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THE YAMABE PROBLEM ON STRATIFIED SPACES

Kazuo Akutagawa, Gilles Carron and Rafe Mazzeo

Abstract. We introduce new invariants of a Riemannian singular space, the local
Yamabe and Sobolev constants, and then go on to prove a general version of the
Yamabe theorem under that the global Yamabe invariant of the space is strictly
less than one or the other of these local invariants. This rests on a small number of
structural assumptions about the space and of the behavior of the scalar curvature
function on its smooth locus. The second half of this paper shows how this result
applies in the category of smoothly stratified pseudomanifolds, and we also prove
sharp regularity for the solutions on these spaces. This sharpens and generalizes
the results of Akutagawa and Botvinnik (GAFA 13:259–333, 2003) on the Yamabe
problem on spaces with isolated conic singularities.

Introduction

Our aim in this paper is to study a version of the Yamabe problem on a class
of compact Riemannian singular spaces satisfying a small list of general structural
axioms which we call ‘almost smooth metric-measure spaces’. This approach em-
phasizes the centrality of Sobolev inequality, and indeed relies on little else. Our
main existence result is the analogue of that part of the resolution of this prob-
lem on compact smooth manifolds (M, g) obtained through the work of Yamabe,
Trudinger and Aubin, [Aub76], [Tru68], [Yam60]. In that original setting, the work
of these authors established the existence of a smooth positive function minimizing
the Yamabe functional

Qg(u) =

∫
M (|∇u|2 + n−2

4(n−1) Scalg u2) dVg

(∫
M u

2n

n−2 dVg

)n−2
n

, (0.1)

where Scalg is the scalar curvature of the metric g, provided the infimum of this func-
tional, the so-called Yamabe invariant Y (M, [g]) (sometimes also called the Yamabe
constant or conformal Yamabe invariant) of that conformal class (M, [g]), is strictly
less than the corresponding invariant of the round sphere. In some papers on this
subject, the energy Qg is replaced by (4(n − 1)/(n − 2))Qg. The geometric meaning
of this functional is that if u is a minimizer, or indeed any critical point, then the
conformally related metric g̃ = u

4
n−2 g has constant scalar curvature on any open set
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where u > 0. We refer to the well-known survey paper by Lee and Parker [LP87], as
well as [Sch84], [SY88], for all details on the complete existence theory in the setting
of smooth compact manifolds.

The singular spaces (M, g, μ) we are interested in here are typically Riemannian
pseudomanifolds, and in particular Riemannian smoothly stratified spaces with it-
erated edge metrics, endowed with a measure which is a smooth positive multiple of
the Riemannian volume form dVg. However, as indicated already, we require only a
few structural assumptions and so our main existence theorem holds in much more
general settings. In a companion to this paper [ACM13] we explore this direction
further, extending this method to the setting of Dirichlet spaces. The ability to allow
for a more general measure μ is perhaps useful, but plays essentially no role in any
of the arguments below, and for reasons of notational simplicity, we often omit μ
altogether from the discussion. The spaces here are ‘mostly smooth’ in that they
possess an open dense set Ω which is a smooth n-dimensional manifold carrying a
Riemannian metric. Infinitesimally, every point in Ω looks the same as every other.
However, that is not true if one includes the singular points. To accomodate this, we
replace the global Yamabe invariant by a new invariant which we call the local Yam-
abe invariant Y�(M, [g]). Briefly, this is just the infimum over all points p ∈ M of the
Yamabe invariants of arbitrarily small balls around p, where we minimize the stan-
dard energy functional amongst functions on these balls which vanish on the outer
boundaries, but not necessarily near the singular set of M . We also introduce the
corresponding local Sobolev invariant S�(M, g). Our main existence theorem states
that under various sets of conditions on the scalar curvature Scalg (which we regard
as a function computed in the usual way on the smooth domain Ω), if the global
Yamabe invariant Y (M, [g]) is strictly less than Y�(M, [g]) (or, in some versions of
the result, than S�(M, g)), then Qg admits a strictly positive minimizer u. In certain
cases we prove that this minimizer u is strictly positive, but show by example that
this need not be the case if the hypotheses are relaxed.

Lest this criterion seem too abstract, observe that by conformal invariance, the
local Yamabe invariant at a smooth point is equal to the Yamabe invariant of the
round sphere; this is essentially what is known as Aubin’s inequality. It is important
that Y� involves the limits as r → 0 of the Yamabe invariants Y (Br(p), g), rather
than their values at any fixed r > 0; this means that local curvature invariants play
a smaller role in Y�. An invariant of this nature has been used previously for spaces
(M, g) with isolated conic singularities. In that setting, if p is a conic point, so that
some neighbourhood U of p in M is modelled by a cone over a compact smooth
Riemannian manifold (Z, h), then the local Yamabe invariant at p is the same as the
so-called cylindrical Yamabe invariant Y (R ×Z, [dt2 +h]) which plays an important
role in the work of the first author and Botvinnik [AB03], see also [Aku12] for a
discussion of this problem on orbifolds. It is proved there that Qg has a minimizer
provided

− ∞ < Y (M, [g]) < min
j

{Y (Sn, [g0]), Y (R × Zj , [dt2 + hj ])}, (0.2)
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where (C(Zj), dx2 +x2hj), j = 1, . . . , N , are the local models for the conic points of
(M, g). We note that Y (R×Zj , [dt2+hj ]) ≤ Y (Sn, [g0]) is always true. Also, implicit
here is the fact that the cylinder (R×Z, dt2 +h) and the cone (C(Z), dx2 +x2h) are
mutually conformal. We note that there are many examples of conic spaces where
one does know that (0.2) holds, see also [JR10] for some results of the case where
Rg < 0 (rather than Y (M, [g]) < 0), when an existence result is obtained in some
cases using barriers.

Our main existence theorem states that if (M, g, μ) is an almost smooth metric-
measure space which satisfies the first three properties listed in the definition at
the beginning of Sect. 1.1 below as well as one of the three possible hypotheses on
Scalg, then Qg,μ attains its minimum. In certain of these cases, we also prove that
the minimizing function u is strictly positive on M . The proof is divided into two
parts: the proof of existence is obtained through a variant of the original method
appearing in the work of Trudinger and Aubin, and the surprising fact is that this
original proof may be adapted quite simply to this general setting. However, in
order to accomodate some of the natural geometric applications later, we present
an alternate proof of the step which uses Moser iteration to give a uniform upper
bound for the minimizing sequence, by another argument related to some old ideas
of Varopoulos. The proof that, in certain cases, the minimizer is strictly positive
uses some ideas developed by Gursky.

In the second part of this paper we expand on the theme and setting of [AB03] by
considering in more detail the case where (M, g) is a smoothly stratified Riemannian
pseudomanifold, also known as an iterated edge space. We identify the local Yam-
abe invariants at all point p ∈ M as higher versions of the cylindrical/conic Yamabe
invariants discussed above; these are simply the global Yamabe invariants for the
model spaces R

k × C(Z), or (conformally) equivalently, H
k+1 × Z, where Z is a

compact iterated edge space with lower singular ‘depth’ than the original space M .
The special cases of these invariants when Z = Sn−k−1 play an interesting role in
the work of Ammann, Dahl and Humbert [ADH13a], [ADH13b], where quantitative
estimates of the change of the σ-Yamabe invariant (which is the supremum of the
Yamabe constants over all conformal classes) under surgeries are obtained. Finally,
using the more specialized analytic tools available for the study of PDE on smoothly
stratified spaces, we prove sharp regularity results about the behaviour of the min-
imizer u (or indeed any solution of the Yamabe equation) at the singular strata of
M .

The final resolution of the Yamabe problem on smooth manifolds by Schoen,
described in [LP87], devolves to showing that Y (M, [g]) < Y (Sn, [g0]) except when
(M, g) is conformal to (Sn, g0). One might hope for some analogue of this result
here. For example, a natural conjecture is that if (M, g) has only isolated conic
singularities, then Y (M, [g]) < Y�(M, [g]) unless (M, g) is conformal to the cylinder
(R × Z, dt2 + h). Unfortunately, this is now known to be false! Indeed, a recent
paper by Viaclovsky [Via10] exhibits a manifold with orbifold singularity which
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does not admit any (incomplete) orbifold metric of constant scalar curvature, or
equivalently, any finite energy critical point of Qg. Because the existence theory
in [AB03] and [Aku12] would guarantee a minimizer unless the local and global
Yamabe invariants are the same, we conclude that these invariants must be equal for
the spaces Viaclovsky considers. There are no known examples beyond the cylinder
where Y�(M, [g]) = Y (M, [g]) holds and Qg also has a critical point. We mention here
the forthcoming thesis of I. Mondello [Mon14], who is analyzing this local Yamabe
invariant when M is Einstein, in particular the sphere Sn with cone angle 2πβ along
an equatorial Sn−2. It remains a tantalizing mystery to determine whether there is
some rigidity phenomenon here.

1 The General Existence Theorem

As discussed above, our main existence theorem yields a minimizer of the func-
tional Qg on a rather broad class of Riemannian singular spaces. We state and prove
this result in this section. We first explain the precise geometric and analytic hy-
potheses, then define the local Yamabe and Sobolev invariants and describe their
relationship to the (global) Sobolev constant of the space in question. We also give
a number of auxiliary technical facts, including the compactness of the embedding
W 1,2 ↪→ L2p/(p−2) for p > n, and that the finiteness of the Sobolev constant implies
discreteness of the spectrum of the (Friedrichs extension of the) Laplacian. We also
review the standard Moser iteration argument to obtain a uniform upper bound for
the subcritical solutions and give a different proof based on a different (Morrey-
type) assumption on the scalar curvature. Existence of the minimizer then follows
the lines of the original Trudinger/Aubin argument. The positive lower bound for
the minimizer uses an argument due to Gursky [Gur93].

1.1 Almost smooth metric-measure spaces. Suppose that (M, d, μ) is a
compact metric-measure (MM) space which is ‘almost smooth’ in the sense that there
is an open dense subset Ω ⊂ M which is a smooth n-dimensional manifold, and a
smooth Riemannian metric g on Ω which induces the same metric space structure as
d on Ω, and hence by density on all of M . (It is not hard to check that the arguments
in this section only require that g be W 2,q for some q > n/2, but for simplicity we
do not work in this generality.) We also assume that the measure dμ is a smooth
positive multiple of the volume form, i.e. dμ = h2dVg for some h ∈ C∞(Ω) ∩ C0(M)
which is strictly positive. Since g and d induce the same distance, we refer to the
triple (M, g, μ) and omit mention of d. Note that the metric balls B(p, r) coincide
with geodesic balls provided B(p, r) ⊂ Ω.

We shall assume the following properties of the space (M, g, μ).

Hypotheses :

i) Let W 1,2(M ; dμ) denote the Sobolev space which is the completion of the space
of Lipschitz function Lip(M) with respect to the usual norm; then we assume
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that C1
0(Ω) is dense in W 1,2(M ; dμ). Notice that this precludes the existence of

codimension one boundaries.
ii) Hausdorff n-dimensional measure is absolutely continuous with respect to dμ,

and both of these measures are Ahlfors n-regular, i.e.

C−1rn ≤ μ(B(p, r)) ≤ Crn

for some C > 0, and for every p ∈ M and r ≤ diam(M). Later, for simplicity,
we often write μ(B(p, r)) = V (p, r).

iii) The Sobolev inequality holds: there exist A, B > 0 such that

‖f‖2
2n

n−2
≤ A

∫

M

|df |2 dμ + B

∫

M

|f |2 dμ (1.1)

for all f ∈ W 1,2(M ; dμ).
iv) Finally, the scalar curvature function satisfies at least one of the following prop-

erties:
a) Scalg ∈ Lq(M, dμ) for some q > n/2;
b) for some q > 1, there exist α ∈ [0, 2) and C > 0 such that for every point

p ∈ M ,

sup
r>0

rαq

V (p, r)

∫

B(p,r)

| Scalg |qdμ ≤ C; (1.2)

c) Scal−g := min{Scalg, 0} ∈ Lq(M, dμ) for some q > n/2.

We henceforth assume that conditions i)–iii) and at least one of iv) a)–c), are
satisfied, unless explicitly stated otherwise. We call a triplet (M, g, μ) which satisfies
these properties an almost smooth metric measure space.

