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THE GROWTH RATE OF SYMPLECTIC HOMOLOGY AND
AFFINE VARIETIES

MARK MCLEAN

Abstract. We will show that the cotangent bundle of a manifold whose free
loopspace homology grows exponentially is not symplectomorphic to any smooth
affine variety. We will also show that the unit cotangent bundle of such a manifold
is not Stein fillable by a Stein domain whose completion is symplectomorphic to a
smooth affine variety. For instance, these results hold for end connect sums of simply
connected manifolds whose cohomology with coefficients in some field has at least
two generators. We use an invariant called the growth rate of symplectic homology
to prove this result.
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1 Introduction

The aim of this paper is to use an invariant called the growth rate of symplectic
homology to construct many examples of cotangent bundles which are not symplecto-
morphic to any smooth affine variety. We also have a contact analogue of this result
which says that if we take the unit cotangent bundle of one of these manifolds then it
is not Stein fillable by a Stein domain whose completion is symplectomorphic smooth
affine variety. All of our manifolds are assumed to be oriented unless explicitly stated
otherwise.

If we have some Liouville domain M (defined in section 2.1) and a class
be H*(M,Z/27), then the growth rate of symplectic homology is an invariant
I'(M,b) € {—o0} U[0,00). This invariant was originally defined in [Se, §4]. Ev-
ery Liouville domain also has a completion M , and the growth rate is in fact an
invariant of the completion M up to symplectomorphisms preserving the class b and
so we will often write I'(M, b).

A smooth affine variety A has a symplectic structure obtained by embedding it
into CV algebraically and then pulling back the standard symplectic form onto A. It
turns out that this is symplectomorphic to the completion of some Liouville domain
A obtained from taking a large closed ball in C" and intersecting it with A. Because
the symplectic form is a biholomorphic invariant of A, we can assign the invariant
(A, b) =T(A,0b) (see [EG]).

We say that a contact manifold C'is algebraically Stein fillable if it is Stein fillable
by a Stein domain D whose completion D is symplectomorphic to a smooth affine
variety A. For a smooth affine variety A we also have a finite invariant m4 € Ny
defined as follows: choose a compactification X of A by a smooth normal crossing
divisor (i.e. X \ A is a union of smooth transversely intersecting connected complex
hypersurfaces S;, i = 1,...,k). For I C {1,...,k} we write S; := N;c1S;. Let
d = max{n — dim¢(Sy)|Sr # 0} where n = dimcA. We define m4 to be the
minimum of d over all compactifications described above.

The main result of this paper is

Theorem 1.1. T'(A,b) < my for any class b € H*(A,Z/27Z). In particular
I'(A,b) < cc.

In fact we will prove a more general theorem:

Theorem 1.2. Suppose that the boundary of a Liouville domain M is algebraically
Stein fillable by A, then T'(M,b) < ma for any b € H*(M,Z/27).

This theorem will be proven in section 6. These theorems have been proven in
[Se, §4] when A has complex dimension 2. Let @ be a compact manifold. Choose
some metric on ) and let £9Q) be the space of all free loops on @) of length less than
or equal to ¢, and let £Q be the space of all free loops on ). Let K be any field and
let a®(q) be the rank of the image of the inclusion map

H.(L£9Q),K) < H,(£(Q),K).
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The manifold @ is said to have exponential growth if for some K, the function
a®(q) grows faster than any polynomial (we mean here that for any polynomial p(q),
a®(q) > p(q) for q large enough). If the manifold @ has finite fundamental group,
then this definition of exponential growth is the same as saying that % b;(£(Q), K)
grows faster than any polynomial in k for some K by [G]|. There are many examples
of manifolds with exponential growth. Here are some:

1. Any surface of genus 2 or higher.

2. The end connect sum of two simply connected manifolds Mi#Ms where
H*(M;,K) has at least two generators and H*(M>,K) has rank at least 3
(see [L]).

3. Any manifold @) whose fundamental group is the free product of at least 3
non-trivial groups (see Lemma 4.20, and Lemma 4.21).

Conjecturally (see [V]) there should be many more manifolds with exponential
growth such as simply connected manifolds whose Betti numbers are greater than
that of the torus. Given any Riemannian manifold @), we can construct a symplectic
manifold 7*Q where locally the symplectic form is ) . dg; A dp; where ¢; are the
position coordinates and p; are the momentum coordinates. We also have a Liouville
domain D*(@) which is the manifold with boundary consisting of covectors of length
less than or equal to 1. Its boundary is the contact manifold denoted by S*Q
consisting of covectors of length 1 and the contact form here is ), p;dg;.

By using work from [SW, Cor. 1.2] (although we could have used ideas from [AS]
or [Vi]), it can be shown that I'(T*Q, w2) = oo when @ has exponential growth and
wy is the pullback of the second Stiefel-Whitney class of ). Hence we have the
following corollary of Theorem 1.1:

COROLLARY 1.3. If Q has exponential growth then T*(@) is not symplectomorphic
to any smooth affine variety.

