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ON SOME FINITENESS QUESTIONS FOR ALGEBRAIC
STACKS

Vladimir Drinfeld and Dennis Gaitsgory

Abstract. We prove that under a certain mild hypothesis, the DG category of D-
modules on a quasi-compact algebraic stack is compactly generated. We also show
that under the same hypothesis, the functor of global sections on the DG category
of quasi-coherent sheaves is continuous.
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0 Introduction

0.1 Introduction to the introduction. This paper arose from an attempt to
answer the following question: let Y be a quasi-compact algebraic stack over a field
k of characteristic 0; is it true that the DG category of D-modules on Y, denoted
D-mod(Y), is compactly generated?

We should remark that we did not pursue the above question out of pressing
practical reasons: most (if not all) algebraic stacks that one encounters in practice
are perfect in the sense of [BFN10], and in this case the compact generation assertion
is easy to prove and probably well-known. According to [BFN10, Section 3.3], the
class of perfect stacks is quite large. We decided to analyze the case of a general
quasi-compact stack for aesthetic reasons.

0.1.1 Before we proceed any further let us explain why one should care about such
questions as compact generation of a given DG category, and a description of its
compact objects.

First, we should specify what is the world of DG categories that we work in. The
world in question is that of DG categories that are cocomplete and continuous func-
tors between them, see Section 0.6.2 for a brief review. The choice of this particular
paradigm for DG categories appears to be a convenient framework in which to study
various categorical aspects of algebraic geometry.

Compactness (resp., compact generation) are properties of an object in a given
cocomplete DG category (resp., of a DG category). The relevance and usefulness
of these notions in algebraic geometry was first brought to light in the paper of
Thomason and Trobaugh [TT90].

The reasons for the importance of these notions can be summarized as follows:
compact objects are those for which we can compute (or say something about) Hom
out of them; and compactly generated categories are those for which we can compute
(or say something about) continuous functors out of them.

0.1.2 The new results proved in the present paper fall into three distinct groups.

(i) Results about D-modules, that we originally started from, but which we treat
last in the paper.

(ii) Results about the DG category of quasi-coherent sheaves on Y, denoted
QCoh(Y), which are the most basic, and which are treated first.

(iii) Results about yet another category, namely, IndCoh(Y), which forms a bridge
between QCoh(Y) and D-mod(Y).

0.1.3 The logical structure of the paper is as follows:
Whatever we prove about QCoh(Y) will easily imply the relevant results about

IndCoh(Y): for algebraic stacks the latter category differs only slightly from the
former one.
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The results about D-mod(Y) are deduced from those about IndCoh(Y) using a
conservative forgetful functor oblvD-mod(Y) : D-mod(Y)→ IndCoh(Y), which admits
a left adjoint.

0.1.4 There is essentially only one piece of technology used in the proofs of all
the main results: we stratify a given algebraic stack Y by locally closed substacks,
which are essentially of the form Z/G, where Z is a quasi-compact scheme and G
an algebraic group acting on it.

0.1.5 Finally, we should comment on why this paper came out so long (the first
draft that contained all the main theorems had only five pages).

The reader will notice that the parts of the paper that contain any innovation
(Sections 2, 8 and 10) take less than one fifth of the volume.

The rest of the paper is either abstract nonsense (e.g., Sections 4 and 9), or
background material.

Some of the latter (e.g., the theory of D-modules on stacks) is included because
we could not find adequate references in the literature. Some other things, espe-
cially various notions related to derived algebraic geometry, have been written down
thanks to the work of Lurie and Toën-Vezzosi, but we decided to review them due
to the novelty of the subject, in order to facilitate the job of the reader.

0.2 Results on D-mod(Y)

0.2.1 We have not been able to treat the question of compact generation of
D-mod(Y) for arbitrary algebraic stacks. But we have obtained the following partial
result (see Theorems 8.1.1 and 11.2.10):

Theorem 0.2.2. Let Y be an algebraic stack of finite type over k. Assume that
the automorphism groups of geometric points of Y are affine. Then D-mod(Y) is
compactly generated.

0.2.3 In addition to this theorem, and under the above assumptions on Y (we call
algebraic stacks with this property “QCA”), we prove a result characterizing the
subcategory D-mod(Y)c of compact objects in D-mod(Y) inside the larger category
D-modcoh(Y) of coherent objects. (We were inspired by the following well known
result: for any noetherian scheme Y , a bounded coherent object of QCoh(Y ) is com-
pact if and only if it has finite Tor-dimension.)

We characterize D-mod(Y)c by a condition that we call safety, see Proposi-
tion 9.2.3 and Theorem 10.2.9. We note that safety of an object can be checked
strata-wise: if i : X ↪→ Y is a closed substack and j : (Y − X) ↪→ Y the complemen-
tary open, then an object M ∈ D-mod(Y) is safe if and only if i!(F) and j!(F) are
(see Corollary 10.4.3). However, the subcategory of safe objects is not preserved by
the truncation functors with respect to the canonical t-structure on D-mod(Y).



GAFA FINITENESS QUESTIONS 153

Furthermore, we prove Corollary 10.2.6 that characterizes those stacks Y of finite
type over k for which the functor of global De Rham cohomlogy ΓdR(Y,−) is contin-
uous (i.e., commutes with colimits): this happens if and only if the neutral connected
component of the automorphism group of any geometric point of Y is unipotent. We
call such stacks safe. For example, any Deligne–Mumford stack is safe.

0.2.4 Let π : Y1 → Y2 be a morphism between QCA algebraic stacks. The functor
of D-module direct image πdR,∗ : D-mod(Z1) → D-mod(Z2) is in general not con-
tinuous, and consequently, it fails to have the base change property or satisfy the
projection formula. In Section 9.3 we introduce a new functor π� of renormalized
direct image, which fixes the above drawbacks of πdR,∗. There always is a natural
transformation π�→ πdR,∗, which is an isomorphism on safe objects.

0.3 Results on QCoh(Y). Let Vect denote the DG category of complexes of
vector spaces over k.

0.3.1 We deduce Theorem 0.2.2 from the following more basic result about
QCoh(Y) (see Theorem 1.4.2):

Theorem 0.3.2. Let k be a field of characteristic 0 and let Y be a QCA algebraic
stack of finite type over k. Then the (always derived) functor of global sections

Γ(Y,−) : QCoh(Y)→ Vect

commutes with colimits. In other words, the structure sheaf OY is a compact object
of QCoh(Y).

We also obtain a relative version of Theorem 0.3.2 for morphisms of algebraic
stacks π : Y1 → Y2 (see Corollary 1.4.5). It gives a sufficient condition for the functor

π∗ : QCoh(Y1)→ QCoh(Y2)

to commute with colimits (and thus have a base change property and satisfy the
projection formula).

0.3.3 The question of compact generation of QCoh(Y) is subtle. It is easy to see that
QCoh(Y)c is contained in the category QCoh(Y)perf of perfect complexes, and if Y

satisfies the assumptions of Theorem 0.3.2 then QCoh(Y)c = QCoh(Y)perf (see Cor-
ollary 1.4.3). But we do not know if under these assumptions QCoh(Y)perf always
generates QCoh(Y). Ben-Zvi, Francis, and Nadler showed in [BFN10, Section 3]
that this is true for most of the stacks that one encounters in practice (e.g., see
Lemma 2.6.3 below).

However, we were able to establish a property of QCoh(Y), which is weaker than
compact generation, but still implies many of the favorable properties enjoyed by
compactly generated categories (see Theorem 4.3.1):
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Theorem 0.3.4. Let Y be QCA algebraic stack. Then the category QCoh(Y) is
dualizable.

We refer the reader to Section 4.1.1 for a review of the notion of dualizable DG
category.

0.3.5 In addition, we show that for a QCA algebraic stack Y and for any (pre)stack
Y′, the natural functor

QCoh(Y)⊗QCoh(Y′)→ QCoh(Y× Y′)

is an equivalence (Corollary 4.3.4).

0.3.6 We should mention that in reviewing the above results about QCoh(Y) we
were tacitly assuming that we were dealing with classical algebraic stacks. However,
in the main body of the paper, we work in the setting of derived algebraic geometry,
and henceforth by a “(pre)stack” we shall understand what one might call a “DG
(pre)stack”.

In particular, some caution is needed when dealing with the notion of algebraic
stack of finite type, and for boundedness condition of the structure sheaf. We refer
the reader to the main body of the text for the precise formulations of the above
results in the DG context.

0.4 Ind-coherent sheaves. In addition to the categories QCoh(Y) and
D-mod(Y), there is a third player in this paper, namely, the DG category of ind-
coherent sheaves, denoted IndCoh(Y). We refer the reader to [Gai11] where this
category is introduced and its basic properties are discussed.

As was mentioned in loc.cit., Sections 0.1 and 0.2, the assignment Y �→ IndCoh(Y)
is a natural sheaf-theoretic context in its own right. In particular, the category
IndCoh(Y) is indispensable to treat the spectral side of the Geometric Langlands
correspondence, see [AG12].

In this paper the category IndCoh(Y) is used to prove Theorem 0.3.4. More impor-
tantly, this category serves as an intermediary between D-modules and O-modules
on Y. Below we explain more details on the latter role of IndCoh(Y).

0.4.1 For an arbitrary (pre)stack, there is a naturally defined conservative forgetful
functor

oblvD-mod(Y) : D-mod(Y)→ IndCoh(Y),

and this functor is compatible with morphisms of (pre)stacks π : Y1 → Y2 under
!-pullback functors on both sides.

Now, for a large class of prestacks, including algebraic stacks, the functor
oblvD-mod(Y) admits a left adjoint, denoted indD-mod(Y). This adjoint pair of func-
tors plays an important role in this paper: we use them to deduce Theorem 0.2.2
from Theorem 0.3.2.
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0.4.2 The category IndCoh may be viewed as an accounting device that encodes
the convergence of certain spectral sequences (equivalently, the basic properties of
IndCoh established in [Gai11], ensure that certain colimits commute with certain
limits).

In light of this, the reader who is unfamiliar or not interested in the category
IndCoh, may bypass it and relate the categories QCoh(Y) and D-mod(Y) directly
by the pairs of adjoint functors1 (′oblvD-mod(Y),

′indD-mod(Y)) or (oblvleft
D-mod(Y),

indleft
D-mod(Y)) introduced in Sections 5.1.13 and 5.1.16 (for DG schemes), and 6.1.6

and 6.3.17 (for algebraic stacks). The corresponding variant of the proof of Theo-
rem 0.2.2 is given in Section 8.2.

0.4.3 However, without the category IndCoh(Y), the treatment of D-mod(Y) suf-
fers from a certain awkwardness. Let us list three reasons for this in the ascending
order of importance:

(i) Let Z be a scheme. The realization of D-mod(Z) as “right” D-modules has the
advantage of being compatible with the t-structure, see [GR12, Section 4.3] for
a detailed discussion. So, let us say we want to work with right D-modules.
However, if instead of IndCoh(Z) and the forgetful functor oblvD-mod(Z) we
use QCoh(Z) and the corresponding naive forgetful functor ′oblvD-mod(Z), we
would not be able to formulate the compatibility of this forgetful functor with
pullbacks. The reason is that for a general morphism of schemes f : Z1 →
Z2, the functor f ! is defined and is continuous as a functor IndCoh(Z2) →
IndCoh(Z1) but not as a functor QCoh(Z2)→ QCoh(Z1).

(ii) The “left” forgetful functor oblvleft
D-mod(Y) is defined for any pre-stack Y. How-

ever, it does not admit a left adjoint in many situations in which oblvD-mod(Y)

does, e.g., for ind-schemes. On the other hand, the naive “right” forgetful func-
tor ′oblvD-mod(Y) is not defined unless Y is an algebraic stack.

(iii) As is explained in Section 5.2.2, the natural formalism2 for the assignment Z �→
D-mod(Z) is that of a functor from the category whose objects are schemes,
and morphisms are correspondences between schemes. Moreover, we want this
functor to be endowed with a natural transformation to one involving O-mod-
ules (in either QCoh or IndCoh incarnation). However, the construction of this
formalism carried out in [GR12] using IndCoh would run into serious problems
if one tries to work with QCoh instead.3

So, the upshot is that without IndCoh, we cannot really construct a workable
formalism of D-modules, that allows to take both direct and inverse images.

1 The pair (′oblvD-mod(Y),
′indD-mod(Y)) is related to the realization of D-mod(Y) as “right” D-

modules. The other pair is related to the realization as “left” D-modules.
2 This formalism incorporates the base change isomorphism relating !-pullbacks and ∗-pushfor-

wards.
3 A part of the construction is that the functor of pullback under a closed embedding should

admit a left adjoint; for this it is essential that we use the !-pullback and IndCoh as our category
of O-modules.
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0.4.4 Our main result concerning the category IndCoh is the following one (see
Theorem 3.3.5):

Theorem 0.4.5. For a QCA algebraic stack Y, the category IndCoh(Y) is com-
pactly generated. The category of its compact objects identifies with Coh(Y).

In the above theorem, Coh(Y) is the full subcategory of QCoh(Y) of coherent
sheaves, i.e., of bounded complexes with coherent cohomology. We deduce Theo-
rem 0.4.5 from Theorem 0.3.2.

As we mentioned in Section 0.3.3, for a general QCA stack Y the problem of
compact generation of QCoh(Y) is still open.

0.5 Contents of the paper

0.5.1 In Section 1 we formulate the main technical result of this paper, Theo-
rem 1.4.2.

We first fix our conventions regarding algebraic stacks. In Sections 1 through
10 we adopt a definition of algebraic stacks slightly more restrictive than that of
[LM00]. Namely, we require the diagonal morphism to be schematic rather than
representable.

We introduce the notion of QCA algebraic stack and of QCA morphism between
arbitrary (pre)stacks.

We recall the definition of the category of QCoh(Y) for prestacks and in particular
algebraic stacks.

We formulate Theorem 1.4.2, which is a sharpened version of Theorem 0.3.2
mentioned above. In Theorem 1.4.2 we assert not only that the functor Γ(Y,−) is
continuous, but also that it is of bounded cohomological amplitude.

We also show how Theorem 1.4.2 implies its relative version for a QCA morphism
between (pre)stacks.

0.5.2 In Section 2 we prove Theorem 1.4.2. The idea of the proof is very simple.
First, we show that the boundedness of the cohomological dimension implies the
continuity of the functor Γ(Y,−).

We then establish the required boundedness by stratifying our algebraic stack
by locally closed substacks that are gerbes over schemes. For algebraic stacks of the
latter form, one deduces the theorem directly by reducing to the case of quotient
stacks Z/G, where Z is a quasi-compact scheme and G is a reductive group.

The char. 0 assumption is essential since we are using the fact that the category
of representations of a reductive group is semi-simple.

0.5.3 In Section 3 we study the behavior of the category IndCoh(Y) for QCA
algebraic stacks.

We first recall the definition and basic properties of IndCoh(Y).
We deduce Theorem 0.4.5 from Theorem 0.3.2.
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We also introduce and study the direct image functor πIndCoh∗ for a morphism π
between QCA algebraic stacks.

0.5.4 In Section 4 we prove (and study the implications of) the dualizability prop-
erty of the categories IndCoh(Y) and QCoh(Y) for a QCA algebraic stack Y.

We first recall the notion of dualizable DG category, and then deduce the dual-
izability of IndCoh(Y) from the fact that it is compactly generated.

We deduce the dualizability of QCoh(Y) from the fact that it is a retract of
IndCoh(Y).

We then proceed to discuss Serre duality, which we interpret as a datum of
equivalence of between IndCoh(Y) and its dual.

0.5.5 In Section 5 we review the theory of D-modules on (DG) schemes.
All of this material is well-known at the level of underlying triangulated cate-

gories, but unfortunately there is still no reference in the literature where all the
needed constructions are carried out at the DG level. This is particularly relevant
with regard to base change isomorphisms, where it is not straightforward to even
formulate what structure they encode at the level of ∞-categories.

We also discuss Verdier duality for D-modules, which we interpret as a datum of
equivalence between the category D-mod(Z) and its dual, and its relation to Serre
duality for IndCoh(Z).

0.5.6 In Section 6 we review the theory of D-modules on prestacks and algebraic
stacks. This theory is also “well-known modulo homotopy-theoretic issues”.

Having an appropriate formalism for the assignment Z � D-mod(Z) for schemes,
one defines the category D-mod(Y) for an arbitrary prestack Y, along with the nat-
urally defined functors. The theory becomes richer once we restrict our attention to
algebraic stacks; for example, in this case the category D-mod(Y) has a t-structure.

For algebraic stacks we construct and study the induction functor

indD-mod(Y) : IndCoh(Y)→ D-mod(Y),

left adjoint to the forgetful functor oblvD-mod(Y). Its existence and properties are
crucial for the proof of compact generation of D-mod(Y) on QCA algebraic stacks, as
well as for the relation between the conditions of compactness and safety for objects
of D-mod(Y), and for the construction of the renormalized direct image functor.
In short, the functor indD-mod(Y) produces a supply of objects of D-mod(Y) whose
cohomological behavior we can control.

0.5.7 In Section 7 we define the functor of de Rham cohomology ΓdR(Y,−) :
D-mod(Y) → Vect, where Y is an algebraic stack, and discuss its failure to be con-
tinuous.

Furthermore, we generalize this to the case of the D-module direct image functor
πdR,∗ for a morphism π between algebraic stacks.
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We also discuss the condition of coherence on an object of D-mod(Y), and we
explain that for quasi-compact algebraic stacks, unlike quasi-compact schemes, the
inclusion

D-mod(Y)c ⊂ D-modcoh(Y)

is not an equality.

0.5.8 In Section 8 we prove Theorem 0.2.2. More precisely, we show that for a
QCA algebraic stack Y, the category D-mod(Y) is compactly generated by objects
of the form indD-mod(Y)(F) for F ∈ Coh(Y).

We also show that Theorem 0.2.2, combined with a compatibility of Serre and
Verdier dualities, implies that for a QCA algebraic stack Y, the category D-mod(Y)
is equivalent to its dual, as was the case for schemes.

Finally, we show that for Y as above and any prestack Y′, the natural functor

D-mod(Y)×D-mod(Y′)→ D-mod(Y× Y′)

is an equivalence.

0.5.9 In Section 9 we introduce the functors of renormalized de Rham cohomology
and, more generally, renormalized D-module direct image for morphisms between
QCA algebraic stacks.

We show that both these functors can be defined as ind-extensions of restrictions
of the original functors ΓdR(Y,−) and πdR,∗ to the subcategory of compact objects.

We show that the renormalized direct image functor π�, unlike the original func-
tor πdR,∗, has the base change property and satisfies the projection formula.

We introduce the notion of safe object of D-mod(Y), and we show that for safe
objects π�(M) 	 πdR,∗(M).

We also show that compact objects of D-mod(Y) can be characterized as those
objects of D-modcoh(Y) that are also safe.

Finally, we show that the functor π� exhibits a behavior opposite to that of πdR,∗
with respect to its cohomological amplitude: the functor πdR,∗ is left t-exact, up to
a cohomological shift, whereas the functor π� is right t-exact, up to a cohomological
shift.

0.5.10 In Section 10 we give geometric descriptions of safe algebraic stacks (i.e.,
those QCA stacks, for which all objects of D-mod(Y) are safe), and a geometric crite-
rion for safety of objects of D-mod(Y) in general. The latter description also provides
a more explicit description of compact objects of D-mod(Y) inside D-modcoh(Y).

We prove that a quasi-compact algebraic stack Y is safe if and only if the neutral
components of stabilizers of its geometric points are unipotent. In particular, any
Deligne–Mumford quasi-compact algebraic stack is safe.

The criterion for safety of an object, roughly, looks as follows: a cohomologically
bounded object M ∈ D-mod(Y) is safe if and only if for every point y ∈ Y with
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Gy = Aut(y), the restriction M|BGy
(here BGy denotes the classifying stack of Gy

which maps canonically into Y) has the property that

πdR,∗(M|BGy
)

is still cohomologically bounded, where π denotes the map BGy → BΓy, where
Γy = π0(Gy).

Conversely, we show that every cohomologically bounded safe object of D-mod(Y)
can be obtained by a finite iteration of taking cones starting from objects of the
form φdR,∗(N), where φ : S → Y with S being a quasi-compact scheme and N ∈
D-mod(S)b.

0.5.11 Finally, in Section 11 we explain how to generalize the results of Sections 1–
10 to the case of algebraic stacks in the sense of [LM00]; we call the latter LM-alge-
braic stacks.

Namely, we explain that since quasi-compact algebraic spaces are QCA when
viewed as algebraic stacks, they can be used as building blocks for the categories
QCoh(−), IndCoh(−) and D-mod(−) instead of schemes. This will imply that the
proofs of all the results of this paper are valid for QCA LM-algebraic stacks and
morphisms.

0.6 Conventions, notation and terminology. We will be working over a
fixed ground field k of characteristic 0. Without loss of generality one can assume
that k is algebraically closed.

0.6.1 ∞-categories. Throughout the paper we shall be working with (∞, 1)-cat-
egories. Our treatment is not tied to any specific model, but we shall use [Lur09] as
our basic reference.

We let ∞ -Grpd denote the ∞-category of ∞-groupoids, a.k.a. “spaces”.
If C is an ∞-category and c1, c2 ∈ C are objects, we shall denote by

MapsC(c1, c2) the ∞-groupoid of maps between these two objects. We shall use
the notation HomC(c1, c2) ∈ Sets for π0(MapsC(c1, c2)), i.e., Hom in the homotopy
category.

We shall often say “category” when in fact we mean an ∞-category.
If F : C′ → C is a functor between ∞-categories, we shall say that F is 0-fully

faithful (or just fully faithful) if F induces an equivalence on Maps(−,−). In this
case we call the essential image of C′ a full subcategory of C.

We shall say that F is 1-fully faithful (or just faithful) if F induces a monomor-
phism on Maps(−,−), i.e., if the map

MapsC′(c′1, c
′
2)→ MapsC(F (c′1), F (c′2)) (0.1)

is the inclusion of a union of some of the connected components. If, moreover, the
map (0.1) is surjective on those connected components of MapsC(F (c′1), F (c′2)) that
correspond to isomorphisms, we shall refer to the essential image of C′ as a 1-full
subcategory of C.
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0.6.2 DG categories: elementary aspects. We will be working with DG categories
over k. Unless explicitly specified otherwise, all DG categories will be assumed co-
complete, i.e., contain infinite direct sums (equivalently, filtered colimits, and equiv-
alently all colimits).

We let Vect denote the DG category of complexes of k-vector spaces.
For a DG category C, and c1, c2 ∈ C we can form the object MapsC(c1, c2) ∈

Vect. We have

MapsC(c1, c2) 	 τ≤0 (MapsC(c1, c2)) ,

where in the right-hand side we regard an object of Vect≤0 as an object of ∞ -Grpd
via the Dold-Kan functor.

We shall use the notation Hom•C(c1, c2) to denote the graded vector space

⊕
i
H i (MapsC(c1, c2)) 	 ⊕

i
HomC(c1, c2[i]).

We shall often use the notion of t-structure on a DG category. For C endowed with a
t-structure, we shall denote by C≤0, C≥0, C−, C+, Cb the corresponding subcatego-
ries of connective, coconnective, eventually connective (a.k.a. bounded above), even-
tually coconnective (a.k.a. bounded below) and cohomologically bounded objects.

We let C♥ denote the abelian category equal to the heart (a.k.a. core) of the
t-structure. For example, Vect♥ is the usual category of k-vector spaces.

0.6.3 Functors. All functors between DG categories considered in this paper,
without exception, will be exact (i.e., map exact triangles to exact triangles).4

It is a corollary of the adjoint functor theorem a cocomplete DG category also
contains all limits, see [Lur09, Corollary 5.5.2.4].

More generally, we have a version of Brown’s representability theorem that says
that any exact contravariant functor F : C→ Vect is ind-representable (see [Lur09,
Corollary 5.3.5.4]), and it is representable if and only if F takes colimits in C to
limits in Vect.

0.6.4 Continuous functors. For two DG categories C1, C2 we shall denote
by Funct(C1,C2) the DG category of all (exact) functors C1 → C2, and by
Functcont(C1,C2) its full DG subcategory consisting of continuous functors, i.e.,
those functors that commute with infinite direct sums (equivalently, filtered colim-
its, and equivalently all colimits).

By default, whenever we talk about a functor between DG categories, we will
mean a continuous functor. We shall also encounter non-continuous functors, but
we will explicitly emphasize whenever this happens.

4 As a way to deal with set-theoretic issues, we will assume that all our DG categories are pre-
sentable, and all functors between them are accessible (see [Lur09, Definitions 5.4.2.5 and 5.5.0.1]);
an assumption which is always satisfied in practice.
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The importance of continuous functors vs. all functors is, among the rest, in the
fact that the operation of tensor product of DG categories, reviewed in Section 4.1.1,
is functorial with respect to continuous functors.

0.6.5 Compactness. We recall that an object c in a DG category is called com-
pact if the functor

HomC(c,−) : C→ Vect♥

commutes with direct sums. This is equivalent to requiring that the functor

MapsC(c,−) : C→ Vect

be continuous, and still equivalent to requiring that the functor MapsC(c,−) : C→
∞ -Grpd commute with filtered colimits; the latter interpretation of compactness
makes sense for an arbitary ∞-category closed under filtered colimits. We let Cc

denote the full but not cocomplete subcategory of C spanned by compact objects.5

A DG category C is said to be compactly generated if there exists a set of com-
pact objects cα ∈ C that generate it, i.e.,

Maps(cα, c) = 0 ⇒ c = 0.

Equivalently, if C does not contain proper full cocomplete subcategories that contain
all the objects cα.

0.6.6 DG categories: homotopy-theoretic aspects. We shall regard the totality of
DG categories as an (∞, 1)-category in two ways, denoted DGCat and DGCatcont.
In both cases the objects are DG categories. In the former case, we take as 1-mor-
phisms all (exact) functors, whereas in the latter case we take those (exact) functors
that are continuous. The latter is a 1-full subcategory of the former.

The above framework for the theory of DG categories is not fully documented
(see, however, [GL:DG] where the basic facts are summarized). For a better docu-
mented theory, one can replace the ∞-category of DG categories by that of stable
∞-categories tensored over k (the latter theory is defined as a consequence of [Lur11,
Sections 4.2 and 6.3]).

0.6.7 Ind-completions. If C0 is a small, and hence, non-cocomplete, DG category,
one can canonically attach to it a cocomplete one, referred to as the ind-completion
of C0, denoted Ind(C0), and characterized by the property that for C ∈ DGCatcont

Functcont(Ind(C0),C)

is the category of all (exact) functors C0 → C. For a functor F : C0 → C, the
resulting continuous functor Ind(C0)→ C is called the “ind-extension of F”.

5 The presentability assumption on C implies that Cc is small.
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The objects of C0 are compact when viewed as objects of C. It is not true, how-
ever, that the inclusion C0 ⊂ Cc is equality. Rather, Cc is the Karoubian completion
of C0, i.e., every object of the former can be realized as a direct summand of an
object of the latter (see [Nee92, Theorem 2.1] or [BV08, Prop. 1.4.2] for the proof).

A DG category is compactly generated if and only if it is of the form Ind(C0)
for C0 as above.

0.6.8 DG Schemes. Throughout the paper we shall work in the context of
derived algebraic geometry over the field k. We denote Spec(k) =: pt.

We shall denote by DGSch, DGSchqs-qc and DGSchaff the categories of DG
schemes, quasi-separated and quasi-compact DG schemes, and affine DG schemes,
respectively. The fundamental treatment of these objects can be found in [Lur11].
For a brief review see also [GL:Stacks], Section 3. The above categories contain the
full subcategories Sch, Schqs-qc and Schaff of classical schemes.

For the reader’s convenience, let us recall the notions of smoothness and flatness
in the DG setting.

A map Spec(B)→ Spec(A) between affine DG schemes is said to be flat if H0(B)
is flat as a module over H0(A), plus the following equivalent conditions hold:

• The natural map H0(B) ⊗
H0(A)

H i(A)→ H i(B) is an isomorphism for every i.

• For any A-module M , the natural map H0(B) ⊗
H0(A)

H i(M)→ H i(B ⊗
A
M) is an

isomorphism for every i.
• If an A-module N is concentrated in degree 0 then so is B ⊗

A
N .

The above notion is easily seen to be local in the Zariski topology in both Spec(A)
and Spec(B). The notion of flatness for a morphism between DG schemes is defined
accordingly.

Let f : S1 → S2 be a morphism of DG schemes. We shall say that it is smooth/flat
almost of finite presentation if the following conditions hold:

• f is flat (in particular, the base-changed DG scheme clS2 ×
S2

S1 is classical), and

• the map of classical schemes clS2×
S2

S1 → clS2 is smooth/flat of finite presentation.

In the above formulas, for a DG scheme S, we denote by clS the underlying
classical scheme. I.e., locally, if S = Spec(A), then clS = Spec(H0(A)).

A morphism f : S1 → S2 is said to be fppf if it is flat almost of finite presentation
and surjective at the level of the underlying classical schemes.

0.6.9 Stacks and prestacks. By a prestack we shall mean an arbitrary functor

Y : (DGSchaff)op →∞ -Grpd .

We denote the category of prestacks by PreStk.
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We should emphasize that the reader who is reluctant do deal with functors tak-
ing values in ∞-groupoids, and who is willing to pay the price of staying within
the world of classical algebraic geometry, may ignore any mention of prestacks, and
replace them by functors with values in usual (i.e., 1-truncated) groupoids.

A prestack is called a stack if it satisfies fppf descent, see [GL:Stacks], Section 2.2.
We denote the full subcategory of PreStk formed by stacks by Stk. The embedding
Stk ↪→ PreStk admits a left adjoint, denoted L, and called a sheafification functor.

That said, the distinction between stacks and prestacks will not play a signif-
icant role in this paper, because for a prestack Y, the canonical map Y → L(Y)
induces an equivalence on the category QCoh(−). The same happens for IndCoh(−)
and D-mod(−) in the context of prestacks locally almost of finite type, considered
starting from Sections 3–10 on.

We can also consider the category of classical prestacks, denoted clPreStk, the
latter being the category of all functors

(Schaff)op →∞ -Grpd .

We have a natural restriction functor

Rescl→DG : PreStk→ clPreStk,

which admits a fully faithful left adjoint, given by the procedure of left Kan exten-
sion, see [GL:Stacks], Section 1.1.3. Let us denote this functor LKEcl→DG. Thus, the
functor LKEcl→DG allows us to view clPreStk as a full subcategory of PreStk.

For example, the composition of the Yoneda embedding Schaff → clPreStk with
LKEcl→DG is the composition of the tautological embedding Schaff → DGSchaff ,
followed by the Yoneda embedding DGSchaff → PreStk.

We also have the corresponding full subcategory clStk ⊂ clPreStk. The functor
Rescl→DG sends Stk ⊂ PreStk to clStk ⊂ clPreStk. However, the functor LKEcl→DG

does not necessarily send clStk to Stk.
Following [GL:Stacks], Section 2.4.7, we shall call a stack classical if it can be

obtained as a sheafification of a classical prestack. This is equivalent to the condition
that the natural map

L(LKEcl→DG ◦Rescl→DG(Y))→ Y

be an isomorphism.
In particular, it is not true that a classical non-affine DG scheme is classical as

a prestack. But it is classical as a stack.
When in the main body of the text we will talk about algebraic stacks, the

condition of being classical is understood in the above sense.
For a p = prestack/stack/DG scheme/affine DG scheme Y, the expression “the

classical p underlying Y” means the object Rescl→DG(Y) ∈ clPreStk that belongs to
the appropriate full subcategory

Schaff ⊂ Sch ⊂ Stk ⊂ PreStk .

We will use a shorthand notation for this operation: Y �→ clY.
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1 Results on QCoh(Y)

In Sections 1.1–1.3 we introduce the basic definitions and recall some well-known
facts. The new results are formulated in Section 1.4.

1.1 Assumptions on stacks

1.1.1 Algebraic stacks. In Sections 1–10 we will use the following definition of
algebraicity of a stack, which is slightly more restrictive than that of [LM00] (in the
context of classical stacks) or [GL:Stacks, Section 4.2.8 ] (in the DG context).

1.1.2 First, recall that a morphism π : Y1 → Y2 between prestacks is called
schematic if for any affine DG scheme S equipped with a morphism S → Y2 the pre-
stack S×

Y2

Y1 is a DG scheme. The notions of surjectivity/flatness/smoothness/quasi-

compactness/quasi-separatedness make sense for schematic morphisms: π has one of
the above properties if for every S → Y2 as above, the map of DG schemes S×

Y2

Y1 → S

has the corresponding property.

1.1.3 Let Y be a stack. We shall say that Y is a algebraic if

• The diagonal morphism Y→ Y× Y is schematic, quasi-separated and quasi-com-
pact.
• There exists a DG scheme Z and a map f : Z → Y (automatically schematic, by

the previous condition) such that f is smooth and surjective.

A pair (Z, f) as above is called a presentation or atlas for Y.

Remark 1.1.4. In [LM00] one imposes a slightly stronger condition on the diago-
nal map Y → Y × Y. Namely, in loc.cit. it is required to be separated rather than
quasi-separated. However, the above weaker condition seems more natural, and it
will suffice for our purposes (the latter being Lemma 2.5.2, that relies on [LM00,
Corollary 10.8], while the latter does not require the separated diagonal assumption).

Remark 1.1.5. To get the more general notion of algebraic stack in the spirit of
[LM00] (for brevity, LM-algebraic stack), one replaces the word “schematic” in the
above definition by “representable”, see Section 11.1.3.6 In fact, all the results formu-
lated in this paper are valid for LM-algebraic stacks; in Section 11 we shall explain the
necessary modifications. On the other hand, most LM-algebraic stacks one encoun-
ters in practice satisfy the more restrictive definition as well. The advantage of
LM-algebraic stacks vs. algebraic stacks defined above is that the former, unlike the
latter, satisfy fppf descent.

6 A morphism π : Y1 → Y2 between prestacks is called representable if for every affine DG scheme
S equipped with a morphism S → Y2 the prestack S ×

Y2

Y1 is an algebraic space, see Section 11.1.1

for a review of the latter notion in the context of derived algebraic geometry.
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To recover the even more general notion of algebraic stack (a.k.a. 1-Artin stack)
from [GL:Stacks, Section 4.2.8], one should omit the condition on the diagonal map
to be quasi-separated and quasi-compact. However, these conditions are essential
for the validity of the results in this paper.

Definition 1.1.6. We shall say that an algebraic stack Y is quasi-compact if admits
an atlas (Z, f), where Z is an affine (equivalently, quasi-compact) DG scheme.

1.1.7 QCA stacks
QCA is shorthand for “quasi-compact and with affine automorphism groups”.

Definition 1.1.8. We shall say that algebraic stack Y is QCA if

(1) It is quasi-compact;
(2) The automorphism groups of its geometric points are affine;
(3) The classical inertia stack, i.e., the classical algebraic stack cl(Y ×

Y×Y
Y), is of finite

presentation over clY.

In particular, any algebraic space automatically satisfies this condition (indeed,
the classical inertia stack of an algebraic space X is isomorphic to clX). In addition,
it is clear that if

Y′ −−−−→ Y
⏐
⏐
�

⏐
⏐
�

X′ −−−−→ X,

is a Cartesian diagram, where X and X′ are algebraic spaces, and Y is a QCA alge-
braic stack, then so is Y′.

The class of QCA algebraic stacks will play a fundamental role in this article.
We also need the relative version of the QCA condition.

Definition 1.1.9. We shall say that a morphism π : Y1 → Y2 between prestacks is
QCA if for every affine DG scheme S and a morphism S → Y2, the base-changed
prestack Y1 ×

Y2

S is an algebraic stack and is QCA.

For example, it is easy to show that if Y1 is a QCA algebraic stack and Y2 is any
algebraic stack, then any morphism Y1 → Y2 is QCA.

1.2 Quasi-coherent sheaves

1.2.1 Definition. Let Y be any prestack. Let us recall (see e.g. [GL:QCoh, Sec-
tion 1.1.3]) that the category QCoh(Y) is defined as

lim←−
(S,g)∈((DGSchaff)/Y)op

QCoh(S). (1.1)

Here (DGSchaff)/Y is the category of pairs (S, g), where S is an affine DG scheme,
and g is a map S → Y.
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1.2.2 Let us comment on the structure of the above definition:
We view the assignment (S, g) � QCoh(S) as a functor between ∞-categories

((DGSchaff)/Y)op → DGCatcont, (1.2)

and the limit is taken in the (∞, 1)-category DGCatcont. The functor (1.2) is obtained
by restriction under the forgetful map (DGSchaff)/Y→ DGSchaff of the functor

QCoh∗Schaff : (DGSchaff)op → DGCatcont,

where for f : S′ → S, the map QCoh(S)→ QCoh(S′) is f∗. (The latter functor can
be constructed in a “hands-on” way; this has been carried out in detail in [Lur11].)

In other words, an object F ∈ QCoh(Y) is an assignment for any (S, g : S → Y)
of an object F|S := g∗(F) ∈ QCoh(S), and a homotopy-coherent system of isomor-
phisms

f∗(g∗(F)) 	 (g ◦ f)∗(F) ∈ QCoh(S′),

for maps of DG schemes f : S′ → S.

Remark 1.2.3. For Y classical and algebraic, the definition of QCoh(Y) given above
is different from the one of [LM00] (in loc.cit., at the level of triangulated categories,
QCoh(Y) is defined as a full subcategory in the derived category of the abelian cat-
egory of sheaves of O-modules on the smooth site of Y). It is easy to show that the
eventually coconnective (=bounded from below) parts of both categories, i.e., the
two versions of QCoh(Y)+, are canonically equivalent. However, we have no reasons
to believe that the entire categories are equivalent in general. The reason that we
insist on considering the entire category QCoh(Y) is that this paper is largely devoted
to the notion of compactness, which only makes sense in a cocomplete category.

Remark 1.2.4. In the definition of QCoh(Y), one can replace the category DGSchaff

of affine DG schemes by either DGSchqs-qc or of quasi-separated and quasi-compact
DG schemes or just DGSch of all DG schemes. The limit category will not change
due to the Zariski descent property of the assignment S � QCoh(S).

1.2.5 In the definition of QCoh(Y) it is often convenient to replace the category
DGSch/Y (resp., (DGSchqs-qc)/Y, (DGSchaff)/Y) by a another category A, equipped
with a functor

(a ∈ A) �→ (Sa, ga)

to DGSch/Y (resp., (DGSchqs-qc)/Y, (DGSchaff)/Y), (provided that the limit will be
the same). Below are several examples that will be used in this paper.

(i) If Y is classical (as a stack or a prestack), one can take the category A :=
(Schaff)/Y, equipped with the tautological inclusion to (DGSchaff)/Y. I.e., we
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replace DG schemes by classical schemes. Indeed, if Y is classical as a prestack,
the fact that the limit category will be the same follows the from fact that the
property of Y to be classical means that the inclusion (Schaff)/Y→ (DGSchaff)/Y
is cofinal (i.e., for every S ∈ DGSchaff and a point y : S → Y, there exists a
factorization S → S′ → Y, where S′ ∈ Schaff , and the category of such fac-
torizations is contractible.) For stacks, this follows from the fact that the map
Y → L(Y), where we remind that L(−) denotes fppf sheafification, induces an
isomorphism on QCoh.

(ii) Let Y→ Y′ be a schematic (resp., schematic + quasi-separated and quasi-com-
pact; affine) map between prestacks.
Then we can take A to be DGSch/Y′ (resp., (DGSchqs-qc)/Y′ ; (DGSchaff)/Y′) via
the functor

S′ �→ S := S′ ×
Y′

Y. (1.3)

Indeed, it is easy to see that the above functor is cofinal.
(iii) Suppose that Y is algebraic and let f : Z → Y be an fppf atlas. Then we can

replace DGSch/Y by the Čech nerve of f . The fact that the limit category is
the same follows from the fppf descent for QCoh on DG schemes.