The condition iv) b) (combined with the condition ii)) states that Scalg lies
in the Morrey regularity class Mq

λ where λ = n − αq ∈ (0, n]. We state now an
important fact about functions which lie in this class which will be used in several
places below. The proof is deferred to the end of Sect. 1.3 simply because it involves
techniques which are discussed there for other reasons, but does not rely on any of
the intervening results.

Lemma 1.1. Suppose that the function V satisfies (1.2). Then for any ε > 0 there
exists Cε > 0 such that for all φ ∈ W 1,2(M),

∫
|V ||φ|2 dμ ≤ ε

∫
|dφ|2 dμ + Cε

∫
|φ|2 dμ.

Remark 1.2. The extra generality of allowing the measure dμ to be a smooth mul-
tiple of dVg rather than just the volume form itself, plays very little role here. For
simplicity in this paper, we usually assume that dμ = dVg. Although the analysis



1044 KAZUO AKUTAGAWA, GILLES CARRON AND RAFE MAZZEO GAFA

in this paper goes through for more general measures, the conclusions then are no
longer strictly within the realm of conformal geometry.

1.2 Yamabe and Sobolev constants. For any open set U ⊂ M , we define its
Sobolev and Yamabe constants,

S(U) = inf
{∫

|dϕ|2 dμ : ϕ ∈ W 1,2
0 (U ∩ Ω), ‖ϕ‖ 2n

n−2
= 1
}

, and

Y (U) = inf
{∫

(|dϕ|2 +
n − 2

4(n − 1)
Scalg ϕ2) dμ : ϕ ∈ W 1,2

0 (U ∩ Ω), ‖ϕ‖ 2n

n−2
= 1
}

,

respectively. We also define the local Sobolev constant and local Yamabe invariant
of (M, g, μ) by

S�(M, g) = inf
p∈M

lim
r→0

S(B(p, r)), Y�(M, [g]) = inf
p∈M

lim
r→0

Y (B(p, r)).

It should be pointed out that the Aubin-type inequality for the Yamabe invariant
Y (M, [g]) still holds:

Y (M, [g]) ≤ Y�(M, [g]).

All these quantities depend on g and μ, but we often suppress this, and even
explicit mention of M , in the notation.

Lemma 1.3. If Scalg satisfies either iv) a) or iv) b), then Y�(M, [g]) = S�(M, g).

Proof. Assume first that iv) a) holds, i.e. that Scalg ∈ Lq for some q > n/2. By the
Hölder inequality,

|Y (U) − S(U)| ≤ n − 2
4(n − 1)

‖ Scalg ‖q vol(U)
2q−n

nq ,

and thus, since q > n/2,

inf
p∈M

lim
r→0

S(B(p, r)) = inf
p∈M

lim
r→0

Y (B(p, r))

for any p.
For the other case, we invoke Lemma 1.1 as follows. Fix any ε > 0 and choose

Cε accordingly. Then if φ ∈ W 1,2
0 (B(p, r) ∩ Ω) and ‖φ‖ 2n

n−2
= 1 then

∣
∣
∣
∣
∣
∣
∣

∫

B(p,r)

(

|dφ|2 +
n − 2

4(n − 1)
Scalg φ2

)

dμ −
∫

B(p,r)

|dφ|2 dμ

∣
∣
∣
∣
∣
∣
∣

≤
∫

B(p,r)

n − 2
4(n − 1)

| Scalg | |φ|2
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≤ ε

∫

B(p,r)

|dφ|2 dμ + Cε

∫

B(p,r)

|φ|2

≤ ε

∫

B(p,r)

|dφ|2 dμ + Cεr
2,

where the Hölder inequality and the normalization ||φ||2n/(n−2) = 1 are used to get
the last term. Hence we get :

|Y (B(p, r)) − S(B(p, r))| ≤ εS(B(p, r)) + Cεr
2.

Letting r ↘ 0 and taking the infimum over all p ∈ M shows that |Y� −S�| ≤ εS�,
and since this is true for all ε > 0, we see that Y�(M, [g]) = S�(M, g), as claimed. ��

The fact that, under these hypotheses, Y�(M, [g]) is the same as the local Sobolev
constant S�(M, g), leads to an important criterion for the positivity of the local
Yamabe invariant.

Proposition 1.4. Let (M, g) satisfy hypotheses i)–iii).

a) For any ε > 0 there exists Cε > 0 such that

(S� − ε)‖f‖2
2n

n−2
≤
∫

Ω

|df |2 dμ + Cε

∫

Ω

|f |2 dμ (1.3)

for all f ∈ W 1,2(M).
b) If Scalg satisfies either iv) a) or iv) b), then Y�(M, [g]) > 0 if and only if the

Sobolev inequality (1.1) holds on (M, g, μ). If these conditions are true, then for
any ε > 0 there is a constant Cε > 0 such that

(Y� − ε)‖f‖2
2n

n−2
≤
∫

Ω

|df |2 dμ + Cε

∫

Ω

|f |2 dμ (1.4)

for all f ∈ W 1,2(M).

Proof. Let us first address b). If (1.1) holds, then rearranging and using the Hölder
inequality, we see that

S(U) ≥ 1
A

(
1 − B(vol U)2/n

)
,

which implies a positive lower bound for S�(M, [g]) = Y�(M, [g]).
On the other hand, suppose Y�(M, [g]) > 0. Fixing any δ ∈ (0, 1), for each p ∈ M

there is a radius rp > 0 such that

min{Y (B(p, rp)), S(B(p, rp))} ≥ (1 − δ)Y�(M, [g]). (1.5)

Since M is compact, there is a finite covering M =
⋃

i B(pi, ri) with ri = 1
2rpi

.
Hence if s = min ri, then (1.5) is true for every pi ∈ M with rp replaced by s.
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Now choose a partition of unity {ρi} subordinate to this covering such that each√
ρi ∈ Lip(M). If f ∈ W 1,2(M) and χ ∈ Lip(M), then χf ∈ W 1,2(M). Note that

this follows from the density assumption i) and the fact that it holds on Ω. Thus for
f ∈ W 1,2(M),

(1 − δ)Y�(M, [g])‖f‖2
2n

n−2
= (1 − δ)Y�(M, [g])‖f2‖ n

n−2

≤ (1 − δ)Y�(M, [g])
∑

i

‖ρif
2‖ n

n−2
≤
∑

i

‖d(
√

ρif)‖2
2

≤
∑(

(1 + ε′)‖√
ρidf‖2

2 + Cε′‖fd
√

ρi‖2
2

)

= (1 + ε′)||df ||22 + C||f ||22
where C depends on the ρi and on Cε′ . This gives (1.4) with ε = 2δY�(M, [g]) if we
choose ε′ appropriately.

The proof of a) is the same. ��
Remark 1.5. Using the Hölder inequality and Lemma 1.1, we also deduce from any
one of the hypotheses iv) a), b) or c) that

Y (M, [g]) > −∞.

The Sobolev inequality has another important consequence (see also [Bak94]):

Proposition 1.6. If the Sobolev inequality holds on (M, g), then the inclusion

W 1,2(M) −→ L
2p

p−2 (M)

is compact for any p ∈ (n, ∞).

Proof. We first write

u − e−t(−Δ+1)u = −
t∫

0

d

ds
e−s(−Δ+1)u ds =

t∫

0

e−s(−Δ+1)(−Δ + 1)u ds

=

t∫

0

e− 1
2
s(−Δ+1)(−Δ + 1)

1
2 e− 1

2
s(−Δ+1)(−Δ + 1)

1
2 u ds.

We shall show that the L2p/(p−2) norm of this difference is bounded by tβ ||u||1,2

for some β > 0. This proves that inclusion mapping is approximated in the operator
norm topology by a sequence of compact mappings, which implies that it must be
compact.

To do this, we need three facts. First, if u ∈ W 1,2(M), then
∫

(|du|2 + |u|2) = 〈(−Δ + 1)u, u〉 = ‖(−Δ + 1)
1
2 u‖2

2.
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Next, it is an easy consequence of the spectral theorem that
∥
∥
∥
√−Δ + 1e−s(−Δ+1)

∥
∥
∥

L2→L2
≤ Cs− 1

2 .

Finally, we claim that, if q = 2p/(p − 2) < 2n/(n − 2), then

∥
∥
∥e−s(−Δ+1)

∥
∥
∥

L2→Lq
≤ C

s
n

2

(
1
2
− 1

q

) =
C

sn/2p
, s > 0.

This is proved by interpolation as follows. There is a standard estimate that
∥
∥
∥e−s(−Δ+1)

∥
∥
∥

Lr→Lr
≤ 1,

uniformly in s for any r ≥ 2. This follows by a simpler interpolation from the case
r = 2 (spectral theorem) and r = ∞ (easy direct argument). We can obtain the
same estimate for 1 < r < 2 either by duality or noting that this also holds for r = 1
and interpolating again. On the other hand, it is known [Sal02] that the Sobolev
inequality (1.4) implies that

∥
∥
∥e−s(−Δ+1)

∥
∥
∥

L1→L∞
≤ C

sn/2
, s > 0.

Thus if we interpolate between this L1 → L∞ estimate and the Lr → Lr estimate
with r = 1 − 1/p, then a bit of arithmetic proves the claim.

Putting these three estimates together, we conclude that

∥
∥
∥u − e−t(−Δ+1)u

∥
∥
∥

q
≤ C

t∫

0

s− 1
2
− n

2p ds ||u||1,2 = Ct
1
2
− n

2p ||u||1,2,

which decays as required. ��

Corollary 1.7. Let −Δ be the self-adjoint operator obtained as the Friedrichs
extension from the semi-bounded quadratic form

〈∇f,∇f〉 =
∫

M

|∇f |2

over the core domain C∞
0 (Ω). Then −Δ has discrete spectrum.

Proof. It suffices to show that the Friedrichs domain of −Δ is compactly con-
tained in L2(M ; dμ). However, this domain is simply W 2,2(M ; dμ) ∩ W 1,2

0 (M ; dμ) ⊂
W 1,2(M ; dμ), which by the previous result is compactly contained in L

2p

p−2 for any
p > n, which in turn continuously includes in L2. ��
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1.3 Uniform boundedness of subsolutions. Let (M, g, dμ) be an almost
smooth metric measure space, as considered above. We now present two different
methods which lead to the uniform boundedness of nonnegative functions u which
satisfy Δu ≥ V u. The first is simply the adaptation of the Moser iteration method
to this setting, and assumes that V satisfies either hypothesis iv) a), or c). This does
not cover all the geometric cases we wish to consider, so we then prove a stronger
result assuming that V satisfies iv) b). This second result subsumes the first one,
but we describe both proofs since the former is the more traditional method and
certain constructions in its proof will be used later.

1.3.1 Moser iteration. We now review the classical Moser iteration method with
enough detail to make clear that all steps work on almost smooth MM spaces. (In
fact, Moser iteration works in greater generality still, see [BM06].)

Proposition 1.8. Let u ∈ W 1,2(M) be nonnegative and satisfy Δu − V u ≥ 0,
where V ∈ Lq for some q > n/2. Then u ∈ L∞ and

‖u‖∞ ≤ C(‖V ‖q)‖u‖2,

where the constant C depends only on n, q, ||V ||q and the constants A, B from the
Sobolev inequality.

Remark 1.9. As usual, the differential inequality is to be interpreted weakly, i.e.
∫

(du, dϕ) ≤ −
∫

V uϕ. (1.6)

for any ϕ ∈ W 1,2(M) with ϕ ≥ 0. Notice that the right hand side of (1.6) is well
defined because V ∈ Ln/2 and, from the Sobolev inequality, uϕ ∈ Ln/(n−2).

Proof. We follow the standard proof [GT77, Theorem 8.15] as soon as we verify the
chain rule:

Claim. If u ∈ W 1,2(M) and f ∈ C1(R, R) satisfies f ′ ∈ L∞ then f ◦ u ∈ W 1,2(M)
and

d(f ◦ u) = f ′ ◦ u · du.

To prove this claim, note that by [GT77, Theorem 7.5], we have
∫

(d(f ◦ u), dϕ) =
∫

(du, dϕ) f ′ ◦ u for all ϕ ∈ C1
0(Ω),

and the result follow from the density of C1
0(Ω) in W 1,2.