This is because I'(T*Q,w2) = oo and I'(A,b) < oo for any smooth affine variety
A and any b € H%(A,Z/27). We also have the following corollary of Theorem 1.2:

COROLLARY 1.4. The unit cotangent bundle of () is not algebraically Stein fillable.

If we wish to consider unoriented manifolds @ then we need to do the following:
A contact manifold C is said to be covered algebraically Stein fillable if there is a
Stein filling M of C' whose completion M is symplectomorphic to a finite cover of a
smooth affine variety.

Theorem 1.5. Suppose the boundary of a Liouville domain M is covered alge-
braically Stein fillable by a smooth affine variety A, then T'(M,b) < my for any
be H*(M,Z/27).

We will prove this theorem in section 7. We then immediately get the following

corollaries:

COROLLARY 1.6. If Q is a compact manifold of exponential growth which is
possibly unoriented such that some finite cover is oriented and it has exponential
growth then T*(@) is not symplectomorphic to any smooth affine variety.
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This corollary is true for the following reason: If T%() is symplectomorphic to
some smooth affine variety A then for every oriented finite cover @ of Q, T*Q is
symplectomorphic to some finite cover of A. Hence by the above theorem we have
that I'(T*Q, w2) < oo which means that @ is cannot have exponential growth.

Similar reasoning also gives us the following corollary:

COROLLARY 1.7.  The unit cotangent bundle of any (possibly unoriented) @ of
exponential growth with dimension > 2 is not covered algebraically Stein fillable. In
particular the unit cotangent bundle of any such () is not algebraically Stein fillable.

The reason why we need dimension > 2 is that if we have some algebraic Stein
filling C' of S*@Q then we require that m1(Q) = m(S*Q) = m1(C) so that we can
take an appropriate cover of C. In future work the author hopes to prove a based
loopspace version of the above theorems using wrapped Floer homology. This will
enlarge the class of manifolds whose cotangent bundle is not symplectomorphic to
a smooth affine variety. For instance this would be true if their Betti numbers are
greater than that of the torus.

There is a similar conjecture relating smooth affine varieties with cotangent bun-
dles which we will now describe. Suppose that U is a real affine algebraic variety
over R which is diffeomorphic to our manifold (). We will suppose that @ is sim-
ply connected. We say that @) has a good complezification if there exists a U as
described above such that the natural map U(R) — U(C) is a homotopy equiv-
alence. There is a question in [T] which asks if @) has a Riemannian metric of
non-negative sectional curvature when ) has a good complexification. There is
also a conjecture attributed to Bott which conjectures that any simply connected
manifold with non-negative sectional curvature is rationally elliptic. Rationally el-
liptic means that dimm,(Q) ® Q < oo (see [FHT1]). This conjecture is mentioned
in [FHT2, Ques. 12,p.519]. Felix and Thomas in [FT] proved that if a simply con-
nected manifold is rationally elliptic then the growth rate of the Betti numbers of its
based loopspace grows sub exponentially. Vigué-Poirrier in [V, p.415] conjectured
that the growth rate of the Betti numbers of the based loopspace grow exponentially
if and only if the same thing is true for the free loopspace. If we look at all of these
statements then we get the following question: Suppose @ is simply connected of
exponential growth, then is it true that @@ does not admit a good complexification?
This question has some similarities with Corollary 1.3 because we can choose a sym-
plectic form on U(C) such that a neighbourhood of U(R) is symplectomorphic to
a neighbourhood of the zero section of 7*@Q and also because both T*@Q and U(C)
deformation retract onto Q).

‘We will now give a brief sketch of the proof of Theorem 1.2. Symplectic homology
of M is the homology of a chain complex having the following generators:

1. Critical points of some Morse function on M.
2. Two copies of each closed Reeb orbit of OM.

This chain complex has a natural filtration by R>q called the action. Critical points
have action 0 and the action of each Reeb orbit is its length. Hence we can define
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SH*S/\(M ) for each A as the homology of the subcomplex of orbits of action < A.
The growth rate is the rate at which

rank im (SHEA(M) > lim SHE! (M))
l

grows with respect to A. For instance if the rank is bounded above by some poly-
nomial of degree k then the growth rate is less than or equal to k. It turns out that
our smooth affine variety A is symplectomorphic to M for some M. We need to
provide an upper bound for the growth rate of M. One way of doing this is to show
that the number of Reeb orbits of length < X is bounded above by some polynomial
of degree at most m,4. This is the method used in [Se, §4] when Theorem 1.2 is
proven in complex dimension 2. This upper bound is achieved by compactifying A
by a smooth normal crossing divisor and carefully constructing a Liouville domain
using this divisor. The problem is that this upper bound is much harder to achieve
in higher dimensions. In this paper we define growth rate in a slightly more flexible
way so that it is easier to provide such an upper bound.

