
variational equation (4.5) holds when integrated against any v ∈ C∞(X). ��

Let us now prove the following result, that we used in the proof:

Lemma 4.3. Let (X,D) be a log smooth pair and L a big line bundle. Let θ be
a smooth (1, 1) form whose cohomology class is c1(L). Let s0 be a section of D,
and | · | a smooth hermitian metric on OX(D). Then there exists a θ-psh function
u ∈ E1(X, θ) such that eu/|s0|2 is integrable.

Proof. As L is big, the exists m big enough such that mL−D is effective. We choose
t a holomorphic section of mL−D, and consider s := s0t which is a section of mL
vanishing along D. Let h0 be an smooth hermitian metric on L with curvature form
θ, and let Vθ be the upper envelope of all (normalized) θ-psh functions. We define
on mL the hermitian metric h := h⊗m

0 e−mVθ . For 0 < α < 1 small enough we claim
that the function

u := Vθ −
(

− 1
m

log |s|2h
)α

suits our requirements.
First of all, it is θ-psh because of the following general fact: if ψ is θ-psh and

χ : R → R is convex and non-decreasing satisfying χ′ � 1, then Vθ + χ(ψ − Vθ) is
θ-psh. Indeed, ddc(Vθ+χ(ψ−Vθ)) = (1−χ′)(θ+ddcVθ)+χ′(θ+ddcψ)+χ′′|d(ψ−Vθ)|2
where χ′ and χ′′ are evaluated at ψ − Vθ. Now we apply this to ψ = 1/m log |s|2hm0 .

For the integrability property, we use the following inequality for x a real number
(big enough): xα � (n+ 1) log x− C for some C > 0 depending only on α. Now we
observe that Vθ+χ(ψ−Vθ) � χ(ψ) : indeed, χ(ψ−Vθ)−χ(ψ) � supχ′· (−Vθ) � −Vθ,
so that in our case, u �

(− 1
m log |s|2h0

)α. If we apply the basic inequality stated
above to x = − 1

m log |s|2h0
which can be made big enough by multiplying h0 by a big

constant (this does not change the curvature), we get

eu � C

(

− 1
m

log |s|2h0

)−(n+1)

.
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As D has snc support, and |t| is bounded from above, we are left to check that
the integral

∫

D

dV
∏
i�n |zi|2· logn+1(

∏
i�n |zi|2)

over the unit polydisc D in Cn converges. But after a polar change of coordi-
nate, we are led to estimate

∫
[0,1]n

dx1···dxn∏
i�n xi·logn+1(

∏
i�n x

2
i )

, which equals 1
2n+1n

∫
[0,1]n−1

dx1···dxn−1∏
i�n−1 xi·logn(

∏
i�n−1 xi)

. By induction, and using the Poincaré case, it concludes.

Finally, one has to check that u ∈ E1(X, θ). We compute the capacity Capθ(u <
Vθ − t) for t big. But (u < Vθ − t) =

(
1
m log |s|2h < −t1/α) ⊂ (( 1

m log |s|2h0
< −t1/α))

and thus Capθ(u < Vθ − t) � C
t1/α because for every θ-psh function ψ, one has

Capθ(ψ < −t) � Cψ
t (this is an easy generalization of [GZ05, Proposition 2.6]).

Therefore, if α < 1
n+1 , one has

∫ +∞

0
tnCapθ(u < Vθ − t)dt < +∞

which, using the characterization given in [BBGZ09, Lemma 2.9], ends the proof of
the lemma. ��
Remark 4.4. The proof of the preceding lemma yields actually a stronger result. If∑
aidiv(si) is an effective divisor with snc support meeting D transversally and such

that ai < 1 for all i, then the function u obtained above satisfies eu/
∏ |si|2ai |s0|2 ∈

L1(dV ), and more generally this is still true for eεu for all ε > 0 (use the inequality
εxα � (n+ 1) log x− C for x = − 1

m log |s|2h0
this time).

4.4 Stability under perturbations. Let now L be a semipositive and big
line bundle, and consider the perturbed ample line bundles Lj := L+ εjA, for εj a
sequence of positive numbers tending to 0 and A a fixed ample line bundle. Fixing
also a Kähler form ωA ∈ c1(A) and a smooth semipositive form ω ∈ c1(L), we write
ωj := ω + εjωA. Let μj be the sequence of measures on X given by

μj =
∏

α

(|sα|2 + εj)eα
dV

∏
β |sβ|2

where eα > −1 for all α, and the divisor
∑

α div(sα) +
∑

β div(sβ) is a reduced
normal crossing divisor. This is precisely the sequence of approximations we are
going to use to solve our Kähler–Einstein equation.

Consider now the following Monge–Ampère equations for uj ∈ E(X,ωj) (and
sup-normalized):

ωnuj/V =
eujμj∫
X e

ujμj
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and similarly

ωnu/V =
euμ
∫
X e

uμ

for u ∈ E(X,ω).

Theorem 4.5. The unique sup-normalized solution uj of the first equation above
converges, in the L1(X)-topology, to the unique sup-normalized solution u to the the
latter equation. Equivalently, the solutions vj of the corresponding non-normalized
equations converge in L1(X) to v solving the corresponding limiting non-normalized
equation.

Proof. We denote by Gj (resp. Lj) the functional determined by the pair (ωj , μj)
(resp. μj), and by uj the sup-normalized maximizer of Gj . We also denote by u0 the
sup-normalized fixed ω-psh function given by Lemma 4.3. Let us add that in the
course of the proof, the precise value of the constant C may, as usual, change from
line to line. We split the proof into four steps.

Step 1. We first show that

− C � Gj(uj) � C. (4.7)

As u0 is ω-psh, it is also ωj-psh. Moreover, the capacity computation of Lemma 4.3
shows that the energy of u0 with respect to ωj is finite, and as Eωj (u0) increases with
j, we obtain

Eωj (u0) � −C.
Besides, by dominated convergence, we have limj→+∞ Lj(u0) = L(u0) and therefore
we get Lj(u0) � −C. Consequently, Gj(uj) � Gj(u0) � −C which gives a first bound
(recall that uj maximize Gj by Theorem 4.2 and the translation invariance of Gj).

Choose now a probability measure μ0 satisfying μj � e−Cμ0 for all j (its existence
is clear given the precise form of μj). Then Jensen’s inequality gives

Lj(uj) � −
∫

X
ujdμ0 − C

but the compactness properties of quasi-psh functions (all uj ’s are CωA-psh) also
gives the inequality

supuj = 0 �
∫

X
ujdμ0 + C.

Combining the two previous inequalities, we get

Gj(uj) � Eωj (uj) + C

which gives both the uniform upper bound for Gj(uj) (as Eωj is always non-positive)
and a uniform lower bound Eωj (uj) � −C.
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Let u be an L1-limit point in PSH(X,ω) of the sequence (uj).

Step 2. We next show that

G(u) � lim sup Gj(uj). (4.8)

First by Fatou’s lemma, we have

L(u) � lim sup Lj(uj).
Moreover

E(u) � lim sup Eωj (uj)
as follows from Lemma 4.6 below. Putting these two inequalities together gives the
desired bound.

Step 3. u is a sup-normalized maximizer of G.

