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CONTRACTION OF AREAS VS. TOPOLOGY OF MAPPINGS

Larry Guth

Abstract. We construct homotopically non-trivial maps from Sm to Sm−1 with
arbitrarily small k-dilation for each k > (m + 1)/2. We prove that homotopically
non-trivial maps from Sm to Sm−1 cannot have arbitrarily small k-dilation for
k ≤ (m + 1)/2.

1 Introduction

The k-dilation of a map between Riemannian manifolds measures how much the map
stretches k-dimensional volumes. If F is a C1 map, we say that Dilk(F ) ≤ λ if each
k-dimensional surface Σ in the domain is mapped to an image with k-dimensional
volume at most λ Volk(Σ). The 1-dilation is the same as the Lipschitz constant.
We will study how the k-dilation of F is related to its homotopy class. The k-
dilation describes the local geometry of F , and we want to understand how the local
geometry of F influences its global topological features. We focus on maps from the
unit m-sphere to the unit n-sphere.

We begin with the following question: if a map F : Sm → Sn has small k-dilation,
does the map F have to be contractible? If a map F : Sm → Sn has Dil1 F < 1,
then it is contractible. If Dil1 F < 1, then the diameter of the image of F is <π,
and so F is not surjective. In [TW04] Tsui and Wang proved that maps with small
2-dilation are also contractible.

Tsui–Wang inequality. If F : Sm → Sn has Dil2 F < 1, (and if m, n ≥ 2), then
F is contractible.

In contrast, we will show that maps with small 3-dilation may not be contractible.

Example. There is a sequence of homotopically non-trivial maps Fj : S4 → S3

with Dil3(Fj) → 0.

Our goal is to study this phenomenon. We study the following question.

Main Question. Suppose that Fj : Sm → Sn is a sequence of maps, all in the same
homotopy class, with Dilk(Fj) → 0. What can we conclude about the homotopy class
of the Fj?
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Our main result describes the situation for maps from Sm to Sm−1.

Main Theorem. Fix an integer m ≥ 3. If k > (m + 1)/2, then there is a sequence
of homotopically non-trivial maps Fj from Sm to Sm−1 with k-dilation tending to
zero. On the other hand if k ≤ (m + 1)/2, then every homotopically non-trivial map
from Sm to Sm−1 has k-dilation at least c(m) > 0.

In the first half of our theorem, we have to construct some homotopically non-
trivial maps with tiny k-dilations. Our construction gives the following more general
result.

An h-principle for k-dilation. Suppose that F0 is a map from Sm to Sn with
m > n and k > (m + 1)/2. Then for any ε > 0, we can homotope F0 to a map F
with k-dilation less than ε.

For a given map F , the k-dilations are related to each other by the inequalities
Dil1(F ) ≥ Dil2(F )1/2 ≥ Dil3(F )1/3 ≥ · · · So Dil1(F ) ≤ 1 implies Dil2(F ) ≤ 1 etc.
As k increases, maps with small k-dilation become easier to find. Our results show
that there is a phase transition at k = (m+1)/2. When k > (m+1)/2, the condition
Dilk F ≤ 1 behaves rather flexibly. When k ≤ (m+1)/2 the condition behaves more
rigidly.

We recall some previous results about k-dilation and homotopy type of maps. We
start with results about the 1-dilation, which is much better understood. In the paper
“Homotopical effects of dilatation” [Gro78], Gromov investigated the relationship
between the 1-dilation of a map and its homotopy type. If F is a map from Sm to
Sm, then its degree is at most Dil1(F )m, and this bound is sharp up to a constant
factor. A more difficult result from [Gro78] says that if F is a map from S2n−1 to
Sn (with n even), then its Hopf invariant is at most Cn Dil1(F )2n, and this upper
bound is also sharp up to a constant factor. Recently, DeTurck, Gluck, and Storm
[DGS] proved that each Hopf fibration has the minimal 1-dilation in its homotopy
class. The 1-dilations of maps in torsion homotopy classes have not been studied
as much, partly because it’s difficult to formulate a good question. For each torsion
homotopy class in πm(Sn), the minimal 1-dilation is finite and ≥ 1. There is no good
candidate for a minimizer, and so finding the exact minimal value of the 1-dilation
looks hopeless.

In [Gro96], Gromov posed the question how the k-dilation of a map F : Sm → Sn

is related to its homotopy class. The estimates above about the degree and the Hopf
invariant generalize to k-dilation. The argument about the degree generalizes to show
that a map F : Sm → Sm has degree at most Dilm(F ). The argument about the
Hopf invariant gives the following inequality. (See [Gro96, section 3.6] and [Gro07,
pp. 358–359].)

Hopf invariant inequality (Gromov). Suppose that F : S2n−1 → Sn, with n even.
Then the Hopf invariant of F is controlled by the n-dilation of F as follows:
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| Hopf(F )| ≤ C(n) Diln(F )2.

In particular, if Hopf(F ) �= 0, then Diln(F ) ≥ c(n) > 0.

The proof of the Hopf invariant inequality is based on differential forms. On the
one hand, the Hopf invariant can be written in terms of differential forms. On the
other hand, differential forms interact nicely with k-dilation. If α is a k-form, then
‖F ∗α‖∞ ≤ Dilk(F )‖α‖∞. This allows us to bound homotopy invariants defined using
differential forms in terms of k-dilation. It seems significantly harder to connect the
k-dilation with torsion homotopy invariants.

In the second half of the main theorem, we prove a lower bound for the k-dilation
of maps in some torsion homotopy classes. Our proof involves Steenrod squares, and
the technique gives the following slightly more general estimate.

Steenrod squares and k-dilation. Let F be a map from Sm to Sn, and let X be
the cell complex formed by attaching an (m+1)-cell to Sn using F : X = Bm+1∪F Sn.
If the complex X has a non-trivial Steenrod square and if k ≤ (m + 1)/2, then
Dilk(F ) ≥ c(m) > 0.

The non-trivial homotopy class in πm(Sm−1) induces a non-trivial Steenrod square.
There are also homotopy classes inducing a non-trivial Steenrod square in πm(Sm−3)
and πm(Sm−7) if m is sufficiently large.

We will also see that different homotopy classes in the same group πm(Sn) can
interact with k-dilation differently. Bechtluft-Sachs observed a related phenomenon
in [Bec06]. Building on his observation, we will construct maps with arbitrarily small
k-dilation (for some k) in homotopy classes that are suspensions. For example, we
will prove the following result.

Proposition 1.1. Suppose that a ∈ πm(Sn) is the suspension of a homotopy class
in πm−1(Sn−1), and that m > n. Then the class a can be realized by maps with
arbitrarily small n-dilation.

We will apply this method to some specific homotopy groups. We begin with the
group π7(S4) which is isomorphic to Z ⊕ Z12.

Proposition 1.2. Each torsion element a ∈ π7(S4) can be realized by maps with
arbitrarily small 4-dilation, and each non-torsion element cannot.

The non-torsion classes have non-zero Hopf invariant, and their 4-dilation can-
not be too small by the Hopf invariant inequality. The non-torsion elements are
all suspensions, and using the suspension structure, their 4-dilations can be made
arbitrarily small. In other homotopy groups, different torsion elements may behave
differently. For example, we consider π8(S5) which is isomorphic to Z24.

Proposition 1.3. The homotopy class corresponding to 12 in Z24 = π8(S5) can
be realized by maps with arbitrarily small 4-dilation. The homotopy classes corre-
sponding to odd numbers in Z24 = π8(S5) cannot be realized with arbitrarily small
4-dilation.
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The odd classes involve non-trivial Steenrod squares, and so the second statement
follows from the Steenrod square inequality. The class 12 is a suspension from π5(S2),
and using the suspension structure we are able to construct maps with arbitrarily
small 4-dilation.

1.1 Thick tubes. The results and questions we mentioned above have some
connections with the geometry of tubes in R

m. We mention these in the introduction
because they may be easier to visualize than the main theorem. In particular, instead
of talking about a non-trivial Steenrod square, we can talk about a tube with a twist
in it.

An m-dimensional tube is an embedding I from S1 × Bm−1 into R
m. We write

S1(δ) for the circle of radius δ and Bm−1(R) for the ball of radius R. We say an
embedding is k-expanding if it increases the k-dimensional area of each k-dimensional
surface. Finally, we say that a tube has k-thickness R if the embedding I is a k-
expanding embedding from S1(δ) × Bm−1(R) into R

m, for some δ > 0.
Surprisingly, there are 3-dimensional tubes with 2-thickness 1 inside of arbitrarily

small balls B3(ε).

Thick tube example. For every ε > 0, there is a 3-dimensional tube with 2-
thickness 1 embedded in the ε-ball B3(ε) ⊂ R

3.

The first example of this type that I’m aware of was given by Zel’dovitch in the
1970’s (see [Arn86]). The example generalizes in a straightforward way to higher
dimensions.

Thick tube example (Higher dimensions). In dimension m, if k ≥ (m + 1)/2,
then a tube with k-thickness 1 may be embedded into an arbitrarily small ball.

In [Geh71] Gehring studied the geometry of linked tubes in R
3. Gehring was

interested in a geometric invariant called the conformal modulus of a tube. His
methods give the following result about thick tubes.

Gehring linking inequality. If I1 and I2 are disjoint 3-dimensional tubes with 2-
thickness 1 contained in the ball B3(ε), and if ε > 0 is sufficiently small, then the
tubes have linking number zero.

In the early 1990s, Freedman and He [FH91] extended Gehring’s work, proving
estimates for general knots and links. For example, they proved that a 3-dimensional
tube with 2-thickness 1 contained in a small ball must be unknotted.

An embedding I : S1×Bm−1 → R
m defines a framing of the normal bundle of the

core circle I(S1 × {0}). Any embedded circle in R
m also has a canonical framing of

its normal bundle (up to homotopy), induced by the ambient space. The relationship
between the two framings defines an element in π1(SO(m−1)) which is Z for m = 3
and Z2 for m > 3. We call this element the twisting number of the embedding I. If
m = 3, then the twisting number of I is equal to the linking number of the circles
I(S1 × {p}) and I(S1 × {q}) for any p, q ∈ B2. Therefore, the linking inequality
above has the following corollary.
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Twisting inequality in three dimensions. If I is a 3-dimensional tube with 2-
thickness 1 contained in the ball B3(ε), and if ε is sufficiently small, then the twisting
number of I is equal to zero.

In summary, it’s possible to embed a thick tube into a tiny ball, but we cannot
put a twist in it. In higher dimensions, m > 3, there is no linking number of tubes
and every tube is unknotted, but the twisting number is still defined modulo 2.
We will prove the following higher-dimensional generalization of Gehring’s twisting
inequality.

Twisting inequality in high dimensions. If I is an m-dimensional tube, with
k-thickness 1, contained in the ball Bm(ε), if ε > 0 is sufficiently small, and if
k ≤ (m + 1)/2, then the tube I has twisting number zero.

In particular, if m is any odd dimension m ≥ 5, and if k = (m + 1)/2, then we
can embed a k-thick tube into an arbitrarily small ball, but we cannot put a twist
in it.

The twisting inequality in three dimensions is closely related to the inequality
| Hopf(F )| � Dil2(F )2 for maps F : S3 → S2. The twisting inequality in higher
dimensions is closely related to the Steenrod square inequality and the main theorem
of the paper.

1.2 On the proof of the lower bound for k-dilation using Steenrod
squares. The main new idea in this paper is a way to prove a lower bound
for the k-dilation of maps in certain torsion homotopy classes. Here is an outline of
the argument.

As a warmup, we consider maps S3 → S2 with non-zero Hopf invariant. The
Hopf invariant inequality implies that maps with tiny 2-dilation must have zero
Hopf invariant. The original proof uses differential forms, but this proof is hard
to generalize to maps Sm → Sm−1 with m ≥ 4, because the relevant homotopy
invariant cannot be written in terms of differential forms.

We describe an alternate proof that a map F : S3 → S2 with tiny 2-dilation has
zero Hopf invariant. The Hopf invariant is closely related to cup products which are
closely related to Cartesian products. We consider the Cartesian product F × F :
S3 × S3 → S2 × S2. We can read the Hopf invariant from F × F as follows. There
is a 4-chain Z0 in S3 × S3 with the interesting property that F × F (Z0) is always a
cycle. To see how this may happen, notice that F × F maps Diag(S3) to Diag(S2).
The diagonal Diag(S3) is one of the components of ∂Z0 and F × F collapses it to
something 2-dimensional. The same happens to the other components of ∂Z0, and
so F × F seals the boundary closed making a cycle. We let Z(F ) denote the cycle
F × F (Z0). The homology class of Z(F ) is the Hopf invariant of F . Now it is easy
to check that if Dil2(F ) is tiny, then Dil4(F × F ) is also tiny, and so the cycle Z(F )
has tiny 4-volume, and so it is homologically trivial in S2 × S2.

This approach generalizes to maps Sm → Sm−1, or more generally to maps Sm →
Sn when the cell complex has a non-trivial Steenrod square. The Steenrod squares



GAFA CONTRACTION OF AREAS VS. TOPOLOGY OF MAPPINGS 1809

are closely connected with the following twisted product. For any space X, consider
the product Si ×X ×X, and consider the involution I(θ, x1, x2) = (−θ, x2, x1). The
involution acts freely, and the quotient is denoted ΓiX. The space ΓiX is a fiber
bundle with fiber X × X and base RP

i. The construction is also functorial, and
so our map F : Sm → Sn induces a map ΓiF : ΓiS

m → ΓiS
n. (Eventually we will

choose i = 2n−m−1.) As above, there is a 2n-chain Z0 in ΓiS
m with the interesting

property that ΓiF (Z0) is always a cycle in ΓiS
n. The 2n-cycle Z(F ) = ΓiF (Z0) is

homologically non-trivial if and only if the cell complex Bm+1∪F Sn has a non-trivial
Steenrod square.

We suppose k ≤ (m+1)/2 and that Dilk(F ) is tiny. The k-dilation of F gives in-
formation about the geometry of the map ΓiF . For some small values of k, Dil2n ΓiF
can be controlled in terms of Dilk F . For example, if F : Sm → Sm−1 has sufficiently
small 2-dilation, then the volume of Z(F ) is small, so Z(F ) is null-homologous,
and so Bm+1 ∪F Sn has trivial Steenrod squares. The same argument works if
F : Sm → Sm−3 has sufficiently small 4-dilation. However, for most values of k
in the range k ≤ (m + 1)/2, Dilk F does not control Dil2n ΓiF . The k-dilation of F
may be arbitrarily small and yet Dil2n ΓiF and VolZ(F ) may be arbitrarily large.

The construction of ΓiF does not treat all the directions equally. The double
cover of ΓiF is defined to be id×F ×F : Si ×Sm ×Sm → Si ×Sn ×Sn, where id is
the identity map. We can see that the different factors are not treated in the same
way. Because the situation is not isotropic, we can make a more refined estimate
that treats different directions differently. If k ≤ (m+1)/2 and Dilk(F ) is tiny, then
the tangent plane of Z(F ) is usually constrained to lie in certain ‘good’ directions.
We will divide Z(F ) into a good set, where its tangent plane is constrained to lie in
‘good’ directions, and a bad set of small volume where the tangent plane may go in
any direction.

It takes a little time to say in detail what are the ‘good’ directions. To give
some sense, we mention that on the good set, the tangent plane of Z(F ) must be
nearly orthogonal to the Sn × Sn direction. If we look at the double cover of Z(F )
in Si ×Sn ×Sn and project it to the Sn ×Sn factor, the volume of the projection is
tiny. This implies that the double cover of Z(F ) is homologically trivial. But it may
happen that the double cover of a cycle is homologically trivial and the cycle is not.

As a warmup, we first consider the case of a cycle X in ΓiS
n whose tangent plane

lies in the good directions at every point. This condition forces every loop in X to
be homotopically trivial in ΓiS

n. This is the key fact about the good directions for
tangent planes. Therefore, the double cover of X consists of two disjoint cycles X1

and X2 in Si × Sn × Sn. Because of the control on the tangent direction of X, each
of these cycles is trivial, and so X is homologically trivial.

But the proof of our theorem is more complicated because the cycle Z(F ) has
a bad set of small volume where the tangent plane may face in any direction. As a
result, the cycle Z(F ) may contain non-trivial loops—we only know that each non-
trivial loop must go through this small bad set. The double cover of Z(F ) consists of
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two large pieces connected by a small bridge—the bridge being the double cover of
the bad set. We will cut out the small bridge and replace it by two small caps. After
this surgery, we get two homologically trivial cycles in Si × Sn × Sn. Projecting one
of them down to ΓiS

n, we get a trivial cycle which is very close to Z(F ). It consists
of Z(F ) minus the bad set and plus the image of the cap. As long as the cap is small,
it follows that Z(F ) is homologically trivial.

1.3 On the proof of the h-principle. We will give two constructions of maps
with small k-dilation. The first construction uses suspensions. The construction is
short, and we give it early in the paper. The second construction is used to prove
the h-principle for k-dilation. That construction is longer, and we describe the main
idea here.

The following simple observation is helpful to construct maps with small k-
dilation. If a map sends a region of the domain into a (k−1)-dimensional polyhedron,
then on that region the map has k-dilation zero. With this observation in mind, we
sketch the construction in the h-principle.

We begin with a map F0 : Sm → Sn. We consider a fine triangulation of the
target Sn. We define U ⊂ Sm so that F0 maps the complement of U into the (k−1)-
skeleton of the fine triangulation. We know that F0 automatically has (k−1)-dilation
zero on U c, and we only have to worry about U . Of course the k-dilation of F0 on
U is probably not tiny, and we have to modify F0.

We will carefully construct a degree 1 map G : Sm → Sm, and the map F will
be F0 ◦ G. Since G is homotopic to the identity, F will be homotopic to F0. We let
T be G−1(U). The map G sends T to U and T c to U c. Therefore, the map F sends
T c into the (k − 1)-skeleton of the fine triangulation. By our simple observation, the
k-dilation of F on T c is automatically zero. In our construction, the restriction of F
to T c will be very complicated and may have a huge (k − 1)-dilation, but we don’t
have to keep track of it. We only have to worry about the k-dilation of F on T . In
fact, we will be able to arrange that the Lipschitz constant of F on T is very small.

Telling a minor white lie, the set U is a fiber bundle, where the base space is
Sn minus the (k − 1)-skeleton of our triangulation, and each fiber is a manifold of
dimension m − n > 0. We call directions tangent to the fiber ‘vertical’, and the
perpendicular directions horizontal. The map G will be a diffeomorphism from T
to U , so T also has this fiber bundle structure. The map G will strongly shrink
all the horizontal directions and strongly stretch all the vertical directions. Since
F0 annihilates all the vertical directions, the composition G ◦ F0 will have a small
Lipschitz constant.

It’s actually easier to imagine G−1 going from U to T than to imagine G. We
take a second to switch our perspective. We want an embedding G−1 from U into Sm

which stretches all the horizontal directions and shrinks all the vertical directions.
We build this embedding by isotoping the identity map.

To get a sense of how to do the isotopy, we need to describe U a little bit more.
The complement of the (k − 1)-skeleton of our triangulation of Sn is a small neigh-
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borhood of the dual n − k-dimensional polyhedron. Now U is a small neighborhood
of the inverse image of this polyhedron, so U is a small neighborhood of a polyhedron
of dimension p = m−k. The condition k > (m+1)/2 is equivalent to p < (m−1)/2.

If p < (m − 1)/2, then any p-dimensional polyhedron embeds in Sm, and any
two embeddings are isotopic. These facts follow from a standard general position
argument. Informally, we may say that a p-dimensional polyhedron in Sm may be
isotoped rather freely—there is no obstruction to isotoping it into any position that
we like. This intuition extends to our set U , which is a small neighborhood of a
polyhedron of dimension p < (m − 1)/2. We isotope U so that the horizontal di-
rections all expand and the vertical directions all contract. Because of the condition
p < (m−1)/2, there is no obstruction that prevents us from isotoping U in this way.
The fibers have to shrink, but everything can slide out of their way to allow them
to shrink. As they shrink, it creates space which allows the horizontal directions to
become thicker.

To make this argument precise and rigorous, we use the h-principle for immersions
and general position arguments. The h-principle for immersions allows us to build
immersions of U rather freely. Using the condition p < (m − 1)/2, we can modify
these immersions to embeddings. This last argument is a quantitative version of the
general position argument mentioned in the last paragraph.

1.4 Outline of the paper. Now we give an outline of the paper. We describe
what material appears in each section, and also what kinds of tools and background
each section uses.

In Section 2, we give background about k-dilation. This section contains all the
facts about k-dilation that we need in the paper.

In Section 3, we construct homotopically non-trivial maps with small k-dilation
using suspensions. With this method, we can construct the maps in the main theorem
for m ≤ 7, and we can give some other examples in classes that are suspensions.

The next large chunk of the paper is concerned with proving the lower bound
for k-dilation for homotopy classes that induce a non-trivial Steenrod square. This
argument follows the outline in Section 1.2. The argument involves a combination of
topology and isoperimetric-type estimates. On the topology side, we need to use some
facts about Steenrod squares. On the geometry side, we need to use the Federer–
Fleming deformation theorem in many places. We will also introduce some small
variations on the deformation theorem. Here is a more detailed outline. In Section 4,
we prove the Hopf invariant inequality using the cycle Z(F ) as described above. In
Section 5, we generalize this setup with the cycle Z(F ) to all homotopy classes with
a non-trivial Steenrod square. This section requires some background on Steenrod
squares. The material we need is in Section 4L of Hatcher’s book Algebraic Topology,
[Hat02]. In Section 6, we describe how the geometry of ΓiF is controlled by Dilk F .
We define and describe ‘directed volumes’ of Z(F ), and describe the good and bad
directions. We see that the volume of Z(F ) in bad directions is controlled by Dilk F .
In Section 7, we discuss the surgery where the bad part of the double cover of Z(F )
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is cut out and replaced by small caps. We see that the estimates that we need about
the size of the caps follow from an inequality about chains in Euclidean space called
the perpendicular pair inequality. The perpendicular pair inequality is a geometric
inequality in the same area as the Federer–Fleming isoperimetric inequality (the
isoperimetric inequality for cycles of arbitrary codimension). In Section 8, we prove
the perpendicular pair inequality. This section heavily uses the deformation theorem.
There is a review of the deformation theorem in an appendix at the end of the paper.

In Section 9, we discuss thick tubes and prove the estimates about twisted tubes
in Section 1.1.

In Sections 10–11, we prove the h-principle for k-dilation. As a special case, this
gives all the maps in the main theorem. This argument follows the outline in Section
1.3. In Section 10, we prove a quantitative embedding result using a general position
argument. This result allows us to isotope the set U rather freely, as described above.
Section 10 uses the h-principle for immersions. The material we need is in the book
Introduction to the H-Principle by Eliashberg and Mishachev, [EM02]. In Section
11, we prove the h-principle for k-dilation.

This finishes the proofs of all the results in the paper. Section 12 gives more
background about k-dilation. It discusses other results in the literature that are
generally relevant to the paper. Section 13 discusses open problems. Section 14
contains several appendices.

2 Basic Facts About k-Dilation

In this section, we recall the definition of k-dilation, some different ways of looking
at it, and some of its immediate consequences. We hope to give some feel for the
condition Dilk F ≤ λ. Readers who are already familiar with k-dilation can skip this
section.

If F is a C1 map from (Mm, g) to (Nn, h), then we say that F has k-dilation ≤λ
if, for each k-dimensional submanifold Σk ⊂ M ,

Volk(F (Σ)) ≤ λ Volk(Σ).

The k-dilation of F can be described in terms of the derivative dF . Suppose
that y = F (x), and we consider the derivative dFx : TxM → TyN . We consider the
singular values of the derivative dFx. The singular value decomposition says that
we can find an orthonormal frame v1, . . . , vm for TxM and an orthonormal frame
w1, . . . , wn for TyN so that dFx(vj) = sjwj . Here sj ≥ 0 are the singular values of
dFx. (If m > n, then sj = 0 for all j > n.) We organize the singular values so that
s1 ≥ s2 ≥ s3 ≥ · · · . The map dFx maps the unit ball in TxM to an ellipsoid in TyN
with principal radii s1 ≥ s2 ≥ · · · . The norm of dFx is s1, and the norms of the
exterior products ΛkdFx are also described by the singular values as follows.

Proposition 2.1. If dFx has singular values s1 ≥ s2 ≥ · · · , then the norm of ΛkdFx

is
∏k

i=1 si.
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Proof. Recall that vi are an orthonormal basis of TxM and wi an orthonormal basis
of TyN with dFxvi = siwi. There is an orthonormal basis of ΛkTxM given by the
wedge products vi1 ∧ · · · ∧ vik

, with i1 < · · · < ik. We compute ΛkdFx in this basis.

ΛkdFx(vi1 ∧ · · · ∧ vik
) = si1 · · · sik

wi1 ∧ · · · ∧ wik
.

Since {wi1 ∧· · ·∧wik
} is an orthonormal basis of ΛkTyN , we see that the singular

values of ΛkdFx are just the products si1 · · · sik
with i1 < · · · < ik. In particular, we

see that the operator norm |ΛkdFx| = s1 · · · sk. �
Now we can write the k-dilation in terms of ΛkdF and/or the singular values of

the derivative.

Proposition 2.2. If F : (M, g) → (N, h) is a C1 map, then the k-dilation of F is
equal to supx∈M |ΛkdFx|. If s1(x) ≥ s2(x) ≥ · · · are the singular values of dFx, then
the k-dilation of F is also equal to supx∈M s1(x) · · · sk(x).

Proof. Fix x ∈ M , and suppose as above that dFxvi = siwi. If Σ is a small
k-dimensional disk centered at x with tangent plane spanned by v1, . . . , vk, then
Volk F (Σ) is approximately (

∏k
j=1 sj) Volk(Σ). Therefore, Dilk(F ) ≥ ∏k

j=1 sj .
If Σ is an oriented k-dimensional manifold, then at each point x ∈ Σ, the tangent

space of Σ defines a unit k-vector VΣ(x) ∈ ΛkTxM . (Any k-dimensional manifold
can be written as a union of oriented manifolds, so we can restrict attention to the
case of oriented manifolds Σ.) The volume of F (Σ) can then be described as

Volk F (Σ) =
∫

Σ

|ΛkdFxVΣ(x)|dvol(x) ≤ sup
x

|ΛkdFx| Volk Σ.

Therefore, Dilk F ≤ supx∈M |ΛkdFx| = supx∈M

∏k
j=1 sj(x). �

With these results, we can give a little discussion of the condition Dilk F ≤ 1.
A map with small 2-dilation can have an arbitrarily large value of s1(x) as long as
s2(x) is small enough to make s1s2 ≤ 1. So the derivative dFx can stretch in one
direction arbitrarily strongly as long as it contracts in the perpendicular directions
enough to compensate. Similarly, if Dilk F ≤ 1, then the derivative dFx can stretch
in (k-1) directions arbitrarily strongly, as long as it contracts in all the perpendicular
directions enough to compensate. Also, dFx may behave differently for different x.
For example, if Dilk(F ) ≤ 1, there may be some x where dFx is roughly an isometry
and other x where dFx stretches a lot in one direction and contracts in the others.
The condition Dilk(F ) ≤ 1 gives local information about dFx for each x, and it’s
not easy to understand what kinds of global behavior are allowed by this condition.
To help get a feel for this, consider the following example.

Proposition 2.3. There are surjective maps from the unit 3-ball to the unit 2-ball
with arbitrarily small 2-dilation.
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Proof (sketch). Fix ε > 0. We want to find a surjective map from B3 to B2 with
2-dilation ≤ε. It’s easy to find a (linear) map with 2-dilation ≤ε onto B2(ε1/2).
By modifying this map a little, we can make a map F0 with 2-dilation ≤ε onto
B2(ε1/2/10) and which maps ∂B3 to a point.

We can improve the situation as follows. Let r be a small radius which we choose
later. Take r−3 disjoint r-balls in the unit 3-ball. Using a rescaling of the map F0, we
can define F on each r-ball so that its image covers a disk of radius r′ = (1/10)ε1/2r,
and so that F collapses the boundary of each r-ball to a point. The image of F now
includes r−3 discs in B2 of radius r′ ∼ ε1/2r. Taking r sufficiently small compared
to ε, we can cover all of B2 with these disks.

So far, we have only defined F on the union of the disjoint balls of radius r. Now
we have to extend F to the region between them in a way that matches with F
on the boundary. At this point, it’s helpful to know that F mapped the boundary
of each ball to a point. We choose a 1-dimensional tree in B2 that includes all of
these points, and we extend F to a map from the complement of the balls to the
tree. Since the tree is contractible, such an extension exists. And since the image
is 1-dimensional, the 2-dilation of the extension is zero (on the complement of the
balls). �

Let’s make some comments on this construction. Notice that the singular values
of dFx behave differently at different points. At the points inside the balls, we have
singular values s1 ∼ s2 ∼ ε1/2. At the points between the balls, we have singular
value s1 very large and s2 = 0. The key to the construction is to mix these two
behaviors. For context, a linear map L : B3 → B2 with 2-dilation ε cannot be
surjective—the image will have area �ε. A non-linear map F : B3 → B2 with tiny
2-dilation can be surjective, and one crucial ingredient is that the derivative of the
map should be wildly different at different places. (This example can also be made
stronger. In [Kau79], Kaufman gives an example of a C1 surjective map from B3 to
B2 with 2-dilation equal to zero.)

We’ve just seen that (non-linear) maps with small k-dilation can do things that
linear maps with small k-dilation can’t. There are also some limits to this phenom-
enon. For example, if F is a C1 map with Dilk F > 1, then there is no sequence of
maps with Dilk Fj ≤ 1 which converges to F in C0. In particular, (non-linear) maps
with k-dilation ≤1 cannot imitate a linear map with k-dilation > 1. In Section 12,
we prove this result and give some further background on k-dilation.

Using the analysis with singular values, we can see how the k-dilations for dif-
ferents values of k are related to each other.

Proposition 2.4. If k < l, then Dilk(F )1/k ≥ Dill(F )1/l.

Proof. For each point x, we have s1(x) ≥ s2(x) ≥ · · · . Since k < l, for each point x
we have
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⎛

⎝
k∏

j=1

sj(x)

⎞

⎠

1/k

≥
⎛

⎝
l∏

j=1

sj(x)

⎞

⎠

1/l

.

Taking the supremum over x, we get Dilk(F )1/k ≥ Dill(F )1/l. �
So the k-dilations of F for different k are related to each other by the following

inequalities.

Dil1(F ) ≥ Dil2(F )1/2 ≥ Dil3(F )1/3 ≥ · · ·
As k increases, the condition Dilk F ≤ 1 gets weaker, and finding a map with small
k-dilation gets easier.

We can also see a connection between k-dilation and differential forms.

Proposition 2.5. If F : (M, g) → (N, h) is a C1 map and α is a k-form on N , then

‖F ∗α‖∞ ≤ Dilk(F )‖α‖∞.

Proof. For any point x ∈ M , let y = F (x). Then (F ∗α)x = ΛkdF ∗
x (αy). The map

ΛkdF ∗
x is the adjoint of the map ΛkdFx : ΛkTxM → ΛkTyN . Therefore, the operator

norm |ΛkdF ∗
x | is equal to the operator norm |ΛkdFx| ≤ Dilk(F ). Hence |(F ∗α)x| ≤

Dilk(F )|αy|. �
Using this proposition, we can easily bound the degree of a map in terms of its

k-dilations. Recall that Sm denotes the unit m-sphere.

Proposition 2.6. The degree of a map F : Sm → Sm obeys the bound | Deg F | ≤
Dilm F .

Proof. Let ω be the volume form of Sm. We write | Deg F | = |(Vol Sm)−1
∫
Sm F ∗ω| ≤

‖F ∗ω‖∞ ≤ Dilm F . �

3 Mappings with Small k-Dilation, the Suspension Method

In this paper, we will give two different constructions of homotopically non-trivial
maps with arbitrarily small k-dilation. This section contains a construction that is
adapted to homotopy classes that are suspensions. The construction is short, and so
we describe it right away.

This construction isn’t strong enough to make all the mappings from the main
theorem in the introduction or from the h-principle for k-dilation stated in the
introduction, but it does give many interesting mappings. It gives homotopically
non-trivial maps from S4 to S3 with arbitrarily small 3-dilation. More generally it
gives the following proposition.

Proposition 3.1. If m ≥ 4, and if k > (2/3)m, then there are homotopically non-
trivial maps from Sm to Sm−1 with arbitrarily small k-dilation.
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Eventually we will prove that there are homotopically non-trivial maps Sm →
Sm−1 with arbitrarily small k-dilation for all k > (m + 1)/2, which is the sharp
range of k. This proposition gives the sharp range of k for m = 4, 5, 6, or 7, but not
for m ≥ 8.

Later in the paper, we will prove the h-principle for k-dilation using a different
construction, based on general position arguments. This second construction is much
longer.

The suspension method can sometimes do better than the general position method
we use later. In particular, the suspension method can allow us to distinguish dif-
ferent homotopy classes in the same group πm(Sn). For example, consider π7(S4).
Maps from S7 to S4 with non-trivial Hopf invariant must have 4-dilation at least
c > 0. The homotopy group π7(S4) is isomorphic to Z ⊕ Z12. The torsion elements
are exactly the elements with Hopf invariant zero. They are all suspensions of classes
in π6(S3). The suspension method applies to all the torsion elements, and it proves
that all of them can be realized by maps with arbitrarily small 4-dilation. We will
discuss a few more examples below. The information that we use about the homo-
topy groups of spheres and the suspension maps between them may be found in
[Tod62, pp. 39–42].

Now we give the construction of maps with arbitrarily small k-dilation.

Proposition 3.2. Suppose that a ∈ πm(Sn) is the suspension of a homotopy class
in πp(Sq). Then a can be realized by maps with arbitrarily small k-dilation for any
k > (q/p)m.

Proof. Let a0 be a homotopy class in πp(Sq) so that a is the (m−p)-fold suspension
of a0.

Let f1 be a map in the homotopy class a0 from [0, 1]p to the unit q-sphere,
taking the boundary of the domain to the basepoint of Sq. Let f2 be a degree 1 map
from [0, 1]m−p to the unit (m-p)-sphere, taking the boundary of the domain to the
basepoint of Sm−p. We can assume both maps are smooth, and we pick a number L
which is bigger than the Lipshitz constant of either map.

Inside of the unit m-sphere, we can bilipschitz embed a rectangle R with di-
mensions [0, ε]p × [0, ε− p

m−p ]m−p. More precisely, there is an embedding I which is
locally C(m)-bilipschitz. (See the appendix in Section 14.2 for a construction of this
embedding.)

Now we construct a map F from R to Sq ×Sm−p. The map F is a direct product
of a map F1 from [0, ε]p to Sq and a map F2 from [0, ε− p

m−p ]m−p to Sm−p. The map F1

is just a rescaling from [0, ε]p to the unit cube, composed with the map f1. Similarly,
the map F2 is just a rescaling from [0, ε− p

m−p ]m−p to [0, 1]m−p, composed with the
map f2.

When k is bigger than q, the k-dilation of F is less than (Lε−1)q(Lε
p

m−p )k−q. Ex-
panding this expression gives Lkε−q+( p

m−p
)(k−q). The important part of the expression

is the power of ε, which is equal to ( p
m−p)(k − q − q

p(m − p)) = ( p
m−p)(k − qm/p).
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We have assumed that k is greater than qm/p, and so the exponent of ε is positive.
For ε sufficiently small, the k-dilation of F is arbitrarily small.

The map F takes the boundary of R to Sq ∨Sm−p. We compose F with a smash
map, which is a degree 1 map from Sq × Sm−p to Sm+q−p = Sn, taking Sq ∨ Sm−p

to the base point. The result is a map from R to Sn which takes the boundary of
R to the basepoint. We can easily extend this map to all of Sm by mapping the
complement of R to the basepoint of Sn. The resulting map is homotopic to a, and
it has arbitrarily small k-dilation. �

The following special case was stated in the introduction.

Proposition 3.3. Suppose that a ∈ πm(Sn) is the suspension of a homotopy class
in πm−1(Sn−1), and that m > n. Then the class a can be realized by maps with
arbitrarily small n-dilation.

Proof. This follows from Proposition 3.2. We take p = m − 1 and q = n − 1. Since
m > n, we have n > n−1

m−1m = (q/p)m. �

Next we apply Proposition 3.2 to some particular homotopy classes.
First we consider maps from Sm to Sm−1. We prove Proposition 3.1.