We have some Hamiltonian H > 0 and an almost complex structure .J called a
growth rate admissible pair which satisfies certain technical properties. From this
pair (H,J) we can define a series of homology groups SHY (\H, J) generated by
1-periodic orbits of AH. For A\ < Ay there is a natural map

SH#(M\H,J) — SHY (\H,J).
We prove that the growth rate of
rank im<SHf(AH, J) — lim SHF (1H, J))
l

is equal to the original definition of growth rate (section 4.1). Finally we care-
fully construct a Hamiltonian H so that there is a degree m4 polynomial bound
on the number of 1-periodic orbits of a very small perturbation of AH and this
gives us an upper bound on the growth rate (section 6). We construct this Hamil-
tonian by first compactifying our smooth affine variety A with a smooth normal
crossing divisor D. We deform D without changing the symplectic structure on
its complement A so that there is a nice symplectic structure near D (section 5).
We can construct H so that around some point p € D we have that D looks like
{z1=0,...,2,=0,y1 =0,...,y, = 0} where x1,...,2p,Yy1,..., Y, is some nice co-
ordinate chart around p and H is a product Hamiltonian. The symplectic structure
is not quite the standard one on this chart but the Hamiltonian flow of H is exactly
the same as the Hamiltonian flow with respect to the standard symplectic structure.
This enables us to find all the 1-periodic orbits of H and give a bound proportional
to AF < \™4 in each chart. Hence we get an upper bound of m 4.

Acknowledgements. I would like to thank Mohammed Abouzaid, Dietmar Sala-
mon, Burt Totaro, Paul Seidel and Ivan Smith for extremely useful comments. The
author was partially supported by NSF grant DMS-1005365.
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2 Main Definitions and Properties

2.1 Liouville domains. A Liouville domain is a compact manifold N with
boundary and a 1-form 6y satisfying

1. wy := dfy is a symplectic form.

2. The wy-dual of y is transverse to N and pointing outwards.

We will write Xy, for the wy-dual of . Sometimes we have manifolds with corners
with 1-forms 6 satisfying the same properties as above. We view these as Liouville
domains by smoothing the corners slightly. By flowing ON backwards along Xp,
we have a small collar neighbourhood of ON diffeomorphic to (0,1] x N with
Oy = ryayn. Here ry parameterizes (0, 1L and apn is the contact form on the
boundary given by 0x|sny. The completion N is obtained by gluing [1,00) x N to
this collar neighbourhood and extending 0xn by ryay.

The Liouville domains that we will be studying are called Stein domains. A Stein
manifold is a complex manifold that can be properly embedded in CV. An equiv-
alent definition of a Stein manifold is a complex manifold admitting an exhausting
plurisubharmonic function. A function is exhausting if it is bounded from below and
the preimage of every compact set is compact. A function f : S — R is plurisubhar-
monic if (—ddf)(X,JX) > 0 for all non-zero vectors X where d°:=do J and J is
the complex structure on the complex manifold S. This implies that wy := —dd°f is
a symplectic form. If ¢ is a regular value of an exhausting plurisubharmonic function
f then f~!(—oc0,] is a Liouville domain with Liouville form —d°f. We call such a
domain a Stein domain. A Stein manifold is of finite type if it admits an exhausting
plurisubharmonic function with only finitely many singularities. A plurisubharmonic
function f is said to be complete if the wy-dual of —d°f is integrable. Every finite
type Stein manifold admits an exhausting plurisubharmonic function which is com-
plete. Also any two such functions on S give symplectomorphic Stein manifolds.
Hence the symplectic form is a biholomorphic invariant. We will write wg for this
symplectic form. If f is of finite type then it turns out for C' > 0 that (S,wg) is
symplectomorphic to the completion of f~!(—0o0,C]. One way of obtaining such
a symplectic form is embedding S as a closed proper holomorphic embedding into
C" and then pulling back the standard symplectic form wgq on CV. Important
examples of finite type Stein manifolds A are smooth affine varieties (see [Se, §4b]).
In fact from [Se, §4b] we have for any smooth affine variety A, a LiAouville domain

A which unique up to isotopy through Liouville domains such that A is symplecto-
morphic to A. Uniqueness here means that if B is isomorphic as a variety to A
then A is isotopic to B. From now on throughout this paper if we have a smooth
affine variety A we will write A for such a Liouville domain. We will call any such
Liouville domain an algebraic Stein domain. Here is a direct way of constructing
this Liouville domain: Choose any algebraic embedding ¢ of A into CV (so it is a
closed subvariety). Let (r;,%;) be polar coordinates for the i-th factor in CV. Let

R =35, %. We have 04 := —d°R =), %dﬁi. We have that df4 is equal to the
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standard symplectic structure on CV. By abuse of notation we write 84 for 164,
and wy = db 4.

LEMMA 2.1. There is a C > 0 such that for all ¢ > C,((R|a)"'(—o00,c],04) is a
Liouville domain whose completion is symplectomorphic to (A, w4).

Proof of Lemma 2.1. 'We will first show that for some C' > 0, R| 4 has no singularities
when R|4 > C. Compactify CV to PV and let X be the projective subvariety which
is the closure of A in PV. Let H be the hypersurface X \ A. We have a line bundle
O(1) described as follows: If we think of a point on PV as a line A in CV*! then
the fiber at this point is the quotient (CN*1)*/V where V is the vector subspace of
linear 1-forms whose kernel contains A. The hyperplane H is represented by some
linear hyperplane H in CN*! and so we have a section s given by a non-zero linear
1-form whose kernel is H. This section vanishes on H with order 1.