For α > 1, define

fα(x) =

{
xα if 0 ≤ x ≤ α− 1

α−1

x + (α− α

α−1 − α− 1
α−1 ) if α− 1

α−1 ≤ x;
(1.7)
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the cutoff and additive constant are chosen so that fα(x) is C1 and convex. Next,
for any L ≥ 1, let

φα,L(x) = Lαfα

(x

L

)
.

Note that φα,L(x) = xα on larger and larger intervals as L → ∞. Furthermore,
if we define Gα,L(x) =

∫ x
0 φ′

α,L(t)2 dt, then a laborious computation gives

φα,L(x) ≤ xα and xGα,L(x) ≤ α2

2α − 1
(φα,L(x))2 , (1.8)

for all x ≥ 0.
Inserting ϕ = Gα,L(u) into (1.6) and using (1.8), we obtain

∫
|dφα,L(u)|2 =

∫
G′

α,L(u)|du|2 =
∫

(du, dϕ)

≤
∫

V u Gα,L(u) ≤ α2

2α − 1

∫
V φα,L(u)2.

Use both the Sobolev and Hölder inequalities to get

‖φα,L(u)‖2

L
2n

n−2
≤
∫ (

α2

2α − 1
AV + B

)

(φα,L(u))2

≤ α2

2α − 1
C

(∫
(φα,L(u))

2q

q−1

) q−1
q

,

with C = A‖V ‖q + B(vol M)1/q. Letting L → ∞ yields

(∫
u

2αn

n−2

)n−2
n

≤ Cα2

2α − 1

(∫
u

2αq

q−1

) q−1
q

. (1.9)

This is of course only interesting if the right side is finite.
We are given the initial choice of q through the potential V , with q > n/2. Thus

r := 2q/(q − 1) < 2n/(n − 2) and we can choose α sufficiently close to 1 so that
α r < 2n/(n − 2) as well. Since W 1,2 ↪→ Lαr, the right hand side of (1.9) is finite,
and hence so is the left, i.e. u ∈ Lκαr where

κ :=
n

n − 2
q − 1

q
> 1.

Furthermore, we can rewrite (1.9) as

||u||καr ≤ (C1α)
1
2α ||u||αr, (1.10)



1050 KAZUO AKUTAGAWA, GILLES CARRON AND RAFE MAZZEO GAFA

where C1 = (Cα/(2α − 1)). Note that (1.10) is valid for any αj ≥ α so long as
u ∈ Lαjr, since αj/(2αj − 1) is uniformly bounded. Now set αj = κjα, and apply
(1.10) inductively to obtain that

||u||κNαr ≤
⎛

⎝
N−1∏

j=0

(
C1κ

jα
) 1

2κj

⎞

⎠ ||u||αr

for any N ≥ 1. Finally, note that the constant here is bounded independently of N ;
indeed

log
N−1∏

j=0

(
C1κ

jα
) 1

2κj =
N−1∑

j=0

(
log C1α

2κj
+

log κj

2κj

)

≤ C2
κ

κ − 1
.

Thus, taking the limit as N → ∞, we obtain finally that

‖u‖∞ ≤ C(q, n, A, B, ||V ||q)‖u‖1,2. ��

1.3.2 Varopoulos’ method. For the second method, we now suppose that V sat-
isfies the Morrey condition iv) b) for some q > 1 and 0 ≤ α < 2. To compare
this hypothesis with the hypothesis in Proposition 1.8, observe simply that by the
Hölder inequality, if V ∈ Ln/α, then (1.2) holds (with Scalg replaced by V ) provided
q < n/α.

Next, the existence of the Sobolev inequality (1.4) implies the Gaussian upper
bound

etΔ(x, y) ≤ C
1

tn/2
e− d(x,y)2

5t (1.11)

for the Schwartz kernel of the heat operator etΔ, see [Cou93]. Thus if G(x, y) denotes
the Green kernel associated to −Δ + 1, then

0 < G(x, y) ≤ C

dn−2(x, y)

provided d(x, y) ≤ C.
Our goal, as before, is to prove the following.

Theorem 1.10. Assume that u is a nonnegative function in W 1,2 ∩ Lp for some
p > q∗ such that

Δu ≥ V u

where V satisfies (1.2). Then

||u||∞ ≤ C

⎛

⎜
⎝sup

x
sup
r>0

rqα

Vol(x, r)

∫

B(x,r)

|V |q dμ

⎞

⎟
⎠ ||u||p.

(In other words, the constant C depends in some possibly nonlinear way on the
quantity in parentheses.)
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The key point is to rewrite the differential inequality as (−Δ + 1)u ≤ (−V + 1)u
and then, using that G is positivity preserving, u ≤ G ◦ (−V + 1)u. Clearly −V + 1
satisfies (1.2) if V does, so for simplicity we replace −V +1 by V . We then establish
the following mapping properties.

Theorem 1.11. Let L, G and V be as above. Then G◦V is bounded as a mapping

Lp(M, dμ) → L∞(M, dμ) when p >
n

2 − α

Lp(M, dμ) → L
pn

n−(2−α)p (M, dμ), when p ∈
(

q∗ ,
n

2 − α

)

, (q∗ = q/(q − 1)).

Proof. Define the Stieljes measure dνx(t) associated to the nondecreasing function

t �→ νx(t) =
∫

B(x,t)

|V (y)| |f(y)| dμ(y) ,

and then write

|(G ◦ V )f(x)| ≤
∫

M

C

dn−2(x, y)
|V (y)| |f(y)| dμ(y)

≤
D∫

0

C

rn−2
dνx(r)

=
C

Dn−2
νx(D) + (n − 2)

D∫

0

C

rn−1
νx(r) dr, (1.12)

where D = diamM . We write the right side of this chain of inequalities as T0(f) +
T∞(f), and prove the boundedness properties for these operators separately.

The estimate of the first of these is trivial. Indeed, for any p > q∗,

νx(D) ≤ C‖V ‖q ‖f‖p =⇒ ‖T0(f)‖∞ ≤ C‖f‖p.

We can thus concentrate on T∞.
By the Hölder inequality,

νx(r) ≤ Cr−α‖f‖p V (x, r)1− 1
p ≤ C‖f‖pr

n−α− n

p .

Thus if p > n
2−α , then

‖T∞(f)‖∞ = sup
x

D∫

0

C

rn−1
νx(r)dr ≤ C ′‖f‖p

D∫

0

r1−α− n

p dr ≤ C ′′‖f‖p .
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In the second case, when q∗ < p < n
2−α , this integral no longer converges near

0, so we use instead a classical cutting argument from harmonic analysis, replacing
the estimate for νx(r) for r small by a different one.

Define

v(x) = M (|f |q∗) 1
q∗ (x),

where M(f) is the maximal function, defined for any L1
loc function f by

M(f)(x) := sup
r>0

1
V (x, r)

∫

B(x,r)

|f | dμ.

Hypothesis ii), Ahlfors n-regularity, implies volume doubling, i.e. V (x, 2r) ≤
CV (x, r) for all x ∈ M and r > 0, and from this it is easy to deduce that the
maximal function, is bounded L1 → L1

weak,

μ {M(f) > λ} ≤ C

λ
‖f‖1.

Since M is also (trivially) bounded L∞ → L∞, by interpolation we see that it is
also bounded Ls → Ls for any 1 < s ≤ ∞. This will be invoked below.

From the definition of v,

νx(r) ≤ Cr
n

q
−αV (x, r)

1
q∗ v(x) ≤ Crn−αv(x),

and hence

T∞(f)(x) ≤
λ(x)∫

0

C

rn−1
νx(r)dr +

D∫

λ(x)

C

rn−1
νx(r)dr

≤
λ(x)∫

0

C

rn−1
rn−αv(x)dr +

D∫

λ(x)

C

rn−1
rn−α− n

p ‖f‖pdr

≤ Cλ(x)2−αv(x) + Cλ(x)2−α− n

p ‖f‖p

for any 0 < λ(x) < D. The optimal choice of λ(x) satisfies

v(x) = λ(x)− n

p ‖f‖p,

so inserting this yields

T∞(f)(x) ≤ C‖f‖(2−α) p

n
p v(x)1−(2−α) p

n =⇒

|T∞(f)(x)| pn

n−(2−α)p ≤ C‖f‖
(2−α)p2

n−(2−α)p

p v(x)p.

(1.13)
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Finally, using the boundedness of the maximal function on Ls, s = p/q∗, we
obtain

‖v‖p ≤ ‖f‖p,

whence, after some arithmetic,

‖T∞(f)‖ pn

n−(2−α)p

≤ C‖f‖p.

This is the desired estimate. ��
This result implies Theorem 1.10 quite directly. Indeed, reverting back to the

original potential, we have already noted that 0 < u ≤ G ◦ (−V +1)u and u ∈ Lp. If
p > n/(2 − α), then the first part of Theorem 1.11 bounds ||u||∞ immediately. On
the other hand, if we only know that p > q∗, then the second part of this Theorem
shows that G ◦ (−V + 1)u lies in Lp1 where p1 = p (n/(n − (2 − α)p)). It is easy to
check that there exists ε > 0 such that p1/p ≥ 1+ε for any p > q∗, which means that
we can iterate this procedure, obtaining successively that u ∈ Lpj for an increasing
sequence pj with pj ≥ p(1 + ε)j . Hence pN > n/(2 − α) for some N , so that at the
next step u ∈ L∞.

We conclude this section with the

Proof of Lemma 1.1. We begin by noting that under the assumptions of this Lemma,
the heat kernel bound (1.11) holds, hence the Schwartz kernel Kμ(x, y) corresponding
to

(−Δ + 1 + μ2
)−1/2 = C

∞∫

0

t−1/2e−t(−Δ+1+μ2) dt

satisfies

0 < Kμ(x, y) ≤ C
e−δμd(x,y)

dn−1(x, y)
. (1.14)

for some δ > 0. Moreover, defining ϕμ(r) := Ce−δμr/rn−1, then

−ϕ′
μ(r) ≤ C ′ e

− δ

2
μr

rn
.

In order to prove this Lemma, it is known (see [RS75, Theorem X.18]), that it
suffices to show that the operator

Aμ :=
(−Δ + 1 + μ2

)−1/2 |V | 1
2 : L2(X, μ) → L2(X, μ),

satisfies

lim
μ→+∞ ‖Aμ‖L2→L2 = 0.
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Define q∗ ∈ (1, 2) by 1
2q + 1

q∗ = 1. Then for u ∈ L2(X, μ), we set

v(x) :=

⎛

⎜
⎝sup

r>0

1
V (x, r)

∫

B(x,r)

|u|q∗
dμ

⎞

⎟
⎠

1
q∗

.

Because q∗ ∈ (1, 2), we have that ‖v‖2 ≤ C‖u‖2.
Now introduce the Stieljes measure ν̃x associated to the nondecreasing function

r �→
∫

B(x,r)

|V | 1
2 |u| dμ

so that

|(Aμu)(x)| ≤ C

D∫

0

ϕμ(r) dν̃x(r) = Cϕμ(D)ν̃x(D) − C

D∫

0

ϕ′
μ(r)ν̃x(r) dr,

D = diamM . Using the Hölder inequality and the fact that |V | 1
2 ∈ L2 (since V ∈ Lq

for some q > 1), we get

ν̃x(D) ≤ C‖u‖2, and ν̃x(r) ≤ Crn−α/2v(x).

This gives

|(Aμu)(x)| ≤ Cϕμ(D)‖u‖2 + C

D∫

0

e− δ

2
μrr−α/2dr v(x)

≤ Cϕμ(D)‖u‖2 + Cμ
α

2
−1v(x) ,

which proves finally that

‖Aμ‖L2→L2 ≤ Cϕμ(D) + Cμ
α

2
−1

Since α < 2, we deduce the result. ��
1.4 Existence of the minimizer. We are now in a position to prove the basic
existence result.

