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LINEARLY BOUNDED CONJUGATOR PROPERTY
FOR MAPPING CLASS GROUPS

Jing Tao

Abstract. Given two conjugate mapping classes f and g, we produce a conju-
gating element ω such that |ω| ≤ K(|f | + |g|), where | · | denotes the word metric
with respect to a fixed generating set, and K is a constant depending only on the
generating set. As a consequence, the conjugacy problem for mapping class groups
is exponentially bounded.

1 Introduction

Two fundamental problems in group theory posed by Dehn [Deh11] are the word
problem and the conjugacy problem. Given a group with a fixed presentation, the
word problem asks if there is an algorithm that can decide in finite time if a given
word is the identity. The conjugacy problem seeks an algorithm to decide if two
words represent the same conjugacy class. Since the conjugacy class of the identity
element is itself, the word problem can be seen as a special case of the conjugacy
problem. Not all groups have solvable word problem [Nov58,Boo59], hence the same
is true for the conjugacy problem.

In this paper, we are interested in these problems for mapping class groups
MCG(S) of surfaces S of finite type. We establish the following:

Theorem A. There is an exponential-time algorithm to solve the conjugacy prob-
lem for MCG(S).

There is some history to the word and conjugacy problems for MCG(S). The first
solution to the word problem can be attributed to Grossman [Gro75], whose actual
contribution is proving residual finiteness for MCG(S). In [Mos95], Mosher showed
MCG(S) admits an automatic structure, from which a quadratic-time solution to the
word problem is obtained. (See [ECH+92] for a background on automatic groups.
It is not yet known if a sub-quadratic solution is possible.) In [Hem79], Hemion
solved the conjugacy problem for MCG(S), but his algorithm is not exponentially
bounded. In [Mos86], Mosher gave a faster algorithm for deciding conjugacy among
pseudo-Anosov mapping classes. (A similar result was recently obtained by Agol
[Ago11].) Using the work of Bestvina and Handel [BH95], which gives an algorithm
for detecting pseudo-Anosov mapping classes, Mosher [Mos03] extended his result
to compute complete conjugacy invariants for all mapping classes.
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Our strategy to prove Theorem A is to apply Mosher’s automaticity result. In
general, a solution to the word problem does not necessarily yield a solution to the
conjugacy problem: it is an open question whether all automatic groups have solv-
able conjugacy problem [ECH+92]. A sufficient condition is if the group has linearly
bounded conjugator (L.B.C.) property (see theorem below or Definition 2.2.1). The
main theorem of our paper is that L.B.C. property is satisfied by MCG(S). This
answers a question in [Far06].

Theorem B (L.B.C. property for MCG(S)). Let Λ be a finite generating set for
MCG(S). There exists a constant K, depending only on Λ, such that if f, g ∈
MCG(S) are conjugate, then there is a conjugating element ω with

|ω| ≤ K(|f | + |g|).
To see how Theorem A follows from Theorem B, we give an algorithm to the

conjugacy problem. Given two arbitrary elements f, g ∈ MCG(S), let B be the ball
of radius K(|f | + |g|) in MCG(S). To decide if f and g are conjugate it suffices to
check if ω ∈ B satisfies ωfω−1g−1 = 1. We run Mosher’s quadratic algorithm to
the word problem to all words of the form ωfω−1g−1 with ω ∈ B. The number of
elements in B is an exponential function of the radius, therefore the complexity of
this solution is an exponential function of the word lengths of f and g.

Linearly bounded conjugator property is satisfied by hyperbolic groups [Lys89,
Lemma 10], as well as by torsion elements in groups acting on CAT(0) spaces [BH99,
III.1.13]. These are important classes of groups that have solvable word and con-
jugacy problems [Gro87,BH99]. Hyperbolic groups in fact have efficient algorithms:
the word problem is solvable in linear time, and the conjugacy problem in quadratic
time [BH99]. As long as the surface S has disjoint isotopy classes of curves, MCG(S)
is not hyperbolic, as Dehn twists about disjoint curves give rise to higher rank free
abelian subgroups. It is also known that MCG(S) does not act on any complete
CAT(0) space [BH99, II.7.26]. Nevertheless, MCG(S) shares many properties with
hyperbolic groups, and much of the pursuit in its study has been to understand to
what extent it resembles and differs from hyperbolic groups. Establishing L.B.C.
property for MCG(S) thus provides another positive analogy between MCG(S) and
hyperbolic groups.

After we announced our result, Hamenstädt [Ham09] announced biautomatici-
ty for MCG(S), which generalizes Mosher’s automaticity result as well as obtains
Theorem A. Another consequence of her work is the exponentially bounded conju-
gator property for MCG(S). Notice, however, that this bound only gives a doubly
exponential solution to the conjugacy problem if we use the same algorithm as
described below Theorem B, since the search space for the conjugator would grow
doubly exponential in terms of the word lengths of the elements.

1.1 Idea of the proof of Theorem B. The proof of Theorem B is broken
up into three arguments, following the classification of the elements of MCG(S)
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into pseudo-Anosov, reducible, and finite order. The case of the pseudo-Ano-
sov elements was settled by Masur and Minsky [MM00], using the machinery
of hierarchies developed in the same paper. This paper resolves the other two
cases.

Surprisingly, it turns out the most delicate case involves the finite order elements
of MCG(S). In many ways, pseudo-Anosov elements of MCG(S) can be viewed as
the “hyperbolic” elements of MCG(S), whereas the finite order elements are the
“elliptic” ones. The methods that Masur and Minsky developed are suited for ele-
ments that behave more hyperbolically, and thus are not effective for the finite order
elements. Our main contribution is the development of new tools for the study of
finite order mapping classes. Just as in the case of pseudo-Anosov mapping classes,
we rely heavily on the machinery of hierarchies, which we need to extend so it is
more suited to deal with the elliptic geometry.

We briefly explain how hierarchies are related to words in MCG(S). A natural
model space for MCG(S) is the marking graph Mark(S) of S. A marking μB ∈
Mark(S) is a collection of curves on S satisfying certain technical conditions (see
Section 2 for a precise definition). Given an element f ∈ MCG(S), the image of
μB under f determines f up to finitely many choices. Being a model space, paths
from μB to fμB in Mark(S) are naturally associated to words representing f , and
the distance between μB and fμB is comparable to the word length of f (fixing a
generating set for MCG(S)). Thus to understand the word length of f is the same
as understanding efficient paths from μB to fμB.

Even though Mark(S) (or any other model space) is not hyperbolic or CAT(0),
there is a coarsely well-defined projection map from Mark(S) to a product of hyper-
bolic spaces

∏
Z C(Z): each factor C(Z) is the curve complex of a subsurface Z of S,

and the product is taken over all essential (possibly annular) subsurfaces of S. The
fact that each C(Z) is hyperbolic was established by Masur and Minsky [MM99].
For each such Z, the projection map πZ : Mark(S) → C(Z) is obtained by a surgery
procedure (see Section 2). By connecting πZ(μB) and πZ(fμB) by a geodesic path in
C(Z), one can associate to each element f ∈ MCG(S) a family of geodesics in curve
complexes. These geodesics are organized by hierarchies to produce efficient paths
connecting μB to fμB in Mark(S). An important consequence of hierarchies is the
distance formula (Theorem 2.6.5), which states that the distance between μB and
fμB is well approximated by the sum of the curve complex distances between their
projections, where the sum is taken over those subsurfaces to which the projections
are sufficiently far apart.

The hyperbolic geometry of the pseudo-Anosov elements of MCG(S) is exhib-
ited in the fact that they act hyperbolically (with north–south dynamics) on the
curve complex C(S) of S [MM99,MM00]. This is analogous to the way how the
infinite order elements of a hyperbolic group act on a Cayley graph of the group.
Hierarchies were used to build quasi-axes in C(S) for the action of pseudo-Ano-
sov mapping classes. There is also a fellow-traveling type property for hierarchies
that applies to fellow-traveling quasi-axes. These facts allowed Masur and Minsky
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to extend the proof of L.B.C. property from infinite-order elements of hyperbolic
groups to pseudo-Anosov elements of MCG(S) [MM00, Theorem 7.2].

The appropriate analogy for the finite order elements of MCG(S) are the torsion
elements of a group G that acts properly and cocompactly on a CAT(0) (or hyper-
bolic) space X. We are inspired by the argument contained in [BH99] on L.B.C.
property for torsion elements of G which we will briefly sketch. Let x ∈ X be a
fixed base point. We say an element g ∈ G acts elliptically on X if it satisfies two
conditions. First, g acts on X with (coarse) fixed points. Second, the distance from
x to the center of mass of the orbit of x under 〈g〉 is comparable to the word length
of g. When X is CAT(0) (or hyperbolic), g is torsion implies g acts elliptically. After
conjugating g by an appropriate element, its center of mass can be moved into a
fixed ball containing a fundamental domain for the action of G on X. The set of
torsion elements of G having fixed points inside the ball is finite and contains a
representative for each conjugacy class. From here, one can reduce L.B.C. property
in the elliptic case to a finite set.

To establish L.B.C. property for finite order elements of MCG(S), we also show
they act elliptically on Mark(S). More precisely,

Theorem C. Let μB ∈ MCG(S) be a fixed base point. There exist constants R
and k depending only on μB such that the following holds. For any finite order ele-
ment f ∈ MCG(S), there exists μ ∈ Mark(S) such that μ is an R-fixed point of f
(i.e. dMark(S)(μ, fμ) ≤ R) and

dMark(S)(μB, μ) ≤ k|f |. (1)

Corollary D. There exist a constant K, depending only on S, and a finite set of
elements Σ ⊂ MCG(S) such that if f ∈ MCG(S) has finite order, then there exists
ω ∈ MCG(S) such that ωfω−1 ∈ Σ and |ω| ≤ K|f |.

The proof of Theorem C is the technical part of this paper. It is easy to see that
there exists a constant R1, depending only on S, such that any finite order element
f ∈ MCG(S) acts on Mark(S) with R1-fixed points. The hard part is finding an
R1-fixed point of f that lies “k-close” (in the sense of (1)) to μB, for some uniform
k. Using the projection maps from Mark(S) to curve complexes, what we want is
to find a marking μ ∈ Mark(S) such that, for any Z, πZ(μ) lies sufficiently close
to the convex hull of {πZ(f iμB)} (the projection to C(Z) of the orbit of μB under
〈f〉). To find such μ, our strategy is to take an arbitrary R1-fixed point μ′ of f and
construct from it a marking μ (possibly equal to μ′) that satisfies Theorem C for
appropriate constants k and R (R possibly bigger than R1). The construction of μ is
through a sequence of modifications on μ′, taken place in subsurfaces of S to which
the projections of μ′ are “far” from the convex hull. (If in every subsurface of S, the
projection of μ is not “far” from the convex hull, then μ = μ′.) An important part of
our proof that makes this process work are two technical lemmas (Section 3), which
show that the symmetries of the action of f on S can be detected by hierarchies.
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To establish L.B.C. property for reducible elements of MCG(S), we combine
the two arguments, for pseudo-Anosov elements and for finite order elements. If
f ∈ MCG(S) is a reducible element of infinite order, then up to taking powers the
surface S can be decomposed into a collection of subsurfaces on which f is either
pseudo-Anosov or has finite order. In order to apply induction to subsurfaces, we
need to built paths from μB to fμB in Mark(S) that move only in the complemen-
tary subsurfaces of the reducing system of f . This is possible if the initial marking
μB contains the reducing system of f . However, one marking cannot contain all pos-
sible reducing systems, even up to conjugation. But it suffices to reduce to a finite
problem. We show:

Theorem E. There exist a constant k and a finite set of markings M so that if
f ∈ MCG(S) is reducible, then there exists ω ∈ MCG(S) such that the reducing
system of ωfω−1 is contained in some μ ∈ M and |ω| ≤ k|f |.

Finally, each case in the classification will produce a different constant. The proof
of L.B.C. property for MCG(S) will be completed by taking a maximum over the
three constants.

The organization of the paper is as follows.

• In Section 2, we review basic definitions and the theory of hierarchies. A key notion
that we will introduce is the notion of separating markings in Section 2.9.

• In Section 3, we give a couple of definitions and prove two technical lemmas about
finite order mapping classes that will be useful for the next section. We also con-
struct an example that motivates this section and the next section.

• In Section 4, we prove Theorem C and derive L.B.C. property for finite order
mapping classes.

• In Section 5, we prove Theorem E and use the known results for pseudo-Anosov
and finite order elements to derive L.B.C. property for infinite order reducible
mapping classes.

2 Preliminaries

In this section, we develop the background material for the paper. Our main tool
will be Masur and Minsky’s theory of hierarchies. From Sections 2.6 to 2.8, we will
summarize the properties of hierarchies that will be needed for this paper. Some of
the definitions will be merely sketched and most of the proofs will be omitted. We
refer the reader to Masur–Minsky’s paper [MM00] for more details. We also refer to
[FLP79,FM12] for general references on mapping class groups and the topology of
surfaces, and to [Gro87,BH99] for references on δ-hyperbolic spaces.

2.1 Arcs, curves, surfaces and subsurfaces. Let S = Sg,p be a connected,
oriented surface of genus g with p punctures. We call ξ(S) = 3g − 3 + p the com-
plexity of S. Surfaces of complexity strictly greater than 1 are called generic sur-
faces. Surfaces of complexity 1 are called sporadic and they are topologically either
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the four-holed sphere or one-holed torus. Two remaining low-complexity cases are
exceptional surfaces. Complexity 0 is the three-holed sphere or a pair of pants, and
complexity −1 is topologically an annulus.

Throughout this paper we will be working with a generic surface S without
boundary. But sporadic and exceptional surfaces and surfaces with boundary natu-
rally arise as subsurfaces of S, and thus are important for induction arguments.

An essential curve or just a curve on S will always mean the free isotopy class
of a simple closed curve that is not null-homotopic or homotopic to a puncture or a
boundary component. A multicurve or a curve system will mean a finite collection
of distinct curves that can be realized disjointly. A pants decomposition of S is a
maximal curve system c on S. In particular, each component of S \ c is topologically
a pair of pants. Note that a pants decomposition exists for S if and only if ξ(S) ≥ 1,
in which case the cardinality (or the number of curves) of c is equal to ξ(S).

To talk about arcs we need S to have boundary. An arc on S will be an isotopy
class of a simple arc δ, with isotopies relative to the boundary, such that δ has both
endpoints on ∂S and is not isotopic to a boundary component.

The (geometric) intersection number i(α, β) of a pair of curves α and β will be the
minimal number of intersections among representatives of α and β. The geometric
intersection number between two arcs on S will be the minimal number of inter-
sections in the interior of S modulo isotopies relative to ∂S. Note that intersection
number of an arc or curve with itself is always zero.

A subsurface Y of S is the isotopy class of a closed and connected subsurface of
S that is incompressible and non-peripheral. We include the possibility that Y = S
unless we say a proper subsurface. By ∂Y we will mean the multicurve comprised of
the boundary components of a representative of Y . An annular subsurface A of S
is a regular neighborhood of a curve α with simple boundaries. We will often abuse
terminology by confusing A with its core curve α, and refer to α as a subsurface of
S as well. In this case, ∂A will mean α. For reasons we shall see, we will distinguish
subsurfaces that are not pants, called essential subsurfaces or domains.

Given a curve α and a non-annular domain Y of S, we will say α is disjoint from
Y if it can be homotoped away from a representative of Y . Note that this includes
the case that α is a curve in ∂Y . If α can be realized as an essential curve in a
representative of Y , then we will say α is a curve in Y . In all other cases, we will
say α crosses Y . For an annular domain A with core curve β, then we have the
possibilities that α is disjoint from A if α and β are disjoint, or α crosses A if α and
β intersect.