Another way of describing the fiber of this bundle over the point represented
by the line A is as the space of linear 1-forms W, which vanish in the hyperplane
orthogonal to A. We can put a metric || - || on W) induced by the standard metric
on (CN+1)* hence we view || -|| as a metric on O(1). The curvature form is a positive
(1,1) form and this gives us a symplectic form on PY. We have an action of U(N +1)
on PV induced by the standard action on CV*!. This action also naturally lifts to

an action on the total space of O(1). The metric || -| is invariant under the action of
U(N+1). We can ensure that U(N) C U(N+1) is the subgroup which sends H to H.
This subgroup also fixes our section s so u*||s|| = ||s|| for each v € U(N). Hence

||s|| must be a function of R. If it wasn’t then there exists two elements a,b € C
of the same modulus such that [|s||(a) # ||s]|(b) but this is impossible as there is
a u € U(N) such that u(a) = b which implies that |[s|[(a) = u*(||s|)(b) = |/s]|(D).
The function —log ||s|||4 is a plurisubharmonic function on A. It is also equal to
f(R|a) for some function f. We will first show that —log ||s|||4a has no singularities
near infinity. If D was a smooth normal crossing divisor then [Se, §4b] tells us that
dlog ||s|||a is non-zero near infinity. But the problem is that D could be anything.
So by the Hironaka resolution of singularities [H] we blow up X away from A to
X where X is smooth and the pullback D is a smooth normal crossing divisor.
Let L be the pullback of O(1) and § the pullback of s. We can also pull back the
metric ||.|| to L. To show that dlog|s|| is non-zero we just show that dlog||s|| is
non-zero in exactly the same way as in Lemma [Se, §4b]: Let p € D and choose
local holomorphic coordinates z1, ..., 2z, and a trivialization of L around p so that
s =zt 2% (w; >0). The metric ||. | on L is equal to e¥| .| for some function ¢
with respect to this trivialization where | .| is the standard metric on C. So

dlog 5] = v — (3 widlog|zi])

If we take the vector field Y := —210,, - - - — 2,0, then dlog (|2;|)(Y) = —1 and Y.9
tends to zero. Hence dlog ||§|| is non-zero near infinity which implies that f(R) =
—log || s|| has no singularities near infinity. Because f(R) and R are both exhausting,
we get that f' > 0 near infinity which implies that R|4 has no singularities in the
region R > C for some C' > 0.
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Because A is a holomorphic submanifold of CV, we have that wy is a symplectic
form. Let ¢ > C and write A, := (R|4) (—00,c]. We have that A, is a Liouville
domain because if Xy, is the wy-dual of 6,4 then it is equal to the gradient of R|4
and hence is transverse to 0 A, and pointing outwards because c is a regular value of
R|4 and f'(¢) > 0. Also we have that the ws-dual Xy, of 64 is an integrable vector

field because d(R|4)(Xg,) < dR(D>% o 9.)|4 = R|4 and hence if <I> 4 is the flow

X,
of this vector field then (R|4)(®, oA (z)) increases at a rate of at most eR|A This

first inequality is true because Xg 4 is the orthogonal projection of ), % ar onto T'A
0

so its length [ decreases, but R( ia 81”1) = supyy | (V). By flowing 94, along

Xy, we get that A\ A, is diffeomorphic to [1,00) x A, and 04 = raaa, where r4
parameterizes [1,00) (this is because d(R|4)(Xp,) > 0 for R|4 > C). Hence A is
symplectomorphic to A.. O

A contact manifold C' is said to be Stein fillable if it is contactomorphic to the
boundary of some Stein domain. It is said to be algebraically Stein fillable if the
completion of this Stein domain is symplectomorphic to A.

2.2 Symplectic homology. Let N be a Liouville domain with ¢; = 0. We
make some additional choices 7 := (7,b) for N. The element 7 is a choice of triv-
ialization of the canonical bundle of N up to homotopy and b is an element of
H?(N,7Z/27). We will assume that ON has discrete period spectrum Py (the set
of lengths of Reeb orbits of the (ON’, an+)). For each pair of numbers a < b where
a,b € [—o00,00] we will define a symplectic homology group SHia’b] (N,n) which is
an invariant of (N,60y) up to exact symplectomorphism (although we suppress 0y
in the notation unless the context is unclear). Here an exact symplectomorphism
between two Liouville domains N and N’ is a smooth diffeomorphism ® from N to
N’ such that ®*0y: = O + df for some smooth function f: N — R.