For any given sup-normalized ω-psh function v, we need to show that

G(u) � G(v). (4.9)

Of course, one can assume that G(v) is finite. Thanks to step 2, it is enough to show
that lim supGj(v) � G(v). But this inequality is far from clear as we cannot directly
apply the dominated convergence theorem here. Indeed, for the energy part, it could
happen that Eω(v) is finite though Eωj (v) = −∞ for all j. As for the other part,
despite ev ∈ L1(μ), it is not obvious that ev ∈ L1(μj) (because of the “zeroes” of μ
which do not appear in μj).

To bypass these difficulties we will use a regularization/perturbation argument.
More precisely, we pick a family of smooth ω-psh functions (vδ)δ>0 which decrease
to v, and we set for all positive δ, ε:

vδ,ε := (1 − ε)vδ + εu0

where we recall that u0 denotes the particular (sup-normalized) ω-psh function con-
structed in Lemma 4.3.

As vδ is smooth and u0 ∈ E1(X,ωj) for all j, vδ,ε has finite ωj-energy, the domi-
nated convergence theorem shows that

lim
j→+∞

Eωj (vδ,ε) = Eω(vδ,ε). (4.10)

Moreover, as we observed in Remark 4.4, the function eεu0 is in L1(μ) for all ε > 0,
and evδ,ε � eεu0 . Therefore, by dominated convergence, we get

lim
j→+∞

Lj(vδ,ε) = L(vδ,ε). (4.11)

Combining (4.8) with (4.10) and (4.11), we get G(u) � G(vδ,ε) for all δ, ε > 0. Set
vε := (1 − ε)v + εu0. By monotonicity of Eω, we have Eω(vδ,ε) � Eω(vε). Using the
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dominated convergence theorem, we also see that L(vδ,ε) → L(vε). Therefore, we
have G(u) � G(vε). Finally, using the concavity of G, we get G(u) � (1 − ε)G(v) +
εG(u0), and we get (4.9) by letting ε go to zero.

Step 4. Back to the non-normalized equation. We have vj = uj + Lj(uj) and
as shown above in (4.7), Gj(uj) is a bounded sequence (more precisely, it converges
to the maximal value S of G) and 0 � −E(uj) � C, which implies that Lj(uj)
is also a bounded sequence. After passing to a subsequence we may thus assume
that Lj(uj) → l ∈ R so that vj → v := u + l, solving the desired equation [and
v ∈ E1(X,ω)]. By the uniqueness of solutions of the latter equation this means that
the whole sequence uj converges to v, which concludes the proof. ��

Let us now give the proof of the following result which was essential for step 2:

Lemma 4.6. Let [ωj ] and [ω] be semi-positive big classes such that ωj → ω in the
C∞-topology of smooth (semipositive) forms. If uj ∈ E(X,ωj) (and u ∈ E(X,ω))
such that uj → u in L1(X), then

Eω(u) � lim sup
j

Eωj (uj).

Proof. When ωj = ω the lemma amounts to the well-known fact that Eω is usc. We
may as well assume that supuj = supu = 0.

First of all, we modify the sequence (uj) to make it non-increasing. More precisely,
we set ũj := (supk�j uk)∗, which defines an ωj-psh function. Then ũj � uj and the
sequence (ũj)j is non-increasing. Given v an ω-psh function and c ∈ R, we will write
vc := max{v, c}. By construction ũcj decreases to uc, and all these functions are ω0-
psh. By the local convergence result of Bedford–Taylor for mixed Monge–Ampère
expressions and the smooth convergence of ωj to ω, we see that

Eω(uc) = lim
j→+∞

Eωj (ũcj).

As uj � ũj � ũcj , the monotonicity of Eω ensures that

Eω(uc) = lim sup
j→+∞

Eωj (uj).

Taking the infimum over all c and using the definition of the functional Eω, we obtain
the desired inequality. ��

5 Smoothness of the Kähler–Einstein metric

Before we go into the details of the proof of the regularity theorem, we would like to
give an overview of previous related results and underline the main differences that
will appear in our specific case, namely the case of general log canonical pairs. As we
will rely on the so called logarithmic case (i.e. (X,D) is log smooth, D is reduced,
and KX +D is ample), the next section will be devoted to recall some of the main
tools appearing in this setting. Then, we will give the proof of the main regularity
theorem, which will constitute the core of this section.
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5.1 Special features in the log canonical case. We should first mention the
case of varieties with log terminal singularities, or more generally klt pairs, which
correspond to the pairs where the discrepancies ai defined earlier satisfy the strict
inequalities ai > −1. Then the situation is relatively well understood: In the non-
positively curved case, we know that the Kähler–Einstein metric exists, is unique,
has bounded potential, and induces on the regular locus a genuine Kähler–Einstein
metric (see e.g. [BEGZ10,EGZ08,EGZ09,DP10]). As for the case of positive cur-
vature, or log Fano manifolds, then there exist criteria (like the properness of the
Mabuchi functional) to guarantee the existence and uniqueness (modulo automor-
phisms of X) of a Kähler–Einstein metric [BBEGZ11]; this metric is also known
to have bounded potential and to be smooth on the regular locus of X (see again
[BBEGZ11,Pău08]).

However, the behavior of the Kähler–Einstein metric near the singularities of X
is mostly unknown (except if the singularities are orbifold). In the case of a klt pair,
we know that the metric will not be smooth along the divisor, but its singularities
can sometimes be understood outside of the singular part of (X,D). For example,
a recent result in this direction states that the Kähler–Einstein metric has cone
singularities near each point where (X,D) is log smooth, i.e. X is smooth and D
has simple normal crossing support (cf. [Gue13,GP13]).

When (X,D) is now a log smooth pair, the situation gets easier because there is
no more loss of positivity coming from the resolution of singularities. For example,
if the coefficients of D are in [0, 1) (the pair is then klt), the Kähler–Einstein metric
is known to have cone singularities along D, as it was proved by [GP13] in full
generality, and by [Bre11,CGP13,JMR11] under some assumptions on D.

When now every coefficient of D is equal to 1, and KX + D is ample, then we
know from the work of Kobayashi [Kob84] and Tian–Yau [TY87] that there exists a
unique complete Kähler–Einstein metric having Poincaré singularities along D. The
situation where the coefficients of D are in ]0, 1] behaves like a product of cone and
Poincaré geometries and was studied in [Gue12,GP13].

In a slightly different direction, Tsuji [Tsu88a] has considered the case of a sin-
gular variety with ample canonical line bundle such that only one divisor appears in
its resolution, with discrepancy equal to −1. Finally, Wu [Wu08,Wu09] has worked
out the case of a quasi-projective manifold compactified by a snc divisor

∑
Di such

that KX +
∑
aiDi is ample for some coefficients ai � −1. In our case however, such

a strong positivity assumption will never happen as soon as we have to perform a
non-trivial resolution.

As one can already observe in the log smooth case studied by Kobayashi and
Tian–Yau, the log canonical case is very different from the klt case. Let us mention
some striking divergences: first of all, the potentials are no more bounded even in the
ample case so that the solution does not have minimal singularities. Moreover, the
Kähler–Einstein equation in this setting is closely related to a negative curvature
geometry. Indeed, if we first consider the Ricci-flat case, then it is impossible to
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write the equation on the whole X. Indeed, the current solution obtained on Xreg

will not have finite mass near the singularities, and hence it will not extend as a
global positive current on X. This phenomenon already happens in [TY90]. Finally,
it has been proven in [BBEGZ11, Proposition 3.8] that any pair (X,D) with X
normal and −(KX +D) ample admitting a Kähler metric ω on Xreg with continuous
potentials solution of Ricω = ω + [D] is necessarily klt. Therefore it is pointless
to look for positively curved Kähler–Einstein metric in the general setting of log
canonical pairs instead of klt pairs.