Similarly, given two domains Y and Z of S, we will say Y and Z are: disjoint if
Y and Z can be homotoped to be disjoint from each other; nested if Y and Z can be
homotoped so that either Y is contained in Z or Z is contained in Y ; and interlock
if they are neither disjoint or nested. Note that when Y = A is an annular domain
with core curve α, then A and Z being disjoint is consistent with α and Z being
disjoint, A and Z are nested if α is contained Z (and Z is not annular), and, finally,
A and Z interlock if α crosses Z.
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2.2 Mapping class groups. Let Homeo+(S) be the group of orientation-pre-
serving self-homeomorphisms of S. The mapping class group of S is

MCG(S) = Homeo+(S)/ ∼
where f ∼ g if and only if g−1 ◦ f is isotopic to the identity map on S. Elements of
MCG(S) are called mapping classes. It is well-known that MCG(S) is finitely gen-
erated (and finitely presented) [Lic64]. For this paper, we will fix a finite generating
set Λ of MCG(S). We will often regard MCG(S) as a metric space by considering
the word metric | · | = | · |λ induced by Λ.

If S is a once-punctured torus or four-times punctured sphere, then MCG(S) is
commensurable to SL(2, Z). The mapping class group of a thrice-punctured sphere
is finite. For us, an annulus A will always appear as a regular neighborhood of a
simple closed curve on an ambient surface, so A has two boundary components. Let
MCG(A, ∂A) be the group of isotopy classes of homeomorphisms of A relative to
∂A. One checks that MCG(A, ∂A) is homeomorphic to Z.

Definition 2.2.1 (L.B.C. property). Given a finitely generated group G equipped
with a finite generating set Λ, we say a conjugacy class c of G has linearly bounded
conjugators if for any f, g ∈ c, there exists a conjugating element ω ∈ G such that

|ω| ≤ Kc(|f | + |g|),
where |·| represent the word length in Λ, and Kc depends only on c and Λ. If K = Kc

can be taken to be independent of the conjugacy class c, then we say G has linearly
bounded conjugator property or L.B.C. property. If G has L.B.C. property for Λ,
then changing Λ to any other finite generating set changes K by a bounded amount.
Therefore, this definition is independent of the choice of the generating set, so Λ can
always be taken to be a symmetric generating set.

Mapping class groups of non-generic surfaces satisfy L.B.C. property. We would
like to show the same is true for mapping class groups of generic surfaces. The first
observation is that the Nielsen–Thurston classification of mapping classes is a con-
jugacy invariant. This means that we can argue for L.B.C. property separately for
each type. We refer to [Thu88] and [FM12, §13] for more details on the classification
theorem. Recall that a mapping class f is called irreducible if f does not fix any
multicurve (setwise); otherwise f is called reducible. The following statement applies
to all surfaces S.

Theorem 2.2.2 (Nielsen–Thurston classification for MCG(S)). Every element f ∈
MCG(S) is either pseudo-Anosov, periodic (finite order), or reducible. Furthermore,
for each f ∈ MCG(S), there exists a (possibly empty) multicurve σ invariant under
f with the following property. Let Y1, . . . , Yk be the connected components of S \ σ,
and, for each i, choose the smallest ni ∈ N so that fni(Yi) = Yi. Then for any i, fni |Yi

either has finite order or is pseudo-Anosov.
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The multicurve σ satisfying Theorem 2.2.2 f is called a reducing system for f .
For each Yi ∈ S \ σ, the map fni is called the first return map of f to Yi. Note
that the first return map of f to Yi means exactly that fni |Yi

can be viewed as an
element of MCG(Yi). The content of the classification can be rephrased to say f is
pseudo-Anosov if and only if f is irreducible of infinite order.

Definition 2.2.3 (Canonical reducing systems). By choosing σ to be a minimal col-
lection of curves satisfying Theorem 2.2.2, then σ = σf is unique up to isotopy and is
called the canonical reducing system for f . If f ∈ MCG(S) is either pseudo-Anosov
or finite order, then σf = ∅ (see [Mos07]).

In [MM00, §7], Masur–Minsky established L.B.C. property for the pseudo-Anosov
elements of MCG(S).

Theorem 2.2.4 (L.B.C. property for pseudo-Anosov mapping classes). There exists
a constant K, depending only on S, such that if f, g ∈ MCG(S) are conjugate
pseudo-Anosov mapping classes, then there is a conjugating element ω ∈ MCG(S)
with

|ω| ≤ K(|f | + |g|).
Our goal in this paper is to prove L.B.C. property for the finite order and reduc-

ible elements of MCG(S). The argument for finite order mapping classes is the hard
part of this paper. The argument for reducible mapping classes is inductive and will
make use of the canonical reducing system.

2.3 Complexes of curves. The complex of curves C(S) on a surface S is a
locally infinite, finite dimensional simplicial complex on which MCG(S) acts by
automorphisms. Its definition first appeared in [Har81]. We treat generic, sporadic,
and exceptional surfaces separately.

• Generic surfaces Suppose S has ξ(S) > 1. The kth skeleton Ck(S) consists
of all curve systems on S of cardinality k + 1. There is an obvious inclusion of
Ck−1(S) ↪→ Ck(s) by face relations. Top dimensional simplices of C(S) correspond
to pants decompositions on S, hence dim(C(S)) = ξ(S) − 1.

• Sporadic surfaces With the above definition, the curve complex of a sporadic
surface S would be a disconnected set of points. To construct a more useful object,
we modify the definition to allow two vertices in C(S) span an edge if they inter-
sect minimally over S (once for one-holed torus and twice for four-holed sphere).
It is a classical theorem that with this definition C(S) is isomorphic to the Farey
graph [HT80,Min96].

• Pants A pair of pants has no essential curves. Here we do not modify the defini-
tion and let the curve complex of pants be empty. This is the reason why we do
not consider pants to be essential subsurfaces.

• Annuli An arbitrary annulus has no essential curves. But for us, an annulus A
will always appear as a regular neighborhood of a curve γ in a larger surface S,
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and we would like C(A) (or C(γ)) to record twist information about γ. Vertices
of C(A) will be properly embedded arcs and two arcs are connected by an edge if
they can be isotoped relative endpoints to have disjoint interiors.

By an element or subset of C(S) we will always mean an element or subset of
C0(S). We make C(S) into a complete geodesic metric space by endowing each sim-
plex with an Euclidean structure with edge lengths 1. From the perspective of coarse
geometry, we do not lose anything by identifying C(S) with its 1-skeleton. We denote
by dC(S), or more simply by dS , the shortest distance in C1(S) between two vertices.
If A is an annulus with a core curve γ, we will also use the notation dγ or dA to
denote distances in C(A). For any surface S including annuli, induction on intersec-
tion number can be used to show C(S) is connected, and dS(α, β) ≤ 2i(α, β)+1 (see
[MM99,MM00]). The simplicial action of MCG(S) on C(S) preserves this metric.
The action is not proper. The quotient C(S)/MCG(S) parametrizes curves on S up
to homeomorphisms, hence it is finite.

For a generic surface S, dS coarsely measures the complexity between two curves
in the following sense: dS(α, β) = 1 if and only if α and β are disjoint; dS(α, β) = 2
if and only if α and β cohabit a proper subsurface Y ⊂ S; dS(α, β) ≥ 3 if and only
α and β fill S, or the complement of their union in S does not support any essential
curve.

The following theorem in [MM99] gives us some geometric control over paths in
C(S).

Theorem 2.3.1 [MM99]. For any surface S that is not a pair of pants, C(S) has
infinite diameter and is δ-hyperbolic.

For sporadic surfaces, Theorem 2.3.1 follows from a classical result that the Farey
graph is quasi-isometric to an infinite-valence tree (see [Man05]). In the case of an
annulus A, Theorem 2.3.1 follows from the fact that C(A) is quasi-isometric to Z

(see [MM00, §2.4]).
For generic surfaces, there are several ways to see that C(S) has infinite diameter.

Relevant to our paper is the following lemma.

Lemma 2.3.2 [MM99, Proposition 4.6]. There exists k = k(S) such that for any
pseudo-Anosov f ∈ MCG(S), any vertex v ∈ C(S), and any n ∈ Z,

dS(v, fn(v)) ≥ k|n|.
The proof of δ-hyperbolicity of C(S) for a generic S is nontrivial. We also refer

to [Bow06] for an alternate proof.

2.4 Subsurface projections. In this section, we restrict our discussion to
domains of an ambient surface S with ξ(S) ≥ 1. To do away with isotopy classes of
curves and surfaces, we will equip S with hyperbolic metric so that we may consider
geodesic representatives for curves and (non-annular) subsurfaces of S bounded by
them.
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Let Y ⊂ S be a proper domain. There is a map

πY : C(S) → P(C(Y )),

taking an element of C(S) to a subset of C(Y ) of bounded diameter. We call πY (α)
the projection of α to Y . Note that in the definition below, the projection map also
makes sense if we replace S by any subsurface of S that contains Y as a proper
subsurface.

We first define the projection to a non-annular domain Y . If α and Y are disjoint,
then πY (α) = ∅. If α is a curve in Y , then πY (α) = {α}. Otherwise, α crosses Y and
α ∩ Y consist of a collection of arcs in Y . The endpoints of each arc δ ⊂ α ∩ Y lie
on one or two components of ∂Y . Let N be a regular neighborhood of the union of
δ with its corresponding component(s) in ∂Y. N has either one or two components
that are essential in Y . Let πY (δ) be the set of boundary component(s) of N . We
define

πY (α) =
⋃

δ⊂α∩Y

πY (δ).

Now suppose Y = A is an annulus with core curve γ. There is a unique annular
cover of S

p : Â → S
to which A lifts homeomorphically. Since S admits a hyperbolic metric, this cover
has a natural compactification, also denote by Â. We define C(A) = C(Â). For any
curve α in S, components of p−1(α) that are essential arcs form a subset in C(A).
We will let πA(α) be this corresponding set in C(A).

Denote by diamY (·) the diameter of subsets in C(Y ). For any two subsets A, B ⊂
C(Y ), let

dY (A, B) = diamY (A ∪ B).

Given a pair of curves α, β ∈ C(S) and a domain Y ⊂ S, we define

dY (α, β) = dY (πY (α), πY (β)).

For any multicurve σ, one can also project σ to C(Y ) in the obvious way: πY (σ) =⋃
α∈σ πY (α). Given two multicurves σ and τ , the distance dY (σ, τ) is similarly

defined.
The follow result asserts that subsurface projections are coarsely well-defined and

Lipschitz.

Lemma 2.4.1 [MM00, Lemma 2.3]. For any multicurve σ on S and any domain
Y ⊂ S, if πY (σ) �= ∅, then diamY (πY (σ)) ≤ 2.

Suppose Y and Z are domains of S such that Y is contained in Z. Then the
maps πY and πY ◦ πZ are “coarsely equal” as maps from C(S) → P(C(Y )).
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Lemma 2.4.2 [BKMM12, Lemma 2.12]. There exists a constant M depending only
on S such that for any multicurve σ,

diamY (πY (σ), πY ◦ πZ(σ)) ≤ M.

We also have the following contraction property for the projection map from
[MM00, Theorem 3.1].

Theorem 2.4.3 (Bounded geodesic image). There exists a constant M0 depend-
ing only on S such that the following holds. Suppose Y ⊂ S is a proper essential
subsurface, and g is a geodesic in C(S) such that πY (v) �= ∅ for every vertex v ∈ g.
Then

diamY (g) ≤ M0.

We say g cuts Y if πY (v) �= ∅ for every vertex v ∈ g, and g misses Y otherwise.
If dS(g, ∂Y ) ≥ 2 then g cuts Y . On the other hand, by Theorem 2.4.3, if u, v ∈ C(S)
has dY (u, v) > M0, then any geodesic g in C(S) between u and v misses Y .

2.5 Marking graph. Another useful combinatorial object that admits an
action by MCG(S) is the marking graph Mark(S) of S. Roughly, a marking μ on
S is a multicurve c on S with additionally a set of transverse curves that serve to
record twisting data about each curve in c. Below, we give a precise definition that
works for any surface S with ξ(S) ≥ 1.

A marking μ on S is a set of ordered pairs {(αi, ti)}, where the base curves
base(μ) = {αi} is a multicurve on S, and each transversal ti is either empty or
is a diameter-1 set of vertices in C(αi). The set of transversals {ti} is denoted by
trans(μ). A transversal t in the pair (α, t) is called clean if t = πα(β), where β is
a curve on S such that α and β are Farey-neighbors in the subsurface that they
fill. A marking μ is clean if every non-empty transversal t is clean, and the curve
β inducing t does not intersect any other base curve other than α. A marking μ is
called complete if base(μ) is a pants decomposition of S and no transversal is empty.
If μ is complete and clean, then a transversal t determines uniquely the curve β such
that t = πα(β). If μ is not clean then there is bounded number ways of picking a
compatible clean marking μ′, in the following sense:

Lemma 2.5.1 [MM00, Lemma 2.4]. There exists a constant M depending only on S
satisfying the following. For any complete marking μ on S, there exists a uniformly
bounded number (depending only on S) of complete clean markings μ′ such that
base(μ) = base(μ′), and dα(t, t′) ≤ M for any (α, t) ∈ μ and (α, t′) ∈ μ′.

We will often suppress the pair notation and regard a marking μ as the union of
its base curves and transversals, i.e. μ = (∪α∈base(μ)α)

⋃
(∪t∈trans(μ)t).

Definition 2.5.2 (Marking graph). The marking graph Mark(S) is the graph with
vertices representing complete clean markings on S. Two vertices μ = {(αi, παi

(βi))}
and μ′ = {(α′

i, πα′(β′
i))} are connected by an edge if they differ by one of the following

elementary moves:
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• Twist for some i, β′
i is obtained from β by a twist or half-twist along αi. All base

curves and other transversals of μ and μ′ agree.
• Flip let μ′′ be the (unclean) marking obtained from μ by “flipping” (αi, παi

(βi))
to (βi, πβi

(αi)), for some i. The marking μ′ is any clean marking compatible with
μ′′ replacing all transversals βj that intersect βi.

We equip Mark(S) with the combinatorial edge metric, denoted by dMark(S). Like
C(S), Mark(S) is connected and admits an action of MCG(S) by isometries. But
unlike C(S), Mark(S) is locally finite and the action of MCG(S) is proper. The quo-
tient Mark(S)/MCG(S) is also finite, since there are only finitely many complete
clean markings up to homeomorphisms of S [MM00]. By a standard application of
Švarc–Milnor, the orbit map MCG(S) → Mark(S) is a quasi-isometry.

Definition 2.5.3 (Projection of markings). Let Y ⊂ S be essential and let μ ∈
Mark(S). We can project μ to Y , also denoted by πY (μ), in the following way.
Namely, if Y is not a curve in base(μ), then πY (μ) = πY (base(μ)). If Y = α is a
curve contained in base(μ), then πY (μ) = t, where t is the transversal curve to α in
μ. Note that, since μ is a complete marking, the projection map is always non-empty.

Since base(μ) is a diameter-1 set in C(S), in light of Lemma 2.4.1 the projection
map is Lipschitz:

Lemma 2.5.4 [MM00, Lemma 2.5]. For any μ, ν ∈ Mark(S) and any domain Y ⊆ S,

dY (μ, ν) ≤ 4 dMark(S)(μ, ν).