A family of Hamiltonians H : S' x N — R is said to be admissible if H(t,z) =
Ary(z) near infinity where ry is the cylindrical coordinate of N and X is some
positive constant. Here A\ is some positive constant which is not in the period
spectrum of ON. We also require that Hyny < 0. We sometimes view H as a time
dependent Hamiltonian H; : N — R where t € S1. We have an S! family of vector
fields Xp, and it has an associated flow CDB(Ht (a family of symplectomorphisms

parameterized by t € R satisfying at(I)t = Xy, where we identify S' = R/Z). A
1-periodic orbit 0 : S* — N is a map Wthh satisfies o(t) = <I>tXH (z) for some z € N.
t

We say that o is non-degenerate if D@}(Ht : Tx]/\\f — Tx]/\7 has no eigenvalue equal
to 1. By [DS], we can perturb H by a C* small amount so that all of its 1-periodic
orbits are non-degenerate. The problem here is that this Hamiltonian may not be
admissible after perturbing it, so we need a lemma:

LEMMA 2.2. Let H: S' x N — R where N is a symplectic manifold. Let U be a
small neighbourhood of some of the 1-periodic orbits of H such that no 1-periodic
orbits intersect the boundary OU. Then we can perturb H by a C*° small amount to
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H such that all the 1-periodic orbits of H are non-degenerate inside U and H = H
outside U.

Proof of Lemma 2.2.  We can choose U small enough so that the time 1 flow of
Xp, is well defined. Let U’ be a smaller open neighbourhood of the 1-periodic orbits
whose closure is contained in U. By slightly extending the work of [DS], we can find
for any positive function f : N — R, a Hamiltonian Hy such that |[H; — H||c~ < f
and such that all the 1-periodic orbits of Hy are non-degenerate. Let R be an open
neighbourhood of U’ inside U where H has no 1-periodic orbits which intersect the
closure of R. Choose a bump function p : N — R which is 0 on a neighbourhood of
U'\ R and 1 on a neighbourhood of N\ U’. Let H; := pH + (1 — p)Hy. Suppose
for a contradiction that for every f sufficiently small, there exists a 1-periodic orbit
of H ¢ inside U which is degenerate. This orbit must intersect R because all orbits
of H; are non-degenerate away from R. Then by a compactness argument, we have
a sequence of such orbits converging to a 1-periodic orbit of H which intersects the
closure of R. This is impossible. Hence we have for any f arbitrarily small, there is
a Hamiltonian Hy satisfying ||Hf — Hl|ce < f such that all of its orbits inside U
are non-degenerate and H; = H outside U. 0

Because we have a trivialization 7 of the canonical bundle of N, this gives us a
canonical trivialization of the symplectic bundle T'N restricted to an orbit o. Using
this trivialization, we can define an index of o called the Robbin—Salamon index
(This is equal to the Conley—Zehnder index taken with negative sign). We will write
i(0) for the index of this orbit 0. For a 1-periodic orbit o we define the action Ag(o):

A (o) ::—/OlH(t,q/(t))dt—/oﬁN.

Choose a coefficient field K. Let
CF(H,J,n) @K

where we sum over 1-periodic orbits o of H satlsfylng Ap (o) < d whose Robbin—
Salamon index is k. We write

CF“H, J,n) = CFX(H, J,n)/CFL(H, J,n).
We need to define a differential for the chain complex C'F) ,f(H ,J,m) such that the
natural inclusion maps CFE(H, J,n) < CF(H, J,n) for ¢ < d are chain maps. This
makes C'F; ,gc’d] (H,J,n) into a chain complex as well. In order to define this we choose
an S' family of almost complex structures .J; compatible with the symplectic form.
We assume that J; is convex with respect to this cylindrical end outside some large
compact set (i.e. § o J, = dr). We also say that J; is admissible.
We will now describe the differential

0+ CF{(H, J,n) — CF{_y(H, J,n).
We consider curves u : R x St —s N satisfying the perturbed Cauchy—Riemann

equations:
Osu + Ji (u(s, t))atu =V9%H
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where V9 is the gradient associated to the S! family of metrics g; := w(-, Ji(+)).
For two periodic orbits o_, 04 let U(o_, 04 ) denote the set of all curves u satisfying
the Cauchy—Riemann equations such that (s, -) converges to x4 as s — +o0o. This
has a natural R action given by translation in the s coordinate. Let U(o_,04) be
equal to U(o_,0.)/R. For a C* generic admissible complex structure we have that
U(o_,04) is an (i(0o_,04) — 1)-dimensional oriented manifold (see [FIHS]). There
is a maximum principle which ensures that all elements of U(o_,04) stay inside
a compact set K (see [O, Lem. 1.5], [AbS, Lem.7.2] or Corollary 9.3). Hence we
can use a compactness theorem (see for instance [BEHWZ]) which ensures that if
i(o—)—i(o4) =1, then U(o_, 04 ) is a compact zero-dimensional manifold. The class
b € H?(N,Z/2Z) enables us to orient this manifold (see [Ab, §3.1]). Let #U(zv_, z)
denote the number of positively oriented points of U(z_, x4 ) minus the number of
negatively oriented points. Then we have a differential:

d:CFYH,Jn) — CFL | (H,J,n),
do-):= > #Ulo,04) (o).

i(o—)—i(o4)=1
By analyzing the structure of 1-dimensional moduli spaces, one shows 9> = 0 and
defines SH,(H, J,n) as the homology of the above chain complex. As a K vector
space C'F; ,gl(H ,J,m) is independent of J and b, but its boundary operator does depend
on J. The homology group SH?(H, J,n) depends on H and 7 but is independent of
J up to canonical isomorphism. We define S Hic’d](H ,J,m) as the homology of the
chain complex

CFY(H,J,n)/CFS(H, J,n).

