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EXPANSION IN SL2(R) AND MONOTONE EXPANDERS

Jean Bourgain And Amir Yehudayoff

Abstract. This work presents an explicit construction of a family of monotone
expanders, which are bi-partite expander graphs whose edge-set is defined by (par-
tial) monotone functions. The family is (roughly) defined by the Möbius action of
SL2(R) on the interval [0,1]. A key part of the proof is a product-growth theorem
for certain subsets of SL2(R). This extends recent results on finite/compact groups
to the non-compact scenario. No other proof-of-existence for monotone expanders
is known.

1 Introduction

1.1 Expander graphs. Expanders are sparse graphs with “strong connectiv-
ity” properties. Such graphs are extremely useful and are basic tools, for example,
in constructions of error correcting codes [SS96] and of compressed sensing matrices
[GLW08]. For the vast applications of expander graphs, see the survey [HLW06].
Most sparse graphs are expanders, but for applications explicit (simple to describe)
constructions of expanders are required. Indeed, explicit constructions of expanders
graphs are known, both using algebraic methods (e.g. [LPS88]) and using combina-
torial methods (e.g. [RVW02]).

In a nutshell, explicit expanders are so useful because of their two contradictory
faces: on one hand, expander graphs behave, in many ways, like random graphs, and
random objects are, for example, typically hard to construct. On the other hand,
the word explicit means that they in fact can be easily described and constructed.

A natural question that is potentially of practical importance is thus “how sim-
ple can expander graphs be?” We now discuss two properties of the expanders we
construct that show that there are “simple” expanders. One of the first explicit con-
structions of expander graphs was given by Gabber and Galil [GG79]. The Gabber–
Galil expander is extremely simple: It has a two-dimensional torus as a vertex-set
and its edges are defined by simple linear functions on the torus. Klawe, on the
other hand, showed that no one-dimensional analog of the Gabber–Galil expander
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exists [Kla84]. The expanders we construct are “close to being” one-dimensional
(formal definitions follow). Another well-known fact is that planar graphs can not
be expanders [Ung51]. From a different perspective, a monotone expander is “close”
to being planar: it is a finite union of planar graphs, all of which respect the same
planar embedding of vertices and their edges can be drawn as straight line segments.

As mentioned, in many cases as well as in the case of expanders, proving the
existence of an object is much easier than constructing it. In the case of monotone
expanders, however, no non-explicit proof of existence is known, and the only proof
of existence known is the explicit construction presented here (Dvir and Wigderson
[DW10] showed, nevertheless, that any proof of existence of a family of monotone
expanders yields an explicit construction of monotone expanders). A partial explana-
tion to that is the following. Natural probability distributions on (partial) monotone
functions give, w.h.p., functions that are “close” to affine. Klawe, however, showed
in [Kla84] that if one tries to construct expanders using affine transformations, then
the minimal number of generators required is super-constant, and so no construction
“that is close to affine” can work. The construction in this text uses edges that are
defined as the ratio of two affine transformations, and so the edges are slightly more
elaborate than what is impossible by Klawe’s result.

1.2 Monotone expander graphs. The construction of monotone expanders
we present first builds a “continuous monotone” expander, which in turn can be
discretized to the required size. A continuous expander is a finite family of maps Ψ
for which there exists a constant c > 0 so that the following holds. Every ψ ∈ Ψ
is a smooth map from a sub-interval of [0, 1] to a sub-interval of [0, 1], and for all
measurable A ⊂ [0, 1] with |A| ≤ 1/2,

|Ψ(A)| ≥ (1 + c)|A|,
where Ψ(A) =

⋃
ψ∈Ψ ψ(A). One way to think of a continuous expander is as an infi-

nite constant degree bi-partite graph with two color-classes that are copies of [0, 1],
where Ψ defines the edges between the color-classes. We say that Ψ is monotone if in
addition every ψ ∈ Ψ is monotone, namely, ψ(x) > ψ(y) for x > y. Pictorially, this
means that if drawn on the plane with the two color-classes as two parallel straight
line segments of length one, and with edges drawn as straight line segments as well,
then for every ψ in Ψ, the edges defined by ψ do not cross each other.

Theorem 1. There exists an explicit continuous monotone expander.

The word explicit in the theorem can be interpreted as follows. The family Ψ
can be (uniformly) described by a constant number of bits, and given a rational
x ∈ [0, 1] that can be described by b bits, ψ(x) is rational and can be computed in
time polynomial in b, for all ψ ∈ Ψ.

The theorem above describes the existence of a continuous monotone expander.
By partitioning [0, 1] to n equal-length intervals, Ψ naturally defines a family of
discrete monotone expanders. Namely, for every n, a graph G = Gn satisfying the
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following properties. First, G is bi-partite: the vertex-set of G is partitioned to two
ordered sets L and R, each of size n. Second, G is (finite-degree) monotone: there
exist an integer k independent of n, a family of sets L1, . . . , Lk ⊂ L, and a family
of monotone maps {fi : Li → R : 1 ≤ i ≤ k} so that the edges of G are of the
form {a, fi(a)} for i ∈ [k] and a ∈ Li. Finally, G is an expander: there exists a
constant c > 0 independent of n so that for every A ⊂ L of size |A| ≤ n/2, the size
of B = {b ∈ R : {a, b} ∈ E(G) for some a ∈ A}, the neighborhood of A in R, is at
least (1 + c)|A|.
Corollary 2. For every integer n, there exists an explicit discrete bi-partite mono-
tone expander on 2n vertices.

Why does the theorem imply the corollary? We shall implicitly define the partial
monotone maps {fi} by defining the edges in the discrete monotone expander graph.
Given an integer n, set L = R = [n]. Partition [0, 1] to n equal-length consecutive
intervals I1, . . . , In. For every ψ in the continuous monotone expander Ψ, let Jψ be
the interval in [0, 1] on which ψ is defined. Two elements a ∈ L and b ∈ R are con-
nected by an edge iff ψ(Ia∩Jψ)∩Ib �= ∅ for some ψ in Ψ. Since all maps ψ are smooth,
the length of the interval ψ(Ia ∩ Lψ) is at most a constant times 1/n. This implies
that for every ψ in Ψ, the edges thus defined by ψ can be “covered” by a constant
number of partial monotone maps from L to R. The total number of maps defining
the discrete expander is therefore constant. It remains to prove expansion. Let A be
a subset of L of size at most n/2 and let B be the neighborhood of A in R. Let A′

be the subset of [0, 1] that corresponds to A, i.e., A′ =
⋃
a∈A Ia. Let B′ =

⋃
b∈B Ib.

By construction, Ψ(A′) ⊆ B′. Since Ψ is a continuous monotone expander,

(1 + c)|A|/n = (1 + c)|A′| ≤ |Ψ(A′)| ≤ |B′| = |B|/n.
1.3 Growth. The construction of monotone expanders using a matrix group
fits well into recent developments on growth and expansion in matrix groups. The
three steps of the proof correspond to the three steps of the proof in the work of
Bourgain and Gamburd [BG07] showing expansion in SU(2). The proofs in [BG07]
use ideas from the work of Bourgain and Gamburd [BG08] proving expansion in
SL2(Fp), and the work of Helfgott [H08] showing growth in SL2(Fp).

Helfgott’s work contains the first product-growth theorem for matrix groups. A
key ingredient of the proofs in [BG07,BG08] is a product-growth theorem for finite or
compact groups. We, too, prove a product-growth theorem, but for the non-compact
SL2(R). The proof idea is similar to previous works, but non-compactness introduces
some technical and conceptual difficulties.

With the understanding that “typically” a Cayley graph of a matrix group is
an expander, it is natural to try and use a matrix group to also define a monotone
expander. Matrix groups, however, do not have a natural order on them. So, instead
of a Cayley graph, use a graph defined by the group’s action on some ordered set,
like the real numbers. A well-known such action is the Möbius action of SL2(R) on
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the real numbers. As it turns out, this action is in fact (piece-wise) monotone as
well. Indeed, this action will essentially define the monotone expander.

This line of thought for constructing monotone expanders was suggested in
[Bou09], together with an outline of a proof. Here we provide a full proof.

1.4 Applications. Dimension expanders. Implicit in the work of Dvir and
Shpilka [DS08] it is shown that an explicit discrete monotone expander easily yields
an explicit family of dimension expanders over any field (see [DW10] as well). We
mention that the work of Lubotzky and Zelmanov [LZ08] shows that over the real
numbers many known families of (non-monotone) expander graphs similarly yield
dimension expanders. The only known way to construct dimension expanders for
general fields is using monotone expanders.

Turing machines. Another application of monotone expanders is proved in
[DW10]. They showed that monotone expanders yield constant-page pushdown
expanders, which are graphs that arise in certain Turing machine simulations.

Furstenberg measures. In [Bou12], it is shown that the finitely supported sym-
metric measure on the group SL2(R) constructed here to prove Theorem 1 has a
Furstenberg measure that is absolutely continuous with respect to the projective
measure (and in fact with a density that can be made arbitrarily smooth). This
questions is motivated by a conjecture due to Kaimanovich and Le Prince [KL10]
and related works of Simon, Solomyak and Urbanski [SSU01a,SSU01b].

Schrödinger operators. The product-growth theorem for SL2(R) we prove is ex-
ploited in [Bou12] to study the co-cycles of one-dimensional Schrödinger operators
with a Hölder potential to prove the smoothness of the density of states in this
context.

2 Proof Outline

We now describe the outline of the proof. We ignore many of the problematic and
technical issues, and just present the flow of ideas (much work is required to trans-
form this sketch into a full proof).

Notation. For convenience, we use the following notation throughout the text.
For a constant c ∈ R, we denote by c+ a constant slightly larger than c, and by c−
a constant slightly smaller than c. Typically, the meaning of “slightly” depends on
other parameters that are clear from the context. We also use the following asymp-
totic notation. Write a � b if a ≤ Cb with C a universal constant. Write a � b if
b � a, and a ∼ b if a � b � a.

2.1 Defining maps. Consider the special linear group SL2(R), the set of all
2× 2 matrices with entries in R and determinant one. Every matrix g ∈ SL2(R) acts

on R in a monotone way via the Möbius action: if g =
(
a b
c d

)

in SL2(R), then the

action of g on x in the projective real line is
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g(x) =
ax+ b

cx+ d
.

The action is monotone as the derivative of g is positive, except at −d/c. For details,
see Section 3.

The maps in Ψ will be (roughly) defined by the actions of a finite set of matrices
G ⊂ SL2(R),

Ψ = {g : g ∈ G or g−1 ∈ G}.
This ensures that the maps in Ψ are monotone. It thus remains to choose G. We, in
fact, describe two choices of sets of generators G0 and G so that G ⊂ G0 (this double
choice will be explained in more detail later on). For this preliminary discussion, we
focus on the set G.