If c is a multicurve and μ a marking with c ⊆ base(μ), then we say μ is an
extension of c. We will often start with a multicurve c and extend it to a marking
μ. This amounts to choosing a marking on all the essential non-annular components
of S \ c and choosing a transversal for each curve α ∈ c. There are many ways to
extend a marking in general, but most often we will need the marking μ to satisfy
certain desired properties so those choices will be bounded.

Definition 2.5.5 (Induced marking). Let Y ⊂ S be an non-annular domain. We
define a map

ΠY : Mark(S) → Mark(Y ).

For each marking μ on S, choose a pants decomposition b of Y such that b has min-
imal intersection with πY (μ). We extend b to a marking ν = ΠY (μ) on Y as follows.
For each curve α ∈ b, choose transversal tα in Y such that dα(tα, μ) is minimal. The
marking ν = {(α, tα) : α ∈ b} will be called an induced marking of μ on Y , and it
is well-defined up to a bounded number of choices. It follows from Lemmas 2.4.2
and 2.5.4 that for any marking μ, any non-annular domain Y ⊂ S, and any domain
Z ⊂ Y ,

dZ(μ,ΠY (μ)) ≤ M, (2)

where M depends only on S.
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Definition 2.5.6 (Relative marking extension). Let μ ∈ Mark(S) and c be a mul-
ticurve on S. We extend c to a marking μ′ ∈ Mark(S) relative to μ as follows.
For each non-annular domain Y in S \ c, choose an induced marking ΠY (μ) on Y .
Then for each curve α ∈ c, choose a transversal tα with minimal dα(tα, μ). The
union of {(α, tα) : α ∈ c} with the set of induced markings ΠY (μ) forms a marking
μ′ ∈ Mark(S) which is well-defined up to a bounded number of choices.

The following is an immediate consequence of our construction.

Lemma 2.5.7. Let c be a multicurve on S, μ any marking, and μ′ an extension of
c relative to μ. For any proper domain Z ⊂ S, if Z is contained in an essential
component of S \ c, or if Z is a curve in c, then

dZ(μ′, μ) ≤ M,

where M depends only on S.

Proof. For any curve α in c, the transversal tα to α in μ′ was chosen to be uni-
formly close to πα(μ). Thus dα(μ′, μ) is uniformly bounded by a constant depending
on S. Now suppose Z ⊆ Y where Y is a component of S \ c. By construction
πY (μ′) = base(ΠY (μ)). Thus, by (2), dZ(μ′, μ) = dZ(ΠY (μ), μ) is also uniformly
bounded by a constant depending only on S. ��
2.6 Hierarchies. In the previous section, we introduced the marking graph
Mark(S) which is quasi-isometric to MCG(S). In this section, we will introduce the
theory of hierarchies, which is useful for constructing efficient paths in Mark(S).
These paths are naturally associated to efficient representations of elements in
MCG(S) in terms of the generators, thus justifying Mark(S) as a good combinatorial
model for MCG(S).

The idea of hierarchies is to associate to every pair of markings a family of geo-
desics in curve complexes that behave well with subsurface projections. In order for
the theory to work, we need to impose a condition on geodesics in curve complexes
called tightness. Let Y ⊆ S be a domain. A tight geodesic g in C(Y ) is a sequence
{v0, . . . , vn} of simplices in C(Y ), such that any sequence of vertices in g is a geo-
desic in C(Y ) in the usual sense, and vi−1 ∪ vi+1 fill a subsurface Z ⊂ Y such that
∂Z = vi. We remark that the original definition [MM00, Definition 4.2] consists of
more information.

It is a theorem of Masur–Minsky that any two points in C(Y ) is connected by at
least one and at most finitely many tight geodesics [MM00, Lemma 4.5 and Corollary
6.14]. Henceforth, a geodesic in a curve complex will always mean a tight geodesic.
By an abuse of notation, we will refer to vi’s as vertices of g. We will say the length
of g is n, and write |g| = n. We will say Y is the domain or support of g, and write
D(g) = Y . We will sometimes use the notation [v0, vn] to mean any geodesic from
v0 to vn in C(Y ). Since C(Y ) is δ-hyperbolic, all (finitely many) geodesics from v0 to
vn are fellow-travelers.
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We now briefly sketch the definition of a hierarchy. For a complete definition (see
[MM00, Definition 4.4]). A hierarchy on S is a collection H of geodesics such that
each geodesic g ∈ H is supported on some domain Y ⊆ S, with a distinguished main
geodesic gH = [v0, vn] supported on S, together with some additional structure and
satisfying certain conditions which we now highlight. A hierarchy H comes equipped
with a pair of markings I(H) and T (H) on S, called the initial marking and the ter-
minal marking of H, respectively, such that v0 ⊆ base(I(H)) and vn ⊆ base(T (H)).
We will usually assume I(H) and T (H) are complete clean marking on S. One of
the key technical conditions of a hierarchy is called subordinacy. Roughly, given a
geodesic g in C(S), one can inductively construct a hierarchy H with g = gH . For
each vertex vi in gH , the vertices vi−1 to vi+1 are contained in some component
Z of S \ vi. The geodesic h = [vi−1, vi+1] in C(Z) will be an element of H and is
subordinate to gH . One can continue this process with all vertices of gH and then
with h and so on.

We list some properties of hierarchies below, after the following definition.

Definition 2.6.1 (Component domain). Given a non-annular domain Y ⊆ S, and
a multicurve c on Y , we say Z is a component domain of (Y, c) if Z is either an
essential component of Y \ c or Z is a curve in c.

Theorem 2.6.2. The following statements hold for hierarchies.

1. (Existence) Given any markings μ and ν on S, there exists a hierarchy H with
I(H) = μ and T (H) = ν [MM00, Theorem 4.6].

2. (Uniqueness of geodesics) For any hierarchy H, if h, h′ ∈ H have D(h) = D(h′),
then h = h′ [MM00, Theorem 4.7].

3. (Completeness) For every geodesic h ∈ H and vertex v ∈ h, if Y is a component
domain of (D(h), v), then Y is domain for a geodesic k ∈ H [MM00, Theorem
4.20].

We will sometimes denote an hierarchy from μ to ν by H(μ, ν). The following
lemma explains the relationship between a geodesic h ∈ H and the projection of
I(H) and T (H) to D(h).

Lemma 2.6.3 [MM00, Lemma 6.2]. There exist constants M1 > M2, depending only
on S, such that if H is any hierarchy in S and

dY (I(H), T (H)) ≥ M2

for a subsurface Y in S, then Y is a domain for a geodesic h ∈ H.
Conversely, if h ∈ H is any geodesic with Y = D(h), then h fellow travels any

geodesic from πY (I(H)) to πY (T (H)) in C(Y ) with a uniform constant. In particular,

||h| − dY (I(H), T (H))| ≤ M1.
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For any pair of markings μ, ν ∈ Mark(S), we will call a domain Y a large link
for μ and ν if dY (μ, ν) ≥ M2.

The theorem below summarizes two results that are vital to this paper. To sim-
plify the statements we introduce some notations that we will adopt for the rest of
the paper. Below, a and b represent quantities such as distances or lengths, and k
and c are constants that depend only on S (unless otherwise noted).

Notations 2.6.4. 1. If a ≤ kb + c, we say a is coarsely bounded by b, and write
a ≺ b.

2. If
1
k
b − c ≤ a ≤ kb + c, we say a is coarsely equal to b, and write a � b.

By the length |H| of a hierarchy H we will mean |H| =
∑

h∈H |h|. In the follow-
ing, the coarse equality on the left is [MM00, Theorem 6.10]. The coarse equality on
the right is called the distance formula [MM00, Theorem 6.12].

Theorem 2.6.5. There exists a constant L0 depending only on S such that, for
any L ≥ L0 and any μ, ν ∈ Mark(S) and any hierarchy H = H(μ, ν),

|H| � dMark(S)(μ, ν) �
∑

Y ⊆S
dY (μ,ν)≥L

dY (μ, ν).

On the right, the constants involved in � depend on L.

Fix a generating set Λ for MCG(S). To realize the quasi-isometry between
Mark(S) and MCG(S), we fix a base marking μB in Mark(S). Then dMark(S)

(μB, fμB) � |f |, with constants depending only on μB and Λ. The following is
an immediate consequence of Theorem 2.6.5.

Corollary 2.6.6 [MM00, Theorem 7.1]. Let μB ∈ Mark(S) be a fixed base mark-
ing. For any element f ∈ MCG(S),

|H(μB, fμB)| � |f |.

Let Y ⊂ S be a proper non-annular domain. There is a coarse embedding
Mark(Y )

j−→ Mark(S) obtained as follows. Fix a marking in each essential com-
ponent of S \ Y and a transversal to each curve in ∂Y . The map j sends the
marking ν ∈ Mark(Y ) in an obvious way so that ∂Y ⊆ base(j(ν)) and for all
ν1, ν2 ∈ Mark(Y ),

dMark(Y )(ν1, ν2) � dMark(S)(j(ν1), j(ν2)). (3)

Equation (3) follows from the distance formula and one can make the coarse con-
stants independent of Y and j.
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2.7 Slices. The connection between paths in Mark(S) and hierarchies come
from slices of a hierarchy. The following definition comes from [MM00, §5].

Definition 2.7.1 (Slices). A (complete) slice of a hierarchy H is a set τ of pointed
geodesics (h, v) in H, i.e. h ∈ H and v is a vertex of h, satisfying the following
properties:

(S1) Any geodesic h of H appears at most once in τ .
(S2) There is a distinguished pair, the bottom pair, (gH , b) of τ .
(S3) For every (k, w) ∈ τ other than the bottom pair, D(k) is a component domain

of (D(h), v) for some (h, v) ∈ τ .
(S4) Given (h, v) ∈ τ , for every component domain Y of (D(h), v) there is a pair

(k, w) ∈ τ with D(k) = Y .

The initial slice τ0 of H is one where every pair (h, v) ∈ τ has v the first vertex
of h. In particular, the main geodesic gH and its initial vertex is a pair in τ0, and
τ0 can be constructed inductively using the axioms of slices. Similarly, the terminal
slice of H is defined.

To any slice τ we can associate a complete marking μτ as follows. First, let μ be
the marking with

base(μ) = {v : (h, v) ∈ τ and D(h) is not an annulus}.

For each base curve α, if (k, t) ∈ τ is such that k is a geodesic in C(α), then let t
be the transversal to α in μ. The marking μ is complete but not necessarily clean.
Any clean marking μτ compatible with μ will be called a compatible marking with
τ . By Lemma 2.5.1, the number of choices for μτ is bounded. Note that I(H) and
T (H) are, respectively, compatible markings with the initial and terminal slice of H.
We will call any marking compatible with some slice in a hierarchy H a hierarchal
marking of H.

Given any slice τ in H, there is a notion of (forward) elementary move on τ
which is roughly moving a vertex v of some pair (h, v) ∈ τ forward by one step in
the geodesic h to obtain a new slice τ ′. We write τ → τ ′. (See [MM00, §5] for a
precise definition.) If μ and μ′ are compatible marking with τ and τ ′, then by Masur
and Minsky [MM00, Lemma 5.5], dMark(S)(μ, μ′) ≺ 1. We will write μ → μ′ to mean
any path in Mark(S) connecting μ to μ′. To prove |H| � dMark(S)(I(H), T (H)),
Masur and Minsky [MM00] established the existence of a resolution of H, which is
a sequence of forward elementary moves

τ0 → · · · → τn,

where τ0 is the initial slice and τn is the terminal slice of H. For each τi in the reso-
lution, let μi be a compatible marking with τi. The corresponding path in Mark(S)

I(H) = μ0 → · · · → μn = T (H)
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is a quasi-geodesic with uniform constants, and dMark(S)(I(H), T (H)) � n � |H|. A
fact in [Min10] that we will sometime need is that, for any slice τ in H, there is a
resolution of H containing τ .

The following statements are true for hierarchal markings and follow from
[MM00].

Lemma 2.7.2. Let H be a hierarchy. If μ ∈ Mark(S) is a hierarchal marking of H,
then

dMark(S)(I(H), μ) + dMark(S)(μ, T (H)) ≺ dMark(S)(I(H), T (H)). (4)

There exists a constant M depending only on S such that for any domain Y ⊆ S,

dY (I(H), μ) + dY (μ, T (H)) ≤ dY (I(H), T (H)) + M. (5)

Proof. Let g be a quasi-geodesic in Mark(S) containing μ coming from a resolution
of H. By Masur and Minsky [MM00], g is a quasi-geodesic from I(H) to T (H) with
uniform constants, hence (4) holds.

Given Y ⊆ S, let πY (g) be the projection of g to C(Y ) (project each vertex of g
to C(Y )). The projection πY (g) is a quasi-geodesic in C(Y ) with uniform constant.
By hyperbolicity of C(Y ), πY (g) stays uniformly close to any geodesic connecting
πY (I(H)) and πY (T (H)) of πY (g). Thus there exists a constant MY such that

dY (I(H), μ) + dY (μ, T (H)) ≤ dY (I(H), T (H)) + MY .

Since there are only finitely many subsurfaces of S up to homeomorphism, the con-
stant M = maxY {MY } depends only on S and achieves (5). ��
2.8 Time order. The geodesics or domains of geodesics in a hierarchy H satisfy
a partial order <t, called time order. We refer to [MM00, §4.6] for the definition.
The idea comes from the observation that the vertices of a geodesic g are linearly
ordered: vi < vj if i < j. Combining this observation with the subordinacy struc-
ture on H, one can try to order a pair of geodesics h, h′ ∈ H. In the following, we
summarize some main results and state some useful consequences of time order.

Theorem 2.8.1 [MM00, Lemma 4.18 and 4.19]. There exists a relation <t, called
time-order, on domains of geodesics in H such that:

• The relation <t is a strict partial order.
• If h and h′ are geodesics in H such that Y = D(h) and Z = D(h′) interlock, then

either Y <t Z or Z <t Y .
• If Y ⊂ Z, then Y and Z are not time-ordered.
• If Y and Z lie in different component domains of (D(m), v), for some geodesic m

in H and v ∈ m, then Y and Z are not time-ordered.

Note that the ambiguous case is when D(h) and D(h′) are disjoint; sometimes
they are time-ordered and sometimes not. The issue of disjoint domains will come
up in this paper.

The constant M1 of Lemma 2.6.3 can be chosen so that following hold.
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Lemma 2.8.2 [MM00, Lemma 6.11]. Let H be a hierarchy. Suppose Y and Z
are domains for geodesics in H such that Y and Z interlock. If Y <t Z, then
dY (∂Z, T (H)) ≤ M1 and dZ(I(H), ∂Y ) ≤ M1.

Using slices, the constant M1 can be chosen so the following version of
Lemma 2.8.2 also holds.

Lemma 2.8.3. With the same hypothesis as above. There exists a hierarchy marking
ν such that dY (ν, T (H)) ≤ M1 and dZ(I(H), ν) ≤ M1.

Proof. By assumption, both Y and Z are domains for geodesics for a hierarchy H
with Y <t Z. Let k ∈ H be the geodesic supported on Y and let w ∈ k be the
terminal vertex of k. Let τ be a slice τ with (k, w) ∈ τ (such τ exists by Minsky
[Min10, Lemma 5.8]). Let ν a hierarchal marking compatible with τ . Since k is sup-
ported on Y , by definition of a slice, there exists some pair (h, u) ∈ τ such that
Y is a component domain of (D(h), v). By definition of a compatible marking, we
have ∂Y ⊆ base(ν), which implies that, by Lemma 2.8.2, dZ(I(H), ν) is uniformly
bounded. Since w is the terminal vertex of k, any resolution of H containing τ does
not pass through Y from τ to T (H). Thus, dY (ν, T (H)) is also uniformly bounded.
This finishes the proof of the lemma. ��

We may choose M1 so the following also holds:

Lemma 2.8.4 [BM08, Lemma 1]. With the same hypothesis as above. For any mark-
ing μ ∈ Mark(S), either dY (μ, T (H)) ≤ 2M1 or dZ(I(H), μ) ≤ 2M1.

