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CLASSIFICATION OF INVARIANT FATOU COMPONENTS
FOR DISSIPATIVE HÉNON MAPS

Mikhail Lyubich and Han Peters

Abstract. Fatou components for rational endomorphisms of the Riemann sphere
are fully classified and play an important role in our view of one-dimensional dy-
namics. In higher dimensions, the situation is less satisfactory. In this work we give
a nearly complete classification of invariant Fatou components for moderately dis-
sipative Hénon maps. Namely, we prove that any such a component is either an
attracting or parabolic basin, or the basin of a rotation domain. More specifically,
recurrent Fatou components were classified about 20 years ago (modulo the problem
of existence of Herman ring basins), while in this paper we prove that non-recurrent
invariant Fatou components are semi-parabolic basins. Most of our methods apply
in a more general setting.

1 Main Result

The basic dynamical dichotomy for a holomorphic dynamical system is given by
partitioning the space into the Fatou set and the Julia set. The former is usually an
open dense subset supporting the regular dynamics, while the latter is a smaller set
supporting the chaotic dynamics. This dichotomy is classical for rational endomor-
phisms of the Riemann sphere (as the names suggest), and in the past 25 years, it has
been extended to some classes of higher dimensional dynamical systems, including
polynomial automorphisms of C

2.
The first fundamental problem to address is to describe the dynamics on the

Fatou set. There are some types of behavior on this set, convergence to attracting or
parabolic cycles, that can be easily observed. There are more subtle types, irrational
rotations in certain domains, which naturally appear in the theory but it is much
harder to construct examples. And then the question arises, whether any other type
of behavior can occur.

For rational endomorphisms of the Riemann sphere, this problem is now fully
resolved, but it took 60 years to reach this satisfactory state. Dynamics on the
periodic Fatou components was thoroughly analyzed in the classical work by Fatou
and Julia. However, they were not able to decide whether rotation domains exist.
Much later existence of such domains was demonstrated in the work of Siegel, Arnold,
and Herman on small denominators. After that, the only pending issue was the
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possible existence of wandering domains. Non-existence of such domains was proved
by Sullivan by methods of quasiconformal deformations.

Interest to the dynamics of polynomial automorphisms of C
2 (with the Hénon

maps as main examples) rose in late 1980’s, due to the pioneering work of Friedland
and Milnor, Hubbard and Obertse-Vorth, Bedford and Smillie, Fornæss and Sibony,
followed by many other people. First results on the dynamics on periodic Fatou
components were obtained by Bedford and Smillie in 1991 [BS91b], followed by
Fornæss and Sibony in 1995 [FS95], with a later complement by Ueda [Ued08], The
case of recurrent Fatou components was analyzed in those papers. (Here “recurrence”
of a component Ω means that there is an point z ∈ Ω whose limit set ω(z) contains a
point in Ω.) These domains were classified as attracting basins or basins of rotation
attractors, or rotation domains. (One question that remained unsolved was whether
Herman rings can appear as attractors.)

After this work, the problem was reduced (modulo existence of Herman rings)
to classification of non-recurrent Fatou components, where all orbits escape to the
boundary of the domain. The main new phenomenon that can appear in this situ-
ation is existence of limit sets of rank 1. (In fact, such a phenomenon can appear
indeed for holomorphic endomorphisms of the projective space P

2.) For 20 years, no
essential progress has been made in this problem.

In this paper, we solve the problem for modertely dissipative automorphisms:

Theorem 1. Let f : C
2 → C

2 be a non-elementary polynomial automorphism
of degree d ≥ 2, and let δ = detDf be its Jacobian. Assume that f is moderately
dissipative, i.e.

|δ| < 1
d2
. (1)

Let Ω be an invariant non-recurrent Fatou component of f with bounded forward
orbits. Then all the orbits in Ω converge to a parabolic point α ∈ ∂Ω with multi-
plier 1.

Thus, for moderately dissipative automorphisms, the answer turns out to be the
same as in the one-dimensional case.

Note that Hénon maps

(z, w) �→ (p(z) − δw, z),

where p(z) is a polynomial of degree d ≥ 2, with small Jacobian δ, can be viewed
as perturbations of one-dimensional polynomials. However, it is well known that
various new phenomena and substantial technical problems can arise after such a
perturbation. Newhouse phenomenon [New74] on possible co-existence of infinitely
many attracting cycles, or non-rigidity of infinitely renormalizable maps [CLM05]
are two examples of this kind. And though some conjectures are proposed for all
dissipative Hénon maps, often progress has been made for a tiny Jacobian. (Most
notable work of this kind is by Benedicks and Carleson [BC91].) Our assumption,
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|Jacf | < 1/4 for quadratic Hénon maps, looks quite moderate from this point of
view. Of course, we can make no conjecture of whether our result can be extended
to all scales of the Jacobian.

Putting together the above results, we obtain a nearly complete classification of
the dynamics on invariant Fatou components:

Theorem 2. Let Ω be an invariant Fatou component of a moderately dissipative
non-elementary polynomial automorphism f : C

2 → C
2 of degree d ≥ 2. Then one

of the following three cases is satisfied.

(1) All orbits in Ω converge to an attracting fixed point p ∈ Ω. The component Ω is
biholomorphically equivalent to C

2.
(2) All orbits in Ω converge to a properly embedded submanifold Σ ⊂ Ω, and Σ is

biholomorphically equivalent to either the unit disk or an annulus. The manifold
Σ is invariant under f and f acts on Σ as an irrational rotation.

(3) All orbits in Ω converge to a fixed point p ∈ ∂Ω. The eigenvalues λ1 and λ2 of
Df(p) satisfy |λ1| < 1 and λ2 = 1, and Ω is biholomorphically equivalent to C

2.

The only uncertainty in this classification (that belongs to the recurrent case) is
whether the submanifold in Case (2) can actually be biholomorphically equivalent
to an annulus.

Our argument comprises several steps that we will now outline. We let Γf be
the set of all limit functions h : Ω → Ω̄ for the family of iterates fn : Ω → Ω. In
the non-recurrent case the image of h is either a single point (rank 0 case) or a
holomorphic curve (rank 1 case). Our main concern is to analyze the latter case. In
this case, the image h(Ω) is an analytic curve residing in the boundary of Ω.

Step 1. First, we show that the curve h(Ω) is non-singular (see Section 5 and
Appendix).

Step 2. We then analyze the natural action of f on Γf and prove that Γf always
contains a rank 0 map (Section 6). The image of such a map must be a fixed point p.

Step 3. We then prove that if there exists a rank one limit map, then there
also exists one whose image lies in the strong stable manifold of some fixed point p
constructed on the previous step (Section 8).

Step 4. We then apply classical Denjoy–Carleman–Ahlfors and Wiman Theorems
to rule out the last situation (Section 8). This is the only time when the stronger
assumption on the Jacobian of f is needed. At this stage we can conclude that all
orbits in Ω converge to a unique fixed point p.

Step 5. Finally, we prove, adapting the classical Fatou’s argument, the Snail
Lemma asserting that the fixed point p is a semi-parabolic point with one multiplier
equal to 1 (Section 7).

Remark 3. An important supplement to Theorem 2 is that in cases (1) and (3)
the domain Ω contains a “critical point” of f (as long as the multipliers at p are
different), i.e., a point of tangency between the strong stable foliation in Ω and the
unstable manifold of any saddle. This result had been obtained in [DL12].
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Many of our intermediate results are valid in greater generality (for endomor-
phisms of projective spaces, for local dynamics, and in higher dimensions). To set
the stage, we make some of these statements explicit.

2 Background

In the 1960’s the astronomer Michel Hénon suggested that complicated behavior
observed in the Poincaré section of the Lorenz model would already occur for the
much simpler maps given by

(x, y) → (x2 + c− δy, x), (2)

at least for specific parameters c, δ. These maps are now called Hénon maps and
have since become one of the most extensively studied dynamical systems, both in
the real and in the complex setting.

We will work with a more general definition of Hénon maps. It was proved by
Friedland and Milnor [FM89] that every polynomial automorphisms of C

2 is affinely
conjugate to either an affine map, an elementary map, or a finite compositions of
generalized Hénon maps. Here f is a generalized Hénon map if f is of the form

(z, w) �→ (p(z) − δw, z), (3)

where p is a polynomial and δ ∈ C \ {0}. The dynamical behavior of affine and ele-
mentary maps is easy to describe. Therefore we will only look at finite compositions
of Hénon maps, and for simplicity we will refer to these maps just as Hénon maps.

