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POLAR FOLIATIONS OF SYMMETRIC SPACES

Alexander Lytchak

Abstract. We prove that a polar foliation of codimension at least three in an
irreducible compact symmetric space is hyperpolar, unless the symmetric space has
rank one. For reducible symmetric spaces of compact type, we derive decomposition
results for polar foliations.

1 Introduction

The following is the most important special case of our results:

Theorem 1.1. Let M be a simply connected, irreducible, non-negatively curved
symmetric space, and let F be a polar foliation on M of codimension at least 3.
Then either all leaves of F are points, or F is hyperpolar, or the symmetric space
has rank one. Moreover, in the last case, M is not the Cayley plane and the foliation
lifts via the Hopf fibration to a polar foliation of the round sphere.

The result confirms a folklore conjecture in the field of polar foliations and ac-
tions. We explain the origin, ambience and generalizations of this result below. But
first, we would like to emphasize that the main idea of the proof may be more inter-
esting than the result itself. Namely, the main step of the proof is an application of
the famous theorem of Tits which classifies spherical Tits buildings and shows that
spherical buildings of dimension at least 2 are homogeneous and of algebraic origin.
This combinatorial-algebraic theorem, seemingly very far remote from the world of
Riemannian geometry, was already used as the main tool in two very important pa-
pers [Tho91] and [BS87]. Here we provide another application of this classification
result along with another theorem of Tits on chamber systems slightly more general
than buildings.

We hope that this approach via the combinatorial theory of buildings might be
fruitful in the field of polar foliations, providing insights barely attainable by direct
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differential-geometric means. Our hope is supported by the fact that independently
the same idea was applied by Fang et al. in [FGT12], to obtain a classification of
polar actions on positively curved manifolds. Moreover, this approach gives more
weight and interest to the exotic two-dimensional combinatorial objects which has
appeared in the work of Tits on chamber complexes and buildings. It seems to come
as a surprise in the building community, that such two-dimensional local build-
ings not coming as quotients of global buildings, which were discovered in the 80ies
([Neu84]) and considered as something extremely bizarre and exotic, appear nat-
urally as problems and examples in Riemannian geometry. We refer the reader to
[KL12] for more on these combinatorial objects, finish the advertisement part and
come to the introduction.

A polar foliation F of a complete m-dimensional Riemannian manifold M is a
singular Riemannian foliation (cf. Section 2) with regular leaves of dimension (m−k),
such that each point x ∈ M is contained in a complete, totally geodesic, immersed
submanifold Σ of dimension k, by definition, the codimension of the foliation, that
intersects all leaves of F orthogonally. Such a submanifold is called a section of F .
The polar foliation F is called hyperpolar if one and hence all sections are flat. If the
foliation is given by the orbit foliation of an isometric action it is called homogeneous
and the action is called a polar action.

In space forms, the investigation of polar foliations of codimension one has been
initiated by Segre and Cartan and in higher codimensions by Terng ([Ter85]) un-
der the name of isoparametric foliations. We refer to the excellent surveys [Tho00],
[Tho10] and the huge list of references therein. It turns out that polar foliations
in Euclidean spaces come from polar foliations on spheres. Polar foliations of codi-
mension at least two in round spheres have been shown by Thorbergsson to be ho-
mogeneous (if they are “irreducible and full”) and related to non-positively curved
symmetric spaces and their buildings at infinity ([Tho91]). On the other hand, in
codimension one, there are series of inhomogeneous examples and the classification
is still not complete, despite great recent progress in the area ([FKM81], [Sto99],
[CCJ07], [Imm08], and [Tho10] for more references).

The investigation of polar foliations in (from now on always) non-negatively
curved symmetric spaces M has been initiated in [TT95]. It has been shown that,
using a Riemannian submersion H → M from a Hilbert space of paths to M , one
can lift hyperpolar (!) foliations from M to H. From this observation one could
“understand” all hyperpolar (“full, irreducible”) foliations of codimension at least
2, by showing that they are homogeneous ([HL99], [Ewe98], [Chr02]). In irreducible
symmetric spaces, such hyperpolar actions have been classified in [Kol02].

On the other hand, in symmetric spaces of rank one, there are lots of polar folia-
tions (cf. [PT99], [Dom12]) which are never hyperpolar if the codimension is at least
two. Motivated by the known examples and confirmed by the partial classification
of polar actions on irreducible symmetric spaces obtained in [Kol09], it has been
conjectured that polar foliations on irreducible symmetric spaces of higher rank are
hyperpolar. Our Theorem 1.1 confirms this conjecture if the codimension is not equal
to two.
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In our approach, the irreducibility of M does not play a major role. More impor-
tant is the irreducibility of the sections, more precisely of the quotient spaces M/F .
Without the assumption of irreducibility we prove:

Theorem 1.2. Let F be a polar foliation on a simply connected non-negatively
curved symmetric space M . Then we have a splitting M = M−1×M0×M1×. . .×Ml,
such that F is a direct product of polar foliations Fi on Mi. The foliation F−1 on
M−1 is given by the fibers of the projection of M−1 onto a direct factor of M−1.
The foliation F0 is hyperpolar. For i ≥ 1, the sections of the foliation Fi on Mi have
constant positive sectional curvature. For i ≥ 1, if the codimension of Fi on Mi is at
least 3 then Mi is irreducible and of rank one; moreover, in this case, the foliation
Fi lifts to a polar foliation of the round sphere.