2.9 Separating Marking. The following definition and lemma do not explic-
itly appear in [MM00]. Although the lemma is a direct consequence of hierarchies,
we offer a brief sketch of its proof.

Definition 2.9.1 (Separating marking). Let H be a hierarchy. A slice τ is called
a separating slice if for every pair (h, v) ∈ τ , with h �= gH , has the property that v
is the terminal vertex of h. We remark that once the bottom pair (gH , b) is fixed,
then the separating slice τ containing (gH , b) is uniquely determined by the axioms
of slices. In particular, if b is the terminal vertex of gH , then τ is the terminal slice
of H. If τ is a separating slice containing (gH , b), then any marking μ compatible
with τ is called a separating marking at b.

The constant M1 of Lemma 2.6.3 can be chosen so that the following hold.

Lemma 2.9.2. Let H be a hierarchy. Let b be any vertex in gH and let μ be a sepa-
rating marking at b. Then for any proper domain Y ⊂ S, either dY (I(H), μ) ≤ M1

or dY (μ, T (H)) ≤ M1.

Proof. We may assume Y ⊂ S has dY (I(H), T (H)) > M1. Since M1 ≥ M2, Y is a
domain for a geodesic hY ∈ H. Without a loss of generality, we may assume Y is a
component domain of (gH , c), for some c in gH . If c appears before b along gH , then
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dY (μ, T (H)) ≤ M1. Similarly, if c appears after b along gH , then dY (I(H), μ) ≤ M1.
Both of these facts can be seen as a consequence of Lemma 2.8.3. The remaining case
is b = c. In this case, the separating slice containing (gH , b) must contain (hY , v),
where v is the terminal vertex of hY . Therefore, it must be that dY (μ, T (H)) ≤ M1.

��
Remark 2.9.3. In our definition of separating slice, the preference for terminal ver-
tices is arbitrary. Lemma 2.9.2 would remain true if we allowed only initial vertices
or a mixture of initial and terminal.

2.10 Collecting constants. For the rest of the paper, we will fix the following
set of constants.

Let M0 be the constant of Theorem 2.4.3. Let L0 be the constant of
Theorem 2.6.5. Let M1 and M2 be the constants coming from Lemma 2.6.3. We
will also fix one constant M3 for Lemmas 2.4.2, 2.5.1, Eq. (2) and Lemmas 2.5.7,
2.7.2. We may assume M1 ≥ M2, M3. In addition, since up to homeomorphism there
are only finitely many subsurfaces of S, we can choose a hyperbolicity constant δ
that works for all C(Z), Z ⊆ S.

3 Two Technical Lemmas

This section contains some technical results about finite order mapping classes.
To prove L.B.C. property, we need to understand the geometry of the action of

finite order mapping classes on Mark(S). The first observation is that finite order
elements act on Mark(S) with coarse fixed points. We will eventually prove that
the action has the property that the translation distance of a finite order element
f , or dMark(S)(μB, fμB) where μB is the base marking, is coarsely bounded by the
distance from μB to the fixed point sets of f . In other words, finite order elements
of MCG(S) act elliptically on Mark(S).

In this section, we consider what happens if a fixed point μ of f is far from μB

relative to the translation distance of f . By the distance formula, there must be
some X ⊆ S such that dX(μB, μ) is large relative to dX(μB, fμB). With some addi-
tional conditions, X will be called a bad domain for μ and we will prove a structure
theorem for the set of bad domains in a hierarchy H(μB, μ). In the next section, we
will use this structure theorem to construct a coarse fixed point of f close to μB

relative to the translation distance of f . From there, we can derive L.B.C. property
for finite order mapping classes by a standard argument.
3.1 Fixed points and symmetric points. We state some useful facts about
finite order mapping classes below.

Lemma 3.1.1. There are finitely many conjugacy classes of finite order elements in
MCG(S).

Corollary 3.1.2. There exists a constant N , depending only on S, such any finite
order element f ∈ MCG(S) has order(f) ≤ N .
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Definition 3.1.3. Let f ∈ MCG(S) be of finite order. We define the set of r-fixed
points of f as

Fixr(f) = {μ ∈ Mark(S) : dMark(S)(μ, fμ) ≤ r}.

Also, define the set of r-symmetric points for f to be

F̃ixr(f) = {μ ∈ Mark(S) : dY (μ, fμ) ≤ r, ∀Y ⊆ S}.
Lemma 3.1.4. There exists a constant R1 depending only on S such that FixR1(f)
�= ∅ and F̃ixR1(f) �= ∅, for any finite order element f ∈ MCG(S).

Proof. Choose any μ ∈ Mark(S) and let Rf = dMark(S)(μ, fμ). If g = ωfω−1 for some
ω ∈ MCG(S), then dMark(S)(ωμ, gωμ) = dMark(S)(μ, fμ) ≤ Rf . Thus FixRf

(g) �= ∅
for all g in the conjugacy class of f . Using Lemma 3.1.1, we can let R1 be the maxi-
mum of the constants Rf ranging over all conjugacy classes. This gives FixR1(f) �= ∅
for all finite order element f ∈ MCG(S). Using the distance formula, we can choose
R1 so that F̃ixR1(f) �= ∅ as well. ��

Henceforth, we will fix R1 to be the minimal constant satisfying Lemma 3.1.4.

Remark 3.1.5. We can describe the geometry of the subset FixR1(f) ⊂ Mark(S).
By Nielsen Realization, any finite order element f ∈ MCG(S) can be realized as
an isometry of a hyperbolic surface X [Ker83]. The quotient X̄ = X/f is an orb-
ifold. One can coarsely identify FixR(f) with Mark(X̄). The map X → X̄ is a
(branched) covering map. By Rafi and Schleimer [RS09], the lifting of Mark(X̄) to
Mark(X) = Mark(S) is a quasi-isometric embedding.

3.2 An example. Before proceeding to the first technical lemma, let’s discuss
a motivating example. The following refers to Figure 1.

Figure 1: On the left, the curves represent a 0-fixed point μ for the order two element
f ∈ MCG(S2) that permutes the holes of S2. On the right is the Farey graph F which
is isomorphic to C(X) and C(Y ); C(X) and C(Y ) are identified via f . Markings on X or Y
correspond to edges in F . Here, ΠX(μ) = ν and ΠY (μ) = f(ν) represent the same edge in F .
The base marking μB (which is not drawn on the left) has ΠX(μB) = z1 and ΠY (μB) = z2
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Consider the closed surface S2 of genus two. Let f be the mapping class of order
two that permutes the two holes of S2. Let α be the separating curve in S indicated
in Figure 1. Let X and Y be the pair of once-punctured tori in S2 with boundary
∂X = α = ∂Y The map f permutes X and Y . Using this and the fact that X
and Y are disjoint, we can construct a family of coarse fixed points of f as follows
(see Remark 3.1.5). Since X is a once-punctured torus, C(X) is homeomorphic to
the Farey graph F . Via the map f , we can also identify C(Y ) with F . After this
identification, markings on X or Y correspond to edges in F . Choose any marking
ν on X. By the action of f , we get a marking f(ν) on Y , which is represented by
the same edge in F . Choose a transverse curve β to α so that μ = ν ∪ f(ν) ∪ α ∪ β
is a clean marking. Since f(μ) = μ, μ is a fixed point of f .

See Fig. 1 for a concrete example of a fixed point μ of f from this construction,
where we have color-coded the curves so that the red or vertical curves represent the
base curves of a marking μ and the blue or horizontal curves represent the transver-
sal curves of μ. In the example, let ν1 be the marking on X obtained by the (0, 1)
and (1, 0) curves. The marking μ = ν ∪ f(ν) ∪ α ∪ β is a 0-fixed point of f .

Consider a base marking μB constructed as follows. For simplicity, we will assume
α is a base curve of μB. Choose two edges z1 and z2 in F that are very far apart.
We will let z1 be the marking in X and z2 be the marking in Y . Now choose
a transverse curve β′ to α so that μB = z1 ∪ z2 ∪ α ∪ β′ is clean. Since z1 and
z2 are far, μB is itself not a coarse fixed point of f . Let ZB be the collection of
domains on which dZ(μB, fμB) ≥ L0, where L0 is the constant of Theorem 2.6.5.
Since α is a base curve of μB, if Z ∈ ZB then either Z ⊆ X or Z ⊆ Y . Also,
since dZ(μB, fμB) = df(Z)(μB, fμB), if Z ∈ ZB then f(Z) ∈ ZB. Finally, since
dX(μB, fμB) = dF (z1, z2) is large, X (and Y ) is in ZB. By Theorem 2.6.5,

dMark(S)(μB, fμB) �
∑

Z∈ZB

dZ(μB, fμB).

To find a fixed point μ of f “close” to μB,

dMark(S)(μB, μ) ≺ dMark(S)(μB, fμB), (6)

consider the following construction. Let g be a geodesic in F connecting base(z1)
and base(z2) (note that the convex hull of base(z1) and base(z2) is a finite set of
geodesics). Let ν be any edge in g, which we will regard as a marking in X. Let β be a
transverse curve to α so that dα(β, β′) is uniformly bounded and μ = ν ∪f(ν)∪α∪β
is clean (Lemma 2.5.1). We show μ is “close” to μB. By assumption, dα(μB, μ) is
uniformly bounded. Since α is contained in both μB and μ, if Z is any domain that
contains α or is crossed by α, we have dZ(μB, μ) ≤ 4. For any Z ⊆ X, we have
(ignoring some addictive errors)

dZ(μB, μ) = dZ(z1, ν) ≤ dZ(z1, f(z2)) = dZ(μB, fμB).

Similarly, for any Z ⊆ Y ,

dZ(μB, μ) = dZ(z2, f(ν)) ≤ dZ(z2, f(z1)) = dZ(μB, fμB).
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Let Zμ be the set of domains on which dZ(μB, μ) ≥ L0. By the above computations,
if Z ∈ Zμ, then Z ∈ ZB. Thus we have

dMark(S)(μB, μ1) �
∑

Z∈Zµ

dZ(μB, μ1)

≤
∑

Z∈Zµ

dZ(μB, fμB)

≤
∑

Z∈ZB

dZ(μB, fμB)

� dMark(S)(μB, fμB).

Hence μ satisfies (6). We emphasize that, by varying the choice of the edge in g, we
obtain a family of fixed points of f “close” to μB.

In the following and in the subsequent section, we generalize this example. The
general situations could be much more complicated; for instance, the assumption
that μB contains α simplified the example quite a bit. The reason why our construc-
tion worked is because, in every domain Z ⊆ S, dZ(μB, μ) ≤ dZ(μB, fμB). Thus, if
a coarse fixed point μ is not “close” to μB, then there should be some Z ⊆ S on
which dZ(μB, μ) > dZ(μB, fμB). This is the motivation behind Definition 3.3.1 of
a bad domain Z for μ (the actual definition contains a slightly stronger condition).
In our construction of coarse fixed points, we relied heavily on the fact that X and
Y are disjoint and X = f(Y ). In general, we will also try to look for a domain X
such that {f i(X)} are all pairwise disjoint. The structure result for bad domains,
Lemma 3.3.4, shows that if X is a bad domain for μ, then X and its orbits are all
disjoint and are all (essentially) bad domains for μ. In Section 4, we will show that,
when a coarse fixed point μ of f does not have any bad domains, then μ will be
the desired marking “close” to μB (Proposition 4.1.1). Otherwise, we will show how
to use the disjointness result of a bad domain X and its orbits to construct a new
coarse fixed point of f “closer” to μB (see Section 4.2). Finitely many iterations of
this construction will lead to a desired coarse fixed point of f “close” to μB (see
Section 4.3).

3.3 Bad domains and the first technical lemma. We remark that
Lemma 3.1.1 does not a priori help us with L.B.C. property as each conjugacy
class has infinitely many elements, but it will play an essential role later.

In the following, let μB ∈ Mark(S) be the fixed base marking. We recall notations
of Section 2.10 and let R1 be the minimal constant satisfying Lemma 3.1.4. Set

Θ = 6M1 + 4δ. (7)

Let f ∈ MCG(S) be of finite order. Fix N to be the smallest constant satisfying
Corollary 3.1.2. For any proper domain X ⊂ S, let LX = LX(f) be the integer such
that fLX+1 is the first return map of f to X. Note that for any X, LX < order(f) ≤
N .
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Definition 3.3.1 (Bad domains). Let R ≥ R1 and let μ ∈ Mark(S) be any mark-
ing. We say a domain X ⊆ S is a R-bad domain for μ (and f) if

• For X = S,

dS(μB, μ) > dS(μB, fμB) + R. (8)

• For X �= S,

dX(μB, μ) > 2N

(

max
0≤i≤LX

{df i(X)(μB, fμB)}
)

+ NR + Θ. (9)

Denote by Ω(μ, R, f) or Ω(μ, R) the set of all R-bad domains for μ (and f). Note
that if R′ > R, then Ω(μ, R′) ⊆ Ω(μ, R). We remark that the constant “2N” in the
definition of bad domains will not play a role until the next section.

Definition 3.3.2 (Partial order on Ω(μ, R)). We endow Ω(μ, R) with a partial order
“�” following these rules. Let X, Y ∈ Ω(μ, R), and let H = H(μB, μ) be a fixed hier-
archy.

(O1) If ξ(X) < ξ(Y ), then X � Y . In particular, if S ∈ Ω(μ, R), then S is the
maximal element.

(O2) If ξ(X) = ξ(Y ) and X <t Y in H(μB, μ), then Y � X.

Definition 3.3.3 (Complexity of Ω(μ, R)). If Ω(μ, R) is non-empty, then the com-
plexity of the maximal element in Ω(μ, R) is called the complexity of Ω(μ, R), denoted
by ξ(μ, R). The minimal complexity over all subsurfaces of S is −1, coming from an
annulus. For convenience, we will let ξ(∅) = −2. We make the trivial observations
that

Ω(μ′, R′) ⊆ Ω(μ, R) =⇒ ξ(μ′, R′) ≤ ξ(μ, R).

The following is a consequence of the definition of R-bad domains for μ and f ,
if μ happens to be a R-symmetric point for f .

Lemma 3.3.4 (Structure of bad domains). Let R ≥ R1 and let μ ∈ F̃ixR(f). If
X ∈ Ω(μ, R) and X �= S, then

X, f(X), . . . fLX (X)

are all domains for geodesics in H(μB, μ) and are all pairwise disjoint.

Proof. Note that f−n(X) = fLX+1−n(X). We will prove, by induction on n, that

X, f−1(X), . . . , f−n(X) = fLX+1−n(X)

satisfy the conclusion of the lemma for n = 0, . . . , LX . Our assumption is that
X ∈ Ω(μ, R) and X �= S. In particular, this means dX(μB, μ) > Θ > M2, so X is a
domain for a geodesic in H(μB, μ). This concludes the base case. Let’s now assume

X, f−1(X), . . . , f−n+1(X)
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are all domains for geodesics in H(μB, μ) and are all pairwise disjoint. We will show
f−n(X) supports a geodesic in H(μB, μ). Recursively, we have

df−n(X)(μB, μ)
= df−n+1(X)(fμB , fμ)
≥ df−n+1(X)(μB, μ) − df−n+1(X)(μB, fμB) − df−n+1(X)(μ, fμ)
> df−n+2(X)(fμB , fμ) − df−n+1(X)(μB, fμB) − R

...

