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LIOUVILLE THEOREM FOR BELTRAMI FLOW

Nikolai Nadirashvili

Abstract. We prove that the Beltrami flow of ideal fluid in R
3 of a finite energy

is zero.

1 Introduction

Let v(x), x ∈ R
n, n = 2, 3 be a velocity of a steady flow of an ideal fluid. Then v is

a solution of the system of Euler equations:{
v∇v + ∇p = 0, in R

n

div v = 0, in R
n.

(1)

We assume that the vector field v is smooth.
The system of Euler equations (1) has equivalent forms. It can be written as the

Helmholtz equation, see, e.g., [AK98].

[v, ω] = 0,

where ω =curlv is the vorticity of v and [·] are the Lie brackets of vector fields.
In dimension 3 the Euler equation can be also written in Bernoulli form:

v × curlv = ∇b, (2)

where

b = p + 1
2 ||v||2 (3)

is the Bernoulli’s function.
A stationary solution v of the system (1) is called the Beltrami flow if b ≡const

and hence v satisfies the equation

v × curlv = 0. (4)

The Beltrami flows are an important class of stationary solutions of the Euler
equation. For basic properties of the Beltrami flows see [AK98], some recent results
are in [EP1].
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In this paper we are concerned with vanishing at infinity solutions of (1). On
the plane the ready example of compactly supported solution of the Euler equation
comes from rotationally symmetric flows. Non-symmetric flow one can obtain pasting
together finite or countable collection of rotationally symmetric flows with disjoint
supports.

In dimension 3 the existence of compactly supported stationary solutions of the
Euler equation is not known. However, there exists a Beltrami flow v ∈ C∞(R3)
such that |v(x)| < C/|x|, [EP1].

Notice that nonzero solutions of (1) in R
3 can vanish on an open set, for instance,

the cylinders of solutions of (1) in R
2 with compact support. Explicit examples of

a solution of the Euler equation which vanishes in the interior or exterior part of a
given hyperboloid are constructed in [SV85]. In the contrast for the Beltrami flows
the unique continuation property holds, [EP].

In this paper we show that the Beltrami flow of an ideal fluid in R
3 of a finite

energy is zero.

Theorem. Let v ∈ C1(R3) be a Beltrami flow. Assume that either v ∈ Lp(R3),
2 ≤ p ≤ 3, or v(x) = o(1/|x|) as x → ∞. Then v ≡ 0.

Notice, that Enciso and Peralta-Salas example of the Beltrami flow, [EP1], shows
that the assumptions of Theorem are sharp.

If we consider the Navier-Stokes equations instead of the Euler equations then
stronger Liouville type theorems hold. Any bounded in R

2 solution u of the Navier-
Stokes equations is a constant, see [KNSS09], and any solution of the Navier-Stokes
equations in R

3 with a sufficiently small L3-norm is zero, see [G98].
To prove Theorem 1.2 we rewrite equations (1) as linear equations for a suitable

tensor form.

2 Tensor Equations from the Euler Equation

First we introduce some tensor notations and then derive from (1) equations for
corresponding tensor fields.

Denote by Tm the space of covariant tensors on R
n of the rang m; let Sm ⊂ Tm

be the symmetric subspace of Tm. The map σ : Tm → Sm

σf(x1, . . . , xm) =
1
m!

∑
f(xi1 , . . . , xim

)

where the summation is taken over all permutations of the indices 1,. . . , m, is called
the symmetrization of tensor f . For smooth tensor fields C∞(Tm, Rn) is defined
covariant differentiation ∇ : C∞(Tm, Rn) → C∞(Tm+1, Rn),

∇f = fi1,...,im;j
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The operator d of inner differentiation is the symmetrization of ∇, d = σ∇ :
C∞(Sm, Rn) → C∞(Sm+1, Rn). The divergence operator δ, δ : C∞(Sm, Rn) →
C∞(Sm−1, Rn),

(δf)i1,...,im−1 =
∑

fi1,...,im;im

is an operator formally adjoint to −d.
Let v ∈ C∞(R3) be a solution of (1). We define the tensor F ∈ C∞(S2, R3) of

the flow v as

F = p(dx)2 + ṽ2,

where ṽ is a convector dual to the vector v: ṽ(·) = (v, ·) and

ṽ2 =
∑

vivjdxidxj .