Complex Hénon maps have been studied extensively by Hubbard and Oberste-
Vorth [Hub86,HO94,HO95], Bedford-Smillie [BS91a,BS91b], Fornæss-Sibony [FS92]
and many other authors. A basic property of Hénon maps that will be useful to us
is the existence of the following filtration. For R > 0 sufficiently large we define

W = {(z, w) | max(|z|, |w|) ≤ R}, (4)
V + = {(z, w) | |z| ≥ max(|w|, R)}, and, (5)
V − = {(z, w) | |w| ≥ max(|z|, R)}. (6)

One easily checks that for R > 0 large enough one has f(V +) ⊂ V + and f−1(V −) ⊂
V −. Moreover, the orbit of any point in V + will converge to the attracting fixed
point [1 : 0 : 0] on the line at infinity.

It follows that the escaping set

I∞ =
⋃

n∈N

f−n(V +) = {z ∈ C
2 | ‖fn(z)‖ → ∞} (7)

is one Fatou component, and that for any other Fatou component the forward or-
bits are bounded. In this article we will, in the Hénon setting, only consider Fatou
components with bounded forward orbits.
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Let us introduce Fatou components in a more general setting. LetX be a complex
manifold, and let f : X → X be a holomorphic map. We say that z ∈ X lies in the
Fatou set F of f if the family of iterates {fn} is normal in a neighborhood of z. A
connected component of the Fatou set is called a Fatou component.

When X is the Riemann sphere and f is a rational function the possible Fatou
components have been precisely described. Sullivan [Sul85] proved in 1982 that every
Fatou component is (pre-)periodic, and periodic Fatou components had already been
classified in the works of Fatou and Julia Siegel and Arnol’d and Herman: an in-
variant Fatou component is either the basin of an attracting fixed point, a parabolic
basin, a Siegel disk or a Herman ring (see Milnor [Mil99]).

Fatou components in two complex variables have been studied by a number of
authors. In general there is no reason to believe that all Fatou components are
(pre-)periodic, but there has been some progress in describing periodic Fatou com-
ponents. Bedford-Smillie [BS91b] have introduced the notion of a recurrent Fatou
component, which we will adopt here.

Definition 4. An invariant Fatou component Ω is called recurrent if there exists
a point z ∈ Ω whose orbit accumulates at a point in Ω.

Normality implies that a Fatou component is recurrent precisely when it contains
a recurrent orbit. If Ω is not recurrent then all orbits in Ω converge to ∂Ω. For ratio-
nal self-maps of the Riemann sphere the recurrent Fatou components are basins of
attracting fixed points, Siegel disks and Herman rings, while the only non-recurrent
components are basins of parabolic fixed points. Recurrent Fatou components in two
complex dimensions have been studied by Bedford-Smillie [BS91b,BS99], Fornæss-
Sibony [FS95] and Ueda [Ued08]. The following result was proved by Bedford and
Smillie.

Theorem 5. Let f be a Hénon map and suppose that Ω is a recurrent invariant
Fatou component. Then either:

(1) Ω is an attracting basin of some fixed point in Ω, and Ω is biholomorphic to C
2.

(2) there exists a one-dimensional closed complex submanifold Σ of Ω and fn(K) �→
Σ for any compact set K in Ω. The Riemann surface Σ is biholomorphic to a
disk or an annulus and f |Σ is conjugate to an irrational rotation, or

(3) the domain Ω is a Siegel domain.

Recall that a Fatou component Ω is called a Siegel domain if there exists a
sequence of iterates fnj that converges on Ω to the identity map.

While there are still a number of open questions regarding Theorem 5, for exam-
ple whether the Riemann surface Σ in Case (2) can really be biholomorphic to an
annulus, the recurrent Fatou components are relatively well understood.

The situation was quite different for non-recurrent Fatou components. These
components have been studied by Weickert [WeiJ03] and Jupiter-Lilov [JL03], but
were far less well understood.
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3 Outline of the Proof

Let us first describe the main difficulty for dealing with non-recurrent Fatou com-
ponents. If Ω is a non-recurrent Fatou component then all orbits converge to the
boundary ∂Ω. By normality there exists a sequence {fnj} that converges, uniformly
on compact subsets of Ω, to a limit map h : Ω → ∂Ω. In general the map h is not
unique and depends on the sequence (nj), we will see some examples of this in Sec-
tion 4. The main difficulty lies in the fact that a priori it is not even clear whether
the limit set h(Ω) is always unique.

Theorem 2 follows from several intermediate results, most of which hold in a more
general setting. If we do not assume that the Hénon map is moderately dissipative
then we still have the following.

Theorem 6. Let f be a Hénon map and suppose that Ω is a non-recurrent invariant
Fatou component. Then there exists a sequence {fnj} that converges uniformly on
compact subsets of Ω to a fixed point p ∈ ∂Ω. If the entire sequence {fn} converges
to p then the eigenvalues λ1 and λ2 of Df(p) satisfy |λ1| < 1 and λ2 = 1, and Ω is
biholomorphically equivalent to C

2.

We also obtain results that lie outside the class of Hénon maps, for example the
following.

Theorem 7. Let f be a holomorphic endomorphism of P
2 and let Ω be a non-

recurrent, invariant Fatou component. Suppose that the limit set h(Ω) is unique.
Then h(Ω) either consists of one point, or h(Ω) is an injectively immersed Riemann
surface, conformally equivalent to either the unit disk, the punctured unit disk or
an annulus, and f acts on h(Ω) as an irrational rotation.

Notice that both Theorem 6 and Theorem 7 give a precise classification of non-
recurrent Fatou components under the assumption that h(Ω) is unique. It is exactly
the uniqueness of h(Ω) that condition (1) is used for in Theorem 2

We note that in Theorem 7 all Fatou components are known to occur, except
for the punctured unit disk, whose possible existence is still an open question. We
will see that when the limit map is a single point, the condition on the eigenvalues
that holds for Hénon maps does not hold for holomorphic endomorphisms of P

2.
Fatou components for holomorphic self-maps of projective space will be discussed in
Section 9

Let us now discuss the intermediate results from which Theorems 2, 6 and 7 will
follow. The first lemma that we will prove is the following:
Lemma 13. Let f be a holomorphic endomorphism of a complex manifold X of
dimension 2, and let Ω be a non-recurrent Fatou component. Let h = lim fnj be
a limit map on Ω of generic rank 1. Then h(Ω) ⊂ ∂Ω is an injectively immersed
Riemann surface.
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Next we consider the set of all limit maps h : Ω → ∂Ω, which we will denote by
Γf . We introduce in Definition 22 a (not necessarily anti-symmetric) partial ordering
on Γf (rougly, by divisibility), and prove the following.
Lemma 25. The invariant minimal subsets of Γf are exactly equal to the maximal
equivalence classes. It follows that maximal elements exist: there exists an h ∈ Γf

so that if k ≥ h then h ≥ k.
The next result is the first that uses properties of Hénon maps.

Lemma 27. Let f be a Hénon map, let Ω ⊂ C
2 be a non-recurrent Fatou component

and let h ∈ Γf be maximal. Then h(Ω) is a fixed point.

Lemmas 25 and 27 together give that there must always be a limit map of rank 0,
and if the limit set is unique then all orbits converge to this fixed point p. The fact
that the eigenvalues λ1 and λ2 of Df(p) must satisfy |λ1| < 1 and λ2 = 1 is a local
property that will be proved in this generalization of Fatou’s Snail Lemma:
Theorem 28. Let f : (Ck, 0) → (Ck, 0) be a germ of a holomorphic map that fixes
the origin. Suppose that there exists an open set W with f(W ) ∩W �= ∅ and such
that on W the iterates (fn) converge uniformly to the origin. Further suppose that
Df(0) has eigenvalues λ1, λ2, . . . , λk with |λ1| = 1 and |λi| < 1 for i ≥ 2. Then
λ1 = 1.

In the proof of Lemma 27 we will work in a normal hyperbolic setting, compa-
rable to Theorem (4.1) in Hirsch–Pugh–Shub [HPS70]. In this setting the normal
submanifold is not necessarily compact, but we will prove uniform estimates on the
geometry of the normal submanifold, which will gives us a thickening of the strong
stable manifolds to obtain a stable lamination that fills up a neighborhood of the
normal submanifold. The existence of strong stable manifolds of definite size near
points whose orbits remain in a small neighborhood of a weakly hyperbolic fixed
point will also be used in the proofs of Theorem 28 and Lemma 32.

The final step in the proof of Theorem 6 follows from the following result.

Theorem 8. Let F be a holomorphic automorphism of C
2 with a fixed point p,

such thatDF (p) has eigenvalues {1, λ}, with |λ| < 1, and that F−Id has multiplicity
k+ 1 in p. The attracting basin of p has then k components and each component is
biholomorphic to C

2.