≥ dX(μB, μ) −
(

n∑

i=1

df−n+i(X)(μB, fμB)

)

− nR

≥ dX(μB, μ) − n

(

max
1≤i≤n

{df−n+i(X)(μB, fμB)}
)

− nR

By (9) > (N − n)
(

max
1≤i≤LX+1

{df−n+i(X)(μB, fμB)}
)

+ (N − n)R + Θ.

Since N > LX ≥ n, we have in particular

df−n(X)(μB, μ) > Θ > M2.

Therefore, f−n(X) supports a geodesic in H(μB, μ).
Now let’s prove f−n(X) is disjoint from each X, . . . , f−n+1(X). Observe that

f−n(X) and f−i(X) are disjoint if and only if f−n+i(X) and X are disjoint. Hence
it is enough to show f−n(X) and X are disjoint. By way of contradiction, let’s assume
X and f−n(X) are not disjoint. The two domains have the same complexity so they
must interlock. They both support geodesics in H(μB, μ) so, by Theorem 2.8.1, they
are time-ordered. We have two cases.

The first case is X <t f−n(X). As in Lemma 2.8.3, we may choose a hierarchal
marking ν for H(μB, μ) such that

dX(ν, μ) ≤ M1 and df−n(X)(μB, ν) ≤ M1, (10)

By the triangle inequality,

dX(μB, fnν) ≤ dX(μB, fnμB) + dX(fnμB, fnν)

≤
⎛

⎝
n−1∑

j=0

dX(f jμB, f j+1μB)

⎞

⎠+ df−n(X)(μB, ν)

=

⎛

⎝
n−1∑

j=0

df−j(X)(μB, fμB)

⎞

⎠+ df−n(X)(μB, ν)

≤ n

(

max
0≤j≤n−1

{
df−j(X)(μB, fμB)

}
)

+ M1. (11)
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Using the triangle inequality again, along with (9) and (11), we have

dX(fnν, μ) ≥ dX(μB, μ) − dX(μB, fnν) > 2M1.

Therefore, by Lemma 2.8.4,

df−n(X)(μB, fnν) ≤ 2M1.

Now we consider dX(μB, f inμ). By iterating the argument we obtain inductively, for
every i ≥ 0,

dX(μB, f (i+1)nν) ≤ dX(μB, fnμB) + dX(fnμB, f (i+1)nν)

≤ n

(

max
0≤j≤n−1

{df−j(X)(μB, fμB)}
)

+ df−n(X)(μB, f inν)

≤ n

(

max
0≤j≤n−1

{df−j(X)(μB, fμB)}
)

+ 2M1. (12)

Since there is some i for which f in is the identity map, inequality (12) must also
hold for dX(μB, ν). With this fact coupled with the first half of (10), we derive the
following violation to X ∈ Ω(μ, R):

dX(μB, μ) ≤ dX(μB, ν) + dX(ν, μ)

≤ n

(

max
0≤j≤LX

{df−j(X)(μB, fμB)}
)

+ 2M1 + dX(ν, μ)

≤ N

(

max
0≤j≤LX

{df−j(X)(μB, fμB)}
)

+ 3M1.

Thus, it is not possible for X <t f−n(X).
To eliminate the second case f−n(X) <t X, we argue similarly. Now choose a

marking ν such that

dX(μB, ν) ≤ M1 and df−n(X)(ν, μ) ≤ M1. (13)

Then, using the fact that μ ∈ F̃ixR(f) (in the last step below), we have

dX(fnν, μ) ≤ dX(fnν, fnμ) + dX(μ, fnμ)

≤ df−n(X)(ν, μ) +
n−1∑

i=0

df−i(X)(μ, fμ)

≤ M1 + nR.

Thus,

dX(μB, fnν) ≥ dX(μB, μ) − dX(fnν, μ) > 2M1.

By Lemma 2.8.4,

df−n(X)(f
nν, μ) ≤ 2M1.
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As above, we iterate the argument on powers of fn. For all i ≥ 0, we have

dX(f (i+1)nν, μ) ≤ dX(f (i+1)nν, fnμ) + dX(μ, fnμ)
≤ df−n(X)(f

inν, μ) + nR

≤ 2M1 + nR.

This eventually leads to the contradiction

dX(μB, μ) ≤ dX(μB, ν) + dX(ν, μ)
≤ M1 + 2M1 + nR

≤ 3M1 + nR.

We conclude X and f−n(X) must be disjoint. ��
3.4 Second technical lemma. In the following, we prove another technical
result, which has a similar conclusion as Lemma 3.3.4, but it is based on different
assumptions. Its purpose is for the situation when the main surface S is a bad domain
for an R-fixed point μ of a finite order mapping class f (see Proposition 4.2.1). In
this situation, we need to cook up a set of base curves for a new fixed point of f
that is closer to the base marking μB in C(S). Lemma 3.4.1 starts this process by
finding a subsurface whose orbit under f are all pairwise disjoint. Furthermore, the
boundary curves of these subsurfaces form a multicurve that is closer to μB in C(S)
than the base curves of μ.

The proof of Lemma 3.4.1 will be similar to that of Lemma 3.3.4. We will provide
the necessary details.

In the following, let R be any constant and let μ ∈ F̃ixR(f) for a finite order
mapping class f . Let H(μB, fμB) and H(μB, μ) be hierarchies. Let [vB, f(vB)] and
[vB, v] be the corresponding main geodesics in C(S). For any domain Y ⊂ S, we
adopt the notation [u, v]Y to mean the line segment [πY (u), πY (v)] in C(Y ). For any
two sets A, B ⊂ C(S), let DistS(A, B) = minu∈A

v∈B
dS(u, v).

Lemma 3.4.1. There exists a constant Δ, depending only on R, such that the fol-
lowing holds. Suppose b is a vertex on [vB, v] with the property that

DistS([b, f(b)], [vB, f(vB)]) ≥ 4.

Let μ′ be a separating marking at b. Then whenever a subsurface Y ⊂ S has the
property that

DistS(∂Y, [b, f(b)]) ≤ 1 and dY (μ′, fμ′) > Δ,

then

Y, f(Y ), . . . , fLY (Y )

are all domains for geodesics in H(μB, μ) and are all mutually disjoint.
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Proof. We claim the constant

Δ = (2N + 1)M0 + (2N + 1)R + 10M1

works. Let Y ⊂ S satisfy the criteria of the lemma. As in Lemma 3.3.4, we will prove
by induction on n that

Y, f−1(Y ), . . . , f−n(Y ) = fLY +1−n(Y )

satisfy the lemma for n = 0 . . . , LY .
Let’s first show Y supports a geodesic in H(μB, μ). We will be considering

H(fμB, fμ) in parallel. Note that fμ′ will be a separating marking at f(b) in
H(fμB, fμ). Consider the following pair of quadrilaterals in C(Y ):

Q1 = [μB, fμB]Y ∪ [fμB, fμ′]Y ∪ [μB, μ′]Y ∪ [μ′, fμ′]Y ,

and

Q2 = [μ′, fμ′]Y ∪ [μ′, μ]Y ∪ [μ, fμ]Y ∪ [fμ′, fμ]Y .

By our assumption, dY (μ′, fμ′) > Δ. By the triangle inequality, at least one of three
other segments of Q1 is long:

[μB, μ′]Y , [μB, fμB]Y , [fμB, fμ′]Y .

Similarly, at least one of the following segments of Q2 is long:

[μ′, μ]Y , [μ, fμ]Y , [fμ′, fμ]Y .

Since dZ(μ, fμ) ≤ R for all Z ⊆ S, in Q2 the situation reduces to either

dY (μ′, μ) >
Δ − R

2
> NM0 + NR + 5M1, (14)

or

dY (fμ′, fμ) > NM0 + NR + 5M1. (15)

If (14) holds, then by the fact that μ′ is a separating marking at b (Lemma 2.9.2),

dY (μB, μ′) ≤ M1.

Applying the triangle inequality yields

dY (μB, μ) ≥ dY (μ′, μ) − dY (μB, μ′)
> (NM0 + NR + 5M1) − M1.

Therefore, (14) implies Y supports a geodesic in H. So we may assume (15) holds.
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Figure 2: The quadrilaterals Q1 and Q2 in C(Y )

In Q1, the assumption on ∂Y forces DistS(∂Y, [μB, fμB]) > 1. In other words,
every vertex in [μB, fμB] crosses Y . Theorem 2.4.3 applies and dY (μB, fμB) ≤ M0.
The situation is reduced to either

dY (μB, μ′) >
Δ − M0

2
> NM0 + NR + 5M1 (16)

or

dY (fμB, fμ′) > NM0 + NR + 5M1. (17)

It is not possible for (15) and (17) to occur simultaneously, as that would mean both

dY (fμB, fμ′) > M1 and dY (fμ′, fμ) > M1,

violating fμ′ a separating marking. So (16) must hold. As above, we must then have

dY (μB, μ) ≥ dY (μB, μ′) − dY (μ′, μ)
> (NM0 + NR + 5M1) − M1.

Therefore, in all cases, Y must support a geodesic in H(μB, μ). See Figure 2 for a
schematic picture of Q1 and Q2. Note that the conclusion of the base case always
resulted in

dY (μB, μ) > NM0 + NR + 4M1. (18)

By induction,

Y, f−1(Y ), . . . , f−n+1(Y )

are all domains for geodesics in H(μB, μ) and are all mutually disjoint. Let’s now
prove f−n(Y ) supports a geodesic in H(μB, μ). Since

DistS([vB, f(vB)], [b, f(b)]) ≥ 4 and DistS(∂Y, [b, f(b)]) ≤ 1,

the disjointness condition will imply

DistS([vB, f(vB)], ∂f−i(Y )) ≥ 2,

for all i = 0, . . . , n − 1. By Theorem 2.4.3,

df−i(Y )(μB, fμB) ≤ M0. (19)
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Coupling this fact with (18) (in the last step below), we have

df−n(Y )(μB, μ)
= df−n+1(Y )(fμB, fμ)
≥ df−n+1(Y )(μB, μ) − df−n+1(Y )(μB, fμB) − df−n+1(Y )(μ, fμ)
≥ df−n+1(Y )(μB, μ) − M0 − R

...
≥ dY (μB, μ) − nM0 − nR

> (N − n)M0 + (N − n)R + 4M1.

Since N > LY ≥ n, the above in particular implies

df−n(Y )(μB, μ) > M1 ≥ M2.

So f−n(Y ) supports a geodesic in H(μB, μ).
We now want to show Y, . . . , f−n+1(Y ), f−n(Y ) are all pairwise disjoint. Using

the action of f and the assumption that Y, . . . , f−n+1(Y ) are pairwise disjoint, we see
that f−n(Y ) is disjoint with each Y, . . . , f−n+1(Y ) if and only if f−n(Y ) and Y are
disjoint. If Y and f−n(Y ) are not disjoint, then they are time-ordered in H(μB, μ).
The two different cases of time-ordering of Y and f−n(Y ) will both lead to a con-
tradiction. The argument is very similar to the one given in Lemma 3.4.1. We will
quickly give the argument in the case that Y <t f−n(Y ) and omit the argument in
the second case.

Suppose Y <t f−n(Y ). Let ν be a hierarchy marking H(μB, μ) such that

dY (ν, μ) ≤ M1 and df−n(Y )(μB, ν) ≤ M1, (20)

as in Lemma 2.8.4. Then

dY (μB, fnν) ≤ dY (μB, fnμB) + dY (fnμB, fnν)

≤
⎛

⎝
n−1∑

j=0

dY (f jμB, f j+1μB)

⎞

⎠+ df−n(Y )(μB, ν)

≤
⎛

⎝
n−1∑

j=0

df−j(Y )(μB, fμB)

⎞

⎠+ M1

≤ nM0 + M1.

Using (18) and the triangle inequality, we have

dY (fnν, μ) ≥ dY (μB, μ) − dY (μB, fnν) > 2M1.

Therefore, by Lemma 2.8.4,

df−n(Y )(μB, fnν) ≤ 2M1.
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By considering powers of fnν inductively, we have

dY (μB, f (i+1)nν) ≤ dY (μB, fnμB) + dY (fnμB, f (i+1)nν)

≤ nM0 + df−n(Y )(μB, f inν)

≤ nM0 + 2M1.

This is true for every i ≥ 0. Since N > LY ≥ n, using (20), we have

dY (μB, μ) ≤ dY (μB, ν) + dY (ν, μ) ≤ nM0 + 3M1,

contradicting (18). The case of f−n(Y ) <t Y will lead to a similar contradiction.
This concludes the proof of the lemma. ��

4 L.B.C. Property for Finite Order Mapping Classes

The heart of this section is to prove Theorem C of the introduction, restated below.
Let R1 be the fixed constant of Lemma 3.1.4 and let μB be the fixed base marking.

Theorem 4.0.2. There exists a constant R ≥ R1, depending only on μB, such
that any finite order f ∈ MCG(S) has a marking μ ∈ F̃ixR(f) with

dMark(S)(μB, μ) ≺ dMark(S)(μB, fμB).

Assuming Theorem 4.0.2, we can derive L.B.C. property for finite order map-
ping classes by a standard argument, following [BH99]. We first state and prove the
following corollary of Theorem 4.0.2, which reduces L.B.C. property for finite order
mapping classes to a finite problem.

Corollary 4.0.3. There exists a finite set Γ ⊂ MCG(S) such that, for every finite
order f ∈ MCG(S), there exists ω ∈ MCG(S) such that ω−1fω ∈ Γ and |ω| ≺ |f |.
Proof. By enlarging R if necessary, we may rephrase Theorem 4.0.2 in terms of fixed
points: there exists R depending only on μB such that any finite order mapping class
f has a marking μ ∈ FixR(f) with

dMark(S)(μB, μ) ≺ dMark(S)(μB, fμB). (21)

We construct the set Γ as follows. Let D be the diameter of Mark(S) modulo the
action of MCG(S). (D is finite since the action of MCG(S) on Mark(S) is cofinite).
Set

Γ = {g ∈ MCG(S) : dMark(S)(μB, gμB) ≤ 2D + R, g finite order}.

The action of MCG(S) on Mark(S) is proper, thus Γ is a finite set. We show Γ
satisfies the other properties as well.
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Let f ∈ MCG(S) be of finite order. Let μ be a R-fixed point of f closest to μB.
Since the action of MCG(S) on Mark(S) is cofinite, there exists ω ∈ MCG(S) such
that dMark(S)(ωμB, μ) ≤ D. Then ω−1fω ∈ Γ, since

dMark(S)(μB, ω−1fωμB) = dMark(S)(ωμB, fωμB)

≤ dMark(S)(ωμB, μ) + dMark(S)(μ, fμ) + dMark(S)(fμ, fωμB)

≤ dMark(S)(ωμB, μ) + dMark(S)(μ, fμ) + dMark(S)(μ, ωμB)

≤ 2D + R.