Theorem 1.12. Let (M, g, μ) be a compact almost smooth metric measure space,
in particular satisfying hypotheses i)–iii) in Sect. 1.1, and such that Scalg satisfies
either iv) a), b) or c). Supposing that Scalg satisfies iv) a) or b), we then assume

Y (M, [g]) < Y�(M, [g]),

while if Scalg satisfies iv) c), then our assumption becomes

Y (M, [g]) < S�(M, g).
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Then there exists a function u ∈ W 1,2(M) ∩ L∞(M) such that ‖u‖ 2n

n−2
= 1 and

Y (M, [g]) =
∫ (

|du|2 +
n − 2

4(n − 1)
Scalg u2

)

dμ.

Hence on the smooth locus Ω ⊂ M ,

Δu − n − 2
4(n − 1)

Scalg u +
n − 2

4(n − 1)
Y (M, [g])u

n+2
n−2 = 0.

Proof. We follow the lines of the classical proof of Trudinger and Aubin. Since
W 1,2(M) ↪→ L2p/(p−2)(M) is compact when p > n, the minimum value

Yp = inf
{∫ (

|dϕ|2 +
n − 2

4(n − 1)
Scalg ϕ2

)

dμ

}

over all ϕ ∈ W 1,2(M ; dμ) with ‖ϕ‖2
2p

p−2
= 1 is attained by some function up. The

usual arguments from the calculus of variations show that up ≥ 0 and

Δup − n − 2
4(n − 1)

Scalg up + Yp u
p+2
p−2
p = 0. (1.15)

It follows from Theorem 1.10 that up ∈ L∞. Indeed, (1.15) implies that Δup ≥
V up, where V = cn Scal−g −Ypu

4/(p−2). Under any of the hypotheses a)–c), Scal−g
satisfies (1.2); on the other hand, setting s = p/2q, we have

r−n

∫

B(x,r)

|u
4

p−2
p |q dμ ≤ ||up||1/s

2p

p−2

rn/s∗−n = r−αq

where α = 2n/p < 2, so the second summand in V satisfies (1.2) as well. Hence we
may apply this theorem as claimed.

Now, limp→n Yp = Y (M, [g]) < Y�, so for any sufficiently small ε > 0, Yp ≤ Y� − ε
provided p is sufficiently close to n. We now may as well replace Y�(M, [g]) by
S�(M, [g]), and argue assuming that Scal−g ∈ Lq for some q > n/2.

Since ||up||1,2 is uniformly bounded, we can choose a subsequence pj → n such
that upj

converges to some function u, weakly in W 1,2 and strongly in Lq for all
q ∈ [1, 2n/(n − 2)). Our goal is to show that some further subsequence converges
strongly in L

2n

n−2 . For if this is the case, then we can pass to the limit in
∫

〈dup, dϕ〉 +
n − 2

4(n − 1)
Scalg up ϕ = Yp

∫
ϕ u

p+2
p−2
p (1.16)

to conclude that u ∈ W 1,2∩L∞ is a weak, and hence strong, solution of the equation
with ||u|| 2n

n−2
= 1; setting ϕ = u into (1.16) with p = n then gives that Qg(u) =

Y (M, [g]), as desired.
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To accomplish this, recall the function Gα,L introduced in Sect. 1.3.1; inserting
ϕ = Gα,L(up) with α � 1 into (1.16), and using the properties of these functions,
gives
∫

|dφα,L(up)|2 ≤ α2

2α − 1

(
c(n)
∫

| Scal−g ||φα,L(up)|2 + Y +
p

∫
u

4
p−2
p |φα,L(up)|2

)
,

(1.17)
where Y +

p = max{Yp, 0} and c(n) = (n−2)/4(n−1). Next, using this in the Sobolev
inequality (1.4), with ε replaced by ε/2, yields that

(S� − ε/2)||φα,L(up)||22n

n−2
≤
∫

(Cε/2 + c(n)| Scal−g |) |φα,L(up)|2

+
α2

2α − 1
Y +

p

∫
u

4
p−2
p |φα,L(up)|2.

By the Hölder inequality and the normalization of up,
∫

φα,L(up)2u
4

p−2
p ≤ ‖φα,L(up)‖2

2n

n−2
‖up‖2/p

2p

p−2

(Vol M)2(p−n)/pn

= ‖φα,L(up)‖2
2n

n−2
(Vol M)2(p−n)/pn.

Furthermore, if |α − 1| and |p − n| are both sufficiently small, then

α2

2α − 1
(Vol M)2(p−n)/pn ≤ 1 + ε′.

Now choose ε′ so that (1 + ε′)Y +
p ≤ S� − 3ε/4. Rearranging the inequality above,

we obtain

ε

4
‖φα,L(up)‖2

2n

n−2
≤ C||φα,L(up)||22 + c(n)

∫
| Scal−g | |φα,L(up)|2.

We handle this last term in two different ways, depending on whether Scalg
satisfies iv)a) or c), or else iv) b). In the former cases, the Hölder inequality estimates
this term by || Scal−g ||q||φα,L(up)||22q/(q−1). Since 2α < 2p/(p − 2) and αq/(q − 1) <

2p/(p − 2) uniformly as p ↘ n, we can then pass to a limit as L → ∞ to conclude
that

‖up‖ 2nα

n−2
≤ C

for some C which is independent of p. If Scalg satisfies iv) b), then we use Lemma 1.1
already in (1.17) to absorb this term at the expense of an extra factor of (1 + ε′)
in front of the Y +

p , but we can then proceed exactly as before to reach the same
conclusion.

To conclude, observe that by Proposition 1.8, Theorem 1.10, and using (1.16),
we obtain that ‖up‖∞ ≤ C with C independent of p. This leads immediately to the
strong convergence of up to u in L2n/(n−2). ��
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Remark 1.13. The existence of a minimizer u ∈ W 1,2 can also be proved using
the almost optimal Sobolev inequality and a useful trick of Brezis and Lieb [BL83].
However, it still requires the same amount of work as above to prove that this
minimizer is bounded.

1.5 The lower bound. We now show that when Scalg satisfies either iv) a)
or b), then the minimizer obtained in the last subsection is strictly positive. As we
show by explicit example Remark 2.6 later, this fails when Scalg only satisfies iv) c).
This lower bound is attained by adapting an argument of Gursky [Gur93, Lemma
4.1].

Lemma 1.14. For any ball B(p, r) properly contained in M , there is a constant
C > 0 such that

‖ϕ‖L2(M) ≤ C
(‖dϕ‖L2(M) + ‖ϕ‖L2(B)

) ∀ϕ ∈ W 1,2(M).

Proof. Let B′ = 1
2B be the ball with the same center and half the radius. Since

volB′ > 0, there is a Poincaré inequality on the complement of B′,

‖ϕ‖2 ≤ C‖dϕ‖L2 . ∀ϕ ∈ W 1,2
0 (M\B′).

Hence if ρ(x) is a Lipschitz cutoff function which equals 1 in B′ and vanishes
outside B, then

‖ϕ‖L2(M) ≤ ‖ϕ‖L2(B) + ‖(1 − ρ)ϕ‖L2(M)

≤ ‖ϕ‖L2(B) + C‖d[(1 − ρ)ϕ]‖L2(M\B′)

≤ C ′ (||dϕ||L2(M) + ||ϕ||L2(B)

)

as claimed. ��
Proposition 1.15. Assume that Scalg satisfies either iv) a) or b). Let u be the
minimizing solution obtained in the last subsection. Then infM u > 0.

Proof. We know that for every ϕ ∈ W 1,2(M),
∫

M

〈du, dϕ〉 +
∫

M

n − 2
4(n − 1)

Scalg uϕ = Y

∫

M

u
n+2
n−2 ϕ.

It is easy to check that for ε, δ > 0 the function

ϕ = (ε + u)−1−2δ ∈ W 1,2.

Inserting this into the identity above gives

−1 + 2δ

δ2

∫

M

∣
∣
∣d(ε + u)−δ

∣
∣
∣
2

= −
∫

M

n − 2
4(n − 1)

Scalg uϕ + Y

∫

M

u
n+2
n−2 ϕ,
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and hence
∫

M

∣
∣
∣d(ε + u)−δ

∣
∣
∣
2 ≤ δ2

1 + 2δ
C

⎡

⎣
∫

M

(| Scalg | + u
4

n−2 )(ε + u)−2δ

⎤

⎦ (1.18)

with C = max
{

n−2
4(n−1) , |Y |

}
. By the Hölder inequality, and assuming that Scalg

satisfies iv) a),

∫

M

∣
∣
∣d(ε + u)−δ

∣
∣
∣
2 ≤ δ2

1 + 2δ
C ′

⎡

⎣
∫

M

(ε + u)− 2δn

n−2

⎤

⎦

1− 2
n

,

where C ′ = C [‖ Scalg ‖Ln/2 + ‖u‖L2n/(n−2) ]. If Scalg satisfies iv) b) instead, then we
handle the first term on the right using Lemma 1.1 in an obvious way, and end up
with the same inequality.

Applying the Sobolev inequality to the function (u + ε)−δ and using the Lemma
above and this inequality, we conclude that for δ small enough,

⎛

⎝
∫

M

(ε + u)− 2δn

n−2

⎞

⎠

1− 2
n

≤ C

∫

B

(ε + u)−2δ.

Assuming that B ⊂ Ω, then by the known upper bound on u and the Harnack
inequality, there is a c > 0 such that u ≥ c > 0 on B. Letting ε → 0 in the estimate
above, we see that

∫

M

u− 2δn

n−2 ≤ C.

To conclude the proof, note that the convexity of x �→ xδ implies that

Δ(u−δ) ≥
(

−δ
n − 2

4(n − 1)
Scalg +δY u

4
n−2

)

u−δ := V u−δ

This function V satisfies (1.2) (resp. V ∈ Lq), so Theorem 1.10 (resp. Proposi-
tion 1.8) gives that ||u−δ||∞ < ∞, i.e. inf u > 0. ��

2 The Yamabe Problem on Stratified Spaces

We now specialize the results of the last section to the setting of spaces with smooth
stratifications, also called iterated edge spaces, with corresponding adapted iterated
edge metrics. We begin by reviewing some aspects of the differential topology and
metric structure of these spaces, then prove that all such spaces satisfy a Sobolev
inequality and the other hypotheses from Sect. 1.1, and then formulate the precise
existence theorem in this setting.
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2.1 Smoothly stratified spaces. We now briefly review the definition of smoo-
thly stratified pseudomanifolds. Further details can be found in in the foundational
monograph of Verona [Ver84] and the exposition by Pflaum [Pfl01]. Basic definitions
vary between sources, and the recent paper [ALMP12] provides a clarification and
unified presentation of some of this material; we follow the notation and development
of [ALMP12, Sect. 2] and refer to it for all further details, in particular, for a proof
that this class of spaces coincides with the class of iterated edge spaces considered
by Cheeger [Che83], cf. also [Maz06].

Let X be a compact stratified space. By definition, X admits a disjoint decom-
position into strata, X = �Σj , where each Σj is a (possibly disconnected, possibly
open) manifold of dimension j. There are a set of axioms describing how the strata fit
together, key amongst which is that each connected component of Σj has a tubular
neighbourhood U which is the total space of a smooth bundle over that component
with fibre a truncated cone C(Zj). Here Zj is itself a compact stratified space and
is called the link of that cone bundle. There is a natural filtration of X in terms of
‘depth’ of singularities. Thus compact smooth manifolds are said to have depth 0,
and if Z is a compact space of depth k, then a space which has a neighbourhood
which is a truncated cone or a bundle of truncated cones with link Z has depth k+1.
This depth filtration is different than the filtration of X determined by the closures
Σj since a stratum of high codimension can have low depth (for example, an isolated
conic singularity only has depth 1). An interesting subtlety is that the fibration of
each tubular neighbourhood is required to have a smooth trivialization, but it is not
a priori obvious what the proper class of smooth maps and diffeomorphisms between
stratified spaces should be. This is precisely the point where the various treatments
cited above differ. The definition we give is inductive: once a suitable definition of a
stratified diffeomorphism between spaces of depth j has been given, one declares the
suspension of such a diffeomorphism, i.e. the radial extension of that diffeomorphism
to the cone over that space, to be smooth. This extends the definition to spaces of
depth j + 1. (This smoothness hypothesis excludes many spaces that constitute the
standard broader class of stratified spaces, where these local trivializations are only
required to be continuous; see [ALMP12] for more on this.) A smoothly stratified
space X is a pseudomanifold if the stratum of maximal dimension is dense in X. In
distinction to [ALMP12], we allow X to have strata of codimension one, but since
hypersurface boundaries play a somewhat different role in our main theorem, we
say that X is an iterated edge space (or smoothly stratified pseudomanifold) with
boundary in this case.