To finish this discussion, let us stress the fact that the class of varieties with
semi-log canonical singularities can be realized as a subclass of log canonical pairs
(cf. definition 3.8). This is the largest “reasonable” class to look for Kähler–Einstein
metrics: for example, if X is a smooth Fano manifold carrying a smooth divisor
D ∈ | − KX |, then for any ε > 0, one has KX + (1 + ε)D > 0; however, there is
no smooth Kähler–Einstein metric with negative scalar curvature on X \D. Indeed,
its existence would contradict the Yau–Schwarz lemma applied with the complete
Ricci-flat Kähler metric constructed in [TY90].

Moreover, we will see that the existence of a negatively curved Kähler–Einstein
metric on the regular part of a normal projective variety with maximal volume forces
the singularities to be at worst log canonical, cf. Proposition 6.1.

5.2 The logarithmic case. In this section, we will briefly recall the Theorem
of Kobayashi and Tian–Yau constructing negatively-curved Kähler–Einstein metrics
on quasi-projective varieties X \D where D is a reduced divisor with simple normal
crossings, and KX + D is ample. In the course of the proof of Theorem 5.6, we
will use in an essential manner the functional spaces introduced by these authors,
namely the “quasi-coordinates” version of the usual Hölder spaces C k,α. For now,
X0 will denote X\D.

Definition 5.1. We say that a Kähler metric ω on X0 is of Carlson–Griffiths type
if there exists a Kähler form ω0 on X such that ω = ω0 −∑K dd

c log log 1
|sk|2 .

In [CG72], Carlson and Griffiths introduced such a metric for some ω0 ∈ c1(KX+
D), but one can easily see that such a metric always exists on a Kähler manifold
without assumptions on the bundle KX+D. One can also observe that the existence
of such a metric ω forces the cohomology class {ω} to be Kähler by Demailly’s
regularization theorem [Dem82,Dem92].

The reason why we exhibit this particular class of Kähler metrics on X0 having
Poincaré singularities along D is that we have an exact knowledge on its behaviour
along D, which is much more precise that knowing its membership in the aforemen-
tioned class. This is precisely the class in which one will look for a Kähler–Einstein
metric, so that one needs to define the appropriate analogue of the usual Hölder
spaces C k,α. And to do so, one may (almost) boil down to the usual euclidean
situation.
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The key point is that (X0, ω) has bounded geometry at any order. Let us get
a bit more into the details. To simplify the notations, we will assume that D is
irreducible, so that locally near a point of D, X0 is biholomorphic to D∗ × Dn−1,
where D (resp. D∗) is the unit disc (resp. punctured disc) of C. We want to show
that, roughly speaking, the components of ω in some appropriate coordinates have
bounded derivatives at any order. The right way to formalize it consists in intro-
ducing quasi-coordinates: they are maps from an open subset V ⊂ Cn to X0 having
maximal rank everywhere. So they are just locally invertible, but these maps are
not injective in general.
To construct such quasi-coordinates on X0, we start from the universal covering map
π : D → D∗, given by π(w) = e

w+1
w−1 . Formally, it sends 1 to 0. The idea is to restrict

π to some fixed ball B(0, R) with 1/2 < R < 1, and compose it (at the source) with
a biholomorphism Φη of D sending 0 to η, where η is a real parameter which we will
take close to 1. If one wants to write a formula, we set Φη(w) = w+η

1+ηw , so that the
quasi-coordinate maps are given by Ψη = π◦Φη×IdDn−1 : V = B(0, R)×Dn−1 → D∗,
with Ψη(v, v2, . . . , vn) =

(
e

1+η
1−η

v+1
v−1 , v2, . . . , vn

)
.

Once we have said this, it is easy to see that X0 is covered by the images Ψη(V )
when η goes to 1, and for all the trivializing charts for X, which are in finite number.
Now, an easy computation shows that the derivatives of the components of ω with
respect to the vi’s are bounded uniformly in η. This can be thought as a consequence
of the fact that the Poincaré metric is invariant by any biholomorphism of the disc.

At this point, it is natural to recall the definition of the Hölder space of C k,α
qc -

functions on X0 introduced by Cheng–Yau [CY80]:

Definition 5.2. For a non-negative integer k, a real number α ∈]0.1[, we define:

C k,α
qc (X0) =

{

u ∈ C k(X0); sup
V,η

||u ◦ Ψη||k,α < +∞
}

where the supremum is taken over all our quasi-coordinate maps V (which cover

X0). Here || · ||k,α denotes the standard C k,α
qc -norm for functions defined on a open

subset of Cn.

The following fact, though easy, is very important (see e.g. [Kob84] or [Gue12,
Lemma 1.6] for a detailed proof):

Lemma 5.3. Let ω be a Carlson–Griffiths type metric on X0, and ω0 some Kähler
metric on X. Then

F0 := log
(∏

|sk|2 log2 |sk|2 · ωn/ωn0
)

belongs to the space C k,α
qc (X0) for every k and α.

Finding the Kähler–Einstein metric consists then in showing that the Monge–
Ampère equation (ω + ddcϕ)n = eϕ+fωn has a unique solution ϕ ∈ C k,α

qc (X0)
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for all functions f ∈ C k,α
qc (X0) with k � 3. This can be done using the conti-

nuity method in the quasi-coordinates. In particular, applying this to f = F :=
− log(

∏ |sk|2 log2 |sk|2 · ωn/ωn0 ) + (smooth terms onX), which the previous lemma
allows to do, this will prove the existence of a negatively curved Kähler–Einstein
metric, which is equivalent to ω (in the strong sense: ϕ ∈ C k,α

qc (X0) for all k, α).
In this continuity method, one needs to obtain first uniform estimates; they follow

from a consequence of Yau’s maximum principle for complete manifolds which we
recall here (see [CY80, Proposition 4.1]):

Proposition 5.4. Let (X,ω) be a n-dimensional complete Kähler manifold, and
F ∈ C 2(X) a bounded function. We assume that we are given u ∈ C 2(X) satisfying
ω + ddcu > 0 and

(ω + ddcu)n = eu+Fωn.

Suppose that the bisectional curvature of (X,ω) is bounded below by some constant,
and that u is bounded. Then

inf
X
u � − sup

X
F and sup

X
u � − inf

X
F.

There are similar results for the Laplacian estimates, but as we will not use them
directly, we do not state them here. To summarize the discussion, one obtains:

Theorem 5.5. (Kobayashi [Kob84], Tian–Yau [TY87]). Let X be a compact Kähler
manifold, D a reduced divisor with simple normal crossings, ω a Kähler form of
Carlson–Griffiths type on X\D, and F ∈ C k,α

qc (X\D) for some k � 3. Then there

exists ϕ ∈ C k,α
qc (X\D) solution to the following equation:

(ω + ddcϕ)n = eϕ+Fωn.

In particular if KX+D is ample, then there exists a (unique) Kähler–Einstein metric
of curvature −1 equivalent to ω.