In the special case of polar action it is possible to understand the arising addi-
tional difficulties in cohomogeneity two. Based on this work, in [KL12] (and, previ-
ously, in [KL13], in the irreducible case), it is proved that the additional assumption
on the codimension being at least 3 is redundant. Thus any polar action on a non-
negatively curved symmetric space is (up to orbit-equivalence) a direct product of
hyperpolar actions and of polar actions on spaces of rank 1.

The method of proving our main result is inspired by the proof of the homogeneity
result of polar foliation in Euclidean spaces due to Thorbergsson [Tho91]. We reduce
the statement to the case in which the sections have constant curvature 1. We
investigate the horizontal object of our foliation, that is a length metric space defined
by measuring the lengths of broken horizontal geodesics with respect to the foliation.
We use Wilking’s results about the dual foliation to see that (in the irreducible
case) this new metric space is connected. Since the local structure of this metric
space is given by polar foliations on the Euclidean space, this new metric space is
locally isometric to some spherical building (possibly up to one special case that
can be handled directly). Now we use a theorem of [CL01], stating that, if the
codimension k of the foliation (i.e., the dimension of our horizontal object) is at
least 3, this horizontal space is covered by a spherical building. Moreover, we use
our coarser manifold topology, to find a coarser compact topology on our building.
If this building is reducible, one can use direct methods to detect the structure of
our symmetric space. In the “main” irreducible case, we use the theorems of Burns–
Spatzier and Tits ([BS87], [Tit74]) saying that our building is the building of a
simple non-compact real Lie group. In particular, its coarser topology is that of a
sphere. Then our manifold turns out to be the base of a principal fibration of a
sphere. Therefore it is homeomorphic to a projective space. We conclude that our
symmetric space has rank 1.

Finally, we would like to mention that the case of cohomogeneity 2 is different
not only for technical reasons. The main point is that the universal covering of our
horizontal space need not be a building (i.e. the local–global result from [CL01] may
fail). We are aware of only one example in which this problem arises, namely for the
polar action of SU(3) · SU(3) on the Cayley projective plane CaP

2. In [KL12], it is
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shown that this is the only such example in the case of polar actions, i.e., in the
case, when the horizontal simplicial object is homogeneous. Unfortunately, in the
general case, nothing is known about the combinatorial structure of arising objects.

In Section 2 we shortly recollect all notions and results needed later in the proof.
In Section 3 and Section 4 we study dual foliations and derive the product decom-
position of Theorem 1.2, reducing Theorem 1.2 and Theorem 1.1 to the case where
sections have constant positive curvature and the dual foliation has only one leaf.
In Section 6 we introduce our main tool: the horizontal singular metric dhor on our
manifold M and study its basic properties. It turns out that there are two essen-
tially different cases to be investigated, depending on whether the spherical Coxeter
group in question is reducible or not. In Section 7 we study the reducible case and
apply some basic results of [Nag92] about special totally geodesic subspaces, called
polars and meridians, to prove that our symmetric space M has rank 1. In Section
8, together with Section 6, the heart of the paper, we use the fact the universal
covering of our singular metric space (M, dhor) is a spherical building. We define a
coarser topology on this space and use the main theorem of [BS87] to prove that
this coarser topology is the topology of a sphere. Then we deduce that M has rank
1. In the final section, we use a simple argument inspired by [PT99], to describe
polar foliations on symmetric spaces of rank 1, thus finishing the proof of our main
theorems.

2 Preliminaries

2.1 Foliations. We refer to [Wil07], [LT10], [Lyt10] for more on singular Rie-
mannian foliations. Here we just recall the basic notions. Let M be a Riemannian
manifold. A singular Riemannian foliation F on M is a decomposition of M into
smooth, injectively immersed submanfolds L(x), called leaves, such that it is a sin-
gular foliation and such that any geodesic starting orthogonally to a leaf remains
orthogonal to all leaves it intersects. Such a geodesic is called a horizontal geodesic.
For all x ∈ M , we denote by Hx the orthogonal complement to the tangent space
Tx(L(x)), and call it the horizontal space at x. A leaf and all of its points are called
regular if it has maximal dimension. On the set of regular points, the foliation is
locally given by a Riemannian submersion. The dimension of the regular leaves is
called the dimension of the foliation, and their codimension in M is called the codi-
mension of the foliation.

The foliation is called polar if through any point x ∈ M one finds a totally geo-
desic submanifold whose dimension equals the codimension of F and which intersects
all leaves orthogonally. This happens if and only if the horizontal distribution in the
regular part is integrable. If M is complete, then the totally geodesic submanifolds
can be chosen to be complete. They are called section of the polar foliation F . We
refer to [Ale04], [AT06], [Lyt10] for more on polar foliations.

If the foliation F is polar and M is simply connected then all leaves are closed.
The quotient space (the space of all leaves) will be denoted by Δ. It comes along



1302 A. LYTCHAK GAFA

with the canonical projection p : M → Δ which is a submetry. The quotient Δ is a
good Riemannian Coxeter orbifold (reflectofold, in terms of [Dav10]). Moreover, the
restriction p : Σ → Δ to any section Σ is a Riemannian branched covering. Thus
Δ is isometric to Σ̃/Γ, where Σ̃ is the universal covering of Σ and Γ is a reflection
group, i.e., a discrete group of isometries of Σ̃ generated by reflections at totally
geodesic hypersurfaces.