Definition 2.1. For each k ≥ 0, define the class Ik of compact iterated edge spaces
of depth k as follows:

• An element of I0 is a compact smooth manifold;
• A space X lies in Ik if it has a decomposition X = X ′ ∪ X ′′, where X ′′ is an

element of Ik−1 with a codimension one boundary along the intersection X ′ ∩ X ′′

and each component of X ′ is the total space of a cone bundle over a compact
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base space B with fibre a truncated cone C(Z) for some Z ∈ Ik−1. (The common
boundary ∂X ′ ∩ ∂X ′′ is the total space of a bundle over the same base B with
fibre Z.)

• Any element X ∈ Ik has a well-defined dimension, where in the decomposition
above, dim X ′′ = dimX ′ = dimB + dimZ + 1.

Note that if X ∈ Ik, then its stratum Y of maximal depth k is necessarily a
compact smooth manifold.

Every iterated edge space X carries a class of adapted iterated edge metrics,
which are also defined inductively. Thus assuming that we have described the class
of admissible iterated edge metrics on all iterated edge spaces of depth k−1, let X be
an iterated edge space of depth k. If Y is the stratum of depth k and U the tubular
neighbourhood around Y , then we can assume that the structure of the metric g
on X has been described on X\U . In particular, if x is the radial coordinate on the
conic fibres of U , then ∂U = {x = 1} is an iterated edge space of depth k − 1, which
is the total space of a fibration over Y with fibre Z. Let G be an admissible metric
on ∂U , which we assume has been defined by the inductive hypothesis. Then it is of
the form π∗h + k, where π : ∂U → Y is the fibration, h is an ordinary Riemannian
metric on Y and k is a symmetric 2-tensor on ∂U which restricts to an admissible
metric on each fibre Z. We also assume that k is totally degenerate on a subspace
of dimension � at each point, � = dimY . Now define the metric g on U by coning
off each fibre. In other words, we set

g0 = dx2 + π∗h + x2k,

where x is the radial function on each conical fibre. An admissible metric on U is
any metric which has the form g0 +κ where κ is polyhomogeneous on the resolution
of this neighbourhood and such that |κ|g0 decays at some rate xγ . The notion of
polyhomogeneous regularity will be defined in the next section, so for the moment
consider this only as an appropriate smoothness condition. It is possible to consider
finite regularity metrics too, but for simplicity we shall not do so. Finally, a metric
g on all of X is admissible if it is admissible in a sense defined via the inductive
hypothesis away from U , and which takes this form in U .

To make this more explicit, let V×Z be a local trivialization of ∂U , where V ⊂ R
�

is an open ball, and Z is the depth k − 1 link, and introduce a coordinate system
y ∈ V as well as local coordinates z on the smooth stratum of Z. Then we can write

G =
�∑

i,j=1

hij(y)dyidyj +
�∑

i=1

n−�−1∑

p=1

bip(y, z)dyidzp +
n−�−1∑

p,q=1

kpq(y, z)dzpdzq,

where the second and third sums here constitute the tensor k. Thus
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g1 = dx2 +
�∑

i,j=1

hij(x, y)dyidyj

+ x2
�∑

i=1

n−�−1∑

p=1

bip(x, y, z)dyidzp + x2
n−�−1∑

p,q=1

kpq(x, y, z)dzpdzq,

where hij , bip and kpq are smooth for 0 ≤ x ≤ 1.
Pick any point p ∈ Y , the depth k stratum, and use coordinates so that x = 0,

y = 0 and z = z0 at p. Define the dilations Dλ : (x, y, z) → (λx, λy, z), and consider
the family of metrics gλ := D∗

1/λg1. Then, as λ → ∞,

λ2gλ −→ dx2 +
�∑

i,j=1

hij(0)dyidyj + x2
n−�−1∑

p,q=1

kpq(0, z)dzpdzq

which is a product metric on the space R
� × C(Z) (where R

� is identified with
TpY ). Note that the metric k on Z in this product decomposition depends on the
basepoint p ∈ Y , whereas h(p) is simply the Euclidean metric in some linear change
of coordinates. We summarize this by saying that |dy|2 + k(y) is the model iterated
edge metric for g at y ∈ Y . Observe that the perturbation κ disappears in this same
rescaling limit. An important consequence of this metric structure is that we can
choose local coordinates (x, y, z) near any fibre Zy corresponding to y ∈ Y such that
the scalar Laplacian takes the form

Δg = ∂2
x + x−1A(x, y, z)∂x + x−2Δk(x,y,z) + Δh(x,y,z) + E,

where all coefficients are smooth, or at least bounded and polyhomogeneous, with
A(0, y, z) ≡ n − � − 1, and where E is a higher order error term of first order in the
sense that it is a sum of smooth multiples of the vector fields x∂x, x∂y and ∂z.

There are slightly less restrictive types of metrics which one can handle without
too much more difficulty; for example, one could allow terms like xdyidzp, or (for
the final metric, after the perturbation κ is added), terms like dxdyi or xdxdzp, but
again for simplicity we do not do so here.

2.2 Sobolev inequalities. We next show that the Sobolev inequality (1.1)
holds on any iterated edge space with adapted metric.

Proposition 2.2. Let (M, g) be an iterated edge space, possibly with boundary,
with admissible metric g as defined in the last subsection. Denote by Ω its principal
open dense stratum. Then the Sobolev inequality (1.1) is valid for all u ∈ C∞

0 (Ω),
and hence for all u ∈ W 1,2

0 (M).

Proof. We reduce the problem of verifying (1.1) on an iterated edge space (M, g) of
depth k using the following observations. First, the Sobolev inequality is localizable;
in other words, if (1.1) holds on every set in a finite open cover {Uα} of M , then



1062 KAZUO AKUTAGAWA, GILLES CARRON AND RAFE MAZZEO GAFA

using a partition of unity we can show that it holds on all of M . Now decompose
M = M ′ ∪ U where U is the tubular neighbourhood around the maximal depth
stratum in M and M ′ is an iterated edge space of depth k − 1 with boundary. We
may assume by induction that (1.1) holds for all functions with support in M ′, so it
suffices to verify this inequality for functions with support in U . Localizing further,
we can restrict attention to functions supported in a local trivialization V × C1(Z)
of U , where V ⊂ R

� is an open ball and Z is a compact space of depth strictly less
than k. Finally, noting that (1.1) is stable under quasi-isometric changes of metric,
we may assume that g is the product metric |dy|2 + dx2 + x2hZ on R

� × C(Z).
We now recall the fact that (1.1) holds on a space (W, gW ) if and only if the heat

kernel HW (t, w, w′) for the scalar Laplacian satisfies

HW (t, w, w′) ≤ C ′t−n/2 (2.1)

for all w, w′ ∈ W and 0 < t < 1, where n = dimW . (Indeed, [Sal02, Theorem
4.1.3] states that the Nash inequality is equivalent to this heat kernel estimate; the
equivalence of the Nash inequality with (1.1) is treated in [Sal02, Ch. 3]; alternately,
[Nas58] shows that the Sobolev inequality implies the heat kernel bound, while by
[Var85], the heat kernel bound implies the Sobolev inequality.)

We apply this in two separate ways. First, since Z is a compact iterated edge
space of depth less than k, (1.1) holds on Z; hence HZ(t, z, z′) ≤ Ct−m/2 where
m = dimZ = n − � − 1. Using this, we shall show that

HC(Z)(t, x, z, x′, z′) ≤ Ct−(m+1)/2. (2.2)

Since the corresponding heat kernel bound on R
� is standard, and since heat

kernels multiply for Riemannian products, we see that

HR
�×C1(Z)(t, y, x, z, y′, x′, z′)

= HR
�

(t, y, y′)HC(Z)(t, x, z, x′, z′) ≤ Ct−�/2−(n−�)/2 = Ct−n/2.

Hence (1.1) holds on V × C1(Z).
It remains to verify (2.2). Denote by Ha,b the heat kernel on the conic nappe

Ca,b(Z) = {(x, z) : a ≤ x ≤ b}, with Dirichlet conditions at the boundaries. Note
that (1.1) holds on C1,2(Z) with respect to the product metric, hence by quasi-
isometry invariance, it also holds with respect to the conic metric. Therefore,

H1,2(t, x, z, x′, z′) ≤ Ct−(m+1)/2. (2.3)

Now recall the basic scaling property of the heat kernel. For any λ > 0, the heat
kernels Hλ,2λ and H1,2 are related to one another by

Hλ,2λ(λ2t, λx, y, λx′, y′)λm+1 = H1,2(t, x, y, x′, y′).

Using (2.3) and changing variables, we obtain

Hλ,2λ(t, x, y, x′, y′) ≤ Ct−(m+1)/2.
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The squared L2n/(n−2) norm on the left in (1.1) and the squared L2 norm of ∇u
on the right both scale the same way, but the squared L2 norm of u scales differently.
Thus when we apply this for the sequence λ = 2−j , and assemble the pieces using a
dyadic partition of unity {χ(2jx)}, where χ is supported on 1/2 ≤ x ≤ 4, then we
conclude that

⎛

⎜
⎝

∫

C0,1(Z)

u
2n

n−2 dVg

⎞

⎟
⎠

n−2
n

≤ C

⎛

⎜
⎝

∫

C0,1(Z)

|∇u|2 dVg +
∫

C0,1(Z)

x−2u2 dVg

⎞

⎟
⎠ ,

which is valid for all u ∈ C∞
0 (C0,1(Z)\{0}).

Moreover, we claim that there is a Poincaré-Hardy inequality in this setting, i.e.

(m − 1)2

4

∫

C(Z)

x−2u2 dVg ≤
∫

C(Z)

|∇u|2 dVg.

This is standard when Z is a compact smooth manifold, but since ΔZ has discrete
spectrum by virtue of Corollary 1.7 and the inductive hypothesis, we can reduce to
the individual eigenspaces, where it becomes the usual Hardy inequality on R

+. As
an alternate path to proving this we could use the argument in [Car97], which uses
integration by parts and hence requires only the density of functions with compact
support in the smooth locus.

We have now verified (2.2), and hence have proved that (1.1) holds for all iterated
edge spaces of depth k. ��

Appealing to Lemma 2.4 below and combining the result above with Proposi-
tion 1.4, we obtain the following

Corollary 2.3. Let (M, g) be a compact iterated edge space with adapted metric
which satisfies one of the conditions in Lemma 2.4 so that at least one of the hy-
potheses iv) a) or iv) b) hold. Then the local Yamabe invariant Y�(M, [g]) is strictly
positive.

In the next subsection we identify this local Yamabe invariant somewhat more
explicitly.

2.3 Existence of Yamabe metrics. We now turn to the problem of finding
minimizers for the functional Qg in this setting of iterated edge spaces. The main
issue now is to understand when the hypotheses iv) a), b) or c) hold so that we can
apply Theorem 1.12.

We first describe the local Yamabe invariant of an iterated edge space (M, g). Let
p ∈ M . If p lies in the depth 0 stratum, i.e. is a smooth point, then the local Yamabe
invariant at p is just Y (Sn). If p lies on a depth k stratum Σ, then as described at
the end of Sect. 2.1, the rescaled limit of the metric g equals dx2 + dy2 + x2kp,
where kp is the metric on the link Z at p and dy2 is the Euclidean metric on R

�,
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� = dim Σ. Note that this is conformally equivalent to the product metric gH�+1 + kp

on H
�+1 × Z, and hence

Y (R� × C(Z), [dx2 + dy2 + x2kp]) = Y (H�+1 × Z, [gH�+1 + kp]).