This result was first proved by Ueda in the case where k = 1 in [Ued86], and
generalized to higher multiplicities by Hakim [Hak94]. Note that if the multiplicity
k+1 is not finite then there must be a curve of fixed points, which cannot occur for
Hénon maps, so Theorem 8 does imply the last statement of Theorem 6.

Once Theorem 6 is proved, the proof of Theorem 2 is completed by using the
bound on the Jacobian derivative to obtain a growth estimate for the Green’s func-
tion on stable manifolds. A classical result of Wiman [Wim05] is then used to prove
that the limit set must be unique. We note that this is the only point in the proof
of Theorem 2 where we use that f is an at least moderately dissipative polynomial
automorphism. Theorem 6 holds under the following weaker conditions.
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Theorem 9. Let f be a holomorphic automorphism of a 2-dimensional complex
manifold X. Let Ω ⊂ X be a non-recurrent Fatou component. If there exists a
compact K ⊂ X so that all orbits in Ω converge to K, and so that f is volume
contracting at all points in K, then the conclusions in Theorem 6 hold.

We also note that here the invertibility of f is only necessary in order to conclude
that Ω is biholomorphic to C

2.
The organization of the rest of this paper is the following. In the next section we

will describe all known examples of non-recurrent Fatou components in two complex
dimensions. In Section 5 we prove that the image of rank 1 limit maps is smooth.
In Section 6 we introduce the ordering on the set of limit maps and prove that the
maximal limit maps for Hénon maps are fixed points. In Section 7 we prove a higher
dimensional version of Fatou’s Snail Lemma, which completes the proof of Theorem
6. In Section 8 we discuss the possibility of non-unique limit sets, and prove that
for moderately dissipative Hénon maps the limit set is unique, completing the proof
of Theorem 2. Finally in Section 9 we consider non-recurrent Fatou components in
projective space and prove Theorem 7.

4 Examples of Non-recurrent Fatou Components

While the only known examples of non-recurrent Fatou components of Hénon maps
are parabolic basins, for holomorphic endomorphisms several other examples are
known to occur.

For a description of the dynamics of holomorphic endomorphisms of P
2, see

for example the work of Hubbard–Papadopol [HP94] and Fornæss–Sibony [FS94,
FS95b]. Fatou components for holomorphic endomorphisms of P

2 are known to be
pseudoconvex and Kobayashi hyperbolic [Ued94,FS95].

Recurrent Fatou components have been classified for holomorphic endomorphisms
and the classification is almost identical to the classification for Hénon maps.

Theorem 10 (Fornaess-Sibony, Ueda). Suppose that f is a holomorphic self-map
of P

2 of degree d ≥ 2. Suppose that Ω is an invariant recurrent Fatou component.
Then either:

(1) Ω is an attracting basin of some fixed point in Ω,
(2) there exists a one-dimensional closed complex submanifold Σ of Ω and fn(K) �→

Σ for any compact set K in Ω. The Riemann surface Σ is biholomorphic to a
disk or an annulus and f |Σ is conjugate to an irrational rotation, or

(3) the domain Ω is a Siegel domain.

Examples of non-recurrent Fatou components in P
2 can easily be constructed by

taking a cross product of two polynomials. For example, if p is a polynomial with
a parabolic petal, and q is a polynomial of the same degree with a Siegel disk, then
the map p × q : C

2 → C
2 extends to a holomorphic endomorphism f of P

2. The
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map f has a Fatou component Ω where all orbits converge to a holomorphic disk,
properly embedded in ∂Ω, on which f acts as a rotation.

This idea cannot be applied to products of rational functions, so the product of
a parabolic petal and a Herman ring cannot be obtained as easily. This can however
be done in the following way.

Example 11. Let g be a rational function that has two distinct Fatou components
Ω1 and Ω2, where the former is a Herman ring and the latter a parabolic petal. Then
g × g is a holomorphic endomorphism of P

1 × P
1 with a Fatou component Ω1 × Ω2.

Now we use a construction due to Ueda which was also used by Fornæss and Sibony
to construct examples of recurrent Fatou components in [FS95].

Let ρ : P
1 × P

1 → P
2 be defined by ρ([z : t], [w : s]) = [zw : ts : zs+ wt]. Then ρ

exactly identifies pairs (a, b) and (b, a), and we see that ρ pushes the action of g× g
down to P

2. The new map f : P
2 → P

2 has a Fatou component Ω biholomorphic to
Ω1 × Ω2. We see that all orbits converge to an annulus A ⊂ ∂Ω, and f acts on A as
an irrational rotation.

Suppose that the sequence fnj converges on Ω to a rank 1 limit map h : Ω →
∂Ω as before, and assume that h(Ω) does not depend on the sequence (nj). In
[WeiJ03] Weickert showed that the action of f on the limit set h(Ω) can be lifted
to a holomorphic self-map F of the unit disk Δ, and that F is either conjugate to
an irrational rotation or Fn → ∂Δ, locally uniformly on Δ. Weickert gave examples
of the former, but stated that he has no examples of the latter nor a proof that it
cannot occur. Our Example 11 shows that it can indeed occur. We can think of the
universal cover of the annulus A to be an infinite horizontal strip, and it is clear that
the lift of a rotation to this strip can be given as a horizontal translation. But that
means that for the lift F : Δ → Δ all orbits converge to a point on the boundary
∂Δ. However, note from Theorem 7 that if h(Ω) is biholomorphic to a disk itself
then the action of f is indeed conjugate to a rotation.

To summarize we now have seen three distinct examples of non-recurrent Fatou
components:

(1) All orbits converge to a single fixed point,
(2) All orbits converge to a holomorphic disk, on which f acts as an irrational

rotation, and
(3) All orbits converge to an annulus, on which f acts as an irrational rotation.

We note that these are the three components that arise immediately by combining 1-
dimensional Fatou components. Is this everything, or can there be 2-dimensional Fa-
tou components that are fundamentally different from combinations of 1-dimensional
Fatou components?
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5 Smoothness of Rank 1 Limit Sets

The main step towards the proof of Lemma 13 is made in Proposition 12 below. We
give an elementary analytic proof here, and we will give two more sophisticated but
shorter proofs in the appendix.

Proposition 12. Let f : (C, 0) → (C2, 0) be the germ of a holomorphic map whose
image is singular at the origin in C

2. Let U be a neighborhood of 0 where f is defined.
Then there exists an ε > 0 so that for every g : U → C

2 with ‖f − g‖U ≤ ε we have
that g(U) ∩ f(U) �= ∅.

Proof. Without loss of generalization we may assume that U contains a neighbor-
hood of the unit disk Δ. After changing coordinates, both on the domain and the
target, we can further assume that f is of the form

f(x) = (f1(x), f2(x)) = (xp, xq + h.o.t.), (8)

where q > p ≥ 2 (the Puiseux expansion). After a further change of coordinates
on the target of the form (z, w) �→ (z, w − α(z)) we may assume that none of the
exponents occuring in f2(x) are divisible by p.

Let k be the greatest common divisor of all the exponents occuring in f , and
write

f(x) = f̃(y) = (ym, yn + h.o.t.), (9)

where y = xk, m = p/k and n = q/k. Then near (0, 0) ∈ C
2 the image of f is given

by the equation

m∏

j=1

(w − f̃2((z
1
m )j) = wm + αm−2(z)wm−2 + · · · + α0(z) = 0, (10)

as in the Weierstrass Preperation Theorem. The fact that

αm−1(z) =
∑

f̃2((z
1
m )j) (11)

vanishes follows from our earlier assumption that none of the exponents in f2 were
divisible by p. Note that for every j = 0 · · ·m− 2 the coefficient αj(z) is divisible by
zl, where l ≥ 2q

p . Hence we can rewrite Equation (10) to obtain that a point (z, w)
near (0, 0) lies in the image of f if and only if

wm

zlr(z, w)
= 1, (12)

where we write r(z, w) for the remainder. Now let g is a holomorphic function defined
on U . In order to show that g(Δ)∩f(Δ) �= ∅ it is sufficient to show that there exists
an x ∈ Δ such that

φ(x) =
g2(x)m

g1(x)lr̃(x)
= 1. (13)
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We suppose that ‖f − g‖Δ is sufficiently small so that by Rouché’s Theorem both
the numerator and denominator of φ have exactly pq

k zeroes, counting multiplicity.
Moreover, by decreasing ‖f − g‖Δ if necessary, the value of φ(x) will be close to
1 on ∂Δ. Let us for the purpose of contradiction assume that f(U) and g(U) do
not intersect. Then it follows that f(Δ) and g(Δ) do not intersect for sufficiently
small perturbations of g. Hence we may assume that the meromorphic function φ
has zeroes and poles distinct from each other, exactly q zeroes, each of multiplicity
m, and at least p poles of multiplicity at least l.