The set G will be chosen as a family of matrices that freely generate a group
(with some extra properties, see Lemma 3 for exact statement). To find G, use the
strong Tits alternative of Breuillard [Bre08], which roughly states that every ball of
constant radius in SL2(Z) contains elements that freely generate a group.

2.2 Proving expansion: three steps. As in many expanders constructions
and following recent works, the expansion is established by showing that the random
walk/flow defined by Ψ is rapidly mixing: a sequence g1, g2, . . . of elements of G
defines a walk w0, w1, . . . in SL2(R) via w0 = 1 and wt+1 = gtwt−1. It also defines
a flow on [0, 1]; A point x in [0, 1] flows to x0, x1, . . . that are defined by x0 = x
and xt = gt(xt−1) = wt(x). By rapidly mixing we (roughly) mean that for every x
in [0, 1], if the sequence g1, g2, . . . is i.i.d. and uniform in G, then wt, xt are close to
being uniformly distributed1 for relatively small t.

The proof of rapid mixing follows by showing that if at time t the walk/flow are
not close to uniform, then at time t + 1 they are closer to uniform than at time t.
In other words, that the entropy strictly grows at each step. The entropy here is
measured as the exponential of the Rényi entropy, that is, as 1/ ‖wt‖2

2. In the proof,
the reason for this increase in entropy changes with t. There are three different rea-
sons for three different time phases: small t, intermediate-size t and large t. We now
describe the idea of the proof for each of the three time phases.

(i) Small t. In the first phase we show that when t is small, wt+1 has more
entropy than wt. There are two ingredients to the proof of this statement: (a) the
group generated by G is free, and (b) the “diophantine” property of G, that is,
elements of G have constant rational entries.

The freeness of the group generated by G tells us that the walk w1, w2, . . . corre-
sponds to a random walk along a tree τ that is embedded in SL2(R); The root of τ
is 1 and a node v in τ is connected to all the possible values for gv for g in G ∪ G−1.
Intuitively, since the entropy of a random walk along a tree increases at each step,
the entropy of the flow increases at each step as well. To make the argument work,
though, we need that by looking at the walk, we can recover the tree τ . This is

1 Since SL2(R) is not compact, there is no uniform distribution on it.
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possible by property (b) that tells us that different nodes of τ are far away from
each other. So, since t is small, we are able to recover the tree from watching the flow
without “using a magnifying glass.” This, in turn, shows that the entropy strictly
grows at each step.

(ii) Intermediate-size t. This phase is the main part of the argument. As in
previous works, this step follows via a product-growth theorem. We prove a prod-
uct-growth theorem for SL2(R): if S is a subset of SL2(R) with certain properties,
then the size of S(3) = {s1s2s3 : si ∈ S} is much larger than the size of S. Below we
explain some of the ideas from the proof of this statement, but we first explain how
it is related to rapid mixing.

We argue that, as long as wt is not close to uniform, w3t has much more entropy
than wt. Think of S as the support of wt. If wt is not already close to uniform,
then S will satisfy the conditions of the product-growth theorem, and so S(3) will
be much larger than S. This, in turn, implies that w3t, which corresponds to S(3),
has much more entropy than wt.

The proof of the product theorem consists of several parts (and its outline is sim-
ilar to that of [BG07], but the proof in our case is more elaborate). Here we describe
the flow of the argument (for the full proof, see Section 7). We wish to prove that
a set S with certain properties becomes larger when multiplied by itself. The first
step (which already appears in [H08]) is to use matrix-trace to move from matrix
products to sums and products in R; if g1, g2 are two matrices, then the trace of
g1g2 involves both sums and products in the field. Then, instead of arguing of matrix
products, we can argue of field operations. To do so, we use a “sum-product” theorem
for R called the discretized ring conjecture, which roughly states that a well-distrib-
uted set in R becomes larger under sums and products. So, if S satisfies certain
properties, its trace-set will be well-distributed, and so the trace-set of S(3) will be
much larger than that of S. This, in turn, is used to proved that S(3) is much larger
than S.

(iii) Large t. By (i) and (ii), we can conclude that wt has large entropy, for t
relatively small. The final step of the proof follows by proving a “mixing property.”
In previous works, this last step follows Sarnak and Xue’s multiplicity argument
[SX91], or quasirandom groups [Gow08]. As SL2(R) is not compact, such an argu-
ment can not be applied here. Instead, use the subgroup structure of SL2(R), or
in other words the two-transitivity of the Möbius action. Specifically, we show a
“mixing property” for two-transitive actions.

Even using two-transitivity, proving a “mixing property” for the non-compact
SL2(R) is more difficult that in the finite/compact case. To complete the proof for
SL2(R), we need to use knowledge of the Fourier spectrum of the set A. We are able
to obtain knowledge on the spectrum of A by adding to Ψ the translate map. The
translate map implies that, w.l.o.g., we can assume that the spectrum of A does not
have low frequencies.
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3 A Monotone Expander

In essence, the maps defining the monotone expander are induced by the action of

SL2(R) on the projective real line. Consider the Möbius action: given g =
(
a b
c d

)

in

SL2(R), denote by g the map defined by

g(x) =
ax+ b

cx+ d
.

These maps are monotone: for all g in SL2(R), the derivative of the map g is

g′(x) =
1

(cx+ d)2
.

So g is monotone in any interval not containing −d/c.
We are mostly interested in the restriction of g to the interval [0,1]. We also

require that the maps we consider are defined over an interval. For these reasons,
denote by g̃ the following map: If −d/c is in [0, 1], define g̃ to be (say) the identity
map. Otherwise (and more interestingly), g̃ is the restriction of g to inputs in the
interval [0, 1] ∩ g−1([0, 1]).

We describe two constructions of continuous monotone expanders, which we de-
note Ψ0,Ψ. By construction, we shall have Ψ ⊂ Ψ0. The reasons for the double
definition are (i) Ψ0 is easier to describe than Ψ but (ii) it is more natural to prove
that Ψ is expanding (and hence so is Ψ0).

For the constructions, we shall choose four numbers: small ε > 0 and large inte-
gers q,K, r.

The first construction. Let Ψ0 be the family of monotone smooth maps from sub-
intervals of [0,1] to [0,1] defined as follows. For an integer k and a set of matrices
S ⊂ SL2(R), denote by Wk[S] the set of matrices that can be written as words of
length at most k in elements of S∪S−1, where S−1 = {g−1 : g ∈ S}. Let G0 ⊂ SL2(R)
be defined as

G0 = W1

[(
1 1/K
0 1

)]⋃
Wr

[(
1 1/q
0 1

)

,

(
1 0

1/q 1

)]

.

Define

Ψ0 = {g̃ : g ∈ G0}.
The second construction (as we shall see) is a subset of the first construction. This

(more elaborate) construction uses the following lemma. The proof of the lemma is
given in Section 4.

Lemma 3. There is a constant C > 0 so that the following holds. For ε > 0 small,
there is a positive integer Q and a subset G of SL2(R) so that

1. (1/ε)1/C < Q < (1/ε)C ,
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2. Q < |G|C ,
3. elements of G freely generate a group,
4. elements of G have entries of the form Z/Q, and
5. every g ∈ G admits

‖g − 1‖2 = (g1,1 − 1)2 + (g1,2)2 + (g2,1)2 + (g2,2 − 1)2 ≤ ε.

The lemma summarizes all the properties G should satisfy in order to yield a
monotone expander. When applying the lemma, ε is a small universal constant. An
important (and useful) property of the lemma is that both |G| and Q are polynomi-
ally comparable to 1/ε. Without this property, the lemma immediately follows from
the strong Tits alternative [Bre08]. Property 4 yields the non-commutative diophan-
tine property of G, roughly, that for every w �= w′ that are words of length k in
elements of G, the distance between w and w′ is at least (1/Q)k. This property is
defined and used in [BG07]. Property 5 is crucial for handling the non-compactness
of SL2(R), and implies that if ε is small then for every g in W1[G], it holds that
−g2,2/g2,1 is not in [0, 1], so g̃ is non-trivial.

The second construction. Let Ψ be the family of monotone smooth maps ψ from
sub-intervals of [0, 1] to [0,1] defined as follows. Let G be the family of matrices given
by Lemma 3 with respect to ε. Define

Ψ =
{

g̃ : g ∈ W1

[

G ∪
{(

1 1/K
0 1

)}]}

.

The following theorem shows that the two constructions indeed yield continuous
monotone expanders.

Theorem 4. There is a constant c0 > 0 so that the following holds. Let A be a
measurable subset of [0, 1] with |A| ≤ 1/2. Then,

|Ψ(A)| ≥ (1 + c0)|A|.
Specifically, |Ψ0(A)| ≥ |Ψ(A)| ≥ (1 + c0)|A|.

Theorem 4 implies Theorem 1, and follows from the following “restricted spec-
tral gap” theorem. The Möbius action induces a unitary representation of SL2(R)
on L2(R) defined by

Tg−1f(x) =
√
g′(x)f(g(x))

(the
√
g′(x) factors implies unitarity). For a positive integer K, denote by FK the

family of maps f ∈ L2(R) with supp(f) ⊂ [0, 1] and ‖f‖2 = 1 so that for all
k ∈ {1, 2, . . . ,K},

∫

I(k)

f(x) dx = 0,
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where

I(k) = [(k − 1)/K, k/K].

Theorem 5. Let ε > 0 be a small enough constant. Let G be the set given by
Lemma 3. If K = K(ε) is a large enough positive integer, then for all f ∈ FK ,

〈
∑

g

ν(g)Tgf, f

〉

< 1/2, (1)

with the probability measure

ν = (2|G|)−1
∑

g∈G
1g + 1g−1 ,

where 1g is the delta function at g.

The “restricted spectral gap” theorem is proved in Section 5.
Proof of Theorem 4. We first reduce the general case to the “restricted spectral gap”
case. Let σ > 0 be a small universal constant, to be determined. If there is an integer
k between 1 and K − 1 so that

∣
∣|A ∩ I(k + 1)| − |A ∩ I(k)|∣∣ ≥ σ|A|,

then, using the three maps: x �→ x+ 1/K, x �→ x− 1/K and the identity map, that

are defined by the three elements of W1

[(
1 1/K
0 1

)]

,

|Ψ(A)| ≥ (1 + σ)|A|.
It thus remains to consider the case that

∣
∣|A ∩ I(k + 1)| − |A ∩ I(k)|∣∣ < σ|A| for

all k. Thus, for all k,
∣
∣K|A ∩ I(k)| − |A|∣∣ < σK2|A|. (2)

Assume towards a contradiction that the theorem does not hold.
Since ‖g − 1‖2 ≤ ε, for all x ∈ [0, 1],

1
(1 + 2ε)2

< g′(x) <
1

(1 − 2ε)2
. (3)

Thus, for every x ∈ [0, 1],

0 ≤ g(x) − x < 10ε.