For any point x ∈ M , the singular Riemannian foliation defines an infinitesimal
singular Riemannian foliation TxF on TxM , that factors as a projection of TxM to
Hx and the restriction of TxF on Hx. If F is polar then TxF is polar and sections
of F through x are in one-to-one correspondence with sections of TxF through the
origin. Any horizontal geodesic is contained in a section of F . Moreover, either the
foliation is regular or there are two sections Σ1,2 whose intersection Σ1 ∩ Σ2 is a
hypersurface in both sections Σ1,2.

2.2 Dual foliation. The dual foliation F# of a singular Riemannian foliation
F is defined by letting the leaf L#(x) be the set of all points in M that can be
connected with x by a broken horizontal geodesic. In [Wil07] it is shown that F#

is indeed a singular foliation. The following important results has been shown in
[Wil07] (we use slightly weaker formulations, suitable for our aims):

Proposition 2.1. Let M be a complete non-negatively curved manifold with a
singular Riemannian foliation F . Let γ be an F-horizontal geodesic starting at a
point x ∈ M . Let W (t) := νγ(t)L

#(x) denote the normal space to the dual leaf

L#(x) = L#(γ(t)) at the point γ(t). Then W (t) is parallel along γ. Moreover, for
all w ∈ W (t), the sectional curvature sec(w ∧ γ′(t)) of the plane spanned by w and
γ′(t) is 0.

Proposition 2.2. Under the assumptions of Proposition 2.1, if all dual leaves are
complete in their induced metric then the dual foliation is a singular Riemannian
foliation.

We provide an easy application of these results:

Lemma 2.3. Let M be a simply connected, complete, non-negatively curved mani-
fold. If F is a polar regular foliation of M then M splits isometrically as a product
M = M1 × M2 and F is given by the projection p1 : M → M1.

Proof. By definition, the leaves of the dual foliation F# are exactly the sections of
F . In particular, they are complete. Due to Proposition 2.2, F# is a Riemannian
foliation as well. Moreover, the horizontal distribution of F# coincides with F , hence
it is integrable. Thus the leaves of F are the sections of F#. Thus they are totally
geodesic. A polar foliation with totally geodesic leaves is locally given by a projection
onto a section, which is locally a direct factor of M . Since M is simply connected,
we get a global decomposition M = M/F × M/F#. ��
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2.3 Spherical Coxeter groups. A spherical Coxeter group is a reflection group
Γ on a round sphere S

k. We will call it reducible if the corresponding action on R
k+1

is reducible. There is a unique decomposition Γ = Γ1×Γ2×· · ·×Γl and a Γ-invariant
orthogonal decomposition R

k+1 = V0 ⊕ V1 . . . ⊕ Vl, such that Γi, i = 1, . . . , l acts as
an irreducible reflection group on Vi and trivial on all Vj , j 
= i.

The quotient Δ = S
k/Γ is the spherical join Δ = Δ0 ∗ Δ1 . . . ∗ Δl of the round

sphere Δ0 and irreducible Coxeter simplices Δi = Si/Γi, where Si is the unit sphere
of Vi.

The group Γ is called crystallographic, if all dihedral angles of the spherical
polyhedron Δ are given by π/m, where m can only take the values 1, 2, 3, 4, 6. If
none of the direct factors Γi is one-dimensional, then none of the dihedral angles of
Δ is equal to π/6.

Assume now that Δ = S
k/Γ is the quotient Δ = M/F of a polar foliation F on a

simply connected manifold M . Take a point y in a face of Δ of codimension 2 in Δ.
Take a point x in the leaf over y. Then the tangent space TyΔ is the quotient space
of the polar foliation TxF on TxM (cf. [Lyt10]). The famous theorem of Münzner
([Mue80], [Mue81]) implies that the dihedral angle at y can be only given by π/m,
with m = 1, 2, 3, 4, 6. We deduce that Γ is crystallographic.

2.4 Spherical buildings. We define buildings as metric spaces in contrast to
their original simplicial definition of Tits. We refer to [CL01] and [KL98] for more
on buildings considered from our point of view. Let Γ be a spherical Coxeter group
acting on S

n. A spherical building of type Γ is a metric space X with a set of isometric
embeddings φ : S

n → X, called apartments, such that the following two conditions
hold true: Any pair of points of X is contained in some apartment and the transition
maps between different apartments are given by restrictions of elements of Γ.

Consider the natural decomposition of S
n into polyhedra isometric to S

n/Γ. This
polyhedral structure is preserved by Γ, hence we obtain a natural polyhedral struc-
ture on X. The building X is called thick if all walls of codimension 1 bound at least
3 polyhedra.

A spherical join of spherical buildings is a spherical building, in particular so is the
suspension of a spherical building (cf. [BH99], for spherical joins and suspensions). A
spherical building X is called irreducible if it is indecomposable as a spherical join.
For a thick building of dimension at least 1 this is equivalent to the irreducibility of
the Coxeter group Γ.

2.5 Obtaining new foliations. Let again p : M → Δ be the projection whose
fibers are leaves of a polar foliation F on M . Write again Δ = N/Γ, where N
is the universal covering of any section. Assume that there is a Γ-invariant polar
foliation G on N . Then Γ acts on the quotient orbifold N/G by isometries. Assume
that this action has closed (i.e. discrete) orbits and let Δ′ be the quotient orbifold
Δ′ = (N/G)/Γ. The projection N → Δ′ factors by definition through Δ.