Let us change coordinates on the target by post-composing φ with the map

θ = x → x

x− 1
, (14)

effectively switching the roles of 1 and ∞ while keeping 0 fixed. Then by our as-
sumption φ̃ = θ ◦ φ is bounded and close to infinity on the boundary Δ, still has
q zeroes, each of multiplicity m, and takes on the value 1 in at least p points of
multiplicity at least l. Let

R = min{|φ̃(x)| | x ∈ ∂Δ}. (15)

Then by the maximum principle V = φ̃−1(ΔR) is a disjoint union of finitely many
simply connected domains. Since φ̃ is a branched covering of degree pq

k from V to
ΔR, the Riemann Hurwitz Theorem gives that the Euler characteristic of V satisfies

χ(V ) ≤ pq

k
χ(ΔR) − q(m− 1) − p(

2q
p

− 1) =
pq

k
− pq

k
+ q− 2q+ p = p− q < 0. (16)

But this is a contradiction since the Euler Characteristic of a finite union of disks is
positive. ��

We stress that in Proposition 12 we consider perturbations of the map f , not of
the defining equation for f(Δ). For example, if f = (x2, x3) then the image is given
by {w2 − z3 = 0}, which can easily be perturbed to {w2 − z3 = ε}, which does not
intersect the original cusp. Note that in this example the topology has changed: the
intersection of {w2 − z3 = ε} with a ball centered at the origin is no longer simply
connected.

The following is a direct consequence of Proposition 12.

Lemma 13. Let f be a holomorphic endomorphism of a complex manifold X of
dimension 2, and let Ω be a non-recurrent Fatou component. Let h = lim fnj be
a limit map on Ω of generic rank 1. Then h(Ω) ⊂ ∂Ω is an injectively immersed
Riemann surface.

Proof. Let z ∈ Σ = h(Ω) and let x ∈ Ω be such that h(x) = z. Since h is rank 1
there exist a small disk D through x such that h is non-constant on D and such that
for some small neighborhood U of x, the image h(U) equals h(D). We first show
that h(D) is smooth for D small enough.
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By reparametrizing we may assume that x = 0, D is the unit disk, and h maps
0 ∈ D to (0, 0) ∈ C

2. Suppose for the purpose of a contradiction that h(D) is singular
at (0, 0). After a change of coordinates we can write h(ζ) = (ζp, ζq + h.o.t.) with
q > p ≥ 2 and q not divisible by p, as in the proof of Proposition 12. But then it
follows from Proposition 12 that for j large enough, the set fnj (D) intersects h(D).
This is a contradiction since fnj (D) ⊂ Ω and h(D) ⊂ ∂Ω. Therefore the image h(D)
is a smooth Riemann surface.

Now let y ∈ Ω be such that h(y) = h(x). Let V be a small neighborhood of
y. Suppose for the purpose of contradiction that the images h(V ) and h(U) do not
agree as germs. Then we have that h(U) and h(V ) are both holomorphic graphs over
a straight disk through z, and intersect only in z. It follows that for j large enough
fnj (U) must intersect h(V ), and again we have a contradiction. It follows that h(U)
and h(V ) agree as germs, and h(Ω) is therefore smooth. ��

6 Ordering of Limit Maps

Let us begin with a useful observation due to Weickert:

Lemma 14. [WeiJ03] If Ω is an invariant Fatou component with a limit map h =
lim fnj , then h(Ω) is invariant under f . In particular, if h(Ω) is a point then it is
fixed under f .

Proof. Let z ∈ h(Ω) and write z = h(x) for some x ∈ Ω. Then f(x) ∈ Ω, and since
f and h commute we have f(z) = f(h(x)) = h(f(x)) ∈ h(Ω), and the conclusion
follows. ��
Remark 15. Since we are dealing with invertible maps, the same argument shows
that the limit set h(Ω) is completely invariant under f .

Let us now recall the definition of a Fatou map.

Definition 16. Let f be a holomorphic endomorphism of a complex manifold X.
A holomorphic map φ from a complex analytic space R into X is called a Fatou map
for f if {f j ◦ φ} is a normal family.

Lemma 17. Let X be a 2-dimensional complex manifold and f be a holomorphic
endomorphism of X. Let Ω be a non-recurrent Fatou component, and suppose that
{fnj} converges uniformly on compact subsets of Ω to a rank 1 limit map h : Ω →
∂Ω. Then the inclusion map from Σh = h(Ω) into X is a Fatou map.

Proof. Let us denote the inclusion map by φ. Let m1,m2 . . . be an increasing se-
quence of integers and let K1 ⊂ K2 ⊂ . . . be a compact exhaustion of Ω. For each l
we can choose j(l) large enough so that

‖fnj(l)+ml(z) − fml ◦ h(z)‖ < 1
2l
, (17)
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for z ∈ Kl. By the definition of the Fatou component Ω we obtain that a subsequence
of fnj(l)+ml converges uniformly on compact subsets of Ω. But then it follows that
there is a subsequence of fml ◦h(z) that converges uniformly on compact subsets of
Ω, which implies that the corresponding subsequence of fml ◦φ converges uniformly
on compact subsets of Σ. ��

The normality of the family (fn) restricted to Σh allows us to introduce a natural
ordering on the family of limit maps.

Definition 18. Given a non-recurrent Fatou component Ω for f , we define

Γf := {h : Ω → ∂Ω | ∃n1, n2, . . . : fnj |Ω → h}. (18)

Remark 19. The set Γf , equipped with the topology of uniform convergence on
compact subsets of Ω, is compact. The map f acts on Γf both by pre- and post-
composition, which by commutativity of the iterates of f induce the same action on
Γf . It is well known that for any continuous group action on a compact set there
exists a minimal invariant subset. These subsets are exactly the maximal equivalence
classes with respect to the ordering that we introduce in this section.

Remark 20. The set Γf is remeniscent of the Sushkevich kernel for almost periodic
semigroup actions, compare [LL85].

Now let h ∈ Γf be a rank 1 limit map with image Σh ⊂ ∂Ω. We have seen in
Lemma 17 that the inclusion map Σ → X is a Fatou map. Let fml be a convergent
subsequence on Σ, converging to a map φ : Σ → φ(Σ).

Lemma 21. The map φ ◦ h is an element of Γf .

Proof. Write h = lim fnj . Then there exist j(l) large enough such that the iterates
fml+nj(l) converge to φ ◦ h, uniformly on compact subsets of Ω. ��

We would like to say that in the setting of Lemma 21 that k = φ ◦ h is larger
than h. Instead we will use the following equivalent definition.

Definition 22. Let h = lim fnj ∈ Γf and let k ∈ Γf . If there exists a sequence
(ml) in Z

+ such that for any sufficiently large {j(l)} we have that

k = lim fml+nj(l) , (19)

uniformly on compact subsets of Ω, then we say that k ≥ h. This ordering is re-
flexive and transitive, but not necessarily anti-symmetric. For example, if f acts as
a rotation on h(Ω), then Γf is equivalent to S1, and k ≤ h for any h, k ∈ Γf . By
considering h and k equivalent if h ≥ k and k ≥ h we do obtain a partial ordering
on the equivalence classes.

Lemma 23. Let h, k ∈ Γf , and write Σh = h(Ω). Then k ≥ h if and only if there
exists an sequence {ml} in Z

+ such that fml converges on Σh to φ : Σh → ∂Ω and
k = φ ◦ h.
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Proof. Let us write h = lim fnj . If k = φ ◦ h, with φ = lim fml , then it follows
immediately that for j(l) large enough we have that k = lim fml+nj(l) , so k ≥ h.

To prove the other direction, suppose that k ≥ h, which by our definition means
that there exist a sequence {ml} in Z

+ so that for j(l) large enough k = lim fml+nj(l) .
Since the inclusion map from Σh into X is a Fatou map, we can restrict to a subse-
quence of {ml} if necessary so that fml converges on Σ to a map φ : Σh → ∂Ω. It
follows that φ ◦ h = k. ��
Lemma 24. If h, k ∈ Γf and k ≥ h, then k(Ω) ⊂ h(Ω). Moreover, if x, y ∈ Ω are
such that h(x) = h(y) then k(x) = k(y).

We note that Lemma 24 follows immediately from Lemma 23.

Lemma 25. The invariant minimal subsets of Γf are exactly equal to the maximal
equivalence classes. In particular, there exists an h ∈ Γf so that if k ≥ h then h ≥ k.