This generalizes the fact that the Yamabe invariant of the cone C(Z) and the
cylinder R × Z are the same. In any case, enumerating the depth j strata as {Σj},
and denoting the link around Σj by Zj , then we have proved that

Y�(M, [g]) = min
j

inf
p∈Yj

{Y (R� × C(Zj), [dy2 + dx2 + x2(kZj
)p])}. (2.4)

Now consider the hypotheses in Sect. 1.1. The verification of i) is a straightfor-
ward exercise using cutoff functions and mollifications, which we leave to the reader.
The Ahlfors n-regularity is even easier. We have verified in Sect. 2.2 that the Sobolev
inequality (1.1) holds; this is condition iii). On the other hand, the hypotheses iv)
a)–c) require more careful attention. Indeed, as we now show, these hypotheses are
valid for a rather limited set of iterated edge metrics.

We begin with some general remarks. It is clear from the structure of adapted
iterated edge metrics that if Σj is any stratum of depth j and xj is the radial distance
function in the tubular neighbourhood of Σj , then the scalar curvature Scalg can
blow up no faster than x−2

j . If dim Zj = fj , so dim Σj = �j = n − fj − 1, then

dVg ≈ x
fj

j dxjdVhj
dVkj

near Σj , where hj is a smooth metric on Σj pulled back to
the tubular neighbourhood and kj restricts to a metric on the (depth j − 1) link Zj .
Assuming that g is smooth in the variable xj , then

Scalg =
A

(j)
0

x2
j

+
A

(j)
1

xj
+ O(1).

To correlate this with the hypotheses iv) a)–c), note that 1/x2
j ∈ Lq implies

q < (fj + 1)/2, and hence we can never take q > n/2 as in iv) a). Similarly, the
Morrey condition requires that for some q > 1,

r−n

∫

Br

x
−2q+fj

j dxjdydz = O(r−n+fj−2q+1+�j ) = O(r−2q),

which is (1.2) with α = 2 and hence does not fit into our hypotheses. Suppose,
however, that the coefficient of x−2

j in this expansion vanishes. Then x−1
j ∈ Lq

provided q < fj + 1, and hence we can take q > n/2 and see that iv) a) is satisfied
provided fj + 1 > n/2. Similarly, the Morrey condition holds because we only need
choose q > 1, which is always possible since fj + 1 > 1, and for such a q we then
have

r−n

∫

Br

x
−q+fj

j dxjdydz = O(r−n+fj−q+1+�j ) = O(r−q),

which is (1.2) with α = 1. This proves the following
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Lemma 2.4. The scalar curvature Scalg satisfies iv) a) if and only if then A
(j)
0 = 0

for all j and in addition A
(1)
j = 0 whenever fj ≤ (n − 2)/2. The scalar curvature

Scalg satisfies iv) b) (for some q > 1 and 0 ≤ α < 2) if and only if A
(j)
0 = 0 for all

j. Finally, Scalg satisfies iv) c) if and only if A
(j)
0 ≥ 0 for all j and A

(j)
1 ≥ 0 when

fj ≤ (n − 2)/2.

It is clear from this that the terms in Scalg which blow up like 1/x2
j are the most

problematic. The 1/xj terms always fit within hypothesis iv) b).
We will also need to consider metrics with a polyhomogeneous expansion, which

include noninteger powers of x or terms like xγ(log x)�, � ∈ N0. For any such metric,
the scalar curvature function also has an expansion and there is an obvious extension
of this lemma which requires the vanishing or nonnegativity of the coefficient of any
term xγ(log x)� where nγ/2 + fj ≤ 1.

Isolated conic points. We first examine the simplest case: an isolated conic singu-
larity, where dim Σj = 0 and fj = n − 1. For simplicity drop the index j, but to
be consistent with later notation, we still use f = n − 1. A well-known formula
[Pet06, p.69] shows that an exact warped product conic metric g = dx2 + x2k has
Scalg = x−2(Scalk −f(f − 1)). More generally, if k depends smoothly on x, then

Scalg =
Scalk(0) −f(f − 1)

x2
+ O(x−1). (2.5)

This leading coefficient vanishes if and only if Scalk(0) = f(f −1), which indicates
a very strong geometric and topological obstruction: if the scalar curvature of (M, g)
is bounded, then in particular the link (Z, k(0)) must have positive Yamabe invariant.

We now study whether it is possible to remove the singular terms in the expansion
of Scalg using a conformal change. If ĝ = w

4
n−2 g, then

Scalĝ = −c(n)−1w− n+2
n−2 (Δgw − c(n) Scalg w), c(n) =

n − 2
4(n − 1)

. (2.6)

Thus if we introduce the expansion in x of Δg and Scalg, we obtain that

Scalĝ ∼ −c(n)−1w− n+2
n−2

×
(

∂2
x +

n − 1
x

∂x +
1
x2

(Δk0 − c(n)(Scalk(0) −f(f − 1))) +
1
x

E

)

w.

The error term E ∼ E0 + xE1 + · · · is a second order differential operator
composed of a sum of smooth multiples of products of the vector fields x∂x and ∂z,
and also includes the terms beyond the leading one in the expansion for Scalg.

From this we see that a necessary and sufficient condition for the coefficient of
x−2 to vanish is that

(Δk(0) − c(n) Scalk(0))w0 = −c(n)f(f − 1)w0,
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where w0 is the restriction of w to x = 0, i.e. the leading term in the expansion of
w. We denote the operator which appears on the left here by Ln

k(0); it is a special
element of the family of operators

Lm
k0

= Δk0 − c(m) Scalk(0), c(m) =
m − 2

4(m − 1)
, (2.7)

for any value of m. Note that Lf
k(0) is simply the conformal Laplacian of (Z, k(0)).

The positivity of the operator −Ln
k(0) plays an important role in the main existence

theorem of [AB03], as we now recall.

Theorem 2.5 ([AB03]). Suppose that (Mn, g) is a space with isolated conic
singularities, and that at each conic point p, the operator −Ln

k(0) on the link (Z, k(0))
has all eigenvalues strictly positive. Suppose too that Y (M, [g]) < Y�(M, [g]). Then

there exists a function u on M which minimizes Qg and is such that ĝ = u
4

n−2 g
remains incomplete. Conversely, there exists a minimizer u such that ĝ is incomplete
only if −Lk(0) > 0.

We do not assert that u is bounded, nor that the new constant scalar curvature
metric is conic. We shall explain shortly why u may fail to be bounded; in the next
section we describe the polyhomogeneous regularity of u which makes clear that ĝ
is in fact still conic.

We can recover part of this theorem immediately from Theorem 1.12. Indeed, if
the lowest eigenvalue of −Ln

k(0) is exactly c(n)f(f −1), then we can choose w so that
w0 is the eigenfunction corresponding to this lowest eigenvalue, so that w0 is strictly
positive, and then Scalĝ blows up only like x−1, hence lies in Lq for q ∈ (n/2, n). We
thus obtain the existence of a bounded, strictly positive function u which minimizes
Qĝ. Clearly u4/(n−2)ĝ is quasi-isometric to ĝ and thence to g.

In order to prove existence whenever −Ln
k(0) is positive, fix δ > 0, to be specified

below, and define gδ = x2δ−2g. The change of variables ξ = xδ/δ gives the transform

gδ = x2δ−2(dx2 + x2k) = dξ2 + ξ2δ2k,

so gδ is still conic, but its link metric has been scaled by δ2. Oserve also that
−Ln

δ2k(0) = −δ−2Ln
k(0). This means that if we first replace g by gδ and then set

ĝδ = w4/(n−2)gδ, then we can make the coefficient of ξ−2 vanish provided that
δ−2λ0(−Ln

k(0)) = c(n)f(f − 1), which determines the value of δ, and w0 is the cor-
responding eigenfunction. We are then in a position to apply Theorem 1.12 again,
this time with ĝδ as the background metric. The solution metric is quasi-isometric
to gδ, and hence conic.

The converse statement is an easy consequence of these same calculations, at least
once we show that a minimizer u (or indeed any positive solution of the corresponding
Euler-Lagrange equation) has a polyhomogeneous expansion as x → 0, which we do
in the next section. Thus we have now given an independent proof of Theorem 2.5.



GAFA THE YAMABE PROBLEM ON STRATIFIED SPACES 1067

The condition that λ0(−Ln
k(0)) > 0 is actually stronger than the condition that

(Z, k(0)) is Yamabe positive. Indeed, referring back to the family of operators (2.7),
an easy calculation shows that if p < q, then there are positive constants A = A(p, q)
and B = B(p, q) such that

− Lp
k(0) = A(−Lq

k(0)) + B(−Δk(0)) =⇒ −Lp
k(0) ≥ A(−Lq

k(0)). (2.8)

In particular, taking p = f and q = n, then the positivity of −Ln
k(0) implies that

the conformal Laplacian of (Z, k(0)) is positive, which is well-known to imply the
existence of a conformally equivalent (constant) positive scalar curvature metric.

Remark 2.6. When the scalar curvature of k(0) is constant and greater than
(n − 1)(n − 2)

Scalk(0) = (n − 1)(n − 2)(1 + δ2),

then the scalar curvature of the metric g is positive near the conical points. Hence
the scalar curvature satisfies the condition iv) c), but the above argument shows
that the minimizer of the Yamabe problem is not uniformly positive. It will decay
like x

n−2
2

δ. Therefore the hypotheses of the Proposition 1.15 can not be relaxed.

Simple edges. We next suppose that M has only simple edges, i.e. that each sin-
gular stratum Σj is a compact smooth manifold of dimension n − rj . For simplicity
we assume that there is only one such stratum and drop the index j. A tubular
neighbourhood of Σ is a cone bundle with compact smooth link Zf , and in this
neighbourhood, g ∼ dx2 + x2k + π∗h, where h is a metric on Σ, π the projection
from this neighbourhood onto Σ and k a symmetric 2-tensor so that dx2 + x2k
pulls back to an asymptotically conic metric on each conical fibre of the tubular
neighbourhood.

Lemma 2.7. If g has a smooth expansion as x → 0, then

Scalg =
Scalk(0,y) −f(f − 1)

x2
+

A1(y, z)
x

+ O(1). (2.9)

This is slightly less obvious than in the isolated conic case and can be verified
by direct calculation. It can also be proved by observing that since Scalg has an
expansion with initial term x−2, if we dilate the coordinates via (x, y, z) → (λx, λy, z)
(around some fixed basepoint y0 ∈ Σ) and let gλ be the corresponding pulled back
metric, then the coefficient of the leading term of homogeneity −2 in λ must be
the limit of λ2 Scalgλ

as λ → ∞. However, it is evident that λ−2gλ converges to the
product metric dx2 + x2k(y0, z) + dy2 on C(Z) × R

n−r, which has scalar curvature
exactly equal to x−2(Scalk(0) −f(f − 1)).

Let us now investigate whether it is possible to conformally transform away the
singular term of order 1/x2 in the expansion for Scalg at Σ. As we have already
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shown, the existence of the singular term A1/x can be handled using hypothesis iv)
b).

Replace g by ĝ = w
4

n−2 g and proceed with exactly the same formal calculation
as in the isolated conic case. There are several important differences in this setting.
First, it is still clearly necessary that λ0(−Ln

k(0)(y)) ≡ c(n)f(f −1) and that w0(y, z)
must lie in this eigenspace for every y. In particular, this eigenvalue must be in-
dependent of y ∈ Σ, which is a strong rigidity statement. Assuming this, we can
thus eliminate the x−2 term. Note that we may— and indeed we shall later need
to—-let w0 depend nontrivially but smoothly on y. This does not interfere with this
calculation since although E now contains y derivatives, these are accompanied by
a nonnegative power of x, hence the derivatives of w0 can be regarded as junk terms
in the expansion and can be solved away.

Applying Theorem 1.12 and the fact that we have arranged that Scalg satisfies
iv) b), we have now proved the

Theorem 2.8. Let (M, g) have at most simple edge singularities. Assume that
c(n)f(f −1) = λ0(−Ln

kj(0)) along each singular stratum Σj . Suppose in addition that

Y (M, [g]) < Y�(M, [g]). Then there exists a bounded and strictly positive function u
which minimizes Qĝ. The metric u4/(n−2)ĝ is quasi-isometric to the initial metric g.

Unlike the conic case, we cannot go further and still remain within the class of
iterated edge metrics. Indeed, if we were to multiply g by the conformal factor x2δ−2,
then this factor would also multiply π∗h; if δ < 1, the corresponding metric would
have infinite diameter, while if δ > 1 then the entire edge Σ would be collapsed to a
point. In either case, we would leave the category of smoothly stratified spaces and
iterated edge metrics.