If we have two non-degenerate admissible Hamiltonians H; < Hs and two ad-
missible almost complex structures Jp, Jo, then there is a natural map:

SH (Hy, Ji,n) — SH (Hy, J2,m).

This map is called a continuation map. This map is defined from a map C on the
chain level as follows:

C: CFY(Hy, J1,n) — CFl(Hy, J2,n),

doyi= S #P_,wi)os),
i(o—)=i(0-))
where P(o_,04) is a compact oriented zero-dimensional manifold of solutions of
the following equations: Let K be a smooth non-decreasing family of admissible
Hamiltonians equal to Hy for s < 0 and Hy for s > 0 and Js; a smooth family of
admissible almost complex structures joining J; and Jo. The set P(o_,04) is the
set of solutions to the parameterized Floer equations

Osu + Js ¢ (u(s, t))('“)tu =VI K

such that u(s, ) converges to x+ as s — £oo. For a C* generic family (K, Js) this
is a compact zero-dimensional manifold (if o_, 04 have the same relative index with
respect to the cylinder C joining them). Again the class b € H?(N,Z/27) enables
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us to orient this manifold. If we have another such non-decreasing family admissible
Hamiltonians joining H; and Hs and another smooth family of admissible almost
complex structures joining J; and Jo, then the continuation map induced by this
second family is the same as the map induced by (K, Js). The composition of two
continuation maps is a continuation map. If we take the direct limit of all these maps
with respect to admissible Hamiltonians H ordered by < such that H|y < 0, then

we get our symplectic homology groups SHia’b] (N,n). We will write SH # (N,n) or

SHF(H, J,n) for SHY™)(N,n) or SH")(H, J,n).

Also we will write S H, instead of SH. i_oo’oo). If we wish to stress which coefficient
field we are using, we will write SHZ (M, n,K) or SHZ (H, J,n,K) if the field is K
for instance. We will also define SH*Sb(M, n,K) to be the group SH,E_OO’b](M, 7, K).

We will be dealing with other pairs (H,.J) that are not necessarily admissible.

The definition of symplectic homology spet (H,J,n) is still the same, although
(H, J) has to satisfy some conditions to ensure that we have a well-defined symplectic
homology group. This will be discussed later in section 4.1. From now on instead
of writing SHﬂ((a’b} (H, J,n) we will suppress the term 1 and just write SHia’b] (H,J)
instead when the context is clear. Also from now on whenever we have a Liouville
domain or symplectic manifold then we will assume that we have chosen such a pair
n=(7,b).
2.3 Growth rates. In order to define growth rates, we will need some linear
algebra first. Let (Vi)ye[1,00) be a family of vector spaces indexed by [1,00). For
each z1 < o we will assume that there is a homomorphism ¢, ., from V,, to V,,
with the property that for all z1 < @2 < 3, ¢ry 05 © Gzy 00 = Puy 2 a0 Opy 2, = id.
We call such a family of vector spaces a filtered directed system. Because these vector
spaces form a directed system, we can take the direct limit V := hgx V.. From now
on we will assume that each V,, is finite dimensional. For each = € [1,00) there is a
natural map:

qz:Vx—Hing.

Let a : [1,00) — [0,00) be a function such that a(z) is the rank of the image of the
above map ¢,. We define the growth rate as

D((V;) o= T 2B 42)

m o € {—o0} U0, 0] .
If a(x) is 0 then we just define loga(z) as —oo. If a(z) was some polynomial of
degree n with positive leading coefficient, then the growth rate would be equal to n.
If a(z) was an exponential function with positive exponent, then the growth rate
is co. The good thing about growth rate is that if we had some additional vector
spaces (V)ze[1,00) Such that the associated function a'(x) := rank(V;] — lim V)
satisfies /(x) = Aa(Bz) for some constants A, B > 0 then I'(V)) = I'(V;). The
notation we use for filtered directed systems is usually of the form (V) or (V4), and
we will usually write V, without brackets if we mean the vector space indexed by .
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In the previous section we defined for a Liouville domain N (whose boundary
had discrete period spectrum), SH*SA(N). For A1 < X9, there is a natural map
SHEM (N) — SH=N (N) given by inclusion of the respective chain complexes. This
is a filtered directed system (SH=Y(N)) whose direct limit is SH, ().

DEFINITION 2.3. We define the growth rate I'(N, b) as
T(N,b) :=T(SH=(N,b)) .
We also have the following theorem:

Theorem 2.4/.\ Let N1, Ny be two Liouville domains such that ]/\7\1 is symplec-
tomorphic to Ny where the symplectomorphism pulls back by € H?(Na,Z/27) to
b € HQ(Nl, ZJ27) and 75 to 11 where o and T are trivializations of the canonical
bundle. Then I'(Ny, (11,b1)) = I'(Na, (12, b2)).