5.3 Statement of the regularity theorem. In this section, we prove that the
Kähler–Einstein metric attached to a log canonical pair (X,D) (satisfying KX +D
ample) by Theorem 4.2 is smooth on X0 = Xreg \ Supp(D). As usual, we will work
on a log resolution π : X ′ → X, where:

KX′ = π∗(KX +D) +
∑

aiEi,

Ei being either an exceptional divisor or a component of the strict transform of D,
and the coefficients ai (called discrepancies) satisfy the inequality ai � −1.

The Kähler–Einstein metric is given on X ′ by a (singular) psh weight φ on
π∗(KX +D) satisfying

(ddcφ)n = eφ+
∑
aiφEi
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where φEi is a psh weight on OX′(Ei) such that ddcφEi = [Ei]. So if in local coordi-
nates, Ei is given by {zn = 0}, then φEi = log |zn|2.

Our aim is to obtain regularity properties for the solutions of degenerate Monge–
Ampère equations like the previous one; this is the content of the following theorem:

Theorem 5.6. Let X be a compact Kähler manifold of dimension n, dV some
volume form, D =

∑
aiDi a R-divisor with coefficients in (−∞, 1] and defining

sections si, E =
∑
cαEα an effective R-divisor such that Dred +E has snc support,

and θ a semipositive form with
∫
X θ

n > 0 such that {θ} − c1(E) is a Kähler class.
Then the θ-psh function ϕ with full Monge–Ampère mass, which is a solution of

〈(θ + ddcφ)n〉 =
eϕdV

∏
i |si|2aj

is smooth outside of Supp(D) ∪ Supp(E).

Note that although ϕ has full Monge–Ampère mass, it is in general far from
having minimal singularities as soon as some coefficient ai of D equals 1. Think for
example of the logarithmic case (a log smooth pair (X,D) where KX +D is ample;
then the potential of the Kähler–Einstein metric is not bounded whereas the class
is ample.

Let us go back to the general Kähler–Einstein case. We would like to apply the
previous results with E being some positive combination of the Ei’s. The problem
is that there might be no such divisors; for example if π happens to be a small
resolution, its exceptional locus has codimension at least 2. Therefore we need to
perform another modification.

On X ′, π∗(KX + D) is no more ample, and by [BBP10, Proposition 1.5], its
augmented base locus is B+(π∗(KX +D)) = π−1(B+(KX +D)) ∪ Exc(π) = Exc(π),
and lies above Xsing ∪ Supp(D). It is well-known that one can find a log resolution
μ : X ′′ → X ′ of (X ′,B+(π∗(KX+D))), and an effective Q-divisor F with snc support
lying above B+(π∗(KX +D)) and such that μ∗π∗(KX +D) −F is ample. Moreover
one can also assume that F +

∑
E′
i has snc support, where E′

i denotes the strict
transform of Ei by μ.

Let us recall the argument. We start by resolving the singularities of a Kähler
current T � ω (ω a Kähler form on X ′) in π∗(KX +D) computing B+(π∗(KX +D)),
then we write Siu’s decomposition μ∗T = θ + [D] with θ semi-positive dominating
μ∗ω, and D lying above B+(π∗(KX + D)). Finally, we choose a μ-exceptional Q-
divisor G such that −G is μ-ample; it exists because μ is a finite composition of
blow-ups with smooth centers. Then it becomes clear that for ε > 0 small enough,
{μ∗θ}−εG is a Kähler class, and we have μ∗π∗(KX+D) = ({μ∗θ}−εG)+(εG+D),
with εG+D lying above B+(π∗(KX+D)) and having simple normal crossing support.
If one had chosen a log resolution of the ideal sheaf generated by the augmented base
locus of π∗(KX + D) and the O′

X(Ei), we would have obtained the refined result
that F + E′ has snc support.
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Set ν := π ◦μ : X ′′ → X, and write KX′′ = ν∗(KX +D) +Eν . We know that Eν
is a divisor with snc support and coefficients � −1, and by the construction above,
there exists a snc divisor F on X ′′ lying above Xsing ∪Supp(D) such that F+(Eν)red
has snc support and ν∗(KX +D) − F is ample. Applying Theorem 5.6, we get:

Corollary 5.7. Let (X,D) be a log canonical pair such that KX+D is ample. Then
the Kähler–Einstein metric ωKE on (X,D) is smooth on Xreg \ Supp(D).

As we shall see in the course of the proof (cf. Section 5.5.2), we do not obtain
very precise estimates on the potential of the solution, even at order zero. However,
it is tempting to believe that the potential φKE of the Kähler–Einstein metric should
be locally bounded outside of the non-klt locus of (X,D) defined as the support of
the sheaf OX/I (X,D) where I (X,D) is the multiplier ideal sheaf of (X,D) (cf.
e.g. [Laz04]). However, as this locus cannot be read easily on some log resolution, it
does not seem obvious how one should tackle this question.

5.4 Preliminaries: the regularized equation. We now borrow the notations
of Theorem 5.6, and we let ω0 be a Kähler form on X; it will be our reference metric
in the following. Recall that we want to solve the equation

MA(ϕ) =
eϕdV
∏
i |si|2ai

where the unknown function is ϕ a θ-psh function, si are non-zero sections of
OX(Di), | · |i are smooth hermitian metrics on OX(Di), f ∈ C ∞(X) and dV is
a smooth volume form on X. Moreover, the expression MA(ϕ) has to be under-
stood as the non-pluripolar Monge–Ampère operator. It will be convenient for the
following to differentiate the “klt part” of D from its “lc part”, so we introduce the
following notation:

D =
∑

aj<1

ajDj

︸ ︷︷ ︸
Dklt

+
∑

ak=1

Dk

︸ ︷︷ ︸
Dlc

.

By Theorem 4.5, we know that the solution is the limit of any sequence of solu-
tions of some appropriate regularized equations. The regularization process we are
going to use concerns both the a priori non-Kähler class {θ} and the “klt part” in
the volume form:

∏
aj<1 |si|−2aj . More concretely, we will be studying the following

equation:

〈(θ + tω0 + ddcϕt,ε)n〉 =
eϕt,ε+fdV

∏
aj<1(|si|2 + ε2)ai

∏
ak=1 |sk|2 . (5.1)

Smoothness of the regularized solution. At this point, it is still not completely clear
that the solution ϕt,ε of Equation (5.1) is smooth on X \ Dlc. So we translate our
equation into the logarithmic setting : we set
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ωt,lc := θ + tω0 −
∑

ak=1

ddc log(log |sk|2)2.

We may choose the hermitian metrics | · |k such that |sk| < 1 and such that ωt,lc
defines a Kähler metric on X \Dlc (cf. [CG72,Gri76] e.g.). Of course this rescaling
will depend on t, but we will explain how to bypass this problem later.