We shall not carry out the detailed study of when we can modify g conformally
to ensure the weaker condition iv) c), that (Scalĝ)− ∈ Lq for some q > n/2. The
conditions are not particularly explicit, and the solution u is not bounded away from
0 so that the solution metric is again not of iterated edge type.

The general case. We now come to the general case where (M, g) is a smoothly
stratified space with iterated edge metric. As we shall explain, the conditions needed
to obtain a solution of the Yamabe problem in this category are even more restrictive
than in the simple edge case.

We begin with a statement of the simplest case, which follows immediately from
Theorem 1.12.

Theorem 2.9. Let (M, g) be a compact smoothly stratified space with iterated
edge metric g. Suppose that along each stratum Σj , the link metric (Zj , kj) has
Scalkj

≡ fj(fj − 1), and in addition, that Y (M, [g]) < Y�(M, [g]). Then there exists

a bounded, strictly positive function u which minimizes Qg, and hence u
4

n−2 g is an
iterated edge metric with constant scalar curvature.
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The regularity theorem in the next section will show that u is polyhomogeneous,
so that this solution metric is indeed an iterated edge metric in the strict sense of
the word.

As in the conic and simple edge cases, we might also seek conditions on the
initial metric g so that there is some conformally related metric ĝ which satisfies the
hypotheses of Theorem 1.12. As in those cases, the idea is to choose the conformal
factor w to kill the appropriate singular terms at each stratum.

The calculations we have done above may be carried out almost exactly as before,
and lead to the following necessary conditions: for any stratum Σ with link (Zf , k),
we assume that

1) The operator −Ln
k on Z has discrete spectrum.

2) The operator −Ln
k has lowest eigenvalue c(n)f(f − 1) at every point of Σ.

The first hypothesis, on the discreteness of the spectrum, may be surprising. The
fact that the scalar Laplacian Δk itself is essentially self-adjoint and has discrete
spectrum is a consequence of Corollary 1.7 and Proposition 2.2. However, the extra
term c(n) Scalk may blow up like 1/r2 on approach to any of the singular strata of Z
itself, which changes the indicial roots. It is not hard to find examples of spaces (Z, k),
even with just isolated conic singularities, where −Ln

k is not even semi-bounded,
which simply amounts to the fact that c(n) Scalk diverges to −∞ like −c/r2 with
leading coefficient larger c than the permissible Hardy estimate bound (f − 1)2/4.
This question is closely related to the problems studied in [MM01], see also [Car97]
and [AK13]

One further point which requires explanation is that in using condition 2), we use
a conformal factor w which has leading coefficient along Σ equal to the eigenfunction
w0 for −Ln

k corresponding to the eigenvalue c(n)f(f − 1). In order to stay with the
class of iterated edge metrics, it is necessary that w0 be bounded above and strictly
positive, and this may fail. Indeed, it is easy to construct examples of operators
−Δk + V on Z with V blowing up like 1/r2, where the ground state eigenfunction
either vanishes at the singular set of Z or else blows up at some rate. Fortunately,
the fact that this does not occur follows from the hypotheses we have already made.

Proposition 2.10. If (M, g) satisfies conditions 1)–2) along each singular stratum
Σ, and if (Z, k) is any link, then the eigenfunction w0 for the ground state eigenvalue
of −Ln

k is bounded and strictly positive.

Proof. The assertion follows from the regularity theory for eigenfunctions, reviewed
in the next section, and an indicial root computation. Let Σ′ be any singular stratum
of Z with corresponding link (Z ′, k′), dimZ ′ = f ′. If r is the radial variable to this
stratum, then near Σ′,

Ln
k = ∂2

r +
f ′

r
∂r +

1
r2

(Δk′ − c(n)(Scalk′ −f ′(f ′ − 1))) + ΔΣ′ + E′,
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where E′ contains all higher order terms (including higher order terms in the ex-
pansion of Scalk). The indicial roots of this operator are then equal to

ν±
j = −f ′ − 1

2
±
√

(f ′ − 1)2

4
+ μj ,

where the μj are the eigenvalues of −(Δk′ − c(n)(Scalk′ −f ′(f ′ − 1)) = −Ln
k′ −

c(n)f ′(f ′ − 1). By assumption, μ0 = 0 < μ1 ≤ · · · , hence

ν+
0 = 0 < ν+

1 < · · · , and ν−
0 = 1 − f ′ > ν−

1 > · · · .

By the aforementioned regularity theory, w0 ∼ crνj+φj + · · · near Σ′, where φj

is the eigenfunction corresponding to ν+
j . However, w0 must remain strictly positive

in the interior of Z by the standard maximum principle arguments, hence j = 0
and w0 ∼ cφ0 which shows that it remains bounded and strictly positive near this
stratum. ��

To conclude this section we observe finally that assuming the conditions 1) and
2) on (M, g), if (Z, k) is any link, then by (2.8), the conformal Laplacian −Lf

k is
strictly positive.

3 Regularity

The final goal of this paper is to study the regularity of the minimizers of the
functional Qg obtained in the last section when (M, g) is an iterated edge space.
The techniques here are nonvariational, so the results below apply to any positive
solution of

Δgu − c(n) Scalg u + c(n)Λu
n+2
n−2 = 0, (3.1)

assuming that u satisfies a natural growth condition so that u
4

n−2 g remains quasi-
isometric to g, and which is satisfied for the solutions constructed in Sect. 2.3. Note
that if ||u|| 2n

n−2
= 1, then Λ = Scalg ≥ Y (M, [g]). We shall prove that u is conormal

along each of the singular strata, and has (at least) a partially polyhomogeneous
expansion. We explain this below.

As in Sect. 2.3, we first prove regularity when M has only isolated conic singu-
larities. The steps in this case are quite elementary, but rely on a certain number
of definitions concerning the function spaces and the b-calculus of pseudodifferential
operators. With these preliminaries, the proof of regularity in this case is only a
few lines. We then prove regularity for spaces with simple edges, and here we can
quote known results about the pseudodifferential edge calculus from [Maz91a]. For
the general case we need only mimic one small part of this edge calculus to be able
to deduce what we need.
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3.1 Conic singularities. Our first goal is to prove the

Proposition 3.1. Let (M, g) be a compact space with only isolated conic singu-
larities. Assume that g is a polyhomogeneous conic metric. Suppose that u is a
solution of (3.1) which is positive on the regular part of M and which satisfies
u < Cx−(n−2)/2+ε for some ε > 0 near each conic point, where x is the radial dis-
tance to the conic tip. Then u is polyhomogeneous as x → 0. If the link (Z, k) satisfies
the simplest condition, that Scalk ≡ (n−1)(n−2), then the expansion of u takes the
form u ∼ c0 +c1(z)xν1 + · · · , where c0 is a positive constant. If we only have that the
lowest eigenvalue of −Ln

k is positive, then u ∼ x(δ−1)(n−2)/2(c0(z) + c1(z)xν′
1 + · · · ),

where c0(z) is strictly positive and is the ground state eigenfunction of −Ln
k and δ is

the constant described in Sect. 2.3. The exponents ν1, ν
′
1, etc., which appear in this

expansion are determined by the higher eigenvalues of −Ln
k .

This regularity is local near each conic tip, but we emphasize that it is global
with respect to the links (Z, k). The main issue is to prove that the solution is
conormal (see below); its polyhomogeneity and the precise form of its expansion are
then formal consequences.

Rather than analyzing (3.1) directly, we rewrite it relative to the background
metric g̃ = x−2g = (x(2−n)/2)4/(n−2)g, yielding

(Δg̃ − c(n)Scalg̃)v + c(n)Λv
n+2
n−2 = 0, (3.2)

where the original solution u = x(2−n)/2v. Note that by the transformation properties
of the conformal Laplacian, Scalg̃ = Scalk + · · · , hence

(
(x∂x)2 + Δk − c(n)Scalk + E

)
v + c(n)Λv

n+2
n−2 = 0; (3.3)

here E contains all higher order error terms from both Δg̃ and Scalg̃. Note that our
assumption that |u| ≤ Cx(2−n)/2+ε becomes |v| ≤ Cxε, which is much easier to work
with. (In fact, it is precisely because we are able to work with solutions which decay
that this argument is easier than the corresponding regularity theorem in [Maz91b].)

Before embarking on the proof, we recall several facts, first about the function
spaces which will be used and then about parametrices in the b-calculus. For sim-
plicity, assume that M has only one conic point and that the radial function x is
extended globally and is strictly positive elsewhere on M .

Definition 3.2. Decompose M as M ′ �C1(Z), where the second factor is the trun-
cated cone over Z with coordinates z ∈ Z and x ∈ (0, 1]. It is most natural to
work relative to the complete metric g̃, and in this geometry, − log x is the distance
function on the asymptotically cylindrical end.

i) The space Ck,γ
b (M) consists of all functions v which lie in the ordinary Hölder

space Ck,γ on M ′, and in addition satisfy (x∂x)j∂α
z v ∈ C0,γ

b , where the latter space
is defined using the seminorm

[v]b;0,γ := sup
(x,z)�=(x′,z′)
1/2≤x/x′≤2

|v(x, z) − v(x′, z′)|
distg̃((x, z), (x′, z′))γ

.
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We also define

xμCk,γ(M) = {v = xμṽ : ṽ ∈ Ck,γ
b (M)}.

ii) For any ν ∈ R, let Aν(M) =
⋂

k≥0 xνCk,γ(M). This is the space of conormal
functions. Next, define the space of polyhomogeneous functions Aphg(M) to con-
sist of all conormal functions v which admit complete asymptotic expansions
with smooth coefficients, and write Aν

phg for all polyhomogeneous functions with
leading term xν0φ(z) for some ν0 with (real part) greater than or equal to ν.
Note that xν log x ∈ Aν−ε

phg for any ε > 0. Finally, let ν < ν ′ be any pair of real

numbers, and define Aν,ν′

phg(M) = Aν
phg(M) + Aν′

(M); thus v is in this space if it
has a partial polyhomogeneous expansion with initial term bounded by xν and
with conormal ‘remainder’ vanishing like xν′

.

As a first step in the proof of Proposition 3.1, note that since g̃ has locally
uniformly controlled geometry and since v is uniformly bounded, we obtain directly
from classical Hölder estimates that v ∈ Aε(M).

Using this in (3.3), we have

((x∂x)2 + Δk − c(n)Scalk + E)v = c(n)Λv
n+2
n−2 ∈ Aτε, (3.4)

where τ = n+2
n−2 (and we assume that τε ≤ 1 for simplicity).

The conformal Laplacian Lg̃ is an example of an elliptic b-operator, and the
operator on the left in this last equation is its asymptotic model at x = 0 and called
its indicial operator, I(Lg̃). This indicial operator can be analyzed quite directly
using the Mellin transform in the x variable. To this end, introduce the indicial
roots of Lg̃; these are the values ν for which there exists a function φ ∈ C∞(Z) such
that

I(Lg̃)xνφ = 0 ⇔ Lg̃x
νφ = O(xν+ε′

)

for some ε′ > 0. It is easy to see in this case, by separation of variables, that the
indicial roots are given by

ν±
j := ±√λj , where spec(−Lk) = {λj}. (3.5)

The coefficient function φ for any such indicial root equals the corresponding
eigenfunction φj . Since the lowest eigenvalue of −Ln

k = −Δk + c(n)Scalk is strictly
positive, we have that · · · ≤ ν−

1 < ν−
0 < 0 < ν+

0 < ν+
1 ≤ · · · . The indicial roots are

the precise rates of growth or decay of approximate solutions of Lg̃w = 0.
The b-calculus is merely a systematized method for passing from information

about the indicial operator to the corresponding information about Lg̃ itself. We
quote some results from this theory, referring to [Maz91a] for a careful development
of this b-calculus as well as the more general edge calculus which will be invoked
below.
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Proposition 3.3 ([Maz91a, Theorem 4.4]). For k ∈ N and 0 < γ < 1, the mapping

Lg̃ : xνCk+2,γ
b (M) −→ xνCk,γ

b (M)

is Fredholm if and only if ν �= ν±
j for any j.