This theorem will be proven in section 4.1. Hence we will just write
I(N,dfy, (7,b)) for the growth rate of (N, O). We will sometimes just write T'(N) if
the context makes it clear that dfy is our symplectic form and (7, b) is our associated
trivialization and homology class.

3 Growth Rate Linear Algebra

Recall that a filtered directed system is a family of vector spaces (V) parameterized
by [1,00) forming a category where for 21 < x5 there is a unique homomorphism
from V,, to V,, and no other morphisms anywhere else. For technical reasons we
will define V,, to be zero for < 1 and so all the morphisms starting with one of these
vector spaces is also 0. A morphism of filtered directed systems ¢ : (V) — (V)
consists of some constant Cy and a sequence of maps

!
ap : Vp — Vc¢x

so that we have the following commutative diagram:
Gz,

/
le VC¢:E1
Ayy
/
Vm > VC¢x2
Agq ,
‘/;1:3 Cex3

for all 1 < z9 < x3 where the vertical arrows come from the directed system.

Let 14, 2, be the natural map from V,, to V,, in this filtered directed system
for x; < x5. For each constant C' > 0, we have an morphism Cy from (V) to (V)
given by the map v, c,. We say that (V) and (V) are isomorphic if there is a
morphism ¢ from (V) to (V) and another morphism ¢ from (V) to (V) such that
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¢ op =Cy and ¢ o ¢’ = Cf,, where C,C" > 0 are constants and Cy : (V) = (Vz),

v (V) — (V) are the morphisms described above. One of the aims of this paper
is to assign for each completion M of a Liouville domain M , a filtered directed system
which unique up to isomorphism. From this we can define growth rate. In order for
growth rate to be well defined, we need to show

LEMMA 3.1.  Let (Vy),(V]) be two isomorphic filtered directed systems, then
L(Ve) = T(Vy).

Proof. Let ¢ : V, — VC’V(ZSZE and ¢! : V] = Vo o be our isomorphisms. We have a
morphism from hﬂm V; to hﬂx V! induced from ¢ and an inverse induced from ¢'.
This is because the morphism induced by Cy is the identity map on hgx V, and
similarly C{,, induces the identity map. We will write ¢ and ¢’ for such maps by
abuse of notation. Let a, : V, — i Ve and al, VI = 1i mVé. Because ¢ is
an isomorphism on lim V., we have that the rank of the image of ¢ o a, is equal
to the rank of the image of a,. We have that a’C¢ . © ¢z = ¢ o a, which implies
that rank im(a’cqu) > rank im(a,). Similarly rank im(ac,,,) > rank im(a;) for all
x € [1,00). Hence,

- i __logrank im(a ___logrank im(a,
T log rank im(ay) < Tm ( C¢z) o ( C¢x)

x log = log x log Cyx

_Tm log rank im(al,) < Tm log rank im(ac,,) _Tm log rank im(a;)
z log x log z log z

This implies that I'(V;) = I'(V])) as the first term in the above set of inequalities is
I'(V,) and the fourth term is I'(V)). m

We now need a lemma giving us a sufficient condition telling us when two filtered
directed systems are equivalent.
LEMMA 3.2. Let (Vi) (j = 1,2,3,4) be filtered directed systems. Let uj Vi —
Vé;;l ( = 1,2,3) be morphisms of directed systems so that composing any two of

them gives us an isomorphism. Then V,? is isomorphic to V3.

Proof of Lemma 3.2. Let w%lm be the directed system map Vgl — szQ for 1 < 9.
By the definition of an isomorphism of filtered directed systems, there exist mor-
phisms by : VI3 — V,%lx and by : Vlf1 — Vl%ﬂ so that ug ouy 0 by is the directed system
map
V3 picicwe Ve = VB, cy00m -
Also
b1 ouz 0 UL =1} 0y Con »

4
uz o uz by =Yy p,cycya s

and
2
b2 o u3zouUy = wz,DgCgng .
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We define ¢ : V2 — VC?’M by ¢ = uy. We define ¢ : V3 — V51D2010203x by
¢/:b20u3°¢§,D10102:r' ' '
Let z € V2. By abuse of notation for any = we will just write ¢ for U, ko for
7 =1,2,3. Because w3D10102 = ug o uy o by,
po@ =ugobyousousousob
=y o 1/;%20203 oujoby = ¢%20203 oug ouy o by

3 3
= wx,DQCQCgaS © lecICQ :

Also,
/ _ 3
¢ o= 520U3O?/)D10102 O U2
2
=VDycyc, © b2 o uz o uy
.2 2
- le(JlCz © ¢DQCQC3 .
Hence ¢ and ¢ give us our isomorphism and we have proven the lemma. O

4 Growth Rate Geometry

4.1 Some alternate definitions of growth rate. We will define growth rate
for a slightly larger class of manifolds called finite type convex symplectic manifolds
and also using a broader class of Hamiltonians. There are three reasons for doing
this. The first reason is that we wish to prove that growth rate is an invariant up
to symplectomorphism and so we need a definition of growth rate which is invariant
under symplectomorphism. The second reason is that the author wishes to use this
larger class of Hamiltonians in a future paper to prove that growth rate behaves well
under products and also with respect to Lefschetz fibrations. A third reason is that
this way of thinking might be useful for answering various dynamical questions.
A conver symplectic manifold is a manifold M with a 1-form 6j; such that
1. wyr := dfyps is a symplectic form.
2. There is an exhausting function fy; : M — R and a sequence ¢; < ¢g < ---
tending to infinity such that the wys-dual Xp,, of 0y satisfies dfar(Xg,,) > 0
along f;'(c;) for each i.