So using this new reference metric, one may rewrite Equation (5.1) in the follow-
ing form:

(ωt,lc + ddcψt,ε)n =
eψt,ε+ftωnt,lc∏

aj<1(|sj |2 + ε2)aj

where ψt,ε = ϕt,ε+
∑

ak=1 log(log |sk|2)2 and ft = − log
(∏

k |sk|2 log2 |sk|2ωnt,lc
dV

)
. Clearly,

ft is bounded (but only the lower bound is uniform in t) and smooth on X \ Dlc,
but we know by Lemma 5.3 that ft is smooth when read in the quasi-coordinates
adapted to the pair (X,Dlc). Therefore, using the Theorem of Kobayashi and Tian–
Yau (see Theorem 5.5), we know that the solution ψt,ε is bounded on X \Dlc: there
exists Ct,ε > 0 such that

− Ct,ε −
∑

ak=1

log(log |sk|2)2 � ϕt,ε � Ct,ε −
∑

ak=1

log(log |sk|2)2. (5.2)

Moreover, ψt,ε is smooth in the quasi-coordinates. In particular, ωt,lc + ddcψt,ε is
a Kähler metric with bounded geometry on X \Dlc and with Poincaré type growth
along Dlc. Therefore it is complete and has a bounded curvature tensor. To prove
the regularity theorem, we will thus have to obtain on each compact subset of X0

estimates on the potential ϕε at any order.

A first attempt at the uniform estimate. The previous observation allows us to
apply Yau’s maximum principle (cf. Proposition 5.4), and obtain that

sup
X\Dlc

ψt,ε � sup
X\Dlc

(∑
ai log(|si|2 + ε2) − ft

)

and similarly infX\Dlc ψt,ε � infX\Dlc(
∑
ai log(|si|2 + ε2) − ft). If some coefficient

ai is negative, then we cannot obtain a bound for supψt,ε. As for the lower bound,
−ft is not uniformly bounded from below because ωt,lc degenerates at t = 0 (and if
some ai is positive, ai log(|si|2 + ε2) is not uniformly bounded below neither), so we
cannot expect to find a lower bound for ψt,ε using this strategy. Therefore we need
another method to obtain a zero-order estimate on the potential of the solution. In
fact, we will need to add some barrier function to gain positivity, in the spirit of
Tsuji’s trick [Tsu88b] for the Laplacian estimate of a degenerate class; the novelty
in our situation is that this is also needed for the zero-order estimates (as opposed
to the klt case).
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5.5 Uniform estimate. Before going any further, let us fix some notations.

5.5.1 A new framework. We will denote by si, i ∈ I (non-zero) sections of the
(reduced) components of the divisorDred+E, and by sα, α ∈ A (non-zero) sections of
the (reduced) components of E; we endow all these line bundles with suitable smooth
hermitian metrics (see below). Finally, we set X0 := X \ (Supp(D) ∪ Supp(E)), and
define F := (Dred + E)red as the reduced divisor X \X0.

The idea is to work on X0. Of course, if we endow the last space with the Kähler
metric ωt,lc, it will not be complete (near Dklt e.g.), so we won’t be able to use Yau’s
maximum principle. Instead, we will rather use the following metric:

ωχ := θ + tω0 −
∑

i∈I
ddc log(log |si|2)2 + ddcχ

where χ :=
∑

α cα log |sα|2 (recall that the cα’s are the coefficients of E).
We do here a slight abuse of notation because ωχ depends on t. However, the

following lemma shows that the dependence is harmless:

Lemma 5.8. Up to changing the previously chosen hermitian metrics, the (1, 1)-
form ωχ defines on X0 a smooth Kähler metric with Poincaré growth along F having
bounded geometry, all of those properties being satisfied uniformly in t.

What we mean by this statement is that there exists a Poincaré-type metric ωP
on X0 and a constant C > 0 independent of t such that C−1ωP � ωχ � CωP , and
that in the appropriate quasi-coordinates attached to the pair (X,F ), the coefficients
gij̄ of ωχ satisfy

∣
∣
∣
∂|α|+|β|gij̄
∂zα∂z̄β

∣
∣
∣ � Cα,β for some constants Cα,β > 0 independent of t. In

particular, ωχ has a uniformly (in t) bounded curvature tensor.

Proof of Lemma 5.8.. We know that {θ}−c1(E) is ample. Therefore, up to changing
the hermitian metrics hα on OX(Eα), we may suppose that η := θ −∑ cαΘhα(Eα)
defines a smooth Kähler form on X [we designated by Θhα(Eα) the curvature form
of the hermitian line bundle (Eα, hα)]. Therefore, on X0, we have:

ωχ = η + tω0 −
∑

i∈I
ddc log(log |si|2)2

and the statement follows easily from the computations of [CG72, Proposition 2.1]
and [Kob84, Lemma 2] or [TY87]. ��

5.5.2 Getting the lower bound. First of all, we will use the crucial information
that ϕt,ε converges (in the weak sense of distributions) to some θ-psh function (cf.
first paragraph). By the elementary properties of psh (or quasi-psh) functions, we
know that (ϕt,ε) is uniformly bounded above on the compact set X (see e.g. [Hör94,
Theorem 3.2.13]). Therefore, we obtain some uniform constant C such that

ϕt,ε � C. (5.3)
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Now, recall that we chose ωχ to be the new reference metric, so our equation
becomes

(ωχ + ddcut,ε)n = eut,ε+Gεωnχ (5.4)

where

ut,ε := ϕt,ε +
∑

i∈I
log(log |si|2)2 − χ

and

Gε := χ+ f +
∑

aj<1

log
( |sj |2

(|sj |2 + ε2)aj

)

− log

(∏
i∈I |si|2 log2 |si|2ωnχ

dV

)

.

Here again we should mention that Gε also depends on t through the last term
involving ωχ. For our purpose, we can ignore this dependence in order to simplify
the notations.

We can see from (5.3) and Lemma 5.8 that Gε has a uniform (in t and ε) upper
bound on X0:

sup
X0

Gε � C.

Moreover, we know from (5.2) that ϕt,ε+
∑

ak=1 log(log |sk|2)2 is bounded. Therefore,
it follows immediately that ut,ε is bounded from below (but a priori non uniformly).
Applying Yau’s maximum principle (cf. Proposition 5.4) to the smooth function ut,ε
on the complete Kähler manifold (X0, ωχ) ensures that infX0 ut,ε � − supX0

Gε �
−C. In terms of ϕt,ε, and recalling inequality (5.3) we get:

C � ϕt,ε � χ− C −
∑

i∈I
log(log |si|2)2 .

5.6 Laplacian estimate. For the Laplacian estimate, we still work on the open
manifold X0. We endow it with the complete Kähler metric ωχ, and we recall from
Lemma 5.8 that ωχ has uniformly bounded (bisectional) curvature.

As usual when one wants to compare to Kähler metrics ω and ω′, the strategy is
to use an inequality of the form ΔF � G, where F,G involve terms like trωω′, trω′ω
or the local potentials of ω′ −ω. There exist several variants of such inequalities, due
e.g. to Chen-Lu, Yau, Siu, etc. involving different assumptions on the curvature of
the metrics at stake. In our case, as we have a control on the bisectional curvature of
the reference metric ωχ, on the Ricci curvature of the ”unknown metric” ωχ+ddcut,ε,
and on the Laplacian ΔωχGε, we could use any of these formulas.

We have chosen to use a variant of Siu’s inequality [Siu87, p. 99], which can be
found in [CGP13, Proposition 2.1] (see also [Pău08,BBEGZ11]); notice the impor-
tant feature allowing the factor e−F− for F− quasi-psh which is crucial for us since
the RHS of our Monge–Ampère equation has poles:
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Proposition 5.9. Let X be a Kähler manifold of dimension n, ω, ω′ two cohomol-
ogous Kähler metrics on X. We assume that ω′ = ω+ddcu with ω′n = eu+F+−F−ωn.
and that we have a constant C > 0 satisfying:

(i) ddcF± � −Cω,
(ii) Θω(TX) � −Cω ⊗ IdTX .