(iv) Assume again that Y is algebraic. We can take A to be the 1-full subcategory

DGSch/Y,smooth ⊂ DGSch/Y,

or, respectively,

(DGSchqs-qc)/Y,smooth⊂(DGSchqs-qc)/Y, (DGSchaff)/Y,smooth⊂(DGSchaff)/Y,

where we restrict objects to those (S, g), for which g is smooth, and 1-morphisms
to those f : S1 → S2, for which f is smooth. The fact that limit category is
the same is shown in [Gai11, Section 11.2 and particularly Corollary 11.2.3].
The word “smooth” can also be replaced by the word “flat”. The same proof
applies to establish the following generalization:

Lemma 1.2.6. Let Y → Y′ be a schematic (resp., schematic + quasi-separated and
quasi-compact; affine) map between algebraic stacks. Then the functor (1.3)

DGSch/Y′,smooth → DGSch/Y,smooth

defines an equivalence

QCoh(Y) = lim←−
(S,g)∈(DGSch/Y)op

QCoh(S)→ lim←−
(S′,g′)∈(DGSch/Y′ )op

QCoh(S),

and similarly for the (DGSchqs-qc)/Y and (DGSchaff)/Y versions.
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1.2.7 t-structure. For any prestack Y, the category QCoh(Y) has a natural t-
structure: an object F ∈ QCoh(Y) is connective (i.e., cohomologically ≤ 0) if its
pullback to any scheme is.

Two important features of this t-structure are summarized in the following
lemma:

Lemma 1.2.8. Suppose that Y is an algebraic stack.

(a) The t-structure on QCoh(Y) is compatible with filtered colimits.7

(b) The t-structure on QCoh(Y) is left-complete, i.e., for F ∈ QCoh(Y), the natural
map

F → lim←−
n∈N

τ≥−n(F)

is an isomorphism, where τ denotes the truncation functor.
(c) If f : Z → Y is a faithfully flat atlas, the functor f∗ : QCoh(Y) → QCoh(Z) is

t-exact and conservative.

We refer the reader to [Lur11, Section 1.2.1], for a review of the notion of left-
completeness of a t-structure.

For the proof of the lemma, see [GL:QCoh, Cor. 5.2.4]. One first reduces to the
case where Y is an affine DG scheme. In this case QCoh(Y) is left-complete because
it admits a conservative t-exact functor to Vect that commutes with limits, namely,
Γ(Y,−).

Remark 1.2.9. Let Y be an algebraic stack. It is easy to see that the category
QCoh(Y)♥ identifies with QCoh(clY)♥.

Remark 1.2.10. Suppose again that Y is classical and algebraic. Suppose in addi-
tion that the diagonal morphism Y→ Y× Y is affine. In this case, it is easy to show
that QCoh(Y)+ is canonically equivalent to D(QCoh(Y)♥)+, see8 [GL:QCoh, Prop.
5.4.3]. It follows from Lemma 1.2.8 that the entire QCoh(Y) can be recovered as the
left completion of D(QCoh(Y)♥). At least, in characteristic p > 0 it can happen that
D(QCoh(Y)♥) itself is not left-complete (e.g., Neeman [Nee11] showed this if Y is the
classifying stack of the additive group over a field of characteristic p > 0). However,
it is easy to formulate sufficient conditions for D(QCoh(Y)♥) to be left-complete: for
example, this happens when QCoh(Y)♥ is generated by (every object of QCoh(Y)♥

is a filtered colimit of quotients of) objects having finite cohomological dimension.
E.g., this tautologically happens when Y is an affine DG scheme, or more generally,
a quasi-projective scheme. From here one deduces that this is also true for any Y of
the form Z/G, where Z is a quasi-projective scheme, and G is an affine algebraic
group acting linearly on Z, provided we are in characteristic 0.

7 By definition, this means that the subcategory QCoh(Y)>0 is preserved under filtered colimits.
Note that the subcategory QCoh(Y)≤0 automatically has this property.

8 Here by D(A) for an abelian category A we mean the canonical DG category, whose homotopy
category is the derived category of A, see [Lur11, Section 1.3.4].
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Remark 1.2.11. If Y is an algebraic stack, which is not classical, then for two objects

F1,F2 ∈ QCoh(Y)♥ 	 QCoh(clY)♥

the Exts between these objects computed in QCoh(Y) and QCoh(clY) will, of course,
be different.9

1.3 Direct images for quasi-coherent sheaves

1.3.1 Let π : Y1 → Y2 be a morphism between prestacks. We have a tautologically
defined (continuous) functor

π∗ : QCoh(Y2)→ QCoh(Y1).

By the adjoint functor theorem ([Lur09, Cor. 5.5.2.9]), π∗ admits a right adjoint,
denoted π∗. However, in general, π∗ is not continuous, i.e., it does not commute with
colimits.

For Y ∈ PreStk and pY : Y→ pt we shall also use the notation

Γ(Y,−) := (pY)∗.

Remark 1.3.2. In fact, π∗ defined above, is a pretty “bad” functor. E.g., it does
not satisfy base change (see Section 1.3.3 below for what tis means). Neither does is
satisfy the projection formula (see Section 1.3.7 for what this means), even for open
embeddings. One of the purposes of this paper is to give conditions on π that ensure
that π∗ is continuous and has other nice properties.

1.3.3 Base change. Let φ2 : Y′2 → Y2 be another map of prestacks. Consider the
Cartesian diagram

Y′1
φ1−−−−→ Y1

π′
⏐
⏐
�

⏐
⏐
�π

Y′2
φ2−−−−→ Y2.

By adjunction, for F1 ∈ QCoh(Y1) we obtain a morphism

φ∗2 ◦ π∗(F1)→ π′∗ ◦ φ∗1(F1). (1.4)

Definition 1.3.4.

(a) The triple (φ2,F1, π) satisfies base change if the map (1.4) is an isomorphism.
(b) The pair (F1, π) satisfies base change if (1.4) is an isomorphism for any φ2.
(c) The morphism π satisfies base change if (1.4) is an isomorphism for any φ2 and

F1.

9 Sam Raskin points out that the latter observation may serve as an entry point to the world of
derived algebraic geometry for those not a priori familiar with it: we start with the abelian category
QCoh(clY)♥, and the data of Y encodes a way to promote it to a DG category, namely, QCoh(Y).
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1.3.5 Let us observe the following:

Proposition 1.3.6. Given π : Y1 → Y2, for F1 ∈ QCoh(Y1) the following conditions
are equivalent:

(i) (F1, π) satisfies base change.
(ii) (φ2,F1, π) satisfies base change whenever Y2 = S2 ∈ DGSchaff .

(iii) For any S′2
f2→ S2

g2→ Y2 with S2, S
′
2 ∈ DGSchaff , the triple (f2,FS,1, πS) satisfies

base change, where FS,1 := F1|S2×
Y2

Y1 and πS : S2 ×
Y2

Y1 → S2.

Proof. Clearly (i) ⇒ (ii) ⇒ (iii). Suppose that (F1, π) satisfies (iii). Consider the
assignment

(S2 ∈ (DGSchaff)/Y2
) � (πS)∗(FS,1).

The assumption implies that this assignment defines an object π∗,?(F1) ∈ QCoh(Y2).
Moreover, it is easy to see that this object is equipped with a functorial isomorphism

MapsQCoh(Y2)(F2, π∗,?(F1)) 	MapsQCoh(Y1)(π
∗(F2),F1), F2 ∈ QCoh(Y2).

Hence, π∗,?(F1) 	 π∗(F1), and thus

g∗2(π∗(F1)) 	 (πS)∗(FS,1). (1.5)

By the same logic, for any φ2 : Y′2 → Y2, and g′2 : S′2 → Y′2, we obtain that

(g′2)
∗(π′∗ ◦ φ∗1(F1)) 	 (πS′)∗(FS′,1),

where FS′,1 := F1|S′
2×

Y′
2

Y′
1

and πS′ : S′2 ×
Y′

2

Y′1 → S′2. Hence, applying (1.5) to the map

g′2 ◦ φ2 : S′2 → Y2,

we obtain

(g′2)
∗(π′∗ ◦ φ∗1(F1)) 	 (πS′)∗(FS′,1) 	 (g′2 ◦ φ2)∗(π∗(F1)) = (g′2)

∗(φ∗2 ◦ π∗(F1)),

as required. ��

1.3.7 Projection formula. Let π : Y1 → Y2 be as above. For Fi ∈ QCoh(Yi) by
adjunction we have a canonically defined map

F2 ⊗ π∗(F1)→ π∗(π∗(F2)⊗ F1). (1.6)

Definition 1.3.8.

(a) The triple (F1,F2, π) satisfies the projection formula if the map (1.6) is an iso-
morphism.

(b) The pair (F2, π) satisfies the projection formula if (1.4) is an isomorphism for
any F1.

(c) The pair (F1, π) satisfies the projection formula if (1.4) is an isomorphism for
any F2.
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(d) The morphism π satisfies the projection formula if (1.4) is an isomorphism for
any F1 and F2.

We also give the following definition:

Definition 1.3.9. The morphism π strongly satisfies the projection formula if it
satisfies base change and for every S2 ∈ (DGSchaff)/Y2

, the morphism

πS : S2 ×
Y2

Y1 → S2

satisfies the projection formula.

It is easy to see as in Proposition 1.3.6 that if π strongly satisfies the projection
formula, then it satisfies the projection formula.

1.3.10 Suppose for a moment that π is schematic, quasi-separated and quasi-com-
pact. In this case, from Proposition 1.3.6, we obtain that π strongly satisfies projec-
tion formula.

In particular, for π schematic, quasi-separated and quasi-compact, we obtain the
following explicit description of π∗(F1) for F1 ∈ QCoh(Y1). Namely, for (S2, g2) ∈
(DGSchaff)/Y2

, we have

g∗2(F2) 	 (πS)∗(g∗1(F1))

for the morphisms as in the following Cartesian diagram

S1
g1−−−−→ Y1

π′
⏐
⏐
�

⏐
⏐
�π

S2
g2−−−−→ Y2.

Remark 1.3.11. From the above observation for schematic, quasi-separated and
quasi-compact morphisms combined with the implication (iii) ⇒ (i) in Proposi-
tion 1.3.6, we obtain that in Definition 1.3.9, the condition that π should satisfy base
change is automatic. Indeed, in the notation of the proof of Proposition 1.3.6, express
(φ2)∗(φ∗2(−)) as (φ2)∗(OS′

2
)⊗−, and similarly for the morphism S′2 ×

Y2

Y1 → S2 ×
Y2

Y1.

1.3.12 Assume now that Y2 is an algebraic stack. Note that any map from an
affine (or, more generally, quasi-separated and quasi-compact) DG scheme to Y2 is
schematic, quasi-separated and quasi-compact. This observation reduces the calcu-
lation of π∗ to one in Section 1.3.10. Namely, we have:

Lemma 1.3.13. Let A be a category mapping to DGSch/Y1
(respectively,

(DGSchqs-qc)/Y1
; (DGSchaff)/Y1

) as in Section 1.2.5. Then for every F1 ∈ QCoh(Y1)
we have

π∗(F1) 	 lim←−
a∈Aop

(π ◦ ga)∗(g∗a(F1)).
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Proof. For any F2 ∈ QCoh(Y2) one has

MapsQCoh(Y1)(π
∗(E2),F1) 	 lim←−

a∈Aop

MapsQCoh(Y1)(g
∗
a ◦ π∗(F2), g∗a(F1))

	 lim←−
a∈Aop

MapsQCoh(Y2) (F2, (π ◦ ga)∗(g∗a(F1))) ,

as required. ��
Remark 1.3.14. Inverse limits in QCoh(Y) exist for formal (i.e., set-theoretical)
reasons, see Section 0.6.3. We emphasize that they are not computed naively, i.e.,
the value of an inverse limit on S mapping to Y is not in general isomorphic to the
inverse limit of values.

A particularly useful special case of Lemma 1.3.13 is the following:

Corollary 1.3.15. Suppose that in the situation of Lemma 1.3.13, Y1 is an alge-
braic stack, and let f : Z → Y1 be an fppf atlas. Let Z•/Y1 be its Čech nerve.
Consider the morphisms f i : Zi/Y1 → Y1 and set f• := {f i}. Then

π∗(F) 	 Tot ((π ◦ f•)∗((f•)∗(F))) . (1.7)

1.3.16 The bounded below part. Let QCoh(Y)+ be the bounded below (a.k.a.
eventually coconnective) part of QCoh(Y), i.e.,

QCoh(Y)+ := ∪
n∈N

QCoh(Y)≥−n.

We claim:

Corollary 1.3.17. Let π : Y1 → Y2 be a quasi-separated and quasi-compact mor-
phism between algebraic stacks.

(a) The functor

π∗ : QCoh(Y1)≥−n → QCoh(Y2)≥−n

commutes with colimits.
(b) For any F1 ∈ QCoh(Y1)+, the pair (F1, π) satisfies base change with respect to

morphisms Y′2 → Y2 that are locally of bounded Tor-dimension.
(c) For any F1 ∈ QCoh(Y1)+, and for F2 ∈ QCoh(Y2)+ locally of bounded Tor-

dimension, the triple (F1,F2, π) satisfies the projection formula.

Proof. As in Proposition 1.3.6, it is easy to see that we can assume that Y2 = S is
an affine DG scheme.10

10 For point (a) we are using the fact that in a limit of DG categories lim
←−

i

Ci, where the transition

functors are continuous, colimits of objects are calculated component-wise.
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To prove point (a), it suffices to show that for each i ∈ Z the functor

H i(π∗) : QCoh(Y1)≥−n → QCoh(S)♥

commutes with filtered colimits. By assumption, Y1 is quasi-compact; hence it admits
an atlas f : Z → Y1 with Z being an affine DG scheme. (In fact, all we need for
the argument below is that f be quasi-separated and quasi-compact.) Since Y1 is
quasi-separated, we obtain that all the terms of the Čech nerve Z•/Y1 are also
quasi-separated and quasi-compact.

Let us apply Corollary 1.3.15. The functors (π ◦ f i)∗ ◦ (f i)∗ from the RHS of
(1.7) commute with colimits because the morphisms π ◦ f i : Zi → Y2 are schematic,
quasi-separated and quasi-compact. So for each m ∈ N the functor

F �→ Tot≤m ((π ◦ f•)∗((f•)∗(F)))

commutes with colimits. But if F ∈ QCoh(Y1)≥−n then for each m > i + n the
morphism Tot→ Tot≤m induces an isomorphism

H i(Tot≤m ((π ◦ f•)∗((f•)∗(F)))) ∼−→ H i(Tot ((π ◦ f•)∗((f•)∗(F)))).

So H i(π∗) : QCoh(Y1)≥−n → QCoh(Y)♥ commutes with filtered colimits.
Points (b) and (c) of the proposition follow similarly. ��

1.4 Statements of the results on QCoh(Y)

1.4.1 The main result. The following theorem will be proved in Section 2:

Theorem 1.4.2. Let Y be a QCA algebraic stack. Then

(i) The functor F �→ Γ(Y,F) : QCoh(Y) → Vect is continuous (i.e., it commutes
with colimits, equivalently, with filtered colimits, and equivalently, with infinite
direct sums);

(ii) There exists an integer n (that depends only on Y) such that H i (Γ(Y,F)) = 0
for all i > n and all F ∈ QCoh(Y)≤0.

Note that statement (i) can be rephrased as follows: if Y is a QCA algebraic
stack, then the object OY ∈ QCoh(Y) is compact.

Corollary 1.4.3. Let Y be a QCA algebraic stack. Then an object of QCoh(Y) is
compact if and only if it is perfect.

We recall that an object F ∈ QCoh(Y) is called perfect if its pullback to any
affine DG scheme is perfect. By [GL:QCoh, Lemma 4.2.2], this is equivalent to F

being dualizable in QCoh(Y), regarded as a monoidal category.

Proof. If F is perfect the functor MapsQCoh(F,−) can be rewritten as Γ(Y,F∗⊗−),
so it is continuous by Theorem 1.4.2(i).
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On the other hand, for any algebraic stack Y, any compact object F ∈ QCoh(Y) is
perfect. Indeed, let S be an affine DG scheme equipped with a morphism f : S → Y,
then the object f∗(F) ∈ QCoh(S) is compact (because its right adjoint f∗ is contin-
uous), so f∗(F) is perfect (see, e.g., [BFN10, Lemma 3.4]). ��

1.4.4 A relative version

Corollary 1.4.5. Let π : Y1 → Y2 be a QCA morphism between prestacks.

(i) The functor π∗ : QCoh(Y1)→ QCoh(Y2) is continuous and strongly satisfies the
projection formula.

(ii) If Y2 is a quasi-compact algebraic stack,11 there exists n such that π∗ maps
QCoh(Y1)≤0 to QCoh(Y2)≤n.

Proof. To prove point (i), by definition, it suffices to consider the case when Y2 is
an affine DG scheme.

In this case the continuity of π∗ follows immediately from Theorem 1.4.2(i).
Indeed, the functor

Γ(Y2,−) : QCoh(Y2)→ Vect

is continuous and conservative, and Γ(Y2,−) ◦ π∗ 	 Γ(Y1,−), so the continuity of
Γ(Y1,−) implies that for π∗.

The fact that π satisfies the projection formula follows formally from the con-
tinuity of π∗ (express F2 as a colimit of copies of the structure sheaf). By Remark
1.3.11, the projection formula implies base change.

To prove point (ii), it is again sufficient to do so after base changing by means of
an fppf map S2 → Y2, where S2 is an affine DG scheme. In this case, the assertion
follows from Theorem 1.4.2(ii). ��

1.4.6 Generation by the heart. Let Y be an algebraic stack.

Definition 1.4.7. We say that Y is n-coconnective if the object OY ∈ QCoh(Y)
belongs to QCoh(Y)≥−n.

Definition 1.4.8. We say that Y is eventually coconnective if it is n-coconnective
for some n; equivalently, if OY is bounded below, i.e., is eventually coconnective as
an object of QCoh(Y).

Remark 1.4.9. The notion of n-connectivity makes sense for all prestacks, and not
just algebraic stacks, see [GL:Stacks, Section 2.4.7]. The fact that the two notions
coincide for algebraic stacks is established in [GL:Stacks, Proposition 4.6.4].

11 Or, more generally, if there exists a map f : Z → Y2, where Z is an affine DG scheme, and f is
a surjection in the faithfully flat topology (see, e.g., [GL:Stacks, Section 2.3.1], where the notion of
surjectivity is recalled).
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The stratification technique used in the proof of Theorem 1.4.2 also allows to
prove the following result (see Section 2.6):

Theorem 1.4.10. Suppose that an algebraic stack Y is QCA and eventually co-
connective. Then QCoh(Y) is generated by QCoh(Y)♥.

Corollary 1.4.11. Let Y be a QCA algebraic stack, which is eventually cocon-
nective, and such that the underlying classical stack clY is Noetherian. Then the
category QCoh(Y) is generated by Coh(Y)♥.

This follows from Theorem 1.4.10 and the following fact [LM00, Corollary 15.5]:
every object of QCoh(Y)♥ is a union of its coherent sub-objects.

1.4.12 Other results. We will also prove Theorem 4.3.1, which says, among other
things, that in the situation of Corollary 1.4.11 one has QCoh(Y×Y′) = QCoh(Y)⊗
QCoh(Y′) for any prestack Y′.

2 Proof of Theorems 1.4.2 and 1.4.10

The proof of Theorem 1.4.2 occupies Sections 2.1–2.5. Theorem 1.4.10 is proved in
Section 2.6.

2.1 Reducing the statement to a key lemma

2.1.1 Reducing statement (i) to statement (ii). Let α �→ Fα be a collection of
objects of QCoh(Y). We need to show that for any i ∈ Z the natural map

⊕
α
H i(Γ(Y,Fα))→ H i(Γ(Y,⊕

α
Fα))

is an isomorphism. Suppose we have proved Theorem 1.4.2(ii), i.e., there exists n
such that the functor H i (Γ(Y,−)) vanishes on QCoh(Y)<−i−n. Then

H i(Γ(Y,Fα)) = H i(Γ(Y, τ≥−i−n−1(Fα))),
H i(Γ(Y,⊕

α
Fα)) = H i(Γ(Y, τ≥−i−n−1(⊕

α
Fα))).

Since the t-structure on QCoh(Y) is compatible with filtered colimits (see
Lemma 1.2.8(a)), the morphism

⊕
α
τ≥−i−n−1(Fα)→ τ≥−i−n−1

(

⊕
α

Fα

)

.

is an isomorphism. So we have to prove that the morphism

⊕
α
H i(Γ(Y, τ≥−i−n−1(Fα)))→ H i(Γ(Y,⊕

α
τ≥−i−n−1(Fα)))

is an isomorphism. We have τ≥−i−n−1(Fα) ∈ QCoh(Y)≥r, where r = −i − n − 1.
Now Theorem 1.4.2(i) follows from Corollary 1.3.17. ��
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2.1.2 Reducing statement (ii) to a key lemma

Lemma 2.1.3. Let n ∈ Z. Suppose that for any F ∈ QCoh(Y)♥ we have

H i (Γ(Y,F)) = 0 for i > n. (2.1)

Then (2.1) holds for any F ∈ QCoh(Y)≤0.

Proof. The statement is clear if F is bounded below. To treat the general case, recall
that the t-structure on QCoh(Y) is left-complete, see Lemma 1.2.8(b). Since the
functor Γ(Y,−) 	 MapsQCoh(Y)(OY,−) commutes with inverse limits, this implies
that

Γ(Y,F) = lim←−
m

Γ(Y, τ≥−m(F)).

If F ∈ QCoh(Y)<0 then the complexes Γ(Y, τ≥−m(F)) are concentrated in degrees
< n. Since the functor lim←−

m

in Vect has cohomological amplitude [0, 1] we see that

Γ(Y,F) is concentrated in degrees ≤ n. So (2.1) holds for any F ∈ QCoh(Y)<0. There-
fore it holds for any F ∈ QCoh(Y)≤0: use the exact triangle τ<0(F)→ F → τ≥0(F).

��
By Lemma 2.1.3, to prove Theorem 1.4.2(ii) it suffices to prove the following key

lemma.

Lemma 2.1.4. Let Y be a QCA stack. Then there exists an integer nY such that for
any F ∈ QCoh(Y)♥ we have

H i (Γ(Y,F)) = 0 for i > nY.

The lemma will be proved in Sections 2.2–2.5.

2.2 Easy reduction steps

2.2.1 Reduction to the classical case. Let clY
cli
↪→ Y be the embedding of the clas-

sical stack underlying Y. Any F as in the Lemma 2.1.4 belongs to the essential image
of the functor cli∗. Since cli∗ is t-exact, we can replace the original Y by clY, with the
same estimate for n.

So for the rest of this section we will assume that Y is classical.

2.2.2 Reduction to the case when Y is reduced. Let Yred
ired

↪→ Y be the correspond-
ing reduced substack.

Any F ∈ QCoh(Y)♥ admits an increasing filtration with subquotients belonging
to the essential image of the functor (ired)∗. Since the functor

H i (Γ(Y,−)) : QCoh(Y)♥ → Vect♥

commutes with filtered colimits (by Corollary 1.3.17(a)), by the same logic as above,
we can replace Y by Yred with the same estimate on nY.

So we can assume that Y is reduced.
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2.3 Devissage

2.3.1 We begin with the following observation.

Let X
ı
↪→ Y be a closed substack and

◦
Y

j
↪→ Y the complementary open substack,

such that the map j is quasi-compact. Let d ∈ Z be such that the functor j∗ has
cohomological amplitude ≤ d (it exists because Y itself is quasi-compact).

Lemma 2.3.2. If Lemma 2.1.4 holds for X and
◦
Y then it holds for Y with

nY := max(n◦
Y
, nX + d+ 1).

Proof. For F ∈ QCoh(Y)♥ consider the exact triangle

F′ → F → j∗ ◦ j∗(F),

where F′ is set-theoretically supported on X.
It is enough to show that

Hr (Γ(Y, j∗ ◦ j∗(F))) = 0 for r > nY , (2.2)
Hr

(

Γ(Y,F′)
)

= 0 for r > nY . (2.3)

The vanishing in (2.2) is clear because Γ(Y, j∗ ◦ j∗(F)) 	 Γ(
◦
Y, j∗(F)) and nY ≥ n◦

Y
.

Let us prove (2.3). Note that F′ has finitely many cohomology sheaves and all of
them are in degrees ≤ d+ 1. We have nY ≥ nX + d+ 1. So to prove (2.3) it suffices
to show that if a sheaf F′′ ∈ QCoh(Y)♥ is set-theoretically supported on X then

Hr
(

Γ(Y,F′′)
)

= 0 for r > nX. (2.4)

Represent F′′ as a filtered colimit of sheaves F′′α so that each F′′α admits a finite
filtration with subquotients belonging to the essential image of ı∗ : QCoh(X)♥ →
QCoh(Y)♥. By assumption, for each α and each r > nX one has Hr (Γ(Y,F′′α)) = 0.
So (2.4) follows from Corollary 1.3.17. ��

2.3.3 By the above, we can assume that Y is reduced. The next proposition is valid
over any ground field.

Proposition 2.3.4. There exists a finite decomposition of Y into a union of locally
closed reduced algebraic substacks Yi, each of which satisfies:

• The locally closed embedding Yi ↪→ Y is quasi-compact;
• There exists a finite surjective flat morphism π : Zi → Yi with Zi being a quo-

tient of a quasi-separated and quasi-compact scheme Zi by an action of an affine
algebraic group (of finite type) over k. Moreover:

(i) One can arrange so that Zi are quasi-projective over an affine scheme, and
the group action is linear with respect to this projective embedding.

(ii) If char k = 0, π can be chosen to be étale.

This proposition will be proved in Section 2.5.
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Remark 2.3.5. Point (i) of the proposition will be used in the proof of Theo-
rem 1.4.10 but not in the proof of Lemma 2.1.4.

We are now going to deduce Lemma 2.1.4 for Y as above from Proposition 2.3.4.

2.3.6 By induction and Lemma 2.3.2, it is enough to prove Lemma 2.1.4 for the
algebraic stacks Yi.

2.3.7 Let Zi → Yi be a finite surjective étale morphism as in Proposition 2.3.4. We
claim that if Lemma 2.1.4 holds for Zi then it holds for Yi.

To see this, note that any F ∈ QCoh(Yi) is a direct summand of π∗ ◦ π∗(F) =
F ⊗ π∗(OZi

) (use the trace morphism π∗(OZi
)→ OYi

).
(Note that the last manipulation used the char k = 0 assumption. But this is not

the most crucial place where we will use it.)
Thus, it is sufficient to prove Lemma 2.1.4 for a stack Z of the form Z/G, where

Z is a quasi-separated and quasi-compact scheme, and G is an affine algebraic group
of finite type over k.

2.4 Quotients of schemes by algebraic groups. Let G be a reductive alge-
braic group over k. Consider the stack BG := pt /G.

Lemma 2.4.1. The functor

Γ(BG,−) : QCoh(BG)→ Vect

is t-exact. More precisely,

H i(Γ(BG,M)) = (H i(M))G, M ∈ QCoh(BG). (2.5)

It is here that we use the characteristic 0 assumption.

Proof. By Remark 1.2.10 (which relies on [GL:QCoh, Prop. 5.4.3]), QCoh(BG) is
the left completion of D(A), where A := QCoh(BG)♥ is the abelian category of
G-modules. But A is semisimple (because char k = 0), so D(A) is left-complete and
QCoh(BG) = D(A). The lemma follows. ��
Remark 2.4.2. In the proof of Lemma 2.4.1 we used [GL:QCoh, Prop. 5.4.3].
Instead, one can argue as follows. By Lemma 2.1.3 and Corollary 1.3.17, it suffices to
prove (2.5) if M ∈ A := QCoh(BG)♥. In this case applying Corollary 1.3.15 to the
atlas pt→ BG we see that H i(Γ(BG,M)) identifies with the usual H i(G,M), and
the latter is isomorphic to ExtiA(k,M). It remains to use the semisimplicity of A.

Lemma 2.4.3. Let Z be a quasi-separated and quasi-compact scheme equipped with
an action of an affine algebraic group G. Then Lemma 2.1.4 holds for Z = Z/G.

Proof. The canonical morphism f : Z → BG is schematic, quasi-separated and
quasi-compact. Embed G into a reductive group G′ and let f ′ be the composition
Z

f−→BG→ BG′. Then f ′ is still schematic, quasi-separated and quasi-compact, so
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the cohomological amplitude of the functor f ′∗ : QCoh(Z)→ Vect is bounded above.
On the other hand, the functor

Γ : QCoh(BG′)→ Vect

is t-exact by Lemma 2.4.1. ��
2.5 Proof of Proposition 2.3.4. This will conclude the proof of Lemma 2.1.4
in view of Section 2.3.

2.5.1 The proof of the proposition is based on the following lemma.

Lemma 2.5.2. Let Y �= ∅ be a classical algebraic stack, which is quasi-compact and
whose inertia stack is of finite presentation over Y. Then there exists a finite decom-
position of Y into a union of locally closed reduced algebraic substacks Yi, each of
which satisfies:

• The locally closed embedding Yi ↪→ Y is quasi-compact;
• Each Yi admits a map ϕi : Yi → X ′i, where X ′i is an affine scheme with the

following property:
There exists a finite fppf morphism fi : Xi → X ′i, and a flat group-scheme of finite
presentation Gi over Xi such that Xi ×

X′
i

Yi is isomorphic to the classifying stack

BGi.
Moreover, we can always arrange so that Xi and X ′i are integral. In the charac-
teristic 0 case, one can choose fi to be étale.

Proof. We are going to apply [LM00, Theorem 11.5]. We note that in loc.cit., it is
stated under the assumption that Y is Noetherian. However, the only place where
the Noetherian hypothesis is used in the proof is to ensure that the inertia stack be
of finite presentation over Y, which is what we are imposing by assumption.

The above theorem yields a decomposition of Y as in the lemma, with the only
difference that the morphisms

fi : Xi → X ′i

are just fppf. We have to show that each X ′i admits a finite decomposition into a
union of locally closed integral subschemes X ′i,j , each of which satisfies:

• The locally closed embeddings X ′i,j ↪→ X ′i are quasi-compact;
• For every j, there exists a finite fppf map gi,j : X̃ ′i,j → X ′i,j , such that fi admits

a section after a base change by gi,j .
Moreover, the schemes X̃ ′i,j can be chosen integral. In the characteristic 0 case,
gi,j can be chosen étale.

We claim, however, that this is the case for any fppf map f : X → X ′ between
reduced affine schemes. Indeed, recall that whenever f : X → X ′ is an fppf morphism
of schemes with X ′ affine, we can always realize it as a base change
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X −−−−→ X0

f

⏐
⏐
�

⏐
⏐
�f0

X ′ −−−−→ X ′0,

where f0 : X0 → X ′0 is an fppf morphisms of schemes of finite type over k. Hence,
our assertion reduces to the case when X ′ is of finite type.

In the latter case, by Noetherian induction it is enough to show that it con-

tains a non-empty open subset
◦
X ′ with a finite flat (in characteristic 0, étale) cover

g : X̃ →
◦
X ′, such that f admits a section after a base change by g.

Let K ′ denote the field of fractions of X ′. Clearly, X has a point over some finite
extension K̃ ′ of K ′.

Taking X̃ ′ to be any integral scheme finite over X ′ with field of fractions K̃ ′,
we obtain that the map X̃ ′ → X is well-defined over some non-empty open subset
◦
X ′ ⊂ X ′, as required. Moreover in characteristic 0, the map X̃ ′ → X ′ is generically
étale over X ′, since K̃ ′/K ′ is separable. ��
Proof of Proposition 2.3.4. Let Yi, X ′i, Xi, and Gi be as in Lemma 2.5.2. Note that
for each field-valued point of Xi, the fiber of Gi at it identifies with the group of
automorphisms of the corresponding point of Yi. Therefore, by the QCA condition,
all these groups are affine.

As the index i will be fixed, for the rest of the proof, we shall suppress it from
the notation.

It is sufficient to show that X ′ admits a finite decomposition into a union of
locally closed reduced subschemes X ′l , each of which satisfies:
• The locally closed embedding X ′l ↪→ X ′ is quasi-compact;
• The stack

Zl := BG ×
X′
X ′l

(which is tautologically the same as (X ×
X′

Y) ×
Y

(Y ×
X′
X ′l), viewed as equipped

with a map to Y ×
X′
X ′l), is isomorphic to a stack of the form Zl/Gl, where Zl is a

quasi-separated and quasi-compact scheme, and Gl is an affine algebraic group of
finite type over k. Moreover, Zl can be chosen to be quasi-projective over an affine
scheme, and the action of Gl on it linear with respect this projective embedding.
Since G and X are of finite presentation over X ′, they come by base change from

a map X ′ → X ′0, where X ′0 is of finite type over k. Hence, is is enough to prove
the assertion in the case when X ′ (and hence X and G) are of finite type.

In the latter case, by Noetherian induction, it is sufficient to find a non-empty

open subset
◦
X ′ ⊂ X ′, such that BG ×

X′

◦
X ′ is of the form Z/G specified above. More-

over, since the morphism X → X ′ is finite, it is sufficient to find the corresponding

open
◦
X in X.
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Recall that X was assumed integral. Let K be the field of fractions of X. Let

GK := G×
X

pt

be the corresponding algebraic group over K. Since GK is affine, we can embed it
into GL(n)K := GL(n)× pt.

By Chevalley’s theorem,

ZK := GL(n)K/GK

is a quasi-projective scheme over K equipped with a linear action of GL(n).

Hence, there exists a non-empty open subscheme
◦
X ⊂ X, such that G| ◦

X
admits

a map into GL(n)×
◦
X, and the stack-theoretic quotient

(GL(n)×
◦
X)/(G| ◦

X
)

is isomorphic to a quasi-projective scheme Z over
◦
X, and moreover the natural action

of GL(n) on it is linear.
Thus, BG| ◦

X
	 Z/GL(n), as required. ��

2.6 Proof of Theorem 1.4.10. Below we give a direct proof. In the case when
Y is locally almost of finite type, one can deduce Theorem 1.4.10 from Proposi-
tion 3.5.1, as explained in Remark 3.5.2.

2.6.1 Reduction to the reduced classical case. Let clY
cli
↪→ Y be the embedding of

the classical stack underlying Y. We claim that QCoh(Y) is generated by the essential
image of the functor cli∗. To see this, use the filtration of F ∈ QCoh(Y) by objects
F ⊗ τ≤−n(OY), n ∈ Z+, which is finite by the eventual coconnectivity assumption.

So without loss of generality we can assume that Y is classical. A similar argument
allows to assume that Y is reduced.

2.6.2 Using Proposition 2.3.4, the statement of the theorem results from the com-
bination of the following three lemmas:

Lemma 2.6.3. Let Z be a quasi-projective scheme equipped with a linear action
of an affine algebraic group G. Then QCoh(Z/G) is generated by the heart of its
t-structure.

Lemma 2.6.4. If Z → Y is a finite étale map, and QCoh(Z) is generated by the
heart of its t-structure, then the same is true for QCoh(Y).

Lemma 2.6.5. In the situation of Lemma 2.3.2, if both QCoh(
◦
Y) and QCoh(X) are

generated by the hearts of their t-structures, then the same is true for QCoh(Y).

2.6.6 Proof of Lemma 2.6.3. It is easy to see that QCoh(Z/G) is generated by
objects of the form OZ(−i), where OZ(1) denotes the corresponding ample line bun-
dle on Z. ��
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2.6.7 Proof of Lemma 2.6.4. This follows from the fact that every object F ∈
O(Y) is a direct summand of π∗ ◦ π∗(F), see Section 2.3.7. ��

2.6.8 Proof of Lemma 2.6.5. Let QCoh(Y)♠ ⊂ QCoh(Y) be the subcategory gen-
erated by QCoh(Y)♥. The subcategory QCoh(Y)♠ contains the essential images of
the functors

j∗ : QCoh(
◦
Y)→ QCoh(Y), ı∗ : QCoh(X)→ QCoh(Y)

because Theorem 1.4.10 holds for
◦
Y and X, and the above functors have bounded

cohomological amplitude. We have to show that each F ∈ QCoh(Y) belongs to
QCoh(Y)♠.

Consider the exact triangle

(OY)X→ OY→ j∗ ◦ j∗(OY), (2.6)

where

(OY)X := Cone (OY→ j∗ ◦ j∗(OY)) [−1].

The object (OY)X is bounded, and each of its cohomologies admits a filtration
with subquotients that lies in the essential image of ı∗. Hence, for any F ∈ QCoh(Y),
the object F ⊗H i((OY)X) also admits a filtration with subquotients (i.e., the cones
of the maps of one term of the filtration into the next) that lie in the essential image
of ı∗. In particular, F ⊗ (OY)X ∈ QCoh(Y)♠.

Tensoring (2.6) by F, we obtain an exact triangle

F ⊗ (OY)X→ F → j∗ ◦ j∗(F),

which implies our assertion. ��
Remark 2.6.9. If Y is locally Noetherian and F is perfect, then the object F⊗(OY)X

is isomorphic to

lim−→
n

(ın)∗ ◦ ı!n(F),

where ın denotes the embedding of the n-th infinitesimal neighborhood of X. This
is not necessarily true without the perfectness condition. In general, the !-pullback
functor is “bad” (no continuity, no commutation with base change), just like the
∗-pushforward with respect to a non-quasi-compact morphism (see Section 1.3.1).

However, this state of affairs with the !-pullback functor can be remedied by
replacing the category QCoh(Y) by IndCoh(Y), considered in the next section.

3 Implications for Ind-Coherent Sheaves

This and the next section are concerned with the category IndCoh on algebraic
stacks and, more generally, prestacks. As was mentioned in the introduction, IndCoh
is another natural paradigm for “sheaf theory” on stacks.
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However, the reader, who is only interested in applications to D-modules, may
skip these two sections. Although it is more natural to connect D-modules to the
category IndCoh, it will be indicated in Section 6.3.17 that if our algebraic stack is
eventually coconnective, one can bypass IndCoh, and relate D-mod to QCoh directly.
The only awkwardness that will occur is the relation between Verdier duality on
coherent D-modules and Serre duality on coherent sheaves, the latter being more
naturally interpreted within IndCoh rather than QCoh.

The material in this section is organized as follows. In Section 3.1 we recall the
condition of being “locally almost of finite type”. In Section 3.2 we recall the basic
facts about the category IndCoh. In Sections 3.3–3.5 we prove the compact gener-
ation and describe the category of compact objects of IndCoh on a QCA algebraic
stack. In Section 3.6 we introduce the functor of direct image on IndCoh for maps
between QCA algebraic stacks.

3.1 The “locally almost of finite type” condition. Unlike QCoh, the cat-
egory IndCoh (and also D-mod, considered later in the paper) only makes sense on
(pre)stacks that satisfy a certain finite-typeness hypothesis, called “locally almost
of finite type”.

For general prestacks this condition may seem as too technical (we review it
below). It does appear simpler when applied to algebraic stacks. The reader will not
lose much by considering only those prestacks that are algebraic stacks; all the new
results in this paper that concern IndCoh and D-mod are about algebraic stacks.

We shall nevertheless, discuss IndCoh in the framework of arbitrary prestacks
locally almost of finite type, because this seems to be the natural level of generality.

3.1.1 An affine DG scheme Spec(A) is said to be almost of finite type over k if

• H0(A) is a finitely generated algebra over k.
• Each H−i(A) is finitely generated as a module over H0(A).