Moreover, by (21) we have

|ω| ≺ dMark(S)(μB, ωμB)

≤ dMark(S)(μB, μ) + dMark(S)(ωμB , μ)

≺ dMark(S)(μB, fμB) + D

≺ |f |. ��
Corollary 4.0.4 (L.B.C. property for finite order mapping classes). If f, g ∈
MCG(S) are conjugate finite order mapping classes, then there is a conjugating
element ω ∈ MCG(S) with

|ω| ≺ |f | + |g|.
Proof. Let Γ ⊂ MCG(S) be the finite set of Theorem 4.0.2. The content of Theo-
rem 4.0.2 is that Γ contains at least one and at most finitely many representatives
for each conjugacy class of a finite order mapping class. Furthermore, each finite
order f can be conjugated into Γ by a conjugating element whose word length is
proportional to |f |. The result follows after picking a conjugating element for each
pair of elements in Γ of the same conjugacy class. ��

The proof of Theorem 4.0.2 will occupy the rest of the section. The main obser-
vation is that if μ1 ∈ F̃ixR1(f) does not have any R1–bad domains, then μ1 satisfies
the statement of Theorem 4.0.2 (see Proposition 4.1.1). If μ1 does have a R1-bad
domain Y , then we can construct a marking μ2 ∈ F̃ixR2(f), where R2 depends only
on R1, such that Y /∈ Ω(μ2, R2). We will call this the base step of the proof. Ideally,
we would like Ω(μ2, R2) to be strictly smaller than Ω(μ1, R1), but the situation is a
bit more complicated. In trying to improve μ1 in Y , we may create new bad domains,
but we will have control over what they are in relation to Y . Although the set of
bad domains is not necessarily decreasing, applying the base step in the right way
will guarantee a decrease in the complexity of Ω(μ2, R2) from that of Ω(μ1, R1). By
iterating this process, we will produce a sequence of symmetric points for f such
that the complexities of the sets of bad domains are monotonically decreasing. This
process must stop to produce an R-symmetric point μ for f with no bad domains.
Since the maximal complexity of any set of bad domains is the complexity of S, the
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process of achieving μ terminates after a bounded number of steps. This serves to
ensure the constant R will depend only on R1 (and μB).

The rest of the section is organized as follows. We first prove in Proposition 4.1.1
that no bad domain indeed implies Theorem 4.0.2. Then the base step is dealt with
in Section 4.2. There are two propositions, Propositions 4.2.1 and 4.2.2, associated
to the base step, depending on whether the bad domain is the main surface or a
proper subsurface. This is where our work in Section 3 will come in. In Section 4.3,
we will explain how to use the base step to reduce the complexity of the set of bad
domains. The precise statement is Proposition 4.3.1. The section will conclude with
Corollary 4.3.2 which makes precise how the process terminates after a bounded
number of steps.

4.1 No bad domains

Proposition 4.1.1 (No bad domains). Let μ ∈ F̃ixR(f) where R ≥ R1. If R is a
constant depending only on R1 such that Ω(μ, R) = ∅, then

dMark(S)(μB, μ) ≺ dMark(S)(μB, fμB).

In other words, μ and R satisfy Theorem 4.0.2.

Proof. The assumption Ω(μ, R) = ∅ means that for every X ⊆ S, there exists iX
such that

dX(μB, μ) ≤ 2Ndf iX (X)(μB, fμB) + NR + Θ.

Let L0 be the constant of the distance formula, Theorem 2.6.5. Let

Φ = {X ⊆ S : dX(μB, μ) ≥ 2NL0 + NR + Θ},

and

Ψ = {Y ⊆ S : dY (μB, fμB) ≥ L0}.

Then there is a map Φ → Ψ sending X �→ f iX (X). This map has multiplicity at
most the order of f , which is bounded by N . Therefore,

dMark(S)(μB, μ) �
∑

X∈Φ

dX(μB, μ)

≤
∑

X∈Φ

2Ndf iX (X)(μB, fμB) + NR + Ω

≺
∑

X∈Φ

df iX (X)(μB, fμB)

≤ N
∑

Y ∈Ψ

dY (μB, fμB)

� dMark(S)(μB, fμB). ��
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4.2 Base step. We are now ready to state and prove the base step of the proof
for Theorem 4.0.2. There are two cases to consider, which are Propositions 4.2.1 and
4.2.2. The proof of Proposition 4.2.1 will be essential for Proposition 4.2.2.

Let μB be the base marking in Mark(S), and recall the definition of ξ(Ω(μ, R))
as in Definition 3.3.3.

Proposition 4.2.1 (Base step 1). Given RI ≥ max{2δ + 4, R1} there exists a con-

stant RO depending only on RI with the following property. Given μI ∈ F̃ixRI
(f), if

S ∈ Ω(μI , RI), then there exists μO ∈ Mark(S) satisfying the following properties:

(P1) μO ∈ F̃ixRO
(f).

(P2) Ω(μO, RO) � Ω(μI , RI). In addition, S /∈ Ω(μO, RO), and thus ξ(μO, RO) �

ξ(μI , RI).

Proof. We have four hierarchies:

H(μB, fμB), H(μI , fμI), H(μB, μI), H(fμB, fμI).

Consider the four main geodesics corresponding to the four hierarchies, forming a
quadrilateral Q in C(S):

[vB, f(vB)], [vI , f(vI)], [vB, vI ], [f(vB), f(vI)],

where vB and vI are base curves in μB and μI , respectively. Our assumption is that
S ∈ Ω(μI , RI), so

dS(vB, vI) > dS(vB, f(vB)) + RI .

Since f acts on C(S) as an isometry, dS(vB, vI) = dS(f(vB), f(vI)), so Q is 2δ-
thin: every edge of Q is contained in a 2δ-neighborhood of the other edges. The
geodesics [vI , vB] and [f(vI), f(vB)] 2δ-fellow travel for awhile until [vI , vB] begins
fellow traveling [vB, f(vB)]. Choose the vertex b on [vI , vB] at the junction where this
change takes place. After possibly moving b toward vI , by at most 2δ + 4 positions,
we may assume the following properties for b (see Figure 3):

Figure 3: The quadrilateral Q in C(S)
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• dS(b, f(b)) ≤ 2δ, and
• 4 ≤ DistS([b, f(b)], [vB, f(vB)]) ≤ 6δ + 4.

By the triangle inequality, we have

dS(b, vB) ≤ dS(vB, f(vB)) + 8δ + 4. (22)

Now choose the separating marking μ in H(μB, μI) at b. The proof divides into
two cases. To describe these cases, consider any domain Y ⊂ S on which

DistS(∂Y, [b, f(b)]) ≤ 1, (23)

and let

Δ = (2N + 1)M0 + (2N + 1)RI + 10M1.

Case I. Suppose dY (μ, fμ) ≤ Δ for all Y ⊂ S satisfying (23). In this case, set
μO = μ and RO = Δ. We show μO and RO satisfy Proposition 4.2.1. First note
that S /∈ Ω(μO, RO) by (22). Since μO is a hierarchal marking in H(μB, μI), we also
have, for all Z ⊂ S,

dZ(μB, μO) ≤ dZ(μB, μI) + M3.

Since M3 < M1 < RO, this verifies (P2).
To see property (P1), we consider dZ(μO, fμO) for three possibilities of Z.

(a1) If dS(∂Z, [b, f(b)]) ≤ 1, then

dZ(μO, fμO) ≤ Δ = RO.

(a2) If dS(∂Z, [b, f(b)]) > 1, then every vertex of [b, f(b)] cuts Z. By Theorem 2.4.3,

dZ(b, f(b)) ≤ M0 =⇒ dZ(μO, fμO) ≤ M0 + 4.

(a3) If Z = S, then by construction, dS(b, f(b)) ≤ 2δ, thus

dS(μO, fμO) ≤ 2δ + 4.

This ends the proof of the proposition in Case I.

Case II. Suppose there exists Y with dY (μ, fμ) > Δ for some Y ⊂ S satisfying
(23). In this case, Lemma 3.4.1 implies that Y and all its orbits under f are pairwise
disjoint. Consider the multicurve

c = ∂Y ∪ ∂f(Y ) ∪ · · · ∪ ∂fLY (Y ).

Let μO be a marking extension of c relative to μI , as in Definition 2.5.6. In particular,
c ⊆ base(μO). Set

RO = max{RI + 2M3, 10δ + 13}.

Consider the following properties for μO and RO.



GAFA LINEARLY BOUNDED CONJUGATOR PROPERTY 449

(b1) If Z = S, then, since both μO and fμO contain c as base curves,

dS(μO, fμO) ≤ dS(μO, c) + dS(c, fμO) ≤ 4. (24)

Also, since

DistS(∂Y, [b, f(b)]) ≤ 1,

we have

dS(μB, μO) ≤ dS(vB, ∂Y ) + 4
≤ dS(vB, b) + dS(b, f(b)) + 5
≤ (dS(vB, f(vB)) + 8δ + 4) + 2δ + 5
≤ dS(vB, f(vB)) + 10δ + 9
≤ dS(μB, f(μB)) + 10δ + 13. (25)

(b2) If Z �= S, but some curve α in c crosses Z, then

dZ(μO, fμO) ≤ dZ(μO, α) + dZ(α, fμO) ≤ 8. (26)

Furthermore, according to Lemma 3.4.1, f i(Y ) all support a geodesic in
H(μB, μI), so there exists a slice of H(μB, μI) containing α. Therefore,

dZ(μB, μO) ≤ dZ(μB, α) + 4
≤ dZ(μB, μI) + M3 + 4. (27)

(b3) If Z �= S is such that Z is disjoint from c or Z is curve in c, then we are
in the situation of Lemma 2.5.7. Note that fμO is a marking extension of c
relative to fμI .

dZ(μO, fμO) ≤ dZ(μO, μI) + dZ(μI , fμI) + dZ(fμI , fμO)
≤ dZ(μI , fμI) + 2M3

≤ RI + 2M3

≤ RO, (28)

and

dZ(μB, μO) ≤ dZ(μB, μI) + dZ(μI , μO) ≤ dZ(μB, μI) + M3. (29)

Using the analyses of (b1)–(b3), we verify properties (P1) and (P2) for μO and
RO. From (24), (26), (28), we have that, for any Z ⊆ S, dZ(μO, fμO) ≤ RO. Thus
μO ∈ F̃ixRO

(f) and (P1) is verified. To see (P2), first note that, by (25), we have
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S /∈ Ω(μO, RO). Now, if Z ∈ Ω(μO, RO) where Z ⊂ S, then Z must be of case (b2)
or (b3). In either case, using (27) or (29), we obtain

dZ(μB, μI) ≥ dZ(μB, μO) − (M3 + 4)

> 2N
(
max

i
{df i(Z)(μB, fμB)}

)
+ NRO + Θ − (M3 + 4)

> 2N
(
max

i
{df i(Z)(μB, fμB)}

)
+ N(RI + 2M3) + Θ − (M3 + 4)

> 2N
(
max

i
{df i(Z)(μB, fμB)}

)
+ NRI + Θ.

Therefore, Ω(μO, RO) ⊂ Ω(μI , RI), establishing (P2). This finishes the proof of the
proposition in Case II. ��

Before we state the next proposition we will need some notations and definitions.
Given proper domains X, Y ⊂ S, let

U = X ∪ · · · ∪ fLX (X) and V = Y ∪ · · · ∪ fLY (Y ).

We will say Y is supported on S \U if Y lies in some component of S \U . In the case
that X is not a curve, Y can be a boundary curve of f i(X), for some 0 ≤ i ≤ LX .
Note the symmetry in the definition: if Y is supported on S \ U then X is sup-
ported on S \ V. Furthermore, if Y is supported on S \ U , then so is f j(Y ) for all
j = 0, . . . LY . Thus it makes sense to say that U and V are disjoint. Similarly, given
X1 . . . Xn ⊂ S and let

Ui = Xi ∪ · · · ∪ fLXi (Xi),

we will say U1, . . .Un are pairwise disjoint if, for all 1 ≤ i, j ≤ n, i �= j, Xi is
supported on S \ Uj .

Proposition 4.2.2 (Base step 2). Given RI ≥ max{2δ + 4, R1} there exists a con-

stant RO depending only on Ri with the following property. Given μI ∈ F̃ixRI
(f)

and suppose S /∈ Ω(μI , RI). If Ω(μI , RI) contains proper domains X1, . . . Xn ⊂ S
such that U1, . . . ,Un are pairwise disjoint, where Ui = Xi ∪· · ·∪fLXi (Xi), then there
exists μO ∈ Mark(S) satisfying the following properties:

(Q1) μO ∈ F̃ixRO
(f).

(Q2) For j = 1, . . . n, let cj = ∂Xi ∪ ∂f(Xi) ∪ · · · ∂fLXi (Xi). Then c =
⋃

j cj ⊆
base(μO).

(Q3) For all j = 1, . . . n and all i = 0, . . . LXj
, f i(Xj) /∈ Ω(μO, RO).

(Q4) Suppose Z ∈ Ω(μI , RI) has the property that Z interlocks f i(Xj), for some
0 ≤ j ≤ n and some 0 ≤ i ≤ LXj

. If Xj <t f−i(Z) in H(μB, μI), then
Z /∈ Ω(μO, RO).

(Q5) If Z ∈ Ω(μO, RO) but Z /∈ Ω(μI , RI), then Z must be a subsurface of f i(Xj),
for some 0 ≤ j ≤ n and 0 ≤ i ≤ LXj

. In particular, ξ(Z) < ξ(Xj).
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Remark 4.2.3. We briefly explain the statements in (Q1)–(Q5).
First note that, by Lemma 3.3.4, for each j = 1, . . . n,

Xj , f(Xj), . . . , fLXj (Xj)

are all pairwise disjoint. Since the Ui’s are assumed to be pairwise disjoint, the set
c =

⋃
j cj is a multicurve on S, so property (Q2) makes sense. (Recall that if Xj is

a curve, then ∂Xj = Xj .)
Secondly, the assumption in (Q4) also makes sense. If Z ∈ Ω(μI , RI) interlocks

f i(Xj), then Xj and f−i(Z) interlock by the action of f . Since they both support
geodesics in H(μB, μI) (Lemma 3.3.4), they must be time-ordered. The proposition
analyzes the case when Xj <t f−i(Z).

The point of property (Q3) is that, if Xj is a bad domain for μI , then we can
improve μI in Xj , f(Xj), . . . fLXj (Xj) simultaneously. This process also eliminates
all bad domains of type specified by (Q4). However, during this process, a new bad
domain Z that was not a bad domain for μI may have been created. Property (Q5)
puts restrictions on such Z: namely, Z must be a subsurface of some f i(Xj), so it
has strictly smaller complexity than that of Xj . If X1, X2, . . . Xn are all curves, then
in particular (Q5) implies such Z cannot exist and thus Ω(μO, RO) ⊂ Ω(μI , RI).

Proof of Proposition 4.2.2. We will first assume n = 1 and set X = X1. We will
construct a marking μO containing

c = ∂X ∪ · · · ∪ ∂fLX (X).

as base curves, guaranteeing (Q2). The situation may seem similar to case II of
Proposition 4.2.1, but to ensure (Q3), it will not be enough to construct μO by
inducing μI on each f i(X). We will in fact need the full work of Proposition 4.2.1
to construct a marking on X. The action of f will then extend this marking to each
f i(X). We will consider two cases, when X is a curve or when X is a non-annular
subsurface. The two cases are pretty much the same, but for clarity we treat them
separately. After we explain how to construct μO and RO in each case, we will then
check that they satisfy the proposition.

First suppose X is a curve. On each component domain of (S, c), we endow with
the marking induced from μI . To complete this into a marking, we need to pick a
transversal to each f i(X). Much like in the proof of Proposition 4.2.1, we have a
quadrilateral in C(X) formed by projecting the main geodesics μB, fμB, μI , and fμI

to C(X). Since the pair of geodesics [μB, μI ]X and [fμB, fμI ]X 2δ-fellow travel in
C(X), we can find an element b ∈ C(X) such that

• dX(b, f(b)) ≤ 2δ.
• dX(b, μB) ≤ dX(μB, fμB) + 2δ.