Proof. Suppose that ω ⊂ Γf is a maximal equivalence class. It follows immediately
from the definition of the ordering that the closure of the orbit under f of any h ∈ ω
is equal to ω, so ω is a minimal invariant subset.

On the other hand, suppose that V ⊂ Γf is a minimal invariant subset, let h ∈ V
and suppose that there exists an k ∈ Γf with k ≥ h. By the minimality of V the
map h must lie in the closure of the orbit of k under f , so by Lemma 23 we have
that h ≥ k. Hence h lies in a maximal equivalence class ω, which as we have seen
is also a minimal invariant subset. But then ω must equal V , which completes the
proof. ��

We prove the following.

Lemma 26. Suppose that hmax lies in a maximal equivalence class in Γf . Suppose
that h has rank 1 and write Σh = hmax(Ω). Then the tangential derivatives along
Σh of the maps (fn) are uniformly bounded away from 0 and ∞ on compact subsets
of Σh.

Proof. By Lemmas 13 and 14, Σh is an invariant injectively immersed Riemann
surface, so we can indeed talk about tangential derivatives. Let K be a compact
subset of Σh. Since the inclusion map is a Fatou map, we immediately obtain that
on K the modulus of the tangential derivatives is uniformly bounded from above.
Suppose for the purpose of contradiction that moduli of the tangential derivatives
is not bounded away from 0. Then we can find a sequence of iterates (fnj ) and a
sequence of points aj so that aj → a ∈ K and such that the tangential derivative of
fnj at aj goes to 0. By restricting to a convergent subsequence we obtain a limit map

φ = lim fnj |Σh
, (20)

with φ′(a) = 0. By Lemma 23 we have that φ◦hmax = k ∈ Γf , and k ≥ hmax. Hence
by Lemma 13 φ(Σh) = k(Ω) is smooth, which implies that φ : Σh → σk is d : 1 near
the point a, for some d > 1. But then it follows from Lemma 24 that k is strictly
larger than h, which contradicts the maximality of h. ��
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We will now restate and prove Lemma 27, formulated in Section 3, which will
conclude the proof of the first part of Theorem 6.

Lemma 27. Let f be a Hénon map, let Ω ⊂ C
2 be a non-recurrent Fatou component

and let h ∈ Γf be a maximal limit map. Then h(Ω) consists of a single fixed point.

Proof. If h has rank 0 then the desired follows from Lemma 14. So assume for the
purpose of a contradiction that h has rank 1. Recall from Lemma 13 that Σh =
h(Ω) is an injectively immersed Riemann surface, and from Lemma 26 that on any
compact subset of Σh the tangential derivatives of the family {fn} are uniformly
bounded away from 0 and ∞.

Recall from [BS91a] that Σh is a bounded set, contained in the polydisk

W = {(z, w) ∈ C
2 | |z|, |w| ≤ R}, (21)

for some sufficiently large R depending on f .
Since Ω is non-recurrent, the Jacobian derivative δ of f necessarily satisfies |δ| <

1. Let z ∈ Σh and let D be a relatively compact holomorphic disk in Σh, centered
at z. For x ∈ Σh and m > 0 we define the tangent cone

Cm
x = {v = v1 + v2 ∈ Tx(Σh) ⊕Nx(Σh) | |v2| ≤ m|v1|}. (22)

Since Ω lies in the compact setW , the map f is volume contracting and the tangential
derivatives of the iterates f j along Σh are uniformly bounded from above and away
from 0, we can find N ∈ N and 0 < m′ < m so that

dfN (Cm
x ) ⊂ Cm′

fN (x), (23)

for every integer n and every x ∈ fn(D).
Note that since the sequence of iterates (fn) restricted to Σh is a normal family,

the second derivatives of fn along Σh are bounded from above on D, uniformly over
n. Hence we can make D smaller if necessary so that for every n the holomorphic disk
fn(D) is a graph over the complex line through fn(z) tangent to Σh. It follows that,
by again decreasing D if necessary, we can extend the invariant cone fields Cm and
Cm′

on each fn(D) to a bidisk centered at fn(z) whose radii are independent of n.
Here the axes of these bidisks are the tangent and normal directions of Σh at fn(z).

By standard construction (see for example [HPS70]) there exists through every
x ∈ D a strong stable manifold W s(x). Moreover, the uniform size of the bidisks
guarantees that the stable manifolds through x ∈ D extend almost vertically through
the bidisk containing D. Hence we obtain a stable foliation, filling a neighborhood
of D. But since the sequence of iterates is normal when restricted to D, the iterates
also form a normal family in the union of these stable manifolds, which implies that
Σh does not lie on the boundary of the Fatou set but in the interior. This contradicts
our hypothesis and completes the proof. ��

Of course Lemma 27 does not rule out the existence of rank 1 limit maps. It
does follow that given any rank 1 limit map h ∈ Γf , there exists a sequence fnj that
converges uniformly on compact subsets of Σh = h(Ω) to a fixed point in Σh .
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7 Parabolic Basins

Let f be a Hénon map with a non-recurrent Fatou component Ω, and suppose that
{fn} converges uniformly on compact subsets of Ω to a point p ∈ Γf . Since the
Jacobian derivative of f must be strictly <1 in absolute value, at least one of the
eigenvalues must have modulus strictly <1. As p lies in the Julia set, it cannot be an
attractive fixed point, and since there is uniform convergence to p on an open subset,
p cannot be a hyperbolic fixed point. It follows that the other eigenvalue must have
modulus exactly equal to 1. In fact, we now prove that the other eigenvalue must
be equal to 1.

Theorem 28. Let f : (Ck, 0) → (Ck, 0) be a germ of a holomorphic map that fixes
the origin. Suppose that there exists an open set W with f(W ) ∩W �= ∅ and such
that on W the iterates (fn) converges uniformly to the origin. Further suppose that
Df(0) has eigenvalues λ1, λ2, . . . , λk with |λ1| = 1 and |λi| < 1 for i ≥ 2. Then
λ1 = 1.

Proof. After changing coordinates we may assume that the eigenvector correspond-
ing to λ1 is (1, 0, . . . , 0) and all other eigenvectors of Df(0) are orthogonal to
(1, 0, . . . , 0).

Recall that we have a strong stable manifold through 0 of complex dimension
k− 1. Since this strong stable manifold is locally a graph over the hyperplane {z1 =
0}, we can locally change coordinates such that the local stable manifold of 0 is
equal to the hyperplane {z1 = 0}. We denote by C a (not necessarily unique) C∞

center manifold through 0. Since there may not be a holomorphic center manifold
we cannot assume that there is a holomorphic change of coordinates that maps the
center manifold to the z1-plane, but we do have that C is tangent to the z1-plane at 0.

Let V be a small ball centered at 0 so that f |V is invertible and acts weakly hyper-
bolically. That is, we choose V small enough such that {(v, v′) ∈ T (V ) | |v| ≥ ‖v′‖} is
an invariant cone field. We denote byK the subset of points in V whose orbits stay in
V , so in particular for every z ∈ W we have that fn(z) ∈ K for large enough n ∈ N.
By choosing V small enough we have that for every point z ∈ K we locally have a
strong stable manifold through z that extends to the boundary of V . It follows from
the invariant cone field that the strong stable manifolds are close to vertical , that is,
for every pair (x, x′), (y, y′) in a local stable manifold we have that ‖x′−y′‖ < |x−y|.

Let w ∈ W be such that f(w) also lies in W . Then for some N ∈ N we have that
fn(W ) ⊂ V for all n ≥ N . We write W ′ = fN (W ).

Then through every point in W ′ we have a local stable manifold as noted before.
Since the strong stable manifolds are close to vertical they must intersect the z1-plane
in a unique point. We denote by h : K → Cz1 the holonomy map induced by the
strong stable manifolds: h maps a point z ∈ K to the intersection of the strong stable
manifold through z with the z1-plane. Then U = h(W ′) is a connected subset of W ∩
Cz1 that contains the points u = h(fN (w)) and v = h(fN+1(w)). Note that v is not
necessarily equal to f(u) since the z1-plane is not invariant, but v lies in the strong
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stable manifold through f(u). Also note that U cannot contain 0: if U did contain 0
then W would contain a neighborhood of 0 which would contradict our assumptions.