We replace g̃ by g by ensuring that even after applying maps in {g : g ∈ W1[G]} we
remain in [0, 1]. To this end, let

A′ = A ∩ [k′/K, 1 − k′/K]
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with k′ the smallest integer so that k′ ≥ 10εK. By (2),

0.99|A| ≤ |A′| ≤ |A|, (4)

as long as σ, ε are small. Denote

f = 1A′ − |A′|.
Project A′ on FK . Define F as follows: for all x ∈ [0, 1], if x ∈ I(k), then

F (x) = 1A′(x) −K|A′ ∩ I(k)|. Hence, F/ ‖F‖2 ∈ FK .

Our goal is to use F and assumption to obtain a contradiction to Theorem 5.

Claim 6. First,

‖f − F‖2
2 ≤ 0.01 ‖F‖2

2 .

Second, for every g ∈ G ∪ G−1,

〈Tgf, f〉 ≥ 0.8 ‖F‖2
2 .

Before proving the claim, we show how it completes the proof. By averaging,

0.8 ‖F‖2
2 ≤

∑

g

ν(g) 〈Tgf, f〉 =

〈
∑

g

ν(g)Tg(f − F + F ), f − F + F

〉

≤ 3 ‖f − F‖2
2 +

〈
∑

g

ν(g)TgF, F

〉

≤ 0.1 ‖F‖2
2 +

〈
∑

g

ν(g)TgF, F

〉

.

This contradicts Theorem 5.
Proof of Claim 6. First, for σ small, using (2) and (4),

‖f − F‖2
2 =

K−k′
∑

k=k′

∫

I(k)

(K|A′ ∩ I(k)| − |A′|)2 dx ≤
K−k′
∑

k=k′

∫

I(k)

(|A| − |A′| + σK2|A|)2 dx

≤
K−k′
∑

k=k′

∫

I(k)

(0.01 + σK2)2|A|2 dx ≤ 0.001|A|2.

So, using (4) again, since |A| ≤ 1/2,

0.99|A| ≤
√

|A′|(1 − |A′|) = ‖f‖2 ≤ ‖f − F‖2 + ‖F‖2 ≤ 0.1|A| + ‖F‖2 .

This implies the first part of claim.
Second, Equation (3) and unitarity of Tg−1 imply

(1 − 5ε)|A′| = (1 − 5ε) ‖1A′‖2
2 = (1 − 5ε)

∥
∥Tg−11A′

∥
∥2

2
≤ |g−1(A′)|.
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Assumption that expansion fails thus implies

|g−1(A′) ∩A′| = |g−1(A′)| − |g−1(A′) \A′| ≥ (1 − 5ε)|A′| − c0|A′|.
Since |A′| ≤ 1/2 and by (3), therefore,
〈
Tg−1f, f

〉
=
〈
Tg−11A′ ,1A′

〉− 〈1A′ , Tg|A′|〉− 〈Tg−1 |A′|,1A′
〉

+
〈
Tg−1 |A′|, |A′|〉

≥ (1 − 5ε)|g−1(A′) ∩A′| − (1 + 5ε)|A′||A′| − (1 + 5ε)|A′||A′|
+(1 − 5ε)|A′||A′|

≥ (1 − 5ε)(1 − 5ε− c0)|A′| − (1 + 15ε)|A′||A′|
≥ 0.9|A′|(1 − |A′|),

as long as ε, c0 are small. Finally, using (2), for σ small,

‖F‖2
2 =

K−k′
∑

k=k′

|A′ ∩ I(k)|(1 −K|A′ ∩ I(k)|)

<

K−k′
∑

k=k′

|A′ ∩ I(k)|(1 − |A′|(1 − σK2)) ≤ 1.01|A′|(1 − |A′|). ��

4 The Second Construction: Finding Set of Generators

For δ > 0, denote by Bδ(x) the ball of radius δ around x and by Γδ(A) the δ-neigh-
borhood of the set A. We consider the L2-metric on SL2(R).
Proof of Lemma 3. Breuillard [Bre08] proved a strong Tits alternative: there is a
constant r ∈ Z so that if S is a finite symmetric subset of SL2(R), which generates
a non-amenable subgroup, then S(r) = {s1s2 . . . sr : si ∈ S} contains two elements
that freely generate a group.

Let

h1 =
(

1 1/q
0 1

)

and h2 =
(

1 0
1/q 1

)

.

Observe

h2q
1 =

(
1 2
0 1

)

and h2q
2 =

(
1 0
2 1

)

,

which are known to generate a free group. Hence, h1, h2 generate a non-amenable
group. Apply the strong Tits alternative on the set S = {h1, h2, h

−1
1 , h−1

2 }. There
are thus g1, g2 ∈ S(r) that freely generate a group.

It remains to convert g1, g2 to many elements that are close to identity and freely
generate a group. Let � ∼ log(1/ε) so that the following holds. Consider

W =
{
w2 : w = s1 . . . s�, s1 = g1, s� = g2, si ∈ {g1, g2, g−1

1 , g−1
2 }, si+1 �= s−1

i

}
.
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Say that a word σ1σ2 . . . σk in an alphabet Σ ∪ Σ−1 is 〈Σ〉-reduced if σi+1 �= σ−1
i

for all i ∈ {1, . . . , k − 1}. The size of W is order 3� and W consists of words of
〈g1, g2〉-reduced-length exactly 2�.

Claim 7. The elements of W freely generate a group.

Proof. Let w1 �= w−1
2 in W ∪W−1. Write

w1 = (ga1s1gb1)
2 and w2 = (ga2s2gb2)

2

with s1, s2 reduced words in 〈g1, g2〉, and ga1 , gb1 , ga2 , gb2 in {g1, g2, g−1
1 , g−1

2 }. If either
w1, w2 ∈ W or w1, w2 ∈ W−1, then ga2 �= g−1

b1
and so

w1w2 = ga1s1gb1ga1s1gb1ga2s2gb2ga2s2gb2

in 〈g1, g2〉-reduced form. If either w1 ∈ W,w2 ∈ W−1 or w1 ∈ W−1, w2 ∈ W , then,
since s1 �= s−1

2 and the reduced-length of both s1, s2 is �− 2,

w1w2 = ga1s1gb1ga1s
′gb2ga2s2gb2

in 〈g1, g2〉-reduced form, with s′ non-trivial.
Any non-trivial 〈W 〉-reduced word is not the identity of 〈g1, g2〉: for w = gaszsgb

in W ∪ W−1, where z is a product of two elements of {g1, g2, g−1
1 , g−1

2 }, call z the
center of w. The above implies that if w1 �= w−1

2 then the centers of both w1, w2 are
not reduced in the 〈g1, g2〉-reduced form of w1w2.

Hence, if w = w1w2 . . . wk is a non-trivial 〈W 〉-reduced word, then even in its
〈g1, g2〉-reduced form w is not the identity (as all centers are not reduced). ��

Observe that for every w ∈ W ,

‖w‖2 ,
∥
∥w−1

∥
∥

2
≤ (1 + 1/q)2r� := N.

Cover the ball BN (1) in SL2(R) with balls of radius ε/N . There exists w0 ∈ W so
that

∣
∣Bε/N (w0) ∩W ∣∣ � |W |(ε/N2)3 � ε33�(1 + 1/q)−12r�.

Define

G =
(
w−1

0

(
Bε/N (w0) ∩W )) \ {1}.

Choose q as a universal constant so that (1 + 1/q)12r < 1.01. Hence,

|G| � ε33�(1 + 1/q)−12r� − 1 � 2�.

In addition, for g ∈ G,

‖1 − g‖2 ≤ N ‖w0 − w0g‖2 ≤ ε,

and the entries of g are of the form Z/Q with Q = q4r� and logQ ∼ log(1/ε). Finally,
as G is of the form w−1

0 W \ {1} with W freely generating a group, the elements of
G freely generate a group as well.
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5 Restricted Spectral Gap Via Flattening

To prove the “restricted spectral gap” property, we prove the following theorem that
roughly states that after enough iterations ν becomes very flat. Denote by Pδ the
approximate identity on SL2(R), namely, the density of the uniform distribution on
the ball of radius δ around 1 in SL2(R),

Pδ =
1Bδ(1)

|Bδ(1)| .

For two distributions μ, μ′ on SL2(R) denote by μ ∗ μ′ the convolution of μ and μ′.
Denote by μ(�) the �-fold convolution of μ with itself.

Theorem 8. Let γ > 0. Assume that ε > 0, the parameter from 5 in Lemma 3,
and δ > 0 are small enough as a function of γ. If

� > C1
log(1/δ)
log(1/ε)

with C1 = C1(γ) > 0, then
∥
∥
∥ν(�) ∗ Pδ

∥
∥
∥

∞
< δ−γ .

The proof of the theorem is given in Section 6 (when applying the theorem, γ is
a universal constant).
Proof of Theorem 5. Let f ∈ FK . Assume that (1) does not hold, i.e.,

〈Tf, f〉 ≥ 1/2, (5)

where

T =
∑

g

ν(g)Tg.

We start by finding a level set of the Fourier transform that “violates (1) as well.”
The Littlewood–Paley decomposition of f is

f =
∑

k

Δkf,

where for every integer k and 2k ≤ |λ| < 2k+1 for every λ ∈ supp Δ̂kf .
As f ∈ FK , we can consider the part of f with high frequencies.

Claim 9. For k0 ≥ 0, define

f0 =
∑

k≥k0

Δkf.

If K is large enough, depending on k0, then

〈Tf0, f0〉 > 1/4.
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Proof. For every λ ∈ R,

f̂(λ) =
K∑

k′=1

1/K∫

0

f(yk′ + x)e−2πiλ(yk′+x) dx.

where yk′ = 1 + (k′ − 1)/K. For fixed k′, since the integral of f over the interval
I(k) = [yk′ , yk′ + 1/K] is zero,

∣
∣
∣
∣
∣
∣
∣

1/K∫

0

f(yk′ + x)e2πiλ(yk′+x) dx

∣
∣
∣
∣
∣
∣
∣

� |λ|
K

1/K∫

0

|f(yk′ + x)|dx.

Hence, for every integer k,

‖Δkf‖2 � 2k/K.

So,

‖f − f0‖2 � 2k0/K ≤ 1/20

for K large. Thus,

1/2 < 〈Tf, f〉 ≤ 〈Tf0, f0〉 + 3 ‖f − f0‖2 < 〈Tf0, f0〉 + 1/4.

Isolate one frequency-level of f0, using the following claim. ��
Claim 10. There is k ≥ k0 so that

‖TΔkf0‖2 ≥ c1 ‖Δkf0‖2

with c1 > 0 a universal constant.