Let f i(b) be the transversal to f i(X) and let μO be the associated clean marking on
S. The correct constant will be RO = RI + 2M3.
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Now suppose X is a non-annular domain. Let F = fLX+1 : X → X be the first
return map of f to X. Set

R′
I = NRI + 2M3.

Let νB = ΠX(μB) and νI = ΠX(μI) be, respectively, the induced markings of μB and
μI on X. We will regard νB as the base marking in Mark(X). Since μI ∈ F̃ixRI

(f),
for any Z ⊆ X,

dZ(νI , FνI) ≤ dZ(μI , FμI) + 2M3

= dZ(μI , f
LX+1μI) + 2M3

≤
LX∑

i=0

dZ(f iμI , f
i+1μI) + 2M3

= (LX + 1) dZ(μI , fμI) + 2M3

≤ (LX + 1)RI + 2M3

< R′
I .

In other words, νI ∈ F̃ixR′
I
(F ). By Equation (2), we have

dX(μB, μI) ≤ dX(μB, νB) + dX(νB, νI) + dX(νI , μI)
≤ dX(νB, νI) + 2M3.

Using the above inequality and the fact that X ∈ Ω(μI , RI), we obtain

dX(νB, νI) ≥ dX(μB, μI) − 2M3

> N max
0≤i≤LX

{df i(X)(μB, fμB)} + NRI + Θ − 2M3

>

Lx∑

i=0

df−i(X)(μB, fμB) + NRI + Θ − 2M3

=
LX∑

i=0

dX(f iμB, f i+1μB) + NRI + Θ − 2M3

≥ dX(μB, fLX+1μB) + NRI + Θ − 2M3

≥ dX(νB, FνB) + NRI + Θ − 4M3

≥ dX(νB, FνB) + R′
I .

In other words, X ∈ Ω(νI , R
′
I , F ). We may apply Proposition 4.2.1, treating X as

the whole surface. This gives a marking νO on X and a constant R′
O ≥ R′

I depending
only on R′

I (hence RI) such that

(P1) For any Z ⊆ X,

dZ(νO, FνO) ≤ R′
O. (30)
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(P2) X /∈ Ω(νO, R′
O, F ), meaning

dX(νB, νO) ≤ dX(νB, FνB) + R′
O. (31)

The action of f induces a marking f iνO on each f i(X). We complete

c ∪
LX⋃

i=0

f iνO

to a marking μO on S by extending μI to the remaining complements and the curves
in c. In this case, set RO = R′

O + 2M3.
Now for X either a curve or a non-annular domain, let μO and RO be the appro-

priate marking and constant. We will show μO and RO satisfy properties (Q1), (Q3),
(Q4) and (Q5). Let’s consider the following analyses.

(c1) If Z = S, by assumption, S /∈ Ω(μI , RI), so

dS(μB, μI) ≤ dS(μB, fμB) + RI .

Since X is a domain of a geodesic in H(μB, μI), we have

dS(μB, μO) ≤ dS(μB, c) + 2
≤ dS(μB, μI) + M3 + 2
≤ dS(μB, fμB) + RI + M3 + 2
≤ dS(μB, fμB) + RO.

In particular, S /∈ Ω(μO, RO). As in (b1) (case II) of Proposition 4.2.1, we
also have

dS(μO, fμO) ≤ 4.

(c2) If Z �= S but some curve of c crosses Z, then the same argument of (b2) of
Proposition 4.2.1 applies to give

dZ(μB, μO) ≤ dZ(μB, μI) + M3 + 4,

and

dZ(μO, fμO) ≤ 8.

(c3) If Z is a subsurface of some component domain of (S, c) on which μO is
induced from μI (this includes the possibility that Z is a curve in c when X
is not a curve), then, as in (b3) of Proposition 4.2.1,

dZ(μB, μO) ≤ dZ(μB, μI) + M3,

and

dZ(μO, fμO) ≤ RI + 2M3 ≤ RO.
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(c4) If X is a curve, then by construction

dX(μB, μO) ≤ dX(μB, b) + M3

≤ dX(μB, fμB) + 2δ + M3

≤ dX(μB, fμB) + RO,

and

dX(μO, fμO) ≤ dX(b, f(b)) + 2M3

≤ 2δ + 2M3

≤ RO.

If X is non-annular and Z ⊆ X, then it follows from (30) that

dZ(μO, fμO) ≤ dZ(νO, FνO) + 2M3

≤ R′
O + 2M3

= RO.

Finally, (31) yields

dX(μB, μO) ≤ dX(νB, νO) + 2M3

≤ dX(νB, FνB) + R′
O + 2M3

≤ dX(μB, fLX+1μB) + R′
O + 4M3

≤ N max
0≤i≤LX

{df i(X)(μB, fμB)} + NRO + Θ. (32)

One consequence here is that, whether or not X is a curve, X /∈ Ω(μO, RO).
(c5) If X is a curve and 0 < i ≤ LX , since both μO and fμO contain f i(b) (as a

transversal), they are M3-close to f i(b) in C(f i(X)). Hence

df i(X)(μO, fμO) ≤ df i(X)(f
i(b), f i(b)) + 2M3eRO.

Furthermore,

df i(X)(μB, μO) ≤ df i(X)(μB, f i(b)) + M3

≤ dX(f−iμB, b) + M3

≤ dX(μB, b) + dX(μB, f−i(μB)) + M3

≤ dX(μB, b) +
i−1∑

j=0

dX(f−jμB, f−(j+1)μB) + M3

= dX(μB, fμB) + 2δ +
i−1∑

j=0

df j+1(X)(μB, fμB) + M3

=
i∑

j=0

df j(X)(μB, fμB) + 2δ + M3

≤ N max
0≤j≤LX

{df j(X)(μB, fμB)} + RO.
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If X is non-annular and Z ⊆ f i(X), 0 < i ≤ LX , then

dZ(μO, fμO) = dZ(f iνO, f iνO) + 2M3 ≤ RO.

For f i(X), 0 < i ≤ LX , then

df i(X)(μB, μO) ≤ df i(X)(μB, f iνO) + M3

= dX(f−iμB, νO) + M3

≤ dX(μB, νO) +
i−1∑

j=0

dX(f−jμB, f−(j+1)μB)

By (32) ≤ 2N max
0≤j≤LX

{df j(X)(μB, fμB)} + NRO + Θ.

An consequence here is that f i(X) /∈ Ω(μO, RO).

Together from (c1) to (c5), we have shown that μO ∈ F̃ixRO
(f). Property (Q3)

is verified in cases (c4) and (c5). To see (Q5), if Z ∈ Ω(μO, RO), then Z is either of
case (c2), (c3), or Z � f i(X), for some i = 0, . . . , LX . In (c2) or (c3), since

dZ(μB, μO) ≤ dZ(μB, μI) + M3 + 4,

it follows that

Z ∈ Ω(μO, RO) =⇒ Z ∈ Ω(μI , RI).

To see (Q4), we use Lemma 2.8.2 on the assumption X <t f−i(Z) to obtain

df−i(Z)(μB, ∂X) ≤ M1.

Since μO contains c =
⋃

j ∂f j(X) as base curves, we have

dZ(μB, μO) = df−i(Z)(f
−iμB, f−iμO)

≤ df−i(Z)(f
−iμB, μB) + df−i(Z)(μB, f−iμO)

≤ N max
0≤i≤LZ

{df i(Z)(μB, fμB)} + df−i(Z)(μB, ∂X) + M3

≤ N max
0≤i≤LZ

{df i(Z)(μB, fμB)} + M1 + M3.

Therefore, Z /∈ Ω(μO, RO). This concludes (Q4) and the proof for n = 1.
For n > 1, the proof is essentially the same. By re-indexing if necessary, we may

assume X1, . . . Xm, m ≤ n, are non-annular domains, and Xm+1, . . . , Xn are curves.
The assumption that U1, . . . ,Un are pairwise disjoint allows us to apply the proof
of case n = 1 to all Xj ’s simultaneously. More precisely, for each 1 ≤ j ≤ m, let
νO,j be the marking on Xj coming from case n = 1. Similarly, for m + 1 ≤ j ≤ n,
let bj be the transversal curve to Xj coming from case n = 1. Let c = ∪jcj where
cj = ∂Xj ∪ · · · ∪ fLXj (Xj). The set

∪
⎛

⎝
m⋃

j=1

LXj⋃

i=0

f iνO,j

⎞

⎠ ∪
⎛

⎝

LXj⋃

i=1

n⋃

j=m+1

f i(bj)

⎞

⎠
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can be extended to a marking μO by extending μI to the remaining complements
and the curves in c1, . . . , cm. Let RO be the maximum of the two constants from
case n = 1 (one constant for a curve and one constant for a non-annular domain).
The proof that μO and RO satisfy the desired properties (Q1)–(Q5) is the same as
the proof for n = 1. ��
4.3 Reducing complexity. In this section, we show how to use Proposi-
tions 4.2.1 and 4.2.2 to construct R and μ for Theorem 4.0.2.

From now on, a pair (μ, R) will always mean μ ∈ F̃ixR(f).

Proposition 4.3.1 (Reducing complexity). Let f ∈ MCG(S) be of finite order.
Let RI and μI be as in Proposition 4.2.1. Suppose Ω(μI , RI) �= ∅. There exists RO,

depending only on RI , and μO ∈ F̃ixRO
(f) such that

ξ(μO, RO) < ξ(μI , RI).

Proof. If S ∈ Ω(μI , RI), then Proposition 4.2.1 produces (μO, RO) such that RO

depends only on RI and S /∈ Ω(μO, RO), hence ξ(μO, RO) < ξ(S) = ξ(μI , RI).
Now suppose S /∈ Ω(μI , RI). Choose a maximal element X1 ∈ Ω(μI , RI). This

in particular means X1 has maximal complexity over all elements of Ω(μI , RI). Set
U1 = X1 ∪ · · · ∪ fLX1 (X1). Consider the maximal complexity of the elements in
Ω(μI , RI) supported on S \ U1. If this complexity is strictly less than ξ(X1), then
we stop. If this complexity is not strictly less than ξ(X1), then we may choose X2

of maximal order in Ω(μI , RI) supported on S \ U1 such that ξ(X2) = ξ(X1). Set
U2 = X2∪· · ·∪fLX2 (X2). In this case, U1 and U2 are disjoint. Now we repeat this pro-
cess by considering the maximum complexity of the elements in Ω(μI , RI) supported
on S \ (U1 ∪ U2). Continuing this way, we eventually exhaust S by a sequence

U1, U2, . . . ,Un

in the following sense:

• For each i, the set Ui is a disjoint union of subsurfaces of S of the form

Ui = Xi ∪ · · · ∪ fLXi (Xi),

with ξ(Xi) = ξ(X1).
• The sets U1, . . . ,Un are pairwise disjoint.
• The maximal complexity of the bad domains in Ω(μI , RI) supported on

S \ (U1 ∪ · · · ∪ Un)

is strictly less than ξ(X1).

Note that the exhaustion sequence has length n which is bounded uniformly by
a constant depending only on S. Denote by

ci = ∂Xi ∪ · · · ∪ ∂fLXi (Xi).
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By assumption, U1, . . . ,Un are pairwise disjoint, so we can apply Proposition 4.2.2
to construct a pair (μO, RO) with μO containing c1 ∪ · · · ∪ cn as base curves and RO

depending only on RI . By properties (Q3), (Q4), and (Q5) of Proposition 4.2.2, if
Z ∈ Ω(μO, RO), then either

(i) Z intersects some curve in ci for some i (see case (c2) in the proof of Proposi-
tion 4.2.2).

(ii) Z is supported on S \ (U1 ∪ · · · ∪ Un). (See case (c3) in the proof of Proposi-
tion 4.2.2.)

(iii) Z � f j(Xi), for some 0 ≤ i ≤ n and 0 ≤ j ≤ LXi
.

Immediately, case (iii) has ξ(Z) < ξ(X1). Recall that for either case (i) or (ii),

Z ∈ Ω(μO, RO) =⇒ Z ∈ Ω(μI , RI).

Since S is exhausted by assumption, case (ii) also means ξ(Z) < ξ(X1). Lastly, sup-
pose Z is of case (i). Choose the minimal index i such that Z intersects a curve in
ci. In other words, Z is supported on

S \ (U1 ∪ · · · ∪ Ui−1),

and Z interlocks f j(Xi), for some j. Our choice of Xi has maximal order among the
bad domains supported on

S \ (U1 ∪ · · · ∪ Ui−1).

Therefore, if ξ(Z) = ξ(X1) = ξ(Xi), then Xi <t f−j(Z) in H(μB, μI). Property (Q5)
of Proposition 4.2.2 guarantees that such domains do not appear in Ω(μO, RO). Thus,
any Z of case (i) must also have ξ(Z) < ξ(X). ��

Let R1 be the minimal constant satisfying Lemma 3.1.4.

Corollary 4.3.2 (Termination). There exists R ≥ R1 depending only on S such

that any finite order f ∈ MCG(S) has a μ ∈ F̃ixR(f) satisfying Ω(μ, R) = ∅.

Proof. Let μ1 ∈ F̃ixR1(f). If Ω(μ1, R1) = ∅, then we are done. If not, then apply-
ing Proposition 4.3.1 iteratively yields a sequence of pairs (μ1, R1), (μ2, R2), . . . such
that

• μi+1 ∈ F̃ixRi+1(f), where Ri+1 depends only on Ri.
• ξi+1 � ξi, where ξi = ξ(μi, Ri).

Since ξi corresponds to the maximum complexity over elements in Ω(μi, Ri), and
that ξi’s are strictly decreasing, we must eventually reach a pair (μn, Rn) for which
ξn = −2, i.e. Ω(μn, Rn) = ∅. Moreover, since elements of Ω(μi, Ri) come from sub-
surfaces of S, ξ1 ≤ ξ(S) = 3g − 3 + b. This gives a bound on n ≤ 3g − 1 + b, and
therefore Rn depends only on S. ��

This concludes the proof of Theorem 4.0.2.
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5 L.B.C. Property for Reducible Mapping Classes

In this section, we prove L.B.C. property for (infinite-order) reducible elements of
MCG(S). We would like to use an induction argument on subsurfaces. To do so, we
make the following observation.

Let f ∈ MCG(S) be reducible with canonical reducing system σ (see
Section 2.2.3). If μ ∈ Mark(S) is a marking containing σ as base curves, then so
does fμ. This means that any hierarchy H(μ, fμ) decomposes into geodesics sup-
ported on component domains of (S, σ). For such a marking μ, we can control each
component domain independently, allowing the arguments of Theorem 2.2.4 and
Corollary 4.0.4 to pass through to subsurfaces. This inspires the definition of a good
marking for f (Definition 5.0.3). We construct a finite collection of good markings
and prove Theorem E of the introduction. The induction argument on subsurfaces
using good markings appears in Proposition 5.0.5. Finally, Corollary 5.0.6 combines
the finiteness and the induction argument to finish the proof of L.B.C. property for
reducible elements of MCG(S).

Definition 5.0.3 (Good marking). Let f ∈ MCG(S) be an infinite-order reducible
element and let σ be its associated canonical reducing system. We say a marking
μ ∈ Mark(S) is a good marking for f if σ ⊆ base(μ).

Up to homeomorphisms of S, there are only finitely many multicurves on S. If
f ∈ MCG(S) is reducible and f = ω−1gω, then ω(σf ) = σg, where σf and σg are
canonical reducing system for f and g, respectively. We fix a representative for each
homeomorphism type of a multicurve. Further, for each representative multicurve σ,
we complete σ into a finite set of markings representing each homeomorphism type
of a marking containing σ as base curves. Let M the collection of all such represen-
tative markings, one from each homeomorphism type. The following is Theorem E
of the introduction.