Then there exists some constant A > 0 depending only on n and C such that

Δω′(log trωω′ −Au+ F−) � trω′ω − nA.

Moreover, if one assumes that supF+ � C, u � −C and that log trωω′ − Au + F−
attains its maximum on X, then there exists M > 0 depending on n and C only
such that:

ω′ � MeAu−F−ω.

Here Δ (resp. Δ′) is the Laplacian with respect to ω (resp. ω′), and Θω(TX) is the
Chern curvature tensor of the hermitian holomorphic vector bundle (TX , ω) (which
may be identified with the tensor of holomorphic bisectional curvatures, usually
denoted by the letter R).

Sketch of proof. Siu’s inequality applied to ω =
∑
gij̄dzi ∧ dz̄k and ω′ =

∑
g′
ij̄
dzi ∧

dz̄k yields:

Δ′(log trωω′) � 1
trωω′

(
−gjīRjī + Δ(u+ F+ − F−) + g′kl̄Rjī

kl̄
g′
jī

)
.

Recollecting terms coming (with different signs) from the scalar and the Ricci
curvature, we will obtain a similar inequality involving only a lower bound for the
holomorphic bisectional curvature, namely

Δ′ log trωω′ � Δ(u+ F+ − F−)
trω(ω′)

−B trω′ω (5.5)

where B is a lower bound for the bisectional curvature of ω: this is the content of
[CGP13, Lemma 2.2].

Clearly, Δu = trωω′ − n so that Δ(u+ F+) � −n(C + 1). As trωω′trω′ω � n, we
get

Δ(u+ F+)
trωω′ � −(1 + C)trω′ω. (5.6)

As for the second Laplacian, we write

0 � Cω + ddcF− � trω′(Cω + ddcF−)ω′

and we take the trace with respect to ω:

nC + ΔωF−
trωω′ � Ctrω′ω + Δω′F−
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so that

Δω′F− � ΔωF−
trωω′ − Ctrω′ω. (5.7)

Plugging (5.6) and (5.7) into (5.5), we get:

Δ′(log trωω′ + F−) � −C1trω′ω

for C1 = 1 +B + 2C. Finally, using Δ′u = n− trω′ω, we see that

Δ′(log trωω′ − (C1 + 1)u+ F−) � trω′ω − n(C1 + 1)

which shows the first assertion by choosing A := 1 + C1.
As for the second part, if we denote by p the point where the maximum is

attained, then one has (trω′ω)(p) � C2. Using the basic inequality trωω′ � eu+F+−F−

(trω′ω)n−1, one gets

log(trωω′) = (log trωω′ −Au+ F−) +Au− F−
� (u(p) + F+(p) − F−(p)) + (n− 1) log(nA) −Au(p) + F−(p) +Au− F−
� C2 +Au− F−

where C2 = supF+ + (n− 1) log(nA) − (A− 1) inf u (recall that A can be chosen to
be positive). This concludes the proof of the proposition. ��

Recall that we are interested in Equation (5.4) given by

(ωχ + ddcut,ε)n = eut,ε+Gεωnχ.

We obtained the zero-order estimate on ut,ε in the last section, and now we want a
Laplacian estimate. In order to use the previous proposition we first have to decom-
pose Gε as a difference of Cωχ-psh functions in order to use the result above. Recall
that

Gε := χ+ f +
∑

aj<1

log
( |sj |2

(|sj |2 + ε2)aj

)

− log

(∏
i∈I |si|2 log2 |si|2ωnχ

dV

)

.

By [Kob84] or [Gue12, Lemma 1.6], the last term is already known to be smooth in
the quasi-coordinates (and it depends neither on t nor on ε).
We claim that

Gε =

⎡

⎣χ+ f +
∑

aj<1

log |sj |2 +
∑

aj<0

log(|sj |2 + ε2)−aj

⎤

⎦

︸ ︷︷ ︸
F+

−
⎡

⎣
∑

0<aj<1

log(|sj |2 + ε2)aj

⎤

⎦

︸ ︷︷ ︸
F−

gives the desired decomposition Gε = F+ − F− in the notations of Proposition 5.9.
Indeed, χ, f, log |si|2 are quasi-psh, thus Cωχ-psh for some uniform C > 0 as ωχ
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dominates some fixed Kähler form, cf. Lemma 5.8. Moreover, a simple computation
leads to the identity:

ddc log(|s|2 + ε2) =
ε2

(|s|2 + ε2)2
· 〈D′s,D′s〉 − |s|2

|s|2 + ε2
· Θh

where Θh is the curvature of the hermitian metric h implicit in the term |s|2, and D′s
is the (1, 0)-part of Ds where D is the Chern connection attached to (OX(div(s)), h).
If follows that F± are Cωχ-psh for some uniform C > 0.

We can now apply Proposition 5.9 to the setting: ω = ωχ, ω
′ = ωχ + ddcut,ε,

F+ − F− = Gε. Indeed, it is clear that F+ is uniformly upper bounded, we just saw
that F± are Cωχ-psh, and we know from the previous section that ut,ε has a uniform
lower bound. Furthermore, log trωω′ −Au+F− attains its maximum on X0: indeed,
−Au tends to −∞ near the boundary of X0, F− is bounded (it is even smooth on
X), and trωω′ = Δωχ(ϕt,ε +

∑
i∈I log(log |si|2)2 − χ) is bounded on X0 (we know it

for the term Δωχ(ϕt,ε −χ) and it is an elementary computation for the other term).
In conclusion, we may use Proposition 5.9 to obtain the following estimate:

θ + tω0 + ddcϕt,ε � M

(
∏

i∈I
log2 |si|2

)C

·
∏

α∈A
|sα|−cα·C ∏

aj>0

|sj |−2aj ωχ .

For the “reverse inequality”, we use the identity

(ωχ + ddcut,ε)n = eut,ε+Gεωnχ

which leads to the inequality

trωχ+ddcut,εωχ � e−(ut,ε+Gε)(trωχ(ωχ + ddcut,ε))n−1

and therefore

θ + tω0 + ddcϕt,ε

� M−1
∏

aj<1

|sj |2
(|sj |2 + ε2)aj

·
(
∏

i∈I
log2 |si|2

)−C
·
∏

α∈A
|sα|cα·C ∏

aj>0

|sj |2aj ωχ

for some uniform C,M > 0 (different from the previous ones).
In particular, for any compact set K � X0, there exists a constant CK > 0

satisfying

C−1
K ω0 � θ + tω0 + ddcϕt,ε � CK ω0.

Using Evans–Krylov theorem and the classical elliptic theory shows that the po-
tential ϕt,ε satisfies uniform C k,α estimates on any Ω � K for each k, α. Thus the
theorem is proved.
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Remark 5.10. One can easily obtain somewhat more precise estimates. Indeed, if α
is a nef and big class and E an effective R-divisor such that α−E is ample, then we
have in fact that for every δ > 0, α−δE is ample (write α−δE = (1−δ)α+δ(α−E)).
Applying this observation to Theorem 5.6, we see that for every δ > 0, there exists
Cδ > 0 such that:

ϕKE � δ
∑

cα log |sα|2 −
∑

i∈I
log(log |si|2)2 − Cδ

for every δ > 0. One could apply the same argument to the Laplacian estimates.