Proof. For m ≥ 4, the non-trivial homotopy class in πm(Sm−1) is the (m-3)-fold
suspension of the Hopf fibration from S3 to S2. Proposition 3.2 gives a map in this
homotopy class with arbitrarily small k-dilation for k > (2/3)m. �

Next we consider the torsion classes in π7(S4).

Proposition 3.4. Each torsion homotopy class in π7(S4) can be realized by maps
with arbitrarily small 4-dilation.

Proof. Each torsion class is the suspension of a class from π6(S3). We apply Propo-
sition 3.2 to get maps with arbitrarily small k-dilation for all k > (3/6)7 = 3.5. �

We remark that one element of π7(S4) is actually a double suspension of a class in
π5(S2). We can realize this element with arbitrarily small k-dilation for k > (2/5)7 =
2.8. In particular, we can realize it by maps with arbitrarily small 3-dilation. I don’t
know whether the other torsion classes can be realized with arbitrarily small 3-
dilation.

There is one (non-zero) element a ∈ π8(S5) which is a triple suspension of an
element in π5(S2). It can be realized with arbitrarily small 4-dilation, since 4 >
(2/5)8. Recall that π8(S5) is isomorphic to Z24. The element a above is the 2-
torsion element—it corresponds to 12 in Z24. All of the odd elements are detected
by Steenrod squares. By the Steenrod square inequality, they cannot be realized by
maps with arbitrarily small k-dilation when k ≤ 9/2. In particular, they cannot be
realized with arbitrarily small 4-dilation.
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The discussion of π8(S5) applies more generally to the stable 3-stem. For all
m ≥ 8, πm(Sm−3) is isomorphic to Z24, and the suspension maps are isomorphisms.
Therefore, the two-torsion element can be realized by maps with arbitrarily small
k-dilation for all k > (2/5)m. The odd elements can be realized by maps with
arbitrarily small k-dilation only if k > (m + 1)/2.

In the open problems section at the end of the paper, there is some more discus-
sion of which homotopy classes can be realized with arbitrarily small k-dilation.

The Freudenthal suspension theorem says that every map in πm(Sn) is a suspen-
sion as long as m ≤ 2n − 2. (See [Hat02], corollary 4.24 on pp. 360.) The condition
m ≤ 2n−2 is equivalent to n > (m+1)/2. As long as n > (m+1)/2, the Freudenthal
suspension theorem implies that every class in πm(Sn) is the suspension of a class
from π2m−2n+1(Sm−n+1). Proposition 3.2 then implies the following weak form of
the h-principle for k-dilation.

Proposition 3.5. If n > (m+1)/2, and if k > m−n+1
2m−2n+1m, then any map F0 : Sm →

Sn can be homotoped to a map F : Sm → Sn with arbitrarily small k-dilation.

Proposition 3.5 is weaker than the h-principle, but for many values of m and
n it’s not a bad substitute. For example, if F0 is a map from S101 to S88, then
Proposition 3.5 implies that F0 can be homotoped to a map with arbitrarily small
k-dilation for all k > (14/27)101 = 52.37 . . .: in other words, for each integer k > 52.
On the other hand, the h-principle says that F0 can be homotoped to a map with
arbitrarily small k-dilation for each k > (101 + 1)/2 = 51.

The suspension method is based on an observation of Bechtluft-Sachs in [Bec06].
He was interested in the Lp norms ‖ΛkdF‖p. In [Riv98], Riviere proved an Lp version
of the Hopf invariant inequality.

Lp bound for the Hopf invariant. For any C1 map F : S2n−1 → Sn, the Hopf
invariant of F is controlled by

| Hopf(F )| ≤ C(n)‖ΛndF‖2

L
2n−1

n
.

In particular, if F has non-zero Hopf invariant, then ‖ΛndF‖
L

2n−1
n

> c(n) > 0.

In particular, if F : S7 → S4 with non-zero Hopf invariant, then ‖Λ4dF‖7/4 ≥ c >
0. Bechtluft-Sachs observed that other homotopy classes in π7(S4) behave differently.

Bechtluft-Sachs example. For each torsion element a ∈ π7(S4), there is a se-
quence of homotopically non-trivial maps Fi : S7 → S4 with ‖Λ4dF‖7/4 → 0.

4 The Hopf Invariant and k-Dilation

Our lower bounds on k-dilation generalize the following inequality for maps from S3

to S2.
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Proposition 4.1. If F is a C1 map from the unit sphere S3 to the unit sphere S2,
then the Hopf invariant of F is controlled in terms of the 2-dilation of F by the
inequality

| Hopf(F )| � Dil2(F )2.

In the first part of this section, we review the previous proofs of the proposition
from the literature, and we discuss the difficulties of generalizing them to maps from
Sm to Sm−1 for m > 3. In the second part of this section, we give a new proof of
the proposition. Our proof of k-dilation estimates for maps Sm → Sm−1 generalizes
the new proof for maps from S3 to S2.

4.1 Previous estimates about the Hopf invariant and 2-dilation. The
first proof of Proposition 4.1 was based on differential forms. We begin by describing
the Hopf invariant in the language of differential forms. We let ω be a 2-form on S2

with
∫
S2 ω = 1. The pullback F ∗ω is a closed 2-form on S3, and therefore F ∗ω is

exact. Let α be a 1-form on S3 with dα = F ∗ω. Then the Hopf invariant of F is∫
S3 α ∧ F ∗ω. (See [BT82, pp. 230], for background on the Hopf invariant.)

To get a quantitative estimate for the Hopf invariant, we can go step by step,
giving quantitative estimates for each character appearing in the story. We sketch
the proof here, and give more details in the appendix in Section 12. First, we can
choose ω to be (4π)−1dareaS2 . So pointwise, |ω| = (4π)−1 ≤ 1. The 2-dilation inter-
acts well with 2-forms, giving the estimate ‖F ∗ω‖∞ ≤ Dil2(F )‖ω‖∞ ≤ Dil2(F ) (see
Proposition 2.5). The main part of the proof is to give estimates for α. This requires
some analysis and/or geometry. For example, using Hodge theory and elliptic esti-
mates, we can find a choice of α with ‖α‖2 � ‖F ∗ω‖2 � Dil2(F ). With these bounds
in hand,

| Hopf(F )| =

∣
∣
∣
∣
∣
∣

∫

S3

α ∧ F ∗ω

∣
∣
∣
∣
∣
∣
≤ ‖α‖2‖F ∗ω‖2 � Dil2(F )2.

It’s hard to generalize this argument to maps Sm → Sm−1 when m > 3. For m > 3,
πm(Sm−1) = Z2. The homotopy invariant here takes values in Z2, and I don’t know
any way to describe it using differential forms.

A second proof of Proposition 4.1 studies the fibers of the map F . By a smoothing
argument, we can deform F to a C∞ map without significantly increasing its 2-
dilation. So we can assume without loss of generality that F is C∞. Sard’s theorem
guarantees that almost every y ∈ S2 is a regular value. When y is a regular value, the
fiber F−1(y) is a smooth compact 1-manifold (without boundary). Each regular fiber
has a canonical orientation, so each regular fiber is an integral 1-cycle in S3. Now the
Hopf invariant can be described as the linking number of F−1(y1) and F−1(y2) for
any two regular values of F . Unwinding the definition of linking number this means
the following. Suppose that Σ1 is an integral 2-chain in S3 with ∂Σ1 = F−1(y1). For
almost every choice of y2, F−1(y2) will be transverse to Σ1. Then the Hopf invariant
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of F is given by the intersection number of F−1(y2) with Σ1. (See [BT82, pp. 227–
234] for a discussion of the different definitions of the Hopf invariant and why they
are equivalent.)

To get a quantitative estimate for the Hopf invariant, we again go step by
step through the argument and give quantitative estimates for each character as
it appears. By the coarea inequality, we can choose y1 so that Length[F−1(y1)] �
Dil2(F ). Next, by the isoperimetric inequality, we can choose Σ1 so that Area(Σ1) �
Length[F−1(y1)] � Dil2(F ). Now by the coarea inequality again, we can choose y2

so that the number of points in Σ1 ∩ F−1(y2) is � Dil2(F )[Area Σ1] � Dil2(F )2.
The Hopf invariant is given by counting these intersection points with multiplicities
±1 determined by the orientations. Therefore, | Hopf(F )| is at most the number of
intersection points, which is � Dil2(F )2. (This argument first appeared in [Gro83].
The details are explained in the short paper [Gutb].)

This argument also does not easily generalize to maps Sm → Sm−1 for m > 3.
When m > 3, the relevant homotopy invariant cannot be described using a linking
number. It can be described using the fibers of the map F , together with their
framing. For a regular value y ∈ Sm−1, the fiber F−1(y) is a closed 1-manifold,
and its normal bundle gets a framing coming from the isomorphism between the
normal bundle and TSm−1

y . The map F is homotopically non-trivial if and only if
the framing of the normal bundle has a non-trivial twist. (See Section 9 for a more
detailed description.)

I tried to go step by step through the argument with the framing of the normal
bundle and give quantitative estimates, but I couldn’t make this approach work. We
can begin in the same way, by using the coarea formula to pick a point y ∈ Sm−1

so that Length[F−1(y)] � Dilm−1(F ). The next character seems to be the framing
of the normal bundle and the way that it twists as we move along the fiber F−1(y).
But this twisting depends on the second derivative of F , and so there is no way to
bound the amount of local twisting in terms of any Dilk(F ). Within this setting it’s
not clear to me what geometric quantity one should try to bound next. Also notice
that in bounding the length of the fiber F−1(y), we only required an estimate for
Dilm−1(F ). A bound of the form Dilm−1(F ) < ε does not by itself imply that F is
null-homotopic—we need to invoke somewhere Dilk(F ) for k ≤ (m + 1)/2.

4.2 A new method for bounding the Hopf invariant in terms of the
2-dilation. Now we give a new proof of Proposition 4.1, based on the connection
between the Hopf invariant and cup products. If F : S3 → S2, we use F as an at-
taching map to build a 4-dimensional cell complex X: X := B4∪F S2. The homotopy
type of X is a homotopy invariant of the map F . In particular, the Hopf invariant
of F is related to the cup product structure of X. The cohomology groups of X are
H2(X; Z) = Z with generator a and H4(X; Z) = Z with generator b. The cup prod-
uct a ∪ a must be a multiple of b. Let H(X) be the integer so that a ∪ a = H(X)b.
The integer H(X) is the Hopf invariant of the map F . (See [Hat02, pp. 427] for a
review of the Hopf invariant from this perspective.)



GAFA CONTRACTION OF AREAS VS. TOPOLOGY OF MAPPINGS 1821

This definition does not seem at first sight like a good setting for a quantita-
tive argument. How can we connect this story to Dil2(F )? What are the geometric
quantities related to this story that we should try to estimate?

Cup products are closely connected with Cartesian products. By unwinding the
definition of the cup product in terms of Cartesian products, we can get a formulation
which is easier to connect with the geometry of the map F . Here is the formulation.
If F : S3 → S2 is our map, we can look at the map F × F : S3 × S3 → S2 × S2. Let
x0 be a basepoint of S3 and y0 = F (x0) be a basepoint of S2.

Let Diag(S3) ⊂ S3 ×S3 denote the diagonal of S3 ×S3. Let Bouquet(S3) denote
the cycle S3 ×{x0}∪{x0}×S3. Both Diag(S3) and Bouquet(S3) are integral cycles
in S3 ×S3, and they are homologous. Therefore, there is an integral 4-chain Z0 with
∂Z0 = Diag(S3)−Bouquet(S3). We consider F ×F (Z0). By definition, F ×F (Z0) is
an integral 4-chain in S2×S2, but in fact F×F (Z0) is essentially a 4-cycle. The reason
is that F × F maps Diag(S3) into Diag(S2) and Bouquet(S3) into Bouquet(S2).
Therefore, F × F maps ∂Z0 (which is 3-dimensional) into a 2-dimensional complex.
Therefore, F × F (Z0) is essentially an integral 4-cycle in S2 × S2.

If we work with Lipschitz chains, then F × F (Z0) is not literally a cycle. But
as we have seen, the boundary of F × F (Z0) is a 3-cycle lying in a 2-dimensional
polyhedron. Therefore, we can pick an integral 4-chain ν with zero volume and with
∂ν = ∂ (F × F (Z0)). We define Z(F ) to be the 4-cycle F × F (Z0) − ν. The cycle
Z(F ) is connected to the Hopf invariant by the following proposition.

Proposition 4.2. The homology class of Z(F ) in H4(S2 × S2; Z) is equal to
Hopf(F )[S2] × [S2].

Using this proposition, we can give a short proof that | Hopf(F )| � Dil2(F )2.

Proof. The Hopf invariant of F is equal to the homology class of Z(F ) = F ×
F (Z0) − ν. Since ν has zero 4-volume, we see that | Hopf(F )| � Vol4(F × F (Z0)) ≤
Dil4(F ×F )·Vol4(Z0). In our construction Z0 does not depend on F , so Vol4(Z0) � 1.

It suffices to check that Dil4(F ×F ) ≤ Dil2(F )2. Let (x, x′) be a point of S3 ×S3.
Let S1 ≥ · · · ≥ S4 be the singular values of d(F × F ) at (x, x′). (So S1, S2, S3, S4

are functions on S3 ×S3.) The 4-dilation of F ×F is sup(x,x′)∈S3×S3 S1S2S3S4. Now
let s1(x) ≥ s2(x) be the singular values of dFx. Since the derivative d(F × F ) at
(x, x′) is just dFx × dFx′ , the singular values S1, S2, S3, S4 are equal to the numbers
s1(x), s2(x), s1(x′), s2(x′) arranged in decreasing order. In particular, S1S2S3S4 =
s1(x)s2(x)s1(x′)s2(x′) ≤ Dil2(F )2. �

Now we prove Proposition 4.2.

Proof. As we recalled above, H2(X; Z) = Z with generator a. Let [X] be the gener-
ator of H4(X; Z), defined so that b([X]) = 1. We know that a ∪ a evaluated on [X]
is the Hopf invariant of F .

One definition of the cup product involves the diagonal embedding Diag : X →
X × X. The cup product a ∪ a is the pullback of the cross product a × a defined on
X × X. Therefore, the Hopf invariant of F is the evaluation of a × a on Diag(X).
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Recall that the space X is formed by attaching B4 to S2 by the map F : S3 → S2.
The space X has a natural basepoint x, which is equal to the basepoint of S2 ⊂ X.
We define Bouquet(X) ⊂ X × X to be X × {x} ∪ {x} × X. Now S2 ⊂ X, and
Z(F ) ⊂ S2 × S2 ⊂ X × X, so Z(F ) is a 4-cycle in X × X. Next we determine its
homology class. �
Lemma 4.3. The 4-cycle Z(F ) is homologous to Diag(X)−Bouquet(X) as integral
4-cycles in X × X.

Proof. Recall that Z0 is a 4-chain in S3 × S3 with ∂Z0 = Diag(S3) − Bouquet(S3).
We consider Z0 ⊂ S3 × S3 ⊂ B̄4 × B̄4, where B̄4 denotes the closed 4-ball. The
boundary of Diag(B̄4) is Diag(S3). We choose a basepoint of S3 and make it also a
basepoint of B̄4, so that the boundary of Bouquet(B̄4) is Bouquet(S3). Therefore,
Z0 −Diag(B̄4)+Bouquet(B̄4) is a 4-cycle in B̄4 × B̄4. Since B̄4 × B̄4 is contractible,
this cycle is null-homologous, and so there is a 5-chain Y0 with

∂Y0 = Z0 − Diag(B̄4) + Bouquet(B̄4).

Let Ψ : B̄4 → X be the characteristic map of B4 to X = B4∪F S2. In other words,
the restriction of Ψ to the boundary of B̄4 is the attaching map F : S3 → S2 ⊂ X,
and Ψ is the inclusion map from the interior of B4 into X. We choose base points
so that Ψ maps the basepoint of B̄4 to the basepoint of X. We consider Ψ × Ψ :
B̄4 × B̄4 → X × X. The image Ψ × Ψ(∂Y0) is a null-homologous cycle in X × X.
This null-homologous cycle is essentially equal to Z(F ) − Diag(X) + Bouquet(X).
More precisely,

• Ψ × Ψ(Z0) is flat equivalent to Z(F ).
• Ψ × Ψ(Diag(B̄4)) is flat equivalent to Diag(X).
• Ψ × Ψ(Bouquet(B̄4)) is flat equivalent to Bouquet(X).

We review flat chains and cycles in Appendix 14.3. We say that two Lipschitz
chains are flat equivalent if they define the same flat chain. The main point that we
need is that if two Lipschitz cycles are flat equivalent, then they are homologous. This
follows easily from the definitions, and we review it in the appendix. Given the three
flat equivalences we just mentioned, it follows that Z(F ) − Diag(X) + Bouquet(X)
is null-homologous, which is what we wanted to prove.

The three flat equivalences we just mentioned are straightforward. First, Z(F ) =
F × F (Z0) − ν, where ν is a chain of volume zero. Recall that the restriction of Ψ
to S3 = ∂B4 is just F . Hence the restriction of Ψ × Ψ to S3 × S3 is F × F , and so
we see Z(F ) = Ψ × Ψ(Z0) − ν. Since ν has zero volume, Z(F ) is flat equivalent to
Ψ × Ψ(Z0).

Next we consider the chain Ψ(B̄4). If we consider it as a Lipschitz chain, then it
is not literally a cycle, but its boundary lies in S2 ⊂ X. Therefore, we can find an 4-
chain ν ′ of zero volume so that Ψ(B̄4)−ν ′ is a Lipschitz cycle in X. It is homologous
to the fundamental homology class [X]. Any two Lipschitz cycles in this homology
class are flat equivalent (see the appendix). So Ψ(B̄4) is flat equivalent to the cycle X.



GAFA CONTRACTION OF AREAS VS. TOPOLOGY OF MAPPINGS 1823

Similarly, Ψ × Ψ(Diag(B̄4)) is flat equivalent to Diag(X), and Ψ × Ψ(Bouquet(B̄4))
is flat equivalent to Bouquet(X). �

The Hopf invariant of F is a × a(Diag(X)). By the last lemma, this is equal to
a×a(Z(F )+Bouquet(X)). For any point p ∈ X, a×a(X×{p}) = a×a({p}×X) = 0.
Therefore, a × a(Bouquet(X)) = 0. Hence Hopf(F ) = a × a(Z(F )). Now Z(F ) is a
cycle in S2 × S2 ⊂ X × X. The restriction of a to S2 is just [S2]∗, the generator of
H2(S2; Z). Therefore, Z(F ) is homologous to Hopf(F )[S2] × [S2].

This argument gives another proof that | Hopf(F )| � Dil2(F )2. In the next sec-
tions, we will generalize this proof to homotopically non-trivial maps Sm → Sm−1

for m > 3. When m > 3, we will need to consider Steenrod squares instead of cup
squares. In the next section, we review Steenrod squares and define an analogous
cycle Z(F ) in that setting.

5 Mappings Detected by Steenrod Squares

Suppose that F : Sm → Sn is a C1 map. We can use F as an attaching map to
build a cell complex X = Bm+1 ∪F Sn. We assume that m > n. In that case, the
cohomology of X has the following structure: Hn(X; Z2) = Z2 with generator a,
Hm+1(X; Z2) = Z2 with generator b, and Hd(X; Z2) vanishes for all other dimen-
sions d > 0. The Steenrod square Sqm+1−n maps Hn(X; Z2) to Hm+1(X; Z2). We
define the Steenrod–Hopf invariant of F by the formula

Sqm+1−n(a) = SH(F )b.

The Steenrod–Hopf invariant takes values in Z2. It is a homotopy invariant of the
map F (because homotopic maps F1 and F2 produce homotopy-equivalent complexes
X1 and X2).

We recall some fundamental topological facts about the Steenrod–Hopf invariant.
These facts are explained in more detail in Hatcher’s book [Hat02, pp. 489]. This is a
very nice reference about Steenrod squares, containing all the background material
we need in this paper.

If m = 2n−1, then the Steenrod square Sqm+1−n = Sqn is the cup square. In this
case SH(F ) is the mod 2 reduction of the Hopf invariant of F . The Hopf invariant
is equal to 1 for the three Hopf fibrations (S3 → S2, S7 → S4, and S15 → S8). So
SH(F ) = 1 for the three Hopf fibrations.

Because Steenrod squares behave well with respect to suspensions, the Steenrod–
Hopf invariant is preserved by suspensions. Suppose that ΣF : Sm+1 → Sn+1 is the
suspension of F : Sm → Sn. The complex formed by ΣF , Bm+2 ∪ΣF Sn+1, is the
suspension of Bm+1∪F Sn. Since the Steenrod squares commute with the suspension
isomorphism, we conclude that SH(ΣF ) = SH(F ). In particular, SH(F ) = 1 for
suspensions of the Hopf fibrations.

Therefore, the map SH : πm(Sn) → Z2 is surjective whenever n = m − 1 and
m ≥ 3; or n = m − 3 and m ≥ 7; or n = m − 7 and m ≥ 15. (By a difficult theorem
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of Adams, the Steenrod–Hopf invariant is trivial for all other m > n—see [Hat02,
pp. 490] and the references therein.)

Our lower bound for k-dilation is the following theorem:

Steenrod squares and k-dilation. Let F be a C1 map from Sm to Sn with
SH(F ) �= 0. If k ≤ (m + 1)/2, then Dilk(F ) ≥ c(m) > 0.

We have to review the topological proof that a map with SH(F ) �= 0 is non-
contractible and try to organize it in order to get quantitative information about
Dilk(F ). In the following subsection, we give an alternate description of SH(F ),
which we will be able to connect with Dilk(F ). We will check that the alternate
definition agrees with the definition above, which involves reviewing the construction
of Steenrod squares.

5.1 The cycle Z(F ). The Steenrod squares are closely related to the following
topological operation. Given a space X and an integer i ≥ 0, first consider the
product Si×X ×X. On this product, there is a natural Z2 action, sending (θ, x1, x2)
to (−θ, x2, x1). This action is free and the quotient space is denoted ΓiX. The space
ΓiX is a fiber bundle over RP

i with fiber X × X.
The operation Γi is functorial—if we have a map F : X → Y , then there is an

induced map ΓiF : ΓiX → ΓiY . The induced map is defined as follows. First we
map Si × X × X to Si × Y × Y using the map id × F × F . (Here id denotes the
identity map.) This map is equivariant with respect to the Z2 action on the domain
and on the range. Therefore, it descends to a map ΓiF between the quotient spaces.

In particular, our map F : Sm → Sn induces a map ΓiF from ΓiS
m to ΓiS

n for
every i.

If W ⊂ X is a mod 2 cycle, then there are several cycles in ΓiX that we can
canonically build from W . One of these is the diagonal cycle Diag(W ). In each fiber
of ΓiX → RP

i, the fiber of Diag(W ) is a diagonal copy of W ⊂ W × W ⊂ X × X.
A second example is the bouquet cycle Bouquet(W ). This is defined canonically as
long as X has a basepoint x. In each fiber of ΓiX → RP

i, the fiber of Bouquet(W )
is W × {x} ∪ {x} × W ⊂ X × X. If W is a mod 2 d-cycle, then Diag(W ) and
Bouquet(W ) are mod 2 (d+i)-cycles.

Remark: If W is an integral d-cycle, it is not necessarily possible to choose orien-
tations in order to make Diag(W ) and Bouquet(W ) into integral cycles.

Lemma 5.1. If i < m, then Hd(ΓiS
m) = 0 for m + i < d < 2m (with any coefficient

group).

Proof. There is a natural cell structure on ΓiS
m which comes from the usual cell

structure on Sm (with 2 cells) and the usual cell structure on RP
i with i + 1 cells.

Since i < m, the cell structure has one cell in each dimension 0, . . . , i, two cells
in each dimension m, . . . , m + i, and one cell in each dimension 2m, . . . , 2m + i. In
particular, we see that Hd(ΓiS

m) vanishes for m + i < d < 2m. �
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Lemma 5.2. If i < m, then Diag(Sm) and Bouquet(Sm) are homologous—they
belong to the same homology class in Hm+i(ΓiS

m; Z2).

Proof. First, the diagonal of Sm×Sm is homologous to the bouquet {x}×Sm∪Sm×
{x}, where x denotes the basepoint of Sm. We let T0 denote a homology between
them. Now we consider Bi × T0, which is an (m+i+1)-chain in Bi × Sm × Sm. Here
we think of Bi as a hemisphere of Si, so that we can project Bi × Sm × Sm onto
ΓiS

m. The boundary of Bi ×T0 is equal to Bi ×Diag(Sm)+Bi ×Bouquet(Sm)+V
where V is a chain in ∂Bi × Sm × Sm. Projecting Bi × T0 into ΓiS

m, we get a
chain with boundary Diag(Sm) + Bouquet(Sm) + V ′, where V ′ is an (m+i)-chain
lying in Γi−1S

m ⊂ ΓiS
m. Because Diag(Sm) and Bouquet(Sm) are each cycles, V ′

must also be a cycle. But as we saw in Lemma 5.1, Hm+i(Γi−1S
m) = 0. Hence V ′ is

homologous to zero and the diagonal Diag(Sm) is homologous to Bouquet(Sm). �

At this point, we choose i = 2n − m − 1. Since m > n, we see that i < n < m.
Since i < m, we can find an (m+i+1)-chain Z0 in ΓiS

m with ∂Z0 = Diag(Sm) +
Bouquet(Sm). The dimension of the chain Z0 is m + i + 1 = 2n.

Our map F : Sm → Sn induces a map ΓiF : ΓiS
m → ΓiS

n. The map ΓiF maps
Diag(Sm) to Diag(Sn). We pick basepoints of Sm and Sn so that F sends base-
point to basepoint. With these basepoints, ΓiF maps Bouquet(Sm) to Bouquet(Sn).
Therefore, ΓiF maps ∂Z0 into Diag(Sn)∪Bouquet(Sn). Now ∂Z0 is a cycle of dimen-
sion i+m. On the other hand, Diag(Sn)∪Bouquet(Sn) is a polyhedron of dimension
i + n < i + m. Therefore ΓiF (Z0) is essentially a cycle.

Although ΓiF (Z0) is not literally a Lipschitz cycle, we have seen that the bound-
ary of ΓiF (Z0) is an (m+i)-cycle lying in a lower-dimensional polyhedron. Therefore,
we can pick a mod 2 (m+i+1)-chain ν with zero volume and with ∂ν = ∂ΓiF (Z0).
We define Z(F ) to be the cycle ΓiF (Z0) − ν.

Next we study the homology class of Z(F ) in H2n(ΓiS
n; Z2). First we calculate

this homology group.

Lemma 5.3. Recall that i = 2n−m−1 and m > n. The homology group H2n(ΓiS
n;

Z2) = Z2. The non-trivial homology class is represented by a fiber Sn × Sn of the
fiber bundle Sn × Sn → ΓiS

n → RP
i.

Proof. We use the cell structure of ΓiS
n as in the proof of Lemma 5.1. Since i =

2n − m − 1 < n, this cell structure has exactly one cell in dimension 2n. Recall that
ΓiS

n is a fiber-bundle over RP
i with fiber Sn × Sn. The 2n-cell corresponds to a

fiber of the fiber bundle—its closure is a fiber Sn × Sn. The cell structure also has
exactly one 2n + 1-cell. Its closure is the restriction of the fiber bundle to a copy of
RP

1 ⊂ RP
i. The boundary of this (2n + 1)-cell gives two copies of the 2n-cell, and

so the boundary operator (working modulo 2) is zero. �

Now we determine the homology class of Z(F ) and see how it connects to the
Steenrod–Hopf invariant.
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Proposition 5.4. Let Z0 ⊂ ΓiS
m be any 2n-chain with boundary Diag(Sm) −

Bouquet(Sm), and define the 2n-cycle Z(F ) ⊂ ΓiS
n as above. Then the 2n-cycle

Z(F ) is homologous to SH(F )[Sn ×Sn], where Sn ×Sn is a fiber of the fiber bundle
ΓiS

n. In particular, the Steenrod–Hopf invariant SH(F ) is non-zero if and only if
the cycle Z(F ) is non-trivial in H2n(ΓiS

n; Z2).

This Proposition is a generalization of Proposition 4.2.

Proof. Recall that X = Bm+1∪F Sn. The cohomology group Hn(X; Z2) is isomorphic
to Z2 and it has generator a. We let [X] be a generator of Hm+1(X; Z2) = Z2. The
Steenrod–Hopf invariant SH(F ) is equal to the evaluation Sqi a[X]. Now we unwind
the definition of Steenrod squares to understand this evaluation better. We follow
the construction of Steenrod squares in Hatcher [Hat02, pp. 501–504].

The class a induces a map Φ from X to K(Z2, n), which is well-defined up to
homotopy. From now on, we abbreviate K(Z2, n) = K. Therefore, we get a sequence
of maps

RP
i × X → ΓiX → ΓiK.

The first map is the diagonal inclusion, and the second map is ΓiΦ.
The space K comes with a fundamental cohomology class α ∈ Hn(K; Z2), and

Φ∗α = a. Now in ΓiK there is a (2n)-dimensional cohomology class β, whose re-
striction to each fiber K × K is α × α and whose restriction to Bouquet(K) ⊂ ΓiK
vanishes. This element is constructed in Hatcher, pp. 503–504. (Hatcher constructs
the element λ(i) on the space ΛK. He has already defined a map from ΓiK to ΛK,
and the class β is the pullback of λ(i) to ΓiK).

Let ω ∈ H1(RP
i; Z2) be the non-trivial cohomology class. We pull back the

cohomology class β to RP
i × X, and expand it using the Kunneth formula. The

definition of the Steenrod squares is that this pullback is equal to
n∑

j=0

ωj ⊗ Sqj a.

Using the diagram of maps above, we see that

SH(F ) = Sqi a[X] = Diag∗ ΓiΦ∗(β)[RP
i × X] = ΓiΦ∗(β)[Diag(X)].

We have an inclusion Sn ⊂ X and hence ΓiS
n ⊂ ΓiX. So our cycle Z(F ) is a

2n-cycle in ΓiX. �
Lemma 5.5. The cycle Z(F ) is homologous to Diag(X) − Bouquet(X) in ΓiX.

This lemma is a generalization of Lemma 4.3.

Proof. Recall that Z0 is a chain in ΓiS
m with ∂Z0 = Diag(Sm) + Bouquet(Sm). We

think of the sphere Sm as the boundary of the closed ball Bm+1, and so ΓiS
m ⊂

ΓiB̄
m+1. Therefore, we can think of Z0 as a chain in ΓiB̄

m+1. The boundary of



GAFA CONTRACTION OF AREAS VS. TOPOLOGY OF MAPPINGS 1827

Diag(B̄m+1) is Diag(Sm) and the boundary of Bouquet(B̄m+1) is Bouquet(Sm).
Therefore, Z0 − Diag(B̄m+1) + Bouquet(B̄m+1) is an (m+i+1)-cycle in ΓiB̄

m+1.
Since ΓiB̄

m+1 is homotopic to RP
i, this cycle is null-homologous, and so there is a

chain Y0 with

∂Y0 = Z0 − Diag(B̄m+1) + Bouquet(B̄m+1).

Let Ψ : B̄m+1 → X be the characteristic map of Bm+1 to X = Bm+1 ∪F Sn.
In other words, the restriction of Ψ to the boundary of B̄m+1 is the attaching map
F : Sm → Sn ⊂ X, and Ψ is the inclusion map from the interior of Bm+1 into X.
We choose base points so that Ψ maps the basepoint of B̄m+1 to the basepoint of
X. We consider ΓiΨ : ΓiB̄

m+1 → ΓiX. The image ΓiΨ(∂Y0) is a null-homologous
cycle in ΓiX. This null-homologous cycle is essentially equal to Z(F ) − Diag(X) +
Bouquet(X). More precisely,

• ΓiΨZ0 is flat equivalent to Z(F ).
• ΓiΨ Diag(B̄m+1) is flat equivalent to Diag(X).
• ΓiΨ Bouquet(B̄m+1) is flat equivalent to Bouquet(X).

We review flat chains and cycles in Appendix 14.3. We say that two Lipschitz
chains are flat equivalent if they define the same flat chain. The main point that we
need is that if two Lipschitz cycles are flat equivalent, then they are homologous. This
follows easily from the definitions, and we review it in the appendix. Given the three
flat equivalences we just mentioned, it follows that Z(F ) − Diag(X) + Bouquet(X)
is null-homologous, which is what we wanted to prove.

The three flat equivalences we just mentioned are straightforward. First, Z(F ) =
ΓiF (Z0) − ν, where ν is a chain of volume zero. Recall that the restriction of Ψ to
Sm = ∂Bm+1 is just F . Hence the restriction of ΓiΨ to ΓiS

m is ΓiF , and so we see
Z(F ) = ΓiΨ(Z0) − ν. Since ν has zero volume, Z(F ) is flat equivalent to ΓiΨ(Z0).

Next we consider the chain Ψ(B̄m+1). If we consider it as a Lipschitz chain, then
it is not literally a cycle, but its boundary lies in Sn ⊂ X, and n < m. Therefore, we
can find an (m+1)-chain ν ′ of zero volume so that Ψ(B̄m+1)− ν ′ is a Lipschitz cycle
in X. It is homologous to the fundamental homology class [X]. Any two Lipschitz
cycles in this homology class are flat equivalent (see the appendix). So Ψ(B̄m+1)
is flat equivalent to the cycle X. Similarly, ΓiΨ Diag(B̄m+1) is flat equivalent to
Diag(X), and ΓiΨ Bouquet(B̄m+1) is flat equivalent to Bouquet(X). �

We now know that SH(F ) = ΓiΦ∗(β)[Diag(X)] = ΓiΦ∗(β)[Z(F ) + Bouquet(X)].
The cohomology class ΓiΦ∗(β) vanishes on Bouquet(X) because ΓiΦ maps
Bouquet(X) to Bouquet(K), and β vanishes on Bouquet(K). Therefore, SH(F ) =
ΓiΦ∗(β)[Z(F )].

The cycle Z(F ) lies in ΓiS
n. So next we consider the restriction of ΓiΦ∗(β)

to ΓiS
n. We recall from Lemma 5.3 that H2n(ΓiS

n; Z2) = Z2, and a non-trivial
representative is given by the fiber Sn × Sn. Recall that ΓiΦ∗(β) restricted to the
fiber X×X is a×a. Therefore, ΓiΦ∗(β)(Sn×Sn) = 1. Therefore, Z(F ) is homologous
to SH(F )Sn × Sn.
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To summarize, our definition of the Steenrod–Hopf invariant in terms of the cycle
Z(F ) agrees with the standard definition in terms of Steenrod squares on X.

Describing SH(F ) in terms of the homology class of Z(F ) makes it more ap-
proachable geometrically. Next we will prove estimates about the geometry of Z(F )
in terms of Dilk(F ). If k ≤ (m + 1)/2, and if Dilk(F ) is sufficiently small, then we
will be able to use these estimates to construct a null-homology of Z(F ).

6 Directed Volume

In this section, we study the geometry of the cycle Z(F ) constructed in Section 5.1.
We will estimate the volume of Z(F ). If the volume of Z(F ) were sufficiently small,
it would follow that Z(F ) was null-homologous and that SH(F ) = 0. But it turns out
that even if Dilk(F ) is very small (and k ≤ (m+1)/2), the volume of Z(F ) may still
be arbitrarily large. This point is the main difficulty in our proof. We will get more
information about the shape of Z(F ) by studying its directed volumes in different
directions. Later we will use this information to show that Z(F ) is homologically
trivial. We begin the section by defining directed volumes.

To get some intuition for directed volumes, we start with the simple case that X is
a compact submanifold of Euclidean space R

N . Suppose that X has dimension d, and
let J be a d-tuple of integers from the set 1, .., N . Let R

J denote the d-dimensional
coordinate plane corresponding to J , and let πJ denote the orthogonal projection
from R

N to R
J . Let |π−1

J (q) ∩ X| denote the number of points in π−1
J (q) ∩ X. Then

the J-volume of X is given by the formula

VolJ(X) :=
∫

RJ

|π−1
j (q) ∩ X|dq.

If X is an oriented submanifold, then we can integrate differential forms over it.
We can then redefine the J-volume as

VolJ(X) := sup
‖w‖∞≤1

∫

X

w(x)dxJ .