The property of being almost of finite type is local with respect to Zariski topol-
ogy. A DG scheme Z is said to be locally of almost finite type if it can be covered
by affines, each of which is almost of finite type. Equivalently, Z is locally of almost
finite type if any of its open affine subschemes is of almost finite type.

We shall denote the corresponding full subcategories of

DGSchaff ⊂ DGSchqs-qc ⊂ DGSch

by

DGSchaff
aft ⊂ DGSchaft ⊂ DGSchlaft,

respectively.

Definition 3.1.2. An algebraic stack Y is locally of almost finite type if it admits
an atlas (Z, f : Z → Y), where the DG scheme Z is locally almost of finite type (in
which case, for any atlas, the DG scheme Z will have this property).
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3.1.3 We shall now proceed to the definition of prestacks locally almost of finite
type. As we mentioned above, the reader is welcome to skip the remainder of this
subsection and replace every occurrence of the word “prestack” by “algebraic stack”.
The material here is taken from [GL:Stacks, Section 1.3].

First, we fix an integer n, anc consider the full subcategory

≤nDGSchaff ⊂ DGSchaff

of n-coconnective affine DG schemes, i.e., those S = Spec(A), for which H−i(A) = 0
for i > n.

Let ≤nPreStk denote the category of all functors

(≤nDGSchaff)op →∞ -Grpd .

Definition 3.1.4. An object ≤nPreStk is said to be locally of finite type it it sends
filtered limits in ≤nDGSchaff to colimits in ∞ -Grpd.

Denote by ≤nPreStklft the full subcategory of ≤nPreStk spanned by objects
locally of finite type.

Denote

≤nDGSchaff
ft := ≤nDGSchaff ∩DGSchaff

aft .

We note that ≤nDGSchaff
ft identifies with the subcategory of cocompact objects in

≤nDGSchaff . Therefore, the Yoneda functor

≤nDGSchaff → ≤nPreStk

sends ≤nDGSchaff
ft to ≤nPreStklft.

It is not difficult to show that the image of entire category

≤nDGSchlft := ≤nDGSch∩DGSchaft

under the natural functor ≤nDGSch→ ≤nPreStk is contained in ≤nPreStklft.

3.1.5 We can reformulate the condition on an object Y ∈ ≤nPreStk to be locally
of finite type in any of the following equivalent ways:

(i) Y is the left Kan extension along the fully faithful embedding ≤nDGSchaff
ft ↪→

≤nDGSchaff .
(ii) The functor

(≤nDGSchaff
ft )/Y→ (≤nDGSchaff)/Y

is cofinal.
(iii) For every S ∈ ≤nDGSchaff and y : S → Y, the category of its factorizations

as S → S′ → Y, where S′ ∈ ≤nDGSchaff
ft , is contractible (in particular, non-

empty).
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3.1.6 We now recall the following definition from [GL:Stacks, Section 1.2]:

Definition 3.1.7. An object Y ∈ PreStk is convergent if for every S ∈ DGSch, the
natural map

lim←−
n

Y(≤nS)→ Y(S)

is an isomorphism in ∞ -Grpd.

In the above formula, the operation S �→ ≤nS is that of n-coconnective trunca-
tion, i.e., if S = Spec(A), then ≤nS = Spec(τ≥−n(A)).

For example, all algebraic stacks are convergent, see [GL:Stacks, Proposition
4.5.2].

3.1.8 Finally, we can give the following definition:

Definition 3.1.9. An object Y ∈ PreStk is locally almost of finite type if:

• It is convergent;
• For every n, the restriction Y|≤nDGSchaff ∈ ≤nPreStk belongs to ≤nPreStklft.

The full subcategory of PreStk spanned by prestacks locally almost of finite type
is denoted PreStklaft.

It is shown in [GL:Stacks, Proposition 4.9.2] that an algebraic stack is locally
almost of finite type in the sense of Definition 3.1.2 if and only if it is locally almost
of finite type as a prestack in the sense of Definition 3.1.9.

3.1.10 Here is an alternative way to introduce the category PreStklaft. Let
<∞DGSchaff

aft denote the full subcategory of DGSchaff
aft spanned by eventually co-

connective affine DG schemes.
We have the following assertion (see [GL:Stacks, Section 1.3.11]):

Lemma 3.1.11. The restriction functor under <∞DGSchaff
aft ↪→ DGSchaff defines an

equivalence

PreStklaft → Funct
(

(<∞DGSchaff
aft)

op,∞ -Grpd
)

.

The inverse functor is the composition of the left Kan extension along

<∞DGSchaff
aft ↪→ <∞DGSchaff ,

followed by the right Kan extension along

<∞DGSchaff ↪→ DGSchaff .

Change of conventions. From now and until Section 11, all DG schemes, alge-
braic stacks and prestacks will be assumed locally almost of finite type, unless explic-
itly specified otherwise.



186 V. DRINFELD AND D. GAITSGORY GAFA

3.2 The category IndCoh. For the reader’s convenience we shall now sum-
marize some of the key properties of the category IndCoh that will be used in the
paper. The general reference for this material in [Gai11].

3.2.1 Given a quasi-compact DG scheme Z, one introduces the category IndCoh(Z)
as the ind-completion of the category Coh(Z), the latter being the full subcategory
of QCoh(Z) that consists of bounded complexes with coherent cohomology sheaves;
see [Gai11, Section 1.1]. See Section 0.6.7 where the notion of ind-completion of a
DG category is recalled.

The category IndCoh(Z) is naturally a module over QCoh(Z), when the latter is
regarded as a monoidal category with respect to the usual tensor product operation,
see [Gai11, Section 1.4].

For a morphism f : Z1 → Z2 of quasi-compact DG schemes, we have a canonically
defined functor

f ! : IndCoh(Z2)→ IndCoh(Z1),

see [Gai11, Corollary 5.2.4].
Moreover, this functor has a canonically defined structure of map between mod-

ule categories over QCoh(Z2), where QCoh(Z2) acts on IndCoh(Z1) via the monoidal
functor f∗ : QCoh(Z2)→ QCoh(Z1); see [Gai11, Theorem 5.5.5].

The assignment Z �→ IndCoh(Z) with the above !-pullback operation is a functor

(DGSchaft)op → DGCatcont,

denoted IndCoh!
DGSchaft

, see [Gai11, Section 5.6.1].
We shall denote by ωZ the object of IndCoh(Z) equal to p!

Z(k), where

pZ : Z → pt .

We refer to ωZ as the “dualizing sheaf” on Z.
The functor IndCoh!

DGSchaft
satisfies Zariski descent (see [Gai11, Proposition

4.2.1].
In fact, something stronger is true: according to [Gai11, Theorem 8.3.2], the

functor IndCoh!
DGSchaft

satisfies fppf descent.
The following property of the !-pullback functor will be used in the sequel (see

[Gai11, Proposition 8.1.2]):

Lemma 3.2.2. Let a morphism f : Z1 → Z2 be surjective at the level of geometric
points. Then the functor f ! : IndCoh(Z2)→ IndCoh(Z1) is conservative.

3.2.3 For two quasi-compact DG schemes Z1 and Z2 there is a naturally defined
functor

IndCoh(Z1)⊗ IndCoh(Z2)
�−→ IndCoh(Z1 × Z2),
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which is an equivalence by [Gai11, Proposition 4.6.2]. (The last assertion uses the
assumption that char(k) = 0 in an essential way.)

In particular, we obtain a functor

IndCoh(Z)⊗ IndCoh(Z) �−→ IndCoh(Z × Z)
Δ!

Z−→ IndCoh(Z),

that we shall denote by F1,F2 �→ F1

!⊗ F2. This functor makes IndCoh(Z) into a
symmetric monoidal category with the unit given by ωZ .

3.2.4 The categories IndCoh(Z) and QCoh(Z) are closely related:
The category IndCoh(Z) has a naturally defined t-structure (induced by one on

Coh(Z)). We also have a naturally defined t-exact continuous functor

ΨZ : IndCoh(Z)→ QCoh(Z),

characterized by the property that it is the identity functor from Coh(Z) ⊂
IndCoh(Z) to Coh(Z) ⊂ QCoh(Z), see [Gai11, Sections 1.1.5 and 1.2.1].

The induced functor on the corresponding eventually coconnective (a.k.a.
bounded below) subcategories

IndCoh(Z)+ → QCoh(Z)+

is an equivalence, see [Gai11, Proposition 1.2.4].
We should add that the t-structure on IndCoh(Z) is compatible with filtered co-

limits, but it is not left-complete, unless Z is a smooth classical scheme, in which case
ΨZ is an equivalence. In fact, QCoh(Z) is always equivalent to the left completion
of IndCoh(Z) with respect to its t-structure, [Gai11, Proposition 1.3.4].

When Z is eventually coconnective, the functor ΨZ is a colocalization (see [Gai11,
Proposition 1.5.3]); in particular, in this case it is essentially surjective.

3.2.5 Let f : Z1 → Z2 be again a map between quasi-compact DG schemes. There
exists a continuous functor

f IndCoh
∗ : IndCoh(Z1)→ IndCoh(Z2),

uniquely defined by the condition that the diagram

IndCoh(Z1)
ΨZ1−−−−→ QCoh(Z1)

f IndCoh
∗

⏐
⏐
�

⏐
⏐
�f∗

IndCoh(Z2)
ΨZ1−−−−→ QCoh(Z2)

(3.1)

commutes, see [Gai11, Proposition 3.1.1].
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The functors of !-pullback and (IndCoh, ∗)-pushforward are endowed with base
change isomorphisms for Cartesian squares of DG schemes. I.e., for a Cartesian
square

Z ′1
g1−−−−→ Z1

f ′
⏐
⏐
�

⏐
⏐
�f

Z ′2
g2−−−−→ Z2

(3.2)

there is a canonical isomorphism

g!
2 ◦ f IndCoh

∗ 	 (f ′)IndCoh
∗ ◦ g!

1; (3.3)

see [Gai11, Theorem 5.2.2] for a precise formulation. Note that in (3.3) there is no
adjunction that would produce a morphism in either direction.

For Fi ∈ IndCoh(Zi), consider the object F1 � F2 ∈ IndCoh(Z1 × Z2). Applying
(3.3) to

Z1
Graphf−−−−→ Z1 × Z2

f

⏐
⏐
�

⏐
⏐
�f×id

Z2
ΔZ2−−−−→ Z2 × Z2,

we deduce that f satisfies the projection formula for IndCoh:

F2

!⊗ f IndCoh
∗ (F1) 	 f IndCoh

∗ (f !(F2)
!⊗ F1). (3.4)

3.2.6 Assume that the map f is eventually coconnective; see [Gai11, Definition
3.5.2], where this notion is introduced. Note that this is equivalent to f being finite
Tor-dimension, see [Gai11, Lemma 3.6.3].

In this case there also exists a functor

f IndCoh,∗ : IndCoh(Z2)→ IndCoh(Z1),

uniquely defined by the condition that the diagram

IndCoh(Z1)
ΨZ1−−−−→ QCoh(Z1)

f IndCoh,∗
�
⏐
⏐

�
⏐
⏐f

∗

IndCoh(Z2)
ΨZ1−−−−→ QCoh(Z2).

(3.5)

commutes, see [Gai11, Proposition 3.5.4], and which is the left adjoint to f IndCoh∗ .
For a Cartesian diagram (3.2), in which the vertical arrows are eventually cocon-

nective, the natural transformation

(f ′)IndCoh,∗ ◦ g!
2 → g!

1 ◦ gIndCoh,∗ (3.6)
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that arises by adjunction from (3.3), is an isomorphism (see [Gai11, Proposition
7.1.6]).

If the map f is smooth (or, more generally, Gorenstein), then we have:

f !(−) 	 KZ1/Z2
⊗ f IndCoh,∗(−), (3.7)

where KZ1/Z2
is the relative dualizing graded line bundle (see [Gai11, Proposition

7.3.8]). In the above formula, tensor product is understood in the sense of the mo-
noidal action of QCoh(Z) on IndCoh(Z).

For a Cartesian diagram (3.2) with the horizontal maps being eventually cocon-
nective, the natural transformation

gIndCoh,∗
2 ◦ f IndCoh

∗ → (f ′)IndCoh,∗ ◦ gIndCoh,∗
1 , (3.8)

obtained by adjunction from

f IndCoh
∗ ◦ (g2)IndCoh

∗ 	 (g1)IndCoh
∗ ◦ (f ′)IndCoh

∗ ,

is an isomorphism, see [Gai11, Lemma 3.6.9].

3.2.7 Let now Y be a prestack. We define the category IndCoh(Y) as

lim←−
(S,g)∈((DGSchaft)/Y)op

IndCoh(S), (3.9)

where we view the assignment (S, g) � IndCoh(S) as a functor between ∞-catego-
ries

((DGSchaft)/Y)op → DGCatcont,

obtained by restriction under the forgetful map (DGSchaft)/Y → DGSchaft of the
functor

IndCoh!
DGSch aft : DGSchop

aft → DGCatcont,

mentioned above. As in the case of QCoh, the limit is taken in the (∞, 1)-category
DGCatcont.

Concretely, an object F ∈ IndCoh(Y) is an assignment for

(g : S → Y) ∈ (DGSchaft)/Y � g!(F) ∈ IndCoh(S),

and of a homotopy-coherent system of isomorphisms

f !(g!(F)) 	 (g ◦ f)!(F) ∈ IndCoh(S′)

for f : S′ → S.
In forming the above limit we can replace the category DGSchaft of quasi-compact

DG schemes by DGSchaff
aft of affine DG schemes; this is due to the Zariski descent

property of IndCoh, see [Gai11, Corollaries 10.2.2 and 10.5.5]. Furthermore, we can
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replace the category DGSchaft (resp., DGSchaff
aft) by any of the indexing categories

A that appear in Section 1.2.5.
The compatibility of !-pullbacks with the action of QCoh implies that the cat-

egory IndCoh(Y) has a natural structure of module over the monoidal category
QCoh(Y).

3.2.8 If π : Y1 → Y2 is a map of prestacks, we have a tautologically defined functor
π! : Y1 → Y2.

In particular, for any Y, we obtain a canonical object ωY ∈ IndCoh(Y) equal to
p!

Y(k), where pY : Y→ pt. We refer to ωY as “the dualizing sheaf” on Y.
For two prestacks Y1 and Y2 there exists a naturally defined functor

IndCoh(Y1)⊗ IndCoh(Y1)
�−→ IndCoh(Y1 × Y2).

In particular, as in the case of schemes, IndCoh(Y) acquires a structure of symmetric

monoidal category via the operation
!⊗.

3.2.9 Let π : Y1 → Y2 be a schematic and quasi-compact map between prestacks.
Then the functor of direct image on IndCoh for DG schemes gives rise to a functor

πIndCoh
∗ : IndCoh(Y1)→ IndCoh(Y2).

Namely, for (S2, g2) ∈ (DGSchaft)/Y, we set

g!
2(π

IndCoh
∗ (−)) := (πS)IndCoh

∗ ◦ g!
1(−)

for the morphisms in the Cartesian diagram

S1
g1−−−−→ Y1

πS

⏐
⏐
�

⏐
⏐
�π

S2
g2−−−−→ Y2.

The data of compatibility of the assignment

(S2, g2) � (πS)IndCoh
∗ ◦ g!

1(−)

under !-pullbacks for maps in (DGSchaft)/Y is given by base change isomorphisms
(3.3); see [Gai11, Section 10.6].

The resulting functor πIndCoh∗ is itself also endowed with base change isomor-
phisms with respect to !-pullbacks for Cartesian diagrams of prestacks

Y′1
φ1−−−−→ Y1

π′
⏐
⏐
�

⏐
⏐
�π

Y′2
φ2−−−−→ Y2

(3.10)

where the vertical maps are schematic and quasi-compact.
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By construction, the projection formula for maps between quasi-compact
schemes, i.e., (3.4), implies one for π. That is, we have a functorial isomorphism

F2

!⊗ πIndCoh
∗ (F1) 	 πIndCoh

∗ (π!(F2)
!⊗ F1), Fi ∈ IndCoh(Yi).

3.2.10 Let Yi be prestacks, and let π : Y1 → Y2 be a morphism which is k-rep-
resentable for some k. In this paper we will only need the cases of either π being
schematic, or 1-representable (the latter means that the base change of π by an
affine DG scheme yields a 1-Artin stack).

Assume also that π is eventually coconnective, see [Gai11, Section 11.1.2]. In this
case, by [Gai11, Section 11.6], we have a continuous functor

πIndCoh,∗ : IndCoh(Y2)→ IndCoh(Y1).

For a Cartesian diagram (3.10), in which the vertical arrows are k-representable
and eventually coconnective, we have a canonical isomorphism

(π′)IndCoh,∗ ◦ φ!
2 	 φ!

1 ◦ πIndCoh,∗, (3.11)

see [Gai11, Proposition 11.6.2]. Note that unlike (3.6), in (3.11) there is no a priori
map in either direction.

If f is smooth (or, more generally, Gorenstein), the functors πIndCoh,∗ and π! are
related by the formula

π!(−) 	 KY1/Y2
⊗ πIndCoh,∗(−), (3.12)

where KY1/Y2
is the relative dualizing line bundle. This is not explicitly stated in

[Gai11], but can be obtained by combining the functorial isomorphisms (3.7) for
morphisms between DG schemes, and (3.11).

If π is schematic and quasi-compact, the functors (πIndCoh,∗, πIndCoh∗ ) form an
adjoint pair. The latter fact is not stated explicitly in [Gai11] either, but follows
from (3.11) via an analog of Section 1.2.5(ii) for IndCoh.

3.2.11 When Y is an algebraic stack, the category IndCoh(Y) can be described more
explicitly.

First, as in Section 1.2.5(iv), in the formation of the limit (3.9), we can replace
the category (DGSchaft)/Y by DGSch/Y,smooth, see [Gai11, Corollary 11.2.4].

Furthermore, when we use (DGSch/Y,smooth)op as the indexing category,
IndCoh(Y) can be also realized as the limit

lim←−
(S,g)∈(DGSch/Y,smooth)op

IndCoh(S), (3.13)

where now for a morphism f : S′ → S′ in DGSch/Y,smooth, the transition func-
tor IndCoh(S)→ IndCoh(S′) is f IndCoh,∗, see [Gai11, Section 11.3 and Proposition
11.4.3].
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If f : Z → Y is a smooth atlas, the naturally defined functor

IndCoh(Z)→ Tot(IndCoh(Z•/Y)) (3.14)

is an equivalence. In the above formula, the cosimplicial category IndCoh(Z•/Y)
is formed by using either the !-pullback or (IndCoh, ∗)-pullback functors along the
simplicial DG scheme Z•/Y. See [Gai11, Corollary 11.3.4] for the proof.

For a Cartesian diagram (3.10) consisting of algebraic stacks, in which the verti-
cal arrows are schematic and quasi-compact and the horizontal ones are eventually
coconnective, we have a canonical isomorphism

φIndCoh,∗
2 ◦ πIndCoh

∗ 	 (π′)IndCoh
∗ ◦ φIndCoh,∗

1 . (3.15)

It is obtained from the natural transformation (3.8) using (3.13). Note again that
unless the vertical arrows are also eventually coconnective or the horizontal maps
schematic and quasi-compact, there is a priori no morphism in either direction in
(3.15).

3.2.12 For Y an algebraic stack, the category IndCoh(Y) has a t-structure and the
functor

ΨY : IndCoh(Y)→ QCoh(Y)

with the same properties as those for schemes, reviewed in Section 3.2.4 above, see
[Gai11, Section 11.7.1 and Proposition 11.7.5]. Namely, the functor ΨY is determined
uniquely by the requirement that for (S, g) ∈ DGSch/Y,smooth, the diagram

IndCoh(Y)
gIndCoh,∗
−−−−−→ IndCoh(S)

ΨY

⏐
⏐
�

⏐
⏐
�ΨS

QCoh(Y)
g∗
−−−−→ QCoh(S)

is supplied with a commutativity isomorphism, functorially in (S, g). The t-structure
on IndCoh(Y) is determined by the condition that the functors gIndCoh,∗ be t-exact.

If π : Y1 → Y2 is an eventually coconnective morphism between algebraic stacks,
we have a commutative diagram

IndCoh(Y1)
ΨY1−−−−→ QCoh(Y1)

πIndCoh,∗
�
⏐
⏐

�
⏐
⏐π∗

IndCoh(Y2)
ΨY2−−−−→ QCoh(Y2).

(3.16)

For a schematic and quasi-compact map π : Y1 → Y2 between algebraic stacks,
we have a commutative diagram
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IndCoh(Y1)
ΨY1−−−−→ QCoh(Y1)

πIndCoh
∗

⏐
⏐
�

⏐
⏐
�π∗

IndCoh(Y2)
ΨY2−−−−→ QCoh(Y2).

(3.17)

It arises from the corresponding commutative diagrams in the case of DG schemes,
i.e., (3.1), using the functorial isomorphisms (3.15).

3.2.13 For an algebraic stack Y, we shall denote by ΓIndCoh(Y,−) : IndCoh(Y) →
Vect the not necessarily continuous functor equal to

Γ(Y,−) ◦ΨY.

From Lemma 1.3.13 we obtain that for F ∈ IndCoh(Y) there is a canonical iso-
morphism

ΓIndCoh(Y,F) 	 lim←−
(S,g)∈(DGSch/Y,smooth)op

Γ (S, g∗(ΨY(F)))

	 lim←−
(S,g)∈(DGSch/Y,smooth)op

ΓIndCoh(S, gIndCoh,∗(F)). (3.18)

3.3 The coherent subcategory. Let Y be an algebraic stack.

3.3.1 We define CohInd(Y) to be the full subcategory of IndCoh(Y) consisting of
those objects F, for which for any affine DG scheme S equipped with a smooth map
g : S → Y, the corresponding object gIndCoh,∗(F) belongs to Coh(S) ⊂ IndCoh(S).
This condition is enough to check for any fixed collection (Sα, gα) such that the map
�
α
Sα → Y is surjective.

Note that in the above definition, we can replace the functors gIndCoh,∗ by g!.
This follows from either (3.11) or (3.12).

We define CohQ(Y) to be the full subcategory of QCoh(Y) consisting of those
objects F, for which for any affine DG scheme S equipped with a smooth map
g : S → Y, the corresponding object g∗(F) belongs to Coh(S) ⊂ QCoh(S). This
condition is enough to check for any fixed collection (Sα, gα) such that the map
�
α
Sα → Y is surjective.
We claim:

Lemma 3.3.2. The functor ΨY defines an equivalence CohInd(Y)→ CohQ(Y).

Proof. Follows by combining (3.16) with (3.13) and Section 1.2.5(iv). ��
From now on, we will identify CohInd(Y) with CohQ(Y) and denote the resulting

category simply by Coh(Y), unless a confusion is likely to occur.
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3.3.3 Consider the ind-completion Ind(Coh(Y)) of the category Coh(Y) (see Sec-
tion 0.6.7 where the notion of ind-completion of a DG category is recalled). One has
a tautologically defined continuous functor

Ind(Coh(Y))→ Ind Coh(Y). (3.19)

However, it is not true that this functor is always an equivalence. For example,
it is typically not an equivalence for non quasi-compact schemes.

3.3.4 The main result of this section is the following theorem, which says that
IndCoh(Y) = Ind(Coh(Y)) if Y is QCA (see Definition 1.1.8).

Theorem 3.3.5. Assume that a stack Y is QCA. Then the category IndCoh(Y) is
compactly generated. Moreover, its subcategory of compact objects equals Coh(Y).

3.3.6 The proof will be given in Sections 3.4–3.5 (it is based on Theorem 1.4.2).
This theorem will imply a number of favorable properties of the category IndCoh;
these will be established in Section 4, see Sections 4.2 and 4.3).

3.4 Description of compact objects of IndCoh(Y)

3.4.1 First, we claim:

Proposition 3.4.2.

(a) For any algebraic stack, the subcategory IndCoh(Y)c ⊂ IndCoh(Y) is con-
tained in Coh(Y).

(b) If Y is QCA then IndCoh(Y)c = Coh(Y).

Proof of point (a). When need to show that for any affine DG scheme S equipped
with a smooth map g : S → Y, the functor gIndCoh,∗ sends IndCoh(Y)c to
IndCoh(S)c = Coh(S).

Since Y is an algebraic stack, the morphism g is schematic and quasi-compact.
Hence, the functor gIndCoh,∗ admits a continuous right adjoint, namely, gIndCoh∗ (see
Section 3.2.10). This implies the required assertion. ��
Remark 3.4.3. For point (b), we need to show that, when Y is QCA and F ∈
Coh(Y), the assignment

F′ �→MapsIndCoh(Y)(F,F
′)

commutes with colimits in F′. The idea of the proof is that to F and F′ one can
assign their internal Hom object

HomQCoh(Y)(F,F
′) ∈ QCoh(Y),

whose formation commutes with colimits in F′, and such that

MapsIndCoh(Y)(F,F
′) 	 Γ

(

Y,HomQCoh(Y)(F,F
′)
)

.

Then the assertion of point (b) of the proposition would follow from Theorem 1.4.2.
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Proof of point (b). Let Y be QCA and F ∈ Coh(Y) and F′ ∈ IndCoh(Y). We have:

MapsIndCoh(Y)(F,F
′)

	 lim←−
(S,g)∈(DGSch/Y,smooth)op

MapsIndCoh(S)(g
IndCoh,∗(F), gIndCoh,∗(F′)).

For every (S, g) ∈ DGSchaff
/Y,smooth consider the object

HomQCoh(S)(g
IndCoh,∗(F), gIndCoh,∗(F′)) ∈ QCoh(S),

(see [GL:DG], Section 5.1.). Namely, for E ∈ QCoh(S),

MapsQCoh(S)(E,HomQCoh(S)(g
IndCoh,∗(F), gIndCoh,∗(F′)))

	MapsIndCoh(S)(E⊗ gIndCoh,∗(F), gIndCoh,∗(F′)),

where −⊗− denotes the action of QCoh(S) on IndCoh(S).
Since gIndCoh,∗(F) ∈ Coh(S) = IndCoh(S)c, and QCoh(S) is compactly gener-

ated, by [GL:DG, Lemma 5.1.1], the assignment

F′ �→ HomQCoh(S)(g
IndCoh,∗(F), gIndCoh,∗(F′))

commutes with colimits.
By construction, for every map f : S̃ → S in DGSchaff

/Y,smooth, there is a canonical
map

f∗(HomQCoh(S)(g
IndCoh,∗(F), gIndCoh,∗(F′)))→

→ HomQCoh(S̃)(g̃
IndCoh,∗(F), g̃IndCoh,∗(F′)), (3.20)

where g̃ = g ◦ f . ��
Lemma 3.4.4. The map (3.20) is an isomorphism.

The proof will be given in Section 3.4.6. Thus, we obtain that the assignment

(S, g) �→ HomQCoh(S)(g
IndCoh,∗(F), gIndCoh,∗(F′))

defines an object

HomQCoh(Y)(F,F
′) ∈ QCoh(Y).

Moreover, the functor

F′ �→ HomQCoh(Y)(F,F
′)

commutes with colimits.
By construction,

MapsIndCoh(Y)(F,F
′) 	 Γ

(

Y,HomQCoh(Y)(F,F
′)
)

. (3.21)

Now, the required assertion follows from Theorem 1.4.2.
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Remark 3.4.5. It is easy to see that the object HomQCoh(Y)(F,F
′) introduced above

is the internal Hom of F and F′ in the sense of [GL:DG, Section 5.1], i.e., for E ∈
QCoh(Y), we have

Maps(E,HomQCoh(Y)(F,F
′)) 	MapsIndCoh(Y)(E⊗ F,F′).

3.4.6 Proof of Lemma 3.4.4. Let f : S̃ → S be an eventually coconnective map
of affine DG schemes, and F ∈ Coh(S), and F′ ∈ IndCoh(S). We claim that the
natural map

f∗(HomQCoh(S)(F,F
′))→ HomQCoh(S̃)(f

IndCoh,∗(F), f IndCoh,∗(F′)))

is an isomorphism. The latter is equivalent to

f∗(OS̃) ⊗
OS

HomQCoh(S)(F,F
′)→ f∗(HomQCoh(S̃)(f

IndCoh,∗(F), f IndCoh,∗(F′)))

being an isomorphism at the level of global sections.
Now, since F is a compact object of IndCoh(S), by [GL:DG, Lemma 5.1.1], we

have:

f∗(OS̃) ⊗
OS

HomQCoh(S)(F,F
′) 	 HomQCoh(S)(F, f∗(OS̃) ⊗

OS

F′).

Thus, we need to show that

MapsIndCoh(S)(F, f∗(OS̃) ⊗
OS

F′)→MapsIndCoh(S̃)(f
IndCoh,∗(F), f IndCoh,∗(F′))

	MapsIndCoh(S)(F, f
IndCoh
∗ ◦ f IndCoh,∗(F′)).

I.e., it is sufficient to prove that the map

f∗(OS̃) ⊗
OS

F′ → f IndCoh
∗ ◦ f IndCoh,∗(F′)

is an isomorphism. However, the latter is the content of [Gai11, Proposition 3.6.11].
��

3.5 The category Coh(Y) generates IndCoh(Y). Theorem 3.3.5 follows
from Proposition 3.4.2 and the next one.

Proposition 3.5.1. If Y is QCA then the subcategory Coh(Y)♥ generates
IndCoh(Y).

The proof of Proposition 3.5.1, given below, is parallel to the proof of Theo-
rem 1.4.10 given in Section 2.6.

Remark 3.5.2. In some sense, the proof of Proposition 3.5.1 is simpler because for
IndCoh the !-pullback is a continuous functor (unlike the situation of Section 2.6.8
and Remark 2.6.9). So one may prefer to deduce Theorem 1.4.10 from Proposi-
tion 3.5.1 using the functor ΨY : IndCoh(Y)→ QCoh(Y), which is essentially surjec-
tive if Y is eventually coconnective.
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3.5.3 First, just as in Section 2.6, one can assume that Y is classical and reduced.
Let Yi be the locally closed substacks of Y given by Proposition 2.3.4. With

no restriction of generality, we can assume that all Yi are smooth. In this case
IndCoh(Yi) 	 QCoh(Yi), so Lemmas 2.6.3 and 2.6.4 imply that IndCoh(Yi) is gen-
erated by Coh(Yi)♥.

Hence, to prove the theorem, it suffices to prove the following analog of
Lemma 2.6.5:

Lemma 3.5.4. Let X and
◦
Y be as in Lemma 2.3.2. Then if the assertion of Proposi-

tion 3.5.1 holds for X and
◦
Y, then it holds also for Y.

Proof. We have to show that if F ∈ IndCoh(Y) and

MapsIndCoh(Y)(E,F) = 0 for all E ∈ Coh(Y)♥

then F = 0.
Consider the exact triangle

(F)X→ F → jIndCoh
∗ ◦ jIndCoh,∗(F), (3.22)

where

(F)X := Cone
(

jIndCoh
∗ ◦ jIndCoh,∗(F)

)

[−1].

By [Gai11, Proposition 4.1.7] (which is applicable to algebraic stacks),

(F)X⇔ ı!(F) = 0.

For any F′ ∈ Coh(X)♥ one has

MapsIndCoh(X)(F
′, ı!(F)) = MapsIndCoh(Y)(ı

IndCoh
∗ (F′),F) = 0,

and ıIndCoh∗ (F′) ∈ Coh(Y)♥. So, the assumption that Proposition 3.5.1 holds for X

implies that ı!(F) = 0. Therefore, (F)X = 0, and, hence,

F → jIndCoh
∗ ◦ jIndCoh,∗(F)

is an isomorphism.
In particular, for every E ∈ IndCoh(Y), we have:

MapsIndCoh(Y)(E,F) 	MapsIndCoh(Y)

(

E, jIndCoh
∗ ◦ jIndCoh,∗(F)

)

	Maps
IndCoh(

◦
Y)

(

jIndCoh,∗(E), jIndCoh,∗(F)
)

. (3.23)

Now we use the following lemma, which immediately follows from [LM00, Corol-
lary 15.5].

Lemma 3.5.5. For every
◦
E ∈ Coh(

◦
Y)♥, there exists E∈Coh(Y)♥ such that j∗(E)	

◦
E.
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By (3.23), for every
◦
E ∈ Coh(

◦
Y)♥ and the corresponding E ∈ Coh(Y)♥, we have:

Maps
IndCoh(

◦
Y)

(◦
E, jIndCoh,∗(F)

)

	MapsIndCoh(Y)(E,F) = 0.

Hence, jIndCoh,∗(F) = 0, by the assumption that Proposition 3.5.1 holds for
◦
Y.

Thus, we have (F)X = 0 and jIndCoh,∗(F) = 0, and by (3.22), this implies that
F = 0. ��
3.6 Direct image functor on IndCoh. As an application of Theorem 3.3.5,
we shall now construct a functor πIndCoh∗ for a morphism π : Y1 → Y2 between QCA
algebraic stacks.12

3.6.1 We claim that in this case there exists a unique continuous functor

πIndCoh
∗ : IndCoh(Y1)→ IndCoh(Y2),

which is left t-exact and which makes the following diagram commute:

IndCoh(Y1)
ΨY1−−−−→ QCoh(Y1)

πIndCoh
∗

⏐
⏐
�

⏐
⏐
�π∗

IndCoh(Y2)
ΨY2−−−−→ QCoh(Y2).

Indeed, the functor πIndCoh∗ is obtained as the ind-extension of the functor

Coh(Y1)→ IndCoh(Y2)

equal to the composition

Coh(Y1) ↪→ QCoh(Y1)+
π∗−→ QCoh(Y2)+ 	 IndCoh(Y2)+ ↪→ IndCoh(Y2),

where QCoh(Y2)+ 	 IndCoh(Y2)+ is the equivalence inverse to that induced by ΨY2 ,
see Section 3.2.12.

It is easy to see that when π is schematic and quasi-compact, the above functor
πIndCoh∗ is canonically isomorphic to the one in Section 3.2.9. This follows from the
defining property of πIndCoh∗ , using the commutative diagram (3.17).

3.6.2 Consider the particular case when Y1 = Y and Y2 = pt, and π = pY. Recall
the functor ΓIndCoh(Y,−), see Section 3.2.13.

Since the functor Γ(Y,−) : QCoh(Y) → pt is continuous, so is the functor
ΓIndCoh(Y,−).

We obtain that we have a canonical isomorphism of functors

ΓIndCoh(Y,−) 	 (pY)IndCoh. (3.24)

(Indeed, the two functors tautologically coincide on Coh(Y) ⊂ IndCoh(Y), and the
isomorphism on all of IndCoh(Y) follows by continuity.)

12 For this construction to make sense we only need Y1 to be QCA, while Y2 may be arbitrary.
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3.6.3 The defining property of πIndCoh∗ implies that it is compatible with composi-
tions. I.e., if

Y1
π−→ Y2

φ−→ Y3

are maps between QCA algebraic stacks, we have

φIndCoh
∗ ◦ πIndCoh

∗ 	 (φ ◦ π)IndCoh
∗ .

This follows from the diagram

IndCoh(Y1)
ΨY1−−−−→ QCoh(Y1)

πIndCoh
∗

⏐
⏐
�

⏐
⏐
�π∗

IndCoh(Y2)
ΨY2−−−−→ QCoh(Y2)

φIndCoh
∗

⏐
⏐
�

⏐
⏐
�φ∗

IndCoh(Y3)
ΨY3−−−−→ QCoh(Y3).

3.7 Direct image functor on IndCoh, further constructions. The con-
tents of this subsection will not be used elsewhere in the paper. We include it for
completeness as the functor πIndCoh

non-ren,∗ introduced below has features analogous to
those of the de Rham pushforward functor πdR,∗, considered in Section 7.4.

3.7.1 Let π : Y1 → Y2 is a morphism between arbitrary algebraic stacks. In this
case also, we can introduce a functor IndCoh(Y1) → IndCoh(Y2), that we denote
πIndCoh

non-ren,∗. This functor is not necessarily continuous.
By definition,

πIndCoh
non-ren,∗(F) := lim←−

(S,g)∈((DGSchaft)/Y1,smooth)op

(π ◦ g)IndCoh
∗ (gIndCoh,∗(F)), (3.25)

where (π ◦ g)IndCoh∗ is well-defined because the morphism π ◦ g is schematic and
quasi-compact.

3.7.2 Let us take for a moment Y1 = Y and Y2 = pt. From (3.18) we obtain that

(pY)IndCoh
non-ren,∗ 	 ΓIndCoh(Y,−). (3.26)

3.7.3 Note that by construction we have a natural transformation

ΨY2 ◦ πIndCoh
non-ren,∗ → π∗ ◦ΨY1 . (3.27)
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We claim:

Lemma 3.7.4. The natural transformation (3.27) is an isomorphism when applied
to objects from IndCoh(Y1)+.

Proof. Note that the functors ΨYi
are t-exact, and both π∗ and πIndCoh

non-ren,∗ are left
t-exact. Hence, it is enough to show that the following diagram of functors commutes

IndCoh(Y1)≥n
ΨY1−−−−→ QCoh(Y1)≥n

πIndCoh
non-ren,∗

⏐
⏐
�

⏐
⏐
�π∗

IndCoh(Y2)≥n
ΨY2−−−−→ QCoh(Y2)≥n

for every given n.
Note that ΨY2 , restricted to IndCoh(Y2)≥n, is an equivalence, and hence com-

mutes with limits. Hence, for F1 ∈ IndCoh(Y1)≥n we have:

ΨY2 ◦ πIndCoh
non-ren,∗ = ΨY2

⎛

⎝ lim←−
(S,g)∈((DGSchaft)/Y1,smooth)op

(π ◦ g)IndCoh
∗ (gIndCoh,∗(F))

⎞

⎠

	 lim←−
(S,g)∈((DGSchaft)/Y1,smooth)op

ΨY2

(

(π ◦ g)IndCoh
∗ (gIndCoh,∗(F))

)

.

Since the morphisms π ◦ g are schematic and quasi-compact, and g is eventually
coconnective, the latter expression can be rewritten as

lim←−
(S,g)∈((DGSchaft)/Y1,smooth)op

((π ◦ g)∗(g∗(ΨY1(F1)))) ,

which is isomorphic to π∗(ΨY1(F1)) by Lemma 1.3.13, where we take the indexing
category A to be ((DGSchaft)/Y1,smooth. ��

3.7.5 Suppose for a moment that π is schematic and quasi-compact. It is easy to
see that there exists a natural transformation

πIndCoh
∗ → πIndCoh

non-ren,∗. (3.28)

The next assertion can be proved by the same method as Proposition 7.5.4:

Proposition 3.7.6. The natural transformation (3.28) is an isomorphism.

3.7.7 It is easy to see that when π is eventually coconnective, the functor πIndCoh
non-ren,∗

is the right adjoint of πIndCoh,∗.

Remark 3.7.8. When π is not eventually coconnective, we do not know how to
characterize the functor πIndCoh

non-ren,∗, except by the explicit formula (3.25).



GAFA FINITENESS QUESTIONS 201

3.7.9 Suppose that the morphism π is quasi-compact. Then it is easy to see that,
that although the functor πIndCoh

non-ren,∗ is a priori non-continuous, it has has proper-
ties parallel to those of π∗ expressed in Corollary 1.3.17(a,b): when restricted to
IndCoh(Y1)≥0, it commutes with filtered colimits and is equipped with base change
isomorphisms with respect to !-pullbacks for maps of algebraic stacks Y′2 → Y2.

From the base change isomorphism for schematic quasi-compact maps we obtain
that for a map φ2 : Y′2 → Y2 and the corresponding Cartesian square

Y′1
φ1−−−−→ Y1

π′
⏐
⏐
�

⏐
⏐
�π

Y′2
φ2−−−−→ Y2

(3.29)

there is a canonical natural transformation

φ!
2 ◦ πIndCoh

non-ren,∗ → π′ IndCoh
non-ren,∗ ◦ φ!