Proof. Bound

‖Tf0‖2
2 ≤

∑

k,k′

|〈TΔkf0, TΔk′f0〉|

=
∑

|k−k′|≤C
|〈TΔkf0, TΔk′f0〉| +

∑

|k−k′|>C
|〈TΔkf0, TΔk′f0〉|

with C > 0 a universal constant to be determined. Bound each of the two terms in
the sum separately. First,

∑

|k−k′|≤C
|〈TΔkf0, TΔk′f0〉| ≤

∑

|k−k′|≤C
‖TΔkf0‖2 ‖TΔk′f0‖2 � C

∑

k

‖TΔkf0‖2
2 .
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Second, consider k > k′ +C. The (absolute value of the) spectrum of Δkf0 is order
2k, and of Δk′f0 is order 2k

′
. The operator Tg for g ∈ (G ∪G−1)(G ∪G−1) is a smooth

L∞-perturbation of identity. Hence, for some g ∈ (G ∪ G−1)(G ∪ G−1),

|〈TΔkf0, TΔk′f0〉| ≤ |〈Δkf0, TgΔk′f0〉|

∼
∣
∣
∣
∣
∣
∣

∫

λ∼2k

Δ̂kf0(λ)
λ

· λ ̂(TgΔk′f0)(λ) dλ

∣
∣
∣
∣
∣
∣

� 2−k ‖Δkf0‖2 · ∥∥(TgΔk′f0)′∥∥
2

� 2−k ‖Δkf0‖2 2k
′ ‖Δk′f0‖2 .

Thus,
∑

k>k′+C

|〈TΔkf0, TΔk′f0〉| �
∑

k>k′+C

2k
′−k ‖Δkf0‖2 ‖Δk′f0‖2 � 2−C ‖f0‖2

2 ,

and so, for appropriate C,
∑

|k−k′|>C
|〈TΔkf0, TΔk′f0〉| < 1/20.

Concluding, using Claim 9,
∑

k≥k0

‖Δkf0‖2
2 � ‖f0‖2

2 � 1/16 − 1/20 < ‖Tf0‖2
2 − 1/20 � C

∑

k≥k0

‖TΔkf0‖2
2 . ��

Set

F =
Δkf0

‖Δkf0‖2

with k from Claim 10. Thus, 〈TF, TF 〉 ≥ c21 and so
∥
∥T 2F

∥
∥

2
≥ c21. Iterating, for all

� > 0 a power of two,

c�1 ≤
∥
∥
∥T �/2F

∥
∥
∥

2

2
=
〈
F, T �F

〉
≤
∥
∥
∥T �F

∥
∥
∥

2
. (6)

To prove the theorem, argue that the norm of T �F is actually small, thus obtain-
ing the required contradiction: let γ > 0 be a small universal constant (to be deter-
mined). Let � be the smallest power of two so that

� > C1(γ)k/ log(1/ε)

and by Theorem 8,
∥
∥
∥ν(�) ∗ Pδ

∥
∥
∥

∞
< δ−γ ,

with ε > 0 a small enough universal constant to be determined, and

δ = 4−k.

As δ is small and the spectrum of F is controlled, the following claim holds.
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Claim 11.

∥
∥
∥
∥
∥
∥
∥

∫

SL2(R)

(TgF )((ν(�) ∗ Pδ)(g)) dg

∥
∥
∥
∥
∥
∥
∥

2

� c�1.

Proof. If g =
(
a b
c d

)

satisfies ‖g − 1‖2 ≤ η ≤ 1/20, then for all x ∈ R so that |x| ≤ 2,

|x− gx| =
∣
∣
∣
∣
cx2 + dx− ax− b

cx+ d

∣
∣
∣
∣ � η.

In addition, if h ∈ Bδ(g) for g ∈ supp(ν(�)), then
∥
∥h−1g − 1

∥
∥

2
≤ δ(1 + ε)�.

Recall, 2kδ(1 + ε)� is much smaller than c�1. Hence, since the norm of the derivative
of F is at most order 2k,

‖TgF − ThF‖2 =
∥
∥F − Th−1gF

∥
∥

2
� 2kδ(1 + ε)�.

So,
∥
∥
∥
∥
∥
∥
∥

T �F −
∫

SL2(R)

(ThF )((ν(�) ∗ Pδ)(h)) dh

∥
∥
∥
∥
∥
∥
∥

2

� 2k(1 + ε)�δ ≤ c�1/2.

The claim follows by (6). ��
The claim above contradicts the following proposition, as shown below. In short,

the proposition follows by the flatness lemma and the subgroup structure of SL2(R).

Proposition 12. There exists universal constants σ0, C > 0 so that
∥
∥
∥
∥
∥
∥
∥

∫

SL2(R)

(TgF )((ν(�) ∗ Pδ)(g)) dg

∥
∥
∥
∥
∥
∥
∥

2

� δ−γ(1 + ε)C�2−σ0k.

Proof. Bound, using Theorem 8 and unitarity of Th, since the support of ν(�) ∗Pδ is
contained in B2(1+ε)�(1),
∥
∥
∥
∥

∫

(TgF )((ν(�) ∗ Pδ)(g)) dg
∥
∥
∥
∥

2

2

=
∫ ∫

〈TgF, ThF 〉 ((ν(�) ∗ Pδ)(g))((ν(�) ∗ Pδ)(h)) dg dh

� δ−2γ(1 + ε)3�
∫

B4(1+ε)2�(1)

|〈TgF, F 〉| dg. (7)
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Approximate B4(1+ε)2�(1) by a smooth function: let κ : SL2(R) → R≥0 be a smooth
function so that ‖κ‖∞ = 1, and so that κ(g) = 1 if ‖g − 1‖2 ≤ 4(1+ε)2� and κ(g) = 0
if ‖g‖2 > 8(1 + ε)2�. Using Cauchy–Schwarz inequality,

|(7)| � δ−2γ(1 + ε)5�
(∫

|〈TgF, F 〉|2 κ(g) dg
)1/2

. (8)

Write
∫

|〈TgF, F 〉|2 κ(g) dg ≤
∫ ∫

|F (x)||F (y)|
∣
∣
∣
∣

∫

TgF (x)TgF (y)κ(g) dg
∣
∣
∣
∣ dx dy.

Separate to two cases, according to the distance between x and y. Choose η > 0
small, to be determined. In both cases, use the following (convenient) parameteri-
zation of SL2(R):

g =
(
a b
c d

)

=
(
u cos θ v cosφ
u sin θ v sinφ

)

with

uv sin(φ− θ) = 1.

On the chart a �= 0, we have

dg =
da db dc

|a| =
du dθ dφ

|u| sin2(θ − φ)
.

Case one. The first case is when x, y are close: bound
∫ ∫

|x−y|<η
|F (x)||F (y)|

∫

|TgF (x)||TgF (y)|κ(g) dg dx dy. (9)

Write F = F1 + F∞ with

‖F1‖1 ≤ 2−σk and ‖F∞‖∞ ≤ 2σk

for a universal constant σ > 0 to be determined. Equation (9) can be bounded from
above by a sum of several terms (with different combinations of F1, F∞ replacing
F ). Consider, e.g., substituting F1 instead of the leftmost F in (9),

∫ ∫

|x−y|<η
|F1(x)||F (y)|

∫

|TgF (x)||TgF (y)|κ(g) dg dx dy

≤
∫

|F1(x)|
∫

|TgF (x)|κ(g) dg dx. (10)

Fix x, and denote

M = (x+ 1)−1/2

(
1 −x
1 1

)

∈ SL2(R),
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so that M(x) = 0 (the matrix M shows two-transitivity of the Möbius action: M
maps x to zero and −1 to infinity. Note that x,−1 are far). Change variables and
use parametrization given above,
∫

|TgF (x)|κ(g) dg=
∫

|TM−1g−1F (x)|κ(M−1g−1) dg

�
∫ ∫ ∫

|F (cotφ)|κ(M−1g−1)
1

| sinφ|| sin(θ − φ)| du dθ dφ. (11)

If κ(M−1g−1) �= 0, then ‖g‖2 � (1+ ε)2�, and so in the integral above | sin(θ−φ)| �
(1 + ε)−4�.

|(11)| � (1 + ε)4�
∫ ∫ ∫

|F (ξ)|κ(M−1g−1)
1

|ξ + 1|1/2 du dθ dξ � (1 + ε)6�.

Hence,

|(10)| � (1 + ε)6� ‖F1‖1 ≤ (1 + ε)6�2−σk.

The same bound holds also if we replace each of the other three F ’s by F1 in (9). It
thus remains to trivially bound
∫ ∫

|x−y|<η
|F∞(x)||F∞(y)|

∫

|TgF∞(x)||TgF∞(y)|κ(g) dg dx dy � η(1 + ε)6�24σk,

and conclude

|(9)| � (1 + ε)6�
(
η24σk + 2−σk

)
. (12)

Case two. Next, understand what happens for far x and y. The argument in this
case is more elaborate and uses knowledge of the spectrum of F . Start by

∫ ∫

|x−y|≥η
|F (x)||F (y)|

∣
∣
∣
∣

∫

TgF (x)TgF (y)κ(g) dg
∣
∣
∣
∣ dx dy

≤

⎛

⎜
⎝

∫ ∫

|x−y|≥η

∣
∣
∣
∣
∣
∣
∣

∫

SL2(R)

TgF (x)TgF (y)κ(g) dg

∣
∣
∣
∣
∣
∣
∣

2

dx dy

⎞

⎟
⎠

1/2

. (13)

In this case, argue for fixed x and y in [0, 1] so that x ≥ y + η. Denote

M = (x− y)−1/2

(
1 −x
1 −y

)

∈ SL2(R),

so that M(x) = 0 and M(y) = ∞. Change variables,
∣
∣
∣
∣

∫

TgF (x)TgF (y)κ(g) dg

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

TM−1g−1F (x)TM−1g−1F (y)κ(M−1g−1) dg

∣
∣
∣
∣

= (x − y)−1

∣
∣
∣
∣

∫
F (cot φ)F (cot θ)

| sin φ · sin θ| κ(M−1g−1)
du dθ dφ

|u|| sin(θ − φ)|

∣
∣
∣
∣ .



GAFA EXPANSION IN SL2(R) AND MONOTONE EXPANDERS 19

Change variables,
∫
F (cotφ)F (cot θ)

| sinφ · sin θ| κ(M−1g−1)
du dθ dφ

|u|| sin(θ − φ)| =
∫ ∫

F (ξ)F (ζ)E(ξ, ζ)dξ dζ,

with

E(ξ, ζ) =

√
(1 + ξ2)(1 + ζ2)

| sin(cot−1 ζ − cot−1 ξ)|
∫

κ(M−1g−1)
du

|u| .

Continue by using that Fourier basis diagonalize ∇. Start by bounding the norms
of E and ∇E. First, if κ(M−1g−1) �= 0, then

‖g‖2 � (1 + ε)2�η−1/2.