Then the composition p′ = q ◦ p : M → Δ′ is the quotient map of a new polar
foliation F ′ on M .
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Namely, p is a submetry (i.e., its fibers are equidistant) and so is q, hence the
fibers of p′ are equidistant as well. Around the preimage of a regular point of Δ′, p′

is the composition of two Riemannian submersions with sections, hence it is itself a
Riemannian submersion with sections. It only remains to prove that F ′ is a singular
foliation. This can be done directly. A slightly more elegant and sophisticated proof
is obtained as follows. It is a direct consequence of our construction and the main
definition of [Toe06], that the regular fiber has parallel focal structure. The main
result of [Toe06] now implies that F ′ is a singular Riemannian foliation.

By construction, each dual leaf of F ′ is contained in a dual leaf of F . On the
other hand, if the polar foliation G on N has only one dual leaf, then the dual leaves
of F and of F ′ coincide.

We are going to use this construction only in two simple cases. First assume that
Δ is a direct metric product Δ = Δ′ × Δ′′. Then the composition p′ of p : M → Δ
and the projection q : Δ → Δ′ defines a polar foliation on M .

We will consider only one other case. Assume that Δ is given as the quotient S
k/Γ,

where k ≥ 2 and Γ is a spherical Coxeter group. Assume that Γ is reducible. Consider
the Γ-invariant orthogonal decomposition R

k+1 = V1 ⊕ V2. Then Δ is a spherical
join Δ = Δ1 ∗ Δ2. Collapsing Δi to points, we obtain a projection Δ → [0, π/2],
which corresponds to the reducible, polar, codimension one foliation on S

k which is
given by the distance function p′ : S

k → [0, π/2] to the sphere S
k ∩ V1.

Note, that any non-trivial singular Riemannian foliation on the round sphere has
only one dual leaf, due to [Wil07]. Collecting the previous observations we arrive at:

Lemma 2.4. Let F be a polar foliation on a complete Riemannian manifold M .
Assume that the quotient Δ is isometric to S

k/Γ, with a reducible Coxeter group Γ.
Then there is a coarser polar foliation F ′ on M , which has the same dual leaves as
F and whose quotient space Δ′ is the interval [0, π/2].

3 Dual Foliations on Symmetric Spaces

We will use a general observation about dual leaves in symmetric spaces. Marco
Radeschi has pointed out that a variant of the two subsequent results appeared in
[MT11].

Proposition 3.1. Let M be a non-negatively curved symmetric space. Let F be a
singular Riemannian foliation on M and let F# be the dual foliation. Then any leaf
L# of the dual foliation is contained in a totally geodesic submanifold Z of the same
dimension as L#. Moreover, Z is a direct factor of M . In particular, if the dual leaf
L# is complete, it is a direct factor of M .

Proof. Take a point x ∈ L#. Let Wx denote the normal space Wx = νx(L#) to the
dual leaf. We let W ′

x be the set of all vectors w′ in TxM such that, for all w ∈ Wx, the
sectional curvature sec(w ∧ w′) is 0. Identifying x with the origin of the symmetric
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space M = G/K and writing g = k ⊕ p, with the usual identification of p and TxM ,
we have

W ′
x := {w ∈ TxM |[Wx, w] = 0}

Due to the Jacobi identity, [[W ′
x, W ′

x], W ′
x] ⊂ W ′

x. Thus, by definition, W ′
x is a

Lie triple system. The subspace W ′
x ∩Wx commutes with W ′

x. Hence the orthogonal
complement W ′′

x of (Wx ∩ W ′
x) in W ′

x is a Lie triple system as well. Exponentiating
the Lie triple system W ′′

x , we obtain a totally geodesic submanifold Z = exp(W ′′
x ).

By definition, W ′′
x ∩Wx = {0}. Hence dim(Z) ≤ dim(M)−dim(Wx) = dim(L#(x)).

We are going to prove that Z contains L#(x). Take an F-horizontal broken
geodesic γ that starts in x = x1 and consists of a finite concatenation of F-horizontal
geodesics γi connecting xi and xi+1. Due to Proposition 2.1, the starting direction
of γi is contained in W ′′

xi
. Moreover, the parallel translation along γi sends Wxi

to
Wxi+1 .

Since the curvature tensor is invariant under parallel translation in the symmetric
space M , the parallel translation along γi sends W ′′

xi
to W ′′

xi+1
. By induction on the

number of concatenations, we deduce that γ is contained in Z. Since any point of
L#

x can be reached from x by a broken F-horizontal geodesic, we deduce that L#
x is

contained in Z.
Thus we must have dim(Z) = dim(L#(x)). Then Wx and W ′′

x are complementary
commuting subspaces of p. Therefore, Wx is a Lie triple system as well, and M splits
as the product of Z and its orthogonal complement. ��

In particular, we deduce:

Corollary 3.2. If F is a singular Riemannian foliation on a compact irreducible
symmetric space then the dual foliation has only one leaf, unless F has only one
leaf.

Another consequence, we will use is:

Corollary 3.3. Let F be a singular Riemannian foliation on a simply connected
symmetric space M . If the dual leaves of F are complete then M splits as M =
M1 × M2 such that the dual leaves of F are exactly the M2-factors, i.e., all dual
leaves have the form {x1} × M2.

Proof. Due to Proposition 2.2, the dual foliation is a singular Riemannian foliation.
Due to Proposition 3.1, all leaves must be factors of M . Since these factors are
equidistant they must be M2-factors of the same product decomposition M = M1 ×
M2. ��

4 Product Decomposition

Here and in the sequel, let M be a simply connected non-negatively curved symmet-
ric space and let F be a polar foliation on M .
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4.1 Decomposition of the factor. We recall that our foliation has closed
leaves and that the quotient space Δ = M/F is a Coxeter orbifold. Moreover, Δ is
a discrete quotient of a section, the last being a totally geodesic submanifold of M ,
hence a symmetric space itself. Thus Δ is given as Δ = N/Γ with a symmetric non-
negatively curved simply connected manifold N (the universal covering of a section
Σ), on which Γ, the orbifold fundamental group of Δ, acts as a reflection group.