Next we want to define the directed volume of C1 chains in R
N . Suppose that f

is a C1 map from the simplex Δd to R
N . Since the map f may not be an embedding,

we need to be slightly more careful in defining VolJ f .
Let us recall the definition of Vol f , written in a slightly non-standard way which

generalizes for our purposes.
We define the k-dilation of f at a point x by the formula

Dilk f(x) = sup
ω

|Λkdf∗
xω|,

where the sup is taken over all ω ∈ ΛkT ∗
R

N with |ω| ≤ 1.
Then if f : Δd → R

N is a C1 map, we define Vold f :=
∫
Δ Dild f(x)dx.
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If J is a k-tuple of numbers from 1 to N , we can define DilJ f(x) in a similar
way:

DilJ f(x) = |Λkdf∗
xe∗

J |,

where e∗
J ∈ ΛkT ∗

R
N . If J = {j1, . . . , jk}, then e∗

J = e∗
j1

∧· · ·∧e∗
jk

. Here e1, . . . , eN are
the standard orthonormal basis of TR

N and e∗
1, . . . , e

∗
N are the dual basis of T ∗

R
N .

If f : Δd → R
N and J is a d-tuple, then we can define VolJ f :=

∫
Δ DilJ f(x)dx.

Now if T =
∑

i cifi is a mod 2 d-chain, then we define Vold T =
∑ |ci| Vold fi,

and VolJ T =
∑

i |ci| VolJ fi, where |1| = 1 and |0| = 0. (We can do the same for
chains with coefficients in a group G as long as we pick a norm on G.)

Some of this structure survives to Riemannian manifolds and products of Rie-
mannian manifolds.

If f : Δd → (M, g), then define Dilk f(x) = supω |df∗
xω|, where ω ∈ ΛkT ∗

f(x)M

and |ω| ≤ 1. Then we can define Vold f :=
∫
Δ Dild f(x)dx. This agrees with the

standard definition of the volume. We define the volume of a chain T as above.
Consider a product manifold M = A×B×C with a product Riemannian metric.

(In this paper, we will work with products of three factors, but the definition works
equally well with any number of factors.) If f is a C1 map from Δd to M , we define
Dil(a,b,c) f(x) by the formula

Dil(a,b,c) f(x) := sup |df∗
x(α ∧ β ∧ γ)|,

where α ∈ ΛaT ∗A with |α| ≤ 1, β ∈ ΛbT ∗B with |β| ≤ 1, and γ ∈ ΛcT ∗C with
|γ| ≤ 1.

If a + b + c = d then we can define the (a, b, c)-volume of f by Vol(a,b,c)(f) :=∫
Δ Dil(a,b,c) f(x)dx. We can define the (a,b,c)-volume of a chain by Vol(a,b,c)(

∑
cifi)

=
∑ |ci| Vol(a,b,c)(fi).

Lemma 6.1. If T is a d-chain in (MN , g), and M is a product manifold A×B×C with
a product Riemannian metric, then Vold T is comparable to

∑
a+b+c=d Vol(a,b,c)(T ).

Proof. It suffices to check that for each f : Δd → M and each x, Dild f(x) is
comparable to

∑
a+b+c=d Dil(a,b,c) f(x).

It follows from the definition that Dil(a,b,c) f(x) ≤ Dild f(x) for each (a, b, c),
because α ∧ β ∧ γ ∈ ΛdT ∗M and has norm ≤1.

On the other hand, if ω is an element of ΛdT ∗M with |ω| ≤ 1, then we can
expand ω as a sum of C(N) terms αi ∧ βi ∧ γi, where αi ∈ ΛaiT ∗A, βi ∈ ΛbiT ∗B,
etc., and |αi|, |βi|, |γi| ≤ 1. Therefore, Dild f(x) ≤ C(N)

∑
a+b+c=d Dil(a,b,c) f(x). �

It’s worth mentioning the special case of polyhedral chains. Suppose first that
we triangulate A, B, and C, and take the product polyhedral structure on M . Then
each d-cell of the structure is a product of simplices Δa ×Δb ×Δc with a+b+c = d,
where Δa ⊂ A, etc. So each d-cell can be assigned a “direction” (a, b, c) telling how



1830 L. GUTH GAFA

many dimensions of the cell come from A, from B, and from C. A polyhedral d-
chain is a linear combination of these d-cells. Since we are working mod 2, we can
think of a polyhedral d-chain as just a subset of these cells. The (a, b, c)-volume of a
polyhedral chain is just the total volume of all d-cells in T with “direction” (a, b, c).

The directed volumes Vol(a,b,c)(T ) behave well with respect to product maps.

Lemma 6.2. Suppose M1 = A1 × B1 × C1 and M2 = A2 × B2 × C2 are Riemannian
products. Suppose that Φ : M1 → M2 is a product of maps Φ = ΦA × ΦB × ΦC ,
where ΦA : A1 → A2, etc. Suppose that T is a d-chain in M1 and that a+ b+ c = d.

Then Vol(a,b,c)(Φ(T )) ≤ (Dila ΦA)(Dilb ΦB)(Dilc ΦC) Vol(a,b,c)(T ).

Proof. It suffices to prove this inequality for a map f : Δd → M1. It suffices to prove
that Dil(a,b,c)(Φ◦f)(x) ≤ (Dila ΦA)(Dilb ΦB)(Dilc ΦC) Dil(a,b,c) f(x). Let α ∈ ΛaT ∗A2

with |α| ≤ 1 and analogously β and γ.

|d(Φ ◦ f)∗
x(α ∧ β ∧ γ)| = |df∗

x(α′ ∧ β′ ∧ γ′)|,

where α′ = dΦ∗
Aα, and analogously β′ and γ′. Now |α′| ≤ Dila ΦA, and analogously

|β′| and |γ′|. Therefore,

|df∗
x(α′ ∧ β′ ∧ γ′)| ≤ (Dila ΦA)(Dilb ΦB)(Dilc ΦC) Dil(a,b,c) f(x). �

Finally, we adapt this idea to twisted products ΓiS
n. The double cover of ΓiS

n

is Si × Sn × Sn. We take the product of unit sphere metrics on Si × Sn × Sn. We
can define the (a, b, c)-volume of a chain in Si × Sn × Sn. Let I be the involution of
Si × Sn × Sn defined by

I(θ, x1, x2) = (−θ, x2, x1).

Recall that ΓiS
n is the quotient of Si×Sn×Sn by the involution I. The antipodal

map on Si has no effect on directional volumes. Switching the two Sn factors does.
So we see that Vol(a,b,c)(I(T )) = Vol(a,c,b)(T ). Therefore, in ΓiS

n we cannot make a
meaningful distinction between Vol(a,b,c) and Vol(a,c,b). But except for this ambiguity,
we can define directional volumes. For a chain T in ΓiS

n, let T̃ denote the double
cover of T in Si × Sn × Sn and define

Vol(a,b,c)(T ) := (1/2) Vol(a,b,c)(T̃ ) = (1/2) Vol(a,c,b)(T̃ ).

The directed volumes behave well with respect to the maps ΓiF .

Lemma 6.3. If F : Sm → Sn, and T is a d-chain in ΓiS
m, then

Vol(a,b,c) ΓiF (T ) ≤ Dilb(F ) Dilc(F ) Vol(a,b,c)(T ).
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Proof. Let T̃ be the double cover of T in Si × Sm × Sm. Then the double cover of
ΓiF (T ) is (id×F ×F )(T̃ ). Therefore, Vol(a,b,c) ΓiF (T ) is bounded by (1/2) Vol(a,b,c)

(id×F ×F )(T̃ ). By Lemma 6.2, this is ≤ (1/2) Dilb(F ) Dilc(F ) Vol(a,b,c) T̃ = Dilb(F )
Dilc(F ) Vol(a,b,c) T . �

We introduced this language because the directed volumes of Z(F ) are related
to the k-dilation of F .

Proposition 6.4. Let F : Sm → Sn be a C1 mapping and let Z(F ) be the mod
2 cycle in ΓiS

n defined in Section 5.1. (Recall that i = 2n − m − 1.) Then the
directional volumes of Z(F ) are bounded by the following inequality.

Vol(a,b,c)(Z(F )) ≤ C(m) Dilb(f) Dilc(f).

Proof. Recall that Z(F ) is ΓiF (Z0)+ν, where Z0 is a 2n-chain in ΓiS
m and ν is a 2n-

chain with zero volume. The chain ν contributes zero directed volume in any direc-
tion. Using Lemma 6.3, we see that Vol(a,b,c)(Z(F )) ≤ Dilb(F ) Dilc(F ) Vol(a,b,c)(Z0).
But Z0 is independent of F , and so Vol(a,b,c)(Z0) ≤ C(m). �

Estimating all the directed volumes of Z(F ) allows us to estimate its total vol-
ume.

Corollary 6.5. If Dilm+1−n(F ) ≤ 1, then the volume of Z(F ) is bounded as fol-
lows:

Vol Z(F ) < C(m) Dilm+1−n(F )
m+1

m+1−n .

Proof. The possible directed volumes of Z(F ) are given by directions (a, b, c) where
a + b + c = 2n, and a ≤ 2n − m − 1, b ≤ n, and c ≤ n. From the first inequality,
we see that b + c ≥ m + 1. Since b, c ≤ n we conclude that b and c are each at least
m+1−n. Let D = Dilm+1−n(F )

1
m+1−n . Then Dilb(F ) ≤ Db for all b ≥ m+1−n (by

Proposition 2.4). So for every (a, b, c), Vol(a,b,c)(Z(F )) ≤ C(m)DbDc. Since D ≤ 1,
this quantity is ≤C(m)Dm+1, which is the right-hand side. Since every directed
volume obeys the desired bound, so does the total volume. �

Our bound for the volume of Z(F ) has the following corollary connecting SH(F )
with some k-dilations of F .

Corollary 6.6. If the Steenrod Hopf invariant SH(F ) is non-zero, then Dilm+1−n

(F ) ≥ c(m) > 0.

Proof. If Dilm+1−n(F ) is very small, then the volume of Z(F ) is very small. By
the Federer–Fleming deformation theorem it follows that Z(F ) is null-homologous.
Hence SH(F ) = 0. �

This estimate is much weaker than the one we want to prove, but it still has some
content. For example, if F is a homotopically non-trivial map from Sm to Sm−1,
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then the corollary says that Dil2(F ) is bounded below. The sharp theorem says that
Dilk(F ) is bounded below for k ≤ m+1

2 . The corollary gives the sharp value of k
when m = 3 or 4, but not when m ≥ 5. If we look at a map from Sm to Sm−3,
with non-trivial Steenrod–Hopf invariant, then the corollary says that Dil4(F ) is
bounded below. The theorem says that Dilk(F ) is bounded below for all k ≤ m+1

2 .
The corollary gives the sharp value of k when m = 7, 8, but not when m ≥ 9.

This corollary includes our first new lower bound on k-dilation: a map F : S8 →
S5 with non-zero Steenrod–Hopf invariant must have Dil4(F ) ≥ c > 0.

Now we suppose that Dilk(F ) is tiny for some k ≤ (m + 1)/2, and we wish to
prove that Z(F ) is null-homologous. We cannot bound the total volume of Z(F ),
but we can bound the volume in some directions.

Lemma 6.7. Suppose that Dilk(F ) ≤ 1. If b and c are each ≥ k, then the directed
volume Vol(a,b,c) Z(F ) is �Dilk(F )2.

Proof. By Proposition 6.4, the directed volume Vol(a,b,c) Z(F ) is � Dilb(F ) Dilc(F ).
Since b, c ≥ k, we know that Dilb(F )1/b ≤ Dilk(F )1/k (by Proposition 2.4). Since
Dilk(F ) ≤ 1, we see that Dilb(F ) and Dilc(F ) are both ≤Dilk(F ). �

We call a direction (a, b, c) bad if |b−c| ≤ 1 and good if |b−c| ≥ 2. If k ≤ (m+1)/2,
then the directed volume of Z(F ) in the bad directions is controlled by the following
lemma.

Lemma 6.8. If k ≤ (m + 1)/2, and if (a, b, c) is a bad direction in ΓiS
n, then b and

c are ≥ k. Therefore, if Dilk F ≤ 1, then

Vol(a,b,c)(Z(F )) � Dilk(F )2.

Proof. Once we know that b, c ≥ k, then the estimate follows from Lemma 6.7. Since
Z(F ) is a cycle of dimension 2n, a + b + c = 2n. We know that a ≤ i = 2n − m − 1.
Therefore, b + c ≥ m + 1. Since (a, b, c) is a bad direction, |b − c| ≤ 1. It is just an
elementary computation to check that b and c are at least k.

There are two cases depending on whether m is even or odd.
If m is even, then k ≤ m/2. We know that 2b + 1 ≥ b + c ≥ m + 1, and we see

that b ≥ m/2 ≥ k. By a symmetrical argument, c ≥ k.
If m is odd, and b + c = m + 1, then we must have b = c. In this case, b = c =

(m+1)/2 ≥ k. If m is odd and b+c ≥ m+2, then we see that 2b+1 ≥ b+c ≥ m+2,
and so b ≥ (m + 1)/2 ≥ k. By a symmetrical argument, c ≥ k. �

We know that Z(F ) has only a small volume in bad directions, and we want to
prove that Z(F ) is null-homologous. As a toy problem, let’s consider a polyhedral
2n-cycle X with zero volume in the bad directions. The next proposition shows that
such a cycle is null-homologous. To make the situation precise, suppose we choose
any triangulation of Sn. Then let us choose any triangulation of Si which is invariant
with respect to the antipodal map. Taking the product, we get a polyhedral structure
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on Si × Sn × Sn which is invariant with respect to our involution I(θ, x1, x2) =
(−θ, x2, x1). So it descends to give a polyhedral structure on ΓiS

n. Each face in
the polyhedral structure has a direction (a, b, c) well defined up to the equivalence
(a, b, c) ∼ (a, c, b). Each face is either good or bad (because |b − c| ≤ 1 if and only if
|c − b| ≤ 1).

Proposition 6.9. Let X be a polyhedral (2n)-cycle in ΓiS
n which does not contain

any 2n-faces in bad directions. Then X is homologically trivial.

Proof. Let X̃ be the double cover of X in Si × Sn × Sn. So X̃ is a polyhedral cycle
with no faces in the bad directions. The good directions (a, b, c) all have b �= c, so we
can divide them into two categories: the directions where b < c, and the directions
where b > c. We let X̃1 be the chain given by adding all the faces of X̃ where b < c,
and we let X̃2 be the chain given by adding the faces where b > c. So X̃ = X̃1 + X̃2.

Now comes the crucial point. Because of the estimate |b − c| ≥ 2 for good di-
rections, the boundaries ∂X̃1 and ∂X̃2 are disjoint! If we consider a face �1 in X̃1

lying in direction (a1, b1, c1), then we know that b1 ≤ c1 − 2. Now consider a face
of ∂�1, and say that it lies in direction (ā1, b̄1, c̄1). The vector (ā1, b̄1, c̄1) can be
found by taking (a1, b1, c1) and subtracting 1 from one of the three entries. There-
fore, b̄1 < c̄1. We repeat the analysis for a face �2 in X̃2. It has direction (a2, b2, c2)
with b2 ≥ c2 +2. A face in the boundary of �2 has direction (ā2, b̄2, c̄2), and b̄2 > c̄2.
Hence ∂X̃1 and ∂X̃2 have no faces in common. Since ∂X̃1 + ∂X̃2 = ∂X̃ = 0, we see
that X̃1 and X̃2 are each cycles!

Now X̃ is a double cover of X. Each face of X lifts to two faces of X̃, one lying
in X̃1 and one lying in X̃2. For example, if X is 8-dimensional, a face of X in the
direction (2, 2, 4) = (2, 4, 2) lifts to two faces of X̃ ⊂ S2 × S4 × S4, one in direction
(2, 2, 4) and one in direction (2, 4, 2). So we see that the projection of X̃1 onto X is
a degree 1 map.

But it’s easy to check that X̃1 is null-homologous in Si × Sn × Sn. Since X̃1 has
dimension 2n, and i < n, X̃1 could be homologically non-trivial only if its projection
to Sn×Sn had non-zero degree. But X̃1 is a (2n)-cycle with no volume in the (0, n, n)
direction—so its projection to Sn × Sn has measure zero. �

The cycle X in the last proposition had no volume in the bad directions. Our
actual cycle Z(F ) has a small but non-zero volume in the bad directions. The propo-
sition does not directly apply to Z(F ), but one may still hope that Z(F ) is rather
similar to X. In the next two sections, we will modify the above argument to show
that Z(F ) is homologically trivial.

The key point in the proof of Proposition 6.9 was that the double cover of X split
into separate cycles X̃1 and X̃2. The double cover of Z(F ) will not literally split into
two separate cycles. Instead, the double cover will look like two large pieces joined
by a thin bridge. We will have to prove a suitable estimate about the shape of the
bridge.

The estimate on the shape of the bridge involves fairly hard work. I made some
attempt to find a softer argument. For example, I tried to find a way to approximate
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the cycle Z(F ) by a polyhedral cycle X with no volume in the bad directions. But
I couldn’t find any way to do this. It’s still not clear to me whether this fairly hard
work is necessary. . .

In the next section, we formulate an inequality—called the perpendicular pair
inequality—that allows us to control the geometry of the thin bridge.

7 Perpendicular Pair Inequality

Perpendicular Pair Inequality. Suppose that z and w are mod 2 (n − 1)-cycles
in R

N , and suppose that y is an n-chain with ∂y = z + w. Finally, suppose that z
and w are “perpendicular” to each other in the following sense: for any coordinate
(n − 1)-tuple J , either VolJ(z) = 0 or VolJ(w) = 0.

Then, we can find a chain y′ with ∂y′ = z and with Hausdorff content HCn(y′) ≤
C(n, N) Voln(y).

In addition, y′ lies in the R-neighborhood of z for R ≤ C(n, N) Voln(y)1/n.

The directed volume VolJ(z) is defined in Section 6.
It’s an open question whether we can bound the volume of y′ by C(n, N) Voln(y).

A bound on the Hausdorff content is weaker than a bound on the volume. For our
application to k-dilation estimates, this Hausdorff content estimate turns out to be
just as useful as a volume estimate would have been.

Here is an outline of this section. First we give a review of Hausdorff content.
In particular, we prove that a cycle with sufficiently small Hausdorff content is
homologically trivial. Next we give the proof of our k-dilation lower bound using
the perpendicular pair inequality. At the end, we give some more context for the
perpendicular pair inequality by comparing it with an open problem in geometric
measure theory raised by L. C. Young in the early 60’s.

We prove the perpendicular pair inequality in the next section.

7.1 Review of Hausdorff Content. Let E be a subset of Euclidean space
R

N or of some Riemannian manifold. The Hausdorff contents of E measure how
difficult it is to cover E with balls. To compute the d-dimensional Hausdorff content
of E, denoted HCd(E), we consider all covers of E by (countably many) balls:
E ⊂ ∪iB(xi, Ri). The “cost” associated to a given cover is

∑
i R

d
i . The infimal cost

over all covers is the d-dimensional Hausdorff content of E.
In our case E will be an n-dimensional chain or cycle. The Hausdorff content

obeys HCn(E) ≤ C(n) Voln(E), which one proves by covering E by small balls. On
the other hand, the Hausdorff content of E may be much smaller than the volume,
especially if E is “crumpled up” so that a medium ball can cover a large volume of
E.

There is a version of the Federer–Fleming deformation theory using Hausdorff
content in place of volume. We need the following result:
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Proposition 7.1. Let (MN , g) be a compact Riemannian manifold. For any dimen-
sion n ≤ N , there is a constant ε > 0, depending on MN , g, and n, such that every
n-cycle z in M with HCn(z) < ε is homologically trivial. (The proposition holds for
homology with any coefficients.)

Proof. The proof is based on the Federer–Fleming pushout lemma—adapted to
Hausdorff content. �

Lemma 7.2. Let ΔN denote a unit equilateral Euclidean simplex, and let E ⊂ Δ
denote a set. For each point p in the interior of Δ, let πp denote the outward radial
projection from Δ−{p} to ∂Δ. Let Δ1/2 ⊂ Δ denote a concentric simplex of one half
the side-length, centered at the center of mass of Δ. For any dimension 0 ≤ d ≤ N ,
the following inequality holds

Averagep∈Δ1/2
HCd[πp(E \ {p})] ≤ C(N) HCd(E).

Also, if HCd(E) is sufficiently small, then we can choose p outside of E so that

HCd[πp(E)] ≤ C(N) HCd(E).

Proof. If d > N − 1, then HCd(∂Δ) = 0, and the inequality is trivially true. So we
can assume d ≤ N − 1.

Let {B(xi, Ri)} denote any cover of E with balls. Let p ∈ Δ1/2. Consider a
ball B(x, R) and define the radius R′ = C(N) Dist(p, x)−1R. We claim that if
C(N) is large enough, then the outward projection πp[B(x, R) \ {p}] is contained in
B(πp(x), R′).

First we consider the case that Dist(p, x) ≤ 10R. In this case, R′ > 1, and so
B(x′, R′) contains ∂Δ ⊃ πp[B(x, R) \ {p}]. So we can now suppose that Dist(p, x) >
10R.

Let y ∈ B(x, R) σ ⊂ B(x, R) be a segment from x to y. Then πp(σ) is a (piecewise
smooth) curve in ∂Δ from πp(x) to πp(y). We will prove that the length of πp(σ) is
≤R′. Suppose that z and z′ are on σ and that πp(z) and πp(z′) lie in the same (N−1)-
face F ⊂ ∂ΔN . It suffices to prove that Dist(πp(z), πp(z′)) � Dist(p, x)−1 Dist(z, z′).

Consider the triangle T with vertices p, πp(z), and πp(z′). The angle of T at the
vertex p is the angle between the rays [p, z] and [p, z′]. Because z, z′ ∈ B(x, R) and
Dist(p, x) ≥ 10R this angle is �Dist(p, x)−1 Dist(z, z′). The lengths of all sides of
T are �1. Because p ∈ Δ1/2 the segments [p, πp(z)] and [p, πp(z′)] hit the face F at
an angle � 1. Therefore, the other two angles of T are each � 1. It now follows by
trigonometry that the length of [πp(z), πp(z′)] is at most a constant factor times the
angle at the vertex p. This proves the desired bound.

Now let B(x, R) be a ball, and let R′ = C(N) Dist(x, p)−1R, as above. Since
d ≤ N − 1,

Averagep∈Δ1/2
(R′)d = Averagep∈Δ1/2

C(N)Rd Dist(x, p)−d � Rd.
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Consider a covering of E by balls B(xi, Ri). This inequality holds for each ball
B(xi, Ri) in the covering. Therefore, the average value of

∑
i(R

′
i)

d is ≤C(N)
∑

i R
d
i .

And so the average value of HCd[πp(E \ {p})] is bounded by C ′(N) HCd(E).
If d ≤ N and HCd(E) is sufficiently small, then the measure of E is less than half

the measure of Δ1/2. Therefore, we can choose p ∈ Δ1/2 \ E so that HCd(πp(E)) ≤
C(N) HCd(E). �

Now we prove the proposition. Pick a triangulation of (MN , g). The metric g
restricted to each simplex is L-bilipschitz to the unit equilateral Euclidean simplex,
where L is a constant depending on (Mn, g). Let z ⊂ MN be an n-cycle with
HCn(z) < ε. We use the push-out lemma on each N -face of MN to homotope z
into the (N − 1)-skeleton of MN . Then we use it again on each (N-1)-face of M to
push z into the (N-2)-skeleton, and so on, until z is pushed into the n-skeleton. Each
homotopy may increase the n-dimensional Hausdorff content by a constant factor,
so we end with a cycle of Hausdorff content < Cε. Now if ε is too small, this cycle
does not cover any n-simplex of (MN , g), and so it is null-homologous.

7.2 The proof of the k-dilation lower bound. We now give the proof of the
k-dilation lower bound using the perpendicular pair inequality. We will prove the
perpendicular pair inequality in the next section.

Steenrod squares and k-dilation. Let F be a C1 map from Sm to Sn. If the
Steenrod–Hopf invariant SH(F ) is non-zero, and k ≤ (m + 1)/2, then Dilk(F ) ≥
c(m) > 0.

Proof. We recall the setup from Section 5.1. Let Z0 be any mod 2 chain in ΓiS
m with

boundary Diag(Sm) + Bouquet(Sm). Then ΓiF (Z0) is essentially a cycle Z(F ) in
ΓiS

n. According to Proposition 5.4, the homology class of Z(F ) determines SH(F ).
In particular, SH(F ) = 0 if and only if Z(F ) is null-homologous.

We fix k ≤ (m + 1)/2. We may assume that Dilk(F ) ≤ ε = ε(m). If ε is suf-
ficiently small, we have to show that SH(F ) = 0. It suffices to show that Z(F )
is null-homologous. In Section 6, we proved some estimates about the directed
volumes of Z(F ). According to Lemma 6.7, if b, c ≥ k, then Vol(a,b,c)(Z(F )) �
Dilk(F )2 � ε2. A direction (a, b, c) is called bad if |b − c| ≤ 1. According to Lemma
6.8, Vol(a,b,c)(Z(F )) � Dilk(F )2 � ε2 for each bad direction.

Also we showed in Proposition 6.9 that if X is a polyhedral 2n-cycle in ΓiS
n with

zero volume in the bad directions, then X is null-homologous. Our plan is to modify
the proof of Proposition 6.9. The main issue is that Z(F ) has a small but non-zero
volume in the bad directions. We will solve this main issue using the perpendicular
pair inequality. A minor issue is that Z(F ) is not a polyhedral cycle. In order to set
things up well, we have to slightly modify the definition of Z(F ) so it has something
like a polyhedral structure. We begin by doing this small modification.

Earlier, we didn’t think about how to choose Z0, but now let’s consider that point.
We will choose a triangulation of Sm and a Z2-invariant triangulation of Si. Taking



GAFA CONTRACTION OF AREAS VS. TOPOLOGY OF MAPPINGS 1837

the product of these, we get a Z2-invariant polyhedral structure on Si × Sm × Sm,
and taking the quotient gives a polyhedral structure on ΓiS

m.
Now it would be very convenient if we could choose Z0 to be a polyhedral chain

with respect to this polyhedral structure. But this is impossible, because Diag(Sm)
is not a polyhedral cycle, and ∂Z0 needs to be Diag(Sm) + Bouquet(Sm). The best
we can do is to write Z0 as a polyhedral chain plus a small chain.

For any δ > 0, we do the following construction. We choose a polyhedral structure
on ΓiS

m as above, using fine triangulations of Si and Sm. (The fine triangulation
needs to depend on δ.) Then we let Zδ be a 2n-chain with ∂Zδ = Diag(Sm) +
Bouquet(Sm), obeying the following estimates. The volume of Zδ is �1 (independent
of δ). Most of Zδ is polyhedral with respect to our triangulation. The remainder of
Zδ has volume ≤δ. In other words, Zδ = Z ′

δ + Z ′′
δ where Z ′

δ is polyhedral and Z ′′
δ

has volume ≤δ. We can find such a Zδ by taking a chain Z0 as above, choosing
sufficiently fine triangulations, and applying the deformation theorem.

As in Section 5.1, ΓiF (Zδ) is essentially a 2n-cycle in ΓiS
n. More precisely, the

boundary of ΓiF (Zδ) lies in the lower-dimensional set Bouquet(Sn) ∪ Diag(Sn).
Therefore, there is a 2n-chain νδ in ΓiS

n with volume zero and with ∂νδ = ∂
[ΓiF (Zδ)]. We define Zδ(F ) to be the sum ΓiF (Zδ)+ νδ. Now Zδ(F ) is a 2n-cycle in
ΓiS

n. Because Zδ is a chain with boundary Bouquet(Sm) + Diag(Sm), Proposition
5.4 says that Zδ(F ) is null-homologous if and only if SH(F ) = 0. Assuming ε and δ
are sufficiently small, we have to prove that Zδ(F ) is null-homologous.

The point of this small modification is that Zδ consists mostly of polyhedral
faces, and polyhedral faces are easier to analyze. Next we divide Zδ(F ) into pieces
in good and bad directions.

Recall that Zδ = Z ′
δ + Z ′′

δ , where Z ′
δ is polyhedral and Z ′′

δ has volume <δ. If
Q = Δa × Δb × Δc is a polyhedral face of ΓiS

m, we say that Q is good if |b − c| ≥ 2
and bad if |b − c| ≤ 1. (Here Δa is a simplex in Si, and Δb and Δc are simplices
in Sm.) We let Zδ(good) be the union of the good faces in Z ′

δ. We define G to be
ΓiF (Zδ(good)). The chain G is the “good part” of Zδ(F ). We define B = Zδ(F )−G.
So G and B are 2n-chains in ΓiS

n with Zδ(F ) = G + B. �
Lemma 7.3. If ε and δ are sufficiently small, then we can guarantee that Vol2n B is
as small as we like.

Proof. The chain B has a few pieces, but they are each easy to bound. We let Z ′
δ(bad)

be the union of all bad faces in Z ′
δ. Now B is equal to the following sum:

B = ΓiF (Z ′
δ(bad)) + ΓiF (Z ′′

δ ) + νδ.

The first term is the most interesting. If Q is a face in Z ′
δ(bad), then Q lies in

direction (a, b, c) with a + b + c = 2n and |b − c| ≤ 1. By Lemma 6.3, Vol ΓiF (Q) ≤
Dilb(F ) Dilc(F ) Vol(Q). Since Q is bad, Lemma 6.8 implies that b, c ≥ k. Now since
Dilk(F ) ≤ ε ≤ 1, we have Dilb(F ) Dilc(F ) ≤ ε2. Hence ΓiF (Z ′

δ(bad)) has volume
≤ε2 Vol Z ′

δ � ε2.
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The volume of ΓiF (Z ′′
δ ) ≤ Dil1(F )2nδ. By making δ sufficiently small, we can

make this term as small as we like.
Finally, νδ has volume zero. �
So our cycle Zδ(F ) has the form G + B, where G is a chain with volume only

in the good directions and B is small. Next we study the double cover of Zδ(F ). To
simplify the notation, we abbreviate Zδ(F ) by Z for the rest of the argument.

Now we consider the double cover Z̃ ⊂ Si ×Sn ×Sn. We have Z̃ = G̃+ B̃, where
G̃ is the double cover of G and B̃ is the double cover of B.

If Q is a face in Z ′
δ, then the double cover of Q in Si × Sm × Sm consists of two

faces, Q̃1 and Q̃2. Each of these faces is a product of simplices. Suppose that Q̃1 is
a product Δa1 × Δb1 × Δc1 with Δa1 ⊂ Si, Δb1 in the first copy of Sm, and Δc1 in
the second copy of Sm. Then the other preimage face, Q̃2, is I(Q̃1), where I is our
involution of Si × Sm × Sm. The face Q̃1 is in direction (a1, b1, c1), and the face Q̃2

is in direction (a2, b2, c2) = (a1, c1, b1).
If Q is a good face then |b1 − c1| = |b2 − c2| ≥ 2. By choosing our labels appro-

priately, we can assume that b1 ≤ c1 − 2 and b2 ≥ c2 + 2.
The chain G̃ in Si×Sn×Sn is a sum of contributions from the good faces Q ⊂ Z ′

δ

as follows:

G̃ =
∑

Q⊂Zδ,Q good

(id × F × F )(Q̃1) + (id × F × F )(Q̃2).

So we can divide G̃ into two pieces as follows.

G̃1 =
∑

Q⊂Zδ,Q good

(id × F × F )(Q̃1).

G̃2 =
∑

Q⊂Zδ,Q good

(id × F × F )(Q̃2).

Let us compare our situation with the situation in the proof of Proposition 6.9.
In Proposition 6.9, we have a polyhedral 2n-cycle X in ΓiS

n, with no volume in the
bad directions. We consider the double cover X̃ in Si × Sn × Sn, and we divide it
into pieces X̃ = X̃1 + X̃2, where X̃1 consists of the faces in good directions (a, b, c)
with b < c and X̃2 consists of faces in the good directions with c < b. The cycle Z is
analogous to X. The chains G̃1 and G̃2 are analogous to X̃1 and X̃2. The chain G̃1

lies only in good directions (a, b, c) with b < c, and the chain G̃2 lies only in good
directions (a, b, c) with c < b. But the situation is more complicated because Z has
a small non-zero volume in bad directions. So we have Z̃ = G̃1 + G̃2 + B̃, and we
know that B̃ has small volume.

In the proof of Proposition 6.9, the crucial point was that X̃1 and X̃2 were each
cycles. In our case, G̃1 and G̃2 are not cycles. Instead, I like to imagine Z̃ as two
large pieces (G̃1 and G̃2) connected by a thin bridge (B̃). We would like to cut out
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B̃ and separately cap off G̃1. In other words, we would like to find a small chain Y1

so that G̃1 +Y1 make a cycle. Then we can use this cycle the way we used X̃1 in the
proof of Proposition 6.9.

This is the most delicate part of our argument. We already know that B̃ has
small volume, but this is not enough to be able to find a small Y1. For example,
imagine that Z̃ was a large sphere, B̃ was a small neighborhood of the equator, G̃1

was the part of the Northern hemisphere to the North of B̃ and G̃2 was the part
of the Southern hemisphere to the South of B̃. Then B̃ may have arbitrarily small
volume, and yet the boundary of G̃1 cannot be filled in with a small chain. In order
to find a small cap Y1, we need more geometric information than just a bound on
the volume of B̃.

The key point is that ∂G̃1 and ∂G̃2 are perpendicular, which allows us to apply
the perpendicular pair inequality. The perpendicular pair inequality exactly gives us
the small chain Y1 that we need.

Here are the details. We consider Si × Sn × Sn ⊂ R
i+1 × R

n+1 × R
n+1 = R

N .
So we can think of B̃, ∂G̃1, ∂G̃2, etc. as chains and cycles in R

N . We have to check
that ∂G̃1 and ∂G̃2 are perpendicular in the sense defined in the perpendicular pair
inequality.

If J is a set of numbers from 1 to N , let a(J) denote the number of directions
in J from the first factor R

i+1, let b(J) denote the number of directions of J from
the second factor R

n+1, and let c(J) denote the number of directions in J from the
third factor R

n+1.

Lemma 7.4. If T0 is a d-chain in Si × Sm × Sm, and T = (id × F × F )(T0) ⊂ R
N =

R
i+1 × R

n+1 × R
n+1, then

VolJ(T ) ≤ Dilb(J)(F ) Dilc(J)(F ) Vol(a(J),b(J),c(J))(T0).

Proof. Consider the product structure R
N = R

i+1×R
n+1×R

n+1. Using this product
structure, we can define Vol(a,b,c)(T ) for a d-chain T in R

N .
The directed volume VolJ T ≤ Vol(a(J),b(J),c(J))(T ), which follows by plugging in

the definitions.
Applying Lemma 6.2, we see that

Vol(a(J),b(J),c(J))(T ) ≤ Dilb(J)(F ) Dilc(J)(F ) Vol(a(J),b(J),c(J))(T0). �

Lemma 7.5. Let Δa × Δb × Δc be a face of our triangulation of Si × Sm × Sm. If
VolJ(id × F × F )(Δa × Δb × Δc) > 0, then a(J) = a, b(J) = b, and c(J) = c.

Proof. Note that Vol(a′,b′,c′)(Δa ×Δb ×Δc) > 0 only if (a′, b′, c′) = (a, b, c). Applying
the previous lemma finishes the argument. �

The boundary of G̃1 is the sum
∑

Q(id × F × F )(∂Q̃1), where the sum goes over
all the good faces Q ⊂ Zδ. Pick a particular face Q̃1, lying in direction (a1, b1, c1)
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with b1 ≤ c1 − 2. Suppose a face of ∂Q̃1 has direction (ā1, b̄1, c̄1). The direction
(ā1, b̄1, c̄1) is obtained by subtracting 1 from one of the three entries in the vector
(a1, b1, c1). Therefore, b̄1 < c̄1. So if VolJ(∂G̃1) > 0, then we must have b(J) < c(J).
But by the same argument, if VolJ(∂G̃2) > 0, then we must have b(J) > c(J). For
any (2n−1)-tuple J , either VolJ(∂G̃1) = 0 or VolJ(∂G̃2) = 0. So the two cycles ∂G̃1

and ∂G̃2 are perpendicular in the sense of the perpendicular pair inequality.
Now we can apply the perpendicular pair inequality. We let ∂G̃1 and ∂G̃2 play the

roles of z and w, and we let B̃ play the role of y. The hypotheses of the perpendicular
pair inequality are satisfied because ∂G̃1 and ∂G̃2 are perpendicular and ∂B̃ =
∂G̃1 + ∂G̃2. Also note that Vol2n(B̃) is as small as we like. The perpendicular pair
inequality tells us that there is a chain Y ⊂ R

N with HC2n(Y ) as small as we like
and ∂Y = ∂G̃1. The chain Y may not be contained in Si × Sn × Sn, but it is
contained in the R-neighborhood of Si × Sn × Sn for R � Vol2n(B̃)

1
2n . Since R is

tiny, we may retract Y into Si × Sn × Sn without changing its Hausdorff content
much. Hence there is a mod 2 chain Y1 ⊂ Si × Sn × Sn with HC2n(Y1) tiny and
∂Y1 = ∂G̃1.