Hence, in the definition of E we can assume

(1 + ε)−2�η1/2 � |u| � (1 + ε)2�η−1/2,

and

1
| sin(cot−1 ζ − cot−1 ξ)| � (1 + ε)−4�η.

Therefore, there is a universal constant C > 0 so that

‖E‖∞ , ‖‖∇E‖2‖∞ � (1 + ε)C�η−C .

Since the support of the Fourier transform of F is of absolute value at least order
2k, bound

∣
∣
∣
∣

∫ ∫

F (z)F (w)E(z, w) dz dw
∣
∣
∣
∣ � 2−k(1 + ε)C�η−C .

Thus,

|(13)| ≤ 2−k(1 + ε)C�η−C−1. (14)

Concluding. By (12) and (14),
√

|(7)| � δ−γ(1 + ε)C�
(
η24σk + 2−σk + 2−kη−C)1/2 ≤ δ−γ(1 + ε)C�2−σk/4,

for appropriate choice of η, and with σ > 0 a universal constant. ��
We can finally conclude, using Claim 11 and Proposition 12,

c�1 � |(8)| � δ−γ(1 + ε)C�2−σ0k, (15)

which is a contradiction for γ = σ0/4, k0 large and ε small. ��
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6 Flatness Via a Product Theorem

Theorem 8 follows from the following flattening lemma, which roughly states that if

μ = ν(�0) ∗ Pδ
is a little flat then μ ∗ μ is much flatter (unless μ is already very flat). The proof of
the lemma is given in Section 6.1.

Lemma 13. Let 0 < γ < 3/2. With the notation above, assume that

δ−γ < ‖μ‖2 < δ−3/2+γ

and

�0 > C2
log(1/δ)
log(1/ε)

with C2 = C2(γ) > 0. Also assume that ε > 0, the parameter from 5 in Lemma 3,
and δ > 0 are small enough as a function of γ. Then, there exists σ = σ(γ) > 0 so
that

‖μ ∗ μ‖2 < δσ ‖μ‖2 .

We apply the flattening lemma iteratively. To start iterating, we need to show
that μ is “a little flat” to begin with.

Proposition 14. If

�0 ≥ logQ(1/δ)

with Q from Lemma 3, then

‖μ‖2 ≤ δ−3/2+γ

with γ > 0 a universal constant.

This follows from Kesten’s bound [Kes59], the following proposition about ran-
dom walks on free groups.

Proposition 15. Assume H is a finite set freely generating a group 〈H〉. Denote

π = (2|H|)−1
∑

h∈H
1h + 1h−1 ,

a probability distribution on 〈H〉. Denote by p(t)(x, x) the probability of being at x
after t steps of a random walk on the group 〈H〉 according to π started at x. Then,

lim sup
t→∞

(p(t)(x, x))1/t =

√
2|H| − 1
|H| .
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Proof of Proposition 14. Let k be the maximal integer so that

1/Qk ≥ δ1/2.

For every y ∈ supp(ν(k)),

‖y‖2 ≤ (1 + ε)k ≤ δ−ε,

for ε small. By Lemma 3, the entries of elements in Wk(G) are in Z/Qk. So, for all
y �= y′ in Wk(G),

∥
∥y − y′∥∥

2
≥ δ1/2,

which implies

(yBδ(1)) ∩ (y′Bδ(1)) = ∅,
for ε small. Hence,
∥
∥
∥
∥
∥

∑

y

ν(k)(y)Pδ(y−1·)
∥
∥
∥
∥
∥

2

≤
(∑

y(ν
(k)(y))2

∥
∥Pδ(y−1·)∥∥2

2

)1/2 ≤ ∥∥ν(k)
∥
∥1/2

∞ ‖Pδ‖2 .

Finally, by Proposition 15 and Lemma 3, since convolution does not increase norms,

‖μ‖2 �
(

2|G| − 1
|G|2

)k/4
δ−3/2 < δ−3/2+γ . ��

Proof of Theorem 8. By Proposition 14, and Lemmas 3 and 13,
∥
∥
∥μ(k)

∥
∥
∥

2
=
∥
∥
∥(ν(�0) ∗ Pδ)(k)

∥
∥
∥

2
≤ δ−γ/4 (16)

with k = k(γ) > 1 and

�0 ≤ C3
log(1/δ)
log(1/ε)

,

with C3 > 0 a constant. For every g,

∣
∣
∣μ(2k)(g)

∣
∣
∣ =

∣
∣
∣
∣
∣
∣

∫

h

μ(k)(h)μ(k)(h−1g) dh

∣
∣
∣
∣
∣
∣
≤
∥
∥
∥μ(k)

∥
∥
∥

2

2
≤ δ−γ/2.

Lemma 2.5 in [BG07] states (for SU(2) but the same proof holds in our case)

cPδ ≤ Pδ ∗ Pδ ≤ 1
c
P2δ

with c > 0 a constant. Hence,
∥
∥
∥ν(�) ∗ Pδ

∥
∥
∥

∞
≤ C4(1 + ε)C4�0

∥
∥μ(2k)

∥
∥

∞ ≤ C4(1 + ε)C4�0δ−γ/2 ≤ δ−γ

with C4 = C4(γ) > 0 and � ≤ C4�0, for ε, δ small. ��
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6.1 A product theorem. The flattening lemma follows from the following
product theorem (the proof of the product theorem is deferred to Section 7). We
need to use metric entropy: for a subset S of a metric space denote by Nδ(S) the
least number of balls of radius δ needed to cover S.

Theorem 16. For all σ1, τ > 0, there is ε5 > 0 so that the following holds. Let
δ > 0 be small enough. Let A ⊂ SL2(R) ∩ Bα(1), α > 0 a small universal constant,
be so that

1. A = A−1,
2. Nδ(A) = δ−3+σ0 , σ1 ≤ σ0 ≤ 3 − σ1,
3. for every δ < ρ < δε5 , there is a finite set X ⊂ A so that |X| ≥ ρ−τ and for every

x �= x′ in X we have ‖x− x′‖2 ≥ ρ, and
4. w.r.t. every complex basis change diagonalizing some matrix in SL2(R) ∩B1(1),

there is g ∈ A(4) so that |g1,2g2,1| ≥ δε5 .

Then,

Nδ(AAA) > δ−ε5Nδ(A).

The condition that A is contained in a small ball is not necessary, but simplifies
the statement and proof. The condition A = A−1 is, of course, not necessary as
well, but simplifies notation. Condition 4 above implies that A is far from strict
subgroups.
Proof of Lemma 13. We prove the lemma for

�0 ∼ C2(γ)
log(1/δ)
log(1/ε)

.

The proof for larger �0 follows, as convolution does not increase the norm.
Assume towards a contradiction that

‖μ ∗ μ‖2 > δσ ‖μ‖2 .

To prove the theorem, we shall find a set A that violates the product theorem. The
set A will be one of the level sets of μ in the following decomposition. Decompose μ
as

μ ∼
∑

j

2jχj ,

where the sum is over O(log(1/δ)) values of j (recall that μ is point-wise bounded
by O(1/δ3) and we can ignore points with too small μ-measure), and where χj is
the characteristic function of a set Aj ⊂ SL2(R) so that

Aj = A−1
j . (17)

Choose j1 < j2 so that

2j1+j2 ‖χj1 ∗ χj2‖2 � ‖μ ∗ μ‖2 / log2(1/δ) ≥ δ0+ ‖μ‖2 . (18)
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Using Young’s inequality, bound

2j1+j2 ‖χj1‖2 ‖χj2‖1 ≥ δ0+ ‖μ‖2 ≥ δ0+2j2 ‖χj2‖2 .

So, since 2j2 |Aj2 | ≤ 1,

2j1/2|Aj1 |1/2 ≥ 2j1−j2/2|Aj1 |1/2 ≥ 2j1 |Aj1 |1/2|Aj2 |1/2 ≥ δ0+. (19)

Similarly,

2j1/2−j2/2 ≥ 2j1/2|Aj2 |1/2 ≥ δ0+,

which implies

2j1 < 2j2 ≤ δ0−2j1 .

Since 2j2 |Aj2 | ≤ 1, using Young’s inequality and (17), we thus have

δ0+2−2j2 |Aj1 | ≤ 〈χj1 ∗ χj2 , χj1 ∗ χj2〉 ≤ ‖χj2‖2 ‖χj1 ∗ χj1 ∗ χj2‖2

≤ ‖χj2‖2 ‖χj2‖1 ‖χj1 ∗ χj1‖2 ≤ 2−3j2/2 ‖χj1 ∗ χj1‖2 .

Hence,

‖χj1 ∗ χj1‖2
2 ≥ δ0+2−j2 |Aj1 |2 ≥ δ0+2−j1 |Aj1 |2 ≥ δ0+|Aj1 |3. (20)

Use a version of Balog–Szemeredi–Gowers theorem proved in [Tao08]. Denote

K = Br(1) with r = δ−C3(γ)ε = δ0−,

a compact subset of SL2(R), with C3(γ) ∼ C2(γ) to be determined. Specifically, if ε
is small enough, then

Aj1 ⊂ K.
The multiplicative energy of Aj1 is ‖χj1 ∗ χj1‖2

2. Equation (20) implies that Aj1 has
high energy. Theorem 5.4 (or, more precisely, its proof) in [Tao08] implies that, for
the appropriate C3(γ), there exists H ⊂ K which is an approximate group, namely,

H = H−1

and there exists a finite set Y ⊂ K of size

|Y | ≤ δ0− (21)

satisfying

HH ⊂ Y H (22)

so that

δ0+|Aj1 | ≤ |H| ≤ δ0−|Aj1 |. (23)
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In addition, there is y ∈ K such that

|A1| ≥ δ0+|Aj1 |, (24)

where

A1 = Aj1 ∩ yH.
Finally, define

A =
(
(A−1

1 A1) ∪ (A1A
−1
1 )
) ∩Bα(1),

for α > 0 as in Theorem 16. Hence,

|A| ≥ δ0+|A1| ≥ δ0+|Aj1 |. (25)

We now prove that A violates the product theorem. We first show that it violates
the conclusion of the product theorem and then show that it satisfies the assumptions
of the product theorem.

Using (18) and Young’s inequality,

2j1+j2 |Aj2 |1/2|Aj1 | = 2j1+j2 ‖χj2‖2 ‖χj1‖1 ≥ δ0+ ‖μ‖2 ≥ δ0+2j2 |Aj2 |1/2.
Hence, using (24),

μ(yH) ≥ μ(A1) ≥ δ0+2j1 |Aj1 | ≥ δ0+. (26)

On the other hand,

μ(yH) � δ−3 max
z∈supp(ν(�0))

|yH ∩Bδ1−(z)| .

So, there is z0 ∈ K so that

|H ∩ S| ≥ δ3+,

with

S = Bδ1−(z0).