As a consequence of the system (1) one has the equations

pi +
∑

j

(vivj)j = 0.

Directly from the last equations we get the following linear equation for F :

δF = 0. (5)

3 Proof of the Theorem

For a Beltrami flow v it follows from (4), (2), (3) that p = −|v|2/2+const. Subtract-
ing from p a constant we may assume that

p = −|v|2/2. (6)

Let F be the flow’s tensor of v. Then from (6) it follows

F = −|v|2
2

(dx)2 + ṽ2,

where (dx)2 = (dx1)2 + (dx2)2 + (dx3)2.
Let A (B) be the the spherical average of F (ṽ), i.e.,

A =
∫

s∈O3

Fsdχ,

B =
∫

s∈O3

ṽ2
sdχ,
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where Fs (ṽs) are the rotations of F (ṽ) on s ∈ O3 and dχ is the Haar measure on
the group O3. Then

tr A(x) = −1
2
tr B(x)

and hence

A(x) = B(x) − 1
2
(tr B(x))(dx)2.

Let r ∈ R, θ ∈ S2 be the polar coordinates in R
3, r2drd2θ is a standard element

of volume in R
3: r2drd2θ = (dx)3, where d2θ is the area form on the unit sphere.

Let

B = α(x)(dr)2 + β(x)r2(dθ)2,

where (dθ)2 is the metric tensor of the unit sphere andα(x) = α(|x|), β(x) = β(|x|).
Since ṽ2 and hence B are nonnegative tensors then α, β ≥ 0. Therefore

A(x) = B(x) − 1
2
(α + 2β)(dx)2 = (

1
2
α − β)(dr)2 − 1

2
α(dθ)2.

Since (5) is a linear equation it holds after the averaging of F ,

δA = 0. (7)

Denote by Gr the half ball {{|x| < r} ∩ {x1 < 0}}. Set Hr = {{|x| < r} ∩ {x1 =
0}}, n = (1, 0, 0). Integrating equality (7) against the vector n we get

−
∫
Hr

(An, n)ds =
∫

∂Gr\Hr

(An, x/r)ds.

Since (An, n)|{x1=0} = −α/2 ≤ 0 we have

r∫
0

tα(t)dt = −1
2
r2(α(r) − 2β(r)). (8)

Hence

−
∫
Hr

(An, n)ds ≤
∫

∂Gr\Hr

|A|ds. (9)

By our assumption either v ∈ Lp(R3), 2 ≤ p ≤ 3, and hence

∞∫
0

∫
∂Gr\Hr

|A|p/2dsdr < ∞ (10)
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or v(x) = o(1/|x|) as x → ∞, therefore |A| = o(1/|x|2) and

∫
∂Gr\Hr

|A|ds = o(1/r). (11)

In the first case by Hölder’s inequality

∫
∂Gr\Hr

|A|ds ≤

⎛
⎜⎝

∫
∂Gr\Hr

|A|p/2ds

⎞
⎟⎠

2/p ⎛
⎜⎝

∫
∂Gr\Hr

ds

⎞
⎟⎠

(p−2)/p

or

⎛
⎜⎝

∫
∂Gr\Hr

|A|ds

⎞
⎟⎠

p/2

≤ 2πrp−2

∫
∂Gr\Hr

|A|p/2ds. (12)

From inequality (10) follows the existence of the sequence rn → ∞ such that

rn

∫
∂Grn\Hrn

|A|p/2ds → 0

as n → ∞. Thus from the inequality (12) follows that

∫
∂Grn\Hrn

|A|ds → 0

as n → ∞.
Since α is nonnegative taking n → ∞ we get from the inequality (9)

α ≡ 0

in case of inequality (10). In case (11) the last identity immediately follows from (9)
and (11). Then from the equality (9) we conclude

β ≡ 0.

Thus A = 0 and hence v(0) = 0. Since the last equality holds for the any choice
of origin in R

3 it follows that v ≡ 0. The theorem is proved.
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