Now we let Z̃1 = Y1 + G̃1. We note that Z̃1 is a mod 2 (2n)-cycle in Si ×Sn ×Sn.
We claim that the cycle Z̃1 is homologically trivial in Si × Sn × Sn. Since Z̃1 is a
(2n)-cycle, we just have to check that its projection to Sn ×Sn has degree zero. The
projection of G̃1 to Sn × Sn has measure zero, because the direction (0, n, n) is a
bad direction. On the other hand, Y1 has tiny (2n)-dimensional Hausdorff content,
so the projection of Y1 to Sn × Sn has tiny volume. Hence the projection of Z̃1 to
Sn × Sn is not surjective and has degree zero. So we see that Z̃1 is homologically
trivial in Si × Sn × Sn.

Now let π : Si × Sn × Sn → ΓiS
n be the double cover map. Clearly π(Z̃1) is

homologically trivial. Now we break up the original cycle Zδ(F ) = Z as a sum of
cycles: Z = π(Z̃1)+

(
Z − π(Z̃1)

)
. The first summand is homologically trivial. Recall

that Z = G + B. Now π(Z̃1) = π(G̃1 + Y1) = G + π(Y1). So Z − π(Z̃1) = B − π(Y1).
The chain B has tiny volume and the chain π(Y1) has tiny 2n-dimensional Hausdorff
content. Hence Z−π(Z̃1) has tiny 2n-dimensional Hausdorff content. By Proposition
7.1, it follows that Z − π(Z̃1) is null-homologous. Therefore Z = Zδ(F ) is null-
homologous. Therefore SH(F ) = 0.

7.3 Context for the perpendicular pair inequality. The perpendicular pair
question is similar to a well-known open problem raised by L. C. Young in the
1960s. In [You63], Young constructed an integral 1-cycle z in R

4 with the following
surprising property. There is an integral 2-chain y with ∂y = 2z and with area 2,
but any integral chain y′ with ∂y′ = z has area strictly bigger than 1. In fact, any
integral chain y′ with ∂y′ = z has area > 1.3. Notice that y/2 is a real chain with
∂(y/2) = z and with mass 1. But in Young’s example, any integral chain y′ with
∂y′ = z has mass > 1.3 > 1 = Mass(y/2).

Young raised the question of how large this effect could be.
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Young’s problem. Suppose that z is an integral (n− 1)-cycle in R
N . Suppose that

y is an integral n-chain with ∂y = 2z. Does it follow that there is another integral
chain y′ with ∂y′ = z and Mass(y′) ≤ C(n, N) Mass(y)?

The perpendicular pair problem looks similar to Young’s problem. We can put
them in a common framework as follows. Suppose that ∂y = z − w. Can we find a
chain y′ with ∂y′ = z and with the size of y′ comparable to the size of y? In general,
the answer is certainly no. For example, we may have z = w and y = 0. But if z and w
are very different from each other, it seems intuitive that filling z and w separately
may be approximately as good as filling z − w. In Young’s problem, w = −z. In
the perpendicular pair problem, we know that w and z are perpendicular. We can
formulate a version of Young’s problem for perpendicular pairs.

Perpendicular Pair Problem. Suppose that z and w are (integral or mod 2)
(n − 1)-cycles in R

N , and suppose that y is an n-chain with ∂y = z + w. Finally,
suppose that z and w are “perpendicular” to each other in the following sense: for
any coordinate (n − 1)-tuple J , either VolJ(z) = 0 or VolJ(w) = 0.

Does it follow that there is a chain y′ with ∂y′ = z and Voln(y′) ≤ C(n, N)
Voln(y)?

It seems to me that these problems are closely related. Young’s problem is diffi-
cult, and I believe that the perpendicular pair problem is difficult also.

8 Proof of the Perpendicular Pair Inequality

In this section, we prove the perpendicular pair inequality. First we recall the state-
ment.

Perpendicular Pair Inequality. Suppose that z and w are mod 2 (n − 1)-cycles
in R

N , and suppose that y is an n-chain with ∂y = z + w. Finally, suppose that z
and w are “perpendicular” to each other in the following sense: for any coordinate
(n − 1)-tuple J , either VolJ(z) = 0 or VolJ(w) = 0.

Then, we can find a chain y′ with ∂y′ = z and with HCn(y′) ≤ C(n, N) Voln(y).
Also, y′ lies in the R-neighborhood of z for R ≤ C(n, N) Voln(y)1/n.

This inequality can probably be extended to integral cycles or mod p cycles, but
we only need the mod 2 case. Focusing on mod 2 makes the exposition a little bit
cleaner, because we don’t have to keep track of signs.

8.1 The thick region. For any number α > 0, and any ball B = B(x, R) ⊂ R
N ,

we say that y is α-thick in B if Vol(y∩B) ≥ αRn. Otherwise, we say that y is α-thin
in B. Now the thick region Tα(y) is defined to be the union of all the balls B where
y is α-thick.

A standard covering argument shows that Tα(y) has controlled Hausdorff content.
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Lemma 8.1. For any α > 0,

HCn[Tα(y)] ≤ 5nα−1 Voln(y).

Proof. The set Tα(y) is the union of all thick balls. By the Vitali covering lemma,
we can find disjoint thick balls Bi so that 5Bi covers Tα(y). Hence HCn(Tα(y)) is
bounded by

∑
i(5Ri)n, where Ri denotes the radius of Bi. But since each Bi is α

thick, Rn
i ≤ α−1 Vol(y ∩ Bi). Since the Bi are disjoint, we see that

∑
i(5Ri)n ≤

5nα−1 Vol(y). �
8.2 Outline of the construction. Our construction is based on applying the
deformation theorem to z at a dyadic sequence of scales.

By a minor approximation argument, we can reduce to the case that z, w, and
y are all cubical chains in the cubical lattice with some tiny scale s0. We give this
approximation argument in Section 8.11. For now, we give the proof of the perpen-
dicular pair inequalities for the case of cubical chains.

Then we consider a dyadic sequence of scales si = 2is0. We use the deformation
theorem to deform z to a cubical cycle at each scale. We let zi be a Federer–Fleming
deformation of z at scale si. (So z itself is z0.) Each cycle zi is a finite sum of cubical
(n−1)-faces of the lattice with side length si. We will prove that when i is sufficiently
large, zi is just the zero cycle. Let us define ifinal so that zifinal

= 0.
Next we build a sequence of n-chains Ai with ∂Ai = zi−1 − zi. We define the

chain y′ as y′ =
∑ifinal

i=1 Ai. An easy calculation shows that ∂y′ = z0 − zifinal
= z.

Our main goal is to do this construction in such a way that each zi and each
Ai is contained in Tα(y), for some α > 0 depending only on the dimension N .
(This requires a slightly modified version of the Federer–Fleming deformation theory
adapted to the situation.) Then the Hausdorff content of y′ will be bounded by the
Hausdorff content of Tα(y) � Voln(y).

This outline is based on arguments from [You]. In [You], R. Young uses a mul-
tiscale argument of this type to prove isoperimetric inequalities on the Heisenberg
group.

In this section we write A � B to mean A ≤ C(N)B.

8.3 Intersection number lemma. In this section, we use the perpendicular
hypothesis to bound some intersection numbers.

Let R denote a rectangle of dimension N − n + 1 parallel to the coordinate axes.
If z is transverse to R, then we can define the mod 2 intersection number [z∩R] ∈ Z2

as the number of points in the intersection z ∩ R taken modulo 2.

Intersection number lemma. Let α > 0 and s > 0 be any numbers. Let z and w
be a perpendicular pair of (n − 1)-cycles. Let ∂y = z + w. Let R0 be an axis parallel
rectangle with dimension N − n + 1. Suppose that the sidelengths of R0 are at most
s.

Let v be a vector of length at most s, and let Rv denote the translation of R0 by
v. We will pick a possible translation vector v ∈ BN (s) randomly (with respect to
the usual volume form on the ball).
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Suppose that the ball around the center of R0 with radius Ns is α-thin. Then the
intersection number [z ∩ Rv] is equal to 0 most of the time. More precisely, the set
of vectors v ∈ BN (s) so that [z ∩Rv] �= 0 has probability measure at most C(n, N)α.

Proof. The intersection number [(z + w) ∩ Rv] is equal to the intersection number
[y ∩ ∂Rv]. The boundary ∂Rv consists of 2N−n+1 faces, which are each rectangles
contained in the ball of radius Ns around the center of R0. Since y is small, it is
usually disjoint from all these faces. By standard integral geometry, the probability
that y intersects any of the faces of ∂Rv is ≤C(n, N)α.

Here are details of the integral geometry argument. Let F denote a face of the
boundary of R0. Let Fv denote the translation of F by v, which is a face of the
boundary of Rv. Let F⊥ denote the plane perpendicular to F and let π denote the
orthogonal projection from R

N to F⊥. The projection π(Fv) is a single point. Let B
denote the ball of radius Ns around the center of R0. All faces Fv are contained in
this ball. By assumption, the volume of y ∩B is at most C(n, N)αsn. Therefore, the
projection π(y ∩ B) has volume at most C(n, N)αsn. Now if y intersects Fv, then
the point π(Fv) must lie in π(y ∩ B). We note that π(Fv) is just π(F ) + π(v). So Fv

intersects y only if π(v) is contained in the small set π(y ∩ B) − π(F ). The set of v
obeying this condition has probability at most C(n, N)α.

With high probability, 0 = [y ∩ ∂Rv] = [(z + w) ∩ Rv] = [z ∩ Rv] + [w ∩ Rv].
But the two intersection numbers [z ∩ Rv] and [w ∩ Rv] can (almost) never cancel
because z and w are perpendicular cycles. Let J denote the n−1 coordinates that are
perpendicular to R0. Note that if VolJ(z) = 0, then z is disjoint from Rv for almost
every v. By the perpendicularity assumption, we know that either VolJ(z) = 0 or
VolJ(w) = 0. Hence either [z ∩ Rv] = 0 for almost every v or else [w ∩ Rv] = 0 for
almost every v.

Therefore, [z ∩ Rv] = 0 except with probability C(n, N)α. �
8.4 The deformation operator. In this section, we review the Federer–
Fleming deformation operator. The deformation operator is defined in terms of in-
tersection numbers. Therefore, the intersection number lemma will allow us to prove
estimates about the deformations of z.

The Federer–Fleming construction is based on the skeleta of lattices and their
dual skeleta. Let Σ(s) be the cubical lattice at scale s in R

N . We let Σd(s) be the
d-skeleton of Σ(s).

Let Σ̄(s) be the dual cubical lattice. Here dual means that each vertex of Σ̄ is
the center of an N-face of Σ, while each vertex of Σ is the center of an N-face of
Σ̄. Each edge of Σ̄ passes through the center point of a unique (N-1)-face of Σ etc.
For any d-dimensional face F d ⊂ Σd, we let F̄N−d denote the corresponding (N-d)-
dimensional face of the dual skeleton Σ̄N−d. Note that F and F̄ always have the
same center point.

For a vector v, we let Σ̄v denote the translation of Σ̄ by v. If F is a d-face of Σd

and F̄ is the corresponding face of Σ̄, we let F̄v denote the translation of F̄ by the
vector v.
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With these two skeleta set up, we can define the Federer–Fleming deformation
operator. For each v, the deformation operator takes any d-chain T transverse to
Σ̄v, and outputs Dv(T ) a cubical d-chain contained in Σd. The deformation operator
is defined as follows:

Dv(T ) :=
∑

F d⊂Σd

[F̄N−d
v ∩ T ]F.

Recall that [F̄v ∩ T ] ∈ Z2 is the topological intersection number of F̄v and T .
The deformation Dv(T ) depends on the scale s. I think it would clutter the

notation too much to write something like Ds
v(T ). It will always be clear from the

context which scale s is being used.
We now recall some standard facts about the deformation operator. We review

the proofs of the standard facts in Section 14.4.

1. If |v| < s/2, and if T is a cubical d-chain in Σ(s), then Dv(T ) = T .
2. The deformation operator commutes with taking boundaries: Dv(∂T ) = ∂Dv(T ).

(provided that Σ̄v is transverse to both ∂T and T so that both sides of the
equation are defined.)

3. If we average over all |v|<s/2, then

Averagev Vold[Dv(T )] ≤ C(d, N) Vold(T ).

4. If T is a d-cycle, then we can build a (d+1)-chain Av(T ) in the C(N)s neighbor-
hood of T with ∂Av(T ) = T − Dv(T ). Moreover, if we average over all |v| < s/2,
then

Averagev Vold+1[Av(T )] ≤ C(d, N)sVold(T ).

The intersection number lemma gives some estimates about the cycle Dv(z).

Lemma 8.2. Let α > 0 be any number. Let F be a face of Σ(s). Suppose that F is
not contained in Tα(y). Then, as we consider all |v| < s/2, the probability that F is
contained in Dv(z) is at most C(n, N)α.

Proof. The face F is contained in Dv(z) if and only if the intersection number [F̄v∩z]
is non-zero. Since F is not contained in Tα(y), it follows that the ball around the
center of F with radius Ns is α-thin. The center of F is the same as the center
of F̄ , so the ball around the center of F̄ with radius Ns is α-thin. Now we apply
the intersection number lemma with F̄ playing the role of the rectangle R0. The
intersection number lemma implies that the probability that [F̄v ∩ z] �= 0 is at most
C(n, N)α. �

It would have been helpful if Dv(z) were completely contained in Tα(y) for some
dimensional constant α(N) > 0. We could then choose s = si and define zi = Dv(z),
and we would know that zi ⊂ Tα(y) for each i, accomplishing a big chunk of the
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plan laid out in the outline. Unfortunately, Lemma 8.2 is not strong enough to imply
this.

The problem is that just translating the lattice Σ̄ does not give us enough degrees
of freedom to find a deformation Dv(z) with all the properties that we would like.
We will improve the situation by moving each vertex of Σ̄(s) independently. This
will involve not just translating Σ̄ but bending it.

8.5 Federer–Fleming deformations using bent dual skeleta. Let Φ :
Σ̄(s) → R

n be a PL or piecewise smooth map. We call Φ a “bending” of the dual
skeleton. The deformation operator associated to Φ is a small modification of the
standard deformation operator.

DΦ(T ) :=
∑

F d⊂Σd(s)

[Φ(F̄ ) ∩ T ]F.

Notice that DΦ(T ) is a cubical chain in Σd(s)—we do not bend or translate Σ(s).
The deformation operator DΦ is defined as long as T is transverse to Φ(Σ̄).

Our next goal is to construct bending functions Φi : Σ̄(si) → R
N in such a way

that the deformations DΦi
(z) = zi are contained in the thick region Tα(y). This will

take some work. We record here an important property of the deformation operator
DΦ.

Lemma 8.3. The deformation operator DΦ commutes with boundaries. In other
words, if T is any d-chain, and Φ is transverse to both T and ∂T , then

∂DΦ(T ) = DΦ(∂T ).

Proof. From the formula for D(T ), we see that

∂D(T ) =
∑

F d⊂Σd(s)

[Φ(F̄ ) ∩ T ]∂F.

Consider a (d-1)-face G in Σd−1. Let F1(G), . . . , F2(N−d+1)(G) be the set of all
the d-faces of Σd(s) that contain G in their boundary. We can rewrite the formula
for ∂D(T ) as follows:

∂D(T ) =
∑

Gd−1⊂Σd−1(s)

⎛

⎝
2(N−d+1)∑

j=1

[Φ(Fj(G)) ∩ T ]

⎞

⎠G.

Now the first key point is that
∑2(N−d+1)

j=1 Fj(G) = ∂Ḡ. Therefore,

∂D(T ) =
∑

Gd−1⊂Σd−1(s)

[Φ(∂Ḡ) ∩ T ]G.

Since Φ is transverse to T , Φ(Ḡ) ∩ T is a 1-chain, and the boundary of Φ(Ḡ) ∩ T
consists of an even number of points. By transversality, the boundary of Φ(Ḡ) ∩ T
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is the union of Φ(∂Ḡ) ∩ T and Φ(Ḡ) ∩ ∂T . Therefore, [Φ(∂Ḡ) ∩ T ] = [Φ(Ḡ) ∩ ∂T ].
Substituting in, we get

∂D(T ) =
∑

Gd−1⊂Σd−1(s)

[Φ(Ḡ) ∩ ∂T ]G = D(∂T ). �

We have to construct useful bending maps Φi : Σ̄(si) → R
N . If a face F is not

in the thick region Tα(y), then we want [Φi(F̄ ) ∩ z] to vanish. We will prove this
vanishing using the intersection number lemma. To make this approach work, we
need Φi(F̄ ) to be a union of axis-parallel rectangles, with some translation freedom.
We set up a framework for this in the next subsection.

8.6 Local grids and bending maps. We can think of the cubical lattice at
scale s as the union of hyperplanes

{xj = sm}, j = 1, . . . , N, m ∈ Z.

We define a grid to be a union of coordinate hyperplanes (which may not be
evenly spaced). For example, if hj(m) are real numbers with hj(m) < hj(m + 1),
then we can form a grid by taking the union of all hyperplanes of the form {xj =
hj(m)}, for j = 1, . . . , N , and m ∈ Z. Any grid can be expressed in this way, for
some appropriate numbers hj(m). We say that the spacing of the gird is ≤S if
hj(m + 1) − hj(m) ≤ S for every j, m.

For example, we can make a grid by translating the hyperplanes in the cubical
lattice at scale s. Given a perturbation function p(j, m) ∈ [−1/4, 1/4], the corre-
sponding perturbed grid is given by the union of hyperplanes {xj = s(m+p(j, m))},
where again j = 1, . . . , N, m ∈ Z. Since |p(j, m)| ≤ 1/4, the spacing of this perturbed
grid is ≤(3/2)s.

We can also take the union of two grids, just by taking the union of all of the
hyperplanes. We say that one grid is contained in a second grid if each hyperplane
in the first grid is contained in the second grid.

We can think of a grid as a polyhedron, and talk about its vertices, its edges, its
faces, and so on.

Next we define a “local grid” for the complex Σ̄(s). A local grid is a function
G that assigns a grid to each face f (of any dimension) in Σ̄(s) in such a way that
if f1 ⊂ f2, then G(f1) ⊂ G(f2). In particular, if v1, . . . , v2d are the vertices of a d-
dimensional face f ⊂ Σ̄(s), then G(f) must contain ∪2d

i=1G(vi). We say that a local
grid G has spacing ≤S if each grid G(f) has spacing ≤S.

For any local grid, we can define a bending function Φ that behaves nicely with
respect to the grid.

Lemma 8.4. Let G be a local grid for Σ̄(s) with spacing ≤S. Then there is a function
Φ : Σ̄(s) → R

N with the following properties. For each d-dimensional face f of Σ̄(s),
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Φ(f) is contained in the d-skeleton of G(f). Moreover, as a chain, Φ(f) is equal to
a sum of d-faces of G(f).

Also, for any point x, |Φ(x) − x| ≤ 2N2S.

Proof. We define Φ one skeleton at a time. First we define Φ on the vertices of
Σ̄(s). Let v be a vertex of Σ̄(s). Since the spacing of G(v) is ≤S, we can choose a
point Φ(v) with |Φ(v) − v| ≤ Ns, by pushing v to the nearest vertex in G(v). Now
we will define Φ on higher-dimensional skeleta so that for each x in the d-skeleton,
|Φ(x) − x| ≤ (d + 1)NS.

Suppose we have defined Φ on the (d-1)-skeleton of Σ̄(s). We have to define Φ
on a d-face f ⊂ Σ̄(s). We have already defined Φ on ∂f . For each face fi of ∂f ,
we know that Φ maps fi into the (d-1)-skeleton of G(fi). Since G is a local grid,
the (d-1)-skeleton of G(fi) is contained in the (d-1)-skeleton of G(f). Therefore, Φ
maps ∂f into the (d-1)-skeleton of G(f). So we can extend Φ to f , mapping f into
the d-skeleton of G(f). As a chain, Φ(f) will be equal to a sum of d-faces of G(f).
By induction, we can assume that |Φ(x) − x| ≤ dNS for each x ∈ ∂f . It’s then
straightforward to arrange that |Φ(x) − x| ≤ dNS + NS for each x ∈ f . �
8.7 Good local grids. Next we will construct a good local grid Gi at each scale
si. The good feature of the local grid is that its faces don’t intersect z unnecessarily.

Lemma 8.5. For each scale i ≥ 1 and each vertex v ∈ Σ̄(si), we will construct a grid
Gi(v) with spacing ≤(1/100)N−2si.

For any face f in Σ̄(si), we define Gi(f) to be ∪v∈fGi(v).
We will also need some grids related to two consecutive scales, si−1 and si. If v

is a vertex of Σ̄(si), define Gi−1,i(v) to be the union of Gi(v) and Gi−1(w), for all
the vertices w ∈ Σ̄(si−1) which lie within Nsi of v. If f is a face of Σ̄(si), we define
Gi−1,i(f) to be the union of Gi−1,i(v) over all vertices v ∈ f .

There exists a constant β = β(N) > 0 so that the following holds.
If R is an (N − n + 1)-face of Gi(f) or Gi−1,i(f), and if R lies in the 4N2si-

neighborhood of f , then R will be transverse to z and it will obey the following key
estimate. Let Ball[R] be the ball centered at the center of R and with radius Nsi.

• If [z ∩ R] �= 0, then Voln(y ∩ Ball[R]) ≥ βsn
i .

Here is the heuristic explanation. If Voln(y ∩ Ball[R]) is very small, then the
intersection number lemma implies that a small random perturbation of R will
usually give [z ∩R] = 0. So by wiggling all the local grids a little bit, we can arrange
the key estimate at the end of the lemma.

The proof of the good local grids lemma is probabilistic, and it depends on the
following probability lemma.

Lemma 8.6. Suppose that X =
∏∞

i=1 Xi is a product of probability spaces. Suppose
that Bad ⊂ X is a union Bad = ∪Badα. Suppose that each set Badα has probability
less than ε. Suppose that each set Badα depends on <C1 different coordinates xi
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of the point x ∈ X. Suppose that each variable xi is relevant for <C2 different sets
Badα. If ε < (1/2)C−C1

2 , then Bad is not all of X.

See the appendix in Section 14.1 for a proof of this lemma and also some more
discussion. Using the probability lemma, we now prove our lemma on the existence
of good local grids.

Proof. For each i and for each vertex v in Σ̄(si), we will choose a perturbation
function pi,v(j, m) ∈ [−1/4, 1/4], where j = 1, . . . , N and m ∈ Z. Then we define
Gi(v) to be the union of the hyperplanes xj = (1/200)N−2si(m + pi,v(j, m)). The
spacing of each Gi(v) is ≤(1/100)N−2si.

We are going to apply the probability lemma. The space X is the set of choices
of pi,v(j, m) ∈ [−1/4, 1/4], where i ≥ 0, v is a vertex in Σ̄(si), j = 1, . . . , N , and
m ∈ Z. This is a product space over the index set (i, v, j, m), and for each factor we
put the uniform probability distribution on [−1/4, 1/4].

For almost all choices of pi,v(j, m), the (N − n + 1) skeleton of each grid Gi(f)
or Gi−1,i(f) is transverse to z.

Now we turn to the key estimate at the end of the lemma. We enumerate the
different ways that this key estimate may fail.

Let us say that our choice of pi,v(j, m) lies in Badi(f) if f is a face of Σ̄(si), and R
is an (N-n+1)-face of Gi(f), lying in the 4N2si-neighborhood of f , and [z ∩ R] = 1,
and Voln(y ∩ Ball[R]) < βsn

i . Define Badi−1,i(f) in the same way, using the grid
Gi−1,i(f).

We claim that each set Badi(f) or Badi−1,i(f) depends on C1 � 1 parameters
pi,v(j, m). There are only one or two choices for i. The vertex v needs to belong to f ,
or at least to lie within Nsi of a vertex of f , so there are only �1 choices of vertex
v. There are only N � 1 choices of j in any case. Since the face R needs to lie in
the 4N2si-neighborhood of f , we only need to consider values of m where the plane
xj = simj lies within C(N)si of the face f , and so there are only �1 choices for m.

We also claim that each variable pi,v(j, m) is only relevant for C2 � 1 bad sets
Badi(f) or Badi−1,i(f). In fact, if pi,v(j, m) is relevant for Badi′(f) or Badi′−1,i′(f),
then we must have i′ = i or i+1, and f must have a vertex lying near v. This leaves
�1 choices for f .

Finally, we have to check that the probability of each set Badi(f) or Badi−1,i(f)
is �β. Then if we choose β sufficiently small, the probability lemma will guarantee
that there exists a choice of parameters which is not bad, and we will be done.

So let us consider the probability of Badi(f) (or Badi−1,i(f)). There are �1
faces R which could potentially violate the key estimate. Each of the faces R that
we must consider is positioned by the choice of parameters pi,v(j, m) and maybe
pi−1,v(j, m) for vertices v near to f and for a certain range of m. Varying the para-
meters randomly essentially amounts to translating R at random. The intersection
number lemma says that if y ∩ Ball[R0] has volume <βsn

i , then the probability that
[z ∩ R] �= 0 is �β. So the probability that R violates the key estimate is �β. �
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We now fix the local grids Gi and Gi−1,i and the constant β = β(N) > 0 for the
rest of the proof.

8.8 The bending maps Φi and the cycles zi. Using the good local grid
lemma, we can now construct the bending maps Φi and define the cycles zi.

Using Lemma 8.4, we define Φi to be a bending map with respect to the local
grid Gi, and we fix Φi for the rest of the proof. We define zi to be DΦi

(z).
The grids Gi have spacing Si ≤ (1/100)N−2si. By Lemma 8.4, the maps Φi obey

|Φi(x) − x| ≤ 2N2Si ≤ (1/50)si.

Lemma 8.7. The cycle zi lies in Tα(y) for α � 1. Moreover, if a face F ⊂ Σ(si)
belongs to zi, then there is a ball around the center of F with radius ∼si and
thickness � 1.

Proof. For each face F ⊂ Σ(si), Φi(F̄ ) is equal to a sum of (N-n-1)-faces from Gi(F̄ ).
We know that Φi displaces points at most (1/50)si. Therefore, each of these faces
lies within the (1/50)si-neighborhood of F̄ .

If F is contained in zi, then [Φi(F̄ ) ∩ z] = 1. Therefore, [R ∩ z] = 1 for an
(N-n-1)-face R in Gi(F̄ ), lying within the (1/50)si -neighborhood of F̄ .

By Lemma 8.5, it follows that Voln(y ∩ Ball[R]) ≥ βsn
i , where Ball[R] denotes

the ball around the center of R and with radius Nsi. The ball Ball[R] contains F ,
and so F lies in Tα(y) for some α � β � 1.

Also, the ball around the center of F with radius 3N2si contains Ball[R], and
this ball has thickness � β � 1. �
Lemma 8.8. There is a constant C(N) so that if zi is non-zero, then si ≤ C(N)
Voln(y)1/n.

Proof. If zi contains a face F , then the last lemma says that there is a ball of radius
∼si with thickness � 1. The total volume of y is at least the volume of y in this ball,
which is � sn

i . �
At this point, we define ifinal to be the smallest i so that si > C(N) Voln(y)1/n,

which guarantees that zifinal
= 0. We have si � Voln(y)1/n for all i ≤ ifinal.

Lemma 8.9. Each cycle zi lies in the R-neighborhood of z for R � Voln(y)1/n.

Proof. Suppose that zi contains a face F . Then Φi(F̄ ) must intersect z. But Φi

displaces points by at most �si. Therefore, the face F is contained in the R-
neighborhood of z for R � si � Voln(y)1/n. �
Lemma 8.10. The cycle z0 is equal to z.

Proof. If F, G are (n − 1)-faces of Σ(s0), we have to check that [Φ0(F̄ ) ∩ G] is 1 if
F = G and zero otherwise. This is clearly true if Φ0 is the identity. Now Φ0 displaces
each point by at most (1/50)s0. The boundary of F̄ is at a distance at least (1/2)s0

from Σn−1(s0). So the straightline homotopy from the identity to Φ0 will never map
∂(F̄ ) into any G, and the intersection numbers will not change. �
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To finish the proof of the perpendicular pair inequality, we have to construct
n-chains Ai ⊂ Tα(y) with ∂Ai = zi−1 − zi.

8.9 Homologies between deformations at different scales. Now we have
a deformation Di = DΦi

based on the bending map Φi : Σ̄(si) → R
N . The defor-

mation operator Di deforms chains/cycles into cubical chains/cycles inside Σ(si).
In particular, Diz = zi is a cubical cycle, and we know that each zi lies in Tα(y).
Next, we have to construct homologies Ai from zi−1 to zi also lying in Tα(y). The
cycles zi−1 and zi are cycles at different scales: zi−1 is a cubical cycle in Σ(si−1) and
zi is a cubical cycle in Σ(si). In this section, we construct a cycle z+

i−1 at scale si

and a homology from zi−1 to z+
i−1. In the next section, we do the harder work of

constructing a homology from z+
i−1 to zi.

We let v = (si−1/2, . . . , si−1/2). We now define z+
i−1 using the standard deforma-

tion operator for Σ(s):

z+
i−1 = Dv(zi−1) =

∑

F⊂Σn−1(si)

[F̄v ∩ zi−1]F.

(One reason for translating by v is as follows. If F ∈ Σn−1(si) and F̄ is the
corresponding face of Σ̄N−n+1(si), then F̄ is not transverse to Σ(si−1), and so F̄ is
not transverse to zi−1. But F̄v is transverse to Σ(s−1), and so z+

i−1 is defined. Other
reasons of our specific choice of v appear below.)

The cycle z+
i−1 lies in the C(N)si−1-neighborhood of zi−1. Also, by the standard

properties of the deformation operator, there is a homology A′
i from zi−1 to z+

i−1

in the C(N)si−1-neighborhood of zi−1. (See Section 14.4 for a review of the proof.)
The following lemma shows that A′

i lies in Tα(y).

Lemma 8.11. The C(N)si−1 neighborhood of zi−1 lies in Tα(y) for α � 1.

Proof. From Lemma 8.7, we know that if F is a face of Σ(si−1) which is contained
in zi−1, then there is a ball around the center of F with radius ∼si−1 and thickness
� 1. Therefore, the ball of radius C(N)si−1 around any point of zi has thickness
� 1. �
Lemma 8.12. The chain A′

i lies in the R-neighborhood of z for R � Voln(y)1/n.

Proof. We know that A′ lies in the C(N)si neighborhood of zi. By Lemma 8.8,
si � Voln(y)1/n. By Lemma 8.9 zi lies in the R-neighborhood of z for R � Voln(y)1/n.

�
The main difficulty is to build a homology A′′

i from z+
i−1 to zi. To facilitate this,

it helps to describe z+
i−1 and zi in similar ways. Recall that zi = DΦi

(z). We will
now construct a map Φ+

i−1 : Σ̄(si) → R
N , and show that z+

i−1 is DΦ+
i−1

(z).
The map Φ+

i−1 is defined in terms of Φi−1 by

Φ+
i−1(x) = Φi−1(x + v).
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Lemma 8.13. The chain z+
i−1 is equal to DΦ+

i−1
(z).

Proof. By definition,

z+
i−1 =

∑

F⊂Σn−1(si)

[F̄v ∩ zi−1]F.

Now zi−1 = DΦi−1z =
∑

H⊂Σn−1(si−1)
[Φi−1(H̄) ∩ z]H.

When we plug the definition of zi−1 into the formula for z+
i−1, we see that the

coefficient of F in z+
i−1 is

∑

H⊂Σn−1(si−1)

[Φi−1(H̄) ∩ z][F̄v ∩ H].

We let H(F ) be the set of (n−1)-faces H in Σn−1(si−1) so that [F̄v∩H] = 1. Next
we check that

∑
H∈H(F ) H̄ = F̄v. (It may be helpful to draw a picture here.) Recall

that F̄ is an (N-n+1)-dimensional face in Σ̄(si). The translated face F̄v lies in the
(N-n+1)-skeleton of Σ̄(si−1). The face F̄v is a sum of 2N−n+1 faces of Σ̄N−n+1(si−1).
We call these faces J̄1, . . . , J̄2N−n+1 , where the Ji are (n − 1)-faces in Σ(si−1). Now
if H and J are any two faces in Σn−1(si), then the intersection number [J̄ ∩ H] is
equal to 1 if H = J and 0 otherwise. Therefore, [F̄v ∩H] = 1 if H is one of the faces
J1, . . . , J2N−n+1 and 0 otherwise. In other words, H(F ) is exactly J1, . . . , J2N−n+1 .
Now

∑
H∈H(F ) H̄ =

∑
i J̄i = F̄v.

Using this information, we see that the coefficient of F in z+
i−1 is

∑

H∈H(F )

[Φi−1(H̄) ∩ z] = [Φi−1(F̄v) ∩ z] = [Φ+
i−1(F̄ ) ∩ z].

Therefore, z+
i−1 =

∑
F⊂Σn−1(si)

[Φ+
i−1(F̄ ) ∩ z]F = DΦ+

i−1
(z). �

The map Φ+
i−1 has good properties analogous to the map Φi. We state this as a

lemma.

Lemma 8.14. For each d-dimensional face f of Σ̄(si), Φ+
i−1(f) is contained in the

d-skeleton of Gi−1,i(f). Moreover, as a chain, Φ+
i−1(f) is equal to a sum of d-faces

of Gi−1,i(f).
Also, for any point x, |Φ+

i−1(x) − x| ≤ Nsi.

Proof. Recall that v = (si−1/2, . . . , si−1/2). Now Φ+
i−1(f) = Φi−1(f + v). As we saw

in the proof of the last lemma, f +v is a sum of 2d d-faces in Σ̄(si−1), f +v =
∑

hj .
Now Φi−1(hj) lies in the d-skeleton of the grid Gi−1(hj) ⊂ Gi−1,i(f). Therefore,
Φ+

i−1(f) lies in the d-skeleton of Gi−1,i(f). As a chain, Gi−1(hj) is a sum of faces of
Gi−1(hj)—and each of these faces is a sum of d-faces of Gi−1,i(f). Therefore, Φ+

i−1(f)
is a sum of d-faces of Gi−1,i(f). Finally, |Φi−1(x)−x| ≤ (1/50)si−1 = (1/100)si. Now
|Φ+

i−1(x) − x| = |Φi−1(x + v) − x| ≤ |v| + |Φi−1(x + v) − (x + v)| ≤ (1/100)si + |v| =
(1/100)si + (1/4)N1/2si. �
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8.10 Homologies between different deformations at the same scale. Let
Φ1 and Φ2 be two ways of bending the dual skeleton Σ̄(s). Let D1 and D2 be the
corresponding deformation operators. If we have a homotopy from Φ1 to Φ2, we will
use it to define a “homotopy” between the deformation operators Φi.

Suppose that Φ1,2 : Σ̄ × [1, 2] → R
N is a homotopy from Φ1 to Φ2. We define

the operator D1,2 in terms of Φ1,2 as follows. Let T be a d-dimensional chain in R
N

transverse to all Φ maps.

D1,2(T ) :=
∑

Gd+1⊂Σd+1

[Φ1,2(Ḡ × [1, 2]) ∩ T ]G.

Notice that if T is a d-chain, then D1,2(T ) is a (d+1)-chain.
The key formula about D1,2 is the following.

Lemma 8.15. The operator D1,2 obeys the following algebraic identity:

∂D1,2(T ) = D1(T ) + D2(T ) + D1,2(∂T ).

In particular, if z is a cycle, then ∂D1,2(z) = D1(z) + D2(z).

Proof. This proof is similar to the proof that a deformation operator D commutes
with boundaries.

The left-hand side is

∂D1,2(T ) =
∑

G⊂Σd+1

[Φ1,2(Ḡ × [1, 2]) ∩ T ]∂G.

Now for each d-face F in Σd(s), we let G1(F ), . . . , G2(N−d)(F ) be the (d+1)-faces
having F in their boundaries. So the last equation may be rewritten as

∑

F⊂Σd

2N−2d∑

j=1

[Φ1,2(Gj(F ) × [1, 2]) ∩ T ]F.

The first point is that
∑

j Gj(F ) = ∂F̄ . So our last equation may be rewritten
as

∂D1,2(T ) =
∑

F⊂Σd

[Φ1,2(∂F̄ × [1, 2]) ∩ T ]F. (*)

Next, ∂F̄ × [1, 2] = ∂(F̄ × [1, 2]) + F̄ × {1} + F̄ × {2}. Plugging this formula in,
we see that

[Φ1,2(∂F̄ × [1, 2]) ∩ T ] = [Φ1(F̄ ) ∩ T ] + [Φ2(F̄ ) ∩ T ] + [∂Φ1,2(F̄ × [1, 2]) ∩ T ].