1. (3.30)

This natural natural transformation is not necessarily an isomorphism. But as
we mentioned above, if π is quasi-compact, it is an isomorphism when applied to
objects of IndCoh(Y1)+.

3.7.10 Suppose now that Y1 and Y2 are QCA. It is easy to see from the construction
that there exists a canonical natural transformation

πIndCoh
∗ → πIndCoh

non-ren,∗. (3.31)

In Section 4.4.12 we will show:

Proposition 3.7.11. The natural transformation (3.31) is an isomorphism.

Remark 3.7.12. For Y2 = pt, the assertion of Proposition 3.7.11 is easy: indeed,
by (3.26) and (3.24), both functors identify canonically with ΓIndCoh(Y,−) of Sec-
tion 3.6.2, where Y = Y1.

From Proposition 3.7.11, we obtain:

Corollary 3.7.13. If π is an eventually coconnective morphism between QCA
stacks, the functors (πIndCoh,∗, πIndCoh∗ ) are adjoint.

In addition, we have:

Corollary 3.7.14. For a Cartesian square (3.29) there is a canonical isomorphism
of functors

φ!
2 ◦ πIndCoh

∗ → π′ IndCoh
∗ ◦ φ!

1.
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Proof. Both functors are continuous, so it is enough to construct the required natural
transformation when restricted to the subcategory Coh(Y1). In this case, it follows
from Proposition 3.7.11 and the isomorphism of (3.30) on Coh(Y1) ⊂ IndCoh(Y1)+.

��
Remark 3.7.15. One can use Corollary 3.7.14 to define the functor πIndCoh∗ for QCA
morphisms π : Y1 → Y2 between prestacks, in a way compatible with base change.

4 Dualizability and Behavior with Respect to Products of Stacks

In this section we will show that the category IndCoh on a QCA algebraic stack
locally almost of finite type is dualizable, see Corollary 4.2.2. This will imply that the
category QCoh(Y) on such a stack is also dualizable, under the additional assumption
that Y be eventually coconnective, see Theorem 4.3.1.

These properties of IndCoh(Y) and QCoh(Y) will imply a “good” behavior of
IndCoh(−) and QCoh(−) when we take a product of Y with another prestack.

In Section 4.4 we shall discuss applications to Serre duality on IndCoh(Y).

4.1 The notion of dualizable DG category

4.1.1 Definition of dualizability. We refer to [Lur11], Section 6.3.2 for the defi-
nition of the tensor product functor

⊗ : DGCatcont×DGCatcont → DGCatcont

(see also [GL:DG], Section 1.4 for a brief review).
The above operation makes the (∞, 1)-category DGCatcont into a symmetric

monoidal ∞-category13, in which the unit object is the category Vect.
For an object of any symmetric monoidal category, one can talk about its prop-

erty of being dualizable (see [Lur11], Section 4.2.5, or [GL:DG], Section 5.2 for a
brief review). When the category is just monoidal, there are two different notions:
left dualizable and right dualizable, see [GL:DG], Section 5.2.

Remark 4.1.2. Note that dualizability of an object in not a higher-categorical
notion, but only depends on the truncation of the monoidal ∞-category to an ordi-
nary monoidal category.

Following Lurie, we say that C ∈ DGCatcont is dualizable if it is dualizable in the
above sense.

For C ∈ DGCatcont dualizable, we denote by C∨ the corresponding dual category.
We denote by

C∨ ⊗C εC−→ Vect and Vect
μC−→ C⊗C∨

13 I.e., DGCatcont is a commutative algebra object in the symmetric monoidal (1, ∞)-category of
∞-categories with respect to the Cartesian product, see [Lur11], Section 2.3.1.
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the corresponding duality data. The functor εC is called the co-unit of the pair-
ing (or evaluation, or canonical pairing), and the functor μC is called the unit (or,
co-evaluation).

4.1.3 Here are some basic facts related to duality in DGCatcont (see also [GL:DG],
Section 2):
(i) If C is dualizable, the category C∨ can be recovered as Functcont(C,Vect).
(ii) Any compactly generated DG category is dualizable.
(ii’) For C compactly generated, C∨ can be explicitly described as the ind-comple-
tion of the non-cocomplete DG category (Cc)op. In particular, we have a canonical
equivalence:

DC : (C∨)c 	 (Cc)op.

In particular, for C = Ind(C0) (see Section 0.6.7), we have C∨ 	 Ind((C0)op), and

C∨ 	 Funct(C0,Vect) and C 	 Funct((C0)op,Vect),

which also gives an explicit construction of Ind(C0).
(iii) The functor of tensoring by a dualizable category commutes with all limits14

taken in DGCatcont. Indeed, if C is dualizable then C⊗− 	 Functcont(C∨,−).

4.1.4 Let O be an arbitrary symmetric monoidal category, and c1, c2 ∈ O two
dualizable objects. Then to any morphism f : c1 → c2 one canonically attaches the
dual morphism

f∨ : c∨2 → c∨1 ,

where c∨i denotes the dual of ci.
This construction has the following interpretation: a datum morphism f as above

is equivalent to that of a point in MapsO(1, c∨1 ⊗c2). Then the datum f∨ corresponds
to the same point in

MapsO(1, (c∨2 )∨ ⊗ c∨1 ) 	 MapsO(1, c∨1 ⊗ c2).

Applying this to O = DGCatcont and two dualizable categories C1 and C2, we
obtain that to every continuous functor F : C1 → C2 there corresponds a dual
functor

F∨ : C∨2 → C∨1 .

In terms of Section 4.1.3(i), the functor F∨ can be described as follows: it sends
an object Φ ∈ Functcont(C2,Vect) to Φ ◦ F ∈ Functcont(C1,Vect).

14 Tensoring by C commutes with all colimits in DGCatcont for any C.
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4.2 Dualizability of IndCoh

4.2.1 From Section 4.1.3(ii) and Theorem 3.3.5 we obtain:

Corollary 4.2.2. If Y is a QCA algebraic stack, then the DG category IndCoh(Y)
is dualizable.

As was explained to us by J. Lurie, Corollary 4.2.2 implies the following result
(in any sheaf-theoretic context):

Corollary 4.2.3. Let Y1 and Y2 be two prestacks, with Y1 being a QCA algebraic
stack. Then the natural functor

IndCoh(Y1)⊗ IndCoh(Y2)→ IndCoh(Y1 × Y2)

is an equivalence.

Proof. The argument repeats verbatim that of [GL:QCoh, Proposition 1.4.4]. For
completeness, let us reproduce it here:

We will show that the equivalence stated in the corollary takes place for any two
prestacks Y1, Y2, whenever IndCoh(Y1) is dualizable.

We have:

IndCoh(Y1)⊗ IndCoh(Y2) = IndCoh(Y1)⊗

⎛

⎜
⎝ lim←−
S2∈((DGSchaff

aft)/Y2 )op

IndCoh(S2)

⎞

⎟
⎠ .

By Section 4.1.3(iii), the latter expression maps isomorphically to

lim←−
S2∈((DGSchaff

aft)/Y2 )op

(IndCoh(Y1)⊗ IndCoh(S2)) .

We rewrite IndCoh(Y1) by definition as

lim←−
S1∈((DGSchaff

aft)/Y1 )op

IndCoh(S1),

so

lim←−
S2∈((DGSchaff

aft)/Y2 )op

(IndCoh(Y1)⊗ IndCoh(S2))

	 lim←−
S2∈((DGSchaff

aft)/Y2 )op

⎛

⎜
⎝

⎛

⎜
⎝ lim←−
S1∈((DGSchaff

aft)/Y1 )op

IndCoh(S1)

⎞

⎟
⎠⊗ IndCoh(S2)

⎞

⎟
⎠ .
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Since IndCoh(S2) is dualizable, by Section 4.1.3(iii), the latter expression can be
rewritten as

lim←−
S2∈((DGSchaff

aft)/Y2 )op

⎛

⎜
⎝ lim←−
S1∈((DGSchaff

aft)/Y1 )op

(IndCoh(S1)⊗ IndCoh(S2))

⎞

⎟
⎠ . (4.1)

Now, as was mentioned in Section 3.2.3, for quasi-compact schemes S1 and S2,
the natural functor

IndCoh(S1)⊗ IndCoh(S2)→ IndCoh(S1 × S2)

is an equivalence.
Hence, we obtain that the expression in (4.1) maps isomorphically to

lim←−
S2∈((DGSchaff

aft)/Y2 )op

⎛

⎜
⎝ lim←−
S1∈((DGSchaff

aft)/Y1 )op

(IndCoh(S1 × S2))

⎞

⎟
⎠ ,

which itself is isomorphic to

lim←−
(S1,S2)∈((DGSchaff

aft)/Y1 )op×((DGSchaff
aft)/Y2 )op

(IndCoh(S1 × S2)) .

To summarize, we obtain an equivalence

IndCoh(Y1)⊗ IndCoh(Y2)
→ lim←−

(S1,S2)∈((DGSchaff
aft)/Y1 )op×((DGSchaff

aft)/Y2 )op

(IndCoh(S1 × S2)) . (4.2)

Finally, it is easy to see that the natural functor

(DGSchaff
aft)/Y1

× (DGSchaff
aft)/Y2

→ (DGSchaff
aft)/Y1×Y2

is cofinal. Hence, the functor

IndCoh(Y1 × Y2) = lim←−
S∈((DGSchaff

aft)/Y1×Y2 )op

IndCoh(S)

→ lim←−
(S1,S2)∈((DGSchaff

aft)/Y1 )op×((DGSchaff
aft)/Y2 )op

(IndCoh(S1 × S2))

is an equivalence, and the composition

IndCoh(Y1)⊗ IndCoh(Y2)→ IndCoh(Y1 × Y2) = lim←−
S∈((DGSchaff

aft)/Y1×Y2 )op

IndCoh(S)

→ lim←−
(S1,S2)∈((DGSchaff

aft)/Y1 )op×((DGSchaff
aft)/Y2 )op

(IndCoh(S1 × S2))

is the map (4.2).
This proves that the map IndCoh(Y1) ⊗ IndCoh(Y2) → IndCoh(Y1 × Y2) is an

equivalence. ��
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4.3 Applications to QCoh(Y). We will now use Corollary 4.2.2 to prove the
following:

Theorem 4.3.1. Let Y be a QCA algebraic stack, which is eventually coconnective
(see Definition 1.4.8), and locally almost of finite (as are all algebraic stacks in this
section). Then the category QCoh(Y) is dualizable.

Remark 4.3.2. We do not know whether, under the assumptions of the theorem,
the category QCoh(Y) is compactly generated.

Proof. Recall (see [Gai11, Section 11.7.3]) that for any eventually coconnective alge-
braic stack Y, the functor ΨY : IndCoh(Y) → QCoh(Y) admits a left adjoint, which
is fully faithful (and automatically continuous by virtue of being a left adjoint).

In particular, we obtain that in this case, QCoh(Y) is a retract of IndCoh(Y) in
the category DGCatcont.

The assertion of the theorem follows from the following observation: let O be a
monoidal category, which admits inner Hom’s, i.e., for M1,M2 ∈ O, there exists an
object

HomO(M1,M2) ∈ O,

such that we have

MapsO(N,HomO(M1,M2)) 	 MapsO(N ⊗M1,M2),

functorially in N .

Lemma 4.3.3. Under the above circumstances, a retract of a (left) dualizable object
is (left) dualizable.

Proof. It is easy to see that an object M is (left) dualizable if and only if for any
N , the natural map

N ⊗HomO(M, 1)→ Maps(N,M)

is an isomorphism. However, the latter condition survives taking retracts. ��
We apply this lemma to O = DGCatcont. This category has inner Hom’s, which

are explicitly given by

HomDGCatcont
(C1,C2) = Functcont(C1,C2),

where the right-hand side has a natural structure of DG category. ��
Corollary 4.3.4. Let Y satisfy the assumptions of Theorem 4.3.1. Then for any
prestack Y′, the natural functor

QCoh(Y)⊗QCoh(Y′)→ QCoh(Y× Y′)

is an equivalence.
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Proof. This follows from Theorem 4.3.1 by [GL:QCoh, Proposition 1.4.4], which
repeats verbatim the proof of Corollary 4.2.3. ��
Remark 4.3.5. The assertion of Corollary 4.3.4, together with the proof, is valid
for all prestacks Y′, i.e., not necessarily those locally almost of finite type.

4.3.6 Let us recall the notion of rigid monoidal DG category from [GL:DG], Sec-
tion 6.1. This notion can be formulated as follows: a monoidal category O is rigid
if:

• The object 1 ∈ O is compact.
• The functor

O→ O⊗O, (4.3)

right adjoint to O⊗O ⊗−→ O, is continuous, and is compatible with left and right
actions of O.

If this happens, the functors

O⊗O ⊗−→ O
MapsO(1,−)−→ Vect

and

Vect→ O→ O⊗O,

(where the functor Vect → O is given by 1 ∈ O, and the functor O → O ⊗ O is
(4.3)) define a duality datum between O and itself.

4.3.7 We have:

Corollary 4.3.8. Let Y be as in Theorem 4.3.1. Then the monoidal category
QCoh(Y) is rigid.

Proof. This is [GL:QCoh, Proposition 2.3.2]: the assertion is true for any prestack
(not necessarily of finite type) with the following three properties: (1) the category
QCoh(Y) is dualizable, (2) the object OY ∈ QCoh(Y) is compact, and (3) the diagonal
morphism Y→ Y× Y is schematic, quasi-separated and quasi-compact. ��

In particular, we obtain a canonical identification

Dnaive
Y : QCoh(Y)∨ 	 QCoh(Y),

where the duality datum is described as follows:
The functor εQCoh(Y) is given by

QCoh(Y)⊗QCoh(Y) �−→ QCoh(Y× Y) Δ∗−→ QCoh(Y)
Γ(Y,−)−→ Vect,

and the functor μQCoh(Y) is given by

Vect OY−→ QCoh(Y) Δ∗−→ QCoh(Y× Y) 	 QCoh(Y)⊗QCoh(Y).
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4.4 Serre duality on IndCoh(Y)

4.4.1 Recall (see [Gai11, Section 9.2.1]) that for a quasi-compact DG scheme Z,
there exists a canonical involutive equivalence:

DSerre
Z : IndCoh(Z)∨ 	 IndCoh(Z).

In terms of Section 4.1.3(ii’), the above equivalence corresponds to the identifi-
cation

(IndCoh(Z)c)op = Coh(Z)op
D

Serre
Z−→ Coh(Z) = IndCoh(Z)c,

where the middle arrow is the Serre duality functor. Explicitly, for F ∈ Coh(Z),

D
Serre
Z (F) = HomQCoh(Z)(F, ωZ),

which is a priori an object of QCoh(Z), but in fact can be easily shown to belong
to Coh(Z).

Remark 4.4.2. In the above formula, HomQCoh(Z)(−,−) denotes the inner Hom of
[GL:DG], Section 5.1, defined whenever a monoidal category (in our case QCoh(Z))
is acting on a module category (in our case IndCoh(Z)).

Our current goal is to show that the same goes through, when instead of a quasi-
compact DG scheme Z we have a QCA algebraic stack Y.

4.4.3 First, let Y be any algebraic stack. Recall the (non-cocomplete) category
Coh(Y), see Section 3.3. We obtain that there exists a canonical equivalence:

D
Serre
Y : Coh(Y)op ∼−→ Coh(Y), (4.4)

characterized by the property that for every affine (or quasi-compact) quasi-compact
DG scheme S equipped with a smooth map g : S → Y, we have an identification

gIndCoh,∗ ◦ D
Serre
Y 	 D

Serre
S ◦ (g!)op,

as functors Coh(Y)op → Coh(Z). Moreover, D
Serre
Y is naturally involutive.

Proposition 4.4.4. For F1 ∈ Coh(Y)op and F2 ∈ IndCoh(Y) we have a canonical
isomorphism

Maps(DSerre
Y (F1),F2) 	 ΓIndCoh

(

Y,F1

!⊗ F2

)

. (4.5)

Remark 4.4.5. The assertion of the proposition when Y is a quasi-compact DG
scheme Z follows from the definition of the evaluation map

IndCoh(Z)⊗ IndCoh(Z)→ Vect,

see [Gai11, Section 9.2.2].
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Proof. The left-hand side in (4.5) identifies with

lim←−
(S,g)∈(DGSch/Y,smooth)op)

MapsCoh(Z)

(

g!(DSerre
Y (F1)), g!(F2)

)

. (4.6)

One can rewrite MapsCoh(S)

(

g!(DSerre
Y (F1)), g!(F2)

)

as

MapsCoh(S)

(

D
Serre
Z (gIndCoh,∗(F1)), g!(F2)

)

	 ΓIndCoh

(

S, gIndCoh,∗(F1)
!⊗ g!(F2)

)

,

where the last isomorphism takes place because of Remark 4.4.5.
Note that for F ∈ IndCoh(Y), by (3.18) have:

ΓIndCoh(Y,F) 	 lim←−
(S,g)∈(DGSch/Y,smooth)op)

ΓIndCoh
(

S, gIndCoh,∗(F)
)

.

Therefore, the right-hand side in (4.5) is canonically isomorphic to

lim←−
(S,g)∈(DGSch/Y,smooth)op)

ΓIndCoh

(

S, gIndCoh,∗(F1

!⊗ F2)
)

.

Therefore, in order to construct the isomorphism in (4.5), it remains to construct
a compatible family of isomorphisms of functors

Δ!
S ◦ (gIndCoh,∗ � g!) 	 gIndCoh,∗ ◦Δ!

Y. (4.7)

The latter isomorphism of functors is valid for any k-representable, eventually
coconnective morphism between prestacks π : Y1 → Y2: it follows by applying (3.11)
to the Cartesian diagram

Y1 −−−−→ Y2 × Y1

π

⏐
⏐
�

⏐
⏐
�idY2 ×π

Y2
ΔY2−−−−→ Y2 × Y2.

��

4.4.6 Assume now that Y is a QCA algebraic stack. Then by Theorem 3.3.5,

IndCoh(Y) 	 Ind(Coh(Y)).

So, by Section 4.1.3(ii’), from (4.4) we deduce:

Corollary 4.4.7. For a QCA algebraic stack Y there is a natural involutive iden-
tification:

DSerre
Y : IndCoh(Y)∨ 	 IndCoh(Y). (4.8)
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4.4.8 Will shall now describe explicitly the duality data εIndCoh(Y) and μIndCoh(Y)

that corresponds to the equivalence (4.8). We claim:

Proposition 4.4.9. Let Y be a QCA algebraic stack. Then the duality (4.8) has as
evaluation εIndCoh(Y) the functor

IndCoh(Y)⊗ IndCoh(Y)→ IndCoh(Y× Y)
Δ!

Y−→ IndCoh(Y)
ΓIndCoh(Y,−)−→ Vect, (4.9)

and as a co-evaluation μIndCoh(Y) the functor

Vect ωY⊗−−→ IndCoh(Y)
(ΔY)IndCoh

∗−→ IndCoh(Y× Y) 	 IndCoh(Y)⊗ IndCoh(Y). (4.10)

Proof. Let F1,F2 be two objects of Coh(Y). In order to identity εIndCoh(Y) with the
functor (4.9), we need to establish a functorial isomorphism

MapsCoh(Y)(D
Serre
Y (F1),F2) 	 ΓIndCoh(Y,F1

!⊗ F2).

However, this is the content of Proposition 4.4.4.
In order to prove that μIndCoh(Y) is given by (4.10), it is sufficient to show that

the composition

IndCoh(Y)
IdIndCoh(Y)⊗(4.10)−→ IndCoh(Y)⊗ IndCoh(Y)⊗ IndCoh(Y)
(4.9)⊗IdIndCoh(Y)−→ IndCoh(Y)

is isomorphic to the identity functor.
Consider the diagram

Y
ΔY−−−−→ Y× Y

id×pY−−−−→ Y

ΔY

⏐
⏐
�

⏐
⏐
�id×ΔY

Y× Y
ΔY×id−−−−→ Y× Y× Y

pY×id

⏐
⏐
�

Y.

We need to show that the functor

(IdIndCoh(Y)⊗(pY)IndCoh
∗ ) ◦ (id×ΔY)! ◦ (ΔY× id)IndCoh

∗ ◦ (p!
Y⊗ IdIndCoh(Y)) (4.11)

is isomorphic to the identity functor.
However, in the above diagram the inner square is Cartesian and the arrows in

it are schematic and quasi-compact. Therefore, by the base change isomorphism, we
have

(ΔY)IndCoh
∗ ◦ (ΔY)!	(id×ΔY)! ◦ (ΔY× id)IndCoh

∗ : IndCoh(Y× Y)→ IndCoh(Y× Y).
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Therefore, the functor in (4.11) is isomorphic to

(IdIndCoh(Y)⊗(pY)IndCoh
∗ ) ◦ (ΔY)IndCoh

∗ ◦ (ΔY)! ◦ (p!
Y⊗ IdIndCoh(Y))

	 (id×pY)∗ ◦ (ΔY)IndCoh
∗ ◦ (ΔY)! ◦ (pY× id)!

	 ((id×pY) ◦ΔY)IndCoh
∗ ◦ (ΔY ◦ (pY× id))! 	 (id)IndCoh

∗ ◦ id! 	 Id . ��

4.4.10 Let π : Y1 → Y2 be a morphism of QCA algebraic stacks. We have the
functors

πIndCoh
∗ : IndCoh(Y1)→ IndCoh(Y2) and π! : IndCoh(Y2)→ IndCoh(Y1).

We claim that these functors are related as follows. Recall the notion of dual
functor, see Section 4.1.4.

Proposition 4.4.11. Under the identifications DSerre
Yi

: IndCoh(Yi)∨ 	 IndCoh(Yi),
we have:

(πIndCoh
∗ )∨ 	 π!.

Proof. We need to show that the object in

IndCoh(Y1)∨ ⊗ IndCoh(Y2) 	 IndCoh(Y1)⊗ IndCoh(Y2) 	 IndCoh(Y1 × Y2)

that corresponds to πIndCoh∗ is isomorphic to the object that corresponds to π!. The
former is given by

(idY1 ×π)IndCoh
∗ ◦ (ΔY1)

IndCoh
∗ (ωY1),

and the latter by

(π × idY2)
! ◦ (ΔY2)

IndCoh
∗ (ωY2).

The needed isomorphism follows by base change (see Section 3.2.9) from the
Cartesian diagram

Y1
Graph(π)−−−−−−→ Y1 × Y2

π

⏐
⏐
�

⏐
⏐
�π×idY2

Y2
ΔY2−−−−→ Y2 × Y2,

in which the horizontal arrows are schematic and quasi-compact. ��

4.4.12 Proof of Proposition 3.7.11. As was mentioned in Remark 3.7.12, we note
that the assertion of the proposition when Y2 = pt is the isomorphism (3.18).
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In the general case, by Proposition 4.4.11, it suffices to show that for F2 ∈
Coh(Y2) and F1 ∈ IndCoh(Y1) the natural map

ΓIndCoh(Y1,F1

!⊗ π!(F2))→ ΓIndCoh(Y2, π
IndCoh
non-ren,∗(F1)

!⊗ F2) (4.12)

is an isomorphism. We rewrite the right-hand side as

MapsIndCoh(F2)(D
Serre
Y2

(F2), πIndCoh
non-ren,∗(F1)),

and further as

lim←−
(S,g)∈((DGSchaft)/Y1,smooth)op

MapsIndCoh(F2)

(

D
Serre
Y2

(F2), (π ◦ g)IndCoh
∗ (gIndCoh,∗(F1))

)

.

The latter expression can be rewritten as

lim←−
(S,g)∈((DGSchaft)/Y1,smooth)op

ΓIndCoh(Y2, (π ◦ g)IndCoh
∗ (gIndCoh,∗(F1))

!⊗ F2)

	 lim←−
(S,g)∈((DGSchaft)/Y1,smooth)op

ΓIndCoh(S, gIndCoh,∗(F1)
!⊗ (π ◦ g)!(F2)).

Using the fact that

gIndCoh,∗(F1)
!⊗ (π ◦ g)!(F2) 	 gIndCoh,∗(F1

!⊗ π!(F2))

(see (4.7)), we finally obtain that the right-hand side in (4.12) is isomorphic to

lim←−
(S,g)∈((DGSchaft)/Y1,smooth)op

ΓIndCoh

(

S, gIndCoh,∗(F1

!⊗ π!(F2))
)

	 ΓIndCoh(Y1,F1

!⊗ π!(F2)),

as required. ��

5 Recollections: D-Modules on DG Schemes

This section is devoted to a review of the theory of D-modules on (DG) schemes.
As was mentioned in the introduction, this material is well-known at the level of
triangulated categories. However, no comprehensive account seems to exist at the
DG level.15

We remind that according to the conventions of Section 3.1, all DG schemes,
algebraic stacks and prestacks are assumed locally almost of finite type, unless spec-
ified otherwise.

15 That said, the “local” aspects of the theory of D-modules (i.e., when we only need to pull back,
but not push forward) is a formal consequence of IndCoh by the procedure of passage to the de
Rham prestack. Details on that can be found in [GR12].
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5.1 The basics

5.1.1 To any quasi-compact DG scheme16 Z one assigns the category D-mod(Z) of
right D-modules on Z.

5.1.2 By definition,

D-mod(Z) := IndCoh(ZdR),

see [GR12, Section 2.3.2]. (Note that in loc.cit, the category D-mod(Z) is denoted
Crysr(Z).)

In the above formula ZdR is the de Rham prestack of Z, i.e.,

Maps(S,ZdR) := Maps((clS)red, Z),

where (clS)red denotes the classical reduced scheme underlying S, see [GR12, Sec-
tion 1.1.1].

5.1.3 For any map f : Z1 → Z2 of quasi-compact DG schemes, there exists a
canonically defined continuous functor

f ! : D-mod(Z2)→ D-mod(Z1).

If f is proper,17 the functor f ! admits a left adjoint, denoted fdR,∗. If f is an open
embedding, the functor f ! admits a continuous right adjoint, also denoted fdR,∗.

5.1.4 Descent. The assignment Z � D-mod(Z) satisfies fppf descent.
In particular, it satisfies Zariski descent, so the category D-mod(Z) is glued from

the categories D-mod(Ui), where {Ui} is a Zariski-open affine cover of Z.
Therefore, for many purposes it is sufficient to consider the case of affine DG

schemes.
In addition, gluing can be used to define D-mod(Z) on a not necessarily quasi-

compact DG scheme, as well as the functor f ! : D-mod(Z2)→ D-mod(Z1) for a map
f : Z1 → Z2 of not necessarily quasi-compact DG schemes.

This will be a particular case of the definition of D-mod(Y) on a prestack Y, see
Section 6.1.1.

5.1.5 Relation between D-mod(Z) and IndCoh(Z). For a DG scheme Z we have
a pair of mutually adjoint (continuous) functors

indD-mod(Z) : IndCoh(Z) � D-mod(Z) : oblvD-mod(Z),

16 According to Section 5.1.10 below, D-mod(Z) depends only on the underlying classical scheme
clZ. The only reason for working in the format of DG schemes is that we will discuss the relation
between D-mod(Z) and the category IndCoh(Z), which depends on the DG structure.
17 A morphism of DG schemes is said to be proper if the underlying morphism of classical
schemes is.



214 V. DRINFELD AND D. GAITSGORY GAFA

with oblvD-mod(Z) being conservative. The functor oblvD-mod(Z) corresponds to pull-
back along the tautological morphism Z → ZdR.

For a morphism of DG schemes f : Z1 → Z2, we have a commutative diagram

IndCoh(Z1)
oblvD-mod(Z1)←−−−−−−−−− D-mod(Z1)

f !

�
⏐
⏐

�
⏐
⏐f !

IndCoh(Z2)
oblvD-mod(Z2)←−−−−−−−−− D-mod(Z2).

In particular, by taking Z1 = Z and Z2 = pt, we obtain that the dualizing com-
plex ωZ , initially defined as an object of IndCoh(Z), naturally upgrades to (i.e., is
the image under oblvD-mod(Z) of) a canonically defined object of D-mod(Z). By a
slight abuse of notation, we denote the latter by the same character ωZ .

As a consequence of Lemma 3.2.2 and the conservativeness of the functor
oblvD-mod(Z), we obtain:

Lemma 5.1.6. Let a morphism f : Z1 → Z2 be surjective on k-points. Then the
functor f ! : D-mod(Z2)→ D-mod(Z1) is conservative.

5.1.7 Tensor product. For a pair of DG schemes Z1 and Z2 we have a canonical
(continuous) functor

D-mod(Z1)⊗D-mod(Z2)→ D-mod(Z1 × Z2),

which is an equivalence if Z1 and Z2 are quasi-compact.

Remark 5.1.8. According to Corollary 8.3.4 below, quasi-compactness of one of
the DG schemes is enough.

In particular, we have a functor of tensor product

D-mod(Z)⊗D-mod(Z)→ D-mod(Z)

equal to

D-mod(Z)⊗D-mod(Z)→ D-mod(Z × Z)
Δ!

Z−→ D-mod(Z).

We denote this functor by

M1,M2 �→M1

!⊗M2.

This defines a symmetric monoidal structure on the category D-mod(Z). The unit
in the category is ωZ .

By Section 5.1.5, we have:

oblvD-mod(Z)(M1)
!⊗ oblvD-mod(Z)(M2) 	 oblvD-mod(Z)(M1

!⊗M2),
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where

!⊗ : IndCoh(Z)⊗ IndCoh(Z)→ IndCoh(Z)

is as in Section 3.2.3.
By adjunction, for F ∈ IndCoh(Z) and M ∈ D-mod(Z), we have a canonical map

indD-mod(Z)

(

F
!⊗ oblvD-mod(Z)(M)

)

→ indD-mod(Z)(F)
!⊗M. (5.1)

It is easy to show (e.g., using Kashiwara’s lemma below) that the map (5.1) is an
isomorphism.

5.1.9 Kashiwara’s lemma. If i : Z1 → Z2 is a closed embedding,18 then the
functor idR,∗ induces an equivalence

D-mod(Z1)→ D-mod(Z2)Z1 , (5.2)

where D-mod(Z2)Z1 is the full subcategory of D-mod(Z2) that consists of objects that
vanish on the complement Z2−Z1. The inverse equivalence is given by i!|D-mod(Z2)Z1

.
This observation allows to reduce the local aspects of the theory of D-modules

on DG schemes to those on smooth classical schemes.

5.1.10 Topological invariance. In particular, if a map i : Z1 → Z2 is such that
the induced map

(clZ1)red → (clZ2)red

is an isomorphism, then the functors

idR,∗ : D-mod(Z1) � D-mod(Z2) : i! (5.3)

are equivalences.
This shows, in particular, that for any Z, pullback along the canonical map

(clZ)red → Z induces an equivalence

D-mod(Z)→ D-mod((clZ)red).

So, when discussing the aspects of the theory of D-modules that do not involve the
functors indD-mod(Z) and oblvD-mod(Z), we can (and will) restrict ourselves to clas-
sical schemes, and even assume that they are reduced, without losing in generality.

18 A map of DG schemes is called a closed embedding if the map of the underlying classical
schemes is.
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5.1.11 t-Structure. The category D-mod(Z) has a canonical t-structure.
It is defined so that D-mod(Z)>0 consists of all F ∈ D-mod(Z) such that
oblvD-mod(Z)(F) ∈ IndCoh(Z)>0.

For a closed embedding i : Z1 → Z2, the functor idR,∗ is t-exact. In particu-
lar, the equivalence (5.2) is compactible with t-structures, where the t-structure on
D-mod(Z2)Z1 is induced by that on D-mod(Z2).

By definition, the functor oblvD-mod(Z) is left t-exact. If Z is smooth, then
oblvD-mod(Z) is t-exact. For any quasi-compact Z it has finite cohomological ampli-
tude: to prove this, reduce to the case where Z is affine and then embed Z into a
smooth classical scheme.

For the same reason, the functor indD-mod(Z) is always t-exact.

Lemma 5.1.12. The t-structure on D-mod(Z) is left-complete and is compatible
with filtered colimits.

The meaning of these words is explained in Lemma 1.2.8.

Proof. Compatibility with filtered colimits is clear from the definition of
D-mod(Z)>0. To prove left-completeness, it suffices to consider the case where Z
is affine. In this case it follows from the existence of a conservative t-exact func-
tor Φ : D-mod(Z) → Vect commuting with limits. To construct such Φ, choose an
embedding i : Z ↪→ Y with Y affine and smooth, then take Φ to be the composi-
tion of idR,∗ : D-mod(Z) → D-mod(Y ), oblvD-mod(Y ) : D-mod(Y ) → IndCoh(Y ),
ΨY : IndCoh(Y ) 	 QCoh(Y ) and Γ : QCoh(Y )→ Vect. ��

5.1.13 Relation between D-mod(Z) and QCoh(Z). It follows from Lemma 5.1.12
that the functor

indD-mod(Z) : IndCoh(Z)→ D-mod(Z)

canonically factors as

IndCoh(Z) ΨZ−→ QCoh(Z)→ D-mod(Z).

This is a formal consequence of the fact that the functor ΨZ identifies QCoh(Z) with
the left completion of IndCoh(Z) with respect to its t-structure, while D-mod(Z) is
left-complete and indD-mod(Z) is right t-exact.

We shall denote the resulting functor QCoh(Z) → D-mod(Z) by ′indD-mod(Z).
In addition, we have a functor ′oblvD-mod(Z) : D-mod(Z)→ QCoh(Z) defined as

′oblvD-mod(Z) := ΨZ ◦ oblvD-mod(Z).

It follows from Kashiwara’s lemma that the functor ′oblvD-mod(Z) is also conser-
vative.
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Assume now that Z is eventually coconnective (we remind that this implies that
the functor ΨZ admits a fully faithful 1 adjoint). Again, it follows formally that in
this case the functors

′indD-mod(Z) : QCoh(Z) � D-mod(Z) : ′oblvD-mod(Z)

are mutually adjoint.

Remark 5.1.14. We emphasize, however, that the latter case is false of Z is not
essentially coconnective. E.g., in the latter case the functor ′indD-mod(Z) does not
send compact objects to compact ones.

Remark 5.1.15. The category D-mod(Z), equipped with the functor ′oblvD-mod(Z),
is the more familiar realization of D-modules as right D-modules (but which only
works in the eventually coconnective case).

5.1.16 The “left” realization. For completeness let us mention that in addition
to oblvD-mod(Z), there is another canonically defined forgetful functor

oblvleft
D-mod(Z) : D-mod(Z)→ QCoh(Z),

responsible for the realization of D-mod(Z) as “left D-modules”.
For a map f : Z1 → Z2 of DG schemes, the following diagram naturally com-

mutes:

QCoh(Z1)
oblvleft

D-mod(Z1)←−−−−−−−−− D-mod(Z1)

f∗
�
⏐
⏐

�
⏐
⏐f !

QCoh(Z2)
oblvleft

D-mod(Z2)←−−−−−−−−− D-mod(Z2).

The functors oblvleft
D-mod(Z) and oblvD-mod(Z) are related by the formula

oblvD-mod(Z)(M) 	 oblvleft
D-mod(Z)(M)⊗ ωZ ,

where ⊗ is understood in the sense of the action of QCoh(Z) on IndCoh(Z), see
Section 3.2.1.

In addition, we have a functor

indleft
D-mod(Z) : QCoh(Z)→ D-mod(Z)

defined by the formula

indleft
D-mod(Z)(F) := indD-mod(Z)(F ⊗ ωZ).

It again follows formally that when Z is eventually coconnective, the functors

(indleft
D-mod(Z),oblvleft

D-mod(Z))

form an adjoint pair.
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For any Z one has

′oblvD-mod(Z)(M) 	 oblvleft
D-mod(Z)(M)⊗ΨZ(ωZ), M ∈ D-mod(Z) (5.4)

and

indleft
D-mod(Z)(F) 	 ′indD-mod(Z)(F ⊗ΨZ(ωZ)), F ∈ QCoh(Z), (5.5)

where ΨZ : IndCoh(Z)→ QCoh(Z) is the functor of Section 3.2.4.

5.1.17 Coherence and compact generation. Let D-modcoh(Z) ⊂ D-mod(Z)
denote the full subcategory of bounded complexes whose cohomology sheaves are
coherent (i.e., locally finitely generated) D-modules.

If Z is quasi-compact, we have D-modcoh(Z) = D-mod(Z)c, and this subcategory
generates D-mod(Z). I.e.,

D-mod(Z) 	 Ind(D-modcoh(Z)).

In fact, this is a formal consequence of the following three facts: (a) that the func-
tor oblvD-mod(Z) is conservative; (b) that indD-mod(Z) sends Coh(Z) to D-modcoh(Z)
(which follows from Kashiwara’s lemma), and (c) that for Z quasi-compact Coh(Z)
compactly generates IndCoh(Z).

5.2 The de Rham cohomology functor on DG schemes

5.2.1 Let f : Z1 → Z2 be a quasi-compact morphism between DG schemes. In this
case the classical theory of D-modules constructs a continuous functor:

fdR,∗ : D-mod(Z1)→ D-mod(Z2).

The following are the some of the key features of this functor:

(i) The assignment f � fdR,∗ is compatible with composition of functors in the
natural sense.

(ii) For f proper, the functor fdR,∗ is the left adjoint to f !.
(iii) For f an open embedding, the functor fdR,∗ is the right adjoint to f !.
(iv) For a Cartesian square

Z ′1
g1−−−−→ Z1

f ′
⏐
⏐
�

⏐
⏐
�f

Z ′2
g2−−−−→ Z2

we have a canonical isomorphism of functors D-mod(Z1)→ D-mod(Z ′2)

f ′dR,∗ ◦ g!
1 	 g!

2 ◦ fdR,∗. (5.6)
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However, even the formulation of these properties in the framework on ∞-cate-
gories is not straightforward. For example, it is not so easy to formulate the com-
patibility between the isomorphisms (i) and (iv), and also between (ii) or (iii) and
(iv).19

At the same time, an∞-category formulation is necessary for the treatment of the
category of D-modules on stacks, as the latter involves taking limits in DGCatcont.

5.2.2 We shall adopt the approach taken in [FG12], Section 1.4.3, which was ini-
tially suggested by J. Lurie; it will be developed in detail in [GR12].

Namely, let (DGSchaft)corr be the (∞, 1)-category whose objects are the same as
those of DGSchaft, and where the ∞-groupoid of 1-morphisms Maps(DGSchaft)corr(Z1,
Z2) is that of correspondences

Z1 Z2.

Z1,2

fl

����
��

��
�� fr

���
��

��
��

�

(5.7)

Compositions in this category are defined by forming Cartesian products:

Z2,3 ◦ Z1,2 = Z1,3 :

Z1 Z2

Z1,2

Z3.

Z2,3

Z1,3

����
��

��
��

���
��

��
��

�

����
��

��
��

���
��

��
��

�

����
��

��
��

���
��

��
��

�

(5.8)

5.2.3 The category (DGSchaft)corr contains DGSchaft and (DGSchaft)op as 1-full
subcategories where we restrict 1-morphisms by requiring that fl (resp., fr) be an
isomorphism.

The theory of D-modules is a functor

D-mod(DGSchaft)corr : (DGSchaft)corr → DGCatcont .

At the level of objects, this functor assigns to Z ∈ DGSchaft the category
D-mod(Z).

19 Note that when f is either proper or open, there is a canonical map in one direction in (5.6)
by adjunction. So, in particular, we must have a compatibility condition that says that in either
of these cases, the two maps in (5.6): one arising by adjunction and the other by the data of (iv),
must coincide.
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The restriction of D-mod(DGSchaft)corr to DGSchaft ⊂ (DGSchaft)corr, denoted
D-modDGSchaft , expresses our ability to take fdR,∗ : D-mod(Z1) → D-mod(Z2), and
corresponds to diagrams of the form

Z1 Z2.