Let N = N0 ×N1 ×· · ·×Nl be the direct product decomposition, where N0 is the
Euclidean space and where Ni are irreducible of dimension at least 2. Any reflection
(always at a wall of codimension 1!) on N respects this product decomposition. Hence
it induces a reflection on one factor and identity on all other factors. Therefore, Γ is
a direct product Γ = Γ0×Γ1×· · ·×Γl, where Γi is the subgroup of Γ generated by all
reflections fixing all factors Nj , j 
= i. Moreover, the quotient Δ splits isometrically
as the direct product Δ = Δ0 × · · · × Δl, with Δi = Ni/Γi.

Finally, the only simply connected irreducible symmetric spaces of compact type
which admit a totally geodesic hypersurface are round spheres. Thus, for all i ≥
1, either Ni is a round sphere or Γi is trivial. Therefore, in the above product
decomposition all Δi, i ≥ 1 either have constant positive curvature or they coincide
with the Riemannian manifolds Ni (this fact has been observed in [Kol09]).

4.2 Decomposition of the space. We call a polar foliation F on a symmetric
space M decomposable if M can be decomposed non-trivially as M = M1 ×M2 such
that F splits as F = F1 ×F2, a product of polar foliations on the factors. Otherwise
we call F indecomposable.

The proof of the following observation is postponed to Section 6:

Lemma 4.1. Assume that the sections of F have constant positive curvature. Then
the dual leaves are compact. In particular, they are factors of M .

Now we can prove:

Proposition 4.2. Let F be indecomposable. Then either F is trivial, or hyperpolar,
or Δ has constant positive curvature and the dual foliation F# has only one leaf.

Proof. Assume that Δ is non-trivially decomposed as Δ1 × Δ2, with Δ1 either a
manifold or of constant positive curvature. Consider the induced submetry p1 : M →
Δ1 that is given by a polar foliation F ′

1. Due to the preceding lemmas (Lemma 2.3,
Lemma 4.1, Corollary 3.3), the leaves of the dual foliation of F ′

1 are M1-factors in a
decomposition M = M1 × M2.

Any F ′
1-horizontal geodesic is mapped by the projection to Δ1 × Δ2 into a Δ1

factor, hence by the projection p2 : M → Δ2 to a point. This shows that any dual leaf
of F ′

1 is contained in a leaf of the foliation F ′
2 defined by the projection p2 : M → Δ2.

Thus the foliation F ′
2 is coarser than the foliation defined by the M1-factors. Hence,

p2 factors through the projection q2 : M → M2.
Taking F1 to be the restriction of F to M1 (any M1-factor) and F2 the restriction

of F to M2 (any M2-factor) we get F = F1 ×F2. This contradicts to the assumption
that F is indecomposable.
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If a decomposition of Δ as above does not exist, then Δ must be either flat,
or a manifold, or of constant positive curvature. If it is flat then the foliation is
hyperpolar. If Δ is a manifold then F must be given by a projection to a factor.
Since F is indecomposable, this factor and, therefore, F must be trivial. In the
remaining case, Δ must have constant positive curvature. Then by Lemma 4.1 and
Corollary 3.3, the dual foliation has only one leaf. ��

Remark 4.1. Note, that the hyperpolar factor may be decomposed further until
the quotient Δ is irreducible ([Ewe98]).

Given a polar foliation F on M , we now decompose it in indecomposable pieces.
Taking trivial pieces together we obtain a foliation given by a projection to a direct
factor. Collecting hyperpolar pieces together we get a hyperpolar foliation. Thus we
arrive at:

Proposition 4.3. Let F be a polar foliation on a non-negatively curved simply
connected symmetric space M . Then we have a splitting M = M−1 × M0 × M1 ×
· · · × Ml, such that F is a direct product of polar foliations Fi on Mi. The foliation
F−1 on M−1 is given by the fibers of the projection of M−1 onto a direct factor of
M−1. The foliation F0 is hyperpolar. For i ≥ 1, the sections of the foliation Fi on
Mi have constant positive sectional curvature; moreover, for i ≥ 1, there is only one
dual leaf of Fi.

5 New Setting

Due to Proposition 4.3, in order to prove Theorem 1.2 and Theorem 1.1, we only
need to study the case in which the sections of F have constant positive curvature.

From now on, we will assume the sections of F to have constant positive curva-
ture. Hence the sections are either spheres or projective spaces. We normalize the
space such that the sections and the quotient have constant curvature 1. Thus for
any horizontal vector v the geodesic in direction v is closed of period π or of period
2π. Since in a symmetric space, for a continuous variation of closed geodesics the
period of the geodesics cannot change, we deduce that all horizontal geodesics have
the same period. This period is equal to 2π if all sections are spheres, and it is equal
to π if all sections are projective spaces.

The quotient Δ is equal to Δ = S
k/Γ for a spherical Coxeter group Γ, that must

be crystallographic. By assumption, k ≥ 2.

6 Horizontal Metric

6.1 Definition. We now define a new metric dhor on our manifold M by declar-
ing dhor(x, y) to be the infimum over all lengths of broken horizontal geodesics that
connect x and y. By definition dhor ≥ d. The dual leaf L#(x) is exactly the set of
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points that have a finite distance to the point x. We denote by X the set M with
the horizontal metric dhor.