Next we rearrange the last term in this equation. By transversality, Φ1,2(F̄ ×
[1, 2])∩T is a 1-chain with an even number of boundary points. Therefore, [∂Φ1,2(F̄ ×
[1, 2]) ∩ T ] = [Φ1,2(F̄ × [1, 2]) ∩ ∂T ]. Using this substitution, we see

[Φ1,2(∂F̄ × [1, 2]) ∩ T ] = [Φ1(F̄ ) ∩ T ] + [Φ2(F̄ ) ∩ T ] + [Φ1,2(F̄ × [1, 2]) ∩ ∂T ].

Putting this formula for the intersection number back into equation (∗), we see
that ∂D1,2T = D1(T ) + D2(T ) + D1,2(∂T ). �
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In our setting, we need to build a homology from z+
i−1 = DΦ+

i−1
(z) to zi = DΦi

(z).
Here Φ+

i−1 and Φi are both maps defined on Σ̄si
. To get a homology from z+

i−1 to
zi we need a homotopy from Φ+

i−1 to Φi. We will build this homotopy by the same
local grid method that we used to build Φi in the first place.

We know that Φi and Φ+
i−1 each map each d-face f of Σ̄(si) into the d-skeleton

of Gi−1,i(f). We extend to get a homotopy Φi−1,i : Σ̄(si) × [1, 2] → R
N which maps

each d-face of Σ̄(si) × [1, 2] into the d-skeleton of Gi−1,i(f). Since Φi and Φ+
i−1 each

have displacement ≤Nsi, we can arrange that |Φi−1,i(x, t) − x| ≤ 33Nsi.
We define a homology A′′

i to be A′′
i = DΦi−1,i

(z). Since z is a cycle and Φi−1,i is
a homotopy from Φ+

i−1 to Φi, ∂A′′
i = DΦ+

i−1
(z) + DΦi

(z) = z+
i−1 + zi.

Lemma 8.16. The chain A′′
i lies in Tα(y) for α � 1.

Proof. Suppose that F ⊂ Σd+1(si) is a (d+1)-face of A′′
i . By definition, we know

that [Φi−1,i(F̄ × [1, 2]) ∩ z] �= 0. But Φi−1,i(F̄ × [1, 2]) is a sum of (N-n-1)-faces of
Gi−1,i(F̄ ) all lying within a 4Nsi-neighborhood of F . For one of these faces, R, we
must have [R ∩ z] �= 0.

Recall that Ball[R] is the ball around the center of R with radius Nsi. By the
good local grid lemma, Lemma 8.5, it follows that Voln(y ∩ Ball[R]) ≥ βsn

i � sn
i .

Therefore, there is a ball around the center of F with radius ∼si and thickness � 1.
So F ⊂ Tα(y) for some α � 1. �
Lemma 8.17. The chain A′′

i lies in the R-neighborhood of z for R � Voln(y)1/n.

Proof. If F is a face of A′′
i , then we see that Φi−1,1(F̄ × [1, 2]) must intersect z. Since

|Φi−1,i(x, t) − x| � si, we see that F must lie in the C(N)si-neighborhood of z. But
since i ≤ ifinal, si � Voln(y)1/n. �

Now Ai := A′
i + A′′

i is a homology from zi−1 to zi, contained in the thick region
Tα(y). Also, Ai is contained in the R-neighborhood of z for R � Voln(y)1/n.

This completes the proof of the perpendicular pair inequality for cubical cycles
and chains z, w, y. In the next subsection we explain how to reduce the general
proposition to the case of cubical cycles and chains.

8.11 Approximating by cubical cycles and chains. Let us recall the hy-
potheses of the perpendicular pair inequality. We have mod 2 (n − 1)-cycles z and
w, and a mod 2 n-chain y in R

N . We know that ∂y = z + w. We know that z and
w are perpendicular in the sense that for any coordinate (n − 1)-tuple J , either
VolJ(z) = 0 or VolJ(w) = 0.

We want to approximate these chains and cycles by some cubical chains and
cycles z̃, w̃, and ỹ. For some tiny constant s0, we will choose z̃ and w̃ as cubical
cycles in Σ(s0) and ỹ as a cubical chain in Σ(s0). In order to preserve the structure
of the problem, we need to check that z̃ and w̃ are still perpendicular, and that
Vol(ỹ) � Vol(y). Finally, we need a homology A from z to z̃ with volume as small
as we like. Given all these things, we can quickly reduce the perpendicular pair
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inequality to the cubical case. By the cubical case, we can find a chain ỹ′ with
∂ỹ′ = z̃ and with HCn(ỹ′) � Voln(ỹ) � Voln(y). Finally, we define y′ = A + ỹ′. We
see that ∂y′ = z. Also, HCn(y′) ≤ HCn(A) + HCn(ỹ′) � ε + Voln(y), where ε is as
small as we like.

We do the cubical approximation by the Federer–Fleming deformation operator.
We let v be a vector with |v| ≤ s0/2, which we can choose later, and we define for
each d-chain T

Dv(T ) :=
∑

F d⊂Σd(s0)

[F̄v ∩ T ]F.

We let z̃ = Dv(z), w̃ = Dv(w), and ỹ = Dv(y). We will use some standard properties
of the Federer–Fleming deformation operator, which are reviewed in Section 14.4.
The deformation operator commutes with taking boundaries, and so ∂ỹ = z̃+w̃. We
can choose v ∈ BN (s/2) so that Voln(ỹ) � Voln(y), and so that there is a homology
A from z to z̃ with volume �s0 Voln−1(z). By taking s0 small enough, we can make
this homology as small as we like.

We still have to check that z̃ and w̃ are perpendicular. To do this, we check that
the deformation operator Dv is well-behaved with respect to directed volumes VolJ
in Euclidean space.

Lemma 8.18. If T is any mod 2 d-chain in R
N , and if J is a d-tuple of integers from

1 to N , then

Averagev∈BN (s/2) VolJ [Dv(z)] ≤ C(N) VolJ z.

Proof. Let F be a d-face of Σd(s) in the direction J . We have to consider [F̄v ∩ T ].
Let Ball[F ] denote the ball around the center of F with radius 2Ns. Note that for all
v ∈ BN (s/2), F̄v is contained in Ball[F ]. Let πJ be the orthogonal projection onto
the J-plane. The probability that [F̄v ∩ T ] �= 0 is bounded by C(N)s−N Vol πJ(T ∩
Ball[F ]) ≤ C(N)s−N VolJ(T ∩ Ball[F ]). Therefore,

Averagev∈BN (s/2) VolJ [Dv(T )]

≤ C(N)
∑

F⊂Σd(s),F in direction J

VolJ(T ∩ Ball[F ]) ≤ C(N) VolJ(T ). �

In particular, if VolJ(T ) = 0, then VolJ(Dv(T )) = 0 almost surely. Therefore, for
almost every v, z̃ and w̃ are still perpendicular. This finishes the reduction of the
perpendicular pair inequality to the cubical case.

9 Thick Tubes

In this section, we define a tube in R
N to be an embedding I : S1 × BN−1 → R

N .
Recall that an embedding is called k-expanding if it increases or preserves the k-
volume of each k-dimensional surface. In other words, an embedding is k-expanding
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if its inverse has k-dilation ≤1. A tube with k-thickness equal to R is a k-expanding
embedding I from S1(δ)×BN−1(R) into R

N , where δ > 0 may be arbitrarily small.
(Here we write S1(δ) for the circle of radius δ.) We will usually denote a tube by
the letter T . We will say that a tube T lies in some set U ⊂ R

N if the image of the
embedding lies in U .

For example, consider a solid torus of revolution in R
3 given by revolving a disk

around the z axis. If we take a disk of radius 1 with center at a distance 2 from
the axis, then we get a tube of thickness ∼1 contained in a ball of radius 3 around
the origin. Surprisingly, there are tubes of thickness 1 contained in arbitrarily small
balls. Their geometry is quite different from a solid torus of revolution.

Thick tube example in three dimensions. For every radius ε > 0, there is a
tube T with 2-thickness 1 embedded in B3(ε) ⊂ R

3.

(As far as I know, the first example was constructed by Zel’dovitch—see [Arn86].
We discuss Zel’dovitch’s construction in Section 11.1.)

Proof. We begin with S1(δ) × B2(1), where we may choose δ as small as we like.
This product isometrically embeds in S1(δ) × [0, 2] × [0, 2]. Now for each λ > 1,
we can make a 2-expanding map from this space into S1(δλ) × [0, 2λ−1] × [0, 2λ] by
dilating each coordinate by an appropriate factor. We choose λ = δ−1/2, so the image
of the embedding is S1(δ1/2) × [0, 2δ1/2] × [0, 2δ−1/2]. Now the annulus S1(δ1/2) ×
[0, 2δ1/2] has a 1-expanding embedding into B2(10δ1/2). Hence our original space
has a 2-expanding embedding into the cylinder B2(10δ1/2) × [0, 2δ−1/2]. Note that
this cylinder has volume ∼δ1/2. The cylinder admits a 1-expanding embedding into
B3(100δ1/6). (See the Appendix in Section 14.2 for the details of this embedding.)

�
The situation is different for linked tubes. This phenomenon was discovered by

Gehring in [Geh71]. He proved a result similar to the following.

Gehring-type inequality for linked tubes. If T1 and T2 are disjoint tubes in
the unit 3-ball, with 2-thickness R1 and R2, and with linking number L, then the
following inequality holds:

LR2
1R

2
2 ≤ C.

Proof. Let I1 : S1(δ) × B2(R1) → B3(1) and I2 : S1(δ) × B2(R2) → B3(1) be our 2-
expanding embedding maps. Recall that Ti is the image of Ii. Taking the inverses of
our embedding maps, we get maps πi : Ti → B2(Ri) with 2-dilation at most 1. By the
coarea formula, we can find a fiber of π1 with length at most Vol(T1)/ Area(B2(R1))
which is at most CR−2

1 . This fiber bounds a disk of area at most CR−4
1 by the

isoperimetric inequality. Also, the fiber bounds a disk of area at most CR−2
1 by the

cone inequality.
Now this disk cuts across the tube T2 at least |L| times. More precisely, if we let

D denote the disk, then the map π2 from D ∩ T2 to B2(R2) has degree L. Hence we
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see that D has area at least LπR2
2. Using the upper bound for the area of D from

the cone inequality, we see LπR2
2 ≤ CR−2

1 , and so LR2
1R

2
2 ≤ C.

This proves the result. If we use the upper bound for the area of D coming from
the traditional isoperimetric inequality, we see that LR2

2 ≤ CR−4
1 and so LR4

1R
2
2 ≤

C. This latter inequality is stronger when R1 � 1. �
To summarize, a tube T with 2-thickness 1 may be squeezed into an arbitrarily

small ball in R
3, but if T1 and T2 are linked tubes with 2-thickness 1, then they

cannot be squeezed into a small ball in R
3.

Now we recall the idea of the twisting number of a tube in R
3. Let p1 and p2 be

two points in B2. Then consider the two circles I(S1 × {p1}) and I(S1 × {p2}) in
R

3. The twisting number of the tube T is equal to the linking number of these two
circles. Moreover, let B1 and B2 be disjoint disks in B2 with centers at p1 and p2.
Then I restricted to S1 × B1 defines a tube T1 and I restricted to S1 × B2 defines a
tube T2. We can arrange that T1 and T2 each have thickness at least one third the
thickness of T . Therefore, we get an inequality for the twisting number of a thick
tube:

Inequality for twisted tubes. Suppose that T is a tube in the unit 3-ball with
2-thickness R and twisting number t. Then R4|t| ≤ C.

(For large values of t, I don’t know whether this inequality is sharp.)
To summarize, in three dimensions, a tube with 2-thickness 1 may be squeezed

into an arbitrarily small ball B3(ε), but a tube with a non-zero twisting number
cannot. In the early 1990’s, Freedman and He [FH91] extended Gehring’s work,
proving estimates for general knots and links. For example, they proved that a 3-
dimensional tube with 2-thickness 1 contained in a small ball must be unknotted.

Next we discuss the situation in dimension N ≥ 4. We begin with the general-
ization of the thick tube example.

Thick tube example in higher dimensions. If N ≥ 3 and k > N/2, then there
is a tube T with k-thickness 1 embedded in BN (ε) ⊂ R

N for every ε > 0.

Proof. We begin with S1(δ) × BN−1(1), where we may choose δ as small as we like.
This product isometrically embeds in S1(δ) × [0, 2]N−1. Now for each λ > 1, we can
make a k-expanding map from this space into S1(δλ

1
k−1 )×[0, 2λ−1]×[0, 2λ

1
k−1 ]N−2 by

dilating each coordinate by an appropriate factor. We choose λ so that δλ
1

k−1 = λ−1.
By making δ small, we can make λ as large as we like. We are now working with
S1(λ−1) × [0, 2λ−1] × [0, 2λ

1
k−1 ]N−2. Now the annulus S1(λ−1) × [0, 2λ−1] has a 1-

expanding embedding into B2(10λ−1). Hence our original space has a k-expanding
embedding into the cylinder B2(10λ−1) × [0, 2λ

1
k−1 ]N−2. Note that this cylinder has

volume ∼λ−2+(N−2)/(k−1). Since k > N/2, the exponent is negative, and we can
make the volume as small as we like. Therefore, this cylinder admits a 1-expanding
embedding into an arbitrarily small ball. (See the Appendix in Section 14.2 for the
details of this last embedding.) �
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I don’t know whether the range of k in this result is sharp. There is more discus-
sion in the open problems section, Section 13.

In dimension N ≥ 4, any two circles are unlinked, and so there is no linking
number between tubes. It turns out that it is still possible to define the twisting
number of a tube in Z2.

A tube is given by an embedding I : S1 × BN−1 → R
N . The ‘core circle’ of the

tube is I(S1 ×{0}). The tube structure defines a trivialization of the normal bundle
of this circle—in other words a framing of this circle. The twisting number comes
from this framing—it measures how the trivialization ‘twists’ as we move around
the circle.

As a warmup, suppose that the core circle is just the standard circle S1 ⊂ R
N ,

defined by the equations x2
1 + x2

2 = 1, x3 = · · · = xN = 0, and suppose that
I : S1 → S1 is the identity map. This core circle has a standard framing, given by
{r, e3, . . . , eN}, where r is the outward radial vector (x1, x2), and e3, . . . , eN are the
coordinate vectors. Now we can compare the framing coming from out embedding I
with this standard framing. At each point in S1, the two framings each give a basis
of NS1. Therefore, we can get our framing by applying an element of GLN−1(R)
to the standard framing at each point x ∈ S1. So our framing induces a continuous
map from S1 to GLN−1(R). If I is orientation-preserving, we see that the image of
our map lies in the orientation-preserving maps GL+

N−1(R), which is homotopic to
SO(N − 1). Therefore, our framing induces an element of π1(SO(N − 1)). If N ≥ 4,
then π1(SO(N − 1)) = Z2, and this homotopy class is the twisting number of the
tube. (If I is orientation reversing, our map goes from S1 to GL−

N−1(R), which is
also homotopic to SO(N − 1), and the twisting number is defined in the same way.)

However, this definition was just a warmup, and we still have to define the twist-
ing number for a general embedding I : S1 × BN−1 → R

N . The main problem is to
define a standard framing for an arbitrary embedded circle in R

N . Because N ≥ 4,
any two circles are isotopic. Therefore, there is an orientation-preserving diffeomor-
phism Ψ of R

N so that Ψ ◦ I is the identity map from S1 to the standard S1. The
map Ψ gives an isomorphism from the normal bundle of the core circle to the normal
bundle of the standard S1. Using Ψ, we can pull back the standard framing of S1

to give a standard framing of the core circle. Comparing this standard framing with
the framing induced by the tube, we get a map S1 → GLN−1(R), and the homotopy
class of the map gives a twisting number in Z2. A priori, this definition may depend
on the choice of Ψ, but it turns out that it does not. This was first established by
Pontryagin in his study of framed cobordism and homotopy groups of spheres.

There is a nice description of (some of) this work in Milnor’s book [Mil97].
Pontryagin defined a notion of framed cobordism, which is an equivalence relation
on closed framed k-manifolds within a given ambient manifold. Pontryagin proved
that for N ≥ 4, there are exactly two equivalence classes of framed 1-manifolds in
R

N . He proved that two framed circles are framed cobordant if and only if they have
the same twisting number.
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Pontryagin went on to make an important connection between framed cobordisms
and homotopy groups of spheres. Let T be a twisted tube in the unit N -ball. The tube
T is defined by an embedding I from S1×BN−1 into the unit N -ball, with image T ⊂
BN . Using the inverse of I, we construct a map π : T → BN−1, sending the boundary
of T to the boundary of BN−1. We let h be a degree 1 map from (BN−1, ∂BN−1)
to SN−1, sending the boundary ∂BN−1 to the basepoint of SN−1. Let us consider
the unit N-ball, BN , as the upper hemisphere of SN . Now we construct a map F
from SN to SN−1 as follows. If x ∈ T , then we define F (x) = h(π(x)). If x is
not in T , then we define F (x) to be the basepoint of SN−1. This definition gives a
continuous map because if x ∈ ∂T , then π(x) ∈ ∂BN−1 and h(π(x)) is the basepoint
of SN−1. Pontryagin showed that the homotopy type of the map F depends only on
the framed cobordism class of the core circle. In particular, he proved the following
theorem.

Pontryagin’s theorem. If N ≥ 4, then the twisting number of the tube T in Z2 is
non-zero if and only if the map F is non-contractible.

Since F is non-contractible if and only if SH(F ) = 1, we see that the twisting
number of T is equal to the Steenrod–Hopf invariant of F .

Combining our main theorem on k-dilation with Pontryagin’s theorem about
twisting numbers of tubes, we get the following estimate for twisted tubes.

Proposition 9.1. If T is a tube in the unit ball in R
N with non-zero twisting

number, and if k ≤ (N + 1)/2, then the k-thickness of T is ≤C(N).

Proof. We write A � B for A ≤ C(N)B. If the tube T has k-thickness R, then
the map F has k-dilation �R−k. By our main theorem, if k ≤ (N + 1)/2, then the
k-dilation of every non-trivial map SN to SN−1 is � 1. If k ≤ (N + 1)/2, then we
see that 1 � R−k. Therefore the tube T has k-thickness R � 1. �

Proposition 9.1 is most interesting for odd dimensions N ≥ 5. In this case, the
thick tube example in higher dimensions shows that we may embed a tube in the
unit N-ball with arbitrarily large (N + 1)/2-thickness, but Proposition 9.1 shows
that if the (N + 1)/2-thickness is too large, then the twisting number must be zero.

10 Quantitative General Position Arguments

In the next section, we will prove the h-principle for k-dilation stated in the intro-
duction. In the construction, we need to construct embeddings with some geometric
control. We will construct the embeddings using the h-principle for immersions and
general position arguments, and we need quantitative versions of these arguments
to control the geometry of the embeddings.

Our setup will be the following. We have P a polyhedron embedded in a manifold
(Mm, g), and we are considering maps to a manifold (Nm, h) of the same dimension
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m. We start with a map I0 : M → N and we want to perturb the map to an
embedding from some neighborhood U ⊃ P to N . We recall some basic results
about this situation using immersion theory and general position arguments, and
then we give quantitative versions. We begin by outlining all the results, and then
we come back to the proofs.

We start by recalling the h-principle for immersions. This result was first proven
by Smale and Hirsch, see [EM02] for references.

The h-principle for immersions. (a special case) Suppose that P ⊂ Mm is a
polyhedron of dimension p ≤ m − 1,

and Nm is a manifold of the same dimension m,
and I0 : M → N is a smooth map
and T0 : TM → TN is a fiberwise isomorphism covering I0.
Then there is an open neighborhood U containing P , and an immersion I1 : U →

N so that dI1 is homotopic to T0 through fiberwise isomorphisms TU → TN .

We want to make this result more quantitative by estimating the size of U and the
local bilipschitz constant of I1. The standard argument actually gives quantitative
estimates, and we will get the following.

Proposition 10.1. For any s, μ > 0 the following holds. Suppose that P ⊂ Mm is
a polyhedron of dimension p ≤ m − 1, and suppose that the following hypotheses
hold:

1. P ⊂ (Mm, g), and the pair (P, M) has bounded geometry at scale s,
2. (Nm, h) is a Riemannian manifold with bounded geometry at the larger scale

10ms,
3. I0 : M → N has Lipschitz constant at most 1,
4. T0 : TM → TN is a fiberwise isomorphism covering I0, with fiberwise bilipschitz

constant ≤μ,
5. the scale invariant quantity s‖∇T0‖C0 ≤ μ,

Then there are constants L and W that depend only on m, μ, and the bounds
on the geometry of M, N, and P , so that the following holds.

Let UW denote the Ws-neighborhood of P ⊂ M .
Then I0 can be homotoped to a smooth immersion I1 : UW → N which is locally

L-bilipschitz.
Also, dI1 is homotopic to T0 in the category of fiberwise isomorphisms TUW →

TN , and the distance from I0(x) to I1(x) is ≤Ls for each x ∈ Uw.

At the end of this subsection, we will give a precise formulation of bounded
geometry.

Since this statement is rather long, we take a moment to explain why we need
all the hypotheses. Basically, we are perturbing I0 at a scale ∼s in order to make I1

a bilipschitz immersion on a neighborhood of size ∼s. To do this, we need to know
that the geometry of the domain and range is controlled at this scale. Also, if I0 did
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not have a controlled Lipschitz constant, we could not expect to make the Lipschitz
constant �1 by a small perturbation. The map T0 is supposed to be a model for
dI1, so we need to know that it is bilipschitz on each fiber. The subtlest hypothesis
is hypothesis (5), which says that s‖∇T0‖C0 � μ. This condition prevents T0 from
spinning around too much. To see that this is necessary, consider the following
example. Suppose that N is the Euclidean plane R

2, M ⊂ R
2 is the annulus defined

by 1/2 < |x| < 2, P is the unit circle, and I0 is the function zero. Suppose that for
each point x ∈ M , T0 is an isometry from R

2 to R
2, so T0 gives a map from S1 to

SO(2). If T0 has a high degree, wrapping S1 many times around SO(2), then it’s
impossible to find an immersion I1 which obeys the conclusions of the proposition.

Next we would like to know if we can make I1 an embedding. This is a very
difficult question in general, but there is one simple result coming from a general
position argument. If the dimension of P is ≤(m−1)/2, then a generic perturbation
of I1 is an embedding from P into N . Since I1 is an immersion, a generic pertur-
bation of I1 is an embedding from a small neighborhood of P into N . We will give
a quantitative version of this general position argument leading to the following
embedding estimate.

Proposition 10.2. For any s, μ > 0 the following holds. Suppose that P ⊂ Mm is
a polyhedron of dimension p ≤ (m−1)/2, and suppose that the following hypotheses
hold:

1. P ⊂ (Mm, g), and the pair (P, M) has bounded geometry at scale s,
2. (Nm, h) is a Riemannian manifold with bounded geometry at the larger scale

10ms,
3. I0 : M → N has Lipschitz constant at most 1,
4. T0 : TM → TN is a fiberwise isomorphism covering I0, with fiberwise bilipschitz

constant ≤μ,
5. the scale invariant quantity s‖∇T0‖C0 ≤ μ,
6. I0 maps at most μ vertices of P into any s-ball in N .

Then there are constants L and W that depend only on m, μ, and the bounds
on the geometry of M, N, and P , so that the following holds.

Let UW denote the Ws-neighborhood of P ⊂ M .
Then I0 can be homotoped to a smooth embedding I : UW → N which is locally

L-bilipschitz.
Also, dI is homotopic to T0 in the category of fiberwise isomorphisms TUW →

TN , and the distance from I0(x) to I(x) is ≤Ls for each x ∈ Uw.

The hypotheses in this proposition are mostly the same as those in Proposition
10.1. We assume that the dimension of P is ≤(m−1)/2 instead of m−1. Hypotheses
(1)–(5) are exactly the same. We had to add one new hypothesis: that I0 maps ≤μ
vertices of P into any s-ball of N . Since I is supposed to be a bilipschitz embedding
from UW , the images of the balls centered at vertices of P with radius Ws will
contain disjoint balls of radius ∼s. Therefore, the map I cannot cram too many
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vertices of P into a ball of radius s. And since I is only a small perturbation of I0,
we need I0 to obey this condition as well.

To prove Proposition 10.2, we need to revisit the general position argument and
give quantitative estimates. This proof is the main work involved in this section.

Proposition 10.2 gives an embedding with quantitative control, but it doesn’t tell
us what isotopy class the embedding will be in. If p = Dim P = (m − 1)/2, then
there will typically be infinitely many different isotopy classes of embeddings from
P into N , and we cannot get uniform geometric control for all the isotopy classes.
But under the stronger condition that the dimension of P is < (m − 1)/2, then we
can construct a geometrically controlled embedding in any isotopy class.

Quantitative embedding lemma. For any s, μ > 0 the following holds. Suppose
that P ⊂ Mm is a polyhedron of dimension p < (m − 1)/2, and suppose that the
following hypotheses hold:

1. P ⊂ (Mm, g), and the pair (P, M) has bounded geometry at scale s,
2. (Nm, h) is a Riemannian manifold with bounded geometry at the larger scale

10ms,
3. I0 : M → N has Lipschitz constant at most 1,
4. T0 : TM → TN is a fiberwise isomorphism covering I0, with fiberwise bilipschitz

constant ≤μ,
5. the scale invariant quantity s‖∇T0‖C0 ≤ μ,
6. I0 maps at most μ vertices of P into any s-ball in N .
7. I ′ : M → N is an embedding and dI ′ is homotopic to T0 in the category of

fiberwise isomorphisms from TM to TN .

Then there are constants L and W that depend only on m, μ, and the bounds on
the geometry of M, N, and P , so that the following holds.

Let UW denote the Ws-neighborhood of P ⊂ M .
Then I0 can be homotoped to a smooth embedding I : UW → N which is locally

L-bilipschitz and isotopic to I ′, and the distance from I0(x) to I(x) is ≤Ls for each
x ∈ Uw.

The hypotheses here are almost the same as in Proposition 10.2. We assume that
DimP < (m − 1)/2 instead of DimP ≤ (m − 1)/2. Hypotheses (1)–(6) are exactly
the same. Hypothesis (7) says that the data (I0, T0) is homotopic to (I ′, dI ′) for some
embedding M → N . In this case, we get an embedding I with controlled geometry
isotopic to I ′.

The quantitative embedding lemma is the result that we will use to prove the
h-principle for k-dilation. It follows easily from Proposition 10.2, so we give the
proof here. The point is that the embedding I we constructed in Proposition 10.2 is
automatically isotopic to I ′.

Proof. By Proposition 10.2, we can construct an L-bilipschitz embedding I : UW →
N so that dI is homotopic to dI ′ in the category of fiberwise isomorphisms from
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TUW to TN . By the h-principle for immersions, I is regular homotopic to I ′. We
will prove that I is also isotopic to I ′. The point is that there is only one isotopy
class of embeddingss UW → N regular homotopic to I ′.

Let ht be a regular homotopy from h0 = I ′ to h1 = I.
We can assume that ht is in general position. Because p < (m−1)/2, ht : P → N

will be an embedding for every t. Now we can choose some tiny ε > 0, so that
ht : Uε → N is an embedding for all t.

Notice that UW deformation retracts into Uε for any 0 < ε < W . In more details,
let Ψt : UW → UW be an isotopy with Ψ0 equal to the identity and Ψ1(UW ) ⊂ Uε.
Now we define Ht : UW → N with t ∈ [0, 3] as follows. For times t ∈ [0, 1], we define
Ht = h0 ◦ Ψt. For times t ∈ [1, 2], we define Ht = ht−1 ◦ Ψ1. For times t ∈ [2, 3], we
define Ht = h1 ◦ Ψ3−t. The maps Ht give an isotopy from I ′ = h0 to I = h1. �

In the next two subsections we will give the proofs of the propositions. To finish
this subsection, we give a precise formulation of the phrase bounded local geometry.
We say that a Riemannian manifold has bounded local geometry at scale s if each
ball of radius s is diffeomorphic to a Euclidean ball of radius s with bilipschitz norm
�1 and C2 norm �s−1. (The definition is scale invariant.) We say that P ⊂ M
has bounded geometry at scale s, if for each k-simplex we can choose the above
coordinates so that the k-simplex is mapped to a standard equilateral k-simplex in
the Euclidean ball, and if in addition, each edge of P has length ≤s, the distance
between any two disjoint closed faces of P is � s, and the dihedral angles of P are
� 1.

10.1 Constructing immersions with geometric control. In this section,
we prove Proposition 10.1. This result essentially follows from the standard proof of
the immersion theory by keeping track of constants.

Proof. By scaling, we may assume that the scale s is equal to 1.
We write A � B to mean that A ≤ CB for a constant C that only depends on

m, μ, and the bounded local geometry of M, N, P .
This construction is based on the relative h-principle for immersions. We will use

the following version of the h-principle.
Let Lin(Rm, Rm) denote the linear maps from Euclidean space R

m to itself. Let
Bil(L) ⊂ Lin(Rm, Rm) denote the linear isomorphisms with bilipschitz constant ≤L.

�
Relative h-principle for immersions with quantitative control. Suppose
that Δd ⊂ R

m is a unit equilateral d-simplex in Euclidean space, with d < m.
Let NW Δd be the W -neighborhood of Δd in R

m.
Suppose we have smooth maps

I0 : NW0Δ
d → Bm(1),

T0 : NW0Δ
d → Lin(Rm, Rm).
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Suppose that T0 and dI0 agree on NW0∂Δ.
Suppose that T0 and I0 have C1 norms ≤A0.
Suppose that the image of T0 lies in Bil(L0) ⊂ Lin(Rm, Rm).
Then there are smooth homotopies I : NW0Δ × [0, 1] → Bm(1) and T : NW0Δ ×

[0, 1] → Lin(Rm, Rm) with the following properties.
For all t, It = I0 and Tt = T0 on NW0/2∂Δ and outside of N2W1Δ.
T1 and dI1 agree on NW1Δ.
The maps I and T have C1 norms ≤A1.
The image of Tt lies in Bil(L1) for all t.
In this theorem, the constants W0, L0, A0 may be arbitrary, and the constants

W1, A1, L1 depend on them, as well as on d, m.

This result is essentially the standard relative h-principle for immersions. The
proof may be found in [EM02, pp. 21–35] and 66-68. The only non-standard ingredi-
ent is that the constants W1, A1, L1 only depend on the ingredients d, m, W0, A0, L0.
This can be observed by following the proof in [EM02] and keeping track of the
constants at each step.

Without writing out the entire proof of the h-principle for immersions, I want
to try to give some explanation of why the constants are controlled. The proof of
the h-principle for immersions in [EM02] is based on a fundamentally 2-dimensional
construction which is then repeated several times. We begin with I0, T0 defined
on NW0Δ

1 ⊂ R
2. The functions may depend on other variables also, but we can

suppress the dependence and think of the other variables as just parameters. We
say that a pair (I, T ) is holonomic if dI = T . We choose a set of evenly spaced
points along Δ1 with some spacing ε—a crucial small number that we will choose
later. Next, we define a rectangular block centered at each of these points with
width (along Δ1) of 4ε and height 2W0. On each block, say block J , we perturb
(I0, T0) to a holonomic pair (IJ , TJ). To be explicit, let us take IJ be an affine
function so that (IJ , TJ) = (IJ , dIJ) agrees with (I0, T0) at the center of block J .
The blocks overlap, so we can also define some functions that interpolate between
the (IJ , TJ) on the overlaps. We define holonomic pairs (IJ,J+1, TJ,J+1) which agree
with (IJ , TJ) in the middle part of the intersection (say NW0/4Δ) and agree with
(IJ+1, TJ+1) on the outside part of the intersection (say outside of N3W0/4Δ). We can
do this by taking weighted averages of IJ and IJ+1, say IJ,J+1 = ρIJ + (1 − ρ)IJ+1,
where ρ is 1 near the middle of the intersection and on the outside part of the
intersection. Gluing together the different IJ and IJ,J+1 we get a function I which is
holonomic on NW1Δ except on some vertical slits with spacing ε/2—see the pictures
on [EM02, pp. 27–28]. (On the slits, I is not even defined.) At each point, the linear
transformation TJ is L0-bilipschitz because TJ is constant and it agrees with T0 at
one point. Now TJ,J+1 is the derivative of a weighted average of Ij and Ij+1. If Ij

and Ij+1 are very close together in C1, then the weighted average will also have
controlled bilipschitz constant. Hence the map I is an immersion with controlled
bilipschitz constant (on the complement of the slits). Finally, we precompose I with
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a map φ : NW0Δ
1 → NW0Δ

1 whose image avoids the slits. The image is a thin
neighborhood of a rapidly oscillating curve. The resulting map is an immersion.

To get quantitative estimates, we just need to bound explicitly the characters
that enter the story in terms of W0, A0, L0. We write A � B for A ≤ C(W0, A0, L0)B.
We let xJ be the center of block J . Then TJ = T0(xJ), and so |TJ+1 − TJ | ≤ A0ε.
Also |I0(xJ+1)− I0(xJ)| ≤ A0ε, and so |IJ(x)− IJ+1(x)| ≤ A0ε+4L0ε, for each x in
the overlap of block J and block J + 1. In summary, the C1 distance from (IJ , TJ)
to (IJ+1, TJ+1) is �ε. To check that TJ,J+1 has controlled bilipschitz constant, we
compute:

TJ,J+1 = dIJ,J+1 = d (ρIJ + (1 − ρ)IJ+1) = TJ+1 + ρ(TJ − TJ+1) + dρ(IJ − IJ+1).

We have |TJ − TJ+1| � ε, |IJ − IJ+1| � ε and |dρ| ≤ 100W−1
0 � 1. As long as

we choose ε very small compared to (1/L0) and W0 and (1/A0), we see that TJ,J+1

is still 2L0-bilipschitz. This is the key step where we choose the size of ε—and we
see that ε only depends on W0, A0, and L0. Once we have controlled IJ,J+1, we see
that the bilipschitz constant and C1 norm of I, T is controlled. Once we have picked
ε, then we know how closely the slits are located, and we can bound the size of
arbitrarily many derivatives of φ. Given bounds on the size of the derivatives of φ,
we can then bound the bilipschitz constant and norms of I ◦ φ.

To construct the map I1 we must repeat this two-dimensional argument d times,
but each time the quantitative analysis goes like in the last paragraphs. This finishes
our explanation of why the constants W1, A1, L1 depend only on d, m, W0, A0, L0.

The condition that (It, Tt) = (I0, T0) for all x outside of N2W1Δ doesn’t appear
in [EM02], but it’s trivial to add. Suppose that (I ′

t, T
′
t) obey all the other conditions

of the theorem. Let ρ : NW0Δ → [0, 1] be equal to 1 on NW1Δ and equal to zero
outside of N2W1Δ. Then set (It, Tt) = (I ′

ρ(x)t, T
′
ρ(x)t). This finishes our discussion of

the relative h-principle for immersions with quantitative control stated above. Now
we apply it to prove Proposition 10.1.

Let I0 and T0 be as in Proposition 10.1. We homotope our map I0 and our initial
data T0 to a bilipschitz immersion by applying this result one skeleton at a time.
We construct a sequence of (homotopic) maps, (I0, T0), (Ī0, T̄0), (Ī1, T̄1), etc. with
the following properties:

• The maps (Īj , T̄j) are all defined on a W0-neighborhood of P .
• All the maps Īj agree with I0 at the vertices of P .
• The C1 norms of Īj and T̄j are bounded by Aj .
• The bilipschitz constant of T̄j is ≤Lj .
• The maps T̄j are all homotopic to T0 in the category of fiberwise isomorphisms

TUWj
→ TN .

• On a Wj neighborhood of the j-skeleton of P , we have dĪj = T̄j , and so on this
neighborhood Īj is an immersion with local bilipschitz constant ≤Lj .
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• The map Īj sends the Wj-neighborhood of each j-face into a ball of radius ≤10j

in (N, h).
• The constants Aj and Lj are �1 and Wj � 1.

Constructing (Ī0, T̄0) is elementary.
Then each homotopy from (Īj−1, T̄j−1) to (Īj , T̄j) is constructed by using the

quantitative relative h-principle on each simplex. Since Īj−1 maps a Wj−1-
neighborhood of each (j-1)-simplex to a ball of radius 10j−1, it follows that it maps
each Wj−1-neighborhood of each j-simplex to a ball of radius 10j . Since N has
bounded local geometry at scale 10m, we can pick a C2-controlled change of coor-
dinates from this ball to the unit m-ball. Using these coordinates and the relative
h-principle for immersions with quantitative control, we homotope Īj−1 to Īj around
the given j-simplex. This homotopy is constant except on N2Wj

Δ \ NWj−1/2∂Δ. Be-
cause of our control on the angles and geometry of P , we can choose Wj so that
these active regions don’t overlap.