Z1

id

����
��

��
�� f

���
��

��
��

�

(5.9)

The restriction of D-mod(DGSchaft)corr to (DGSchaft)op ⊂ (DGSchaft)corr, which
we denote by D-mod!

DGSchaft
, expresses our ability to take f ! : D-mod(Z2) →

D-mod(Z1), and corresponds to diagrams of the form

Z1 Z2.

Z2

f

����
��

��
�� id

���
��

��
��

�

(5.10)

The base change isomorphism of Section 5.2.1(iv) is encoded by the functoriality
of D-mod.

As is explained in [FG12], Sections 1.4.5 and 1.4.6, the datum of the functor
D-mod(DGSchaft)corr also contains the data of adjunction for (f !, fdR,∗) when f is an
open embedding, and for (fdR,∗, f !) when f is proper.

Unfortunately, there currently is no reference in the literature for the construction
of the functor D-mod(DGSchaft)corr with the above properties. However, a construction
of a similar framework for IndCoh instead of D-mod has been indicated in [Gai11],
Sections 5 and 6.

5.2.4 An additional part of data in the functor D-mod(DGSchaft)corr is the following
one:

The functor D-mod!
DGSchaft

: (DGSchaft)op → DGCatcont comes equipped with a
natural transformation

oblvD-mod : D-mod!
DGSchaft

→ IndCoh!
DGSchaft

,

where

IndCoh!
DGSchaft

: (DGSchaft)op → DGCatcont

is the functor of Section 3.2.1.20

The functor D-modDGSchaft : DGSchaft → DGCatcont comes equipped with a
natural transformation

indD-mod : IndCohDGSchaft → D-modDGSchaft ,

20 For an individual morphism, this datum is the one in Section 5.1.5.
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where

IndCohDGSchaft : DGSchaft → DGCatcont

is the functor of [Gai11, Section 5.6.1]. In particular, for a morphism f : Z1 → Z2

of quasi-compact schemes, we have a commutative diagram

D-mod(Z1)
indD-mod(Z1)←−−−−−−−− IndCoh(Z1)

fdR,∗

⏐
⏐
�

⏐
⏐
�f IndCoh

∗

D-mod(Z1)
indD-mod(Z1)←−−−−−−−− IndCoh(Z1).

(5.11)

Remark 5.2.5. In principle, one would like to formulate the compatibility of
the entire datum of the functor D-mod(DGSchaft)corr with that of the functor
IndCoh(DGSchaft)corr:all;all of [Gai11, Section 5.6.1]. However, we cannot do this while
staying in the world of (∞, 1)-categories, as some of the natural transformations
involved are not isomorphisms.

5.2.6 Projection formula. As in (3.4), from (5.6) one obtains that f satisfies pro-
jection formula for D-modules: for a map f : Z1 → Z2 of quasi-compact DG schemes,
and Mi ∈ D-mod(Zi), i = 1, 2 we have a canonical isomorphism

M2 ⊗ fdR,∗(M1) 	 fdR,∗(f !(M2)⊗M1), (5.12)

functorial in Mi.

5.2.7 De Rham cohomology. For Z ∈ DGSchaft we obtain a functor

ΓdR(Z,−) := (pZ)dR,∗ : D-mod(Z)→ Vect,

where pZ : Z → pt.
This functor is co-representable by an object kZ ∈ D-mod(Z), i.e.,

ΓdR(Z,M) = Maps(kZ ,M). (5.13)

As Z was assumed quasi-compact, the functor ΓdR(Z,−) is continuous, so kZ ∈
D-mod(Z) is compact.

Remark 5.2.8. By Section 5.1.4, the object kZ ∈ D-mod(Z) is defined for any Z,
not necessarily quasi-compact. However, in general, it will fail to be compact as an
object of D-mod(Z).

5.2.9 Let f : Z1 → Z2 be a map between quasi-compact schemes. Since

ΓdR(Z1,−) 	 ΓdR(Z2, fdR,∗(−)),

we obtain that the partially defined left adjoint f∗dR to fdR,∗ is defined on kZ2 , and
we have a canonical isomorphism

f∗dR(kZ2) 	 kZ1 .
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5.3 Verdier duality on DG schemes

5.3.1 For a DG scheme Z, there is a (unique) involutive anti self-equivalence

D
Verdier
Z : (D-modcoh(Z))op ∼−→ D-modcoh(Z)

(called Verdier duality) such that

MapsD-mod(Z)(D
Verdier
Z (M),M′) 	 ΓdR(Z,M

!⊗M′), (5.14)

for M ∈ D-modcoh(Z), M′ ∈ D-mod(Z).
Let ωZ and kZ be as in Section 5.1.5 and 5.2.7. Then ωZ , kZ ∈ D-modcoh(Z) and

kZ 	 D
Verdier
Z (ωZ).

5.3.2 Verdier and Serre duality. If F ∈ Coh(Z) then indD-mod(Z)(F) ∈
D-modcoh(Z). We now claim:

Lemma 5.3.3. There exists a canonical isomorphism

D
Verdier
Z

(

indD-mod(Z)(F)
) 	 indD-mod(Z)

(

D
Serre
Z (F)

)

. (5.15)

Proof. Follows by combining isomorphisms (5.14), (5.11) and (5.1), and Proposi-
tion 4.4.4 (for DG schemes). ��

5.3.4 Ind-extending Verdier duality. For Z quasi-compact, ind-extending Verdier
duality, by Section 4.1.3(ii’), we obtain an identification

DVerdier
Z : D-mod(Z)∨ 	 D-mod(Z), (5.16)

where D-mod(Z)∨ is the dual DG category (see Section 4.1.1).
By (5.14), the corresponding pairing

εD-mod(Z) : D-mod(Z)⊗D-mod(Z)→ Vect

equals the composition

D-mod(Z)⊗D-mod(Z)→ D-mod(Z × Z)
Δ!

Z−→ D-mod(Z)
ΓdR(Z,−)−→ Vect .

As in the proof of Proposition 4.4.9, the base change isomorphism implies that
the co-evaluation functor

μD-mod(Z) : Vect→ D-mod(Z)⊗D-mod(Z)

is given by

Vect ωZ⊗−−→ D-mod(Z)
ΔdR,∗−→ D-mod(Z × Z) 	 D-mod(Z)⊗D-mod(Z).
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The latter implies, in turn, that for a map of quasi-compact DG schemes f :
Z1 → Z2, under the identifications

DVerdier
Zi

: D-mod(Zi)∨ 	 D-mod(Zi),

we have:

(f !)∨ 	 fdR,∗ (5.17)

(see Section 4.1.4 for the notion of dual functor).
Note also that by [GL:DG, Lemma 2.3.3], the isomorphism (5.15) can also be

formulated as saying that

(oblvD-mod(Z))
∨ 	 indD-mod(Z)

with respect to the identifications

DVerdier
Z : D-mod(Z)∨ 	 D-mod(Z) and DSerre

Z : (IndCoh(Z))∨ 	 IndCoh(Z),

given by Verdier and Serre dualities, respectively.

5.3.5 Smooth pullbacks. If f is smooth then the functor fdR,∗ admits a left
adjoint, which we denote by f∗dR. Being a left adjoint, the functor f∗dR is contin-
uous. If f is of constant relative dimension n, we have a canonical isomorphism

f∗dR 	 f ![−2n]. (5.18)

One has

f∗dR(D-modcoh(Z2))⊂D-modcoh(Z1), f !(D-modcoh(Z2))⊂D-modcoh(Z1), (5.19)

D
Verdier
Z1

(f∗dR(M)) 	 f !
(

D
Verdier
Z2

(M)
)

, M ∈ D-modcoh(Z2). (5.20)

Remark 5.3.6. Assume that Z1 and Z2 are quasi-compact (which we can, as
the above assertions are Zariski-local). Recall that in this case D-mod(Zi)c =
D-modcoh(Zi). We obtain that (5.19) follows from the fact that f∗dR preserves com-
pactness (because it has a continuous right adjoint), and (5.20) follows from formula
(5.17) combined with [GL:DG, Lemma 2.3.3].

5.3.7 For M′,M′′ ∈ D-mod(Z2) by adjunction and the projection formula (5.12) we
obtain a map

f∗dR(M′
!⊗M′′)→ f∗dR(M′)

!⊗ f !(M′′). (5.21)

However, it easily follows from (5.18) that (5.21) is an isomorphism.
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6 D-Modules on Stacks

In this section we review the theory of D-modules on algebraic stacks to be used
later in the paper. On the one hand, this theory is well-known, at least at the level
of triangulated categories. However, as we could not find a single source that con-
tains all the relevant facts, we decided to include the present section for the reader’s
convenience.

6.1 D-modules on prestacks

6.1.1 Let Y be a prestack. The category D-mod(Y) is defined as

lim←−
(S,g)∈((DGSchaft)/Y)op

D-mod(S), (6.1)

where we view the assignment

(S, g) � D-mod(S)

as a functor between ∞-categories

((DGSchaft)/Y)op → DGCatcont,

obtained by restriction under the forgetful map (DGSchaft)/Y → DGSchaft of the
functor

D-mod!
DGSchaft

: DGSchop
aft → DGCatcont .

Concretely, an object M of D-mod(Y) is an assignment for every g : S → Y of an
object g!(M) ∈ D-mod(S), and a homotopy-coherent system of isomorphisms

f !(g!(M)) 	 (g ◦ f)!(M) ∈ D-mod(S′)

for maps of DG schemes f : S′ → S.
In the above limit one can replace the category of quasi-compact DG schemes

by its subcategory of affine DG schemes, or by a larger category of all DG schemes;
this is due to the Zariski descent property of D-modules, see Section 5.1.4.

In addition, using the fppf descent property for D-modules (see Section 5.1.4), we
can replace the categories (DGSchaft)/Y (resp., (DGSchaff

aft)/Y) by any of the indexing
categories A as in Section 1.2.5. The proof follows from [Gai11, Corollary 11.2.4].

6.1.2 According to [GR12, Corollary 2.3.9], we can equivalently define D-mod(Y)
as

IndCoh(YdR),

where YdR is as an [GR12, Section 1.1.1].
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6.1.3 Tautologically, for a morphism π : Y1 → Y2 between prestacks, we have a
functor

π! : D-mod(Y2)→ D-mod(Y1).

In particular, for any prestack Y, there exists a canonically defined object

ωY ∈ D-mod(Y)

equal to (pY)!(k) for pY : Y→ pt.

6.1.4 It follows from Section 5.1.10 that if a morphism of prestacks π : Y1 → Y2

induces an isomorphism of the underlying classical prestacks clY1 → clY2, then the
functor

π! : D-mod(Y2)→ D-mod(Y1)

is an equivalence.
So, for a prestack Y, the category D-mod(Y) only depends on the underlying

classical prestack.

6.1.5 Just as in Section 5.1.7, for a pair of prestacks Y1 and Y2 one has a canonical
(continuous) functor

D-mod(Y1)⊗D-mod(Y2)→ D-mod(Y1 × Y2)

and a functor of tensor product

D-mod(Y)⊗D-mod(Y)→ D-mod(Y)

defined as the composition

D-mod(Y)⊗D-mod(Y)→ D-mod(Y× Y)
Δ!

Y−→ D-mod(Y).

6.1.6 The natural transformation oblvD-mod of Section 5.2.4 gives rise to a contin-
uous conservative functor

oblvD-mod(Y) : D-mod(Y)→ IndCoh(Y),

which is compatible with morphisms of prestacks under !-pullbacks.
As in the case of DG schemes, we can interpret the functor oblvD-mod as pullback

along the tautological morphism of prestacks Y→ YdR.
However, it is not clear, and most probably not true, that for a general prestack

this functor admits a left adjoint. Neither is it possible for a general prestack Y

to consider the functor ′oblvD-mod(Y) (because the functor ΨY is a feature of DG
schemes or algebraic stacks).

In addition, the functor oblvleft
D-mod(−) for schemes mentioned in Section 5.1.16

gives rise to a functor

oblvleft
D-mod(Y) : D-mod(Y)→ QCoh(Y),

which is compatible with morphisms of prestacks under !-pullbacks on D-mod and
usual *-pullbacks on QCoh.
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6.1.7 Quasi-compact schematic morphisms. Let π : Y1 → Y2 is a schematic and
quasi-compact morphism between prestacks. The functor of (dR, ∗)-pushforward for
DG schemes gives rise to a continuous functor

πdR,∗ : D-mod(Y1)→ D-mod(Y2).

As in the case of the (IndCoh, ∗)-pushforward, one constructs the functor πdR,∗ as
follows:

For (S2, g2) ∈ (DGSchaft)/Y, we set

g!
2(πdR,∗(−)) := (πS)dR,∗ ◦ g!

1(−)

for the morphisms in the Cartesian diagram

S1
g1−−−−→ Y1

πS

⏐
⏐
�

⏐
⏐
�π

S2
g2−−−−→ Y2.

The data of compatibility of the assignment

(S2, g2) � (πS)dR,∗ ◦ g!
1(−)

under !-pullbacks for maps in (DGSchaft)/Y is given by base change isomorphisms
(5.6).

Moreover, the formation πdR,∗ is also endowed with base change isomorphisms
with respect to !-pullbacks for Cartesian squares of prestacks

Y′1 −−−−→ Y1

π′
⏐
⏐
�

⏐
⏐
�π

Y′2 −−−−→ Y2,

where the vertical maps are schematic and quasi-compact.
By construction, the projection formula for morphisms between quasi-compact

schemes, i.e., (5.12), implies one for π. That is, we have a functorial isomorphism

M2

!⊗ πdR,∗(M1) 	 πdR,∗(π!(M2)
!⊗M1), Mi ∈ D-mod(Yi). (6.2)

Remark 6.1.8. We emphasize again that the isomorphisms neither in base change
nor in projection formula arise by adjunction from a priori existing maps.

6.1.9 Let Yi be prestacks, and let π : Y1 → Y2 be a morphism which is k-represent-
able for some k. As in the case of IndCoh, we will only need the cases of either π
being schematic, or 1-representable. Assume also that π is smooth.
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In this case we also have a naturally defined functor

π∗dR : D-mod(Y2)→ D-mod(Y1).

By (5.18), if π is of relative dimension n, we have a canonical isomorphism

π∗dR 	 π![−2n].

For M′,M′′ ∈ D-mod(Y2), from (5.21) we obtain a canonical isomorphism

π∗dR(M′
!⊗M′′)→ π∗dR(M′)

!⊗ π!(M′′), (6.3)

Finally, assuming that π is, in addition, schematic and quasi-compact, we obtain
that the functors (π∗dR, πdR,∗) are naturally adjoint.

6.2 D-modules on algebraic stacks. From now until the end of this section
we shall assume that Y is an algebraic stack.

6.2.1 As was mentioned above, in the formation of the limit (6.1), one can replace
the category (DGSchaft)/Y by DGSch/Y,smooth.

I.e., the functor

D-mod(Y) 	 lim←−
(S,g)∈((DGSchaft)/Y)op

D-mod(S)→ lim←−
(S,g)∈(DGSch/Y,smooth)op

D-mod(S),

(6.4)

obtained by restriction, is an equivalence.

6.2.2 Furthermore, using (DGSch/Y,smooth)op as indexing category, D-mod(Y) can
be also realized as the limit

lim←−
(S,g)∈(DGSch/Y,smooth)op

D-mod(S), (6.5)

which is formed with f∗dR : D-mod(S′) → D-mod(S) as transition functors. (This
follows from Section 5.3.5.)

In addition, choosing a smooth atlas f : Z → Y, we have:

D-mod(Y) 	 Tot (D-mod(Z•/Y)) , (6.6)

where the cosimplicial category is formed using either !-pullback or (dR, ∗)-pullback
functors along the simplicial DG scheme Z•/Y. (The assertion for !-pullbacks follows
from the smooth descent property of D-modules, and that for (dR, ∗)-pullbacks from
Section 5.3.5.)
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6.2.3 For an algebraic stack Y, the category D-mod(Y) has a (unique) t-structure
such that

D-mod(Y)>0 = {F ∈ D-mod(Y) | oblvD-mod(Y)(F) ∈ IndCoh(Y)>0} .
The properties of this t-structure formulated in Section 5.1.11 for DG schemes imply
similar properties for stacks. In particular, the t-structure is left-complete and com-
patible with colimits.

6.3 The induction functor. We are going to show that for algebraic stacks,
the functor

oblvD-mod(Y) : D-mod(Y)→ IndCoh(Y)

admits a left adjoint, denoted indD-mod(Y), and establish some properties of this
functor.

For the main theorems of this paper we will only need the induction functor in
the case when Y is a classical (i.e., non-derived) algebraic stack. However, for the
sake of completeness, the discussion in this subsection is applicable do derived stacks
as well.

Remark 6.3.1. A more streamlined treatment will be given in [GR12], where the
functor of direct image on IndCoh will be developed for morphisms such as Y→ YdR,
where Y is an algebraic stack. The latter functor is the sought-for induction functor.

6.3.2 Let S be a DG scheme equipped with a smooth map g : S → Y. Consider the
category D-mod(S)relY of relative right D-modules. By definition,

D-mod(S)relY := IndCoh(SdR ×
YdR

Y).

We have the forgetful functors

oblvD-mod(S)relY
: D-mod(S)relY → IndCoh(S)

and

oblvD-mod(S)rel→abs
: D-mod(S)→ D-mod(S)relY

defined as pullbacks along the tautological morphisms

S → SdR ×
YdR

Y and SdR ×
YdR

Y→ SdR,

respectively. We have:

oblvD-mod(S)relY
◦ oblvD-mod(S)rel→abs

	 oblvD-mod(S).

It is easy to see that the functor oblvD-mod(S)relY
is conservative. The category

D-mod(S)relY carries a t-structure characterized by the property that

D-mod(S)>0
relY

= {F ∈ D-mod(S)relY |oblvD-mod(S)relY
(F) ∈ IndCoh(S)>0}.
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6.3.3 For a morphism f : S′ → S in DGSch/Y,smooth, we have a naturally defined
functor

f ! : D-mod(S)relY → D-mod(S′)relY ,

which makes the diagram

IndCoh(S′)
oblvD-mod(S′)relY←−−−−−−−−−−− D-mod(S′)relY

oblvD-mod(S′)rel→abs←−−−−−−−−−−−− D-mod(S′)

f !

�
⏐
⏐

�
⏐
⏐f !

�
⏐
⏐f !

IndCoh(S)
oblvD-mod(S)relY←−−−−−−−−−− D-mod(S)relY

oblvD-mod(S)rel→abs←−−−−−−−−−−−− D-mod(S)

commute.
The assignment S � D-mod(S)relY has a structure functor of ∞-categories:

(D-mod!
relY)DGSch/Y,smooth : (DGSch/Y,smooth)

op → DGCatcont,

which is equipped with natural transformations

IndCoh!
DGSch/Y,smooth

oblvD-modrelY←− (D-mod!
relY)DGSch/Y,smooth

oblvD-modrel→abs←− D-mod!
DGSch/Y,smooth

.

6.3.4 For (S, g) ∈ DGSch/Y,smooth, pullback along the morphism

SdR ×
YdR

Y→ Y

defines a functor

IndCoh(Y)→ D-mod(S)relY ,

which by a slight abuse of notation we shall denote by g!. I.e.,

g! 	 oblvD-mod(S)relY
◦ g! : IndCoh(Y)→ IndCoh(S).

Furthermore, we have a functor

IndCoh(Y)→ lim←−
(S,g)∈(DGSch/Y,smooth)op

D-mod(S)relY . (6.7)

Lemma 6.3.5. The functor (6.7) is an equivalence.

Proof. The inverse functor to (6.7) is given by the composition

lim←−
(S,g)∈(DGSch/Y,smooth)op

D-mod(S)relY
oblvD-modrelY−→ lim←−

(S,g)∈(DGSch/Y,smooth)op

IndCoh(S)

	 IndCoh(Y). ��
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6.3.6 Assume for a moment that Y is a classical (i.e., non-derived) stack. Then for
(S, g) ∈ DGSch/Y,smooth, the DG scheme S is also classical.

In this case the category D-mod(S)relY can be described as modules over the Lie
algebroid TS/Y of vector fields on S vertical with respect to the map g : S → Y. The
following is easy:

Lemma 6.3.7. The functor oblvD-mod(S)relY
admits a left adjoint; we shall denote

this left adjoint by indD-mod(S)relY
. Furthermore,

(a) The composition

oblvD-mod(S)relY
◦ indD-mod(S)relY

: IndCoh(S)→ IndCoh(S)

has a filtration indexed by non-negative integers with the i-th successive quo-
tient isomorphic to the functor Symi(TS/Y)⊗−.

(b) The functors indD-mod(S)relY
and oblvD-mod(S)relY

are both t-exact.
(c) Every object F ∈ D-mod(S)relY admits a resolution (the relative de Rham com-

plex) by objects of the form

indD-mod(S)relY

(

Symk(TS/Y[1])⊗ indD-mod(S)relY
(F)

)

,

k ∈ [0,dim. rel.(S/Y)].
(d) For F ∈ IndCoh(S) and M ∈ D-mod(S)relY , the natural map

indD-mod(S)relY
(F

!⊗ oblvD-mod(S)relY
(M))→ indD-mod(S)relY

(F)
!⊗M

is an isomorphism.

We obtain:

Corollary 6.3.8. The functor oblvD-mod(S)rel→abs
admits a left adjoint; we shall

denote this left adjoint by indD-mod(S)rel→abs
. Furthermore,

(a) The functor indD-mod(S)rel→abs
is right t-exact and has cohomological amplitude

bounded by dim. rel.(S/Y).
(b) For F ∈ D-mod(S)relY and M ∈ D-mod(S), the natural map

indD-mod(S)rel→abs
(F

!⊗ oblvD-mod(S)rel→abs
(M))→ indD-mod(S)rel→abs

(F)
!⊗M

is an isomorphism.

Proof. By Lemma 6.3.7, it is enough to consider (and prove the existence of) the
functor indD-mod(S)rel→abs

applied to objects of the form

indD-mod(S)relY
(F), F ∈ IndCoh(Y).

However,

indD-mod(S)rel→abs
(indD-mod(S)relY

(F)) 	 indD-mod(S)(F)

and the assertion follows. ��
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Remark 6.3.9. One can show that the cohomological amplitude of indD-mod(S)rel→abs

is in fact bounded by max
y∈Y(k)

(dim(Aut(y))).

Remark 6.3.10. The notion of Lie algebroid is familiar for classical schemes. Its
analog in the framework of derived algebraic geometry will appear in [GR12]. Assum-
ing this theory, the assertions of of Section 6.3.6 are equally applicable when Y is a
derived algebraic stack.

6.3.11 Let Y be again a derived algebraic stack. We have:

Proposition 6.3.12.

(a) The functor oblvD-mod(S)relY
admits a left adjoint, denoted indD-mod(S)relY

. Both
functors indD-mod(S)relY

and oblvD-mod(S)relY
are t-exact.

(a’) For F ∈ IndCoh(S) and M ∈ D-mod(S)relY , the natural map

indD-mod(S)relY
(F

!⊗ oblvD-mod(S)relY
(M))→ indD-mod(S)relY

(F)
!⊗M

is an isomorphism.
(b) The functor oblvD-mod(S)rel→abs

admits a left adjoint, indD-mod(S)rel→abs
. The

functor indD-mod(S)rel→abs
is right t-exact and is of cohomological amplitude

bounded by dim. rel.(S/Y).
(b’) For F ∈ D-mod(S)relY and M ∈ D-mod(S), the natural map

indD-mod(S)rel→abs
(F

!⊗ oblvD-mod(S)rel→abs
(M))→ indD-mod(S)rel→abs

(F)
!⊗M

is an isomorphism.

Proof. Both assertions easily reduce to the case when Y is classical, and there they
follow from Lemma 6.3.7 and Corollary 6.3.8, respectively. ��
Remark 6.3.13. In terms of the formalism that will be explained in [GR12], the
functors

indD-mod(S)relY
and indD-mod(S)rel→abs

correspond to the direct image along the morphisms

S → SdR ×
YdR

Y and SdR ×
YdR

Y→ SdR,

respectively.

6.3.14 Let f : S′ → S be again a morphism in DGSch/Y,smooth). By adjunction, the
diagram
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D-mod(S′)relY
indD-mod(S′)rel→abs−−−−−−−−−−−−→ D-mod(S′)

f !

�
⏐
⏐

�
⏐
⏐f !

D-mod(S)relY
indD-mod(S)rel→abs−−−−−−−−−−−→ D-mod(S)

(6.8)

commutes up to a natural transformation.

Lemma 6.3.15. The diagram (6.8) commutes (i.e., the natural transformation above
is an isomorphism).

Proof. The assertion reduces to the case when Y is classical, and there it follows
from Section 6.3.6. ��

Thus, we obtain that the functors (S, g) �→ indD-mod(S)rel→abs
give rise to a natural

transformation

(D-mod!
relY)DGSch/Y,smooth

indD-modrel→abs−→ D-mod!
DGSch/Y,smooth

.

In particular, the assignment

(F ∈ IndCoh(Y)) �→ indD-mod(S)rel→abs
(g!(F))

defines a functor

IndCoh(Y)→ lim←−
(S,g)∈(DGSch/Y,smooth)op

D-mod(S) = D-mod(Y).

We denote this functor by indD-mod(Y).

Lemma 6.3.16. The functor indD-mod(Y) is the left adjoint of oblvD-mod(Y).

Proof. This follows from Lemma 6.3.5. ��

6.3.17 Being a left adjoint of a left t-exact functor, the functor indD-mod(Y) is right
t-exact.

However, unlike the case of DG schemes, indD-mod(Y) is no longer t-exact, even
when Y is a smooth classical stack. Rather, we have the following:

Lemma 6.3.18. Assume that Y is quasi-compact. Then the functor indD-mod(Y) is
of finite cohomological amplitude.

Proof. Follows from Proposition 6.3.12(b). ��

6.3.19 In the sequel we shall use the following property of the functor indD-mod(Y).
First, as in the case of DG schemes, for F ∈ IndCoh(Y) and M ∈ D-mod(Y), by

adjunction we obtain a map

indD-mod(Y)

(

F
!⊗ oblvD-mod(Y)(M)

)

→ indD-mod(Y)(F)
!⊗M. (6.9)

Lemma 6.3.20. The map (6.9) is an isomorphism.

Proof. Lemma 6.3.5 reduces the assertion to that of Proposition 6.3.12(b’). ��
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6.3.21 As in the case of DG schemes, it follows that indD-mod(Y) canonically factors
through a functor

′indD-mod(Y) : QCoh(Y)→ D-mod(Y).

If Y is eventually coconnective, it is a left adjoint of the functor
′oblvD-mod(Y) : D-mod(Y)→ QCoh(Y),

while the latter is conservative for any algebraic stack.
In addition, we have the functors

indleft
D-mod(Y) : QCoh(Y) � D-mod(Y) : oblvleft

D-mod(Y)

that are mutually adjoint when Y is eventually coconnective.
Similarly to formulas (5.4)-(5.5), for any Y, one has

′oblvD-mod(Y)(M) 	 oblvleft
D-mod(Y)(M)⊗ΨY(ωY), M ∈ D-mod(Y) (6.10)

and

indleft
D-mod(Y)(F) 	 ′indD-mod(Y)(F ⊗ΨY(ωY)), F ∈ QCoh(Y), (6.11)

where ΨY is as in Section 3.2.12.

6.4 Example: induction for the classifying stack. In this subsection we
shall consider the case of Y = BG, where G is an algebraic group, and

BG := pt /G

is its classifying stack. We shall describe the pair of adjoint functors

indD-mod(BG) : IndCoh(BG) � D-mod(BG) : oblvD-mod(BG)

more explicitly.

6.4.1 Take S = pt, and let σ denote the tautological map pt → BG. We have a
commutative diagram

D-mod(pt)relBG

oblvD-mod(pt)rel→abs←−−−−−−−−−−−− D-mod(pt)

σ!

�
⏐
⏐

�
⏐
⏐σ!

IndCoh(BG)
oblvD-mod(BG)←−−−−−−−−− D-mod(BG),

(6.12)

and according to Lemma 6.3.15, the diagram

D-mod(pt)relBG

indD-mod(pt)rel→abs−−−−−−−−−−−−→ D-mod(pt)

σ!

�
⏐
⏐

�
⏐
⏐σ!

IndCoh(BG)
indD-mod(BG)−−−−−−−−→ D-mod(BG),

(6.13)

obtained by taking the left adjoints of the horizontal arrows, is also commutative.
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6.4.2 By Section 6.3.6, we have

D-mod(pt)relBG
	 g-mod,

where g := Lie(G), and g-mod denotes the DG category of g-modules.
The functor

oblvD-mod(pt)rel→abs
: D-mod(pt)→ D-mod(pt)relBG

is the functor

triv : Vect→ g-mod

that sends a vector space to the g-module with the trivial action.
Its left adjoint

indD-mod(pt)rel→abs
: D-mod(pt)relBG

→ D-mod(pt)

is the functor

convg : g-mod→ Vect

of g-coinvariants.

6.4.3 Note that since BG is smooth, the functor

ΨBG : IndCoh(BG)→ QCoh(BG)

is an equivalence. We set by definition

Rep(G) := QCoh(BG).

6.4.4 Let us now assume that G is affine, for the duration of this subsection.
Let BG• be the Čech nerve of the map σ : pt → BG. The description of

QCoh(BG) as Tot(QCoh(BG•)) implies:

Corollary 6.4.5. The symmetric monoidal category Rep(G) identifies with
RG -comod, where RG is the regular representation of G, viewed as a cocommu-
tative Hopf algebra.

We claim that Rep(G) is in fact “the usual” DG category corresponding to the
derived category of representations of G. Indeed, according to Remark 1.2.10, we
have a canonical functor

D(Rep(G)♥)→ Rep(G), (6.14)

which identifies Rep(G) with the left-completion of D(Rep(G)♥).
However, we have:

Lemma 6.4.6. The functor (6.14) is an equivalence.

Proof. Follows from the fact that D(Rep(G)♥) is of finite cohomological dimension.
��
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6.4.7 Thus, we obtain that the commutative diagrams (6.12) and (6.13) identify
with

g-mod
trivg←−−−− Vect

�
⏐
⏐

�
⏐
⏐

Rep(G) ←−−−− D-mod(BG)

and

g-mod
coinvg−−−−→ Vect

�
⏐
⏐

�
⏐
⏐

Rep(G) −−−−→ D-mod(BG),

respectively. In both diagrams, the left vertical arrow is the functor

Rep(G)→ g-mod,
V �→ ResGg

(

V ⊗ det(g∨)[dim(G)]
)

,

where ResGg is the usual restriction functor

Rep(G)→ g-mod.

6.4.8 In particular, we obtain that the functor

indD-mod(BG) : IndCoh(BG)→ D-mod(BG),

composed with σ!, identifies with the functor Rep(G)→ Vect given by

V �→ coinvg

(

ResGg (V ⊗ det(g∨)[dim(G)])
)

. (6.15)

6.5 Additional properties of the induction functor. The goal of this sub-
section is to prove Proposition 6.5.7, which is needed for the proof of Proposi-
tion 7.1.6. As the contents of this section will not be needed elsewhere in the paper,
the reader may skip it on the first pass.

6.5.1 Let π : Ỹ → Y be a schematic and quasi-compact map of algebraic stacks.
For (S, g) ∈ DGSch/Y,smooth set

S̃ := Ỹ×
Y
S.

Let πS and g̃ denote the maps in the diagram

S̃
πS−−−−→ S

g̃

⏐
⏐
�

⏐
⏐
�g

Ỹ
π−−−−→ Y.
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In this case we have a naturally defined functor

(πS)IndCoh
∗ : D-mod(S̃)relỸ → D-mod(S)relY

that makes the following diagram commute:

D-mod(S̃)relỸ
(πS)IndCoh

∗−−−−−−→ D-mod(S)relY
oblvD-mod(S̃)rel

Ỹ

⏐
⏐
�

⏐
⏐
�oblvD-mod(S)relY

IndCoh(S̃)
πIndCoh,∗

S−−−−−→ IndCoh(S).

The following isomorphism generalizes the base-change isomorphism for IndCoh:

Lemma 6.5.2. There exists a canonical isomorphism

g! ◦ πIndCoh
∗ 	 (πS)IndCoh

∗ ◦ g̃!

as functors IndCoh(Ỹ)→ D-mod(S)relY .

6.5.3 In addition, we have the following assertion that generalizes the commutative
diagram (5.11):

Lemma 6.5.4. The diagram

D-mod(S̃)
(πS)dR,∗−−−−−→ D-mod(S)

indD-mod(S̃)rel→abs

�
⏐
⏐

�
⏐
⏐indD-mod(S)rel→abs

D-mod(S̃)relỸ
(πS)IndCoh

∗−−−−−−→ D-mod(S)relY

canonically commutes.

Remark 6.5.5. In terms of the formalism that will be explained in [GR12], the
commutativity of the diagram in Lemma 6.5.4 follows by taking direct images on
IndCoh along the morphisms in the following diagram

S̃dR ×̃
YdR

Ỹ −−−−→ SdR ×
YdR

Y

⏐
⏐
�

⏐
⏐
�

S̃dR −−−−→ SdR.

6.5.6 We now claim:

Proposition 6.5.7. For the map π : Ỹ → Y as above, the following diagram of
functors canonically commutes:
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D-mod(Ỹ)
πdR,∗−−−−→ D-mod(Y)

indD-mod(Ỹ)

�
⏐
⏐

�
⏐
⏐indD-mod(Y)

IndCoh(Ỹ)
πIndCoh

∗−−−−→ IndCoh(Y).

Proof. By Lemma 6.3.5, we need to show that for every (S, g) ∈ DGSch/Y,smooth the
functors

g! ◦ indD-mod(Y) ◦ πIndCoh
∗ and g! ◦ πdR,∗ ◦ ind

D-mod(˜Y)
, IndCoh(Ỹ)→ D-mod(S)

(6.16)

are canonically isomorphic.
We rewrite the left-hand side in (6.16) as

indD-mod(S)rel→abs
◦ g! ◦ πIndCoh

∗
Lemma 6.5.2	

	 indD-mod(S)rel→abs
◦ (πS)IndCoh

∗ ◦ g̃! Lemma 6.5.4	
	 (πS)dR,∗ ◦ indD-mod(S̃)rel→abs

◦ g̃! 	
	 (πS)dR,∗ ◦ g̃! ◦ ind

D-mod(˜Y)
	 g! ◦ πdR,∗ ◦ ind

D-mod(˜Y)
,

as required. ��
Remark 6.5.8. In terms of the formalism of [GR12], the assertion of Proposi-
tion 6.5.7 follows by taking direct images along the commutative diagram

Ỹ −−−−→ Y
⏐
⏐
�

⏐
⏐
�

ỸdR −−−−→ YdR.

7 De Rham Cohomology on an Algebraic Stack

7.1 Definition of De Rham cohomology

7.1.1 The presentation of D-mod(Y) as in (6.5) and Section 5.2.9 imply that there
exists a canonically defined object

kY ∈ D-mod(Y),

such that for every smooth morphism g : S → Y with S being a DG scheme one has

g∗dR(kY) = kZ .

We define the not necessarily continuous functor ΓdR(Y,−) : D-mod(Y) → Vect
as

ΓdR(Y,M) := MapsD-mod(Y)(kY,−).
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7.1.2 By (6.5), the functor ΓdR(Y,−) can be calculated as follows: for M ∈
D-mod(Y), we have:

ΓdR(Y,M) 	 lim←−
(S,g)∈(DGSch/Y,smooth)op

ΓdR(S, g∗dR(M)). (7.1)

More economically, for a given smooth atlas f : Z → Y, by (6.6) we have:

ΓdR(Y,M) 	 Tot
(

ΓdR(Z•/Y,M|Z•/Y)
)

,

where M|Z•/Y again denotes the (dR, ∗)-pullback.

7.1.3 Warning. Even if Y is quasi-compact and moreover, even if Y is QCA, the
functor ΓdR(Y,−) is not necessarily continuous (see the Examples in Section 7.1.4
and Section 7.2 below), which means that the object kY ∈ D-mod(Y) is not neces-
sarily compact.

See also Corollary 10.2.6 and Definition 10.2.2 below for a characterization of
those quasi-compact stacks Y for which the functor ΓdR(Y,−) is continuous.

7.1.4 Example. Let Y := BGm. Let us show that the functor ΓdR(Y,−) is
not continuous. Let A denote the graded algebra formed by Exti(kY, kY) =
H i(ΓdR(Y, kY)).

It is easy to see that A = k[u], where deg u = 2. The diagram

kY
u−→kY[2] u−→kY[4] u−→ . . . (7.2)

has a zero colimit: the pullback functor under pt → BGm is conservative and con-
tinuous, and the pullback of (7.2) to pt consists of zero maps.

However, when we apply the functor ΓdR(Y,−) to (7.2) we obtain the diagram

A
u−→A[2] u−→A[4] u−→ . . .

whose colimit is nonzero.

7.1.5 The following key calculation will be performed in Section 7.9:

Proposition 7.1.6. For F ∈ IndCoh(Y) there exists a canonical isomorphism

ΓdR(Y, indD-mod(Y)(F)) 	 ΓIndCoh(Y,F).

7.2 Example: classifying stacks. In this subsection we shall analyze the
example of Y = BG, where G is a connected algebraic group. In particular, we
will show that if G in non-unipotent, then ΓdR(BG,−) is not continuous.
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7.2.1 Assume first that G is affine. Then “non-unipotent” means that G contains
a copy of Gm. The morphism

π : BGm → BG

is schematic and quasi-compact, so the functor πdR,∗ is continuous. We have

ΓdR(BGm,−) 	 ΓdR(BG,−) ◦ πdR,∗.

In particular, the Example in Section 7.1.4 implies that the functor ΓdR(BG,−)
is non-continuous.

7.2.2 For a general connectedG, let us describe the category D-mod(BG) explicitly.
Recall (see Section 6.4) that σ denotes the morphism

pt→ BG.

The functor σ! admits a left adjoint, denoted σ!.
Since σ! is conservative, and both functors are continuous, the Barr–Beck–Lurie

theorem (see e.g. [GL:DG, Section 3.1.2]), implies that the category D-mod(BG)
identifies with that of modules for the monad σ! ◦ σ! acting on D-mod(pt) = Vect.

The above monad identifies with the associative algebra in Vect

B :=
(

MapsD-mod(BG)(σ!(k), σ!(k))
)op

.

Hence, we obtain an equivalence of categories

D-mod(BG) 	 B-mod, (7.3)

where B ∈ B-mod corresponds to the object σ!(k) ∈ D-mod(BG), which is a com-
pact generator of this category.

7.2.3 By Verdier duality

B 	 (ΓdR(G, kG))∨ , (7.4)

where the algebra structure on the right-hand side is given by the product opera-
tion G × G → G. It is well-known that, unless G is unipotent, B is isomorphic to
the exterior algebra on generators in degrees −(2mi − 1), mi ∈ Z

>0, where i runs
through some finite set.

The presentation of B given by (7.4) shows that the structure of associative alge-
bra on B canonically upgrades to that of co-commutative Hopf algebra. In particular,
B is augmented.

The augmentation module

k ∈ B-mod

corresponds to the object kBG ∈ D-mod(BG). In terms of (7.4), the augmentation
corresponds to the map pG : G→ pt.
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7.2.4 We obtain that the algebra

A := MapsD-mod(BG)(kBG, kBG)

is canonically isomorphic to the Koszul dual of B, i.e.,

A 	MapsB-mod(k, k).

Explicitly, A is a polynomial algebra on generators in degrees 2m1, ..., 2mr for mi as
above.21

In particular, this shows that k is not a compact object in B-mod (otherwise A
would have been finite-dimensional).