By construction, the identity i : X → M is 1-Lipschitz and the projection p :
X → Δ is still a submetry. Since any horizontal geodesic is contained in a section, we
see that the metric space X is defined by gluing together spherical polyhedra (each
one isometric to the quotient Δ). A pair of polyhedra may be glued only along some
union of faces. By definition, X is a length space and since it is a polyhedral complex
with only one type of polyhedra, it is a geodesic space, i.e., any pair of points at a
finite distance are connected by a geodesic with respect to dhor (cf. [BH99, p. 105]).

Given a point x ∈ X, a small ball Ux around x in X is given by the image of a
small ball in the horizontal space Hx under the exponential map. (Note, however,
that the exponential map, considered as a map from Hx to X is not continuous).
Consider the induced infinitesimal polar foliation Fx on the Euclidean space Hx.
The sections of F through x are in one-to-one correspondence with the sections of
Fx. Hence a small neighborhood of x in X is isometric to a small ball in the spherical
suspension over the ”horizontal metric space” Y = (Sr, dhor) that is defined by the
polar foliation Fx on the unit sphere S

r = H1
x in Hx.

Thus, X is a k-dimensional locally spherical space in the sense of [CL01]. More-
over, the space of directions SxX at each point x ∈ X is isometric to the horizontal
space defined by the infinitesimal polar foliation on the unit sphere H1

x.

6.2 Classical case and the irreducible case. We are going to use the fol-
lowing result due to Immervoll and Thorbergsson ([Imm03], [Tho91]):

Proposition 6.1. Let G be a polar foliation on the round sphere S
r. Let C be the

quotient C = S
r/G. If the Coxeter polyhedron C does not have dihedral angles equal

to π/6 then the horizontal space Y = (Sr, dhor) defined by the foliation is a spherical
building.

Remark 6.1. The conclusion of the previous lemma is true without any assumptions
on the angles, if the foliation comes from a group action, in which case Proposition 6.4
below is a direct consequence of Proposition 6.1.

Let again M be a symmetric space with our polar foliation F and quotient Δ of
dimension k ≥ 2. We say that Δ is irreducible, if the corresponding spherical Coxeter
group Γ is irreducible. Otherwise, we say that Δ is reducible and find a non-trivial
decomposition Δ = Δ1 ∗ Δ2 of Δ as a spherical join.

If Δ is irreducible, then Δ does not have faces meeting at the dihedral angle π/6.
Therefore we conclude:

Lemma 6.2. If Δ is irreducible then for any point x in the horizontal space X,
a small neighborhood of x is isometric to an open subset of a spherical building
(possibly depending on the point).
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Remark 6.2. Just to avoid confusion, we remark that in our convention the sus-
pension over a building is again a building of one dimension larger.

Applying [CL01] we deduce:

Corollary 6.3. Assume that Δ is irreducible. Let X ′ be any dual leaf of F with
the metric induced from X. Then X ′ has diameter at most π. If k = dim(Δ) ≥ 3
then the universal covering of X ′ is a spherical building.

6.3 Reducible case. We are going to prove that in the reducible case, our
manifold M contains two submanifolds that behave like a projective subspace and
its cut locus in a projective space.

Proposition 6.4. Let Δ be reducible Δ = Δ1 ∗Δ2. Let Ai = p−1(Δi) and let F ′ be
the polar foliation given by the submetry p′ : M → [0, π/2], with p′(x) = d(A1, x).
Then for any pair of points xi ∈ Ai that are contained in the same dual leaf L# of
F , we have d(x1, x2) = π/2.

Proof. Since k = dim(Δ) ≥ 2, at least one Δi is not a point. Without loss of
generality, let Δ1 have positive dimension. Due to Lemma 2.4, the dual leaves of F
and F ′ coincide. The horizontal metric d′

hor induced by F ′ on M is the metric on a
graph with each edge being a horizontal geodesic from A1 to A2 of length π/2.

Thus, if the claim of the proposition is wrong, we find x1 ∈ A1 and x2 ∈ A2 such
that there is a shortest geodesic γ with respect to d′

hor from x1 to x2 that has length
3π/2. Let x+ be γ(π/2) ∈ A2 and let x− be γ(π) ∈ A1.

Consider the polar foliation Tx+F on the Euclidean space Hx+ . The quotient is
given by the tangent cone to Δ at a point of Δ2. Hence it splits as a product of
the tangent space to Δ2 (that may be trivial) and the orthogonal complement Q.
This implies a corresponding splitting of Hx+ , into a part tangent to A2 and the
part H ′ of all F ′-horizontal vectors. Moreover, we have H ′/Tx+F = Q. Since the
restriction of F ′ to the unit sphere of H ′ is non-trivial, it has only one dual leaf.
Thus we find a broken horizontal geodesic in this sphere that connects the incoming
and outgoing direction of γ at x+. Exponentiated to the length π/2, we obtain a
broken F-horizontal geodesic η : [s, t] → A1 that connects x1 with x−.

But, at any point y ∈ A1, any pair of F-horizontal vectors h, v ∈ TyM are
tangent to a section of F , whenever v is tangent to A1 and h orthogonal to A1 (i.e.,
h is F ′-horizontal). Therefore, if d(x2, η(r)) = π/2, for some r ∈ (s, t], then x2, η(r)
and η(r − ε) are contained in some section of F . Thus d(x2, η(r − ε)) = π/2 as well.
Running η backwards from x− to x1 we deduce d(x1, x2) = π/2. ��

6.4 The dual foliation. We are going to prove Lemma 4.1 now.
First, let us assume that Δ is irreducible. Take a dual leaf X ′ = L#(x) of F .