Let ψ be a conformal map from the unit disk Δ to U that maps 0 to u, and define

φn(ζ) =
π1 ◦ fn ◦ ψ(ζ)
π1 ◦ fn(u)

, (24)

where π1 is the (straight) projection onto the z1-plane.
Note that since fn(U) avoids the strong stable manifold W s(0), the maps φn are

well-defined and φn(ζ) �= 0 for any ζ ∈ Δ. It is clear that φn(0) = 1 for every n, and
it follows from the invariant cone field for f in V that fn(W ) is ”almost horizontal”
and the map φn is univalent. It follows that the family {φn} is normal. Moreover,
we note that φn(ψ−1(v)) → λ1, and by Hurwitz Theorem it follows that any limit
map of the family must be univalent. Then we must have a constant ε > 0 such that
|φ′

n(0)| > ε for any n ∈ N. Hence by the Koebe 1
4 -Theorem we have that

d(φn(0), ∂(φn(Δ))) >
1
4
ε, (25)

and hence there is a constant ε̃ > 0 so that

d(π1(fn(u)), ∂(π1f
n(W ))) > ε̃‖fn(u)‖. (26)

Assume for the purpose of a contradiction that λ1 �= 1, and let j ∈ N be such that
d(λj

1, 1) < ε̃
2 .

Let us write fn(u) = un = (xn, yn), with xn ∈ Cz1 and yn ∈ C
k−1. For large

n we claim that ‖yn‖ < |xn|2. Indeed, w lies in the stable manifold of a point in
the invariant center manifold C, and the distance d(un, C) decreases exponentially.
The claim follows from the fact that C is tangent to the z1-plane at 0. Hence it fol-
lows from the fact that the local stable manifolds in V are vertical and the uniform
convergence of fn on U that for large n we have

d(π1(xn), h(xn)) <
1
8
ε̃‖un‖. (27)

It follows from the fact that the local stable manifolds through un are almost
vertical and un → 0 that for large n we have that

d(h(un), h(un+j)) <
2
3
ε̃‖un‖, (28)

while

d(h(un), ∂(hfn(U))) >
3
4
ε̃‖un‖. (29)

It follows from estimates (28) and (29) that h(un+j) lies in h(fn(U)) and hence that
V ∩ Ω ∩ Cz1 contains a Jordan curve that winds around the origin. The vertical
foliation through this Jordan curve plus the maximum principle now give us that
Ω contains a neighborhood of 0, which is in contradiction with the assumption that
0 ∈ ∂Ω. ��
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Lemma 27 and Theorem 28 combined with Theorem 8 together imply Theorem
6. Let us note that the dynamical behavior of a germ f : (Ck, 0) → (Ck, 0) with
eigenvalues λ1, . . . , λk satisfying λp

1 = 1 and |λi| < 1 for i ≥ 2 is very well understood
due to the following result of Di Giuseppe [Giu10].

Theorem 29 (Di Giuseppe). Let f = (f1, . . . , fk) be a semi-hyperbolic germ as
above. Then up to holomorphic conjugacy one of the following is satisfied:

(i) f1(z) = λ1z1;

(ii) f1(z) = λ1z1 + akz
kq+1
1 + o(‖z‖kq+1),with ak �= 0 and k ≥ 1.

Moreover, in case (i), f is locally topologically conjugate at the origin with g := df0;
and in case (ii), f is locally topologically conjugate at the origin with g(z) := (λ1 +
zkq+1
1 , λ2z2, . . . , λkzk).

Di Giuseppe’s result actually applies in greater generality: |λi| > 1 is allowed for
i ≥ 2 as long as there is quasi-absence of resonance. In our setting quasi-absence of
resonance is automatically satisfied.

8 Uniqueness of the Limit Set

Let f be a holomorphic endomorphism of a complex manifold X, and let Ω be a
non-recurrent Fatou component for f .

Question 30. Given a holomorphic endomorphism of a complex manifold X with
a non-recurrent Fatou component. Is it possible for the limit set h(Ω) to depend on
the map h ∈ Γf?

Although non-uniqueness may be hard to imagine for Hénon maps or holomorphic
endomorphisms of P

2, the following construction gives an affirmative answer to the
above question. The complex manifold will be a domain in C

2.

Theorem 31. There exists an open connected set D ⊂ C
2 and a map f : D → D

such that {fn} is normal on D, all orbits fn(z) converge to ∂D and h(D) depends
on h ∈ Γf .

Proof. We let
f(z, w) = (p(z), qz(w)), (30)

where
p(z) = z − z3 + h.o.t. (31)

is such that
p(

1√
u

) =
1√
u+ 1

, (32)

for u in the strip S = {0 < Im(u) < 2π}. We define the map qz(w) by

qz(w) =
φ(p(z))
φ(z)

w, (33)
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where
φ(z) = 1 − ei

1
z . (34)

The domain D is given by Ω× C, where Ω contains the z-values that correspond
to u-values in the half-strip S. Note that φ(z) �= 0 for any z ∈ Ω, so the map f is
well defined.

Let K be a compact subset of Ω. Then pn(z) converges to the origin along the
positive real axis, uniformly for z ∈ K. Moreover, we have that

max
z,z′∈K

dist
(

1
pn(z)

,
1

pn(z′)

)
→ 0. (35)

Hence given any increasing sequence in N we can find a subsequence {nj} for which

e
i 1

p
nj (z) → θ, (36)

with |θ| = 1, uniformly for z ∈ K. Given that

wn =
φ(fn+1(z))
φ(fn(z))

· · · φ(f(z))
φ(z)

w0 =
φ(fn+1(z))

φ(z)
w0, (37)

it follows that {fn} is normal on Ω×C. The first coordinate zn will always converge
to the origin, so all the orbits (zn, wn) converge to ∂D.

To see that h(D) depends on the sequence {nj}, note that by choosing the nj ∈ N

appropriately we can make sure that e
i 1

znj converges to 1 for some initial (z0, w0). It
follows that (znj

, wnj
) converges to (0, 0) for any starting point (z, w) in a compact

subset of D.
On the other hand, we can make sure that e

i 1
znj converges to −1 for some point

z0. In this case the map h will satisfy h(z, w) = (0, 2
zw) and the image of h is the

complex line {0} × C, showing that the image h(D) depends on the subsequence
{fnj}. ��

We note that the above construction is quite different from a Fatou component of
a Hénon map or a holomorphic map of projective space. The map f is not defined on
the boundary of D, and f cannot be extended holomorphically to any neighborhood
of 0.

Let us return to our Hénon map f with a non-recurrent Fatou component Ω. If
h(Ω) depends on h ∈ Γf , then by Lemma 27 there must exist both an k ∈ Γ of rank
0 (for example any maximal h), and an h ∈ Γ of rank 1. The latter follows from
the following classical argument, already used in higher dimensions by Jupiter and
Lilov in [JL03]. The union of the limit sets must be connected, the image of a rank
0 limit map is a fixed point, and a Hénon map has only finitely many fixed points.
Therefore if all limit maps have rank 0, the limit map is unique. The same argument
holds for holomorphic endomorphisms, the fact that these maps have only finitely
many fixed points was proved by Fornæss and Sibony in [FS94].
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So let us suppose that there exist limit maps in Γf both with rank 0 and with
rank 1. Let us call k a limit map of rank 0. Then p = k(Ω) is a fixed point, and since
f is dissipative, p is either a hyperbolic fixed point or a semi-attracting fixed point.
In either case there exists a strong stable manifold W s(p), which is biholomorphic
to the complex plane.

Lemma 32. Let f be a Hénon map and Ω be an invariant non-recurrent Fatou
component with bounded forward orbits. Suppose that a subsequence fnj converges
uniformly on compact subsets of Ω to the fixed point p, which necessarily has a
strong stable manifold W s(p). Further suppose that the limit set {p} is not unique.
Then there exists a sequence of iterates fml that converges uniformly on compact
subsets of Ω to a rank 1 limit map h : Ω → W s(p).

Proof. Since f has only finitely many fixed points, we can find an ε > 0 so that
B2ε(p) contains no fixed points besides p. Further decrease ε if necessary so that
(1) there exists a dominated splitting on B2ε(p) and (2) there exists a z ∈ Ω whose
orbit enters and leaves B2ε(p) infinitely often. The dominated splitting guarantees
the existence of a strong stable manifold in Bε through every point whose orbits
remains in Bε. These strong stable manifolds lie properly in Bε.

Let 0 < ε′ < ε be such that f−1(Bε′(p)) ⊂ Bε(p). Then there exist increasing
integers m1,m2, . . . and k1, k2, . . . such that for every integer l

(1) fml(z) ∈ Bε(p) \Bε′(p),
(2) fml+j(z) ∈ Bε(p) for j = {1, . . . , kl}, and
(3) fml+kl(z) ∈ B 1

2l
(p).

By restricting to a subsequence if necessary we may assume that fml converges
uniformly on compact subsets of Ω to a limit map h : Ω → ∂Ω. Denote x = h(z).
Note that x must lie in Bε(p) \Bε′(p), and hence cannot be a fixed point. Therefore
h must have rank 1.