The functor ΓdR(BG,−) is given, in terms of (7.3), by

M �→MapsB(k,M),

so it is not continuous.

7.2.5 Let us assume once again that G is affine, and compare the above description
of the category D-mod(BG) with Section 6.4.

We obtain a pair of commutative diagrams

g-mod
trivg←−−−− Vect

�
⏐
⏐

�
⏐
⏐

Rep(G)
oblvD-mod(BG)←−−−−−−−−− B-mod,

(7.5)

and

g-mod
coinvg−−−−→ Vect

�
⏐
⏐

�
⏐
⏐

Rep(G)
indD-mod(BG)−−−−−−−−→ B-mod.

(7.6)

Note that there is a natural forgetful functor

B-mod→ Rep(G) (7.7)

corresponding to the homomorphism of Hopf algebras

B∨=ΓdR(G, kG)	MapsD-mod(G)(ωG, ωG)→MapsIndCoh(G)(ωG, ωG)	RG. (7.8)

It is easy to see that the functor

oblvD-mod(BG) : B-mod→ Rep(G)

21 Over C, the latter observation reproduces a well-known fact about the cohomology of the clas-
sifying space.
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in (7.5) equals the composition of the functor (7.7), followed by the functor

V �→ V ⊗ det(g)[−dim(G)] : Rep(G)→ Rep(G).

In particular, we obtain that the functor

V �→ coinvg(ResGg (V )) : Rep(G)→ Vect

canonically factors as

Rep(G)→ B-mod oblvB−→ Vect,

where the functor Rep(G)→ B-mod is the left adjoint to the functor in (7.7).

Remark 7.2.6. Let BG•dR denote the simplicial object of PreStk obtained by apply-
ing the functor Y �→ YdR to BG•. Equivalently, BG•dR is the Čech nerve of the map
pt→ (BG)dR.

We have:

Tot(QCoh(BG•dR)) 	 Tot(IndCoh(BG•dR)) 	 Tot(D-mod(BG•)) 	 D-mod(BG),

where the latter isomorphism is given by (6.6).
Set by definition

Rep(GdR) := Tot(QCoh(BG•dR)).

We can informally interpret the resulting adjunction Rep(G) � Rep(GdR) as coming
from the short exact sequence

1→ g→ G→ GdR → 1.

The latter will be made precise in [GR12] by considering the formal completion G∧

at 1 ∈ G, and showing that GdR 	 G/G∧ and that proving that

g-mod 	 Rep(G∧) := Tot(QCoh((G∧)•)).

7.3 Coherence and compactness on algebraic stacks

7.3.1 Let

D-modcoh(Y) ⊂ D-mod(Y)

be the full subcategory consisting of objects M ∈ D-mod(Y) such that g!(M) ∈
D-modcoh(S) for any smooth map g : S → Y, where S is a DG scheme. (Of course,
D-modcoh(Y) is not cocomplete.)

It is easy to see that coherence condition is equivalent to requiring that g∗dR(M) ∈
D-mod(S) belong to D-modcoh(S) for any smooth map g : S → Y, where S is a DG
scheme. (Indeed, for smooth maps, g∗dR and g! differ by a cohomological shift on
each connected component of S.)

It is also clear, that in either definition it suffices to consider those S that are
quasi-compact, or even affine.

Finally, it is enough to require either of the above conditions for just one smooth
atlas f : Z → Y.
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7.3.2 The object kY ∈ D-mod(Y) is always in D-modcoh(Y). On the other hand,
even if Y is quasi-compact it may happen that kY is not compact (see Section 7.1.3).

So it is not true that D-mod(Y)c equals D-modcoh(Y) for any quasi-compact
stack.22 However, we have:

Lemma 7.3.3. For any algebraic stack Y one has the inclusion

D-mod(Y)c ⊂ D-modcoh(Y). (7.9)

Proof. The proof repeats verbatim that of Proposition 3.4.2(a):
We need to show that if M ∈ D-mod(Y)c then for any smooth map g : S →

Y with S being a quasi-compact (or even affine) DG scheme, one has g∗dR(M) ∈
D-modcoh(S) = D-mod(S)c.

However, this is clear since g∗dR admits a right adjoint that commutes with co-
limits, namely gdR,∗ (see Section 6.1.7). ��

7.3.4 Verdier duality on algebraic stacks. Let us observe that there exists a
canonical involutive anti self-equivalence

D
Verdier
Y : (D-modcoh(Y))op → D-modcoh(Y) (7.10)

(called Verdier duality) such that for any smooth map g : S → Y from a scheme, we
have:

g! ◦ D
Verdier
Y 	 D

Verdier
S ◦ g∗dR.

In other words, to define (7.10) we use two different realizations of D-modcoh(Y) as
a limit: the one of (6.1) for the first copy of D-modcoh(Y), and the one of (6.5) for
the second one.

Lemma 7.3.5. For any M ∈ D-modcoh(Y) and M′ ∈ D-mod(Y) one has a canonical
isomorphism

MapsD-mod(Y)(D
Verdier
Y (M),M′) 	 ΓdR(Y,M

!⊗M′).

Proof. The two sides are calculated as limits over (S, g) ∈ (DGSch/Y,smooth)op of

MapsD-mod(S)

(

g!(DVerdier
Y (M)), g!(M′)

)

and ΓdR

(

S, g∗dR(M
!⊗M′)

)

,

respectively. By (5.14), we have

MapsD-mod(S)

(

g!(DVerdier
Y (M)), g!(M′)

)

	MapsD-mod(S)

(

D
Verdier
S (g∗dR(M)), g!(M′)

)

	 ΓdR

(

S, g∗dR(M)
!⊗ g!(M′)

)

,

so the required isomorphism follows from (6.3). ��
22 According to Corollary 10.2.7 below, D-mod(Y)c = D-modcoh(Y) for those quasi-compact stacks
that are safe in the sense of Definition 10.2.2.
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Combining Lemma 7.3.5, Proposition 4.4.4, Lemma 6.3.20 and Proposition 7.1.6,
we obtain:

Corollary 7.3.6. If F ∈ Coh(Y) then indD-mod(Y)(F) ∈ D-modcoh(Y), and we
have:

D
Verdier
Y

(

indD-mod(Y)(F)
) 	 indD-mod(Y)

(

D
Serre
Y (F)

)

. (7.11)

7.4 (dR, ∗)-pushforwards for stacks

7.4.1 If π : Y1 → Y2 is a map between algebraic stacks. We define the functor

πdR,∗ : D-mod(Y1)→ D-mod(Y2)

by

πdR,∗(M) := lim←−
(S,g)∈((DGSchaft)/Y1,smooth)op

(π ◦ g)dR,∗(g∗dR(M)), (7.12)

where (π ◦ g)dR,∗ is understood in the sense of Section 6.1.7.

Remark 7.4.2. Unfortunately, we do not know how to characterize the functor
πdR,∗ intrinsically. Unless π is smooth (or, more generally, locally acyclic in an appro-
priate sense), the left adjoint to πdR,∗ will not be defined as a functor D-mod(Y2)→
D-mod(Y1), but rather on the corresponding pro-categories.

See, however, Corollary 7.8.4, which gives an explicit formula for maps into
πdR,∗(−) out of a coherent object of D-mod(Y2).

7.4.3 Warning. The functor πdR,∗ has features similar to those of the functor
π∗ discussed in Section 1.3.1. For a general morphism π, it is not continuous (see
Section 7.1.3); it does not satisfy base change (even for open embeddings) or the
projection formula (see Sections 7.6 and 7.7 below for the explanation of what this
means).

That said, the restriction of πdR,∗ to D-mod(Y1)+ behaves reasonably, as is guar-
anteed by Proposition 7.6.8.

However, on all of D-mod(Y1), the functor πdR,∗ may surprise one’s intuition; see
Section 7.8.7 for a particularly treacherous example.

7.5 Properties of the (dR, ∗)-pushforward. This subsection is devoted to
proving that πdR,∗ has some reasonable properties. As the following discussion is
purely technical (and will amount to showing that certain limits can be commuted
with certain colimits), the reader can skip it on the first pass, and return to it when
necessary.

7.5.1 One can calculate πdR,∗ more economically as follows.
Let A be a category equipped with a functor

a �→ (Sa, ga) : A→ (DGSchaft)/Y1,smooth
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with the property that the functor given by (dR, ∗)-pullback

D-mod(Y1)→ lim←−
a∈Aop

D-mod(Sa),

is an equivalence, cf. Section 1.2.5.
In Section 7.8.8 we will prove:

Lemma 7.5.2. For M1 ∈ D-mod(Y1), the map

πdR,∗(M1)→ lim←−
a∈Aop

(π ◦ gα)dR,∗ ◦ (gα)∗dR(M1)

is an isomorphism.

7.5.3 Assume for a moment that π is schematic and quasi-compact. In this case we
obtain two functors, both denoted πdR,∗. One such functor, which we shall tempo-
rarily denote by π(a)

dR,∗ was introduced in Section 6.1.7 and was specific to schematic

quasi-compact maps. Another functor, which we shall temporarily denote by π(b)
dR,∗

is the one from (7.12).
It is easy to see that there is a natural transformation

π
(a)
dR,∗ → π

(b)
dR,∗. (7.13)

We claim:

Proposition 7.5.4. The natural transformation (7.13) is an isomorphism.

Due to this proposition, we obtain that the notation πdR,∗ is unambiguous.

Proof. For M1 ∈ D-mod(Y1) we calculate π(b)
dR,∗(M1) by Lemma 7.5.2 via the cate-

gory A = (DGSchaft)/Y2,smooth, see Lemma 1.2.6.
For

(S2, g2) ∈ (DGSchaft)/Y2,smooth

consider the Cartesian diagram

S1
g1−−−−→ Y1

πS

⏐
⏐
�

⏐
⏐
�π

S2
g2−−−−→ Y2,

and we have:

(π ◦ g1)dR,∗ ◦ (g1)∗dR(M1) 	 (g2 ◦ πS)dR,∗ ◦ (g1)∗dR(M1)
	 (g2)dR,∗ ◦ (πS)dR,∗ ◦ (g1)∗dR(M1).

However, it is easy to see that the natural transformation

(g2)∗dR ◦ π(a)
dR,∗ → (πS)dR,∗ ◦ (g1)∗dR

arising by adjunction is an isomorphism.
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Hence,

(π ◦ g1)dR,∗ ◦ (g1)∗dR(M1) 	 (g2)dR,∗ ◦ (g2)∗dR ◦ π(a)
dR,∗(M1).

Passing to the limit over (S2, g2) we obtain the desired isomorphism. ��

7.5.5 Transitivity. We note the following property of the functor πdR,∗:

Lemma 7.5.6. There exists a canonical isomorphism of (non-continuous) functors

D-mod(Y1)→ Vect : ΓdR(Y1,−) 	 ΓdR(Y2, πdR,∗(−)).

Proof. Follows from the fact that the partially defined left adjoint π∗dR of πdR,∗ is
defined on kY2 and

π∗dR(kY2) 	 kY1 . ��
Let now φ : Y2 → Y3 be another morphism between algebraic stacks. It is easy

to see that there exists a natural transformation

φdR,∗ ◦ πdR,∗ → (φ ◦ π)dR,∗. (7.14)

The natural transformation is not always an isomorphism, see Section 7.8.7 for
a counterexample. In what follows we shall need the following statement, proved in
Section 7.8.5:

Proposition 7.5.7. Suppose that π is schematic and quasi-compact. Then the nat-
ural transformation (7.14) is an isomorphism.

We refer the reader to Section 7.8.6 where several more situations are given, in
which (7.14) is an isomorphism.

7.5.8 Pushforward of induced D-modules. Let π : Y1 → Y2 be as above. It is
easy to see that there exists a canonical natural transformation between functors
IndCoh(Y1)→ D-mod(Y2), namely,

indD-mod(Y2) ◦ πIndCoh
non-ren,∗ → πdR,∗ ◦ indD-mod(Y1). (7.15)

The following assertion will be proved in Section 9.3.17:

Proposition 7.5.9. Suppose that Y1 and Y2 are QCA. Then the natural transfor-
mation (7.15) is an isomorphism.

Remark 7.5.10. We do not know whether (7.15) is an isomorphism for an arbitrary
morphism of stacks. Note, however, that when Y2 = pt, this is true by Proposi-
tion 7.1.6.
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7.5.11 Note that if π is smooth, the functor πdR,∗ commutes with limits, since it
admits a left adjoint. In general, this will not be so. However, we have the following
useful property:

Lemma 7.5.12. For M ∈ D-mod(Y1), the natural map

πdR,∗(M)→ lim←−
n

πdR,∗(τ≥−n(M))

is an isomorphism.

Proof. We have:

lim←−
n

πdR,∗(τ≥−n(M)) 	 lim←−
n

lim←−
(S,g)∈((DGSchaft)/Y1,smooth)op

(π ◦ g)dR,∗(g∗dR(τ≥−n(M)))

	 lim←−
(S,g)∈((DGSchaft)/Y1,smooth)op

lim←−
n

(π ◦ g)dR,∗(g∗dR(τ≥−n(M))).

We claim that for each (S, g), the map

(π ◦ g)dR,∗(g∗dR(M))→ lim←−
n

(π ◦ g)dR,∗(g∗dR(τ≥−n(M)))

is an isomorphism.
First, since g∗dR is of bounded cohomological amplitude, we rewrite

lim←−
n

(π ◦ g)dR,∗(g∗dR(τ≥−n(M))) 	 lim←−
n

(π ◦ g)dR,∗(τ≥−n(g∗dR(M))).

Thus, we have reduced the assertion of the lemma to the case when Y1 = S is
a quasi-compact DG scheme. In this case, the functor πdR,∗ has itself a bounded
cohomological amplitude, so

lim←−
n

πdR,∗(τ≥−n(M)) 	 lim←−
n

τ≥−n(πdR,∗(M)).

Now, the desired assertion follows from the left-completeness of D-mod(Y2) in its
t-structure. ��
7.6 Base change for the (dR, ∗)-pushforward

7.6.1 Let π : Y1 → Y2 be as above, and let φ2 : Y′2 → Y2 be another morphism of
algebraic stacks.

Consider the Cartesian diagram

Y′1
φ1−−−−→ Y1

π′
⏐
⏐
�

⏐
⏐
�π

Y′2
φ2−−−−→ Y2.
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For M1 ∈ D-mod(Y1) there exists a canonically defined map

φ!
2 ◦ πdR,∗(M1)→ π′dR,∗ ◦ φ!

1(M1). (7.16)

Definition 7.6.2.

(a) The triple (φ2,M1, π) satisfies base change if the map (7.16) is an isomorphism.
(b) The pair (M1, π) satisfies base change if (7.16) is an isomorphism for any φ2.
(c) The morphism π satisfies base change if (7.16) is an isomorphism for any φ2

and M1.

7.6.3 We have the following analog of Proposition 1.3.6:

Proposition 7.6.4. Given π : Y1 → Y2, for M1 ∈ D-mod(Y1) the following condi-
tions are equivalent:

(i) (M1, π) satisfies base change.
(ii) (φ2,M1, π) satisfies base change whenever Y2 = S2 ∈ DGSchaff

aft.

(iii) For any S′2
f2→ S2

g2→ Y2 with S2, S
′
2 ∈ DGSchaff

aft, the triple (f2,MS,1, πS) satisfies
base change, where

g1 : S2 ×
Y2

Y1 → Y1, MS,1 := g!
1(M1) and πS : S2 ×

Y2

Y1 → S2.

Proof. Follows in the same way as Proposition 1.3.6 using the following observation.
Let i �→ Ci, i ∈ I be a family of cocomplete DG categories, let F i,j : Ci → Cj

denote the corresponding family of functors. Let C := lim←−
i

Ci be their limit.

For another category of indices A, let ca, a ∈ A be an A-family of objects in C,
i.e., a compatible family of objects cia ∈ Ci, a ∈ A. Denote

ci := lim←−
a

cia ∈ Ci

(recall that cocomplete DG categories are closed under limits, see Section 0.6.3).

Lemma 7.6.5. Suppose that the maps Fi,j(ci)→ cj are isomorphisms. Then

c := lim←−
a

ca ∈ C

corresponds to the system i �→ ci.

We apply this lemma as follows: the category of indices I is ((DGSch)aff/Y2
)op and

for an object i = (Z, f) ∈ I, set

Ci = D-mod(Z),

so that C = D-mod(Y2).
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We take the category of indices A to be ((DGSchaff
aft)Y1,smooth)op. For each a =

(S, g) ∈ A we set

ca := (π ◦ g)dR,∗(g∗dR(M1)),

so that c = πdR,∗(M) and for i = (Z, f)

ci = (πZ)dR,∗(f̃ !(M1)),

where

Z ×
Y2

Y1
f̃−−−−→ Y1

πZ

⏐
⏐
�

⏐
⏐
�π

Z
f−−−−→ Y2.

��
It is clear that schematic quasi-compact morphisms satisfy base change.

Remark 7.6.6. In Theorem 10.2.4 we shall show that any morphism which is safe
satisfies base change. Furthermore, in Corollary 9.3.14 we will show that for a mor-
phism between QCA stacks, a pair (M1, π) satisfies base change if M1 is safe.

7.6.7 As in Corollary 1.3.17 we have:

Proposition 7.6.8. Let π : Y1 → Y2 be a quasi-compact morphism between alge-
braic stacks. Then:

(a) For any M1 ∈ D-mod(Y1)+, the pair (M1, π) satisfies base change.23

(b) If Y2 is quasi-compact, there exists m ∈ Z such that for any n ∈ Z the functor
πdR,∗, when restricted to D-mod(Y1)≥n, maps to D-mod(Y2)≥n−m, and as such
commutes with filtered colimits.

7.7 Projection formula for the (dR, ∗)-pushforward

7.7.1 In the situation of Section 7.4.1, let M1 ∈ D-mod(Y1) and M2 ∈ D-mod(Y2)
be two objects. We claim that there is always a morphism in one direction

M2

!⊗ πdR,∗(M1)→ πdR,∗(π!(M2)
!⊗M1). (7.17)

Indeed, specifying such morphism amounts to a compatible family of maps

M2

!⊗ πdR,∗(M1)→ (π ◦ g)dR,∗
(

g∗dR

(

π!(M2)
!⊗M1

))

for (S, g) ∈ (DGSchaft)/Y1,smooth.

23 The proof uses the fact that for a morphism of affine DG schemes, the functor of !-pullback of
D-modules has a finite cohomological amplitude.
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The required map arises from the map

M2

!⊗ πdR,∗(M1)→M2

!⊗ (π ◦ g)dR,∗(g∗dR(M1))

	 (π ◦ g)dR,∗
(

(π ◦ g)!(M2)
!⊗ g∗dR(M1)

)

	 (π ◦ g)dR,∗
(

g!(π!(M2))
!⊗ g∗dR(M1)

)

	 (π ◦ g)dR,∗
(

g∗dR

(

π!(M2)
!⊗M1

))

where the second arrow is furnished by Section 6.1.7, as the morphism π ◦ g is
schematic and quasi-compact, and where the last arrow uses the isomorphism (6.3).

7.7.2 We give the following definitions:

Definition 7.7.3.

(a) The triple (M1,M2, π) satisfies the projection formula if the map (7.17) is an
isomorphism.

(b) The pair (M2, π) satisfies the projection formula if (7.17) is an isomorphism for
any M1.

(c) The pair (M1, π) satisfies the projection formula if (7.17) is an isomorphism for
any M2.

(d) The map π satisfies the projection formula if (7.17) is an isomorphism for any
M1 and M2.

We also give the following definition:

Definition 7.7.4. The morphism π strongly satisfies the projection formula if it
satisfies base change and for every S2 ∈ (DGSchaff

aft)/Y2
, the morphism

πS : S2 ×
Y2

Y1 → S2

satisfies the projection formula.

It is easy to see that if π strongly satisfies the projection formula, then it satisfies
the projection formula.

7.7.5 Examples
(i) It is easy to see that if π is schematic and quasi-compact, then π strongly

satisfies the projection formula.
(ii) In Theorem 10.2.4 we shall strengthen this to the assertion that any π which

is safe also strongly satisfies the projection formula.
(iii) In Corollary 9.3.10, we will show that if π is a morphism between QCA stacks,

and M1 ∈ D-mod(Y1) is safe, then (M1, π) satisfies the projection formula.
(iv) Suppose that π is quasi-compact. Then for any Mi ∈ D-mod(Yi)+, the triple

(M1,M2, π) satisfies the projection formula. This follows in the same way as in
Corollary 1.3.17(c), using the fact that for a quasi-compact algebraic stack Y

the functor
!⊗ on D-mod(Y) has a bounded cohomological amplitude.
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7.7.6 A counter-example. It is easy to produce an example of how the projec-
tion formula fails when M2 is not compact. E.g., take Y1 = BGm, Y2 = pt, M1 =
⊕
n≥0

kBGm
[2n] and M2 = V , where V is any infinite-dimensional vector space. Com-

puting the two sides of the projection formula via Lemma 7.5.12, it is easy to check
that the projection formula fails in this case.24

We shall now give an example of how the projection formula fails when M2 is
compact.

Take Y1 = A
1 × BGm and Y2 = A

1, with the morphism π being the projection
on the first factor:

A
1 ×BGm

p
A1×idBGm−−−−−−−→ BGm

π

⏐
⏐
�

⏐
⏐
�pBGm

A
1 p

A1−−−−→ pt .

We take M2 := indleft
D-mod(A1)(OA1) and

M1 := (pA1 × idBGm
)!

(

⊕
n≥0

kBGm
[2n]

)

.

We shall consider D-mod(A1) in the “left” realization, and in particular, with the
t-structure, for which the functor oblvleft

D-mod(A1) is t-exact.

We calculate both πdR,∗(M1) and πdR,∗(M1

!⊗ π!(M2)) using Lemma 7.5.12. We
have:

πdR,∗(M1) 	 lim←−
m

πdR,∗ ◦ (pA1 × idBGm
)!

(

⊕
m≥n≥0

kBGm
[2n]

)

and

πdR,∗(M1

!⊗ π!(M2))

	 lim←−
m

πdR,∗
(

(pA1 × idBGm
)!( ⊕

m≥n≥0
kBGm

[2n])
!⊗ π!(indleft

D-mod(A1)(OA1))
)

.

By Proposition 7.6.8(a), for every m we have

πdR,∗ ◦ (pA1 × idBGm
)!

(

⊕
m≥n≥0

kBGm
[2n]

)

	 (pA1)!
(

ΓdR(BGm, ( ⊕
m≥n≥0

kBGm
[2n]))

)

	 (pA1)!
(

⊕
m≥n≥0,l≥0

k[2(n− l)]
)

	 ⊕
m≥n≥0,l≥0

OA1 [2(n− l)].

24 Doing this exercise makes it easier to read similar but more lengthy computations below.
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In particular, the 0th cohomology of πdR,∗(M1) identifies with

Π
m≥0

OA1 ,

the countable product of copies of OA1 ∈ D-modleft(A1).
Since indleft

D-mod(A1)(OA1) is flat as an OA1-module, we obtain that the 0th coho-

mology of πdR,∗(M1)
!⊗M2 identifies with

(

Π
m≥0

OA1

)

⊗ indleft
D-mod(A1)(OA1)

(we note that in the “left” realization, the tensor product
!⊗ corresponds to the usual

tensor product ⊗ at the level of the underlying O-modules).
Note that the forgetful functor

Γ(A1,−) ◦ oblvleft
D-mod(A1) : D-mod(A1)→ Vect

commutes with limits, since it admits a left adjoint. Hence, we obtain that the 0th
cohomology of

Γ
(

A
1,oblvleft

D-mod(A1)(πdR,∗(M1)
!⊗M2)

)

identifies with
(

Π
m≥0

k[t]
)

⊗
k[t]

k[t, ∂t] 	
(

Π
m≥0

k[t]
)

⊗ V,

where V is a vector space such that k[t, ∂t] 	 k[t] ⊗ V as a k[t]-module. The key
point is that V is infinite-dimensional.

By Section 7.7.5(iv),

πdR,∗
(

(pA1 × idBGm
)!( ⊕

m≤n≥0
kBGm

[2n])
!⊗ π!(M2)

)

	 (pA1)!( ⊕
m≥n≥0,l≥0

k[2(n− l)]) !⊗ indD-mod(A1)(OA1)

	
(

⊕
m≥n≥0,l≥0

OA1 [2(n− l)]
)

⊗ indD-mod(A1)(OA1).

Hence, the 0th cohomology of

Γ
(

A
1,oblvleft

D-mod(A1)(πdR,∗(M1

!⊗ π!(M2)))
)

identifies with

Π
m≥0

k[t, ∂t] 	 Π
m≥0

(k[t]⊗ V ).
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Finally, the canonical map
(

Π
m≥0

k[t]
)

⊗ V → Π
m≥0

(k[t]⊗ V )

is not an isomorphism because V is infinite-dimensional.

7.8 Proofs of properties of the (dR, ∗)-pushforward

7.8.1 First, we are now going to prove the following assertion, which has multiple
consequences:

Lemma 7.8.2. For a map of algebraic stacks π : Y1 → Y2, and M2 ∈ D-modcoh(Y2)
and any M1 ∈ D-mod(Y1), the map

ΓdR(Y2,M2

!⊗ πdR,∗(M1))→ ΓdR(Y2, πdR,∗(π!(M2)
!⊗M1)),

induced by (7.17), is an isomorphism.

Remark 7.8.3. Note, however, that in the situation of the Lemma 7.8.2, the map
(7.17) itself does not have to be an isomorphism, see example in Section 7.7.6 above.

Proof of Lemma 7.8.2. Note that the assumption that M2 ∈ D-modcoh(Y2) implies
that the functor

M′2 �→ ΓdR(Y2,M
′
2

!⊗M2) : D-mod(Y2)→ Vect

commutes with limits. Indeed, this is because the above functor identifies with

MapsD-mod(Y2)(D
Verdier
Y2

(M2),−),

by Lemma 7.3.5.

Applying the definition of πdR,∗, we obtain that ΓdR

(

Y2, πdR,∗(M1)
!⊗M2

)

iden-

tifies with the limit over (S, g) ∈ DGSch/Y1,smooth of

ΓdR

(

Y2, (π ◦ g)dR,∗(g∗dR(M1))
!⊗M2

)

.

Since the morphism π ◦g is schematic and quasi-compact, the projection formula
(6.2) is applicable, and the latter expression can be rewritten as

ΓdR

(

Y2, (π ◦ g)dR,∗
(

g∗dR(M1)
!⊗ (π ◦ g)!(M2)

))

,

and by Lemma 7.5.6 further as

ΓdR

(

S, g∗dR(M1)
!⊗ (π ◦ g)!(M2)

)

	 ΓdR

(

S, g∗dR(M1)
!⊗ g!(π!(M2))

)

.
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Applying the isomorphism of (6.3), we rewrite the latter as

ΓdR

(

S, g∗dR

(

M1

!⊗ π!(M2)
))

.

Now, the resulting limit over (S, g) is isomorphic to ΓdR(Y1,M1

!⊗ π!(M2)) by
definition. ��

Note that Lemma 7.8.2 gives the following, somewhat more explicit character-
ization of the (dR, ∗)-pushforward functor:

Corollary 7.8.4. For π : Y1 → Y2, M1 ∈ D-mod(Y1) and M2 ∈ D-modcoh(Y2), we
have a canonical isomorphism

Maps(M2, πdR,∗(M1)) 	 ΓdR(Y1, π
!(DVerdier

Y2
(M2))

!⊗M1).

Proof. Using Lemma 7.3.5, we rewrite the left-hand side as

ΓdR(Y2,D
Verdier
Y2

(M2)
!⊗ πdR,∗(M1)),

and further, using Lemma 7.8.2, as

ΓdR(Y2, πdR,∗(π!(DVerdier
Y2

(M2))
!⊗M1)),

and finally as

ΓdR(Y1, π
!(DVerdier

Y2
(M2))

!⊗M1)

using Lemma 7.5.6. ��

7.8.5 Proof of Proposition 7.5.7. It is easy to see that for an algebraic stack Y,
the category D-mod(Y) is generated by its subcategory D-modcoh(Y). Hence, using
Lemma 7.3.5, we obtain that it is enough to show that for M1 ∈ D-mod(Y1) and
M3 ∈ D-modcoh(Y3), the map

ΓdR

(

Y3,M3

!⊗ (φdR,∗ ◦ πdR,∗(M1))
)

→ ΓdR

(

Y3,M3

!⊗ (φ ◦ π)dR,∗(M1)
)

is an isomorphism.
Applying Lemmas 7.8.2 and 7.5.6, we rewrite

ΓdR

(

Y3,M3

!⊗ (φdR,∗ ◦ πdR,∗(M1))
)

	 ΓdR

(

Y3, φdR,∗(φ!(M3)
!⊗ πdR,∗(M1))

)

	 ΓdR

(

Y2, φ
!(M3)

!⊗ πdR,∗(M1)
)

(7.18)
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and

ΓdR

(

Y3,M3

!⊗ (φ ◦ π)dR,∗(M1)
)

	 ΓdR

(

Y3, (φ ◦ π)dR,∗((φ ◦ π)!(M3)
!⊗M1)

)

	 ΓdR

(

Y1, (φ ◦ π)!(M3)
!⊗M1

)

. (7.19)

Since π is schematic and quasi-compact, the projection formula is applicable, and
we obtain

ΓdR

(

Y2, φ
!(M3)

!⊗ πdR,∗(M1)
)

	 ΓdR

(

Y2, πdR,∗(π! ◦ φ!(M3)
!⊗M1)

)

. (7.20)

Hence, using Lemma 7.5.6, we obtain that the expression in (7.18) is also iso-
morphic to

ΓdR

(

Y1, (φ ◦ π)!(M3)
!⊗M1

)

,

as required. ��

7.8.6 Note that the only non-tautological point of the proof of Proposition 7.5.7 is
the isomorphism (7.20).

Hence, more generally, we obtain that the map (7.14) is an isomorphism in the
following situations:
(i) When π satisfies the projection formula.
(ii) When φ! sends D-modcoh(Y3) to D-modcoh(Y2) (this is due to Lemma 7.8.2).

This happens, e.g., when φ is smooth.
(iii) When M1 ∈ D-mod(Y1)+ (this is due to Section 7.7.5(iv)).

7.8.7 The natural transformation (7.14) fails to be an isomorphism in the following
example.

We take Y1 = BGm, Y2 = pt and Y3 = A
1, where φ is the inclusion of 0 into A

1.
We take M1 ∈ D-mod(BGm) equal to ⊕

n≥0
kBGm

[2n]. We claim that

M3 := (φ ◦ π)dR,∗(M1) ∈ D-mod(A1)

is not supported at 0. Indeed, using the fact that the functors

Γ(A1,−) : QCoh(A1)→ Vect and oblvleft
D-mod(A1) : D-mod(A1)→ QCoh(A1)

commute with limits, we calculate Γ(A1,oblvleft
D-mod(A1)(M3)) via Lemma 7.5.12.

Note that

(φ ◦ π)dR,∗(kBGm
) 	 ⊕

m≥0
δ[−2m],

where δ is the δ-function at 0 ∈ A
1. We obtain that H0

(

Γ(A1,oblvleft
D-mod(A1)(M3))

)

is the product of N-many copies of Γ(A1,oblvleft
D-mod(A1)(δ)). In particular, the gener-

ator t ∈ Γ(A1,OA1) acts on it non-nilpotently.
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7.8.8 Proof of Lemma 7.5.2. As in the proof of Proposition 7.5.7, it suffices to
show that for M2 ∈ D-modcoh(Y2), the map

ΓdR(Y2,M2

!⊗ πdR,∗(M1))→ ΓdR

⎛

⎝Y2,M2

!⊗
⎛

⎝ lim←−
a∈Aop

(π ◦ gα)dR,∗ ◦ (gα)∗dR(M1)

⎞

⎠

⎞

⎠

is an isomorphism.
As in the proof of Lemma 7.8.2, we have:

ΓdR

⎛

⎝Y2,M2

!⊗
⎛

⎝ lim←−
a∈Aop

(π ◦ gα)dR,∗ ◦ (gα)∗dR(M1)

⎞

⎠

⎞

⎠

	 lim←−
a∈Aop

ΓdR

(

Sα, (gα)∗dR(π!(M2)
!⊗M1)

)

	 lim←−
a∈Aop

MapsD-mod(Sα)

(

kSα
, (gα)∗dR(π!(M2)

!⊗M1)
)

However, by the assumption on A, the latter expression is isomorphic to

MapsD-mod(Y1)(kY1 , π
!(M2)

!⊗M1) 	 ΓdR(Y1, π
!(M2)

!⊗M1),

which is isomorphic to

ΓdR(Y2,M2

!⊗ πdR,∗(M1)),

by Lemmas 7.8.2 and 7.5.6 ��
7.9 Proof of Proposition 7.1.6

7.9.1 First, we are going to construct a map in one direction:

ΓdR(Y, indD-mod(Y)(F))→ ΓIndCoh(Y,F). (7.21)

By definition, the left-hand side and the right-hand side are the limits over

(S, g) ∈ (DGSch/Y,smooth)
op

of

ΓdR(S, g∗dR ◦ indD-mod(Y)(F)) and ΓIndCoh(S, gIndCoh,∗(F)),

respectively.
We rewrite

ΓIndCoh(S, gIndCoh,∗(F)) 	 ΓdR(S, indD-mod(S) ◦ gIndCoh,∗(F)).
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We claim that there is a canonical map

g∗dR ◦ indD-mod(Y)(F)→ indD-mod(S) ◦ gIndCoh,∗(F)

that functorially depends on (S, g). The map in question arises by the (g∗dR, gdR,∗)
adjunction from the isomorphism of Proposition 6.5.7.

Thus, we obtain a compatible system of maps

ΓdR(S, g∗dR ◦ indD-mod(Y)(F))→ ΓIndCoh(S, gIndCoh,∗(F)), (7.22)

giving rise to the desired map (7.21).
Note, however, that the individual maps in (7.22) are not isomorphisms.

7.9.2 The following property of the map (7.21) follows from the construction. Let
π : Ỹ→ Y be a schematic and quasi-compact map.

Then for F̃ ∈ IndCoh(Ỹ) the following diagram commutes:

ΓdR(Ỹ, ind
D-mod(Ỹ)

(F̃))
(7.21)−−−−→ ΓIndCoh(Ỹ, F̃)

Lemma 7.5.6

⏐
⏐
�∼

ΓdR(Y, πdR,∗ ◦ ind
D-mod(˜Y)

(F̃))
⏐
⏐
�∼

Proposition 6.5.7

⏐
⏐
�∼

ΓdR(Y, indD-mod(Y) ◦ πIndCoh∗ (F̃))
(7.21)−−−−→ ΓIndCoh(Y, πIndCoh∗ (F̃)).

7.9.3 Two reduction steps. We note that for F ∈ IndCoh(Y), the maps

ΓdR(Y, indD-mod(Y)(F))→ lim←−
n

ΓdR(Y, indD-mod(Y)(τ
≥−n(F)))

and

ΓIndCoh(Y,F)→ lim←−
n

ΓIndCoh(Y, τ≥−n(F))

are both isomorphisms.
Another way to phrase this is that both functors are right Kan extensions of

their restrictions to IndCoh(Y)+.
Hence, in order to show that (7.21) is an isomorphism, it is enough to do so for

F ∈ IndCoh(Y)+. Passing to a Zariski cover, we may assume that Y is quasi-compact.
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7.9.4 Choose a smooth cover g : Z → Y, where Z ∈ DGSchaft, and consider its
Čech nerve Z•/Y. Let gi denote the corresponding map Zi/Y→ Y.

Consider the resulting map

F → Tot
(

(gi)IndCoh
∗ ◦ (gi)IndCoh,∗(F)

)

.

It is an isomorphism in IndCoh(Y), because the terms are uniformly bounded
below, and the corresponding map

ΨY(F)→ ΨY

(

Tot
(

(gi)IndCoh
∗ ◦ (gi)IndCoh,∗(F)

))

	 Tot
(

(gi)∗ ◦ (gi)∗(ΨY(F))
)

is an isomorphism in QCoh(Y).
Since ΓIndCoh(Y−) 	 Γ(Y,−) ◦ΨY, the map

ΓIndCoh(Y,F)→ Tot
(

ΓIndCoh(Y, (gi)IndCoh
∗ ◦ (gi)IndCoh,∗(F))

)

	

	 Tot
(

ΓIndCoh(Zi/Y, (gi)IndCoh,∗(F))
)

is also an isomorphism.

7.9.5 We claim that the map

indD-mod(Y)(F)→ Tot
(

indD-mod(Y) ◦ (gi)IndCoh
∗ ◦ (gi)IndCoh,∗(F)

)
Proposition 6.5.7	

	 Tot
(

(gi)dR,∗ ◦ indD-mod(Zi/Y) ◦ (gi)IndCoh,∗(F)
)

is an isomorphism.
This is obtained as in Corollary 1.3.17(c) using the fact that the functor

indD-mod(Y) is of bounded cohomological amplitude.
Note also that the functor ΓdR(Y,−) commutes with limits. Indeed, the functor

in question is given by MapsD-mod(Y)(kY,−).
Hence, we obtain that the natural map

ΓdR(Y, indD-mod(Y)(F))

→ Tot
(

ΓdR

(

Y, (gi)dR,∗ ◦ indD-mod(Zi/Y) ◦ (gi)IndCoh,∗(F)
))

	
Lemma 7.5.6	 Tot

(

ΓdR

(

Zi/Y, indD-mod(Zi/Y) ◦ (gi)IndCoh,∗(F)
))

is an isomorphism.
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7.9.6 Now, it follows from Section 7.9.2 that the map in (7.21) fits into the com-
mutative diagram

ΓdR(Y, indD-mod(Y)(F)) −−−−→ Tot
(

ΓdR

(

Zi/Y, indD-mod(Zi/Y) ◦ (gi)IndCoh,∗(F)
))

⏐
⏐
�

⏐
⏐
�

ΓIndCoh(Y,F) −−−−→ Tot
(

ΓIndCoh(Zi/Y, (gi)IndCoh,∗(F))
)

,

where the right vertical arrow is a co-simplicial isomorphism coming from

ΓdR

(

Zi/Y, indD-mod(Zi/Y)(−)
) 	 ΓIndCoh(Zi/Y,−).

This implies that the left vertical arrow is an isomorphism, as required. ��

8 Compact Generation of D-mod(Y)

In this section we will finally prove the result that caused out to write this paper: that
for a QCA algebraic stack Y, the category D-mod(Y) is compactly generated. After
all the preparations we have made, the proof will be extremely short. In Section 8.3
we shall establish some additional favorable properties of the category D-mod(Y).

Throughout this section, we will assume that unless specified otherwise, all our
(pre)stacks are QCA algebraic stacks in the sense of Definition 1.1.8 (in particular,
they are quasi-compact).

8.1 Proof of compact generation

Theorem 8.1.1. The category D-mod(Y) is compactly generated. More precisely,
objects of D-mod(Y) of the form

indD-mod(Y)(F), F ∈ Coh(Y) (8.1)

are compact and generate D-mod(Y).

Proof. (i) By Proposition 3.4.2, the objects of Coh(Y) are compact in IndCoh(Y).25

Since indD-mod(Y) is the left adjoint of a functor that commutes with colimits, it
sends compact objects to compact ones. So objects of the form (8.1) are compact.

(ii) By Proposition 3.5.1, Coh(Y) generates IndCoh(Y). So it remains to show
that the essential image of indD-mod(Y) generates D-mod(Y). This follows from the
fact that the functor oblvD-mod(Y) is conservative. ��
Remark 8.1.2. Note that, unlike the case of DG schemes, the subcategory

D-mod(Y)c ⊂ D-mod(Y)

is not preserved by the truncation functors. We note that this is also the case for the
category QCoh(−) on non-regular schemes. By contrast, IndCoh(−)c on schemes
and QCA algebraic stacks is compatible with the t-structure.