Proposition 3.4 ([Maz91a, Proposition 3.28]). Let f ∈ Aν′
(M) and suppose that

Lg̃v = f , where v ∈ Aν(M) for some ν < ν ′. Then v ∈ Aν,ν′

phg(M), or in other words,
v has a partial expansion

v =
N∑

j=0

N ′
j∑

p=0

xμj (log x)pvjp(z) + ṽ,

where ṽ ∈ Aν′
and the μj lie in the interval (ν, ν ′). Moreover, if f ∈ Aν,ν′

phg(M), then

v ∈ Aν,ν′

phg(M) and if f ∈ Aν
phg, then v ∈ Aν

phg.

Remark 3.5. Once we know that v ∈ Aν,ν′

phg for some ν, ν ′, we can determine the
exponents μj which appear in its expansion by a formal computation with the equa-
tion Lg̃v = f . In particular, if the link metric k(x) depends smoothly on x, then all
μj are of the form ν±

j + �, where ν±
j is an indicial root and � ∈ N0.

These are proved by constructing a parametrix G for Lg̃, which is a pseudodiffer-
ential operator, depending on the choice of (nonindicial!) weight ν. The fundamental
mapping results for this class of operators, proved in [Maz91a, Sect. 3] give that

G : xνCk−2,γ
b (M) −→ xνCk,γ

b (M), (3.6)

G : Aν′
(M) −→ Aν,ν′

phg(M), (3.7)
G : Aν

phg(M) −→ Aν
phg(M) (3.8)

are all bounded mappings, for any k ∈ N0, and ν < ν ′ with ν /∈ {ν±
j }.

Proof of Proposition 3.1. Appealing directly to (3.4) and applying Proposition 3.4,
we deduce that v ∈ Aε,τε

phg. Using this on the right side of this equation gives v ∈
Aε,τ2ε

phg , and bootstrapping further, we obtain that v ∈ Aphg. The precise form of its
expansion can then be determined by substituting this expansion into the equation.
In particular, the leading exponent in the expansion is equal to one of the positive
indicial roots ν+

j , i.e.

v ∼ φj(z)xν+
j + O(xν+

j +ε′
).

Since v > 0 when x > 0 and the eigenfunction φj changes sign unless j = 0, this
expansion must start with φ0(z)xν+

0 .
In the simplest case, where Scalk ≡ (n − 1)(n − 2), we can easily see that ν+

0 =
(n − 2)/2 and φ0(z) is a positive constant. In particular, u = x(2−n)/2v is bounded
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and strictly positive. In the more general case where we only assume that −Ln
k > 0,

we conclude that u ∼ φ0(z)x(2−n)/2+ν+
0 , where now φ0 is variable but still strictly

positive. Recalling the conformal change g �→ gδ = x2δ−2g introduced in Sect. 2.3
which allows one to reduce to the case that ν+

0 = (n − 2)/2 with respect to the
new radial coordinate ξ = xδ/δ provided one chooses δ correctly, we have that the
solution is bounded and strictly positive relative to the background metric gδ. Note
that in the first case, the solution metric is still exact conic, while in the second case,
it is conformally exact conic. ��

3.2 Simple edges. We next present the corresponding proof of regularity when
(M, g) has simple edges. In this case we can take advantage of the construction
of parametrices and their mapping properties in the edge calculus. There is one
important new step in the proof, beyond what was needed in the conic case, but
then it proceeds exactly as before.

We begin with exactly the same initial conformal change, replacing g by g̃ = x−2g,
with the corresponding changes of conformal Laplacian and the Yamabe equation.
We write the solution metric as v4/(n−2)g̃, so that the initial hypothesis is that
0 ≤ v ≤ Cxε. Using the uniform geometry of g̃ we deduce immediately that v is
infinitely differentiable with respect to the geometry of this metric, or equivalently,
in local coordinates,

|(x∂x)j(x∂y)α∂β
z v| ≤ Cj,α,βxε

for all j, α, β. Note however that this is not sufficient to assert conormality yet
because these estimates do not control the y derivatives, i.e. the derivatives tangent
to the singular stratum, as x → 0. Obtaining this control requires the parametrix
for the conformal Laplacian Lg̃ as constructed in [Maz91a]. The difference between
this operator and the one for the conic problem is the inclusion of the tangential
part of the Laplacian x2Δy; thus when rewriting the Yamabe equation in the form
(3.4), the error term E on the left includes x2Δyv, which at this stage we cannot
guarantee vanishes any faster than xε.

The indicial roots of Lg̃ are defined exactly as in the conic case above, and in
particular are given by exactly the same formulæ, with the important difference that
the eigenvalues λj of −Ln

k can vary with y. Because of this, we do not expect solutions
to have discrete asymptotics, i.e. polyhomogeneity, in the sense above, and we shall
be satisfied with a more limited partial polyhomogeneity result. Recall, however,
our key hypothesis that the lowest eigenvalue of −Ln

k is equal to c(n)f(f − 1), and
in particular is independent of y. Let ν±

0 = ±√c(n)f(f − 1) be the corresponding
indicial roots. Fix 0 < ν < ν+

0 . By [Maz91a, Theorem 6.1], there exists a parametrix
G for Lg̃ with the properties: G ◦ Lg̃ = Id − Q, where Q is a finite rank operator
which maps into Aν+

0 +ε′
, and the analogues of (3.6), (3.7) and (3.8) are all valid

provided ν ′ ≤ ν+
1 and furthermore, that we replace Ck,γ

b by the Hölder spaces Ck,γ
e

based on derivatives with respect to x∂x, x∂y and ∂z. The final extra property we
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need is that the commutator [∂y, G] = G1 is an operator in the edge calculus with
exactly the same mapping properties as G itself; this is [Maz91a, Theorem 3.30].

We now use all of this information as follows. First let us apply the parametrix
G to Lg̃v + c(n)Λv(n+2)/(n−2) = 0, to obtain that

v = G(c(n)Λv
n+2
n−2 ) + Qv.

We wish to use this equation to prove that v is conormal. Once this is done,
the existence of the partial expansion follows directly from (3.7) and bootstrapping.
Applying ∂y to each side gives

∂yv = G(c(n)Λ∂yv
n+2
n−2 ) + G1(c(n)Λv

n+2
n−2 ) + ∂yQv.

The final term Qv is already conormal so presents no difficulties here. Ap-
plying (3.6) to G1, we see that this term lies in xεCk,γ

e for all k. Finally, write
∂yv

(n+2)/(n−2) = cv4/(n−2)∂yv, and recall that v4/(n−2) ≤ Cx4ε/(n−2). In the simplest
version of this argument, ε ≥ (n − 2)/4 so that v ≤ Cx. Note that this is satisfied if
we assume that our original solution u is bounded, which is a more natural assump-
tion once we leave the setting of isolated singularities; for simplicity we assume that
this is the case. Then |v4/(n−2)∂yv| ≤ |x∂yv|, hence this term lies in ∩kx

εCk,γ
e , and

finally, ∂yv ∈ ∩kx
εCk,γ

e . Iterating this argument gives eventually that ∂α
y v ∈ ∩kx

εCk,γ
e

for every multi-index α, so that v ∈ Aε. Proceeding as explained above shows that
v, and hence u, has a partial expansion.

3.3 The general case. The final step in our proof of regularity is to extend
these arguments to handle the case when M is a general smoothly stratified space
and g is an iterated edge metric satisfying the hypotheses i)–iii) of Sect. 2.3. We also
assume that the solution u is bounded. We shall be rather brief here since we have
covered almost all of the main points of the argument already.

Suppose that M is a space of depth k. By induction and the fact that this regu-
larity theorem is localizable, we may assume that u has the appropriate regularity,
i.e. partial polyhomogeneity, everywhere except possibly along the singular strata of
highest depth, and so we can focus on these. Indeed, we can focus on the equation
(3.1) in a neighbourhood of the form U × C1(Z) where U ⊂ R

�
y, Z is a compact

smoothly stratified space of depth k − 1, where again the regularity result is known
by induction, and C1(Z) is the truncated cone over Z. Let x be the radial variable on
this cone. As before, we conformally transform this problem, writing the equation in
terms of the new partially completed background metric g̃ = x−2g, so u = x(2−n)/2v.
As an important part of our inductive hypothesis, we assume the operator −Ln

k on Z
has discrete spectrum. This allows us to define indicial roots and analyze the indicial
operator exactly as before.

We use function spaces Ck,γ
ice based on derivatives with respect to x∂x, x∂y and

vector fields V which are tangent to the fibre Z and all of its singular strata. We
have, by local elliptic regularity and induction, that v ∈ x(n−2)/2Ck,γ

ice for all k, so
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the remaining job is to prove that v is conormal, that every tangential derivative
∂α

y decays at this same rate. We do this by applying exactly the same commutator
argument, but unfortunately there is no ready-made iterated edge calculus to which
we can appeal. Fortunately we need very few consequences of such a calculus and
can deduce these from a somewhat primitive parametrix construction. This is carried
out in more detail in [ALMP12]. Recall that we wish to construct an operator G
such that, with Lg̃ equal to the conformal Laplacian for g̃, G ◦ Lg̃ = I − Q where
Q maps into Aν(M), which has mapping properties analogous to (3.6), (3.7), (3.8),
and finally, so that the commutator [∂y, G] enjoys the same mapping properties.

For simplicity let N denote the localized space U × C1(Z) blown up fibrewise at
the vertex of each cone. Thus N is the product U × [0, 1) × Z. We construct G just
as in [Maz91a] by regarding its Schwartz kernel G(x, y, z, x̃, ỹ, z̃) as a distribution on
the space N2

ice obtained from N × N by blowing up the fibre diagonal at the corner
{x = x̃ = 0}. In fact, this space is identified with the space (U×[0, 1))20×Z×Z, where
the first factor is the 0-double space of U×[0, 1), as constructed and used in [Maz91a].
This has three boundary components, the left and right faces, corresponding to
x̃ → 0 and x̃ → 0, and the front face ff, which covers {x = x̃ = 0, y = ỹ} and is
the face created in the blowup. The key point is that the lift of G to this space is
conormal and partially polyhomogeneous at all faces. Its leading coefficient at ff is
precisely the inverse for the so-called normal operator

N(Lg̃) = (x∂x)2 + x2Δy + Ln
k

which is globally defined on R
+ × R

� × Z. The invertibility of this normal operator
on xνCk,γ

ice is the main ellipticity hypothesis, and is proved exactly as in the simple
edge case, relying on the fact that −Ln

k is strictly positive. We analyze this normal
operator by taking the Fourier transform in y, thus reducing it to

(x∂x)2 + Ln
k − x2|η|2,

and then rescaling, setting t = x|η|, to arrive at

(t∂t)2 + Ln
k − t2,

which is an operator on R
+ ×Z. The inverse for this can be analyzed as in [Maz91a],

using mainly that Ln
k has discrete spectrum. We denote the Schwartz kernel of this

inverse by Ĝ(t, z, t̃, z̃). Rescaling and taking the inverse Fourier transform, we see
that the Schwartz kernel of the inverse of the normal operator equals

∫

R�

ei(y−ỹ)ηG0(x|η|, x̃|η|, z, z̃)|η|q dη

0 for an appropriately chosen q.
The mapping properties for this inverse are deduced exactly as in the simple edge

case. The final fact concerning the commutator [∂y, G] can now be proved just as
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in the edge calculus, where this ultimately reduces to the fact that the commutator
of the globally defined translation-invariant vector field ∂y on R

� commutes exactly
with the explicit inverse for the normal operator written above.

We have been (extremely) sketchy in the development in this last section. There
are several reasons for this. The first is simply that while the idea is very close to
that used in the simple edge case, it would still take considerable space to write
out these details fully, and given the relatively minor importance of this final result,
we have chosen not to do so. The sketch above is intended to provide a guide for
anyone with a reasonable familiarity with the edge calculus. Finally, we point out
that there are certainly other proofs that one might carry out to prove this regularity
which would be more elementary in the sense that they do not explicitly use blowups
and pseudodifferential operators, but which would require a substantial amount of
verification of elementary details nonetheless.

As described in the introduction, in a companion piece to this paper we give the
full details of a proof of rather different sort of regularity statement which requires
very little regularity of the background iterated edge metric, and which shows that
the solution u to the Yamabe equation enjoys some Hölder continuity properties.
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