Note that the orbit of x must remain in Bε. If not, there could not be points
fml(z) arbitrarily close to x whose orbits approach p arbitrarily nearly before leaving
Bε. Since the orbit of x remains in Bε, the dominated splitting guarantees the
existence of a unique strong stable manifold W s(x).

The limit set h(Ω) either intersects W s(x) locally only in x (where by locally we
refer to the topology on the Riemann surfaces h(Ω) and W s(x)), or locally coincides
with W s(x). By normality of the family fn restricted to h(Ω), the tangential deriv-
atives of the family fn must be uniformly bounded, locally in h(Ω). Therefore it
follows that there is a neighborhood of x in h(Ω) for which the orbits stay in B2ε(p),
which implies the existence of strong stable manifolds through any point in h(Ω).
Hence if W s(x) and h(Ω) intersect locally only in x, the strong stable manifolds fill
some neighborhood of x. It follows that the orbits of all points in a small neigh-
borhood of x remain in B2ε(p), which contradicts the fact that x is the limit of the
sequence fml(z). Hence h(Ω) and W s(x) must locally coincide.
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By Lemma 14, h(Ω) is invariant under f , and by Lemma 27 there must be a
sequence of iterates on h(Ω) that converges to a fixed point, which in this case can
only be p. This is not possible unless W s(x) = W s(p). Hence h(Ω) must be contained
in W s(p). ��

Recall that K+,K− ⊂ C
2 are the sets of points with bounded forward resp.

backward orbits, and that J+ = ∂K+ and J− = ∂K− are the forward and backward
Julia sets.

Lemma 33. Let h ∈ Γf be of rank 1 so that h(Ω) ⊂ W s(p). Then h(Ω) lies in
J = J+ ∩ J−.

Proof. Since h(Ω) lies in W s(p), it is clear that h(Ω) lies in K+. It is equally clear
that no point of h(Ω) can lie in the interior of K+, as it would imply normality of
the sequence of iterates in a neighborhood of the point. Therefore h(Ω) lies in J+.

Let x ∈ h(Ω), and let z ∈ Ω be such that h(z) = x. Suppose for the purpose of
contradiction that x does not lie in K−. Then there is an N ∈ N such that f−N (x) ∈
V −. Write h = fnj . Then we see that for j large enough f−N (fnj (z)) = fnj−N (z)
also lies in V −. But this is a contradiction, as nj − N → ∞ as j → ∞. Therefore
h(Ω) ⊂ K−. Since f is dissipative, J− = K− and we are done. ��

The following Lemma completes the proof of Theorem 2.

Lemma 34. Let f be a Hénon map of degree d, whose Jacobian determinant δ
satisfies

|δ| < 1
d2
, (38)

and let p be a fixed point that is not attracting. Suppose that Ω is an invariant non-
recurrent Fatou component with a limit map h = lim fnj that maps Ω into W s(p).
Then h(Ω) = {p}.

Finally, we will make use of a subharmonic version of the classical result by
Wiman [Wim05] (see also [GO08], Ch. V, Thm 1.3, and [Hor94], Thm. 3.3.26) which
is also a particular case of a (subharmonic version) of the Denjoy–Carleman–Ahlfors
Theorem, see [Sod00] and [HK76], Section 4.6. It had been recently used in the same
context by Dujardin and the first author in [DL12], see Remark 3 in the Introduction.
(In the context of one-dimensional complex dynamics, it had been earlier used by
Eremenko and Levin [EL89].)

Theorem 35 (Wiman). Let g be a non-constant subharmonic function on C whose
order of growth is <1/2, i.e., g(z) = O(|z|ρ) for some ρ < 1

2 . Then all components
of {g = 0} are bounded.

Proof of Lemma 34. Suppose for the purpose of a contradiction that h(Ω) is not
equal to {p}, in which case h must have rank 1. By the classical Poincaré Theorem,



908 M. LYUBICH AND H. PETERS GAFA

the restriction f |W s(p) is globally linearizable, i.e., there exists a a biholomorphism
Ψ : C → W s(p) that satisfies the functional equation

Ψ(λ−1ζ) = f−1(Ψ(ζ)), (39)

where λ is the stable multiplier of p. Note that by our assumption,

λ ≤ δ <
1
d2

(40)

Let us now consider the backward Green function G− : C
2 → R

G−(z) = lim
n→+∞

1
dn

log ‖f−nz‖.

It is a non-negative plurisubharmonic function vanishing on K− and satisfying the
functional equation

G−(f−1z) = dG−(z). (41)

Let us restrict this function to W s(p) and pull it back to C, i.e., let g = G− ◦ Ψ.
This is a non-negative subharmonic function on C vanishing on

Ψ−1(K−) ⊃ Ψ−1(h(Ω)) =: Λ.

Note that Λ is connected and by (39) is invariant under the scaling z �→ λ−1z. Hence
it is an unbounded continuum in C.

Moreover, by (39) and (41), it satisfies the functional equation

g(λ−1z) = d g(z).

It follows that

g(z) = O(|z|ρ), with ρ = − log d
log λ

< 1/2,

where the last estimate follows from (40).
By the Wiman Theorem, all components of {g = 0} are bounded, contradicting

unboundedness of Λ. ��

Remark 36. As we have alluded earlier, the original Wiman Theorem was con-
cerned with entire (rather than subharmonic) functions. In fact, it can be directly
used in our context as well, using the coordinate function w instead of the Green
function G−.
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9 Holomorphic Endomorphisms of Projective Space

In this section we give a description of Fatou components under the assumption that
the image of the limit map h = lim fnj is independent of the sequence (nj).

Before we prove Theorem 7, let us note that for holomorphic endomorphisms of
P

2 we cannot expect the same description as for Hénon maps in Theorem 6. First of
all, we have already seen in Example 11 a Fatou component Ω for which all orbits
converge to an invariant disk or annulus lying in the boundary of Ω. Also, even in the
case where all orbits converge to a point p ∈ ∂Ω, we cannot expect the eigenvalues
λ1 and λ2 of Df(p) to satisfy |λ1| < 1 and λ2 = 1. Of course, if one of the eigenvalues
λ1 satisfies |λ1| < 1, then |λ2| = 1 and Theorem 28 implies that λ2 = 1. However,
by taking the cross product of two polynomials of the same degree that both have
a parabolic fixed point, we can obtain an example of a Fatou components where all
orbits converge to a point p ∈ ∂Ω with Df(p) = Id.

Naively one might then expect that at least one of the eigenvalues has to equal
1, but the examples below show that this does not hold either. The first map has a
quasi-parabolic fixed point, as studied by Bracci and Molino in [BM04].

Example 37. Let us first construct an example where both eigenvalues have mod-
ulus 1 but one of the eigenvalues is not equal to 1. Let f : C

2 → C
2 be given

by
f(z, w) = (z(1 + z), λw(1 + z)), (42)

where |λ| = 1. Let us write (zn, wn) = fn(z, w). It is clear that zn only depends on
z0, and

zn = z0

n−1∏

i=o

(1 − zi). (43)

Similarly,

wn = w0

n−1∏

i=o

(1 − zi). (44)

So we see that if zn converges to 0 then so will wn, and the basin of the origin is
given by Ω × C, where Ω ⊂ C is the parabolic basin of the map z �→ z(1 + z).

This map does not extend holomorphically to P
2, but we can consider the fol-

lowing modification:

f(z, w) = (z(1 + z) + zd, λw(1 + z) + wd), (45)

where d ≥ 3. It is easy to see that the dynamical behavior near the origin is similar,
yet this map extends holomorphically to P

2. Hence we see that for any |λ| = 1 there
exist a holomorphic endomorphism of P

2 with a parabolic basin and corresponding
eigenvalues equal to 1 and λ.

With a little more effort we can construct a parabolic basin in P
2 where neither

eigenvalue equals 1.
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Example 38. Again we first consider a selfmap of C
2.

f(z, w) = (eiθz(1 + zw), e−iθw(1 + zw)). (46)

We claim that for any θ ∈ R this map has a parabolic basin at the origin. Notice
first that in a neighborhood of the origin, the axes are completely invariant. We also
have that zn+1wn+1 = znwn(1 + znwn). Writing y for zw we obtain

yn = y0

n−1∏

i=0

(1 + yi)2. (47)

We also have that

zn = z0

n−1∏

i=0

(1 + yi), (48)

and

wn = w0

n−1∏

i=0

(1 + yi). (49)

We therefore see that if yn → 0 then zn, wn → 0 as well, and we conclude that the
origin has a parabolic basin.