Let Z be a maximal set of points in H so that for all z �= z′ in Z,

zS ∩ z′S = ∅.
Bound,

δ0−|H| ≥ |HH| ≥ |Z| |H ∩ S| ≥ δ3+Nδ(H).

Hence,

Nδ(H) ≤ δ−3−|H|. (27)
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Finally,

Nδ(AAA) � Nδ(H(6)) ≤ δ−3−|H| ≤ δ−3−|A| ≤ δ0−Nδ(A).

So, indeed, the conclusion of the product theorem does not hold. It remains to prove
that A satisfies the assumptions of the product theorem.

First,

A = A−1.

The second thing we show is that A is not too small or too large. Equation (18)
implies

δ0+ ‖μ‖2 ≤ 2j1+j2 ‖χj1 ∗ χj2‖2 ≤ 2j1 ‖χj1‖2 2j2 ‖χj2‖1 ≤ 2j1 |Aj1 |1/2,
which implies

δ−γ+ ≤ 2j1 |Aj1 |1/2 � ‖μ‖2 ≤ δ−3/2+γ .

Thus,

δ−2γ+|Aj1 | ≤ (2j1 |Aj1 |)2 ≤ 1

and, using (19),

δ0+ ≤ (2j1 |Aj1 |)2 � δ−3+2γ |Aj1 |.
Therefore,

δ3−2γ+ ≤ |Aj1 | ≤ δ2γ−,

which implies, using (23),

δ3−2γ+ ≤ |H| ≤ δ2γ−.

Therefore, using (21), (22), (25), and (27),

δ−2γ+ ≤ δ−3+|Aj1 | ≤ δ−3+|A| ≤ Nδ(A) ≤ δ−3−|H| ≤ δ−3+2γ−,

or

Nδ(A) = δ−3+σ0 ,

with σ1 < σ0 < 3 − σ1 and σ1 = 2γ−.
Thirdly, we prove that A is well-distributed: Let ε5 = ε5(σ1, τ) > 0 be as given by

Theorem 16 for τ > 0 a universal constant to be determined, and let δ < ρ < δε5 . We
prove that there is a finite set X ⊂ A so that |X| ≥ ρ−τ and for every x �= x′ in X
we have ‖x− x′‖2 ≥ ρ. Equation (26) says μ(A1) ≥ δ0+. Write ν(�0) = ν(�) ∗ ν(�0−�),
for � < �0 the largest integer so that

Q−� > ρ.
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There thus exists z1 ∈ K so that

ν(�)(A1z1) ≥ δ0+.

By Lemma 3, for every x �= x′ in supp(ν(�)) ⊆ W�(G),
∥
∥x− x′∥∥

2
≥ Q−� > ρ.

By Proposition 15,

ν(�)(A1z1) ≤ |W�(G) ∩A1z1|
(

2|G| − 1
|G|2

)�/2
.

Thus, using Lemma 3 again,

Nρ(A) ≥ δ0+Nρ(A1z1) ≥ δ0+|W�(G) ∩A1z1| ≥ δ0+
( |G|2

2|G|−1

)�/2 ≥ ρ−τ ,

for τ ∼ 1.
It remains to show that A contains matrices with certain properties. That is,

w.r.t. every basis in a bounded domain, there is g ∈ A(4) so that |g1,2g2,1| ≥ δε5 .
Fix a basis diagonalizing some matrix in SL2(R) ∩ B1(1). Choose �1 large, to be
determined. By Proposition 8 from [BG08], since the elements of G freely gener-
ate a group, if S ⊂ W�1(G) is so that for all g1, g2, g3, g4 ∈ S, the bi-commutator
[[g1, g2], [g3, g4]] is 1, then |S| ≤ �61. As above, there is z2 ∈ K so that

|W�1(G) ∩A1z2| ≥ δ0+

( |G|2
2|G| − 1

)�1/2
.

The set A1z2 is contained in a ball of radius r′ = δ0− around 1. Cover the ball
of radius r′ around 1 by balls of radius β = α/(r′ + 1) ≥ δ0+. There thus exists
z3 ∈ W�1(G) ∩A1z2 so that

|W�1(G) ∩A1z2 ∩Bβ(z3)| ≥ δ0+

( |G|2
2|G| − 1

)�1/2
> �61

(the last inequality is the first property �1 should satisfy). Hence, there are

g1, g2, g3, g4 ∈ (W�1(G) ∩A1z2 ∩Bβ(z3))z−1
3 ⊂ A1A

−1
1

with non-trivial bi-commutator. For every g′ ∈ {g1, g2, g3, g4},
∥
∥g′ − 1

∥
∥

2
≤ ∥∥g′z3 − z3

∥
∥

2
(r′ + 1) ≤ β(r′ + 1) = α,

which implies

g′ ∈ A.

If g′ ∈ {g1, g2, g3, g4} is so that |(g′)1,2(g′)2,1| �= 0, then

|(g′)1,2(g′)2,1| ≥ Q−20�1 ≥ δε5

(this is the second property �1 should satisfy). In this case, we are done. Otherwise,
recall that if four 2×2 matrices are either all upper triangular or all lower triangular,



GAFA EXPANSION IN SL2(R) AND MONOTONE EXPANDERS 27

then they have a trivial bi-commutator. So, w.l.o.g. g1 is lower triangular and g2 is
upper triangular, which implies that g1g2 has the required property. ��

7 A Product Theorem

In this section we prove the product theorem, Theorem 16. The proof consists of
several parts given in the following sub-sections (the outline of the proof follows
[BG07], but the proof in our case is more elaborate). The theorem is finally proved
in Section 7.5. We start this section with a brief outline of the proof of the product
theorem. We note that not only field properties are used but also metric properties,
the argument is a multi-scale one. Here are the steps of the proof (ignoring many
technicalities).

We wish to prove that a set A with certain properties becomes larger when
multiplied by itself.

(i) Assume toward a contradiction that A(3) is not larger than A.
(ii) Assuming (i), find a set V of commuting matrices which is not too small and

is close to A(2). To do so, use the trace map, the pigeon-hole principle and a
non-commutative version of the Plünnecke–Ruzsa theorem.

(iii) If V is concentrated in a small ball, then AV will “move V around” and hence
AV will be much bigger than A. This is a contradiction, as AV is close to A(3).

(iv) Otherwise, V is not concentrated on any ball, which means that it is well-dis-
tributed. In this case, use the discretized ring conjecture, which roughly states
that a well-distributed set in R becomes larger under sums and products. To
move from SL2(R) to R, use matrix-trace, which translates matrix-product to
sums and products in the field.

In fact, the size of V obtained is roughly |A|1/3. To get back to the “correct”
order of magnitude, we use that A is far from strict subgroups in that it contains a
matrix g so that g1,2g2,1 is far from zero (w.r.t. any basis change). This property of
A is used to show that the size of V gV gV is |V |3 ∼ |A|.
7.1 Finding commuting matrices. In this sub-section we show that, under
some non-degeneracy conditions, a set of matrices induces a not-too-small set of
commuting matrices. To prove this, we also show that a set of matrices induces a
not-too-small trace-set. We start by stating the results. The proofs follow.

The trace of a matrix g is Trg = g1,1 + g2,2. Every g in SL2(C) with |Trg| �= 2
can be diagonalized (elements g in SL2(R) with |Trg| < 2 have complex eigenvalues,
so we must consider SL2(C)). Define Diag to be the set of diagonal matrices v in
SL2(C) so that Trv ∈ R.

The following lemma shows that the trace-set of a set is not too small, at least
after multiplying by one of four matrices that are “independent” enough. To numer-
ically capture independence of four matrices g0, g1, g2, g3 ∈ SL2(R) use the volume
they define as real vectors:
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det(g0, g1, g2, g3) := det

⎛

⎜
⎜
⎝

(g0)1,1 (g1)1,1 (g2)1,1 (g3)1,1
(g0)1,2 (g1)1,2 (g2)1,2 (g3)1,2
(g0)2,1 (g1)2,1 (g2)2,1 (g3)2,1
(g0)2,2 (g1)2,2 (g2)2,2 (g3)2,2

⎞

⎟
⎟
⎠ .

Lemma 17. Think of SL2(R) as a subset of R
4, and let g0, g1, g2, g3 ∈ SL2(R) ∩

B1/2(1) be so that

| det(g0, g1, g2, g3)| ≥ δ0+, (28)

and let A ⊂ SL2(R) ∩B1/2(1). Then, there is I ⊂ {0, 1, 2, 3} of size |I| = 3 so that

∏

i∈I
Nδ(Trg−1

i A) ≥ δ0+Nδ(A).

The following lemma allows to find a commuting set of matrices via trace.

Lemma 18. LetA ⊂ SL2(C)∩Bα(1), α > 0 a small constant, be so that dist(A,±1) ≥
δ0+. Then, there exists a set V ⊂ SL2(C) of commuting matrices so that

Nδ(V ) ≥ δ0+ Nδ(TrA)Nδ(A)
Nδ(A2A−1)

,

and every v ∈ V satisfies dist(v,A−1A) ≤ δ1−.

We shall also need the following corollary of the two lemmas.

Corollary 19. Let A ⊂ SL2(R) ∩ Bα(1), α > 0 a small constant. Let g1, g2, g3 ∈
SL2(R) ∩Bα(1) be so that

| det(1, g1, g2, g3)| ≥ δ0+.

Then, there is a set of commuting matrices V ⊂ SL2(C) so that there is g0 ∈
{1, g1, g2, g3} so that

Nδ(V ) ≥ δ0+ Nδ(A)4/3

Nδ(Ag−1
0 AA−1)

,

and every v ∈ V satisfies dist(v,A−1A) ≤ δ1−.

Proof of Lemma 17. For i ∈ {0, 1, 2, 3}, denote

g′
i =
(
di −ci

−bi ai

)

,

where

gi =
(
ai bi
ci di

)

.
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By (28),

| det(g′
0, g

′
1, g

′
2, g

′
3)| = | det(g0, g1, g2, g3)| ≥ δ0+.

Hence, let A′ ⊂ A be contained in some ball of radius δ0+ so that

Nδ(A) ≤ δ0−Nδ(A′),

and so that there is a set I ⊂ {0, 1, 2, 3} of size |I| = 3 so that

Nδ(A′) ≤ δ0−Nδ(PA′),

where P is the projection to the sub-space span{g′
i : i ∈ I} (the map g �→ Pg

restricted to a small ball is a diffeomorphism with bounded distortion). For every

g =
(
a b
c d

)

in SL2(R),

Trg−1
i g = dia− bic− cib+ aid =

〈
g, g′

i

〉
,

with the standard inner product over R
4. Thus,

Nδ(PA′) ≤ δ0−∏

i∈I
Nδ(Trg−1

i A′) ≤ δ0−∏

i∈I
Nδ(Trg−1

i A). ��
Proof of Lemma 18. Choose T ⊂ TrA so that

|T | ∼ Nδ(TrA), (29)

and so that for all t �= t′ in T ,

|t− t′|, |t− 2|, |t+ 2| > 2δ.