About uniqueness of the Kähler–Einstein metrics. First of all, in the case whereX is
smooth and KX is ample, then uniqueness of the Kähler–Einstein metric constructed
by Aubin and Yau is a straightforward consequence of the maximum principle. Gen-
eralizing this principle to some complete Kähler manifolds in [Yau75], Yau could
prove that on a Kähler manifold, there can be only one complete Kähler metric ω
satisfying Ricω = −ω. In particular, this result has been applied by Kobayashi and
Tian–Yau to show the uniqueness of the Kähler–Einstein metric for a log smooth
pair (X,D) satisfying KX +D ample, cf. [Kob84,TY87]. Using Yau–Schwarz lemma
in a more subtle way (through the notion of almost complete metric), they also
show uniqueness when KX + D is only assumed nef, big and ample modulo D,
which means that KX +D intersects positively every curve not contained in D. For
example, if (X,D) is a log resolution of some canonically polarized singular variety,
these assumptions are not satisfied.

In our situation we proceed in a different manner: we first use the volume assump-
tion (as a replacement for completeness) to show that the Kähler–Einstein metric,
originally defined on the (log) regular locus , extends to define a a positive current
on X whose local potentials glue to define a solution with full Monge–Ampère mass
of a global Monge–Ampère equation to which we can apply the comparison principle
to finally deduce the uniqueness.

6 Applications

6.1 Yau-Tian-Donaldson conjecture for singular varieties. Let us start
with the following converse of Theorem A stated in the Section 1.

Proposition 6.1. Let X be projective variety satisfying the conditions G1 and
S2, and such that KX is Q-ample. If X admits a Kähler–Einstein metric ω in the
following sense: ω is a K–E metric on Xreg and its total volume there is equal to
Kn
X , then X has semi-log canonical singularities.

Proof. We begin with the case where X is normal.
Let us first show that φ := logωn on Xreg extends to an element in E(X,KX).

By the K–E equation ddcφ := −Ric ω = ω � 0 and hence, since X is normal, φ
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extends to a positively curved singular metric on KX over all of X. Thus, writing
ω = ddcψ for some other such metric ψ the compactness of X forces the K–E
equation MA(φ) = eφ (up to shifting φ by a constant) globally on X (since the non-
pluripolar MA does not charge the singular locus of X). Moreover, by the volume
assumption we have that

∫
X MA(φ) = Kn

X and hence φ ∈ E(X,KX), as desired.
Next, fix a resolution π : X ′ → X and assume, to a get a contradiction, that

p∗KX = KX′ +D where D is a snc Q-divisor such that D = D′ + (1 + δ)E for some
δ > 0, where D′ is a Q-divisor and E is a smooth irreducible divisor transversal to
the support of D′. Since φ has maximal MA-mass it follows, as shown in [BBEGZ11]
using an Izumi type estimate, that π∗φ has no Lelong numbers. In particular, it fol-
lows from the characterization of Lelong numbers that there exists a neighbourhood
U of E such that π∗φ � 1

2δ log |sE |2 − C in local trivializations. Moreover, we may
take U such that D does not intersect U. But then it follows from the K–E equation
that

Kn
X � C ′

∫

U
eπ

∗φ−(1+δ) log |sE |2 � C ′′
∫

U
e−(1+δ/2) log |sE |2 = ∞,

which gives the desired contradiction.
We move on to the general case when X is only assumed to be G1 and S2. As we

observed in Section 3.3, the result of Proposition 3.6 holds actually in the general
G1 and S2 case (we did not use at all that the singularities were slc); however we
should be careful and work instead on a log-resolution of (Xν , CXν ) because the
formula ν∗KX = KXν + CXν could not be satisfied anymore if CXν is not Cartier,
cf. Section 3.3 and the remarks following the identity (3.1). So the first conclusion is
that the weight φ := logωn on Xreg extends on the normalization Xν to a psh weight
in E(Xν , ν∗KX). Then we take a log-resolution π : X ′ → Xν of the pair (Xν , CXν )
where CXν is the conductor of the normalization; a priori, this is just an effective
divisor, possibly non-reduced. We write (X ′, D′) for the new pair that we obtain on
X ′. Then same arguments as earlier show that D′ has coefficients less than or equal
to 1, which amounts to saying that (Xν , CXν ) is log canonical, or equivalently that
X has semi-log canonical singularities. ��

To relate this to K-stability we recall that Odaka [Oda13b] has shown that, if X
is K-semistable, then X has semi-log canonical singularities (recall that we assume
that X is G1 and S2 and that KX > 0). Conversely, if X is semi-log canonical, then
X is K-stable [Oda11]. Hence, combining our results with Odaka’s results gives the
following confirmation of the Yau–Tian–Donaldson conjecture for varieties being G1

and S2, with KX ample:

Theorem 6.2. Let X be a G1 and S2 projective variety such that KX is ample.
Then X admits a Kähler–Einstein metric iff X is K-stable.

It would be interesting to have a direct analytical proof of the implication
“Kähler–Einstein implies K-stable” as shown in [Ber12] the (log) Fano case (where
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K-stability has to be replaced by K-polystability in the presence of holomorphic
vector fields).

6.2 Automorphism groups of canonically polarized varieties. The exis-
tence and uniqueness of Kähler–Einstein metrics established in Theorem A allows
us to give an analytical proof of the following result, that is already shown in [FG12,
Corollary 3.13] (for lc pairs of general type) and [BHPS12] (in the stable case, with
a geometric and a cohomological proof). Also, Kollár informed us that the result
below was already well-known for some time, cf. e.g. [Miy83].

Theorem 6.3. Let X be a normal stable variety. Then Aut(X) is finite.

Proof. By general results on automorphism groups of normal varieties (see [BBEGZ11,
Lemma 5.2] and references therein) it is equivalent to show that any holomorphic
vector field V on Xreg vanishes identically. To prove this vanishing we first observe
that, by normality, V is the infinitesimal generator of a complex one-parameter
family of automorphism F of X and in particular of Xreg. Fix a Kähler–Einstein
current ω on X. By the naturality of the KE-equation it follows that F ∗ω is also
a KE-current and hence by uniqueness F ∗ω = ω on Xreg. Let us denote by Vr and
Vi the real and imaginary parts of V, which are infinitesimal generators of real one
parameter families of automorphisms that we will denote by Fr and Fi respectively,
which, by the previous argument, also preserve ω. Next, note that any automorphism
automatically lifts to the line bundle KX over Xreg and thus it follows from general
principles that the real part Vr of V is a Hamiltonian vector field, i.e. iVrω = dh for
some smooth function h on Xreg. But then, by Cartan’s formula, the Lie derivative
LViω is given by d(iWr

ω) = dJiVrω = dJdh = ddch. Since the flow Fi defined by
Vi also preserves ω it thus follows that ddch = 0. But by normality it follows that
h = 0 (indeed, by normality h is bounded and we can thus apply the maximum
principle on a resolution). Hence iVrω = 0 on Xreg, which forces Vr = 0 on Xreg,
since ω is Kähler there and in particular pointwise non-degenerate. Finally, by the
same argument Vi = 0 (for example replacing V with JV ) and hence V = 0 as
desired. ��

Remark 6.4. In the case when X is smooth there is a simple cohomological proof
of the previous proposition: by Serre duality H0(X,TX) is isomorphic to Hn−1

(X,−KX), which is trivial by Kodaira vanishing (since KX is ample). In the case
when X is log canonical a similar cohomological argument can be used [BHPS12],
relying on the Bogomolov–Sommese vanishing result for log canonical singulari-
ties, established in [GKKP11, Theorem 7.2]. Indeed, if V does not vanish identi-
cally then contracting with V on Xreg maps KX to a rank one reflexive sheaf in
Hom (KX ,Ω

[n−1]
X ), where Ω[n−1]

X is the sheaf of reflexive (n − 1)−forms on X and
hence by the Bogomolov–Sommese vanishing result in [GKKP11] the Kodaira di-
mension of KX is at most n− 1, which contradict the ampleness of KX .
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7 Outlook

7.1 Towards Miyaoka–Yau type inequalities. For simplicity we will only
consider the case n = 2 (but a similar discussion applies in the general case). We set
E := Ω1

X , the cotangent bundle of X. The classical case is when X is smooth with
KX ample, where the Miyaoka–Yau inequality says

c1(E)2 � 3c2(E).

Let us briefly recall Yau’s differential-geometric proof. We equip E with the Her-
mitian metric induced by ω and denote by (E,ω) the corresponding Hermitian vector
bundle. Then, if ω is Kähler–Einstein a direct local calculation gives the point-wise
inequality

c1(E,ω)2 � 3c2(E,ω)

formulated in terms of the Chern–Weil representatives ci(E,ω) of the corresponding
Chern classes. Hence, integrating immediately gives the Miyaoka–Yau inequality.
Repeating this argument in the singular case when X a stable surface and using
Theorem A gives the following

Proposition 7.1. The following inequality holds for a stable surface equipped with
the canonical Kähler–Einstein metric ω on its regular part:

c1(KX)2 � 3
∫

Xreg

c2(E,ω)

with equality iff ω has constant holomorphic sectional curvature, i.e. (Xreg, ω) is
locally isometric to a ball.

Proof. Since the point-wise inequality above still holds, by the KE-condition, we can
simply integrate it overXreg and use that, by Theorem A, c1(KX)2 =

∫
Xreg

c1(E,ω)2.
The conditions for equality are well-known in the point-wise inequality. ��

Since ω is canonically attached to X one could simply define the rhs appearing
in the inequality above as the “analytical second Chern number” c2,an(X) of X.
However, it should be stressed that it is not even a priori clear that c2,an(X) is
finite, even though we expect that this is the case. More precisely, we expect that
c2,an(X) can be identified with (or at least bounded from above) by a suitable
algebraically defined second Chern class number c2(X). Various definitions of such
Chern numbers have been proposed in the literature and we refer the reader to the
paper of Langer [Lan00] where very general algebraic Miyaoka–Yau type inequalities
are obtained, which in particular apply to stable surfaces. More generally, as before,
our arguments apply to log canonical pairs.
7.2 The Weil–Petersson geometry of the moduli space of stable varieties.

In this section we will briefly explain how the finite energy property of the Kähler–
Einstien metric on a stable variety naturally appears in the geometric study of the
moduli space M of all stable varieties. In a nutshell, the Kähler–Einstein metrics on
stable varieties induces a metric on the Q-line bundle L → M over the moduli space
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defined by the top Deligne pairing of KX and the finite energy condition is precisely
the condition which makes sure that the metric is point-wise finite. The relation to
Weil–Petersson geometry comes from the well-known fact that the curvature form
of the corresponding metric over the moduli space M0 of all smooth stable varieties
(i.e. all canonically polarized n-dimensional manifolds, with a fixed oriented smooth
structure) coincides with the Weil–Petersson metric ΩWP on M0 [FS90,Sch12].

To be a bit more precise we first recall that given a line bundle L → X over a
(complex) n-dimensional algebraic variety X its top Deligne pairing i.e. the (n+1)-
fold Deligne pairing of L with itself is a complex line that we will denote by 〈L〉
[Elk89,Elk90]. Equipping 〈L〉 with an Hermitian metric φ (using additive notation
as before) induces a Hermitian metric 〈φ〉 on 〈L〉, satisfying the change of metric
formula: 〈φ〉 − 〈ψ〉 = (E(φ) − E(ψ)) (up to a multiplicative normalization constant),
where E is the energy functional appearing in Section 4 (compare [PS04]). Fixing a
smooth reference metric φ0 on L one can use the latter transformation formula to
define the metric 〈φ〉as long as φ has finite energy. The resulting metric 〈φ〉 is then
independent of the choice of reference metric φ0. More generally, in the relative case
of a flat morphism X → B between integral schemes of relative dimension n and an
Hermitian line bundle L → X this construction produces an Hermitian line bundle
〈L〉 → B over the base B.

In particular, taking X to be an n-dimensional stable variety L := KX one
obtains a canonical metric on the complex line 〈KX〉, induced by the finite energy
metric on KX determined by the volume form of the Kähler–Einstein metric on the
regular locus of X.

Let now M denote the moduli space of all n-dimensional stable varieties with a
fixed Hilbert polynomial [Kol10,Kol]. Using the existence of a universal stable family
X (in the sense of Kollar) over a finite cover of each irreducible component of the
moduli space one obtains a Q-line bundle L over M, induced by the fiber-wise top
Deligne pairings 〈KX〉. We conjecture that the metric on L induced by the fiber-
wise Kähler–Einstein metrics is continuous (as in the case of stable curves [Fre12]).
Confirming this conjecture would require a more detailed analysis of the dependence
of the Kähler–Einstein metric on the complex structure that we leave for the future.

As is well-known the curvature of the corresponding metric over M0 coincides
(up to a numerical factor) with the Weil–Petersson metric ΩWP . In particular, it is
strictly positive as a form (in the orbifold sense). Under the validity of the previous
conjecture one thus obtains a canonical extension of the induced Weil–Petersson met-
ric on M0 to its compactification in M as a positive current with continuous poten-
tials. It would also be very interesting to know under which assumptions the exten-
sion is strictly positive in a suitable sense, for example if it is, locally, the restriction
of a Kähler metric? These problems are (e.g. by Grauert’s generalization of Kodaira’s
embedding theorem to singular varieties) closely related to the problem of showing
that the corresponding line bundle L over the moduli space M is ample (on each irre-
ducible component) and it should be compared with the recent work of Schumacher
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[Sch12], where an analytic proof of the quasi-projectivity of M0 is given. As shown by
Schumacher the Weil–Petersson metric ΩWP on M0 admits a (non-canonical) exten-
sion as a positive current with analytic singularities to Artin’s Moishezon compacti-
faction of M0. But the conjecture above is closely related to the problem of obtaining
a canonical extension of ΩWP to M as a positive current with continuous potentials.

Finally, it should be pointed out that the top Deligne pairing used above es-
sentially coincides with Tian’s CM-line bundle in this setting (by the Knudson–
Mumford expansion and Zhang’s isomorphism realizing the Chow divisor as a top
Deligne pairing). The ampleness of the induced CM-line bundle over general moduli
spaces of K-stable polarized varieties was recently speculated on by Odaka [Oda13a].
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