Again the map f does not extend to a holomorphic endomorphism of P
2, but we

can consider a similar modification

F (z, w) = f(z, w) + (zd, wd), (50)

where d ≥ 7 and the map does extend to P
2.

Lemma 39. The holomorphic map F has an open set of orbits converging uniformly
to the origin.

Proof. Let (z0, w0) �= 0 be such that the following induction hypotheses are satisfied
for some ε > 0:

(i) |z0| < ε, |w0| < ε,

(ii) | z
2
0

w0
| < ε, |w

2
0

z0
| < ε,

(iii) |Re(z0w0)| < 0, |Im(z0w0)| < ε|Re(z0w0)|.
A straightforward calculation shows that, as long as ε is small enough, the hy-

potheses are also satisfied for (zn, wn), and (again assuming that ε is small enough)
that zn and wn both converge to 0. ��
Remark 40. Examples of this kind have been independently constructed by Bracci
and Zaitsev in [BZ13] (see also [BRZ13]). In fact, in those papers, a broad class of
germs exhibiting a similar phenomenon is introduced.

We now restate and prove Theorem 7.
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Theorem 7. Let f be a holomorphic endomorphism of P
2 and let Ω be a non-

recurrent, invariant Fatou component. Suppose that the limit set h(Ω) is unique.
Then h(Ω) either consist of one point p, or h(Ω) is a injectively immersed Riemann
surface, conformally equivalent to either the unit disk, the punctured unit disk or
an annulus, and f acts on h(Ω) as an irrational rotation.

Proof. If h(Ω) is a point then we are done, so we may assume that h has rank
1. By Lemma 13 the image Σh = h(Ω) is a injectively immersed Riemann surface,
invariant under f . By the work of Weickert [WeiJ03], Σh is hyperbolic. We claim
that every orbit in Σh is recurrent in the topology of Σh. If not there would be an
orbit in Σh accumulating on a point in ∂Ω \ Σh, which by Lemma 17 would imply
that h(Ω) is not unique.

A hyperbolic Riemann surface either has a discrete automorphism group, or is
biholomorphic to the unit disk, the punctured unit disk or an annulus. By Lemma
25 we may assume that h is minimal. Hence f : Σh → Σh is an automorphism,
and as we noted above its action on Σh is recurrent. As was shown in [FS94], a
holomorphic endomorphism of P

2 can only have finitely many fixed points. Therefore
the automorphism group of Σh cannot be discrete. Hence Ω must be the unit disk,
the punctured unit disk or an annulus, and f acts on Σh as an irrational rotation. ��

We note that it is unknown whether h(Ω) can be equivalent to a punctured disk.

10 Appendix: Perturbations of Singular Riemann Surfaces

We give two alternative proofs of Proposition 12, which we first restate.

Proposition 12. Let f : (C, 0) → (C2, 0) be the germ of a holomorphic map whose
image is singular at the origin in C

2. Let U be a neighborhood of 0 where f is
defined. Then there exists an ε > 0 so that for every g : U → C

2 with ‖f − g‖U ≤ ε
we have that g(U) ∩ f(U) �= ∅.

Geometric proof. The following argument is a more geometric presentation of the
argument given in the main body of the paper. To fix the idea, let us assume that
the image of f is the standard cusp {w2 = z3}. Let us include into holomorphic
foliation F with leaves

Lλ = {w2 = λz3}, λ ∈ Ĉ.

Let us puncture out 0, and consider the space O of leaves in the punctured neighbor-
hood of the origin. This space has a natural Riemann orbifold structure (supported
on the sphere) whose local charts are obtained by taking local transversals to F and
slicing the leaves to it. There are two orbifold points on O: the leaf w = 0 is an
orbifold point of order 3 and the leaf z = 0 is an orbifold point of order 2. So, the
Euler characteristic of O is equal to 1/2 + 1/3 < 1.

Let [λ] be the point of O corresponding to the leaf Lλ. The function g naturally
induces a holomorphic orbifold map g : U → O that does not assume value [λ = 1]
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but whose boundary values are close to this point. It follows that g is proper over
O \ B, where B is a small neighborhood of [1]. Hence g is an orbifold branched
covering over O \ B of some degree d. By the orbifold Riemann-Hurwitz Theorem,
the Euler characteristic of g−1(O \ B) is at most d · χ(O \ B) < 0. On the other
hand, it follows from the Maximum Principle that g−1(O \B) is the union of disks,
which has a positive Euler characteristic.

In general, consider the foliation with leaves {wm = λzlr(z, w)} [using notation
of (12)]. The space of its leaves in the punctured neighborhood of 0 is an orbifold
with Euler characteristic <1 (as it has at least two orbifold points, and one of them
has order at least 3). The rest of the argument is the same. ��

Topological proof The following argument was proposed to us by Gabrielov and
Milnor.

We recall a few facts that can be found in [Mil68]. Let us consider a small
closed ball B = Bε in C

2 bounded by a 3-sphere S = ∂B. We may assume that
V := f(U) ∩ B lies properly in B, and we denote its intersection with S by γ. If ε
is chosen sufficiently small then γ is a non-trivial knot in S. Moreover, there exists
a retraction π : B \ V → S \ γ.

Let us consider the component U0 of g−1(B) containing 0. Then g : U0 → B is a
singular 2-cell bounded by a knot η in S. Since by assumption it is disjoint from V ,
we can retract it by π to S \ γ. We obtain a singular 2-cell Δ in S \ γ bounded by η.

Since g is close to f , the knots γ and η are parallel. [Two disjoint knots are
called parallel if they bound an embedded annulus S1 × [0, 1] → S . It is easy to
see that if both knots are smooth and η is a small C1-perturbation of γ, then the
knots are parallel.] Let A be the embedded annulus with boundary γ − η. Then the
sum D := Δ +A is a singular 2-cell bounded by γ. We can apply to it the following
classical result, proved by Papakyriakopoulos in [Pap57]:

Lemma 41. (Dehn’s Lemma). Let D be a singular 2-cell in S3 bounded by a knot
γ that has an annular neighborhood in D. Then there exists an emebedded 2-cell
D′ bounded by γ.

It follows that the knot γ is trivial—contradiction. ��
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domain. I. Projective and inductive limits of polynomials. Advanced Science Insti-
tutes Series C: Mathematical and Physical Sciences, 464 (1995), 89–132.

[HP94] J.H. Hubbard and P. Papadopol Superattractive fixed points in C
n. Indiana

University Mathematics Journal, 43, (1994), no. 1, 321–365.
[JL03] D. Jupiter and K. Lilov. Invariant Fatou components of automorphisms of C

2.
Far East Journal of Dynamical Systems, 6 (2003), no. 1, 49–65.

[LL85] M. Lyubich and Yu. Lyubich. Spectral theory for almost periodic representa-
tions of semigroups. Ukrainian Mathematical Journal, 36 (1985), 474–478 (Trans-
lation from Russian).

[Mil68] J. Milnor. Singular points of complex hypersurfaces. In: Annals of Mathematics
Studies, Vol. 61. Princeton University Press, Princeton (1968).

[Mil99] J. Milnor. Dynamics in one complex variable. In: Annals of Mathematical Stud-
ies, Vol. 160. Princeton University Press, Princeton (1999).

[New74] Newhouse. Diffeomorphisms with infinitely many sinks. Topology, 13 (1974), 9–
18.

[Pap57] C.D. Papakyriakopoulos. On Dehn’s lemma and the asphericity of knots. An-
nals of Mathematics, 66 (1957), no. 2, 1–26.

[PZ10] H. Peters. and C. Zeager. Tautness and Fatou components in P
2. Journal of

Geometric Analysis, 22 (2012), no. 4, 934–941.
[Sod00] M. Sodin. Lars Ahlfors’ thesis. Israel mathematical Conference Proceedings, Vol.

14 (2000).
[Sul85] D. Sullivan. Quasiconformal homeomorphisms and dynamics. I. Solution of the

Fatou-Julia problem on wandering domains. Annals of Mathematics, 122 (1985)
401–418.

[Ued86] T. Ueda. Local structure of analytic transformations of two complex variables I.
Journal of Mathematics of Kyoto University, 26 (1986), no. 2, 233–261.

[Ued94] T. Ueda. Fatou sets in complex dynamics on projective spaces. Journal Mathe-
matical Society of Japan, 46 (1994), 545–555.

[Ued08] T. Ueda. Holomorphic maps on projective spaces and continuations of Fatou
maps. Michigan Mathematical Journal, 56 (2008), no. 1, 145–153.

[Wim05] A. Wiman. Sur une extention d’un théoréme de M. Hadamard. Arkiv för Matem-
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