(If Nδ(TrA) is small, the lemma trivially holds.) Since trace is continuous,
∑

t∈T
Nδ

({
g ∈ A2A−1 : |Trg − t| < δ/4

})
� Nδ(A2A−1).

There thus exists t0 ∈ T so that the set

A0 = {g ∈ A2A−1 : |Trg − t0| < δ/4}
satisfies

Nδ(A0) � Nδ(A2A−1)
|T | .

Choose g0 ∈ A so that Trg0 = t0.
Choose A1 ⊂ A0 so that

|A1| = Nδ(A0)
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and

A0 ⊂
⋃

g∈A1

Bδ(g). (30)

For g ∈ A1, define (with a slight abuse of notation)

Ag = {x ∈ A : xg0x−1 ∈ Bδ(g)}.
Since for every x we have Trxg0x

−1 = Trg0 = t0, for every x ∈ A we have xg0x−1 ∈
A0. Equation (30) thus implies

A =
⋃

g∈A1

Ag.

Hence, there is g1 ∈ A1 so that

Nδ(Ag1) ≥ Nδ(A)
|A1| =

Nδ(A)
Nδ(A0)

� Nδ(A)
Nδ(A2A−1)

|T |. (31)

Fix x1 ∈ Ag1 . By definition, for every x ∈ Ag1 ,
∥
∥xg1x

−1 − x1g1x
−1
1

∥
∥ ≤ 2δ.

Since A is bounded,

‖yg1 − g1y‖ � δ,

where

y = x−1
1 x ∈ x−1

1 Ag1 .

Since g1 ∈ A is far from ±1, conclude that diagonalizing g1 makes x−1
1 A close to

diagonal: Since |Trg1| �= 2, there exists a matrix u so that v1 = ug1u
−1 is diagonal.

By assumption on A,

dist(v1,±1) ∼ dist(g1,±1) ≥ δ0+.

So,

|(v1)1,1 − (v1)2,2| ≥ δ0+.

In addition,
∥
∥uyu−1v1 − v1uyu

−1
∥
∥ � δ.

Hence,

|(uyu−1)1,2|, |(uyu−1)2,1| � δ1−.

Since | det(uyu−1)| = 1, there is thus a diagonal v ∈ SL2(C) so that
∥
∥uyu−1 − v

∥
∥ � δ1−.
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We can thus conclude that x−1
1 Ag1 ⊂ A−1A is in a (δ1−)-neighborhood of a set

V ⊂ SL2(C) of commuting matrices. In particular,

Nδ(V ) ≥ δ0+Nδ(Ag1).

Equations (29) and (31) imply the claimed lower bound on Nδ(V ).
Proof of Corollary 19. Since | det(1, g1, g2, g3)| ≥ δ0+, the pairwise distances between
±1,±g1,±g2,±g3 are at least δ0+. Thus, there exists a subset A′ of A so that

Nδ(A′) ≥ δ0+Nδ(A)

and

dist(A′, {±1,±g1,±g2,±g3}) ≥ δ0+.

By Lemma 17, there exists g0 ∈ {1, g1, g2, g3} so that

Nδ(Trg−1
0 A′) ≥ δ0+Nδ(A′)1/3.

Now, apply Lemma 18 on the set g−1
0 A′ to complete the proof. ��

7.2 Trace expansion via discretized ring conjecture. The following lemma
is the main result of this section. The lemma roughly tells us that if a set V of com-
muting matrices is well-distributed then adding a non-commuting element to V
makes its trace-set grow under products.

Lemma 20. For every 0 < σ < 2 and 0 < κ < 1, there are ε4, ε
′
4 > 0 so that the fol-

lowing holds. Let V ⊂ SL2(C) ∩Bα(1), α > 0 a small constant, be so that V = V −1,
so that dist(v,Diag) ≤ δ1−ε′

4 for all v in V , so that

Nδ(V ) = δ−σ,

and so that for all δ < ρ < δε4 ,

max
a

Nδ(V ∩Bρ(a)) < ρκδ−σ. (32)

Let g =
(
a b
c d

)

∈ SL2(CC) ∩Bα(1) be so that Trg ∈ R and |bc| ≥ δε4 . Then,

Nδ(TrWgWg) ≥ δ−σ−ε4 ,

where W = V(8).

The starting point here is the discretized ring conjecture. This conjecture was first
prove in [Bou03] and later strengthened in [BG07], see Proposition 3.2 in [BG07].
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Lemma 21. For all 0 < σ, κ < 1, there is ε2 > 0 so that for all δ > 0 small, the
following holds. Let A ⊂ [−1, 1] be a union of δ-intervals so that

|A| = δ1−σ

and for all δ < ρ < δε2 ,

max
a

|A ∩Bρ(a)| < ρκ|A|.
Then,

|A+A| + |AA| > δ1−σ−ε2 .

The discretized ring conjecture was used in [BG07] to prove “scalar amplifica-
tion,” i.e., the following proposition.

Proposition 22. For all 0 < σ, κ < 1, there is ε3 > 0 so that the following holds.
Let S ⊂ C be a subset of the complex unit circle, so that S is a union of δ-arcs,
δ > 0 small enough, so that S = S−1, so that

|S| = δ1−σ

(size is measured in the unit circle), and so that for all δ < ρ < δε3 ,

max
a

|S ∩Bρ(a)| < ρκ|S|. (33)

If γ, λ ∈ R are so that γ > 0, |λ| ≥ δε3 , then the set

D = {xy + γ/(xy) + λ(x/y + y/x) : x, y ∈ S(4)}
satisfies

Nδ(D) ≥ δ−ε3−σ.

We also need and prove the following variant of scalar amplification.

Proposition 23. For all 0 < σ, κ < 1, there is ε3 > 0 so that the following holds.
Let S ⊂ [1/2, 2] be a union of δ-intervals, δ > 0 small enough, so that S = S−1, so
that

|S| = δ1−σ,

and so that for all δ < ρ < δε3 ,

max
a

|S ∩Bρ(a)| < ρκ|S|. (34)

If γ, λ ∈ R are so that γ > 0, |λ| ≥ δε3 , then the set

D = {xy + γ/(xy) + λ(x/y + y/x) : x, y ∈ S(4)}
satisfies

Nδ(D) ≥ δ−ε3−σ.
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Lemma 20 follows from scalar amplification.
Proof of Lemma 20. Let V0 ⊂ Diag be so that

dist(v, V0) ≤ δ0 = δ1−

for all v in V and dist(v0, V ) ≤ δ0 for all v0 in V0. Specifically, for all δ0 < ρ < δ0
2ε4 ,

max
a

Nδ0(V0 ∩Bρ(a)) ≤ δ0− maxa Nδ0(V ∩Bρ(a)) ≤ δ0−ρκδ−σ. (35)

Observe

Tr

(
x 0
0 1/x

)

g

(
y 0
0 1/y

)

g = a2xy + d2/(xy) + bc(x/y + y/x). (36)

Write

V0 =
{(

x 0
0 1/x

)

: x ∈ T

}

.

The set T is contained in the real numbers union the complex unit circle. Denote
by T1 = T ∩ R, and T2 = T \ T1. First, assume

Nδ0(T1) ∼ Nδ0(V0). (37)

Define S1 to be a δ0-neighborhood of T1. Thus,

|S1| = δ1−σ1
0

with σ1 ≥ σ/2. Equation (35) implies that S1 satisfies (34) with κ1 = κ/2. As in
Proposition 23, denote

D1 = a2{xy + γ/(xy) + λ(x/y + y/x) : x, y ∈ (S1)(4)}.
with γ = (d/a)2 and λ = bc/a2. Observe, ad− bc = 1 and a+ d ∈ R imply d/a ∈ R

and bc/a2 ∈ R. In addition, |λ| ≥ δ0+
0 . The proposition thus implies

Nδ0(D1) ≥ δ−ε3−1
0 |S1| ≥ δ−ε3−σ+.

Using (36), conclude

Nδ(TrWgWg) ≥ δ−σ−ε3+.

When (37) does not hold, consider T2 and use Proposition 22 instead of Proposi-
tion 23. ��
Proof of Proposition 23. Assume towards a contradiction that the proposition does
not hold. W.l.o.g., for every s in S,

dist(s, {γ1/4, 1}) ≥ δ0+. (38)
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We first find a set A so that A + A is not much larger than A. If s, s′ ∈ S, then
x = s′/s ∈ S(2) and y = ss′ ∈ S(2) satisfy xy = s′2 and y/x = s2. By assumption,
we can thus conclude

∣
∣
∣
{

(s′2 + γ/s′2) + λ(s2 + 1/s2) : s′, s ∈ S(2)

}∣
∣
∣ � δ−ε3 |S|.

Denote

A = {λ(s2 + 1/s2) : s ∈ S(2)}
and

A′ = {s′2 + γ/s′2 : s′ ∈ S(2)}.
Since |λ| ≥ δ0+,

|A| ≥ δ0+|S|.
By (38), the derivative of the map s′ �→ s′2 + γ/s′2 is bounded away from zero in
the relevant range. Thus,

|A′| ≥ δ0+|S|.
Ruzsa’s inequality in measure version for open sets A,A′ ⊂ R states |A + A| ≤
|A+A′|2/|A′| (see, e.g., Lemma 3.2 in [Tao08]). Therefore,

|A+A| ≤ δ0−|S|. (39)

We now find a set that does not significantly increase its size under sums and
products. Define

A1 = {s2 + 1/s2 : s ∈ S}.
By (38),

|A1| ≥ δ0+|S|.
Hence, by (39), since |λ| ≥ δ0+,

|A1 +A1| ≤ δ0−|A+A| ≤ δ0−|A1|.
Observe

(s21 +1/s21)(s
2
2 + 1/s22) = ((s1s2)2 + 1/(s1s2)2) + ((s1/s2)2 + 1/(s1/s2)2).

Hence, using (39), since |λ| ≥ δ0+,

|A1A1| ≤ δ0−|A+A| ≤ δ0−|A1|.
So,

|A1 +A1| + |A1A1| ≤ δ0−|A1|.
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If ε3 > 0 is small enough, we can set 0 < σ′ < 1 so that

|A1| = δ1−σ′
.

Choose κ′ = κ/2. Set ε2 = ε2(σ′, κ′) > 0 as in Lemma 21. If ε3 > 0 is small enough,
then for every δ < ρ < δε2 ,

max
a

|A1 ∩Bρ(a)| ≤ δ0− maxa |S ∩Bρ(a)| < δ0−ρκ|S| ≤ δ0−ρκ|A1| ≤ ρκ
′ |A1|.