Each T̄j is homotopic to T̄j−1. The constants A0, L0, W0 depend on μ, m, and
the bounded local geometry of M, P, N . The constants Aj , Lj , Wj depend on Aj−1,
Lj−1, Wj−1 and the bounded local geometry of M, N, P . By induction, we have all
Aj , Lj � 1 and all Wj � 1. In this way, we arrive at an immersion I1 : UW → (N, h)
which is locally L-bilipschitz, where W � 1 and L � 1. We also see that dI1 is
homotopic to T0 in the category of fiberwise isomorphisms. The distance from Īj−1(x)
to Īj(x) is ≤10j+1, and so the distance from I0(x) to I1(x) is ≤10m+1. By choosing
L sufficiently large, this is also less than L.

10.2 Constructing embeddings with geometric control. In this subsec-
tion, we give the proof of Proposition 10.2.

Proof. By scaling, we may assume that the scale s is equal to 1.
We write A � B to mean that A ≤ CB for a constant C that only depends on

m, μ, and the bounded local geometry of M, N, P .
By Proposition 10.1, we can find an immersion I1 : Uw1 → N which is locally L1-

bilipschitz, where w1 � 1 and L1 � 1. We also know that dI1 is homotopic to T0 and
that the distance from I0(x) to I1(x) is always �1. Our goal is to modify I1 to make
it an embedding. A general position argument shows that a generic perturbation of
I1 is an embedding from P to N , and hence from some tiny neighborhood of P to
N . We will make this argument more quantitative. Here is an outline of what we
will do. (Recall that Uw denotes the w-neighborhood of P in M .)

Step 1. We slightly deform I1 to another immersion I2, by flowing on a vector field.
The map I2 : Uw1 → N still has controlled local bilipschitz constant.

The map I2 depends on many parameters (which are used to specify the vector
field). We will prove that for some values of these parameters, the map I2 obeys the
conclusion.
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Step 2. The restriction of I2 to a ball B(p, r) is actually an embedding as long
as p ∈ Uw1/2 and r is sufficiently small. This step holds for all the choices of the
parameters.

Step 3. For some smaller scale w2 � w1, the mapping I2 : Uw2 → N is actually an
embedding for some choices of the parameters used to define I2. This last step is a
quantitative version of the general position arguments. We check that only a bad
coincidence would force I2 to be non-injective, and we check that there are some
choices of the parameters which avoid all the bad coincidences.

The map I2 obeys the conclusion: it embeds Uw2 into N with controlled bilipschitz
constant. We take W = w2.

Step 1: Putting I1 in “general position”
We now perturb I1 by precomposing it with the flow from a vector field.
Let us pick an open cover of Ūw1 using balls of radius w′

1. Here w′
1 is a constant

that we will choose below. We will have w′
1 ≤ w1/100 and w′

1 � 1. Since (Mm, g) is
locally bounded at scale 1, we can arrange that the cover has bounded multiplicity.
We call the balls in the cover Bj . We let Ψj be smooth non-negative functions,
supported on Bj , so that

∑
j Ψj is equal to 1 on Uw1 (and ≤1 everywhere). For

1 ≤ l ≤ m, we let Vj,l be vector fields defined on Bj which are essentially orthonormal
and essentially constant.

For any numbers aj,l ∈ [−1, 1], we can build the vector field V =
∑

j,l aj,lΨjVj,l.
Note that |∇Ψ| � 1, and so |∇V | � 1. We define the map Φ : (M, g) → (M, g) to
be the time tflow flow of the vector field V . Here tflow � 1 is a small time which we
will choose below.

Now we define our perturbed map I2 to be I1 ◦ Φ.
By choosing the flow time tflow � 1 sufficiently small compared to w′

1, we can
arrange that the map Φ is bilipschitz with bilipschitz constant ≤2, and that it moves
each point a distance ≤w′

1. Therefore, Φ maps Uw1/2 into Uw1 . If we restrict the map
I2 to Uw1/2, we get an immersion with local bilipschitz constant L ≤ 2L1 � 1.

The map I2 has all of the properties that we want, except that we don’t know
whether it’s an embedding. The embedding Φ : Uw1/2 → Uw1 is isotopic to the
identity, so dI2 is homotopic to T0. It’s easy to check that the distance from I2(x) to
I0(x) is �1. In steps 2 and 3, we will check that for some values of the parameters
aj,l, the map I2 restricted to Uw2 is injective for some w2 � 1.

Step 2. Injectivity on small balls
A bilipschitz immersion isn’t always injective, but if we restrict a bilipschitz

immersion to a small centrally located ball, then the restriction is automatically
injective. We begin with a lemma about bilipschitz immersions in Euclidean space.

Lemma 10.3. Suppose that I is a locally L-bilipschitz immersion from Bm(1) into
R

m. Then the restriction of I to the ball of radius r around 0 is an embedding for
r = (1/10)L−2.
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Proof. The immersion I obeys a version of the homotopy lifting property as long as
the lifts don’t touch ∂Bm.

Suppose that K is a compact polyhedron and g0 : K → R
m is a continuous map

which happens to have a lift: in other words, there is a map g̃0 : K → Bm(1) so that
g0 = I ◦ g̃0.

Now let gt : K → R
m be a homotopy of g0, defined for t ∈ [0, 1].

The homotopy gt always lifts to a unique homotopy g̃t : K → Bm(1) for t in a
small interval around 0. Then there are two possibilities.

Case A. The homotopy gt lifts to a homotopy g̃t for all t ∈ [0, 1].

Case B. The homotopy gt lifts to a homotopy g̃t for t in a maximal interval [0, T ),
and for every ε > 0, the image g̃t(K) touches the ε-neighborhood of ∂Bm(1) for
some t < T .

Now, suppose that I is not an embedding on B(r). In that case, there are two
distinct points x, y ∈ B(r) with I(x) = I(y). By translating I, we may suppose
I(x) = I(y) = 0.

Now let g̃0 : [0, 1] → Bm(1) parametrize the segment from x to y, with g̃0(0) = x
and g̃0(1) = y. This segment has length at most 2r. Then we let g0 = I ◦ g̃0 : [0, 1] →
R

m. The function g0 parametrizes a curve in R
m with g0(0) = g0(1) = 0. The length

of the curve is at most 2rL.
Next we homotope g0 to zero by rescaling. We define gt(s) = (1 − t)g0(s) for

t ∈ [0, 1]. We see that gt(0) = gt(1) = 0 for all t and that g1(s) = 0 for all s. The
length of the curve parametrized by gt decreases monotonically, and so it is always
≤ 2rL.

Now we consider the lifts g̃t of gt. These lifts exist on some interval [0, T ) or [0, 1].
For every t where the lift g̃t is defined, g̃t(0) = x and g̃t(1) = y. Moreover, each lift
has length at most 2rL2. Because r = (1/10)L−2, each lift has length at most (1/5).
Also, r ≤ 1/10, and so x and y lie in B(1/10). Now g̃t parametrizes a curve from x
to y of length at most (1/5). This curve must lie entirely in B(1/2).

Because of this bound, Case B above is excluded. Therefore, we can define lifts
g̃t for all t ∈ [0, 1]. But g̃1 is a lift of the constant curve g1, and so g̃1 is a constant.
However, g̃1(0) = x and g̃1(1) = y. This contradiction shows that I is an embedding
on B(r) as claimed. �

At this point we may choose the constant w′
1. In Step 1, we needed to know that

w′
1 ≤ w1/100. We define w′

1 to be the much smaller number w′
1 = 10−6L−3w1, where

L is the local bilipschitz constant of I2. We know that w1 � 1 and L � 1, and so
w′

1 � 1.

Lemma 10.4. Suppose that p ∈ Uw1/4 and r = 100w′
1. Then the restriction of I2 to

B(p, r) is an embedding.

Proof. Let R = 100L2r. Because r = 100w′
1 ≤ 10−4L−3w1, we see that R ≤

L−1w1/100. In particular B(p, R) is contained in Uw1/2. Therefore, we know that
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I2 : B(p, R) → N is a locally L-bilipschitz immersion. The image I2(B(p, R)) must
lie in a ball in N of radius ≤LR ≤ w1/100. Because of the bounded local geometry
of M and N , we know that B(p, R) and this target ball in N are each 2-bilipschitz to
balls in Euclidean space. In particular, we can use geodesic coordinates centered at
p on the ball B(p, R). In these coordinates, B(p, R) is mapped to Bm(R) and B(p, r)
is mapped to Bm(r) ⊂ Bm(R). The resulting map from Bm(R) to R

m is 4L bilip-
schitz. Since r < (1/10)(4L)−2R, Lemma 10.3 implies that this map restricted to
Bm(r) is an embedding. Therefore, the map I2 : B(p, r) → N is an embedding. �
Step 3. General position estimates

Now we restrict I2 to Uw2 for w2 = εw′
1. The number ε > 0 is a small constant

that we will choose later. (Eventually, we will choose ε � 1, but until we choose ε,
we write lemmas that hold for every ε > 0.)

Recall that in Step 1, we defined a cover of Uw1 by balls Bj of radius w′
1. Now we

choose a cover of Uw2 with balls B′
k of radius w2 = εw′

1. We can choose a covering with
bounded multiplicity. Because P has dimension p, we see that for each j, Uw2 ∩ Bj

is covered by �ε−p balls B′
k.

By Step 2, we know that I2 restricted to B(p, r) is injective as long as p ∈ Uw1/4

and r ≤ 100w′
1. In particular, I2 is injective on each ball Bj that intersects Uw2 .

Recall that the map I2 depends on the parameters aj,l. We will prove that I2 :
Uw2 → N is an embedding for some choice of the parameters aj,l and for some ε � 1.
Let us define Bad(j1, j2) to be the set of parameters so that there exists x1 �= x2 and
I2(x1) = I2(x2), where x1 ∈ Uw2 ∩ Bj1 and x2 ∈ Uw2 ∩ Bj2 . If aj,l are parameters so
that I2 is not injective, then the parameters must lie in one of the sets Bad(j1, j2).

We can assign a probability measure to the set of parameter choices, by choosing
each parameter aj,l uniformly at random in [−1, 1]. With this probability measure,
we will prove that each set Bad(j1, j2) is small. This is the key step of the proof,
where we use the condition that p ≤ (m − 1)/2.

Lemma 10.5. The measure of Bad(j1, j2) is �ε.

Proof. Let us define Bad(k1, k2) to be the set of parameters so that there exists
x1 �= x2 and I2(x1) = I2(x2), where x1 ∈ B′

k1
and x2 ∈ B′

k2
. We are going to prove

that the probability of each Bad(k1, k2) is �εm. We give a rough intuition why this
is true. The images I2(B′

k1
) and I2(B′

k2
) are approximately balls of radius ∼ε. When

we change the parameters, we randomly move these balls in N a distance ∼1. So
the probability that they intersect is �εm.

Now Bad(j1, j2) can be covered by ∪Bad(k1, k2), taking the union over all B′
k1

that intersect Bj1 and all B′
k2

that intersect Bj2 . Because P has dimension p,
the number of balls Bk1 that intersect Bj1 is �ε−p. Therefore, the probability of
Bad(j1, j2) is �εm−2p. Because p ≤ (m − 1)/2, this probability is �ε.

It remains to carefully prove that for each k1, k2, the probability of Bad(k1, k2)
is �εm. If the distance from B′

k1
to B′

k2
is <40w′

1, then by Step 2, I2 is always
injective on a ball containing B′

k1
and B′

k2
. In this case Bad(k1, k2) is empty and it

has probability zero.
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If the distance from B′
k1

to B′
k2

is ≥ 40w′
1, then we can find a ball Bj0 so that

Ψj0 � 1 on B′
k1

and Bj0 is far from B′
k2

. We fix j0, and we consider changing the
parameters aj0,l while holding fixed all the other parameters (the aj,l with j �= j0).

Changing the parameters aj0,l affects the vector field V only on the ball Bj0 . Since
the flow Φ moves each point at most w′

1 (for any choice of parameters), it follows that
changing aj0,l affects Φ(x) only if x lies in the w′

1-neighborhood of Bj0 . Therefore,
changing aj0,l affects I2(x) only if x lies in the w′

1-neighborhood of Bj0 . Since the
distance from B′

k2
to Bj0 is at least 35w′

1, we see that changing the parameters aj0,l

does not change I2 on B′
k2

.
Since I2 is L-Lipschitz, the image I2(B′

k2
) is contained in a ball of radius ≤Lw2 =

Lεw′
1 � ε. Let 2Bj0 be the ball with the same center as Bj0 and twice the radius.

Since B′
k1

intersects Bj0 , B′
k1

is totally contained in 2Bj0 . The map I1 : 10Bj0 → N

is a locally L-bilipschitz embedding. Therefore, I−1
1 (I2(B′

k2
) ∩ 2Bj0 is contained in a

ball of radius �Lε � ε—call this ball B(ε). Notice that B(ε) doesn’t depend on the
parameters aj0,l.

If I2(B′
k1

) intersects I2(B′
k2

), then Φ(B′
k1

) must intersect B(ε). Since Φ is 2-
bilipschitz, Φ must map the center of the ball B′

k1
into the double of B(ε). Let x0

denote the center of B′
k1

. Recall that we randomly choose the parameters aj0,l for
1 ≤ l ≤ m, and fix aj,l for all j �= j0. We have to prove that the probability that
Φ(x0) lies in a fixed ball of radius �ε is �εm.

We pick coordinates for 10Bj0 so that the vector fields Vj0,l are just the coordinate
vector fields ∂l. Then we can write V in these coordinates as V0+Ψ�a, where Ψ = Ψj0

and �a is the vector with components aj0,l. Then we define Φt
�a(x) to be the result

of the time t flow of the vector field V = V0 + Ψ�a with initial condition x. By the
fundamental theorem of calculus in this coordinate chart, we see that

Φt
�a(x0) = x0 +

t∫

0

[V0(Φs
�a(x0)) + Ψ(Φs

�a(x0))�a] ds. (*)

Subtracting and taking norms, we get

sup
0≤s≤t

|Φs
�a(x0) − Φs

�b
(x0)| ≤ t(|∇V0| + |∇Ψ|) sup

0≤s≤t
|Φs

�a(x0) − Φs
�b
(x0)| + t|�a −�b|.

Therefore, there exists a time t0 � 1 so that for all t ≤ t0 and all �a,�b with
components ≤1, we have

|Φt
�a(x0) − Φt

�b
(x0)| ≤ 2t|�a −�b|.

Plugging this back into formula (*), we see that there is a smaller time t1 � 1
and a constant c1 � 1 so that for all t ≥ t1 and all �a,�b with components ≤1 we have

|Φt
�a(x0) − Φt

�b
(x0)| ≥ c1t|�a −�b|.

We choose the flow time tflow in the definition of Φ so that both these bounds
hold. Now the choice of all possible �a so that Φt

�a(x0) lies in the bad target B(2ε) is
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contained in a ball of radius �ε and probability �εm. So the probability that Φ(B′
k1

)
intersects B(ε) is �εm. Therefore, the probability of Bad(k1, k2) is �εm. �

This lemma is useful, but there is still some ways to go in our proof. We have
shown that each set Bad(j1, j2) is small, but we have no control over the number of
sets Bad(j1, j2).

Our situation can be described as follows. Suppose that X =
∏

i∈I Xi is a (count-
able or finite) product of probability spaces. Suppose that Bad ⊂ X is a “bad” set,
consisting of a union Bad = ∪α Badα. We would like to find a not-bad element of X
i.e. an element x ∈ X which is not in Bad. We know that the measure (probability)
of each Badα is less than ε a small number. But, we have no control over the number
of sets Badα. We can still find an element outside of Bad provided that the sets
Badα are “localized” in the following sense.

Lemma 10.6. Suppose that Bad is the union of sets Badα each with probability less
than ε. Suppose that each set Badα depends on <C1 different coordinates xi of the
point x. Suppose that each variable is relevant for <C2 different bad sets Badα. If
ε < (1/2)C−C1

2 , then Bad is not all of X.

We give a proof of this probability lemma in Section 14.1.
In order to apply this lemma, we must estimate the constants C1 and C2 in our

situation.

Lemma 10.7. Suppose that Bad(j1, j2) depends on the value of a parameter aj,l.
Then the distance from Bj to (Bj1 ∪ Bj2) is ≤w′

1.
Therefore, each set Bad(j1, j2) depends on �1 parameters aj,l.

Proof. Recall that I2 = I1 ◦ Φ, and that Φ moves each point a distance ≤w′
1. The

parameter aj,l only affects V on Bj . If the distance from x to Bj is > w′
1, then

Φ(x) will not depend on the parameter aj,l. Therefore, I2(x) will not depend on the
parameter aj,l. So if the parameter aj,l affects Bad(j1, j2), then there must be a point
x in either Bj1 or Bj2 which lies a distance ≤w′

1 from Bj . �
Next, we have to estimate the number of different sets Bad(j1, j2) which are

influenced by a single parameter aj,l. As a first step we prove the following lemma.

Lemma 10.8. If Bad(j1, j2) is non-empty for some choice of the parameters aj,l,
then the distance from I0(Bj1) to I0(Bj2) is �1.

Proof. We saw above that Dist(I0(x), I2(x)) � 1. If Bad(j1, j2) is non-empty (for
some parameters aj,l), then we can find x1 ∈ Bj1 and x2 ∈ Bj2 with I2(x1) = I2(x2).
Then we conclude that the distance from I0(x1) to I0(x2) is �1. �
Lemma 10.9. Each parameter aj,l influences �1 bad sets Bad(j1, j2).

Proof. Fix a parameter aj,l. Suppose that Bad(j1, j2) depends on aj,l. By Lemma
10.7, we see that Bj lies fairly close to either Bj1 or Bj2 . After changing the labels,
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we can assume that the distance from Bj to Bj1 is �w′
1. This leaves only �1 choices

for j1. Let us fix a choice of j1, and consider how many choices we have for j2 so
that Bad(j1, j2) depends on aj,l.

If I0(Bj1) and I0(Bj2) are far apart, then the last lemma tells us that Bad(j1, j2)
is empty. (And if Bad(j1, j2) is empty, it does not depend on aj,l.) So we only need
to consider j2 so that the distance from I0(Bj1) to I0(Bj2) is �1. In other words, we
just need to count the number of j2 so that I0 maps Bj2 into a certain ball of radius
�1. We will show that the number of such j2 is �μ � 1. We know that I0 maps at
most μ � 1 vertices of P into any unit ball of N . Since N has bounded geometry
at scale 1, it follows that I0 maps �1 vertices of P into any ball of radius �1. Then
by the bounded geometry of P , and since I0 is Lipschitz, it follows that I0 maps �1
balls Bj2 into any ball of radius �1. �

Now we can finish the proof of the embedding proposition.
If we choose ε small enough, then the probability lemma guarantees that we can

find a choice of parameters aj,l which is not in any bad set Bad(j1, j2). Therefore,
I2 : Uw2 → N is an embedding. Plugging in our inequalities, we see that we can
choose ε � 1, and so w2 � 1 also. The number w2 is the W from the statement of
the proposition. The embedding I2 : Uw2 → N is locally L-bilipschitz for L � 1. �

11 An H-Principle for k-Dilation

In this section, we prove the h-principle for k-dilation stated in the introduction.

An h-principle for k-dilation. Suppose that F0 is a map from Sm to Sn with
m > n, and that k > (m + 1)/2. Then for any ε > 0, we can homotope F0 to a map
F with k-dilation less than ε.

11.1 Zeldovitch’s construction of a thick tube. Our proof of the
h-principle is based on Zel’dovitch’s construction of thick tubes in B3(1). As moti-
vation, and in order to describe the main ideas, we outline Zel’dovitch’s construction
here. Zel’dovitch was an astrophysicist who was studying the motion of magnetized
fluid in neutron stars, and his physical problem led him to the following construction.
His work is described more in the paper [Arn86].

We won’t use the results from this section anywhere, so we just sketch the main
ideas. Zel’dovitch’s construction gives an alternate proof of the thick tube example
from Section 9.

Thick tube example in three dimensions (Zel’dovitch). For any radius R,
there is some δ = δ(R) > 0 and a 2-expanding embedding from S1(δ) × B2(R)
into the unit 3-ball.

Let {Qi} be a collection of small disjoint squares in B2(R) with side length δ,
filling most of the area of B2(R). We want to build a 2-expanding embedding from
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I : S1(δ)×B2(R) into B3(1). Let’s try to first construct I on S1(δ)×Qi. Notice that
S1(δ) × Qi is basically S1(δ) × B2(δ), and there is a 1-expanding embedding from
this tube into a ball of radius ∼δ. We have ∼R2δ−2 such tubes in S1(δ)×B2(R), and
there are ∼δ−3 such balls in B3(1). We choose δ small enough so that the number
of balls is larger than the number of tubes, and then we embed each tube in a ball.
In this way we can construct a 2-expanding embedding I from ∪iS

1(δ) × Qi into
B3(1). We can even arrange that I increases all areas by a factor of 10.

So far we have defined I on ∪iS
1(δ)×Qi. We have to extend it to an embedding

on the whole domain. Why is it possible to do this? If we let I0 be a standard
embedding from S1(δ)×B2(R) into the 3-ball (unknotted and with twisting number
zero), then the images of the small tubes will be unlinked, and we can isotope I0 to
our embedding I : ∪iS

1(δ) × Qi → B3(1). Therefore, our map I extends to some
embedding from S1(δ) × B2(R) → B3(1).

This embedding I is 2-expanding on ∪iS
1(δ) × Qi, but it has terrible properties

on the complement of this region. We call the complement of ∪iS
1(δ) × Qi the

interstitial region. Since I is an embedding, there is some number β(I) > 0 so that
each surface of area A in the domain is mapped to a surface of area ≥ β(I)A, but
we have no estimate for β(I). We can fix this problem by squeezing the interstital
region in the following way.

For any ε > 0, there is a diffeomorphism Ψε : S1(δ) × B2(R) → S1(εδ) × B2(R)
with Lipschitz constant ≤2 and with 2-dilation �ε on the interstitial region. This
diffeomorphism is just a product of a map in each factor. The map on the circle is
just a rescaling. In the map B2(R) → B2(R), the squares Qi grow a bit, and the
interstitial region between them shrinks to a very thin neighborhood of a graph.

If we choose ε small enough, then I ◦ Ψ−1
ε : S1(εδ) × B2(R) → B3(1) will be a

2-expanding embedding. If we take a small surface in ∪iS
1(δ)×Qi, then Ψ−1

ε doesn’t
compress areas by more than a factor of 22 = 4, and I expands areas by a factor
of 10. If we take a small surface in the interstitial region with area A, then I ◦ Ψ−1

ε

maps the surface to an image with area at least β(I)ε−1A. As long as we choose ε
small enough, we are done.

Next we ask if we can construct an embedding with non-zero twisting number.
Here the answer is no. The problem is that in an embedding with non-zero twisting
number the images of the smaller tubes S1(δ) × Qi would have to be linked with
each other, and so they couldn’t lie in different balls.

But in dimension m ≥ 4, the smaller tubes would be unlinked and the construc-
tion above would go through, giving an (m-1)-expanding embedding. If m ≥ 4, then
for every R > 1, there is some δ(R), and an (m − 1)-expanding embedding from
S1(δ) × Bm−1(R) into Bm(1) with twisting number 1. Now using this thick tube
and the Pontryagin-Thom collapse, we get homotopically non-trivial maps from Sm

to Sm−1 with arbitrarily small (m − 1)-dilation.
In the proof of the h-principle, we will generalize this method. Instead of S1 ×

Bm−1, we will work more generally with Y ×Bn for an (m−n)-dimensional manifold
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Y . Instead of a union of cubes ∪iQi—which is a neighborhood of a 0-dimensional
polyhedron—we will work with neighborhoods of higher dimensional polyhedra in
Bn.
11.2 An outline of the proof. We will construct a degree 1 map Ψ : Sn → Sn,
and a degree 1 map G : Sm → Sm, and the map F will be Ψ ◦ F0 ◦ G. Since degree
1 maps of spheres are homotopic to the identity, we see that G and Ψ are each
homotopic to the identity, and so F is homotopic to F0. By choosing G and Ψ
judiciously, we will arrange that Dilk(F ) < ε.

Our construction depends on a small parameter δ > 0. The maps Ψ and G
depend on δ, and so the final map F depends on δ. We will show that as δ → 0,
Dilk(F ) → 0 also. We have to keep track of how the dilations and other geometric
quantities depend on δ. We write A � B if A ≤ C(F0)B, where C(F0) is a constant
that may depend on the map F0 but does not depend on δ.

We can assume that F0 is smooth. We let y0 ∈ Sn be a regular value of F0. We let
Y = F−1

0 (y0) ⊂ Sm. So Y is a submanifold of dimension m − n. Now we let Br(y0)
be the ball around y0 with a small radius r � 1. By choosing r appropriately small,
we can be sure that F−1

0 (Br(y0)) is diffeomorphic to Y × Br(y0). We can choose
a map πY : F−1

0 (Br(y0)) → Y so that πY × F0 : F−1
0 (Br(y0)) → Y × Br(y0) is a

diffeomorphism.
Since r is small, Br(y0) is nearly Euclidean, and we choose an identification with

Bn
r ⊂ R

n. We let Qn−k ⊂ Bn
r be the (n-k)-skeleton of the cubical grid with side

length δ intersected with Bn
r . (More precisely, Q is the union of all the faces of

cubical grid of dimension ≤n − k which lie entirely in Bn
r .) We let VW be the Wδ-

neighborhood of Qn−k ⊂ Br(y0), where W > 0 is a small constant depending on F0

which we will choose later. The constant W will be independent of δ and so W � 1.
Using our identification of Bn

r with Br(y0), we can think of VW as an open subset
of Br(y0) ⊂ Sn.

Now we can describe the map Ψ : Sn → Sn.

Lemma 11.1. We will construct a degree 1 map Ψ from Sn to Sn with the following
properties. On the set VW ⊂ Sn, the 1-dilation of Ψ is �1. On the complement
of VW , the k-dilation of Ψ is identically zero. This happens because Ψ maps the
complement of VW into a (k − 1)-dimensional subset of Sn.

We chose the dimension of Q to be n−k in order to make this lemma work. The
complement of VW is a neighborhood of a polyhedron of dimension k − 1. The map
Ψ retracts the complement of VW onto this polyhedron, while VW gets thicker in
order to fill the vacated region.

We define UW := F−1
0 (VW ) ⊂ Sm. On the complement of UW , Lemma 11.1

implies that the k-dilation of Ψ ◦ F0 is zero. So we only have to worry about what
happens on UW . We use the map G in order to deal with this region. To explain our
strategy, we need to define an auxiliary metric on UW .

We let h0 be the unit sphere metric on Sn, and hence on VW ⊂ Br(y0) ⊂ Sn. We
let g0 be the unit sphere metric on Sm and gY be the restriction of g0 to Y . The set
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UW is diffeomorphic to Y × VW . We let g1 be the metric δ2gY + h0. More precisely,
the map πY × F0 is a diffeomorphism from UW to Y × VW , and we define g1 so that
πY ×F0 is an isometry from (UW , g1) to (Y, δ2gY )× (VW , h0). In particular, the map
F0 : (UW , g1) → (VW , h0) has 1-dilation equal to 1.

Now we are ready to describe the degree 1 map G : Sm → Sm.

Lemma 11.2. If k > (m+1)/2, then there exists W � 1 and a degree 1 map G from
Sm to Sm with the following property. If we view G as a map from (G−1(UW ), g0)
to (UW , g1), then it has 1-dilation bounded by �δa for some exponent a > 0.

With these two lemmas, we prove the h-principle. We define F to be the composi-
tion Ψ◦F0◦G. Since Ψ and G are degree 1 maps of spheres, they are each homotopic
to the identity and so F is homotopic to F0. Now we estimate the k-dilation of the
map F .

The k-dilation of F is the supremum of |ΛkdFx|. We consider two cases, depending
on whether x lies in G−1(UW ). If x lies in G−1(UW ), then we proceed as follows. We
view F as a composition of maps

(G−1(UW ), g0) → (UW , g1) → (VW , h0) → (Sn, h0).

(The first map is G, the second map is F0, and the last map is Ψ.) For the first map,
the derivative dGx has norm �δa by Lemma 11.2. For the second map, the norm
of the derivative is ≤1 by the definition of g1. For the third map, the norm of the
derivative is �1 by Lemma 11.1. Therefore, the derivative dFx has norm �δa. By
making δ small, we can arrange that |dFx| and |ΛkdFx| are as small as we like.

Next we consider the case that x does not lie in G−1(UW ). In this case we have
no control over dGx. But we know that G(x) does not lie in UW and so F0(G(x))
does not lie in VW . Therefore, ΛkdΨF0(G(x)) is zero. And so ΛkdFx is zero also. In
summary, in each of the two cases, |ΛkdFx| < ε, and so Dilk(F ) < ε.

Now we discuss the construction of the map G. The map G is in fact a diffeo-
morphism, and we will construct its inverse G−1. The main task is to define G−1 on
the set UW . We construct it using the following lemma.

Lemma 11.3. If k > (m + 1)/2, then there is a constant W � 1, and an embedding
I : (UW , g1) → (Sm, g0) which is isotopic to the inclusion UW ⊂ Sm, and which
increases all lengths by a factor � δ−a. Here a = m−n

m > 0.

Given this lemma, the construction of G is straightforward. Since I is isotopic to
the inclusion map UW ⊂ Sm, we can extend I to a diffeomorphism from Sm to Sm.
This diffeomorphism is G−1. Because I is very expanding on UW , it follows that G
is very contracting on G−1(UW ). So Lemma 11.3 implies Lemma 11.2.

Lemma 11.3 is the main step in the proof of the h-principle. It is proven by
a quantitative general position argument. The set UW is a small neighborhood of
a polyhedron P of dimension p = m − k. The condition k > (m + 1)/2 implies
that p < (m − 1)/2. By a standard general position argument, any two embeddings
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from P into Sm are isotopic. The quantitative embedding lemma from Section 10
allows us to construct embeddings from neighborhoods of P with geometric control
of the embedding. With a little work, we will see that Lemma 11.3 follows from the
quantitative embedding lemma.

Before turning to the proofs, we describe the construction in a simple example,
to try to help the reader visualize the situation.

Let us suppose that k = n and that m = n + 1. Since k = n the dimension of Q
is zero. So Q is simply a grid of points with spacing δ, with a total of ∼δ−n points.
The set VW is simply a union of balls, centered at the points of Q and with radius
Wδ.

Since m = n + 1, the set Y = F−1
0 (y0) is a compact 1-dimensional manifold in

Sm. So Y is a union of circles. For simplicity, let’s consider the case that Y is a
single circle. The circle Y is independent of δ, so the length of Y is ∼1. Now the
set UW = F−1

0 (VW ) consists of ∼δ−n cylinders. Each cylinder is diffeomorphic to
S1 × Bn. Geometrically, each cylinder is roughly a product of a circle of length ∼1
and an n-ball of radius ∼δ.

So far, we have discussed the geometry of UW in the metric g0. In the metric
g1, each cylinder is a product of a circle with length ∼δ by a ball with radius ∼δ.
The metric g1 is much smaller than g0 in the direction along the fibers of F0, and it
approximately agrees with g0 perpendicular to the fibers of F0.

We can construct an embedding from (UW , g1) into (Sm, g0) as follows. First find
δ−n disjoint balls inside of (Sm, g0). Each ball will have radius ∼δ

n

n+1 . Embed each
tube of (UW , g1) into one of these balls. In the metric g1, the tube has length ∼δ
and thickness ∼δ. But in the target ball, the image will be a tube of length ∼δ

n

n+1

and thickness ∼δ
n

n+1 . Therefore, the embedding can expand all lengths by a factor
∼δ− 1

n+1 as desired.
So far this discussion works for any n ≥ 2. We still need to make sure that

our embedding is isotopic to the inclusion UW ⊂ Sm. Here we will see a difference
between the case n = 2 and the case n ≥ 3. In the case n = 2, if the map F0 : S3 → S2

has non-zero Hopf invariant, then the tubes of UW are all linked with each other. In
the embedding from the last paragraph, the tubes are mapped into disjoint balls, and
so their images are unlinked. Therefore, the embedding is not isotopic to the identity.
(In this case, k = (m + 1)/2, and the hypotheses of Lemma 11.3 are not satisfied.)
But when n = 3, this obstruction disappears because tubes in S4 cannot be linked.
We still need to arrange that on each tube individually, the embedding we construct
is isotopic to the inclusion, but this turns out to be reasonably straightforward. The
key point is that 1-dimensional curves in S3 can be linked, but 1-dimensional curves
in S4 cannot be.

At this point, we can say more about how general position arguments are relevant
to our problem. Recall that the set VW is a small neighborhood of a polyhedron Q of
dimension n − k. The set UW := F−1

0 (VW ) is a small neighborhood of a polyhedron
P = Y ×Q of dimension (m−n)+(n−k) = m−k. Let p = m−k be the dimension of
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P . The hypothesis of our construction is that k > (m + 1)/2, which is equivalent to
p < (m− 1)/2. So our set UW is a small neighborhood of a polyhedron of dimension
p < (m − 1)/2. The quantitative general position arguments from the last section
show that, because of the dimension condition p < (m − 1)/2, the set UW ⊂ Sm

may be isotoped rather freely.
For our particular application, we want to perform a certain type of isotopy.

Recall that F0 : UW → VW is a submersion with fibers diffeomorphic to Y . We want
to isotope UW so that the cross-section grows while allowing the fibers to shrink. In
the example above, UW is a union of tubes of length ∼1 and radius ∼δ. The fiber
is a circle of length ∼1 and the cross-section is an (m − 1)-ball of radius ∼δ. We
described how to isotope these tubes so that the cross-section grows from radius ∼δ
to radius ∼δ

n−1
n . The isotopy also shrinks the length of the fibers from ∼1 to ∼δ

n−1
n .

Lemma 11.3 generalizes this construction to all dimensions, as long as k > (m+1)/2.

11.3 The squeezing map. In this section, we prove Lemma 11.1. First we
recall the statement.

We will construct a degree 1 map Ψ from Sn to Sn with the following properties.
On the set VW ⊂ Sn, the 1-dilation of Ψ is �1. On the complement of VW , the
k-dilation of Ψ is identically zero. This happens because Ψ maps the complement of
VW into a (k − 1)-dimensional subset of Sn.

Proof. We begin by constructing a squeezing map in the setting of the cubical lattice
in R

n. Let Σ be the unit cubical lattice in R
n. Let Σ̄ denote the dual polyhedral

structure to Σ. So there is a vertex of Σ̄ in the center of each n-cube of Σ, and there
is an edge of Σ̄ perpendicular to each (n−1)-face of Σ, etc. So Σ̄ is also a unit cubical
lattice, shifted by (1/2, . . . , 1/2) relative to Σ. We let Σd denote the d-skeleton of
Σ and Σ̄d denote the d-skeleton of Σ̄. The key point of our construction is that the
complement of Σn−k retracts to Σ̄k−1. The next lemma gives a more quantitative
version of this fact.

Lemma 11.4. For any W > 0, there is a Z
n-periodic map R from R

n to R
n with

the following properties:

• R maps the complement of the W -neighborhood of Σn−k to Σ̄k−1,
• For any point y ∈ R

n, |R(y) − y| ≤ C(W ),
• Dil1 R ≤ C(W ).

Proof. We will work on the torus Tn = R
n/Z

n. Because Σ and Σ̄ are periodic, they
descend to polyhedral structures on the torus, which we call Σper and Σ̄per. Now
Tn\Σn−k

per deformation retracts to Σ̄k−1
per . By the homotopy extension property, we can

homotope the identity map to a smooth map Rper which retracts the complement
of the W -neighborhood of Σn−k

per to Σ̄k−1
per . Then we lift Rper to a Z

n-periodic map R
from R

n to itself.
The first property follows because Rper maps Tn\NW (Σn−k

per ) to Σ̄k−1
per . The second

property follows because Rper is homotopic to the identity. The last property follows
because Rper is a smooth map on a compact manifold. �
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The map R “squeezes” R
n \ NW (Σn−k) into Σ̄k−1, and it expands NW (Σn−k) to

fill in the space. We are going to do the same thing at a small scale δ on the sphere
Sn. First we switch scales.