We have seen in Corollary 6.3 that X ′ has diameter at most π with respect to dhor.
Since X consists of simplices of the same size, any point of the dual leaf L#(x) can
be connected with x by a broken horizontal geodesic with at most n breaks (for
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some n depending only on Δ), of total length at most π. Since a limit of a sequence
of such broken horizontal geodesic is again a broken horizontal geodesic, we deduce
that L# is compact.

If the quotient Δ is reducible as spherical join, the conclusion follows in the same
way, using Proposition 6.4.

6.5 More conclusions. After having closed the gap Lemma 4.1 the proof of
Proposition 4.3 is complete. We deduce:

Corollary 6.5. If the foliation F is indecomposable, there is only one dual leaf.

From now on, in addition to our assumptions from Section 5, F will be indecom-
posable as a product.

7 Polars and Meridians

We assume here that Δ is reducible as a spherical join Δ = Δ1 ∗ Δ2, and are going
to prove that M has rank 1.

Set Ai = p−1(Δi). Using Proposition 6.4 we know that Ai are smooth manifolds,
and we have d(x1, x2) = π/2, for all xi ∈ Ai. Since there is only one dual leaf of
F , any point x in M lies on a unique shortest geodesic from A1 to A2. Finally, any
geodesic that starts horizontally on A1 is closed of period π or of period 2π.

We are going to use a few easy facts about polars and meridians ([Nag92],
[CN78]). Recall that in a symmetric space M , a polar of a point o is a connected
component of the fixed point set of the geodesic symmetry so at the point o. The
meridian M−(p) through a point p in a polar M+ of o is the component through p
of the fixed point set of the isometry so ◦ sp. We recall that the tangent spaces at
p of M+ and M− are complementary orthogonal subspaces. Moreover, the rank of
the meridian M− is equal to the rank of M.

Assume first that all sections of F are projective spaces, i.e., all horizontal geo-
desics are closed of period π. Then, for any o ∈ A1, the reflection so at o must leave
A2 pointwise fixed. Choose any point p ∈ A2. Then p is contained in a polar M+

of o, that contains A2. Thus the tangent space to the meridian M−(p) through p is
contained in the orthogonal space to A2. Thus, in the symmetric space M−(p), all
geodesics starting at p are closed. Hence M−(p) has rank one. Therefore the rank
of M must be 1 as well.

Assume now that all sections are spheres. For any o ∈ A1, the geodesic symmetry
so leaves A2 invariant, but no point in A2 is fixed by so. Therefore, so(A1) = A1 as
well. Moreover, all polars of o must be contained in A1. Let p 
= o be fixed by so

and let M−(p) be the meridian through p. Since the polar M+(p) is contained in
A1, the normal space to A1 is tangent to the meridian. Hence, the meridian contains
A2. In the meridian M− := M−(p), the point p is a pole of o, meaning that in the
symmetric space M−, the point p is a one-point polar of o. In such a case there
is a two-to-one covering c : M− → M1, such that M1 is symmetric and c sends o
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and p to the same point ō ([Nag92]). In M1, the projections of horizontal geodesics
starting in ō have period π. Hence a polar of ō inside M1 contains the image Ā2 of
A2. Therefore, the meridian in M1 through any point of Ā2 is orthogonal to Ā2. Thus
all geodesics in this meridian are closed and it must have rank 1. Due to [Nag92],
M1 and hence M must have rank 1 as well.

8 Topological Buildings

We assume here that Δ = S
k/Γ is an irreducible Coxeter simplex. Moreover, we

assume that the universal covering X̃ is a building. Due to Corollary 6.3, the last
assumption is always fulfilled if k ≥ 3. Again we are going to prove that M has
rank 1.

We denote by K the fundamental group of X acting on X̃ by deck transforma-
tions. By π : X̃ → X we denote the projection. We are going to define a compact
K-invariant topology T on X̃.

In order to do so, we will use the following construction several times. Let N be a
compact, geodesic, simply connected metric space (for us an interval or a disc). Let
hi : N → X̃ be a sequence of uniformly Lipschitz maps. Consider the projections
h̄i = π◦hi : N → X̃ → X → M . Then as Lipschitz maps to the compact manifold M
the sequence is equicontinuous and we find a subsequence converging to a Lipschitz
map h̄ : N → M . Since all h̄i map a small neighborhood of any point into the union
of sections through the image, the same is true for h̄. Thus h̄ is in fact a Lipschitz
map to X. Assuming that all hi send a base point of N to the same point q ∈ X̃ we
have a unique lift of h̄ to a Lipschitz map h : N → X̃ sending the base point of N
to q. We will say that the sequence hi weakly subconverges to h.

To define the topology T , we first fix a point q ∈ X̃. We will say that a point
p ∈ X̃ is contained in the T -closure of a subset C ⊂ X̃ if and only if for some
sequence pn ∈ C there is a curve γ from q to p and a sequence of shortest geodesics
γn from q to pn, such that γn weakly converges to γ.

From the Theorem of Arzela-Ascoli we see that the topology T is sequentially
compact. Moreover, (X̃, T ) has a dense countable subset. We are going to prove that
T is Hausdorff and does not depend on the base point q.

Lemma 8.1. Let pn converge to p in T . Let γ′
n : [0, 1] → X̃ be a curve of length ≤

L < ∞ from q to pn, parameterized proportionally to arc length. Let γ′ : [0, 1] → X̃
be a weak limit of γ′

n. Then γ′ ends in p.