This contradicts Lemma 21. ��
7.3 Expansion using a non-commuting element. We shall use the follow-
ing variant of a lemma from [BG07], see [H08] as well. Roughly, the lemma states
that adding a non-commuting element to a commuting set of matrices makes it grow
under products.

Lemma 24. Let V ⊂ SL2(C) ∩Bα(1), α a small constant, be so that dist(v,Diag) ≤
δ1− for all v in V . Let g =

(
a b
c d

)

∈ Diag ∩Bα(1) be so that |bc| ≥ δ0+. Then,

Nδ(V gV gV ) ≥ δ0+Nδ(V )3.

Proof. Assume

Nδ(V ) > δ0− (40)

(otherwise, the lemma trivially holds). There are several cases to consider.
1. Denote by DiagR the set of matrices in Diag with entries in R. Consider the

case that there is a subset of DiagR with comparable metric entropy to that of V :
assume that there is Z ⊂ R so that |Z| ≥ δ0+Nδ(V ), so that for all z ∈ Z,

dist

((
z 0
0 1/z

)

, V

)

≤ δ1−,

and so that for all z �= z′ in Z,

|z − z′| > δ.

W.l.o.g., assume that z ≥√d/a (the proof in the other case is similar). Furthermore,
by (40), we can assume w.l.o.g. that

z −
√
d/a, |z − 1| ≥ δ0+.

For z = (z1, z2, z3) in Z3, denote

Mz =
(
z1 0
0 1/z1

)

g

(
z2 0
0 1/z2

)

g

(
z3 0
0 1/z3

)

.

To prove the lemma, we will show that for all z �= z′ in Z3,

‖Mz −Mz′‖ ≥ δ1+.



36 J. BOURGAIN AND A. YEHUDAYOFF GAFA

Observe

Mz =
(

z1z3(a2z2 + bc/z2) (z1/z3)b(az2 + d/z2)
(z3/z1)c(az2 + d/z2) (1/z1z3)(bcz2 + d2/z2)

)

.

Consider the following two cases.
1.1. The first case is when z2 > z′

2. We have two sub-cases to consider.
1.1.1. The first sub-case is |z1/z3 − z′

1/z
′
3| ≥ δ1+. Bound

∣
∣(Mz)1,2 /(Mz)2,1 − (Mz′)1,2/(Mz′)2,1

∣
∣ = |b/c| · ∣∣(z1/z3)2 − (z′

1/z
′
3)

2
∣
∣ ≥ δ1+.

Thus,

δ1+ ≤ ∣∣(Mz)1,2(Mz′)2,1 − (Mz′)1,2(Mz)2,1
∣
∣

=
∣
∣
(
(Mz)1,2 − (Mz′)1,2

)
(Mz′)2,1 + (Mz′)1,2

(
(Mz′)2,1 − (Mz)2,1

)∣
∣.

So,

‖Mz −Mz′‖ ≥ δ1+.

1.1.2. The second sub-case is |z1/z3 − z′
1/z

′
3| < δ1+. Bound

|(Mz)1,2 − (Mz′)1,2| = |ba|∣∣(z1/z3)(z2 + (d/a)/z2) − (z′
1/z

′
3)(z

′
2 + (d/a)/z′

2)
∣
∣

� |ba|∣∣z2 + (d/a)/z2 − z′
2 + (d/a)/z′

2

∣
∣− δ1+.

The map z2 �→ z2 + (d/a)/z2 has derivative at least δ0+ for z2 ≥√d/a+ δ0+. So,

|(Mz)1,2 − (Mz′)1,2| ≥ δ1+.

1.2. The second case is z2 = z′
2 and (z1, z3) �= (z′

1, z
′
3). Assume w.l.o.g. z1 �= z′

1

(the argument in the other case is similar). Since the entries of g
(
z2 0
0 1/z2

)

g are

bounded away from 0 and V is close to 1,

‖Mz −Mz′‖ ≥ δ0+
∥
∥(z1z3 − z′

1z
′
3, z1z

′
3 − z′

1z3)
∥
∥ .

Since ‖(z3, z′
3)‖ � 1 and

∣
∣
∣
∣det

(
z1 −z′

1

−z′
1 z1

)∣
∣
∣
∣ � δ,

∥
∥(z1z3 − z′

1z
′
3, z1z

′
3 − z′

1z3)
∥
∥ � δ.

2. Otherwise, there is a subset of Diag \ DiagR with comparable metric entropy
to that of V : There is a subset of the complex unit circle Z so that |Z| ≥ δ0+Nδ(V ),
so that for all z ∈ Z,

dist

((
z 0
0 1/z

)

, V

)

≤ δ1−,

and so that for all z �= z′ in Z,

|z − z′| > δ.
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Assume w.l.o.g. that dist(Z, 1) ≥ δ0+. Also assume w.l.o.g. that every element of Z
has positive imaginary part (the other case is similar).

2.1. When z2 �= z′
2, bound

∣
∣|(Mz)1,2| − |(Mz′)1,2|

∣
∣ = |ba|∣∣|z2 + (d/a)/z2| − |z′

2 + (d/a)/z′
2|
∣
∣.

If we denote, z2 = eiθ2 and z′
2 = eiθ

′
2 , then

∣
∣|z2+(d/a)/z2|2−|z′

2 + (d/a)/z′
2|2
∣
∣=2(d/a)

∣
∣ cos(2θ2)−cos(2θ′

2)
∣
∣≥δ0+|z2 − z′

2|>δ1+.

Hence,

‖Mz −Mz′‖ ≥ δ1+.

2.2. When z2 = z′
2, the argument is similar to the one in case 1.2. above. ��

7.4 Finding “independent directions”. Roughly, we now show that two
non-commuting matrices induce four “independent directions.”

Claim 25. Let g1 ∈ SL2(C) ∩B1(1) be so that dist(g1,±1) ≥ δ0+ and Trg1 �= 2. Let
g2 ∈ SL2(C) be so that w.r.t. the basis that makes g1 diagonal |(g2)1,2(g2)2,1| ≥ δ0+.
Then,

| det(1, g1, g2, g1g2)| ≥ δ0+.

Proof. Choose a basis so that g1 is diagonal (this is a linear transformation on the
gi’s with bounded away from zero determinant). Denote λ = (g1)1,1. In the new
basis,

| det(1, g1, g2, g1g2)| = |(λ− 1/λ)((g1g2)1,2(g2)2,1 − (g1g2)2,1(g2)1,2)|.

By choice,

|λ− 1/λ| ≥ δ0+.

and

|(g2)1,2(g2)2,1| ≥ δ0+.

Hence,

|((g1g2)1,2 (g2)2,1 − (g1g2)2,1(g2)1,2)| = |(λ− 1/λ)(g2)1,2(g2)2,1| ≥ δ0+. ��
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7.5 Proof of product theorem. Proof of Theorem 16 Assume towards a con-
tradiction that

Nδ(AAA) ≤ δ0−Nδ(A).

By [Tao08], for every finite k,

Nδ(A(k)) ≤ δ0−Nδ(A) (41)

as well.
The first step is to find a large, commuting set of matrices. By assumption on

A and using Claim 25, choose g1, g2, g3 in A(8) with | det(1, g1, g2, g3)| ≥ δ0+. Equa-
tion (41) and Corollary 19 imply that there is a set of commuting matrices V ⊂
SL2(C) so that

Nδ(V ) ≥ δ0+Nδ(A)1/3 = δ−1+σ0/3+ (42)

and so that

V ⊂ Γδ1−(A(2)).

Assume (by perhaps allowing V ⊂ Γδ1−(A(4))) that V = V −1 and

V ⊂ Bδ3ε5 (1). (43)

Proceed according to two cases.
The first case is when V is well-spread, i.e., the conditions for using the discret-

ized ring conjecture are held. Define

σ = 1 − σ0/3 − and κ = τ/6

so that Nδ(V ) = δ−σ. Assume that for all δ < ρ < δε4 with ε4 = ε4(σ, κ) from
Lemma 20,

max
a

Nδ(V ∩Bρ(a)) < ρκδ−σ.

By assumption on A, there is g0 ∈ A(4) so that (w.r.t. the basis that makes V diago-
nal) the distance between g0 and 1 is at most a small constant, and |(g0)1,2(g0)2,1| ≥
δε5 . Even after the basis change Trg0 ∈ R. Thus, Lemma 20 implies

Nδ(TrW0) ≥ δ−σ−ε4 ,

where

W0 = Wg0Wg0W and W = V(8).

(Here and below C > 0 will be a large universal constant, that may change its value.)
By choice,

dist(g2
0,±1) � δε5 .
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Thus, using (43),

dist(W0,±1) � δ2ε5 .

We can hence apply Lemma 18 with W0 to obtain a set

W1 ⊂ Γδ1−(W−1
0 W0)

of commuting matrices so that

Nδ(W1) ≥ δ0+ Nδ(TrW0)Nδ(W0)

Nδ(W 2
0W

−1
0 )

≥ δ0+ δ−σ−ε4Nδ(V g0V g0V )

Nδ(W 2
0W

−1
0 )

.

By (41) and Lemma 24, we thus have

Nδ(W1) ≥ δ0+ δ
−σ−ε4Nδ(V )3

Nδ(A)
.

So, by (42),

Nδ(W1) ≥ δ−σ−ε4/2.

Again, we can find g1 ∈ A(4) so that (w.r.t. the basis that makes W1 diagonal)
dist(g1, 1) is at most a small constant, Trg1 ∈ R, and |(g1)1,2(g1)2,1| ≥ δ0+. So, we
can apply Lemma 24 again and get

Nδ(A) ≥ δ0+Nδ(W1g1W1g1W1) ≥ δ0+Nδ(W1)3

≥ δ−3σ−ε4/2 = δ−3+σ0−ε4/2 = δ−ε4/2Nδ(A).

This contradicts (41), and the proof is complete in this case.
The proof in the second case, when V is not well-spread, is simpler. Indeed, we

have

Nδ(V0) ≥ ρκδ−σ

with

V0 = V ∩Bρ(a)
(reusing notation). So, by Lemma 24,

Nδ(V1) ≥ δ0+Nδ(V0)3 ≥ ρ3κδ−3σ+,

where

V1 = V0g0V0g0V0 ⊂ Γδ1−(A(C))

with g0 from above. By assumption on A, there is a finite X ⊂ A so that

|X| ≥ ρ−τ
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and for all x �= x′ in X, ‖x− x′‖ ≥ Cρ. Denote

V2 =
⋃

x∈X
xV1.

Therefore,

Nδ(V2) ≥ |X|Nδ(V1) ≥ ρ−τρ3κδ−3σ+ ≥ ρ−τ/2δ−3+σ0+ ≥ δ−3+σ0−ε4τ/3 = δ0−Nδ(A).

Since V2 ⊂ Γδ1−(A(C)), we obtained a contradiction to (41), and the proof is com-
plete. ��
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