We let Σδ be the cubical lattice of side length δ in R
n, we let Σ̄δ be the dual

structure, and so on. By just rescaling the lemma above we get the following.

Lemma 11.5. Let W > 0 be fixed independent of δ. Then for each δ > 0, there is a
δZ

n-periodic map Rδ from R
n to R

n with the following properties:

• Rδ maps the complement of the Wδ-neighborhood of Σn−k
δ to Σ̄k−1

δ ,
• For any point y ∈ R

n, |Rδ(y) − y| � δ,
• Dil1 Rδ � 1.

Finally, we adapt this squeezing map from R
n to the unit sphere Sn. Recall that

Br(y0) ⊂ Sn is close to Euclidean because we can assume that r ≤ 1/10. We use
the exponential map to identify Br(y0) with Bn

r ⊂ R
n. Recall that Qn−k ⊂ Bn

r is
just the union of all faces of Σn−k inside of Bn

r . Recall that VW ⊂ Bn
r is just the

Wδ-neighborhood of Q. Since Bn
r is identified with Br(y0), we can also think of VW

as a subset of Br(y0) ⊂ Sn.
We are now ready to construct the map Ψ. Let B′ = Br/4(y0), which we identify

with Bn
r/4 ⊂ R

n. Let Φ : Sn → Sn be a degree 1 map which collapses Sn \ B′ to a
point q. We define Ψ as follows.

• If y ∈ 3B′, then Ψ(y) = Φ ◦ Rδ(y).
• If y /∈ 3B′, then Ψ(y) = q.

First we check that these definitions match up to give a globally defined smooth
map. We should say a bit more about the definition in the first case. If δ > 0 is small
enough, then Rδ maps Bn

3r/4 into Bn
r ; so by a slight abuse of notation we can think

of it as a map from 3B′ into Br(y0) ⊂ Sn. The definitions match because if y lies in
3B′ \ 2B′, then Rδ(y) maps y to the complement of B′, and so Φ ◦ Rδ(y) = q.

We check that Ψ has degree 1. We let Rt,δ(y) = (1−t)Rδ(y)+ty be a straight-line
homotopy from Rδ to the identity. We define Ψt by replacing Rδ with Rt,δ in the
definition above. Each Rt,δ obeys the displacement bound |Rt,δ(y) − y| � δ, and so
the argument above shows that Ψt is a continuous family of maps. Therefore, Ψ is
homotopic to Φ and has degree 1.

Next we check the geometric properties of Ψ. Since Rδ and Φ each have 1-dilation
�1, we see that Ψ has 1-dilation �1. Suppose that y is in the complement of VW .
We have to check that ΛkdΨy = 0. If y does not lie in 2B′, then Ψ collapses a
neighborhood of y to a point, and so dΨy = 0. Suppose y lies in 2B′ but not in VW .
After identifying Br(y0) with Bn

r , y lies in Bn
r/2 but not in NWδΣn−k

δ . Therefore, Rδ

maps a neighborhood of y to the (k − 1)-dimensional polyhedron Σ̄k−1
δ . Therefore,

ΛkdRδ,y = 0, and so ΛkdΨy = 0 as well. �
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11.4 Quantitative embedding. Now we show that Lemma 11.3 follows from
the quantitative embedding lemma in the last section. First we recall the statement
of Lemma 11.3.

If k > (m + 1)/2, then there is a constant W � 1, and an embedding I :
(UW , g1) → (Sm, g0) which is isotopic to the inclusion UW ⊂ Sm, and which in-
creases all lengths by a factor � δ−a. Here a = m−n

m > 0.
Now we give the proof of Lemma 11.3.

Proof. In order to apply the quantitative embedding lemma, we need to define, M ,
P , N , I0, etc.

We let M be Br(y0)×Y . Recall that h0 is the unit sphere metric on Br(y0) ⊂ Sn,
and that gY is the metric on Y ⊂ Sm induced from the unit sphere metric of Sm.
Recall that g1 is defined to be h0+δ2gY . The volume of (M, g1) is ∼δm−n. We rescale
the metric to have volume ∼1: we let g = δ−2 m−n

n g1 = δ−2ag1. We have now defined
(M, g).

We recall that Q ⊂ Br(y0) is the (n-k)-skeleton of a cubical lattice with spacing δ
(with respect to the metric h0). We recall that P = Q×Y ⊂ Br(y0)×Y = M . After
picking a triangulation of Y , we can view P as a polyhedron embedded in M . The
pair P ⊂ (M, g1) has bounded local geometry at scale δ. (In fact, the local geometry
of the P ⊂ (M, g1) at scale δ is essentially independent of δ. In other words, if we
take any δ > 0, and then look at a δ-neighborhood in (M, g1) and rescale it to
size 1, the result will be essentially independent of δ.) After rescaling, we see that
P ⊂ (M, g) has bounded geometry at scale s = δ−aδ = δ1−a.

Because k > (m + 1)/2, we recall that p = DimP < (m − 1)/2. (To check
this, note that Q was has dimension n − k, Y has dimension m − n, and so p =
(n − k) + (m − n) = m − k.)

The target N is just (Sm, g0), which has bounded geometry at scale 1.
Recall that F0×πY : F−1

0 (Br(y0)) → Br(y0)×Y is a diffeomorphism. The inverse
of this diffeomorphism is our embedding I ′ : M → N . (We have M = Br(y0)×Y →
F−1

0 (Br(y0)) ⊂ Sm = N .)
It remains to construct a 1-Lipschitz map I0 : (M, g) → (Sm, g0) which maps at

most μ � 1 vertices of P into any ball of radius s in (Sm, g0). Geometrically, the
Y -factor in (M, g) is very small, and so (M, g) looks essentially like an n-dimensional
disk of radius δ−a = δ−1s. As our mapping, we fold up this disk inside of (Sm, g0) =
N .

Here are the details. We begin with the projection πB : M = Br(y0) × Y →
Br(y0). Recall that the metric g is a product metric g = δ−2ah0 + δ2−2agY . So
πB : (M, g) → (Br(y0), δ−2ah0) has Lipschitz constant 1. Now (Br(y0), δ−2ah0)
is bilipschitz equivalent to a Euclidean ball of radius δ−a = δ−1s (and the bilip-
schitz constant is �1). So up to a controlled bilipschitz error, we can identify
(Br(y0), δ−2ah0) with the Euclidean ball Bn(δ−1s).

Next we want to fold up this n-ball inside of (Sm, g0). To fold it up in a useful
way, we consider the product Bn(δ−1s) × [−s, s]m−n, which is an m-dimensional
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convex set with volume ∼1. It admits an embedding i0 into a hemisphere of (Sm, g0)
with bilipschitz constant �1. (For the details of this embedding, see the appendix
in Section 14.2.) By a slight rescaling, we can arrange that i0 : (Br(y0), δ−2ah0) →
(Sm, g0) has Lipschitz constant ≤1. Now we define I0 = i0◦πB. The map I0 : M → N
has Lipschitz constant ≤1.

We have to check that I0 maps μ � 1 vertices of P into each ball of radius s in
N = (Sm, g0). If B(s) is a ball of radius s in (Sm, g0), then i−1

0 (B(s)) is contained
in �1 balls of radius �s in (Br(y0), δ−2ah0). Since (Y, δ2−2agY ) has diameter �s,
the preimage π−1

B of a ball of radius �s in (Br(y0), δ−2ah0) is contained in a ball of
radius �s in (M, g). Therefore, I−1

0 (B(s)) is contained in �1 balls of radius �s in
(M, g). Since P ⊂ (M, g) has uniformly bounded local geometry at scale s, we see
that I−1

0 (B(s)) contains μ � 1 vertices of P .
Finally, we have to define T0. Without loss of generality, we can assume that

F−1
0 (Br(y0)) = I ′(M) is contained in a hemisphere of (Sm, g0), and that I0 : M →

(Sm, g0) is contained in the same hemisphere. We let Nhemi ⊂ N be this hemi-
sphere. The tangent bundle of the hemisphere Nhemi is trivial. We pick a particular
trivialization by doing parallel transport on the geodesics to the pole, and we get
a trivialization map TrivN : TNhemi → R

m, which is an isometry on each tangent
space. Also |∇ TrivN | � 1. We would like to also find a trivialization of TM . One
option is to take TrivN ◦dI ′ : TM → R

m. This is a trivialization, but the map on
each tangent space is far from an isometry, because the map I ′ : (M, g) → (N, h)
is far from an isometry. Recall that TM = TY ⊕ TBr(y0). Let S : TM → TM be
the map that multiplies each vector in the Y -direction by δ1−a and each vector in
the Br(y0)-direction by δ−a. Then dI ′ ◦ S : TM → TN has bilipschitz constant �1
(at each point of M). We define TrivM = TrivN ◦dI ′ ◦ S. It has bilipschitz constant
�1 on each tangent space. With these two trivializations, we can define a fiberwise
isomorphism T0 : TM → TN covering I0 as the unique map that commutes with
the two trivializations. In other words, if x ∈ M and v ∈ TxM , then

T0(x, v) =
(
I0(x), (TrivN

I0(x))
−1

(
TrivM

x v
))

.

Because both trivializations are bilipschitz, the map T0 has fiberwise bilipschitz
constant �1.

We have to show that our T0 is homotopic to dI ′ in the category of fiberwise
isomorphisms. Because I0 and I ′ both map M to a contractible hemisphere, they
are homotopic. So we may homotope T0 to

(
I ′(x), (TrivN

I′(x))
−1

(
TrivM

x v
))

=
(
I ′(x), dI ′ ◦ S(x, v)

)
.

To finish, we may homotope S to the identity, and thus homotope this last map
to dI ′.

Finally, we have to check that T0 does not oscillate too rapidly – in particular
that s|∇T0| � 1.
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Roughly speaking, if distg(x1, x2) = d, then the distance in (Sm, g0) from I ′(x1)
to I ′(x2) is �s−1d, and so the change between T0(x1) and T0(x2) is �s−1d also.
Therefore, s|∇T0| � 1.

Here are more details. We have T0 a bundle map from (TM, g) to (TN, h = g0).
Each bundle is equipped with a metric and a connection, and so we can define ∇T0

and |∇T0|.
We have T0(x, v) =

(
I0(x), (TrivN

I0(x))
−1

(
TrivM

x v
))

. The first component I0(x)
is harmless, because I0 : (M, g) → (N, h) has |∇I0| � 1. We concentrate on
the second component. The trivialization TrivN is also harmless since we have
|∇ TrivN | � 1. So it suffices to check that |∇ TrivM | � s−1. We recall that

TrivM := TrivN ◦dI ′ ◦ S.

To analyze this composition, we have to think about the domain and range of
each map in the right way, as follows:

S : (TM, g) → (TM, gY ⊕ h0),
dI ′ : (TM, gY ⊕ h0) → (TN, h),

TrivN : (TN, h) → R
m.

Each of the spaces in the list above is a bundle equipped with a metric and a
corresponding connection. (If we like, R

m is a trivial bundle over a point.) Using the
relevant metrics, we can define the operator norm of S, dI ′, and TrivN , and they are
all �1. Using the relevant metrics and connections, we can define ∇S, ∇dI ′, and
∇ TrivN . They are each quite nice. The first of them, ∇S, is identically zero. This is
because the splitting TM = TY ⊕ TBr(y0) is parallel with respect to both gY ⊕ h0

and g = δ2−2agY ⊕ δ−2ah0. The other two obey |∇dI ′| � 1 and |∇ TrivN | � 1,
since after all neither of these tensors depends on δ. Just to be clear, when we say
|∇dI ′| � 1, this means that if v is a tangent vector in TM , then |∇vdI ′| � |v|gY ⊕h0 .
Finally we expand ∇v TrivM using the Leibniz rule:

∇v TrivM = ∇dI′(v) TrivN ◦dI ′ ◦ S + TrivN ◦∇vdI ′ ◦ S + TrivN ◦dI ′ ◦ ∇vS.

The last term is just 0. Since the operators are all bounded and |∇ TrivN | and
|∇dI ′| are bounded, we see that the norm of this expression is bounded by

|dI ′(v)|h + |v|gY ⊕h0 � s−1|v|g.
In summary, we have shown that |∇v TrivM | � s−1|v|g which is equivalent to

|∇ TrivM | � s−1.
We have now checked all the hypotheses of the quantitative embedding lemma,

and we may apply it to finish the proof of Lemma 11.3. The quantitative embedding
lemma gives us an L-bilipschitz embedding I : (UW , g) → (Sm, g0) isotopic to I ′

with W � 1, L � 1. In the context of the quantitative embedding lemma, UW is
defined to be the Ws-neighborhood of P ⊂ (M, g). But this definition agrees with
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the previous definition of UW as VW × Y . The embedding I ′ : UW → Sm is just
the inclusion map, and so I is isotopic to the inclusion. Finally, if we use the metric
g1 = δ2ag on UW , then we see that the embedding I from (UW , g1) into (Sm, g0)
expands all lengths by a factor � δ−a as desired. �

This finishes the proof of Lemma 11.3, and hence the proof of the h-principle for
k-dilation.

12 Some Previous Lower Bounds for k-Dilation

For context, we recall here several approaches to get lower bounds on k-dilation
of maps from the unit m-sphere to the unit n-sphere. There are very few known
techniques for this problem.

The most basic estimates for k-dilation have to do with k-dimensional homology.
Suppose F : (M, g) → (N, h). If Σk is a k-dimensional surface in M , then by defini-
tion Volk(F (Σ)) ≤ Dilk(F ) Volk(Σ). This estimate passes to homology. For example,
we can assign a volume to a class h ∈ Hk(M ; Z) as the smallest k-dimensional vol-
ume (or mass) of a cycle z in the class h. Then Volk(F∗(h)) ≤ Dilk(F ) Volk(h). This
argument implies that a degree D map from the unit n-sphere to itself has n-dilation
at least |D|, which is sharp.

If m > n, then maps from Sm to Sn are homologically trivial, and this sim-
ple method doesn’t give any information. The next homotopy classes that were
studied were classes with non-zero Hopf invariant. These homotopy classes are well-
understood by the following theorem.

Hopf invariant inequality [Gro07, pp. 358–359]. Let F be a map from S4n−1 to
S2n. Then the norm of the Hopf invariant of F is bounded by C(n) Dil2n(F )2. Since
the Hopf invariant is an integer, any map with non-zero Hopf invariant has 2n-
dilation at least C(n)−1/2.

Proof. Let ω be a 2n-form on S2n with
∫

ω = 1. The pullback F ∗(ω) is a closed 2n-
form on S4n−1. Since H2n(S4n−1) = 0, this form is exact. We let PF ∗(ω) denote any
primitive of F ∗(ω). Then the Hopf invariant of F is equal to

∫
S4n−1 PF ∗(ω)∧F ∗(ω).

We take ω to be a multiple of the volume form, so |ω| < C at every point of S2n.
The norm of F ∗(ω) is bounded by C Dil2n(F ) pointwise. Therefore, the L2 norm of
F ∗(ω) is bounded by C Dil2n(F ).

Using Hodge theory, we can choose PF ∗(ω) to be perpendicular to all of the exact
(2n−1)-forms. For this choice, the L2 norm of PF ∗(ω) is bounded by λ−1/2‖F ∗ω‖2,
where λ is the smallest eigenvalue of the Laplacian on exact (2n)-forms. The eigen-
value λ is greater than zero and depends only on n. Finally, the norm of the Hopf
invariant is bounded by |F ∗(ω)|L2 |PF ∗(ω)|L2 , which is bounded by C(n) Dil2n(F )2.

�



1882 L. GUTH GAFA

The 2-dilation for k = 2 has stronger properties than for k > 2, and there are
several special techniques for dealing with it. The most important result in this
direction is the theorem of Tsui and Wang mentioned in the introduction.

Tsui–Wang inequality (Tsui and Wang, [TW04]). Let F be a C1 map from Sm

to Sn, where m ≥ 2. If the 2-dilation of F is less than 1, then F is nullhomotopic.

The proof by Tsui and Wang uses the mean curvature flow to deform the graph
of the map F as a submanifold of Sm × Sn. They prove that the mean curvature
flow converges to the graph of a constant function and that at each time t the flowed
submanifold is the graph of a map Ft. Therefore, Ft provides a homotopy from F
to a constant map.

In [Gro96, pp. 179], Gromov proved a slightly weaker theorem in the same spirit.
For each m and n, there exists a number ε(m, n) > 0, so that any C1 map from
Sm to Sn with 2-dilation less than ε(m, n) is null-homotopic. The proof is based on
the uniformization theorem and the borderline Sobolev inequality. Here is a sketch
of the proof. We view the map from Sm to Sn as a family of maps from S2 to
Sn, parametrized by Bm−2, where the maps at the boundary of Bm−2 are constant
maps. Let’s call the family Fa : S2 → Sn, where a ∈ Bm−2. If the 2-dilation of
the original map is less than ε, then each image Fa(S2) has area less than 4πε. We
change coordinates on each copy of S2 using the uniformization theorem, so each
map Fa becomes conformal. With care, this can be done in a way that is continuous
in a. After the change of coordinates, we get a (homotopic) map F̃a : S2 → Sn,
where each map F̃a has Dirichlet energy less than Cε. By the borderline Sobolev
inequality, each map F̃a has BMO norm �ε. To define the BMO norm, we think of
F̃a as a map from S2 to R

n+1. Let B be any ball in S2. Let Ma(B) be the mean
value of F̃a on B. The borderline Sobolev inequality says that the mean value of
|F̃a − Ma(B)| on the ball B is �ε. Now F̃a maps S2 into Sn ⊂ R

n+1. There is no
reason that Ma(B) must lie in Sn. But the last inequality implies that Ma(B) is
rather close to F̃a(x) for many points x ∈ B. In particular, it implies that Ma(B) is
�ε from Sn. Now we can homotope F̃a to a constant map by averaging over balls
of radius r and sending r from 0 to π/2. This homotopy depends continuously on
a. The homotopy does not lie in Sn, but the BMO inequality tells us that it lies in
the Cε-neighborhood of Sn. As long as Cε < 1/2, we can modify the homotopy to
lie entirely in Sn. In summary, we get a homotopy from our original map to a new
map that factors through Bm−2 and so is contractible.

The following result of Joe Coffey (unpublished) is also relevant to 2-dilation.

Proposition 12.1. The space of non-surjective pointed maps from S2 to S2 has
vanishing homotopy groups.

Sketch. Let MapNS(S2, S2) be the space of non-surjective maps from S2 to S2,
taking the base point of the domain to the basepoint of the range. Let X ⊂ S2

be a finite subset, and let MapX ⊂ MapNS(S2, S2) be the set of maps from S2
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to S2 which do not contain X in their image. The first key point is that MapX is
contractible. This happens because the universal cover of S2 \X is contractible. The
space MapNS(S2, S2) is the union ∪p∈S2 Mapp. Each of the sets Mapp is contractible.
Any finite intersection ∩I

i=1 Mappi
is the space MapX for X = ∪pi, and so it is

contractible. Now by a standard argument with nerves, any finite union ∪I
i=1 Mappi

is contractible. The sets Mapp are also open. Therefore, if f : Sp → MapNS(S2, S2)
is a continuous map, the image f(Sp) lies in a finite union of sets Mapp. Therefore, f
is contractible. By this argument, all the homotopy groups of MapNS(S2, S2) vanish.
This finishes the sketch of the proof.

As a corollary, we see that every map from the unit m-sphere to the unit 2-sphere
with 2-dilation <1 is contractible, recovering a special case of the theorem of Tsui
and Wang.

These three techniques give strong results about 2-dilation, but they haven’t yet
led to any results about k-dilation for k ≥ 3. Can the mean curvature flow shed any
light on k-dilation for k ≥ 3? The Riemann mapping theorem seems inherently two-
dimensional. Coffey’s proof uses the fact that the complement of a finite (non-empty)
set in S2 is aspherical. This fact is special to two dimensions. But studying the space
of non-surjective maps may yield some results in any dimension. Let MapNS(Sn, Sn)
denote the space of non-surjective basepoint-preserving maps from Sn to Sn. Clearly
MapNS(Sn, Sn) ⊂ Map(Sn, Sn). This inclusion induces a map of homotopy groups

πq(MapNS(Sn, Sn)) → πq(Map(Sn, Sn)) = πn+q(Sn).

If a ∈ πn+q(Sn) can be realized by maps with n-dilation < 1, then a will lie in
the image of πq(MapNS(Sn, Sn). Other than Coffey’s theorem, I don’t know of any
example where this image has been calculated. For example, it would be interesting
to know whether the image of π3(MapNS(S4, S4)) in π7(S4) contains classes with
non-zero Hopf invariant.

There is another basic fact about k-dilation which is relevant to our discussion.
This result has to do with the C0 limits of maps with bounded k-dilation. It appears
as an exercise in [Gro86, pp. 23, exercise B3].

Proposition 12.2. Suppose that Fi : Bm → R
n is a sequence of C1 maps from the

unit m-ball to R
n, where each map has k-dilation ≤1. Suppose that Fi converges in

C0 to a limit F . If F is C1 then Dilk(F ) ≤ 1. In fact, if F is just differentiable at
one point x, then Dilk(dFx) ≤ 1.

We begin with the following special case.

Lemma 12.3. Let Fi : B̄k → R
k be a sequence of maps from the closed k-ball to R

k

that converges in C0 to a linear map L. If Dilk(Fi) ≤ 1, then Dilk(L) ≤ 1.

Proof. The key point is the following. If |Fi−L|C0 ≤ ε, then Fi(Bk) must cover L(Bk)
except for the ε-neighborhood of L(Sk−1). This fact is well-known but not completely
elementary. It follows from Brouwer’s theory of degrees and winding numbers. If y is
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contained in L(Bk), then the winding number of L : Sk−1 → R
k \ {y} is equal to 1.

We make a straight-line homotopy from L to Fi. If y is not in the ε-neighborhood of
L(Sk−1), then this homotopy never hits y, and so Fi : Sk−1 → R

k \ {y} has winding
number 1. Therefore, Fi(Bk) must cover y.

Taking ε → 0, we see that Volk L(Bk) ≤ lim supi Volk Fi(Bk) ≤ Volk(Bk), and so
Dilk(L) ≤ 1. �

By scaling the domain and the range, the unit k-ball may easily be replaced by
a ball of any radius r > 0.

Now we turn to the general proposition, which follows from the lemma and some
rescaling.

Proof. We do a proof by contradiction. Suppose that x0 is a point where F is differ-
entiable, and dFx0 has k-dilation > 1. By translating, we can assume without loss of
generality that x0 = 0 and F (x0) = 0. Next, let P k ⊂ R

m be a k-plane through 0,
so that the k-dilation of dF0 restricted to P is > 1. Let Qk = dF0(P k), a k-plane in
R

n. By taking a subsequence of the Fi, we can arrange that |Fi(x)−F (x)| < 3−i for
all x in the unit ball and all i ≥ 1. Now we consider a sequence of maps Gi from P
to Q made by scaling down, applying Fi, projecting onto Q, and scaling back up. If
πQ denotes the orthogonal projection from R

n to Q, we can write Gi by the formula

Gi(x) = 2iπQ

(
Fi(x/2i))

)
.

The maps Gi all have k-dilation ≤1.
Next, let Hi(x) be defined by using F in place of Fi in the definition of Gi:

Hi(x) = 2iπQ

(
F (x/2i))

)
.

Since F is differentiable at 0, the maps Hi converge locally in C0 to the linear map
dF0.

If |x| ≤ 1, then |Gi(x) − Hi(x)| ≤ 2i|Fi(x2−i) − F (x2−i)| ≤ (3/2)−i. Therefore,
the maps Gi converge to dF0 in C0 on the unit ball. Since Dilk(Gi) ≤ 1, the lemma
implies that dF0 has k-dilation ≤1. �

As far as I know, all the proofs of Proposition 12.2 need degree theory or a
similar contribution from topology. For perspective on the role of topology, consider
the following counterexample. Suppose that Fi : R

2 → R
2 is a sequence of C1 maps

(or even smooth maps). Suppose that at each point, each derivative dFi has singular
values s1 ≤ s2 obeying the inequality s

1/2
1 s2 ≤ 1. Roughly speaking, this means that

Fi is allowed to stretch space in one direction by a factor Λ > 1 as long as it shrinks
in the perpendicular direction by a factor Λ2. It turns out that C0 limits of the Fi

do not have to obey the same condition on singular values. For example, let B > 1
be any number, and let L be the linear map L(x1, x2) = (x1/B, Bx2). The map L
has singular values s1 = B−1 and s2 = B. Therefore, s1(L)1/2s2(L) = B1/2, which
can be arbitrarily large. Nevertheless, for any B > 1, there exists a sequence of maps
Fi : R

2 → R
2 which obey the condition s

1/2
1 s2 ≤ 1 pointwise and converge to L in

C0. This construction is described in Appendix A of [Guta].
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13 Open Problems

The main question we considered in the paper was the following. Fix a homotopy
class a ∈ πm(Sn) and an integer k. Can the class a be realized by a sequence of
maps Fj : Sm → Sn with Dilk(Fj) → 0? This question was previously understood
for maps of non-zero degree or non-zero Hopf invariant. Our main theorem answers
this question for the non-zero homotopy class in πm(Sm−1) when m ≥ 4. There are
a few other cases where the answer is known, especially in low dimensions, but the
question is open for most homotopy classes.

To give some perspective, we record here what we know about some low-
dimensional homotopy groups of spheres. We use the lists of homotopy groups of
spheres and the suspension maps between them given in [Tod62, pp. 39–42]. By the
theorem of Tsui and Wang, no homotopy class can be realized with arbitrarily small
2-dilation. For maps a ∈ πm(S2), this theorem completely answers our question. In
the next few paragraphs, we consider a few homotopy groups of S3, S4, and S5.

We start with the homotopy groups of S3. No homotopy class can be realized with
arbitrarily small 2-dilation. The group π4(S3) is isomorphic to Z2, and the non-trivial
element is the suspension of the Hopf fibration. By the suspension construction, it
can be realized with arbitrarily small 3-dilation. The group π5(S3) is also isomorphic
to Z2, and the non-trivial element is the suspension of an element from π4(S2). By
the suspension construction, it can be realized with arbitrarily small 3-dilation. The
group π6(S3) is isomorphic to Z12. One non-trivial element of π6(S3) is a suspension
of an element from π5(S2). This one element can be realized by maps with arbitrarily
small 3-dilation. For the other (non-zero) elements of π6(S3), it is an open question
whether they can be realized with arbitrarily small 3-dilation.

We next consider the homotopy groups of S4. The group π5(S4) is isomorphic to
Z2. Our main theorem says that the non-trivial class can be realized by maps with
arbitrarily small 4-dilation but not arbitrarily small 3-dilation. The group π6(S4)
is also isomorphic to Z2. The non-trivial element is the double suspension of a
class from π4(S2). By the suspension construction, it can be realized by maps with
arbitrarily small 4-dilation. I don’t know whether it can be realized with arbitrarily
small 3-dilation. The group π7(S4) is isomorphic to Z⊕Z12. The elements with non-
trivial Hopf invariant cannot be realized with arbitrarily small 4-dilation. The other
elements are suspensions of elements in π6(S3). By the suspension construction, they
can be realized with arbitrarily small 4-dilation. One element is a double suspension
of an element in π5(S2). It can be realized with arbitrarily small 3-dilation. I don’t
know whether the other torsion elements can be realized by maps with arbitrarily
small 3-dilation.

Finally, we consider some homotopy groups of S5. The group π6(S5) is isomorphic
to Z2. Our main theorem says that the non-trivial class can be realized by maps with
arbitrarily small 4-dilation but not arbitrarily small 3-dilation. The group π7(S5) is
isomorphic to Z2, and the non-trivial element is the triple suspension of an element
in π4(S2). By the suspension construction it can be realized by maps with arbitrarily
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small 4-dilation. I don’t know whether it can be realized by maps with arbitrarily
small 3-dilation. The group π8(S5) is isomorphic to Z24. By the h-principle, every
class can be realized by maps with arbitrarily small 5-dilation. The classes with non-
zero Steenrod–Hopf invariant cannot be realized with arbitrarily small 4-dilation.
These classes correspond to the odd numbers in Z24. The other classes are all double
suspensions of classes in π6(S3), and one class (the class corresponding to the number
12) is the triple suspension of a class in π5(S2). The suspension construction implies
that the triple suspension can be realized by maps with arbitrarily small 4-dilation.
I don’t know whether any of the double suspensions can be realized with arbitrarily
small 4-dilation, or whether any non-trivial map can be realized with arbitrarily
small 3-dilation.

We also briefly consider the homotopy groups of small codimension. For m ≥ 4,
πm(Sm−1) = Z2. Our main theorem says that the non-trivial class can be realized
by maps with arbitrarily small k-dilation if and only if k > (m + 1)/2. Next we
consider the group πm(Sm−2). The homotopy group πm(Sm−2) is equal to Z2 for all
m ≥ 4, and the suspension is an isomorphism. The suspension construction implies
that the non-trivial class can be realized by maps with arbitrarily small k-dilation
for all k > m/2. (This improves slightly on the h-principle, which implies that the
non-trivial class can be realized by maps with arbitrarily small k-dilation for all
k > (m+1)/2.) By the Tsui–Wang theorem, we know that none of these classes can
be realized with arbitrarily small 2-dilation. But we don’t know a lower bound on
the 3-dilation for any of these classes. The group πm(Sm−3) is isomorphic to Z24 for
all m ≥ 8. By the h-principle, any of these elements can be realized with arbitrarily
small k-dilation for k > (m + 1)/2. Half of the elements have non-zero Steenrod–
Hopf invariant. These elements can be realized with arbitrarily small k-dilation only
if k > (m+1)/2, so we understand them well. The elements with zero Steenrod–Hopf
invariant are all suspensions from π6(S3). By the suspension construction, they can
all be represented by maps with arbitrarily small k-dilation for k > m/2. One of
the elements is a suspension from π5(S2). By the suspension construction, it can be
represented by maps with arbitrarily small k-dilation for k > (2/5)m.

We can use the k-dilation to define a filtration on the homotopy groups of spheres.
We say that a ∈ Vkπm(Sn) if the class a can be realized by maps with arbitrarily
small k-dilation. It is relatively easy to check that Vkπm(Sn) is a subgroup of πm(Sn),
and that 0 = V1πm(Sn) ⊂ V2πm(Sn) ⊂ · · · ⊂ Vnπm(Sn) ⊂ πm(Sn). We will give the
proof below.

The definition of Vkπm(Sn) does not depend on the choice of a metric on Sm

or Sn. We have been working with the unit sphere metrics in this paper. Suppose
that we choose other metrics g on Sm and h on Sn. Let Dil(g,h)

k (F ) be the k-dilation
of the map F from (Sm, g) to (Sn, h). Let g0 and h0 be the unit sphere metrics.
Suppose that g is L1 bilipschitz to g0 and h is L2-bilipschitz to h0. Then

L−k
1 L−k

2 ≤ Dil(g,h)
k (F )

Dil(g0,h0)
k (F )

≤ Lk
1L

k
2.
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Therefore, if Fi : Sm → Sn is a sequence of maps, then Dil(g,h)
k (Fi) → 0 if and only

if Dil(g0,h0)
k (Fi) → 0. In particular, the definition of Vkπm(Sn) is independent of the

choice of metric.
We can define a similar filtration on the homotopy groups of any finite simplicial

complex. Let X be a finite simplicial complex. Equip each simplex with the standard
metric. Then we say that a ∈ πm(X) belongs to Vkπm(X) if there are maps Fi :
Sm → X in the homotopy class a with Dilk(Fi) → 0. The Vkπm(X) form a filtration
of πm(X): they are each subgroups of πm(X), with 0 = V1πm(X) ⊂ V2πm(X) ⊂
· · · ⊂ Vmπm(X) ⊂ πm(X).

Lemma 13.1. The set Vkπm(X) is a subgroup of πm(X).

Proof. If a lies in Vkπm(X), then let fi be a sequence of maps from Sm to X in the
homotopy class a with k-dilation tending to zero. Let I be a reflection, mapping Sm

to itself with degree −1, and taking the basepoint of Sm to itself. Then the maps
fi ◦ I have k-dilations tending to zero and lie in the homotopy class −a. Therefore
−a lies in Vkπm(X).

Next, suppose that a and b lie in Vkπm(X). Again, let fi be a sequence of (pointed)
maps in the class a with k-dilation tending to zero, and let gi be a sequence of
(pointed) maps in the homotopy class b with k-dilation tending to zero. Let I be a
map from Sm to Sm ∨ Sm with degree (1,1). Let hi be the map from Sm ∨ Sm to X
whose restriction to the first copy of Sm is equal to fi and whose restriction to the
second copy of Sm is equal to gi. Then the sequence hi ◦ I has k-dilation tending
to zero. Each map in the sequence lies in the homotopy class a + b. So a + b lies in
Vkπm(X). �
Lemma 13.2. For any finite simplicial complex X, the subgroups Vkπm(X) are
nested, with Vkπm(X) ⊂ Vk+1πm(X).

Proof. For any map F , Dilk+1 F
1

k+1 ≤ Dilk F 1/k by Proposition 2.4. In particular, if
fi is a sequence of maps with k-dilation tending to zero, then the (k+1)-dilation of
fi also tends to zero. Therefore, Vkπm(X) ⊂ Vk+1πm(X). �

These two lemmas show that Vkπm(X) form a filtration of πm(X). The filtration
Vk also behaves naturally under mappings.

Lemma 13.3. If Ψ : X → Y is a continuous pointed mapping between finite simpli-
cial complexes, then Ψ∗ : πm(X) → πm(Y ) takes Vkπm(X) into Vkπm(Y ).

Proof. First homotope Ψ to a PL map with some finite Lipshitz constant L. Let a
be a class in Vkπm(X), realized by mappings fi : Sm → X with k-dilation tending
to zero. The map Ψ◦fi from Sm to Y has k-dilation less than Lk Dilk(fi) → 0. Each
map Ψ ◦ fi lies in the homotopy class Ψ∗(a). Therefore, Ψ∗(a) lies in Vkπm(Y ). �

In particular, if Ψ is a homotopy equivalence, then Ψ∗ maps Vkπm(X) bijectively
to Vkπm(Y ). In other words, the filtration we have defined is homotopy invariant.
Very little is known about Vkπm(X) for spaces X besides Sn.

In the rest of this section, we mention a few other open problems.
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13.1 Are there minimizers in the k-dilation problem? One might try
to study the k-dilation of mappings using the calculus of variations. I’m not sure
how much can be achieved in this direction. Let’s start by framing some questions.
Suppose that we pick a homotopy class a ∈ πm(Sn), and we try to minimize the
k-dilation of maps F : Sm → Sn in the homotopy class a. Will the infimum be
achieved by a C1 map? If not, will the infimum be achieved in some weaker space of
maps? The results in this paper give a little bit of information about these questions,
which we summarize here.

Our information about these questions comes from the following estimate.

Proposition 13.4. If F : S4 → S3 has non-trivial Steenrod–Hopf invariant, then
Dil2(F ) Dil3(F ) > c > 0.

Proof. This argument is based on the construction of the cycle Z(F ) in Section
5.1. Our cycle Z(F ) is a 6-cycle in Γ1S

3. By Proposition 6.4, the directed volume
Vol(a,b,c)(Z(F )) is bounded by C Dilb(F ) Dilc(F ). Now a+b+c ≤ 6, and we know a ≤
1, and b, c ≤ 3. Hence the vector (b, c) is (2, 3), (3, 2), or (3, 3). So the total volume of
Z(F ) is bounded by C Dil2(F ) Dil3(F ) + C Dil3(F )2. If F has non-trivial Steenrod–
Hopf invariant, then Proposition 5.4 implies Z(F ) is homologically non-trivial. In
this case, the total volume of Z(F ) cannot be too small. Therefore Dil2(F ) Dil3(F )
is bounded below. �

If F : S4 → S3 has non-trivial Steenrod–Hopf invariant and yet Dil3(F ) < ε, then
we see Dil2(F ) � ε−1 and so Dil1(F ) � ε−1/2. (It’s unclear how sharp these estimates
are. The mappings constructed in Proposition 3.2 have 3-dilation ε, 2-dilation ∼ε−2,
and 1-dilation ∼ε−1.)

As a corollary, we see that there is no homotopically non-trivial C1 map F from
S4 → S3 with Λ3dF = 0.

So let’s consider the problem of minimizing Dil3(F ) among all homotopically
non-trivial maps S4 → S3. It follows from the h-principle or from Proposition 3.2
that the infimum is equal to zero. Since there is no homotopically non-trivial C1

map from S4 to S3 with 3-dilation zero, we see that the infimum is not achieved by
a C1 map.