25 Recall that the proof of this fact is based on formula (3.21) and Theorem 1.4.2.
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8.2 Variant of the proof of Theorem 8.1.1. For the reader who prefers to
avoid the (potentially unfamiliar) category IndCoh(Y), below we give an alternative
argument, which does not use IndCoh(Y) explicitly. Since the assertion is about cat-
egorical properties of D-mod(Y), we may assume that Y is a classical stack (rather
than a DG stack).26

8.2.1 Recall the pair of adjoint functors

′indD-mod(Y) : QCoh(Y) � D-mod(Y) : ′oblvD-mod(Y),

see Section 6.3.21, and recall that ′oblvD-mod(Y) is conservative.
Hence, by Corollary 1.4.11, in order to prove Theorem 8.1.1, it is sufficient to

show that the functor ′indD-mod(Y) sends Coh(Y) ⊂ QCoh(Y) to D-mod(Y)c.
I.e., we need to show that for F ∈ Coh(Y), the functor D-mod(Y)→ Vect defined

by

M �→MapsD-mod(Y)(
′indD-mod(Y)(F),M), M ∈ D-mod(Y)

is continuous.
The idea of the proof is the same as that of Proposition 3.4.2: namely, we repre-

sent the above functor as a composition of a continuous functor

D-mod(Y)→ QCoh(Y), M �→ HomQCoh(Y)(F,
′oblvD-mod(Y)(M)) (8.2)

and the functor Γ(Y,−) : QCoh(Y) → Vect, which is also continuous by Theo-
rem 1.4.2.

The functor (8.2) is the functor of “internal Hom” from a coherent sheaf to a
D-module. The content of the proof is to show that the latter is well-defined and
has the expected properties.

8.2.2 We rewrite the expression MapsD-mod(Y)(′indD-mod(Y)(F),M) as

MapsQCoh(Y)(F,
′oblvD-mod(Y)(M)).

We introduce the object

Hom′QCoh(Y)(F,
′oblvD-mod(Y)(M)) ∈ QCoh(Y)

as follows.
Let Schaff

/Y,smooth denote the full subcategory of the category of affine schemes over
Y, where we restrict objects (S ∈ Schaff

aft, g : S → Y) to those for which g is smooth.
We restrict 1-morphisms to those f : S′ → S for which f is smooth.

For

(S, g) ∈ (Schaff
/Y,smooth)

op,

26 The same proof is applicable when Y is an eventually coconnective QCA stack.
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we set

Γ
(

S, g∗(Hom′QCoh(Y)(F,
′oblvD-mod(Y)(M)))

)

= MapsQCoh(S)

(

g!(F), ′oblvD-mod(S)(g
!(M))

)

. (8.3)

Here g! is well-defined as a functor QCoh(Y)→ QCoh(S) since g is smooth.

8.2.3 We claim:

Lemma 8.2.4. For f : S′ → S in Schaff
/Y,smooth, the natural map

f∗
(

g∗(Hom′QCoh(Y)(F,
′oblvD-mod(Y)(M)))

)

→ (g ◦ f)∗
(

Hom′QCoh(Y)(F,
′oblvD-mod(Y)(M))

)

is an isomorphism.

The proof will be given in Section 8.2.7. The above lemma ensures that the
assignment

(S, g) �→ g∗
(

Hom′QCoh(Y)(F,
′oblvD-mod(Y)(M))

)

indeed defines an object of QCoh(Y). We denote it by Hom′QCoh(Y)(F,
′oblvD-mod(Y)

(M)).
Since g! is isomorphic to g∗ up to a twist by a line bundle, we have:

MapsQCoh(Y)(F,
′oblvD-mod(Y)(M))

	 lim←−
(S,g)∈Schaff

/Y,smooth

MapsQCoh(S)

(

g∗(F), g∗(′oblvD-mod(Y)(M))
)

	 lim←−
(S,g)∈Schaff

/Y,smooth

MapsQCoh(S)

(

g!(F), g!(′oblvD-mod(Y)(M))
)

= lim←−
(S,g)∈Schaff

/Y,smooth

Γ
(

S, g∗(Hom′QCoh(Y)(F,
′oblvD-mod(Y)(M)))

)

= Γ
(

Y,Hom′QCoh(Y)(F,
′oblvD-mod(Y)(M))

)

.

Applying Theorem 1.4.2(i), we obtain that it suffices to show that the functor

M �→ Hom′QCoh(Y)(F,
′oblvD-mod(Y)(M))

commutes with colimits in M.
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Remark 8.2.5. A similar manipulation shows that for F1 ∈ QCoh(Y),

MapsQCoh(Y)(F1 ⊗ F, ′oblvD-mod(Y)(M))

	MapsQCoh(Y)

(

F1,Hom′QCoh(Y)(F,
′oblvD-mod(Y)(M))

)

;

in other words, Hom′QCoh(Y)(F,
′oblvD-mod(Y)(M)) is the internal Hom object

HomQCoh(Y)(F,
′oblvD-mod(Y)(M)).

8.2.6 Now let us prove continuity of the functor (8.2). Since for (S, g) ∈
Schaff

/Y,smooth, the functor g∗ is continuous, it suffices to show that for every (S, g) as
above, the functor

M �→ g∗(Hom′QCoh(Y)(F,
′oblvD-mod(Y)(M)))

is continuous.
We rewrite

Γ
(

S, g∗(Hom′QCoh(Y)(F,
′oblvD-mod(Y)(M)))

)

	MapsD-mod(S)

(
′indD-mod(S)(g

!(F)), g!(M)
)

. (8.4)

Now, g!(F) ∈ Coh(S), and since S is a scheme, the functor ′indD-mod(S) is known to
send Coh(S) to D-mod(S)c. This implies that the right-hand side in (8.4) commutes
with colimits in M. ��

8.2.7 Proof of Lemma 8.2.4. This will be parallel to the proof of Lemma 3.4.4.
Let f : S′ → S be a smooth map between affine schemes. Let F be an object of

Coh(S), and M an object of D-mod(S). We claim that the natural map

H0
(

f∗
(

HomQCoh(S)(F,
′oblvD-mod(S)(M))

))

→ H0
(

HomQCoh(S′)

(

f !(F), ′oblvD-mod(S)(f
!(M))

))

. (8.5)

is an isomorphism.
Note that the assumption that f is smooth and the fact that the categories

D-mod(S) and D-mod(S′) are of finite cohomological dimension, imply that both
sides in (8.5) will remain unchanged if we replace M by τ≥−n(M) for n� 0.

Note also that (8.5) is evidently an isomorphism if F ∈ QCoh(S)c = QCoh(S)perf .
Now replace F by F1, where F1 ∈ QCoh(S)c is equipped with a map to F, such that

Cone(F1 → F) ∈ QCoh(S)≤−n

with n� 0. ��
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8.3 Some corollaries of Theorem 8.1.1

8.3.1 First we claim:

Corollary 8.3.2. D-mod(Y)c is Karoubi-generated by objects of the form
indD-mod(Y)(F), F ∈ Coh(Y).

Recall that for a cocomplete DG category C and its not necessarily cocomplete
DG subcategories C′0 ⊂ C′, ones says that a subcategory C′0 to Karoubi-generates
C′ if the latter is the smallest among DG subcategories of C that contain C′0 and
are closed under direct summands. This is a condition on corresponding homotopy
categories (i.e., it is insensitive to the ∞-category structure).

Proof. This follows from Section 0.6.7. ��

8.3.3 As yet another corollary of Theorem 8.1.1, we obtain:

Corollary 8.3.4. Let Y be a QCA stack and Y′ any prestack. Then the natural
functor

D-mod(Y)⊗D-mod(Y′)→ D-mod(Y× Y′)

is an equivalence.

Proof. The proof repeats verbatim that of Corollary 4.2.3. It applies to any prestack
Y, for which the category D-mod(Y) is dualizable. ��
8.4 Verdier duality on a QCA stack

8.4.1 In Section 7.3.4 we defined an involutive anti self-equivalence

D
Verdier
Y : (D-modcoh(Y))op → D-modcoh(Y).

Corollary 8.4.2. This functor induces an involutive anti self-equivalence

D
Verdier
Y : (D-mod(Y)c)op ∼−→ D-mod(Y)c (8.6)

Proof. The nontrivial statement to prove is that D
Verdier
Y preserves D-mod(Y)c. By

Corollary 8.3.2, it suffices to show that D
Verdier
Y preserves indD-mod(Y)(Coh(Y)). The

latter follows from Corollary 7.3.6. ��
Corollary 8.4.3. The equivalence (8.6) uniquely extends to an equivalence

DVerdier
Y : D-mod(Y)∨ ∼−→ D-mod(Y). (8.7)

Proof. By Theorem 8.1.1, D-mod(Y) = Ind(D-mod(Y)c). By Section 4.1.3(ii’), this
implies that D-mod(Y)∨ = Ind((D-mod(Y)c)op), so

D-mod(Y)∨ = Ind((D-mod(Y)c)op) 	 Ind(D-mod(Y)c) 	 D-mod(Y). ��
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8.4.4 According to Section 4.1.1, the self-duality given by (8.7) corresponds to a
pair of functors

εD-mod(Y) : D-mod(Y)⊗D-mod(Y)→ Vect (8.8)

and

μD-mod(Y) : Vect→ D-mod(Y)⊗D-mod(Y). (8.9)

We shall also use the notation 〈−,−〉D-mod(Y) to denote the functor

D-mod(Y)×D-mod(Y)→ D-mod(Y)⊗D-mod(Y)
εD-mod(Y)−→ Vect .

From Lemma 7.3.5, we obtain:

Lemma 8.4.5. For M ∈ D-mod(Y)c and M′ ∈ D-mod(Y) we have

〈M,M′〉D-mod(Y) = ΓdR(Y,M
!⊗M′).

In Corollary 9.2.15 we shall describe the functor εD-mod(Y) on the entire category

D-mod(Y)⊗D-mod(Y) 	 D-mod(Y× Y)

explicitly. Furthermore, in Section 9.2.16 we will prove:

Proposition 8.4.6. The object

μD-mod(Y)(k) ∈ D-mod(Y)⊗D-mod(Y) 	 D-mod(Y× Y)

identifies canonically with (ΔY)dR,∗(ωY).

8.4.7 Let now π : Y1 → Y2 be a schematic quasi-compact morphism between QCA
stacks. Recall the notion of the dual functor, see Section 4.1.4. We claim:

Proposition 8.4.8. The functors

πdR,∗ : D-mod(Y1)→ D-mod(Y2) and π! : D-mod(Y2)→ D-mod(Y1)

are related by (πdR,∗)∨ 	 π! in terms of the self-dualities DVerdier
Yi

: D-mod(Yi)∨ 	
D-mod(Yi).

Proof. It suffices to construct a functorial isomorphism for Mi ∈ D-mod(Yi)c:

〈M2, πdR,∗(M1)〉D-mod(Y2) 	 〈π!(M2),M1〉D-mod(Y1).

By Lemma 8.4.5 we rewrite the left-hand side as

ΓdR(Y2,M2

!⊗ πdR,∗(M1)),

which by the projection formula (6.2) identifies with

ΓdR(Y2, πdR,∗(π!(M2)
!⊗M1)).

However, by Lemma 7.5.6, the latter identifies with

ΓdR(Y1, π
!(M2)

!⊗M1),

which in turn identifies with 〈π!(M2),M1〉D-mod(Y1) again by Lemma 8.4.5. ��
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9 Renormalized de Rham Cohomology and Safety

As we saw in Section 7.1.3, for a QCA algebraic stack Y, the functor ΓdR(Y,−) is
not necessarily continuous. In this section we shall introduce a new functor, denoted
Γren-dR(Y,−) that we will refer to as “renormalized de Rham cohomology”. This
functor will be continuous, and we will have a natural transformation

Γren-dR(Y,−)→ ΓdR(Y,−).

We shall also introduce a class of objects on D-mod(Y), called safe, for which the
above natural transformation is an equivalence.

In this section all algebraic stacks will be assumed QCA, unless specified other-
wise.

9.1 Renormalized de Rham cohomology. Recall the notion of the dual
functor from Section 4.1.4.

Definition 9.1.1. For a QCA algebraic stack Y we define the continuous functor

Γren-dR(Y,−) : D-mod(Y)→ Vect

to be the dual of

π!
Y : Vect→ D-mod(Y), k �→ ωY

under the identifications

DVerdier
Y : D-mod(Y)∨ 	 D-mod(Y) and Vect∨ 	 Vect .

Note that if Y is a scheme Z, by (5.17), we have Γren-dR(Z,−) 	 ΓdR(Z,−).

Remark 9.1.2. Presumably, the functor analogous to Γren-dR(Z,−) can be defined
in other sheaf-theoretic situations, e.g., for the derived category of sheaves with
constructible cohomologies for stacks over the field of complex numbers.

9.1.3 Here is a more explicit description of the functor Γren-dR(Y,−).

Lemma 9.1.4. The functor Γren-dR(Y,−) (see Section 8.4.4 for the notation) is
canonically isomorphic to the ind-extension of the functor

ΓdR(Y,−)|D-mod(Y)c : D-mod(Y)c → Vect .

Proof. We only have to show that the pairing 〈−,−〉D-mod(Y) corresponding to the
self-duality of D-mod(Y) satisfies

〈M, p!
Y(k)〉D-mod(Y) 	 ΓdR(Y,M)

for M ∈ D-mod(Y)c. However, this is immediate from Lemma 8.4.5. ��
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Corollary 9.1.5. There exists a canonically defined natural transformation

Γren-dR(Y,−)→ ΓdR(Y,−), (9.1)

which is an isomorphism when restricted to compact objects.

In general, the failure of the natural transformation (9.1) to be an isomorphism
is a measure to which the functor ΓdR(Y,−) fails to be continuous.

Example 9.1.6. As an illustration, let us compute the functor Γren-dR(Y,−) for
Y = BG, see Section 7.2. Let B be as in (7.4). We saw in loc.cot. that the functor
ΓdR(BG,−) is given by MapsB-mod(k,−).

We claim now that the functor Γren-dR(BG,−) is given by

M �→ k ⊗
B
M [−2 dim(G) + δ],

where δ is the degree of the highest cohomology group of ΓdR(G, kG).
Explicitly,

⎧

⎨

⎩

δ = 0, if G is unipotent;
δ = dim(G), if G is reductive;
δ = 2 dim(G), if G is an abelian variety.

Recall that σ denotes the map pt → BG, and recall that σ!(k) is a compact
generator of D-mod(BG). Hence, it suffices to show that

ΓdR(BG, σ!(k)) 	 k[−2 dim(G) + δ],

as modules over B 	MapsD-mod(σ!(k), σ!(k)).
Note that

σ!(k) 	 σdR,∗(k)[−2 dim(G) + δ],

so the required assertion follows from the isomorphism

ΓdR(BG, σdR,∗(k)) 	 ΓdR(pt, k) = k.

Example 9.1.7. We claim that the functor

Γren-dR(Y,−) ◦ indD-mod(Y)

identifies canonically with ΓIndCoh(Y,−).
Both functors are continuous, so it is enough to construct the isomorphism on

the subcategory Coh(Y) ⊂ IndCoh(Y). In the latter case the assertion follows from
Lemma 9.1.4 and Proposition 7.1.6.

Moreover, we obtain that the natural transformation (9.1) induces an isomor-
phism

Γren-dR(Y,−) ◦ indD-mod(Y) → ΓdR(Y,−) ◦ indD-mod(Y).

As we shall see shortly, the latter isomorphism is a general phenomenon that holds
for all safe objects of D-mod(Y).
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9.2 Safe objects of D-mod(Y)

Definition 9.2.1. An object M ∈ D-mod(Y) is said to be safe if the functor

M′ �→ ΓdR(Y,M
!⊗M′) : D-mod(Y)→ Vect

is continuous.

Its is clear that safe objects of D-mod(Y) form a (non-cocomplete) DG subcate-
gory (i.e., the condition of being safe survives taking cones).

It is also clear that the subcategory of safe objects in D-mod(Y) is a tensor ideal

with respect to
!⊗. Indeed, if M is safe, then so are all M

!⊗M′.

9.2.2 The notion of safety is what allows us to distinguish compact objects among
the larger subcategory M ∈ D-modcoh(Y):

Proposition 9.2.3. Then the following properties of an object M ∈ D-modcoh(Y)
are equivalent:

(a) M is compact;
(b) M is safe;
(c) D

Verdier
Y (M) is safe.

Proof. By Lemma 7.3.5, (a) is equivalent to (c). So (b) is equivalent to the com-
pactness of D

Verdier
Y (F). The latter is equivalent to (a) by Corollary 8.4.2 (it is here

that we use that Y is QCA). ��
Note, however, safe objects do not have to be coherent or cohomologically

bounded:

Example 9.2.4. We claim that all objects of the form indD-mod(Y)(F), F ∈
IndCoh(Y), are safe. Indeed, by Lemma 6.3.20 and Proposition 7.1.6, for M ∈
D-mod(Y)

ΓdR(Y, indD-mod(Y)(F)
!⊗M) 	 ΓIndCoh(Y,F

!⊗ oblvD-mod(Y)(M)),

and the latter functor is continuous.

9.2.5 The following will be useful in the sequel:

Lemma 9.2.6. Let π : Y1 → Y2 be schematic. If M2 ∈ D-mod(Y2) is safe, then so is
π!(Y2) ∈ D-mod(Y1).

Proof. We need to show that the functor

M1 �→ ΓdR(Y1, π
!(M2)

!⊗M1)
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commutes with colimits. By Lemma 7.5.6, the latter expression can be rewritten as

ΓdR(Y2, πdR,∗(π!(Y2)
!⊗M1)).

Now, since π is schematic and quasi-compact, the projection formula and (6.2)
is applicable, and we can rewrite the latter expression as

ΓdR(Y2,M2

!⊗ πdR,∗(M1)).

Now, the required assertion follows from the fact that the functor πdR,∗ commutes
with colimits. ��
Remark 9.2.7. In Lemma 10.4.2 we will extend the assertion of the above lemma to
the case when π is not necessarily schematic, but merely safe. However, the lemma
obviously fails for general morphisms: consider, e.g., BGm → pt.

9.2.8 De Rham cohomology of safe objects. The following proposition is crucial
for the sequel:

Proposition 9.2.9. Let M1 ∈ D-mod(Y) be safe. Then for any M2 ∈ D-mod(Y),
the natural transformation (9.1) induces an isomorphism

Γren-dR(Y,M1

!⊗M2)→ ΓdR(Y,M1

!⊗M2).

Proof. By Lemma 9.1.4, we have:

τ≤0

(

Γren-dR(Y,M1

!⊗M2)
)

	 colim−→
M∈D-mod(Y)c

/M1
!

⊗M2

τ≤0 (ΓdR(Y,M)) . (9.2)

Using the fact that

τ≤0 (ΓdR(Y,M)) 	 MapsD-mod(Y)(kY,M),

we can rewrite (9.2) as the co-end of the functors

M �→ MapsD-mod(Y)(M,M1

!⊗M2) and M �→ MapsD-mod(Y)(kY,M)

out of D-mod(Y)c. Using the Verdier duality anti-equivalence of D-mod(Y)c, we
rewrite the above co-end as the co-end of the functors

M′ �→ τ≤0

(

ΓdR(Y,M1

!⊗M2

!⊗M′)
)

and M′ �→ MapsD-mod(Y)(M
′, ωY),

as functors out of (D-mod(Y)c)op.
The latter co-end can be rewritten as

colim−→
M′∈D-mod(Y)c

/ωY

τ≤0(ΓdR(Y,M1

!⊗M2

!⊗M′)). (9.3)
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However, tautologically,

colim−→
M′∈D-mod(Y)c

/ωY

M′ 	 ωY,

and hence

colim−→
M′∈D-mod(Y)c

/ωY

M2

!⊗M′ 	M2.

Hence, the assumption that ΓdR(Y,M1

!⊗−) commutes with colimits implies that

the expression in (9.3) maps isomorphically to τ≤0

(

ΓdR(Y,M1

!⊗M2)
)

, as required.

��
As a particular case, we obtain:

Corollary 9.2.10. If M ∈ D-mod(Y) is safe, the natural transformation (9.1)
induces an isomorphism

Γren-dR(Y,M)→ ΓdR(Y,M).

In addition:

Corollary 9.2.11. An object M ∈ D-mod(Y) is safe if and only if the natural
transformation (9.1) induces an isomorphism

Γren-dR(Y,M
!⊗M′)→ ΓdR(Y,M

!⊗M′)

for any M′ ∈ D-mod(Y).

Combining Proposition 9.2.9 with Proposition 9.2.3, we obtain:

Corollary 9.2.12. If one of the objects M′ or M′′ is compact, then the map

Γren-dR(Y,M′
!⊗M′′)→ ΓdR(Y,M′

!⊗M′′)

is an isomorphism.

9.2.13 The notion of safe object allows to give a more explicit description of the
pairing 〈−,−〉D-mod(Y):

Lemma 9.2.14. For M′,M′′ ∈ D-mod(Y), the natural map

Γren-dR(Y,M′
!⊗M′′)→ 〈M′,M′′〉D-mod(Y)

is an isomorphism.
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Proof. By definition, both functors in the corollary are continuous, so it is enough
to verify the assertion for M′ and M′′ compact. By definition, the right-hand side is

ΓdR(Y,M′
!⊗M′′). So, the assertion follows from Corollary 9.2.12. ��

Corollary 9.2.15. The functor

εD-mod(Y) : D-mod(Y)⊗D-mod(Y)→ Vect

identifies canonically with

D-mod(Y)⊗D-mod(Y) 	 D-mod(Y× Y)
Δ!

Y−→ D-mod(Y)
Γren-dR(Y,−)−→ Vect .

9.2.16 Proof of Proposition 8.4.6. The functor

μD-mod(Y) : Vect→ D-mod(Y)⊗D-mod(Y) 	 D-mod(Y× Y)

is the dual of the functor εD-mod(Y) under the identifications

Vect∨ 	 Vect and DVerdier
Y×Y : D-mod(Y× Y)∨ 	 D-mod(Y× Y).

Hence, the required assertion follows from Corollary 9.2.15 and Proposition 8.4.8.
��

9.3 The relative situation

9.3.1 Let π : Y1 → Y2 be a map between QCA algebraic stacks, and consider the
functor π! : D-mod(Y2)→ D-mod(Y1).

Definition 9.3.2. We define the continuous functor

π� : D-mod(Y1)→ D-mod(Y2)

to be the dual of π! under the identifications D-mod(Yi)∨ 	 D-mod(Yi).

We shall refer to the functor π� as the “renormalized direct image”.
Note that Proposition 8.4.8 implies that if π is schematic, then π� 	 πdR,∗.

9.3.3 It follows from the construction that the assignment π � π� is compatible
with compositions, i.e., for

Y1
π−→ Y2

φ−→ Y3

there exists a canonical isomorphism

φ� ◦ π� 	 (φ ◦ π)�.

Indeed, this isomorphism follows by duality from π! ◦ φ! 	 (φ ◦ π)!.
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9.3.4 We claim that the functor π� satisfies the projection formula by definition:

Lemma 9.3.5. For M1 ∈ D-mod(Y1) and M2 ∈ D-mod(Y2) we have a canonical
isomorphism

π�(M1)
!⊗M2 	 π�(M1

!⊗ π!(M2)),

functorial in Mi ∈ D-mod(Yi).

Proof. It suffices to construct a functorial isomorphism

〈π�(M1)
!⊗M2,M

′
2〉D-mod(Y2) 	 〈π�(M1

!⊗ π!(M2)),M′2〉D-mod(Y2)

functorial in M2,M
′
2 ∈ D-mod(Y2), M1 ∈ D-mod(Y1).

By Lemma 9.2.14,

〈π�(M1)
!⊗M2,M

′
2〉D-mod(Y2) 	 Γren-dR(Y2, π�(M1)

!⊗M2

!⊗M′2)

	 〈π�(M1),M2

!⊗M′2)〉D-mod(Y2).

By the definition of π�, the latter identifies with

〈M1, π
!(M2

!⊗M′2)〉D-mod(Y1).

Again, by Lemma 9.2.14, the latter expression can be rewritten as

Γren-dR(Y1,M1

!⊗ π!(M2

!⊗M′2)) 	 〈M1

!⊗ π!(M2), π!(M′2)〉D-mod(Y1),

and again by the definition of π�, further as

〈π�(M1

!⊗ π!(M2)),M′2〉D-mod(Y2),

as required. ��

9.3.6 Calculating π�. It turns out that safe objects are adjusted to calculating
the functor π�:

Proposition 9.3.7. There is a canonical natural transformation

π�→ πdR,∗, (9.4)

which is an isomorphism when evaluated on safe objects.
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Proof. We need to show that for M1 ∈ D-mod(Y1) and M2 ∈ D-mod(Y2)c there
exists a canonical map

〈M1, π
!(M2)〉D-mod(Y1) → 〈πdR,∗(M1),M2〉D-mod(Y2), (9.5)

which is an isomorphism if M1 is safe.
By Lemma 9.2.14 the left-hand side in (9.5) identifies with

Γren-dR(Y1,M1

!⊗ π!(M2)).

The latter expression maps to

ΓdR(Y1,M1

!⊗ π!(M2)),

and by Proposition 9.2.9, this map is an isomorphism if M1 is safe.
By Lemma 9.2.14 and Corollary 9.2.12, the right-hand side in (9.5) identifies

with

ΓdR(Y2, πdR,∗(M1)
!⊗M2).

Thus, we obtain the following diagram of maps

〈M1, π
!(M2)〉D-mod(Y1) 	 Γren-dR(Y1,M1

!⊗ π!(M2))

→ ΓdR(Y1,M1

!⊗ π!(M2)) 	 ΓdR(Y2, πdR,∗(M1

!⊗ π!(M2)))

← ΓdR(Y2, πdR,∗(M1)
!⊗M2) 	 〈πdR,∗(M1),M2〉D-mod(Y2),

where the left-pointing arrow comes from (7.17). The assertion of the proposition
follows now from Lemma 7.8.2. ��
Corollary 9.3.8. The functor π� is canonically isomorphic to the ind-extension
of the functor

πdR,∗|D-mod(Y1)c : D-mod(Y1)c → D-mod(Y2).

9.3.9 As another corollary of Proposition 9.3.7, we obtain:

Corollary 9.3.10. For M1 ∈ D-mod(Y1) and M2 ∈ D-mod(Y2), the map

πdR,∗(M1)
!⊗M2 → πdR,∗(M1

!⊗ π!(M2))

of (7.17) is an isomorphism provided that M1 is safe.

Proof. We have a commutative diagram

π�(M1)
!⊗M2 −−−−→ π�(M1

!⊗ π!(M2))
⏐
⏐
�

⏐
⏐
�

πdR,∗(M1)
!⊗M2 −−−−→ πdR,∗(M1

!⊗ π!(M2)),
in which the upper horizontal arrow is an isomorphism by Lemma 9.3.5. Now, the
vertical arrows are isomorphisms by Proposition 9.3.7. ��
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9.3.11 Base change for the renormalized direct image. Consider a Cartesian dia-
gram of QCA algebraic stacks:

Y′1
φ1−−−−→ Y1

π′
⏐
⏐
�

⏐
⏐
�π

Y′2
φ2−−−−→ Y2

We claim that there exists a canonical natural transformation

π′� ◦ φ!
1 → φ!

2 ◦ π�. (9.6)

Indeed, both functors being continuous, it is enough to construct the morphism
in question on D-mod(Y1)c. By (7.16) for any M ∈ D-mod(Y1) we have a map

φ!
2 ◦ πdR,∗(M)→ π′dR,∗ ◦ φ!

1(M).

Moreover, by Proposition 7.6.8, this map is an isomorphism whenever M ∈
D-mod(Y1)+.

Thus, for M ∈ D-mod(Y1)c we have

φ!
2 ◦ π�(M) 	 φ!

2 ◦ πdR,∗(M) 	 π′dR,∗ ◦ φ!
1(M),

and the latter receives a map from π′� ◦ φ!
1(M).

We now claim:

Proposition 9.3.12. The map (9.6) is an isomorphism.

Proof. By transitivity and the definition of D-mod(Y′2), it is enough to show that
the map in question is an isomorphism when Y′2 is a DG scheme. In particular, in
this case the morphism φ2, and hence φ1, is schematic. However, in this case for
M ∈ D-mod(Y1)c, the object

φ!
1(M) ∈ D-mod(Y′1)

is safe, by Lemma 9.2.6. Therefore, the map

π′� ◦ φ!
1(M)→ π′dR,∗ ◦ φ!

1(M),

used in the construction of (9.6), is an isomorphism, by Proposition 9.3.7. ��
Remark 9.3.13. Using (9.6) one can extend the functor π� to arbitrary QCA mor-
phisms π : Y1 → Y2 between prestacks in a way compatible with base change.

In the course of the proof of Proposition 9.3.12 we have also established:

Corollary 9.3.14. If M1 ∈ D-mod(Y1) is safe, then the map φ!
2 ◦ πdR,∗(M1) →

π′dR,∗ ◦ φ!
1(M1) of (7.16) is an isomorphism.
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9.3.15 Renormalized direct image of induced D-modules. Generalizing Example
9.1.7, we claim:

Proposition 9.3.16. There exists a canonical isomorphism of functors

π� ◦ indD-mod(Y1) 	 indD-mod(Y2) ◦ πIndCoh
∗ .

Proof. Since both functors are continuous, it suffices to show that for F1 ∈
IndCoh(Y1)c and M2 ∈ D-mod(Y2)c, there exists a canonical isomorphism

〈π�(indD-mod(Y1)(F1)),M2〉D-mod(Y2) 	 〈indD-mod(Y2)(π
IndCoh
∗ (F1)),M2〉D-mod(Y2).

By the definition of π�, Lemma 9.2.14 and Corollary 9.2.12, the left-hand side
identifies with

ΓdR(Y1, indD-mod(Y1)(F1)
!⊗ π!(M2)),

while the right-hand side identifies with

ΓdR(Y2, indD-mod(Y2)(π
IndCoh
∗ (F1))

!⊗M2).

Using Lemma 6.3.20, the two expressions can be rewritten as

ΓdR

(

Y1, indD-mod(Y1)(F1

!⊗ π!(oblvD-mod(Y2)(M2)))
)

and

ΓdR

(

Y2, indD-mod(Y2)(π
IndCoh
∗ (F1)

!⊗ oblvD-mod(Y1)(M2))
)

,

respectively, and further, using Proposition 7.1.6 as

ΓIndCoh

(

Y1,F1

!⊗ π!(oblvD-mod(Y2)(M2))
)

and

ΓIndCoh

(

Y2, π
IndCoh∗(F1)

!⊗ oblvD-mod(Y1)(M2)
)

,

respectively.
Now, the required isomorphism follows from Proposition 4.4.11. ��

9.3.17 We are now ready to prove Proposition 7.5.9 stated in Section 7.4. Indeed,
it follows by combining Propositions 9.3.16, 9.3.7, 3.7.11 and Example 9.2.4. ��
9.4 Cohomological amplitudes

9.4.1 Let us note that by Lemma 7.6.8, the functor πdR,∗ is left t-exact up to a
cohomological shift. We claim that the functor π� exhibits an opposite behavior:
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Proposition 9.4.2. There exists an integer m such that π� sends

D-mod(Y1)≤0 → D-mod(Y2)≤m.

Proof. It is clear from the (indD-mod,oblvD-mod) adjunction that for any algebraic
stack Y, the category D-mod(Y)≤0 is generated under the operation of taking filtered
colimits by objects of the form indD-mod(Y)(F) for F ∈ IndCoh(Y)≤0.

Hence, by Proposition 9.3.16, it suffices to show that there exists an integer m,
such that πIndCoh∗ sends

IndCoh(Y1)≤0 → IndCoh(Y2)≤m.

Recall that the functor ΨY induces an equivalence IndCoh(Y)+ → QCoh(Y)+ for
any algebraic stack Y. Therefore, it suffices to show that there exists an integer m,
such that π∗ sends

QCoh(Y1)≤0 → QCoh(Y2)≤m.

However, this follows from Corollary 1.4.5(ii). ��

9.4.3 Let us observe that the safety of an object M ∈ D-mod(Y)b makes both
functors

ΓdR(Y,M
!⊗−) and Γren-dR(Y,M

!⊗−)

cohomologically bounded. More precisely:

Lemma 9.4.4.

(a) Let M be an safe object of D-mod(Y)−. Then the functor

M1 �→ ΓdR(Y,M
!⊗M1)

is right t-exact up to a cohomological shift. The estimate on the shift depends
only on Y and the integer m such that M ∈ D-mod(Y)≤m.

(b) Let M be a safe object of D-mod(Y)+. Then the functor

M1 �→ Γren-dR(Y,M
!⊗M1)

is left t-exact up to a cohomological shift. The estimate on the shift depends
only on Y and the integer m such that M ∈ D-mod(Y)≥−m.

Proof. It is easy to see that on any quasi-compact algebraic stack, the functor
!⊗ is

both left and right t-exact up to a cohomological shift. Both assertions follow from
the fact that if M is safe,

Γren-dR(Y,M
!⊗M1) 	 ΓdR(Y,M

!⊗M1)

(by Corollary 9.2.11), using Lemma 7.6.8 and Proposition 9.4.2, respectively. ��
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We now claim that the above lemma admits a partial converse:

Proposition 9.4.5.

(a) Let M be an object of D-mod(Y)b. Then it is safe if the functor

M1 �→ ΓdR(Y,M
!⊗M1)

is right t-exact up to a cohomological shift.
(b) Let M be an object of D-mod(Y)b. Then it is safe if the functor

M1 �→ Γren-dR(Y,M
!⊗M1)

is left t-exact up to a cohomological shift.

Combing this with Lemma 9.4.4, we obtain:

Corollary 9.4.6. Let Mi be a (possibly infinite) collection of safe objects of
D-mod(Y) that are contained in D-mod(Y)≥−m,≤m for some m. Then ⊕

i
Mi is also

safe.

Proof of Proposition 9.4.5. To prove point (a), it suffices to show that the functor

M1 �→ H0

(

ΓdR(Y,M
!⊗M1)

)

commutes with direct sums. Let k be the integer such that the functor

M1 �→ ΓdR(Y,M
!⊗M1)

sends D-mod(Y)≤0 → Vect≤k. Let d be an integer such that
!⊗ sends

D-mod(Y)≤0 ×D-mod(Y)≤0 → D-mod(Y)≤d.

For a family of objects α �→ Mα
1 , consider the following diagram in which the

columns are parts of long exact sequences:

⊕
α
H0

(

ΓdR(Y,M
!⊗ τ<−k−d(Mα

1 ))
)

−−−−→ H0

(

ΓdR(Y,M
!⊗ (⊕

α
τ<−k−d(Mα

1 )))
)

⏐
⏐
�

⏐
⏐
�

⊕
α
H0

(

ΓdR(Y,M
!⊗Mα

1 )
)

−−−−→ H0

(

ΓdR(Y,M
!⊗ (⊕

α
Mα

1 ))
)

⏐
⏐
�

⏐
⏐
�

⊕
α
H0

(

ΓdR(Y,M
!⊗ τ≥−k−d(Mα

1 ))
)

−−−−→ H0

(

ΓdR(Y,M
!⊗ (⊕

α
τ≥−k−d(Mα

1 )))
)

⏐
⏐
�

⏐
⏐
�

⊕
α
H1

(

ΓdR(Y,M
!⊗ τ<−k−d(Mα

1 ))
)

−−−−→ H1

(

ΓdR(Y,M
!⊗ (⊕

α
τ<−k−d(Mα

1 )))
)

.
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The top and the bottom horizontal arrows are maps between zero objects by
assumption. Hence, the middle vertical arrows in both columns are isomorphisms.
The second from the bottom horizontal arrow is an isomorphism by Lemma 7.6.8.
Hence, the second from the top horizontal arrow is also an isomorphism, as required.

Let us now prove point (b). We shall show that under the assumptions on M, the

functor M1 �→ ΓdR(Y,M
!⊗M1) is right t-exact, up to a cohomological shift, thereby

reducing the assertion to point (a).
Let n be the integer such that

H i

(

Γren-dR(Y,M
!⊗M1)

)

= 0

for all i > n and M1 ∈ D-mod(Y)≤0. Such an integer exists because M is bounded
and the functor Γren-dR(Y,−) is right t-exact up to a cohomological shift.

We will show that the same integer works for ΓdR(Y,−), i.e.,

H i

(

ΓdR(Y,M
!⊗M1)

)

= 0

for all i > n and M1 ∈ D-mod(Y)≤0.
First, we claim that it is sufficient to show this for M1 ∈ D-mod(Y)♥. Indeed, it

is clear that the assertion for M1 ∈ D-mod(Y)♥ implies the assertion for all M1 ∈
D-mod(Y)b ∩ D-mod(Y)≤0. In general, we use the fact that the functor ΓdR(Y,−)
commutes with limits and the fact that for M ∈ D-mod(Y)b and any M1, the map

M
!⊗M1 → lim←−

m

(M
!⊗ τ≥−m(M1))

is an isomorphism (which in turn follows from the fact that the t-structure on

D-mod(Y) is left-complete, and the functor M
!⊗ − is of bounded cohomological

amplitude).
Next, by Lemma 7.6.8(b), we can assume that M1 ∈ D-mod(Y)♥ ∩D-modcoh(Y).

We will show that

H i

(

ΓdR(Y,M
!⊗M1)

)

= 0

for all i > n and M1 ∈ D-modcoh(Y)≤0.
We shall use the following lemma, proved in Section 9.4.8:

Lemma 9.4.7. Let Y be a QCA stack, and N an object of D-modcoh(Y).

(a) For a given integer k there exists Nk ∈ D-mod(Y)c equipped with a map Nk → N,
whose cone belongs to D-mod(Y)≤−k.

(b) For a given integer k there exists Nk ∈ D-mod(Y)c equipped with a map N→ Nk,
whose cone belongs to D-mod(Y)≥k.
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For M1 ∈ D-modcoh(Y)≤0, let M1 →Mk
1 be as in Lemma 9.4.7(b). Let

Lk := Cone(M1 →Mk
1).

Consider the diagram

Γren-dR(Y,M
!⊗M1) −−−−→ ΓdR(Y,M

!⊗M1)
⏐
⏐
�

⏐
⏐
�

Γren-dR(Y,M
!⊗Mk

1) −−−−→ ΓdR(Y,M
!⊗Mk

1)
⏐
⏐
�

⏐
⏐
�

Γren-dR(Y,M
!⊗ Lk) −−−−→ ΓdR(Y,M

!⊗ Lk),

in which the columns are exact triangles. The middle horizontal arrow is an isomor-
phism by Corollary 9.2.12. We now claim that for j = i and i−1 (or any finite range
of indices) and k � 0, both

Hj

(

Γren-dR(Y,M
!⊗ Lk)

)

and Hj

(

ΓdR(Y,M
!⊗ Lk)

)

are zero. Indeed, for ΓdR(Y,M
!⊗ Lk) this follows from Lemma 7.6.8. For

Γren-dR(Y,M
!⊗ Lk) this follows on the assumption on M.

Hence, H i(Γren-dR(Y,M
!⊗M1))→ H i(ΓdR(Y,M

!⊗M1)) is an isomorphism, and
the assertion follows. ��

9.4.8 Proof of Lemma 9.4.7. To prove point (a), the usual argument reduces the
assertion to the following one:

For N ∈ D-mod(Y)♥ ∩ D-modcoh(Y), there exists an object
N0 ∈ D-mod(Y)≤0 ∩D-mod(Y)c and a surjective map in D-mod(Y)♥:

H0(N0)→ N.