Theorem 5.0.4. There exists a ∈ MCG(S) such that a−1fa has a good marking
in M, and

dMark(S)(μB, aμB) ≺ dMark(S)(μB, fμB).

Furthermore, if f and g are conjugate and b−1gb = a−1fa with dMark(S)(μB, bμB) ≺
dMark(S)(μB, gμB), then we may choose the same good marking in M for b−1gb.

Before proving Theorem 5.0.4, we set up some notations. Fix a multicurve σ on
S. Let Stab(σ) < MCG(S) be the subgroup stabilizing σ as a set:

Stab(σ) : {h ∈ MCG(S) : h(σ) = σ}.

The action of Stab(σ) on the complementary components of S \ σ induces an exact
sequence:

1 −→ Stab0(σ) −→ Stab(σ) π−→ Finite Group −→ 1. (33)
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Consider the kernel Stab0(σ) of the above sequence. If f ∈ Stab0(σ), then f acts on
each complementary component Y ⊂ S \ σ. In other words, f defines an element
f |Y ∈ MCG0(Y ) for each Y ⊂ S \ σ, where MCG0(Y ) ⊂ MCG(Y ) is the subgroup
fixing ∂Y . We have an exact sequence:

1 −→ Tσ −→ Stab0(σ) −→
∏

Y ∈S\σ

MCG0(Y ) −→ 1, (34)

where Tσ is a free abelian group with basis the Dehn twists along curves in σ. By
the classification theorem, f |Y is either pseudo-Anosov or has finite order. We say
an element f ∈ Stab0(σ) is pure if f |Y is either pseudo-Anosov or the identity on Y .
The order of the finite group in (33) is bounded by a constant N depending only on
S. Thus, for any σ and any f ∈ Stab(σ), fN ∈ Stab0(σ). Moreover, since there are
only finitely many subsurfaces of S up to homeomorphism, one can choose a constant
for Corollary 3.1.2 that works for S and all subsurfaces of S. Thus, there exists some
universal power N = N(S) depending only S, such that for any reducible mapping
element f ∈ MCG(S), fN is pure.

We can characterize the canonical reducing system for a reducible mapping class
as follows. Suppose f ∈ Stab(σ). Let g = fN be pure. Then σ = σf is the canonical
reducing system for f if for any α ∈ σ, one of the following holds.

(H1) There exists a domain Y in S \ σ such that α is a boundary component of Y
and g|Y is pseudo-Anosov on Y .

(H2) There exists a domain Z ⊂ S such that g|Z is a non-zero power of a Dehn
twist along α.

To see this, let α ∈ σ be such that condition (H1) does not hold. Then α must bound
two (not necessarily distinct) components X and Y of S \ σ such that g|X and g|Y
are both the identity. In this case, let Z = X∪Y ∪α. Then g|Z is a non-zero power of
Dehn twist along α. Otherwise, the first return map of f to Z is of finite order, and
one can thus obtain a smaller reducing system for f by removing α, contradicting
minimality of σ. Note that this proof also implies that if σ is a canonical reducing
system for f , then σ is also the canonical reducing system for any power of f .

In case (H2), it follows that for any n ∈ N and any v ∈ C(α),

dα(v, gn(v)) ≥ |n|.

Compare this with Lemma 2.3.2. Since there are only finitely many domains of S
up to homeomorphism, we can choose N0 depending only on S such that the follow-
ing holds. Let M2 be the constant of Lemma 2.6.3. For any multicurve σ and any
g ∈ Stab0(σ), let Y be either a component of S \ σ on which g is pseudo-Anosov,
or Y is a curve in σ such that property (H2) holds, then for any n ≥ N0 and any
v ∈ C(Y ),

dY (v, gn(v)) ≥ M2.
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For any g ∈ Stab0(σ), Equation (3) has the following consequence. If μ ∈
Mark(S) is a good marking for g, then

dMark(S)(μ, gμ) �
∑

X⊂S\σ

dMark(X)(μ, g|Xμ) +
∑

α∈σ

dα(μ, gμ), (35)

where

dMark(X)(μ, g|Xμ) := dMark(X)(ΠX(μ), g|XΠX(μ)) � dMark(X)(ΠX(μ), ΠX(gμ)).

We will say an element g ∈ Stab0(σ) does not twist along α ∈ σ if for any
v ∈ C(α),

lim
n→∞

dα(v, gn(v))
n

= 0.

In this case, dα(μ, gμ) ≺ 1, and one can ignore the second summand on the right
hand side of Equation (35).

Proof of Theorem 5.0.4. The set M is finite and each conjugacy class of MCG(S)
has a good marking in M by construction. Let

C = max{dMark(S)(μB, μ) : μ ∈ M}.

Let f ∈ MCG(S) be reducible with canonical reducing system σf and set F =
fN0 . Let μ ∈ M be arbitrary. By our definition of N0, for any α ∈ σf , α is either a
boundary curve of a domain Y such that dY (μ, Fμ) ≥ M2, or dα(μ, Fμ) ≥ M2. Thus,
by Lemma 2.6.3, α is either a domain for a geodesic in H(μ, Fμ) or is a boundary
curve of a domain for a geodesic in H(μ, Fμ). A consequence is that, for any Y ⊂ S
that intersects a curve α ∈ σf , by choosing a hierarchal slice containing α and using
Lemma 2.7.2, we have

dY (α, Fμ) ≺ dY (μ, Fμ). (36)

Now let μ′ be a marking extension of σf relative to Fμ. By Lemma 2.5.7, for
any component domain Y of (S, σf ), dY (μ′, Fμ) is uniformly bounded. On the other
hand, if Y ⊆ S is any domain that intersects some curve α ∈ σf , then by (36) and
the fact that σf ⊆ base(μ′), we have

dY (μ′, Fμ) ≤ dY (α, Fμ) + 2 ≺ dY (μ, Fμ).

By ranging over all Y ⊆ S on which dY (μ′, Fμ) is sufficiently large, we obtain

dMark(S)(μ
′, Fμ) ≺ dMark(S)(μ, Fμ).

This implies:

dMark(S)(μ, μ′) ≤ dMark(S)(μ, Fμ) + dMark(S)(Fμ, μ′)
≺ dMark(S)(μ, Fμ)
≺ dMark(S)(μ, fμ).
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Let σ be the representative multicurve for σf and let M(σ) ⊂ M be the subset of
markings containing σ as base curves. Now choose a marking μ′′ ∈ M(σ) such that
there exist a ∈ MCG(S) with a(μ′′) = μ′. By construction, a−1fa has canonical
reducing system a−1(σf ) = σ ⊆ base(μ′′). We also have

dMark(S)(μB, aμB) ≤ dMark(S)(μB, aμ′′) + dMark(S)(aμ′′, aμB)
≤ dMark(S)(μB, μ′) + C

≤ dMark(S)(μB, μ) + dMark(S)(μ, μ′) + C

≺ dMark(S)(μ, fμ) + 2C

≤ dMark(S)(μ, μB) + dMark(S)(μB, fμB) + dMark(S)(fμB, fμ) + 2C

≤ dMark(S)(μB, fμB) + 4C.

If g ∈ MCG(S) is conjugate to f , then σ would also be the representative multi-
curve for σg. Our construction produces an element b ∈ MCG(S) such that b−1gb
has a good marking in M(σ) and dMark(S)(μB, bμB) ≺ dMark(S)(μB, gμB). Since any
marking in M(σ) is a good marking for b−1gb, including μ′′, and M(σ) is a finite
set, the second statement follows. ��

Proposition 5.0.5. Suppose f, g ∈ MCG(S) are two conjugate infinite-order
reducible mapping classes with the same canonical reducing system σ. Let μ be
a good marking for f and g. Then there exist a constant Kμ and ω ∈ MCG(S) such
that ω is a conjugator for f and g, and

dMark(S)(μ, ωμ) ≺ Kμ(dMark(S)(μ, fμ) + dMark(S)(μ, gμ)).

Proof. Elements of Stab0(σ) are easier to handle, but a conjugator for fn and gn is
not a conjugator for f and g. Thus we cannot apply the results of Corollary 4.0.4
and Theorem 2.2.4, to powers of f and g. We must deal with the issue of permuting
subsurfaces in the proof of Proposition 5.0.5. Fix a finite collection P ⊂ Stab(σ)
such that π(P) in the exact sequence (33) is onto. Let

P = max{dMark(S)(μ, aμ) : a ∈ P}.

Choose a ∈ P such that f and g′ = aga−1 have the following properties:

(i) π(f) = π(g′).
(ii) For any X in S \ σ, the first return map to X of f and g′ are conjugate.

If the proposition holds for f and g′, say, there exist Kμ and ω ∈ MCG(S) such that
fω = ωg′ and

dMark(S)(μ, ω′μ) ≺ Kμ(dMark(S)(μ, fμ) + dMark(S)(μ, g′μ)),
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then ωa and Kμ + 2PKμ + P verify the proposition for f and g. Clearly, ωa is a
conjugator for f and g. It remains to check:

dMark(S)(μ, ωaμ) ≤ dMark(S)(μ, ωμ) + dMark(S)(ωμ, ωaμ)
≤ dMark(S)(μ, ωμ) + dMark(S)(μ, aμ)

≺ Kμ(dMark(S)(μ, fμ) + dMark(S)(μ, aga−1μ)) + P

≤ Kμ(dMark(S)(μ, fμ) + dMark(S)(μ, gμ) + 2P ) + P.

Thus, we may assume f and g already satisfy properties (i) and (ii) above. We will
find a conjugator ω ∈ Stab0(σ) for f and g. To do this, we will use properties (i) and
(ii) and the induction hypothesis to build a conjugating element ωY ∈ MCG0(Y ) for
each component Y in S \ σ. Then we will choose an appropriate lift ω ∈ Stab0(Y ).

Decompose the complementary components of S \ σ into orbits under the action
f . Pick a representative from each orbit. Let X1 be one such representative and
consider the sequence of distinct complementary subsurfaces of S \ σ

X1, X2, . . . , Xn

such that f(Xi) = Xi+1 and g(Xi) = Xi+1, for i = 1, . . . , n and Xn+1 = X1. Note
that n < N0. Set fi = f |Xi

: Xi → Xi+1, and similarly for gi. Set the first return
maps F = fn+1|X1 ∈ MCG(X1) and G = gn+1|X1 ∈ MCG(X1). The assumption is
that F and G are conjugate in MCG(X1). By Theorem 2.2.2, F and G are either
pseudo-Anosov or have finite order on X1. Letting ν1 = ΠX1(μ) be the induced
marking on X1, it follows from results of Corollary 4.0.4 and Theorem 2.2.4 that
there exist ω1 ∈ MCG0(X1) and K1 = K1(ν1, X1) such that Fω1 = ω1G, and

dMark(X1)(ν1, ω1ν1) ≤ K1(dMark(X1)(ν1, Fν1) + dMark(X1)(ν1, Gν1))
≺ K1(dMark(S)(μ, Fμ) + dMark(S)(μ, Gμ)) (By (3))
≺ K1(dMark(S)(μ, fnμ) + dMark(S)(μ, gnμ))
≺ K1(dMark(S)(μ, fμ) + dMark(S)(μ, gμ)).

Using f and g, we construct for each Xi an element ωi ∈ MCG0(Xi) such that
fiωi = ωi+1gi, for i = 1, . . . n and n + 1 = 1. The element ω1 ∈ MCG0(X1) is
defined. For each i = 1, . . . n, set

ωi+1 = fi · · · f1ω1g
−1
1 · · · g−1

i .
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In particular, ωn+1 = Fω1G
−1 = ω1. Let νi = ΠXi

(μ). We have

dMark(Xi)(νi, ωi+1νi) = dMark(Xi)(νi, fi · · · f1ω1g
−1
1 · · · g−1

i νi)

= dMark(Xi)(νi, f
i|X1ω1g

−i|Xi
νi)

= dMark(X1)(f
−i|Xi

νi, ω1g
−i|Xi

νi)

≤ dMark(X1)(f
−i|Xi

νi, ν1) + dMark(X1)(ν1, ω1g
−i|Xi

νi)

= dMark(X1)(f
−i|Xi

νi, ν1) + dMark(X1)(ω
−1
1 ν1, g

−i|Xi
νi)

≤ dMark(X1)(f
−i|Xi

νi, ν1) + dMark(X1)(ω
−1
1 ν1, ν1)

+dMark(X1)(ν1, g
−iνi)

≺ dMark(S)(μ, f iμ) + dMark(S)(μ, giμ) + dMark(X1)(ν1, ω1ν1)
≺ K1(dMark(S)(μ, fμ) + dMark(S)(μ, gμ)).

We do this for each orbit of a complementary subsurface in S \ σ, building for
each Y ⊂ S \ σ an element ωY ∈ MCG0(Y ). Consider any element ω ∈ Stab0(σ)
such that ω|Y = ωY . Since twistings commute, any ω will satisfy fω = ωg by con-
struction. Thus, we can choose a lift ω that does not twist along any curves in σ.
Let {Ki} be the constants associated to each orbit and let Kμ = max{Ki}. Using
previous work and Eq. (35), we obtain

dMark(S)(μ, ωμ) �
∑

X⊂S\σ

dMark(X)(μ, ωXμ) +
∑

α∈σ

dα(μ, ωμ)

≺
∑

X⊂S\σ

Kμ(dMark(S)(μ, fμ) + dMark(S)(μ, gμ))

≺ Kμ(dMark(S)(μ, fμ) + dMark(S)(μ, gμ)). ��
Corollary 5.0.6 (L.B.C. property for reducible mapping classes). If f, g ∈
MCG(S) are conjugate reducible mapping classes of infinite order, then there is
a conjugating element ω ∈ MCG(S) with

|ω| ≺ |f | + |g|.
Proof. Let M be the set of representative markings and let C be the constant
bounding the diameter of M. Let K be the constant depending only on S defined
by

K = max{Kμ : μ ∈ M},
where Kμ is the constant associated to μ from Proposition 5.0.5. Suppose f1 and
f2 are conjugate reducible mapping classes of infinite order. Let a1 and a2 be such
that aifia

−1
i = gi have a good marking μ ∈ M, and satisfying dMark(S)(μB, aiμB) ≺

dMark(S)(μB, fiμB). Then each

dMark(S)(μB, giμB) ≤ 2dMark(S)(μB, aiμB) + dMark(S)(μB, fiμB)
≺ dMark(S)(μB, fiμB).
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By Proposition 5.0.5, there exists ω ∈ MCG(S) such that g1ω = ωg2, and

dMark(S)(μ, ωμ) ≺ Kμ(dMark(S)(μ, g1μ) + dMark(S)(μ, g2μ))
≤ K(dMark(S)(μ, g1μ) + dMark(S)(μ, g2μ)).

Hence, by the triangle inequality,

dMark(S)(μB, ωμB) ≤ dMark(S)(μB, μ) + dMark(S)(μ, ωμ) + dMark(S)(ωμ, ωμB)
≤ 2C + KdMark(S)(μ, g1μ) + dMark(S)(μ, g2μ))
≤ 2C + K(4C + dMark(S)(μB, g1μB) + dMark(S)(μB, g2μB))
≺ dMark(S)(μB, g1μB) + dMark(S)(μB, g2μB).

Set ω′ = a−1
1 ωa2. Then ω′ is a conjugator for f1 and f2, and

dMark(S)(μB, ω′μB) ≤ dMark(S)(μB, a1μB) + dMark(S)(μB, ωμB) + dMark(S)(μB, a2μB)
≺ dMark(S)(μB, f1μB) + dMark(S)(μB, f2μB).

This concludes the proof the corollary. ��
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