Now we could try to consider less regular maps. It’s easy to define the k-dilation
of a piecewise C1-map. With a little extra work, we could probably define the k-
dilation for Lipschitz maps, for example by using Rademacher’s theorem. However, I
believe that the last proposition could be extended to Lipschitz maps. It would imply
that Lip(F )2 Dil3(F ) > c > 0 for any homotopically non-trivial map F : S4 → S3.
This would imply that the infimum of Dil3(F ) is not achieved by any Lipschitz map.

For maps which are not even Lipschitz, I am not sure how to define the k-dilation.
Can we extend the 3-dilation to some appropriate “weak space of maps” where

the infimum is achieved?

13.2 The rank of the derivative and the topology of the mapping. When
I first began to work on this subject, I expected that every homotopically non-trivial
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map from Sm to Sn must have n-dilation at least c(m, n) > 0. My incorrect intuition
about the problem came partly from Sard’s theorem. According to Sard’s theorem,
every C∞ map F from Sm to Sn has a full measure set of regular values. If the
n-dilation of F is zero, then every point in the domain is a critical point. Hence
every point in the image of F is a critical value. According to Sard’s theorem, if F is
C∞ with zero n-dilation, then the image of F has measure zero. So we see that every
C∞ map from Sm to Sn with n-dilation zero is contractible. At first, I expected that
this result should extend to maps with sufficiently tiny n-dilation—but it does not.

In [Whi35], Whitney discovered that Sard’s theorem is false for C1 maps. In the
mid 1970s, Hirsch raised the question if there could be a surjective C1 map from B3

to B2 with 2-dilation zero. In [Kau79], Kaufman produced such a map. Kaufman’s
technique can easily be generalized to construct surjective C1 maps from S3 to S2

with zero 2-dilation. The maps constructed this way are contractible. In fact, we
have seen that every map from S3 to S2 with zero two-dilation is contractible.

We say that a C1 map F from one manifold to another has rank <k if the rank
of dFx is less than k for each x in the domain. A map has rank less than k if and
only if it has k-dilation equal to zero. The rank of a map is a differential topological
invariant. We have very little knowledge about how the rank of a map is related to
its homotopy type.

Rank of the derivative and topology of mappings. Let F : Sm → Sn be a C1

map with rank <k. What can we conclude about the homotopy type of F?

We don’t know any homotopically non-trivial C1 map from Sm to Sn with rank
<n. Does one exist?

A related question is whether there are homotopically non-trivial C1 maps Fi :
Sm → Sn with Diln(Fi) → 0 and uniformly bounded 1-dilation.

Added in proof. Recently, Wenger and Young addressed this question in [WY].
They proved the following result [WY, pp. 2].

Theorem 13.5 (Wenger, Young). If n + 1 ≤ m < 2n − 1, then any Lipschitz map
f : Sm → Sn can be extended to a Lipschitz map Bm+1 → Bn+1 whose derivative
has rank ≤n almost everywhere.

Corollary 13.6. If n + 1 ≤ m < 2n − 1, and a ∈ πm(Sn), then the suspension of
a can be realized by a Lipschitz map Sm+1 → Sn+1 whose derivative has rank ≤n
almost everywhere.

13.3 On thick tubes. In Section 9, we constructed k-expanding embeddings
I : S1(δ)×Bm−1(1) → Bm(ε) for every ε > 0 and for all k > m/2. In other words, we
constructed tubes with k-thickness 1 in arbitrarily small balls Bm(ε) for all k > m/2.

We don’t know whether this is sharp. It’s straightforward to check that a tube
with 1-thickness 1 does not embed in a small ball. We don’t know if there are tubes
with 2-thickness 1 in arbitrarily small balls Bm(ε) for every dimension m.

We can generalize the question to embeddings from Sp × Bm−p into Bm. The
generalization of the thick tube construction in Section 9 gives the following lemma.
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Lemma 13.7. If k > m
p+1 , then for any ε > 0, we can choose δ > 0, and construct a

k-expanding embedding from Sp(δ) × Bm−p(1) into Bm(ε).

We proved the lemma for the case p = 1 in Section 9. Now we give a straightfor-
ward generalization to other values of p.

Proof. The domain Sp(δ) × Bm−p(1) is contained in Sp(δ) × [−1, 1]m−p. Now we
apply a k-expanding diffeomorphism that shrinks one direction of the cube by a
factor λ > 1, and grows all the other directions by a factor λ

1
k−1 . This map is a

k-expanding diffeomorphism to Sp(δλ
1

k−1 )× [−λ−1, λ−1]× [−λ
1

k−1 , λ
1

k−1 ]m−p−1. Now
we choose δ so that δλ

1
k−1 = λ−1. In other words, δ = λ− k

k−1 . So Sp(δλ
1

k−1 ) ×
[−λ−1, λ−1] = Sp(λ−1)× [−λ−1, λ−1], which admits a 1-expanding embedding into a
ball Bp+1(Cλ−1). In summary, we have constructed a k-expanding embedding from
our domain into Bp+1(Cλ−1)×Bm−p−1(Cλ

1
k−1 ). The volume of this product of balls

is ∼λ−(p+1)+ m−p−1
k−1 . The condition k > m

p+1 makes the exponent negative. By taking
λ large, we can make the volume as small as we want. This product of balls then
admits a 1-expanding embedding into an arbitrarily small ball (see Section 14.2 for
details). �

Is it possible to find a k-expanding embedding Sp(δ)×Bm−p(1) into a small ball
for any k ≤ m

p+1?

13.4 On k-dilation and Uryson width. Let F be a map from Sm to Sn

with k-dilation W . Let g0 denote the unit sphere metric on Sm, and let h0 denote
the unit sphere metric on Sn. Let g denote the “pullback metric” F ∗(h0). We use
quotes because the symmetric tensor g may not be positive definite. In fact it won’t
be positive definite in the interesting case that m > n, but g is always a positive
semi-definite symmetric 2-tensor. We can let g̃ = g + εg0 for some tiny ε > 0, so
that g̃ is an honest metric on Sm. The k-dilation of F is closely related to Λkg—
the kth exterior power of the metric g. In particular, Λkg ≤ Dilk(F )2Λkg0. If ε is
small enough, then Λkg̃ ≤ (1.01) Dilk(F )2Λkg0. This setup motivates the following
question.

What can we say about metrics g on Sm obeying Λkg ≤ Λkg0?
The Uryson widths are fundamental metric invariants of Riemannian manifolds.

Recall that the Ursyon q-width of a metric space X, denoted UWq(X), is defined
as follows. We say that UWq(X) ≤ W if there is a continuous map from X to a
q-dimensional polyhedron P q whose fibers each have diameter less than W . In other
words, if x1, x2 ∈ X are any two points of X mapped to the same point of P ,
then the distance distX(x1, x2) should be ≤W . Intuitively, the Uryson q-width of X
measures “how far X is from looking like a q-dimensional polyhedron”.

The main facts about Uryson width are contained in the paper [Gro88]. One
fundamental fact is that the Uryson (n − 1)-width of the unit n-cube [0, 1]n is
positive. In fact, the Lebesgue covering lemma implies that UWn−1([0, 1]n) = 1.
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More generally, the Uryson q-width of a Riemannian manifold of dimension > q is
always positive. For this section, we recall one other fact about Uryson width.

Proposition 13.8 [Gro88]. For each dimension n, there is a constant β(n) > 0
so that the following holds. If X is a metric space and UWn−1(X) < β(n), and
F : X → Sn has Lipschitz constant 1, then F is contractible.

Ursyon width question. If g is a metric on Sm obeying Λkg ≤ Λkg0, then what
can we say about the Uryson widths of (Sm, g)?

In a recent preprint [Gutc], I proved that the codimension 1 Uryson width is
controlled by the volume:

Uryson width inequality. If (Mm, g) is a closed m-dimensional Riemannian
manifold, then UWm−1(M, g) is at most C(m) Vol(M, g)1/m.

(This inequality is a technical improvement on the filling radius inequality from
[Gro83].)

If Λmg ≤ Λmg0, then one knows that the total volume of g is at most Vol(Sm, g0).
By the Uryson width inequality, we see that UWm−1(Sm, g) is bounded by a dimen-
sional constant C(m).

As k decreases, the condition Λkg ≤ Λkg0 becomes stronger, and for sufficiently
small k, it may control Uryson q-widths for some q < m − 1.

There are some examples built using the construction of “thick tubes” discussed
in Lemma 13.7.

Thick tube metrics. Let c be an integer 2 ≤ c ≤ m − 1. If k > m/c, then there
are metrics g on Sm with Λkg ≤ Λkg0 and UWm−c(Sm, g) arbitrarily large.

Proof. Let p = c − 1. According to Lemma 13.7, we can construct a k-expanding
embedding I1 from Sp(δ) × Bm−p(R) into the upper hemisphere of (Sm, g0), with
R arbitrarily large. (As R increases, δ decreases.) Let U ⊂ Sm be the image of the
embedding. Let g be the pushforward of the metric from Sp(δ) × Bm−p(R) onto U .
So (U, g) is isometric to Sp(δ)×Bm−p(R). Since we used a k-expanding embedding,
Λkg ≤ Λkg0 on U . Now we extend g to a metric on all of Sm with Λkg ≤ Λkg0 by
making g very small outside of U .

We claim that the Uryson width UWm−p−1(Sm, g) is � R. To see this we will
prove that (Sm, g0) contains an undistorted copy of Bm−p(R/2). In other words, we
will find an embedding I : Bm−p(R/2) → (Sm, g) so that for any two points x, y ∈
Bm−p(R/2), |x − y| = distg(I(x), I(y)). Then it follows that UWm−p−1(Sm, g) ≥
UWm−p−1(Bm−p(R/2)) � R.

The embedding I is very simple. We just pick a point θ ∈ Sp(δ), and we define
I(x) = I1(θ, x). It only remains to check that this embedding is undistorted. Let
x, y ∈ Bm−p(R/2). First we note that the distance in Sp(δ) × Bm−p(R) from (θ, x)
to (θ, y) is just |x−y|. Now, let γ be a path from I(x) to I(y) in (Sm, g). If the path
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γ stays in U , then the length of γ is at least |x − y|, because (U, g) is isometric to
Sp(δ) × Bm−p(R). But if the path γ leaves U , it must contain an arc from I(x) to
∂U and another arc from I(y) to ∂U . Each of these arcs has length at least R/2. So
the total length of γ is at least R ≥ |x − y|.

So we see that UWm−p−1(Sm, g) = UWm−c(Sm, g) can be arbitrarily large. �

Based on these examples, the following conjecture looks plausible.

Uryson width conjecture. Let 1 ≤ c ≤ m. Let g be a metric on Sm with Λkg ≤
Λkg0, where g0 is the unit sphere metric on Sm. If k ≤ m/c, then UWm−c(Sm, g) ≤
C(m).

The conjecture is true when c = 1 by the Uryson width inequality above. It is
trivially true when c = m, since Λ1g ≤ Λ1g0 implies Diam(g) ≤ Diam(g0), and
UW0(Sm, g) is just the diameter of (Sm, g). In the range 2 ≤ c ≤ m − 1, the
conjecture is open.

The Uryson width conjecture has implications for the questions we considered
above, including our main question. The first implication is that our construction of
thick tubes is optimal.

Thick tube conjecture. If I is a k-expanding embedding from Sp(δ) × Bm−p(R)
into the unit m-ball, and if k ≤ m

p+1 , then R � 1.

The second implication of the Uryson width conjecture is a general conjecture
about k-dilation and contractibility of mappings.

Null-homotopy conjecture. If k ≤ m/c and n > m − c, then every non-
contractible map F from the unit m-sphere to the unit n-sphere has Dilk(F ) ≥
c(m, n) > 0.

The Uryson width conjecture implies the null-homotopy conjecture by the fol-
lowing argument. Let h0 be the metric on the unit n-sphere. Let g be the pullback
metric F ∗(h0) and let g̃ = g + εg0. We know that Λkg ≤ Dilk(F )2Λk(g0), and if ε
is small enough, we can assume that Λkg̃ ≤ 2 Dilk(F )2Λkg0. Since k ≤ (m/c), the
Uryson width conjecture implies that UWm−c(Sm, g̃) � Dilk(F )1/k. Now the map
F : (Sm, g̃) → (Sn, h0) has Lipschitz constant 1. If UWm−c(Sm, g̃) is small enough,
then Proposition 13.8 implies that F is contractible.

For example, the null-homotopy conjecture says that if F : Sm → Sm−1 has
tiny m/2-dilation, then F is contractible. This statement is actually true by our
Steenrod square inequality. (The Steenrod square inequality is a little stronger than
this statement, because it also applies to (m + 1)/2-dilation.)

The null-homotopy conjecture also says that if F : Sm → Sm−2 has tiny m/3
dilation, then F should be contractible. This is an open problem.
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14 Appendices

14.1 A probability lemma. In this section, we recall and prove a simple prob-
ability lemma that we used a couple times in the paper.

Suppose that X =
∏

i∈I Xi is a (countable or finite) product of probability spaces.
Suppose that B ⊂ X is a “bad” set, consisting of a union B = ∪Bα. We would like
to find a not-bad element of X i.e. an element x ∈ X which is not in B. We know
that the measure (probability) of each Bα is less than ε a small number. But, we
have no control over the number of sets Bα. Therefore, on average, an element of X
may lie in over a thousand different Bα. We can still find an element outside of B
provided that the sets Bα are “localized” in the following sense.

Lemma 14.1. Suppose that B is the union of sets Bα each with probability less
than ε. Suppose that each set Bα depends on <C1 different coordinates xi of the
point x. Suppose that each variable is relevant for <C2 different bad sets Bα. If
ε < (1/2)C−C1

2 , then B is not all of X.

This lemma is an easy corollary of the Lovasz local lemma. The hypotheses imply
that each set Bα0 is independent of the other sets except for C1C2 of them. Then
the local lemma implies our lemma with a better estimate for ε. The local lemma is
proven in [EL75] and [AS08].

Our lemma is quite easy, and we give a short self-contained proof as well.

Proof. The idea is that we just choose the coordinates x1, x2, . . . one at a time in a
reasonable way.

Let I(α) ⊂ I be the set of coordinates that are relevant for the bad set B(α). We
know that the number of elements |I(α)| < C1. Similarly, we let A(i) be the set of bad
events α which depend on the coordinate xi. We know that the number of elements
|A(i)| < C2. We let P (α) be the measure of B(α). After choosing x1, x2, . . . , xi, we
let Pi(α) be the conditional probability of landing in B(α) after randomly making
all other choices. We let Ii(α) be the set of coordinates j ∈ I(α) with 1 ≤ j ≤ i.

When we choose xi+1, we affect some of the probabilities. If α is not in A(i + 1),
then Pi+1(α) = Pi(α). But if α ∈ A(i+1), then Pi+1(α) may be different from Pi(α).
When we randomly pick xi+1, the probability that Pi+1(α) > C2Pi(α) is ≤C−1

2 . Since
A(i + 1) contains <C2 values of α, we can choose xi+1 so that Pi+1(α) ≤ C2Pi(α)
for every α ∈ A(i + 1).

Hence by induction, we have Pi(α) ≤ C
|Ii(α)|
2 ε for each α.

After we have chosen all the xi, the conditional probability P∞(α) is either 0 or
1. P∞(α) = 1 if the point x = (x1, x2, . . .) lies in B(α), and P∞(α) = 0 if it doesn’t.
Our inequality on Pi(α) becomes in the limit P∞(α) ≤ CC1

2 ε ≤ 1/2, and so the point
x does not lie in any bad set B(α). �
14.2 Bilipschitz embeddings of rectangles. At several points in the paper
we use a bilipschitz embedding from some rectangular solid into a unit ball. These
embeddings can all be derived from the following basic lemma, which describes when
there is a bilipschitz embedding from one rectangular solid into another.
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Lemma 14.2. Suppose that R and S are n-dimensional rectangles. Let R =
∏n

j=1

[0, Rj ] with R1 ≤ · · · ≤ Rn, and let S =
∏n

j=1[0, Sj ] with S1 ≤ · · · ≤ Sn. If
∏p

j=1 Rj ≥ ∏p
j=1 Sj for all p in the range 1 ≤ p ≤ n, then there is a locally C(n)-

bilipschitz embedding from S into R.

Recall that an embedding I : S → R is called locally L-bilipschitz if it distorts
the lengths of tangent vectors by at most a factor of L. More precisely, if v is any
tangent vector in S, then |v|/L ≤ |dI(v)| ≤ L|v|.

The proof is by induction on the dimension. Unfortunately, the algebra is a bit
tedious. It has the following corollary.

Corollary. Suppose that A is an n-dimensional convex set in R
n with volume 1.

Then there is a locally C(n)-bilipschitz embedding into the unit n-ball or into the
upper hemisphere of the unit n-sphere.

Proof. After a rotation, the set A is a subset of a rectangle R with volume ≤C(n), for
some C(n) > 1. The rectangle has side lengths R1 ≤ · · · ≤ Rn and

∏n
j=1 Rj ≤ C(n).

Since the Rj are increasing, we have
∏p

j=1 Rj ≤ C(n) also. By Lemma 14.2, this
rectangle admits a locally C(n)-bilipschitz embedding into the unit cube. The unit
cube has a C(n)-bilipschitz embedding into the unit ball or the upper hemisphere.

�
Lemma 14.2 is sharp up to constant factors. If there is an L-bilipschitz embedding

from S into R, then R1 · · ·Rp ≥ c(n)L−pS1 · · ·Sp for each p from 1 to n. A proof
is given in [Gut07]. The known proofs are surprisingly difficult. All the proofs use
homology theory. It would be interesting to find a really elementary proof. Now we
give the proof of Lemma 14.2.

Proof. The proof is by induction on n. The base case is n = 2.
Suppose that R1 ≥ S1 and R1R2 ≥ S1S2. If R2 ≥ S2, then the identity map is

an embedding from S into R, and there is nothing to prove. If R2 < S2, then S is
longer and thinner than R, and the area of S is smaller than the area of R. In this
case, we can make a locally 10-bilipschitz embedding by folding S back and forth
inside of R.

For general n, we construct the bilipschitz embedding by using this construction
repeatedly with different coordinates. We know that R1 ≥ S1. If Rj ≥ Sj for all j,
then the identity map is an embedding from S into R, and there is nothing to prove.
Otherwise, let a be the smallest value so that Ra < Sa. We know that a ≥ 2, and so
Ra−1 ≥ Sa−1.

We will define a rectangle S′ with S′
j = Sj except for j = a − 1 and j = a, and

we will use the 2-dimensional case to find a 10-bilipschitz embedding from S into S′.
Now S′ will have the property that either S′

a = Ra or else S′
a−1 = R′

a−1. Then by
induction, we will construct a C(n − 1)-bilipschitz embedding from S′ into R. Now
we turn to the details.
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We consider the ratios Ra−1/Sa−1 ≥ 1 and Sa/Ra ≥ 1. We proceed in two cases,
depending on which ratio is larger.

Suppose first that Ra−1/Sa−1 ≥ Sa/Ra. Define S′
a = Ra and S′

a−1 = (Sa/Ra)
Sa−1 ≤ Ra−1 ≤ Ra = S′

a. We note that S′
a−1 ≥ Sa−1 ≥ Sa−2 and S′

a ≤ Sa ≤ Sa+1.
Now we define S′

j = Sj for all j except a − 1 and a. The inequalities we have proven
show that S′

j are in order: S′
1 ≤ S′

2 ≤ · · · ≤ S′
n. We let S′ be the corresponding

rectangle
∏n

j=1[0, S′
j ]. By the 2-dimensional case, there is a 10-bilipschitz embed-

ding from [0, Sa−1] × [0, Sa] into [0, S′
a−1] × [0, S′

a]. Using the identity in the other
coordinates, we get a 10-bilipschitz embedding from S into S′.

We claim that
∏p

j=1 S′
j ≤ ∏p

j=1 Rj for all p. For p ≤ a − 2, this follows be-
cause

∏p
j=1 S′

j =
∏p

j=1 Sj . We also note that S′
a−1S

′
a = Sa−1Sa, and so for p ≥ a,

∏p
j=1 S′

j =
∏p

j=1 Sj ≤ ∏p
j=1 Rj . Finally, we have to consider p = a − 1. Since

S′
a−1 ≤ Ra−1,

∏a−1
j=1 S′

j ≤ (
∏a−2

j=1 S′
j)Ra−1 ≤ (

∏a−2
j=1 Rj)Ra−1 =

∏a−1
j=1 Rj . This proves

the claim. Now we let R = R̄×[0, Ra] and S′ = S̄′×[0, Ra], where R̄ is the product of
[0, Rj ] for j �= a, and S̄′ is the product of [0, S′

j ] for j �= a. By induction, we see that
there is a C(n − 1)-bilipschitz embedding from S̄′ into R̄. Using the identity in the
a-coordinate, we get a C(n − 1)-bilipschitz embedding from S′ into R. Composing
our two embeddings, we get a 10C(n − 1)-bilipschitz embedding from S into R.

The other case is similar. Suppose that Ra−1/Sa−1 ≤ Sa/Ra. Define S′
a−1 = Ra−1

and S′
a = (Sa−1/Ra−1)Sa. We note that Ra ≤ S′

a ≤ Sa. Therefore Sa−2 ≤ Sa−1 ≤
S′

a−1 = Ra−1 ≤ Ra ≤ S′
a ≤ Sa ≤ Sa+1. We define S′

j = Sj for all j except a − 1
and a. The inequalities we have proven show that the S′

j are in order, and we define
S′ =

∏n
j=1[0, S′

j ] By the 2-dimensional case there is a 10-bilipschitz embedding from
S into S′. By the same arguments as above, we can check that

∏p
j=1 S′

j ≤ ∏p
j=1 Rj

for all p. This time, S′
a−1 = Ra−1. We let R = R̄ × [0, Ra−1] and S′ = S̄′ × [0, S′

a−1].
By induction, we see that there is a C(n − 1)-bilipschitz embedding from S̄′ into
R̄. Using the identity in the a-coordinate, we get a C(n − 1)-bilipschitz embedding
from S′ into R. Composing our two embeddings, we get a 10C(n − 1)-bilipschitz
embedding from S into R. �

14.3 Basic facts about flat chains and flat equivalence. We use some
basic facts about flat chains and flat equivalence in Sections 4.2 and 5.1. In this
appendix, we review the basic facts.

The flat norm is usually defined for chains in a Riemannian manifold. Here we
have to work with chains in a finite CW complex with Lipschitz attaching maps. This
is only slightly harder. If X is a finite CW complex with Lipschitz attaching maps,
then X is a metric space in a natural way. The complex X is given by finitely many
closed balls with some identifications. We put the standard unit ball metric on each
closed ball, and we define the metric on X to be the quotient metric coming from
the identifications. So we can define Lipschitz maps into X and Lipschitz chains.
The volume of a Lipschitz chain is defined by breaking the chain into pieces in each
open cell, and the volume of each piece is defined in the usual way.



1896 L. GUTH GAFA

One fundamental result about the volumes of chains is that a cycle of small
volume must be null-homologous. We formulate this as a lemma and prove it by the
standard Federer–Fleming deformation argument.

Lemma 14.3. If X is a finite CW complex with Lipschitz attaching maps, then there
is a constant ε > 0 so that the following holds. If z is a mod 2 Lipschitz cycle in X
with volume <ε, then z is homologically trivial.

Proof. Suppose that z is a d-cycle. We homotope z into the d-skeleton of X while
keeping control of the volume. We may assume that all the attaching maps have
Lipschitz constant <L. If z initially lies in the N-skeleton of X for some N > d, then
we homotope it to the (N-1)-skeleton by picking a random point near the middle of
each N-cell, and pushing out radially into the boundary of the cell. By the Federer–
Fleming averaging trick, we can choose a point so that this push out map increases
volumes by at most a factor C(N). From the boundary of the cell, we map into the
(N-1)-skeleton of X using the attaching maps, which stretch volumes by at most a
factor Ld. Repeating this for each dimension, we homotope z to a cycle z′ in the
d-skeleton of X with volume at most C(X)ε. If ε is small enough, then z′ doesn’t
cover any d-cell of the d-skeleton, and so z′ is null-homologous. �

If T is a mod 2 Lipschitz d-chain in a CW complex, then the flat norm of T is
defined to be the infimum over all (d+1)-chains U of Vold+1(U) + Vold(T − ∂U).
In other words, a chain T may have a small norm if it has small volume, or if it is
the boundary of a (d+1)-chain with small volume, or if it is the sum of pieces of
these two types. It’s staightforward to check that the flat norm obeys the triangle
inequality: FlatNorm(T1 + T2) ≤ FlatNorm(T1) + FlatNorm(T2).

The flat distance between T1 and T2 is defined to be the flat norm of T1 − T2. If
the flat distance between two Lipschitz chains is zero, we say they are flat equivalent.
Because the flat norm obeys the triangle inequality, it follows that flat equivalence
is an equivalence relation. The flat norm defines a metric on the set of equivalence
classes of Lipschitz chains.

The resulting metric space is not complete, and the space of flat chains is the
completion of this metric space. However, in this paper, we only need the notion of
flat equivalence.

Here are some examples of flat equivalence. If T1 and T2 differ by a chain with
volume zero, then they are flat equivalent. Also, if T1 and T2 are two homologous d-
dimensional cycles in a d-dimensional complex, then they are flat equivalent, because
T1 − T2 is the boundary of a (d+1)-chain which must have zero (d+1)-volume. The
different flat equivalences that appear in Sections 4.2 and 5.1 just come from these
two observations.

The last small result that we need is that two flat equivalent Lipschitz cycles are
homologous.

Lemma 14.4. Suppose that z1 and z2 are flat equivalent Lipschitz cycles in a finite
CW complex X with Lipschitz attaching maps. Then z1 and z2 are homologous.
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Proof. We know that the flat norm of z1 − z2 is zero. So for any ε > 0, we can find
a Lipschitz chain U so that U has volume <ε and ∂U − z1 + z2 has volume <ε.
Obviously, ∂U is homologically trivial. If ε is small enough, then ∂U − z1 + z2 is
homologically trivial by Lemma 14.3. Therefore, z1 − z2 is homologically trivial. �
14.4 Standard facts about the deformation operator. In this section, we
review some standard facts about the deformation operator, which we stated in
Section 8.4. We work with mod 2 chains and cycles. (The statements here can be
extended to other coefficients, but we don’t need them and it takes extra work to
keep track of the orientations.)

If T is a d-chain, s > 0 is a scale, and v ∈ R
N is a vector, then we define the

deformation operator Dv(T ) by the following formula,

DvT :=
∑

F⊂Σd(s)

[F̄v ∩ T ]F.

In this formula, [F̄v ∩ T ] ∈ Z2 is the number of points in F̄v ∩ T taken mod 2. If
Σ̄(s) is transverse to T , then DvT is well-defined. The deformation DvT is a cubical
d-chain in Σd(s).

The deformation operator has the following properties.

1. If |v| < s/2, and if T is a cubical d-chain in Σ(s), then Dv(T ) = T .

Proof. We just have to check that if F, G are d-faces of Σ(s), then [F̄v ∩ G] is equal
to 1 if F = G and 0 if F �= G. This holds for v = 0. The boundary of F̄ lies at
a distance ≥ s/2 from the face G. So as we continuously translate F̄ to F̄v, the
intersection number doesn’t change. �

2. The deformation operator commutes with taking boundaries. In other words,
as long as Σ̄v is transverse to both ∂T and T , ∂Dv(T ) = Dv(∂T ).

Proof. From the formula for Dv(T ), we see that

∂Dv(T ) =
∑

F d⊂Σd(s)

[F̄v ∩ T ]∂F.

Consider a (d-1)-face G in Σd−1. Let F1(G), . . . , F2(N−d+1)(G) be the set of all
the d-faces of Σd(s) that contain G in their boundary. We can rewrite the formula
for ∂Dv(T ) as follows:

∂Dv(T ) =
∑

Gd−1⊂Σd−1(s)

⎛

⎝
2(N−d+1)∑

j=1

[Fj(G)v ∩ T ]

⎞

⎠ G.

Now the first key point is that
∑2(N−d+1)

j=1 Fj(G) = ∂Ḡ. Plugging in, we get

∂Dv(T ) =
∑

Gd−1⊂Σd−1(s)

[∂Ḡv ∩ T ]G.
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Since Σ̄v is transverse to T , Ḡv ∩ T is a 1-chain, and the boundary of Ḡv ∩ T
consists of an even number of points. Since Σ̄v is transverse to T and ∂T , the
boundary of Ḡv ∩ T is the union of ∂Ḡv ∩ T and Ḡv ∩ ∂T . Therefore, [∂Ḡv ∩ T ] =
[Ḡv ∩ ∂T ]. Substituting this identity into the last equation, we get

∂Dv(T ) =
∑

Gd−1⊂Σd−1(s)

[Ḡv ∩ ∂T ]G = D(∂T ). �

3. If we average over all |v| < s/2, then

Averagev∈B(s/2) Vold[Dv(T )] ≤ C(N) Vold(T ).

Proof. This follows by integral geometry. If F is a face of Σd(s), let B[F ] denote the
ball around the center of F with radius Ns. If we take a random vector v ∈ B(s/2),
the probability that [F̄v ∩T ] = 1 is at most C(N)s−N Vold(T ∩B[F ]). Therefore the
average volume on the left-hand side is

≤ C(N)
∑

F

Vold(T ∩ B[F ]) ≤ C(N) Vold(T ). �

4. If z is a d-cycle, then we can build a (d+1)-chain Av(z) in the C(N)s neighbor-
hood of z with ∂Av(z) = z − Dv(z). Moreover, if we average over all |v| < s/2,
then

Averagev Vold+1[Av(z)] ≤ C(N)sVold(z).

This estimate takes a little more work. There are several variations of the defor-
mation operator. We begin by recalling a different point of view about the defor-
mation operator, where the chain A appears more naturally. Then we see how the
different points of view are connected.

Suppose that z is a d-cycle in R
N . Federer and Fleming gave a procedure to

homotope z into Σd
v(s) (which is well-defined for almost every v). For each N-cube

QN of Σv(s), we project z outward from the center to the boundary of Q. As long
as z doesn’t intersect the center point, we get a homotopy into the (N-1)-skeleton of
Σv(s). If d < N − 1, we repeat this operation with each (N-1)-cube QN−1 of Σv(s).
We continue in this way until we have homotoped z into the d-skeleton of Σv(s).
We can do this as long as, at each step of the homotopy, the image of z does not
include any of the center points of the cubes.

This procedure defines a homotopy Hv : z × [0, 1] → R
N , for t ∈ [0, 1], where Hv

at time 0 is the identity and Hv at time 1 maps z into the d-skeleton of Σv(s). (We
will see below that the homotopy Hv is defined for almost every v.)

We notice that Hv(z, 1) is a d-cycle in Σd
v(s). Since Σd

v(s) is a d-dimensional
polyhedron, Hv(z, 1) is homologous to a sum of faces. In other words, we have
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Hv(z, 1) =
∑

F∈Σd(s)

c(F )Fv + ∂ν,

where c(F ) are coefficients and ν is a (d+1)-chain in Σd
v(s). Note that ν is a (d+1)-

chain with Vold+1(ν) = 0, so Hv(z, 1) is essentially equal to
∑

F∈Σd(s) c(F )Fv. We
now define the Federer–Fleming deformation of z by

D̃v(z) :=
∑

F∈Σd(s)

c(F )Fv.

(The chain D̃v(z) is closely related to Dv(z), as we explain below, but they are
not identical.)

We now compute the constant c(F ). The constant c(F ) measures the number of
times that Hv(z, 1) covers the face Fv, taken mod 2.

If Q is an e-face of Σv(s) with center xQ, let πQ : Q \ {xQ} → ∂Q be the
radial projection. Notice that the center xQ is Q ∩ Σ̄N−e

v (s). By applying the radial
projection πQ in each e-face Q, we get a map πd : Σe

v(s) \ Σ̄N−e
v (s) → Σe−1

v (s). To
get a map from R

N to Σd
v(s), we use the composition π := πd+1 ◦ · · · ◦ πN .

The map π is not defined on all of R
N , but it is a well-defined map from R

N \
Σ̄N−d−1

v (s) to Σd
v(s). (To see this, we just have to check that for each e ≥ d + 1, πe

maps Σe
v(s) \ Σ̄N−d−1

v (s) into Σe−1
v (s) \ Σ̄N−d−1

v (s).) Therefore, the homotopy H is
well-defined as long as z is disjoint from Σ̄N−d−1

v (s), which happens for almost every
v.

If Fv is a d-face of Σv(s) with center x(Fv), then π−1(x(Fv)) is just F̄v—the
perpendicular (N-d)-face of Σ̄v(s). If z is transverse to Σ̄v(s), then we see that the
coefficient c(F ) is just the intersection number c(F ) = [z ∩ F̄v]. Therefore, we get
the following formula for D̃v(z):

D̃v(z) =
∑

F∈Σn(s)

[z ∩ F̄v]Fv.

So we see that D̃v(z) is just the translation of Dv(z) by the vector v.
Now we can define the homology Av(z). Since D̃v(z) is just a translation of Dv(z)

by a vector v, there is an obvious homotopy between them, given by translations.
This homotopy defines a chain H ′ with ∂H ′ = Dv(z) − D̃v(z). The chain Av(z) is
the sum of Hv(z × [0, 1]) and the chain ν and the chain H ′.

Lemma 14.5. If |v| ≤ s and if we choose the zero-volume chain ν correctly, then
Av(z) is contained in the C(N)s neighborhood of z.

Proof. By construction, the homotopy Hv displaces points by ≤C(N)s: in other
words, |Hv(x, t) − x| ≤ C(N)s. Therefore, Hv(z × [0, 1]) lies in the C(N)s neighbor-
hood of z. Therefore, D̃v(z) lies in the C(N)s neighborhood of z. Now Hv(z, 1) −
D̃v(z) is a null-homologous cycle in Σd

v(s) lying in the C(N)s neighborhood of z.
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Therefore, we can fill it by a chain ν in Σd
v(s) lying in the same neighborhood. Fi-

nally, since |v| ≤ s, the homotopy H ′ lies in the s-neighborhood of D̃v(z) and in the
C(N)s-neighborhood of z. �

Next we turn to bounding the volume of Av(z). Federer and Fleming observed
that if we take a random vector v in B(s/2), then there are several useful volume
estimates that hold on average.

Proposition 14.6. The following estimates hold for the average behavior of Hv

and D̃v(z):

Averagev∈B(s/2) Vold D̃v(z) ≤ C(N) Vold z.

Averagev∈B(s/2) Vold+1 H(z × [0, 1]) ≤ C(N)sVold z.

We sketch the proof of the proposition. For more details, see [Gro83, pp. 16–20].
By a direct computation, one shows that for any d-cycle z,

Vold π(z) ≤ C(N)
∫

z

Dist(x, Σ̄N−d−1
v (s))−ddvolz(x).

If we use a random translation v ∈ B(s/2), then the average value of the last
line is

C(N)s−N

∫

B(s/2)

⎛

⎝
∫

z

Dist(x, Σ̄N−d−1
v (s))−ddvolz(x)

⎞

⎠ dv.

The key insight of Federer–Fleming is to estimate this double integral using
Fubini. It is equal to

C(N)
∫

z

⎛

⎜
⎝s−N

∫

B(s/2)

Dist(x, Σ̄N−d−1
v (s))−ddv

⎞

⎟
⎠ dvolz(x).

Now the expression in the large parentheses does not depend on z, and it is
bounded ≤C(N) uniformly in x. Therefore, the whole last line is ≤C(N) Vold z.

By another direct computation, the (d+1)-volume of the homotopy H from z to
π(z) is bounded by

Vold+1 Hv(z × [0, 1]) ≤ sC(N)
∫

z

Dist(x, Σ̄N−d−1
v (s))−ddvolz(x).

And the same argument shows that s−N
∫
B(s/2) Vold+1 Hv(z × [0, 1]) ≤ C(N)s

Vold z.
The last estimate is the main term in bounding the volume of Av(z) = Hv(z ×

[0, 1]) + ν + H ′. The chain ν has zero volume. The chain H ′ is given by translat-
ing D̃v(z) to Dv(z), and so it has volume at most |v| Vold D̃v(z) ≤ C(N)sVold z.
Therefore, for an average v ∈ BN (s/2), the chain Av(z) has (d+1)-volume at most
C(N)sVold z.



GAFA CONTRACTION OF AREAS VS. TOPOLOGY OF MAPPINGS 1901

Acknowledgments

I would like to thank Tom Mrowka, Brian White, Misha Gromov, and Robert Young
for helpful conversations related to the paper.

References

[AS08] N. Alon and J. Spencer. The Probabilistic Method, 3rd edn. With an appendix
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