Write

H0(oblvD-mod(Y)(N)) = ∪
α

Fα, Fα ∈ Coh(Y)♥.

The objects indD-mod(Y)(Fα) are compact, and for some α the resulting map

indD-mod(Y)(Fα)→ indD-mod(Y)(oblvD-mod(Y)(N))→ N

will induce a surjection on H0.
Point (b) is obtained from point (a) by Verdier duality, using the fact that

D
Verdier
Y

(

D-modcoh(Y)≤0
) ⊂ D-modcoh(Y)≥−d

for some integer d depending only on Y. ��
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9.5 Expressing (dR, ∗)-pushforward through the renormalized version

9.5.1 Let π : Y1 → Y2 be again a morphism between QCA stacks. One can regard
the functor π� as a fundamental operation, and wonder whether one can recover the
functor πdR,∗ intrinsically through it.

The latter turns out to be possible, once we take into account the t-structure on
D-mod(Yi), and below we explain how to do it.

9.5.2 First, according to Lemma 7.5.12, the functor πdR,∗ can be recovered from
its restriction to D-mod(Y1)≥−n for every fixed n, by taking the limit of its values
on the truncations.

Second, according to Proposition 7.6.8(b), the restriction of πdR,∗ to
D-mod(Y1)≥−n commutes with filtered colimits, while D-mod(Y1)≥−n is generated
under filtered colimits by the subcategory D-mod(Y1)≥−n ∩D-modcoh(Y1).

Hence, it remains to show how to express πdR,∗|D-modcoh(Y1) in terms of
π�|D-modcoh(Y1).

9.5.3 Let N be an object of D-modcoh(Y1). For an integer k � 0, let N → Nk be
as in Lemma 9.4.7(b). Note that since Nk is compact, the map

π�(Nk)→ πdR,∗(Nk)

is an isomorphism.
From Proposition 7.6.8(b) we obtain:

Lemma 9.5.4. There exists an integer m, depending only on π, such that the map
N→ Nk induces an isomorphism

τ≤k−m(πdR,∗(N))→ τ≤k−m(πdR,∗(Nk)).

9.5.5 The above procedure can be summarized as follows:

Proposition 9.5.6.

(a) The functor πdR,∗ maps isomorphically to the right Kan extension of its restric-
tion to D-mod(Y1)+.

(b) For every n, the restriction of πdR,∗ to D-mod(Y1)≥−n receives an isomorphism
from the left Kan extension of its further restriction to
D-mod(Y1)≥−n ∩D-modcoh(Y1).

(c) The restriction of πdR,∗ to D-modcoh(Y1) maps isomorphically to the right Kan
extension of its further restriction to D-mod(Y1)c.

Recall that the restrictions of πdR,∗ and π� to D-mod(Y1)c are canonically equiv-
alent. So the above proposition indeed expresses πdR,∗ in terms of π�.
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10 Geometric Criteria for Safety

10.1 Overview of the results. The results of this section have to do with a
more explicit description of the subcategory of safe objects in D-mod(Y). By Propo-
sition 9.2.3, this description will characterize the subcategory D-mod(Y)c inside
D-modcoh(Y).

We will introduce a notion of safe algebraic stack (see Definition 10.2.2). We
will show that a quasi-compact algebraic stack Y is safe if and only if all objects of
D-mod(Y) are safe. In particular, for a quasi-compact Y, the equality D-mod(Y)c =
D-modcoh(Y) holds if and only if Y is safe.

For an arbitrary QCA stack Y we shall formulate an explicit safety criterion for
objects of D-mod(Y) (Theorem 10.2.9). Note that safety for objects can be checked
strata-wise (see Corollary 10.4.3).

This section is organized as follows. In Section 10.2 we formulate the results and
give some easy proofs. The more difficult Theorems 10.2.4 and 10.2.9 are proved in
Section 10.3–10.5.

As we shall be only interested in the categorical aspects of D-mod(Y), with no
restriction of generality we can assume that all schemes and algebraic stacks dis-
cussed in this section are classical.

Change of conventions: For the duration of this section “prestack” will mean
“classical prestack”, and “algebraic stack” will mean “classical algebraic stack”.
10.2 Formulations

10.2.1 Safe algebraic stacks and morphisms.

Definition 10.2.2.

(a) An algebraic stack Y is locally safe if for every geometric point y of Y the neutral
connected component of its automorphism group, Aut(y), is unipotent.

(b) A morphism of algebraic stacks is locally safe if all its geometric fibers are.
(c) An algebraic stack (resp. a morphism of algebraic stacks) is safe if it is quasi-

compact and locally safe.

Remark 10.2.3. A safe algebraic stack is clearly QCA in the sense of Defini-
tion 1.1.8.

Theorem 10.2.4. Let π : Y → Y′ be a quasi-compact morphism of algebraic
stacks. Then the functor πdR,∗ is continuous if and only if π is safe. In the latter
case πdR,∗ strongly satisfies the projection formula.27

This theorem is proved in Section 10.3 below.

Corollary 10.2.5. If π is safe, the canonical map

π�→ πdR,∗
is an isomorphism.

27 See Section 7.7 for the explanation of what this means.
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Proof. Both functors are continuous, and the map in question is an isomorphism on
compact objects by Proposition 9.3.7. ��
Corollary 10.2.6. Let Y be a quasi-compact stack. Then the functor ΓdR(Y,−) is
continuous if and only if Y is safe.

Corollary 10.2.7. The following properties of a quasi-compact algebraic stack Y

are equivalent:

(i) D-mod(Y)c = D-modcoh(Y);
(ii) kY ∈ D-mod(Y)c ;
(iii) The functor ΓdR(Y,−) is continuous;
(iv) All objects of D-mod(Y) are safe.
(v) Y is safe.

Proof. By Corollary 10.2.6, (iii)⇔(v). Since Maps(kY,−) = ΓdR(Y,−) we have
(ii)⇔(iii). Clearly (i)⇒(ii). The equivalence (iii)⇔(iv) is tautological. It remains
to prove that (iii)⇒(i).

The problem is to show that any M ∈ D-modcoh(Y) is compact, i.e., the functor
Maps(M,−) is continuous. This follows from (iii) and the formula

MapsD-mod(Y)(M,M′)

	 ΓdR(Y,DVerdier
Y (M)

!⊗M′), M ∈ D-modcoh(Y), M′ ∈ D-mod(Y),

which is the content of Lemma 7.3.5. ��

10.2.8 Characterization of safe objects of D-mod(Y). Let now Y be a QCA alge-
braic stack (in particular, it is quasi-compact).

Theorem 10.2.9. Let Y be a QCA algebraic stack and M ∈ D-mod(Y)b. Then the
following conditions are equivalent:

(1) M is safe;
(2) For any schematic quasi-compact morphism π : Y′ → Y and any morphism

ϕ : Y′ → S with S being a quasi-compact scheme, the object ϕdR,∗
(

π!(M)
)

) ∈
D-mod(S) belongs to D-mod(S)b;

(3) For any schematic quasi-compact morphism π : Y′ → Y and any morphism
ϕ : Y′ → S with S being a quasi-compact scheme, the object ϕ�

(

π!(F)
)

) ∈
D-mod(S) belongs to D-mod(S)b;

(4) For any schematic quasi-compact morphism π : Y′ → Y and any morphism
ϕ : Y′ → S with S being a quasi-compact scheme, the canonical morphism

ϕ�
(

π!(M)
)

)→ ϕdR,∗
(

π!(M)
)

)

is an isomorphism;
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(2′)–(4′) same as in (2)–(4), but π is required to be a finite étale map onto a locally
closed substack of Y.

(5) M belongs to the smallest (non-cocomplete) DG subcategory T(Y) ⊂
D-mod(Y) containing all objects of the form fdR,∗(N), where f : S → Y is
a morphism with S being a quasi-compact scheme and N ∈ D-mod(S)b.

Remark 10.2.10. Note, however, that the subcategory of safe objects in D-mod(Y)
is not preserved by the truncation functors.

10.3 Proof of Theorem 10.2.4

10.3.1 If πdR,∗ is continuous then π is safe. Up to passing to a field extension,
we have to show that for any point ξ : pt→ Y′ and any k-point y of the fiber Yξ, the
group G := Aut(y) cannot contain a connected non-unipotent28 algebraic subgroup
H ⊂ G. We have a commutative diagram

BH
f−−−−→ Y

p

⏐
⏐
�

⏐
⏐
�π

pt
ξ−−−−→ Y′

in which f is the composition BH → BG ↪→ Yξ → Y′. By assumption, πdR,∗ is
continuous. By Section 6.1.7, fdR,∗ is also continuous since f is schematic and quasi-
compact. So the composition πdR,∗ ◦ fdR,∗ = ξdR,∗ ◦ pdR,∗ is continuous. But ξdR,∗
is continuous (by Section 6.1.7) and conservative (e.g., compute ξ! ◦ ξdR,∗ by base
change). Therefore pdR,∗ is continuous. This contradicts the Example of Section 7.2.

��
To prove the other statements from Theorem 10.2.4, we need to introduce some

definitions.

10.3.2 Unipotent group-schemes. Let X be a prestack. A group-scheme over X

is a group-like object G ∈ PreStk/X, such that the structure morphism G → X is
schematic.

We shall say that G is unipotent if its pullback to any scheme gives a unipo-
tent group-scheme over that scheme (a group-scheme is said to be unipotent if its
geometric fibers are unipotent).

If G is smooth and unipotent, then the exponential map defines an isomorphism
between G and the vector group-scheme of the corresponding sheaf of Lie algebras,
as objects of PreStk/X. This fact is stated in [Ray70, Section XV.3 (iii)] without a
proof, although the proof is not difficult.29

28 If G were assumed affine, then “non-unipotent” could be replaced by “isomorphic to Gm”.
Accordingly, at the end of Section 10.3.1 it would suffice to refer to the example of Section 7.1.4
instead of the example of Section 7.2.
29 For our purposes, it will suffice to know that this fact when X is a scheme, generically on X, in
which case it is obvious.
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Lemma 10.3.3. If G is a smooth unipotent group-scheme over X, then the !-pullback
functor D-mod(X)→ D-mod(G) is fully faithful.

Proof. By the definition of D-mod on prestacks, it is sufficient to prove this fact
when X = S is an affine DG scheme. Further Zariski localization reduces us to the
fact that the pullback functor

D-mod(S)→ D-mod(S × A
n)

is fully faithful.30 ��

10.3.4 Unipotent gerbes

Definition 10.3.5. We say that a morphism of prestacks Z → X is a unipotent
gerbe if there exists an fppf cover X′ → X such that Z′ := Z ×

X
X′ is isomorphic to

the classifying stack of a smooth unipotent group-scheme over X′.

Lemma 10.3.6. Let π : Z→ X be a unipotent gerbe. Then the functor

π! : D-mod(X)→ D-mod(Z)

is an equivalence.

Proof. The statement is local in the fppf topology on X, so we can assume that
Z = BG for some smooth unipotent group-scheme G over X. Then

D-mod(Z) 	 Tot (D-mod(Z•/X)) ,

where Z•/X is the Čech nerve of Z→ X.
Each of the n+ 1 face maps Zn/X→ Z0/X identifies with the natural projection

pn : G×n → X,

where G×n = G×
X
...×

X
G.

Since G is unipotent, by Lemma 10.3.3 the functor p!
n : D-mod(X)→ D-mod(G×n)

is fully faithful. I.e., p!
n identifies D-mod(X) with a full subcategory Cn ⊂

D-mod(G×n). Therefore,

D-mod(Z) 	 Tot (D-mod(Z•/X)) 	 Tot (C•) 	 D-mod(X). ��
Assume that in the situation of Lemma 10.3.6, Z and X were algebraic stacks.

In this case the functor πdR,∗ : D-mod(Z)→ D-mod(X) is defined.

30 The reader who is not willing to use the isomorphism given by the exponential map on all of S,
can prove the lemma by subdividing S into strata.
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Corollary 10.3.7. Suppose that Z and X are algebraic stacks, and π is equidi-
mensional. Under these circumstances, the functor πdR,∗ is the inverse of π!, up to
a cohomological shift.

Proof. Since π is smooth, the functor π∗dR is defined and is the left adjoint of πdR,∗.
The assertion now follows from the fact that π∗dR is isomorphic to π!, up to a coho-
mological shift, see Section 6.1.9. ��

10.3.8 Nice open substacks. To proceed with the proof of Theorem 10.2.4 and
also for Theorem 10.2.9, we need the following variant of Lemma 2.5.2.

Lemma 10.3.9. Let Y �= ∅ be a reduced classical algebraic stack over a field of char-
acteristic 0 such that the automorphism group of any geometric point of Y is affine.
Then there exists a diagram

Z→ X ×BG
↓

Y ⊃
◦
Y

(10.1)

in which

•
◦
Y ⊂ Y is a non-empty open substack;

• the morphism π : Z→
◦
Y is schematic, finite, surjective, and étale;

• X is a scheme;
• G is a connected reductive algebraic group over k;
• the morphism ψ : Z → X × BG is a unipotent gerbe (in the sense of Defini-

tion 10.3.5).

Remark 10.3.10. If Y is safe then G clearly has to be trivial.

Proof. Let
◦
Y be an open among the locally closed substacks given by Lemma 2.5.2.

Let
◦
Y→ X ′, X → X ′ and G be the corresponding data supplied by that lemma.
Since we are in characteristic 0, the group-scheme G is smooth overX by Cartier’s

theorem. After shrinking X ′ and X we can assume that G is affine over X. After
further shrinking, we can assume that the group-scheme G admits a factorization

1→ Gun → G→ Gred → 1, (10.2)

where Gun and Gred are smooth group-schemes with Gun being unipotent and Gred
being reductive and locally constant. After replacing X by a suitable étale covering,
Gred becomes constant, i.e., isomorphic to X×G for some reductive algebraic group
over k.

Now set

Z :=
◦
Y ×
X′
X = BG.
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We have a morphism Z = BG → BGred = X × BG. Thus we get a diagram (10.1),
which has the required properties except that G is not necessarily connected. Finally,
replace G by its neutral connected component G◦ and replace Z by Z ×

BG
BG◦. ��

10.3.11 Proof of Theorem 10.2.4. By definition, we may assume that Y′ = S is
an affine DG scheme. In this case Y is quasi-compact (because π is). So by Noethe-
rian induction, we can assume that the theorem holds for the restriction of π to any

closed substack ı : X ↪→ Y, X �= Y. Take X := (Y−
◦
Y), where

◦
Y is as in Lemma 10.3.9.

Then the exact triangle

ıdR,∗(ı!(M))→M→ jdR,∗(j!(M)), M ∈ D-mod(Y), j :
◦
Y ↪→ Y

shows that it suffices to prove the theorem for π|◦
Y

.31

The morphism p : Z→
◦
Y is schematic, finite, surjective, and etale, so the functor

pdR,∗◦p!, which is isomorphic to pdR,∗◦p∗dR, contains IdD-mod(Y) as a direct summand.
Therefore it suffices to prove the theorem for the composition

Z→
◦
Y ↪→ Y

π−→S. (10.3)

Using Remark 10.3.10 and the assumption that S is a scheme, we can decompose
the morphism (10.3) as

Z
f−→X g−→S,

where f is the canonical map Z→ X.
It remains to show that each of the functors fdR,∗ and gdR,∗ has the properties

stated in the theorem. This is clear for g as it is a morphism between quasi-compact
schemes (see Section 5.2). For f , this follows from Lemma 10.3.6. ��
10.4 Proof of Theorem 10.2.9

10.4.1 Stability of safety

Lemma 10.4.2. Let π : Y1 → Y be a morphism of QCA stacks.

(a) If M1 ∈ D-mod(Y1) is safe then so is πdR,∗(M1) ∈ D-mod(Y).
(b) If π is safe and M ∈ D-mod(Y) is safe then so is π!(M) ∈ D-mod(Y1).

Proof. (a) We need to show that the functor

N �→ ΓdR(Y, πdR,∗(M1)
!⊗N), N ∈ D-mod(Y)

31 Note that this step relies in Propositions 7.5.7 and 7.5.4.
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is continuous. However, by Corollary 9.3.10, the right-hand side is isomorphic
to

ΓdR(Y, πdR,∗(M1

!⊗ π!(N)),

i.e., ΓdR(Y1,M1

!⊗ π!(N)), and the latter is continuous since M1 is safe.
(b) The functor

N1 �→ ΓdR(Y1, π
!(M)

!⊗N1), N1 ∈ D-mod(Y1)

is continuous because the projection formula

ΓdR(Y1, π
!(M)

!⊗N1) 	 ΓdR(Y,M
!⊗ πdR,∗(N1)),

is valid by Lemma 9.3.5, since πdR,∗ 	 π�.
��

Corollary 10.4.3. Let ıj : Yj ↪→ Y, j = 1, . . . , n, be locally closed substacks such
that Y = ∪

j
Yj . Then an object M ∈ D-mod(Y) is safe if and only if ı!j(M) is safe for

each j.

Proof. It suffices to consider the case where n = 2, Y1 is a closed substack, and
Y2 = (Y−Y1). The “only if” statement holds by Lemma 10.4.2(b). To prove the “if”
statement, consider the exact triangle (ı1)dR,∗(ı!1(M)) → M → (ı2)dR,∗(ı!2(M)). By
Lemma 10.4.2,

(ı1)dR,∗(ı!1(M)) and (ı2)dR,∗(ı!2)(M)

are both safe, so M is safe. ��

10.4.4 The mapping telescope argument

Lemma 10.4.5. Let T(Y) ⊂ D-mod(Y) be as in condition (5) of Theorem 10.2.9.
Then T(Y) is closed under direct summands.

Proof. The subcategory T(Y) has the following property: if M ∈ T(Y) then the infi-
nite direct sum

M⊕M⊕M⊕ . . .
also belongs to T(Y). Indeed, it suffices to check this if M = fdR,∗(N), where f : S →
Y is a morphism with S being a quasi-compact scheme and N ∈ D-mod(S)b .

Now suppose that M ∈ T(Y) and N′ ∈ D-mod(Y) is a direct summand of M. Let
p : M→M be the corresponding projector. The usual formula

M′ = colim(M
p−→M

p−→M→ . . .) = Cone(M⊕M⊕M⊕ . . .→M⊕M⊕M⊕ . . .)
shows that M′ ∈ T(Y). ��
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10.4.6 The key proposition. We shall deduce Theorem 10.2.9 from the following
proposition.

Let X be a quasi-compact scheme and G a connected algebraic group. Consider
the algebraic stack X × BG. Let ϕ : X × BG → X and σ : X → X × BG be the
natural morphisms.

Let TX(X ×BG) ⊂ D-mod(X ×BG) denote the smallest (non-cocomplete) DG
subcategory containing all objects of the form σdR,∗(N), N ∈ D-mod(X)b .

Proposition 10.4.7. For an object M ∈ D-mod(X×BG)b the following conditions
are equivalent:

(i) M ∈ TX(X ×BG);
(ii) ϕdR,∗(M) ∈ D-mod(X)b;
(iii) ϕ�(M) ∈ D-mod(X)b.

10.4.8 Proof of Theorem 10.2.9 modulo Proposition 10.4.7. It is clear that
(2)⇒(2′), (3)⇒(3′), (4)⇒(4′).

The direct image functor preserves boundedness from below (see Lemma 7.6.8),
while the renormalized direct image functor preserves boundedness from above (see
Proposition 9.4.2). So condition (4) implies (2) and (3), while condition (4′) implies
(2′) and (3′).

By Lemma 10.4.2(a), condition (5) implies (1). Condition (1) implies condition
(4) by Lemma 10.4.2(b) combined with Corollary 9.2.10.

Thus it remains to prove that (2′)⇒(5) and (3′)⇒(5).
Let M ∈ D-mod(Y) satisfy either (2′) or (3′). By Noetherian induction and

Lemma 10.4.2, it suffices to show that there exists a non-empty open substack
◦
Y

of Y, such that the restriction M|◦
Y

satisfies condition (5).

We take
◦
Y to be as in Lemma 10.3.9. Consider the following diagram, in which

the square is Cartesian:

Z′ ψ′
−−−−→ X

σ′
⏐
⏐
�

⏐
⏐
�σ

Z
ψ−−−−→ X ×BG

π

⏐
⏐
�

◦
Y.

(10.4)

The map ψ′ : Z′ → X is a unipotent gerbe. By further shrinking X, we can assume
that it admits a section; denote this section by g.

Note that M is a direct summand of πdR,∗(π!(M)). Hence, by Lemma 10.4.5, it
suffices to show the following:
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Proposition 10.4.9. The object π!(M) ∈ D-mod(Z) belongs to the smallest
(non-cocomplete) DG subcategory of D-mod(Z) containing all objects of the form
fdR,∗(N), where f = σ′ ◦ g and N ∈ D-mod(X)b.

Proof. We apply conditions (2′) or (3′) with Y′ = Z, and φ being the composition

Z
ψ→ X ×BG ϕ→ X.

Consider the object ψdR,∗(π!(M)). It is bounded because π!(M) is bounded, and ψdR,∗
is an equivalence, which is t-exact up to a cohomological shift (see Lemma 10.3.6).
Moreover,

ψ�(π!(M)) 	 ψdR,∗(π!(M))

because ψ, being a unipotent gerbe, is safe.
Consider now the objects

ϕdR,∗
(

ψdR,∗(π!(M))
)

	 φdR,∗(π!(M)) and ϕ�
(

ψ�(π!(M))
)

	 φ�(π!(M))

(note that the first isomorphism uses Section 7.8.6 in any of the (i), (ii) or (iii)
versions).

Condition (2′) (resp., (3′)) implies that the former (resp., latter) object is in
D-mod(X)b. Hence, by the implications (ii)⇒(i) (resp., (iii)⇒(i)) in 10.4.7, we obtain
that ψdR,∗(π!(M)) belongs to the subcategory TX(X ×BG).

Consider the Cartesian square in (10.4). Since ψdR,∗ is an equivalence (Lemma
10.3.6), we obtain that the object π!(M) belongs to the smallest (non-cocomplete)
DG subcategory of D-mod(Z) containing all objects of the form σ′dR,∗(N

′), N′ ∈
D-mod(Z′)b .

Recall that g denotes a section of the map ψ′. By Lemma 10.3.6, ψ′dR,∗ is an
equivalence, and gdR,∗ is its left inverse. Hence, gdR,∗ is an equivalence as well. So,
every object N′ ∈ D-mod(Z′)b is of the form gdR,∗(N) for N ∈ D-mod(X)b, which
implies the required assertion. ��

This finishes the proof Theorem 10.2.9 modulo Proposition 10.4.7.

10.5 Proof of Proposition 10.4.7. We already know from Section 10.4.8 that
(ii)⇐(i)⇒(iii).

10.5.1 As a preparation for the proof of the implication (ii)⇒(i), we observe:

Lemma 10.5.2. If M ∈ D-mod(X ×BG)≥r then

Cone (M→ σdR,∗(σ∗dR(M))) ∈ D-mod(X ×BG)≥r+1 .

Proof. Use that the fibers of σ are connected (becauseG is assumed to be connected).
��
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Corollary 10.5.3. Let M ∈ D-mod(X ×BG)b. Then for every m ∈ Z there exists
an exact triangle

M→ E→M′ →M[1] (10.5)

with E ∈ TX(X ×BG), M′ ∈ D-mod(X ×BG)≥m ∩D-mod(X ×BG)b .

10.5.4 Let cd(X) denote the cohomological dimension of D-mod(X). Since X is a
quasi-compact scheme cd(X) <∞ (and in fact, cd(X) ≤ 2 · dimX). By definition,

Extj(N,L) = 0 if N ∈ D-mod(X)≥m, L ∈ D-mod(X)≤n, j > n−m+ cd(X).(10.6)

Lemma 10.5.5. Let M be an object of D-mod(X × BG) such that ϕdR,∗(M) ∈
D-mod(X)≤n, and let M′ be a bounded object in D-mod(X ×BG)≥m. Then

Exti(M′,M) = 0 for i > n−m+ cd(X) + d,

where d := dimG.

Proof. We can assume that M′ lives in a single degree ≥ m. Then M′ = ϕ∗dR(N)[d]
for some N ∈ D-mod(X)≥m. Applying (10.6) to L = ϕdR,∗(M) we see that the group

Exti(M′,M) = Exti−d(ϕ∗dR(N),M) 	 Exti−d(N, ϕdR,∗(M))

is zero if i− d > n−m+ cd(X). ��

10.5.6 We are now ready to prove the implication (ii)⇒(i) in Proposition 10.4.7.
Suppose that ϕdR,∗(M) ∈ D-mod(X)≤n. Apply Corollary 10.5.3 for m = n +

cd(X) + d. In the corresponding exact triangle (10.5) the morphism M′ → M[1] is
homotopic to 0 by Lemma 10.5.5. So

M⊕M′ 	 E ∈ TX(X ×BG).

Now the next lemma implies that M ∈ TX(X ×BG).

Lemma 10.5.7. The subcategory TX(X ×BG) ⊂ D-mod(X ×BG) is closed under
direct summands.

Proof. The same argument as in the proof of Lemma 10.4.5. ��

10.5.8 Proof of the implication (iii)⇒(i).

Lemma 10.5.9. For any connected algebraic group the functors

σ! : D-mod(X ×BG)→ D-mod(X) and ϕ! : D-mod(X)→ D-mod(X ×BG)

have left adjoints σ! : D-mod(X) → D-mod(X × BG) and ϕ! : D-mod(X × BG) →
D-mod(X). Moreover,

ϕ! 	 ϕ�[2(dim(G)− δ)], σ! 	 σdR,∗[δ − 2 dim(G)],

where δ is the degree of the highest cohomology group of ΓdR(G, kG).
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Proof. By Corollary 8.3.4,

D-mod(X ×BG) 	 D-mod(X)⊗D-mod(BG),

and all functors involved in the lemma are continuous. Hence, they each decompose
as

IdD-mod(X)⊗ Corresponding functor for BG.

So, it is sufficient to consider the case when X = pt. The assertion in the latter case
essentially follows from Example 9.1.6:

The fact that σ! 	 σdR,∗[δ − 2 dim(G)] is evident: it suffices to compute both
sides on k ∈ Vect = D-mod(pt). To show that

ΓdR,!(BG,−) := ϕ!

exists and satisfies

ΓdR,!(BG,−) 	 Γren-dR(BG,−)[2(dim(G)− δ)],

it suffices to show that ΓdR,!(BG,−) is defined on the compact generator σ!(k) of
D-mod(BG), and

ΓdR,!(BG, σ!(k)) 	 Γren-dR(BG, σ!(k))[2(dim(G)− δ)],

as modules over MapsD-mod(σ!(k), σ!(k)).
However, ΓdR,!(BG, σ!(k)) 	 k, and required isomorphism was established in

Example 9.1.6:

Γren-dR(BG, σ!(k))	Γren-dR(BG, σdR,∗(k))[−2 dim(G)+δ]	k[−2 dim(G)+δ]. ��

Lemma 10.5.9 allows to prove the implication (iii)⇒(i) from Proposition 10.4.7 by
mimicking the arguments from Section 10.5.1. For example, the role of Lemma 10.5.2
is played by the following

Lemma 10.5.10. If M ∈ D-mod(X ×BG)≤r then

Cone
(

σ!(σ!(M))→M
)

[−1] ∈ D-mod(X ×BG)≤r−1 . ��

10.6 Proper morphisms of stacks

10.6.1 Recall the definition of a proper (but not necessarily schematic) morphism
between algebraic stacks; see [LM00, Definition 7.11].
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As a simple application of the theory developed above, in this subsection we will
prove the following:

Proposition 10.6.2. Let π : Y1 → Y2 be a proper map between algebraic
stacks. Then the functor πdR,∗ : D-mod(Y1) → D-mod(Y2) sends D-modcoh(Y1) →
D-modcoh(Y2).

The rest of this subsection is devoted to the proof of the proposition.

10.6.3 Step 1. First, we recall that the definition of properness includes separ-
atedness. This implies that the groups of automorphisms of points of the geometric
fibers of π are finite. In particular, π is safe.

By Theorem 10.2.4, πdR,∗ satisfies base change. This allows to assume that Y2 is
an affine DG scheme. In this case Y1 is a safe QCA stack, and by Corollary 10.2.7

D-modcoh(Y1) = D-mod(Y1)c.

Hence, it is enough to show that πdR,∗ sends D-mod(Y1)c to D-mod(Y2)c.
The category D-mod(Y1)c is Karoubi-generated by the essential image of Coh(Y1)

under the functor indD-mod(Y1). So, it is sufficient to show that the composition
πdR,∗ ◦ indD-mod(Y1) sends Coh(Y1) to D-mod(Y2)c.

However, by Proposition 7.5.9,

πdR,∗ ◦ indD-mod(Y1) 	 indD-mod(Y2) ◦ πIndCoh
∗ .

Hence, it is enough to show that the functor πIndCoh∗ sends Coh(Y1) to Coh(Y2).

10.6.4 Step 2. Consider the functor

π : QCoh(Y1)→ QCoh(Y2).

We have a commutative diagram of functors

QCoh(Y1)+
ΨY1←−−−− IndCoh(Y1)+

π∗

⏐
⏐
�

⏐
⏐
�πIndCoh

∗

QCoh(Y2)+
ΨY2←−−−− IndCoh(Y2)+,

where the horizontal arrows are equivalences.
Hence, it suffices to show that π∗ sends Coh(Y1) ⊂ QCoh(Y1)+ to Coh(Y2) ⊂

QCoh(Y2)+.
By Corollary 1.4.5, π∗ sends QCoh(Y1)b to QCoh(Y2)b. Hence, it remains to

show that π∗ sends objects from QCoh(Y1)♥∩Coh(Y1) to objects in QCoh(Y2) with
coherent cohomologies.

However, the latter is the content of [Fal03, Theorem 1] (see also [LM00, Theorem
15.6(iv)], combined with [Ols05, Theorem 1.2]).
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11 More General Algebraic Stacks

11.1 Algebraic spaces and LM-algebraic stacks

11.1.1 We define the notion of algebraic space as in [GL:Stacks], Section 4.1.1. We
shall always impose the condition that our algebraic spaces be quasi-separated (i.e.,
the diagonal morphism X→ X× X is quasi-compact).32

Thus, our definition is equivalent (the DG version) of that of [LM00] (this relies
on the DG version of Artin’s theorem about the existence of an étale atlas, see
Corollary 8.1.1 of [LM00]).

An algebraic space is an algebraic stack in the sense of the definition of Sec-
tion 1.1.1. Vice versa, an algebraic stack X is an algebraic space if and only if the
following equivalent conditions hold:

• The underlying classical stack clX is a sheaf of sets (rather than groupoids).
• The diagonal map X→ X×X induces a monomorphism at the level of underlying

classical prestacks.

11.1.2 Let us recall that a morphism between prestacks π : Y1 → Y2 is called
representable, if its base change by any affine DG scheme yields an algebraic space.

11.1.3 LM-algebraic stacks. We shall now enlarge the class of algebraic stacks
as follows. We say that it is LM-algebraic if

• The diagonal morphism Y → Y × Y is representable, quasi-separated, and quasi-
compact.
• There exists a DG scheme Z and a map f : Z → Y (automatically representable,

by the previous condition) such that f is smooth and surjective.

11.1.4 The extended QCA condition. The property of being QCA makes sense
for LM-algebraic stacks. We shall call these objects QCA LM-algebraic stacks.

We can now enlarge the class of QCA morphisms between prestacks accordingly.
We shall say that a morphism is LM-QCA if its base change by an affine DG scheme
yields QCA LM-algebraic stack.

11.2 Extending the results

11.2.1 The basic observation that we make is that a quasi-compact algebraic space
is automatically QCA. In particular, we obtain that quasi-compact representable
morphisms are QCA.

Note also (for the purposes of considering D-modules) that a quasi-compact alge-
braic space is safe in the sense of Definition 10.2.2. In particular, a quasi-compact
representable morphism is safe.

32 Note that the diagonal morphism of an algebraic space is always separated. In fact, for any
presheaf of sets X, the diagonal of the diagonal is an isomorphism.
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11.2.2 Let us now recall where we used the assumption on algebraic stacks that
the diagonal morphism

Y→ Y× Y

should be schematic.
In all three contexts (QCoh, IndCoh and D-mod) we needed the following prop-

erty. Let S be an affine (or, more generally, quasi-separated and quasi-compact) DG
scheme equipped with a smooth map g : S → Y. We considered the naturally defined
functors

g∗ : QCoh(Y)→ QCoh(S), gIndCoh,∗ : IndCoh(Y)→ IndCoh(S) and
g∗dR : D-mod(Y)→ D-mod(S).

We needed these functors to admit continuous right adjoints

g∗ : QCoh(S)→ QCoh(Y), gIndCoh
∗ : IndCoh(S)→ IndCoh(Y) and

gdR,∗ : D-mod(S)→ D-mod(Y),

respectively.
Now, this was indeed the case, because the map g is itself schematic, quasi-sep-

arated and quasi-compact.

11.2.3 Now, we claim that the same is true for LM-algebraic stacks. Indeed, if Y

is an LM-algebraic stack and S is a DG scheme, then any morphism g : S → Y is
representable, quasi-separated and quasi-compact.

In particular, if S is an affine (or, more generally, quasi-separated and quasi-com-
pact) DG scheme, the morphism g is QCA (and safe).

We obtain that Corollary 1.4.5 implies the corresponding fact for g∗.
Corollary 3.7.13, applied after a base change by all maps f : Z → Y where

Z ∈ DGSchaff
aft, implies the required property of gIndCoh∗ .

Finally, Theorem 10.2.4, again applied after a base change by all maps f : Z → Y

where Z ∈ DGSchaff
aft, implies the required property of gdR,∗.

11.2.4 Another ingredient that went into the proofs of the main results was Propo-
sition 2.3.4. However, it is easy to see that its proof works for LM-algebraic stacks
with no modification.

The rest of the ingredients in the proofs are without change.

11.2.5 In application to the category QCoh(−), we have the following generaliza-
tion of Theorem 1.4.2:

Theorem 11.2.6.

(a) Suppose that an LM-algebraic stack Y is QCA. Then the functor Γ : QCoh(Y)→
Vect is continuous. Moreover, there exists an integer nY such that H i(Γ(Y,F)) =
0 for all i > nY for F ∈ QCoh(Y)≤0.
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(b) Let π : Y1 → Y2 be a LM-QCA morphism between prestacks. Then the functor
π∗ : QCoh(Y1)→ QCoh(Y2) is continuous.

11.2.7 In application to IndCoh, we have:

Theorem 11.2.8. Suppose that an LM-algebraic stack Y is QCA. Then the cat-
egory IndCoh(Y) is compactly generated, and its subcategory of compact objects
identifies with Coh(Y).

In particular, the statements of Corollary 4.2.3 and Theorem 4.3.1 hold for LM-
algebraic stacks as well.

11.2.9 In application to D-modules, we have:

Theorem 11.2.10.

(a) If an LM-algebraic stack Y is QCA then the category D-mod(Y) is compactly
generated. An object of D-modcoh(Y) is compact if and only if it is safe.

(b) Let π : Y1 → Y2 be a quasi-compact morphism between LM-algebraic stacks.
Then the functor πdR,∗ is continuous if and only if π is safe.

Note that in Theorem 10.2.9(2)–(4) we can replace the words “schematic” by
“representable”.
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tiques 4. Société Mathématique de France, Paris, 2005. arXiv:math/0511279.

[TT90] R. Thomason and T. Trobaugh, Higher algebraic K -theory of schemes and
of derived categories. The Grothendieck Festschrift, Vol. III, 247435. Progr.
Math., 88 (1990).

Vladimir Drinfeld, Department of Mathematics, The University of Chicago, 5734
S;University Avenue, Chicago, IL 60637, USA drinfeld@math.uchicago.edu
Dennis Gaitsgory, Department of Mathematics, Harvard University, One Oxford Street,
Cambridge, MA 02138, USA gaitsgde@math.harvard.edu

Received: May 21, 2012
Revised: October 26, 2012

Accepted: October 26, 2012

http://www.math.harvard.edu/gaitsgde/GL/
http://www.math.harvard.edu/gaitsgde/GL/
http://www.math.harvard.edu/gaitsgde/GL/
http://www.math.harvard.edu/gaitsgde/GL/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/

	On some finiteness questions for algebraic stacks
	Abstract
	0 Introduction
	0.1 Introduction to the introduction.
	0.2 Results on D-mod(mathcal Y)
	0.3 Results on QCoh(mathcal Y).
	0.4 Ind-coherent sheaves.
	0.5 Contents of the paper
	0.6 Conventions, notation and terminology.

	1 Results on QCoh(mathcal Y)
	1.1 Assumptions on stacks
	1.2 Quasi-coherent sheaves
	1.3 Direct images for quasi-coherent sheaves
	1.4 Statements of the results on QCoh(mathcal Y)

	2 Proof of Theorems 1.4.2 and 1.4.10
	2.1 Reducing the statement to a key lemma
	2.2 Easy reduction steps
	2.3 Devissage
	2.4 Quotients of schemes by algebraic groups.
	2.5 Proof of Proposition 2.3.4.
	2.6 Proof of Theorem 1.4.10.

	3 Implications for Ind-Coherent Sheaves
	3.1 The ``locally almost of finite type" condition.
	3.2 The category IndCoh.
	3.3 The coherent subcategory.
	3.4 Description of compact objects of IndCoh(mathcal Y)
	3.5 The category Coh(mathcal Y) generates IndCoh(mathcal Y).
	3.6 Direct image functor on IndCoh.
	3.7 Direct image functor on IndCoh, further constructions.

	4 Dualizability and Behavior with Respect to Products of Stacks
	4.1 The notion of dualizable DG category
	4.2 Dualizability of IndCoh
	4.3 Applications to QCoh(mathcal Y).
	4.4 Serre duality on IndCoh(mathcal Y)

	5 Recollections: D-Modules on DG Schemes
	5.1 The basics
	5.2 The de Rham cohomology functor on DG schemes
	5.3 Verdier duality on DG schemes

	6 D-Modules on Stacks
	6.1 D-modules on prestacks
	6.2 D-modules on algebraic stacks.
	6.3 The induction functor.
	6.4 Example: induction for the classifying stack.
	6.5 Additional properties of the induction functor.

	7 De Rham Cohomology on an Algebraic Stack
	7.1 Definition of De Rham cohomology
	7.2 Example: classifying stacks.
	7.3 Coherence and compactness on algebraic stacks
	7.4 (dR,*)-pushforwards for stacks
	7.5 Properties of the (dR,*)-pushforward.
	7.6 Base change for the (dR,*)-pushforward
	7.7 Projection formula for the (dR,*)-pushforward
	7.8 Proofs of properties of the (dR,*)-pushforward
	7.9 Proof of Proposition 7.1.6

	8 Compact Generation of D-mod(mathcal Y)
	8.1 Proof of compact generation
	8.2 Variant of the proof of Theorem 8.1.1.
	8.3 Some corollaries of Theorem 8.1.1
	8.4 Verdier duality on a QCA stack

	9 Renormalized de Rham Cohomology and Safety
	9.1 Renormalized de Rham cohomology.
	9.2 Safe objects of D-mod(mathcal Y)
	9.3 The relative situation
	9.4 Cohomological amplitudes
	9.5 Expressing (dR,*)-pushforward through the renormalized version

	10 Geometric Criteria for Safety
	10.1 Overview of the results.
	10.2 Formulations
	10.3 Proof of Theorem 10.2.4
	10.4 Proof of Theorem 10.2.9
	10.5 Proof of Proposition 10.4.7.
	10.6 Proper morphisms of stacks

	11 More General Algebraic Stacks
	11.1 Algebraic spaces and LM-algebraic stacks
	11.2 Extending the results

	Acknowledgments
	References