Proof. Let γn, γ be as in the definition of T above. Let rn : S1 → X̃ be the concate-
nation of γn and of the reversed γ′

n. Since X̃ is a spherical building of dimension at
least 2, rn can be retracted to a point uniformly, i.e., rn can be extended to some
L′ = L′(L)-Lipschitz map rn : D2 → X̃ (Straighten γ′

n to be a broken geodesic with
uniformly many geodesic parts, using that the injectivity radius is π. Then subdi-
vide S1 into uniformly finitely many intervals, such that q and the image of any of



1312 A. LYTCHAK GAFA

these intervals are contained together in an apartment). Consider now a weak limit
r : D2 → X̃ of the sequence rn. By construction, the left half-circle in r(S1) is γ and
the right half-circle in r(S1) is γ′. ��

The lemma implies that a sequence cannot converge in T to two different points.
Thus T is Hausdorff. Since T is separable and sequentially compact it is a compact
metrizable topology. Taking another point q′ ∈ X̃ and considering concatenations
with a fixed geodesic from q to q′, the lemma implies that the topology does not
depend on the base point q. Thus it is defined only in terms of the projection
π : X̃ → M . Therefore, it is invariant under the action of K.

By construction, a small metric ball around any point x ∈ X̃ is sent by π bijec-
tively onto a small ball in (the exponential image of) the normal space to the leaf
through π(x). The topology T we have defined, restricts to this ball as the usual
Euclidean topology in the normal space. Thus the intersections of a preimage of a
regular leaf and a small ball around any point of X̃ is connected.

Thus we have a compact irreducible building (X̃, T ), in the sense of [BS87]. Since
the preimages of the leaves of F (i.e., points of the same type in X̃, in other words,
the set of chambers of the building) contain non-trivial connected subsets, the set of
chambers is connected ([GvMKW12]). From [BS87] it follows, that the space (X̃, T )
must be homeomorphic to a sphere. Moreover, the building is the spherical building
of a simple non-compact real Lie group and can be identified with the boundary at
infinity of a non-compact irreducible symmetric space. In particular, the group of
automorphisms of the building acts on the sphere in a linear way.

Consider now the action of K on X̃. The orbit of any point is the preimage of
a point under the continuous projection π : X̃ → M . Thus it is a compact set. The
group of topological automorphisms G of the compact building X̃ is locally compact
with respect to the compact-open topology ([BS87]). We claim that K is a compact
subgroup of G. In fact, take a sequence gn ∈ K. Choose a point p ∈ X̃. Then there
is some g ∈ K, such that gn · p converges to g · p. We call hn = g−1gn and have
hn · p → p. We claim that hn converges to the identity in G.

Choose a shortest geodesic γn from pn = hn(p) to p. Choose now a point q ∈ X̃
and a shortest geodesic η from p to q. Then hn(q) is given by the lift starting at p
of the projection of the concatenation of γn and η. These projections converge to
a curve which lifts to a curve ending at q. Hence, qn converges to q. Therefore, gn

converges to g. Thus K is compact.
Thus our compact group K of automorphisms acts freely and linearly on the

sphere X̃. The projection map π : X̃ → M has as fibers the orbits of K, hence M
is the quotient space M = X̃/K. By assumption, M is simply connected, hence K
is connected. The only connected groups that act without fixed points on a sphere
are the trivial group, U(1) and SU(2). Then the quotient space M is homeomorphic
to a sphere, or projective space over the complex or over the quaternions.

But only symmetric spaces of rank 1 have the topology of a sphere or of a
projective space (cf. [Zil77]).
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9 Polar Foliations on Symmetric Spaces of Rank One

Polar actions on symmetric spaces of rank one have been studied and classified
in [PT99]. The geometric structure of polar foliations on such spaces is not more
complicated. The following result is folklore (cf. [Dom12]):

Proposition 9.1. Let M be a projective space FP
m, where F denotes the field of

complex or quaternionic numbers. Let h : S
n → M be the Hopf fibration from the

round sphere. If F is a polar foliation on M then its lift F̂ := h−1(F) is a polar
foliation on S

n.

Proof. We normalize our space, such that the round sphere S
n has curvature 1. The

Hopf fibration h is a Riemannian submersion, hence F̂ is a singular Riemannian
foliation on S

n, with the same quotient space Δ = M/F = S
n/F̂ . If the dimension

k of Δ is 1, then F̂ is of codimension 1, hence polar. If k ≥ 2, then F̂ is polar if and
only if the orbifold Δ has constant curvature 1. Thus F̂ is polar if and only if the
sections of F have constant curvature 1.

The sections of F are either spheres or projective spaces of constant curva-
ture. Maximal totally geodesic spheres in M are given by the projective lines FP

1

([PT99]). However, any pair of such projective lines intersect in at most one point
and never in a one-dimensional or three-dimensional subset. Thus if all sections are
projective lines, the foliation must be regular. This contradicts Lemma 2.3.

Hence all sections of F are real projective spaces RP
k. But such projective spaces

have curvature 1 (cf. [PT99]). ��

The same proof as above shows:

Proposition 9.2. Let F be a polar foliations on the Cayley projective plane. Then
either F has codimension 1 or the sections of F are real projective subspaces RP

2

and F has codimension 2.

Combining the above propositions with the results of Section 7 and Section 8,
we finish the proof of Theorem 1.2 and Theorem 1.1.
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