Some basic facts about convex symplectic manifolds are proven in the appendix.
We say that M is of finite type if there is a C' € R such that (f;/ (—00,d],0) is a
Liouville domain for all ¢ > C.

Let (M,6%,) be a smooth family of convex symplectic manifolds parameterized
by t € [0,1]. This is said to be a convexr deformation if for every ¢ € [0, 1] there is
a & > 0 and an exhausting function f}, and a sequence of constants ¢} < ¢} < ---
tending to infinity such that ((ft;)~*(—o0,cl],05,) is a Liouville domain for each
s € [t—&;,t+ 6] and each i. We do not require that f},,c!,8; smoothly varies with ¢.
In fact it can vary in a discontinuous way with ¢.

Let M be a finite type convex symplectic manifold. In order to define growth rate,
we need a slightly larger class of Hamiltonians. We will first describe Hamiltonians
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on M that give us filtered directed systems. Let (S, ) be a complex surface possibly
with boundary. Let v be a 1-form on S so that dy > 0. Let H : M — R be a
Hamiltonian and J an almost complex structure compatible with the symplectic
form w. We have a Hamiltonian vector field Xy defined by w(Xpg,-) = dH. A map
u: S — M satisfies the perturbed Cauchy—Riemann equations if (du— X g ®~)%t = 0.
Here du — Xg ® v is a 1-form on S with values in the complex vector bundle
Hom(7'S,w*T'M) where the complex structure at a point s € S is induced from j
and J. The equation (du — Xy ® 7)"! = 0 is written explicitly as

du—Xpgp@y+Jo(du—Xgp®y)oj=0. (1)
Sometimes we will write (du — Xz ® 7)3’1 = 0 if we wish to emphasise the fact that
we are using the almost complex structure J. Here is a particular example. Let
S =R xSt =C/Z. Welet v = dt where t parameterizes S' = R/Z. Then the

perturbed Cauchy—Riemann equations become
osu+ Jouw = J X g

which is just the Floer equation.

The pair (H,J) on M is said to satisfy a mazimum principle with respect to
an open set UM if there is a compact set K’ C M containing U such that for
any compact complex surface (5,j) with 1-form v (dy > 0) and map v : S — M,
satisfying

(1) u satisfies the perturbed Cauchy—Riemann equations;

(2) u(0S) c UH;
we have that u(S) C K’. We also require that U contains all the 1-periodic orbits
of (H,J) of action greater than some small negative constant.

A pair (H, J) is said to be S H, admissible if there is a discrete subset A C (0, 00)
such that (AH, J) satisfies the maximum principle for A € (0,00) \ Ay with respect
to some relatively compact open set U f\q . We require that U /{f cU g for A1 < Ao.
Note that if (H,J) is SH, admissible then so is any positive multiple of H.

For an SH, admissible pair (H,.J), we define SHI (AH,J) (A € (0,00) \ Ag)
as follows: By Lemma 2.2, we can perturb AH by an arbitrarily small amount
to a non-degenerate time dependent Hamiltonian H; : S! x M — R so that it is
equal to AH outside some closed subset of U){{ . After subtracting a small constant
from Hj, we can assume that H is equal to AH — € on a closed subset of U{' and
H] < AH where € > 0 is some constant. For a generic S' family J; of almost
complex structures such that J; = J outside a closed subset of U /‘\q , we have that
SHZ (H],J!) is well defined. This is because all the 1-periodic orbits of H] are
contained in a compact set and the maximum principle ensures that all the Floer
trajectories also stay inside a compact set. The pair (Hy, J;) constructed above is
called an approzimating pair for (H,J). A similar argument ensures that if we have
two approximating pairs (H}, J;) and (H{,J}') for (H,J) with H, < H/, there is a
well-defined continuation map SHY (H}, J!) — SHY (H/', J!') induced from a generic
family of approximating pairs joining (H/, J;) and (H/', J;') where the Hamiltonians
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are non-decreasing. Also because the continuation map is induced from a non-
decreasing family of Hamiltonians, we have that the continuation map respects the
filtration by action. So any orbit of action < f is sent to another orbit of action
< f under the continuation map. The set of approximating pairs (H/, J;) induces a
directed system where (Hj, J}) < (H}',J!') if and only if H, < H}' for all t € S*. We
define SHY (AH, J) as lim SHY (HJ,J!) where the direct limit is taken over

this directed system.

We also have a continuation map for A\; < Ay where \; € (0,00) \ Ay from
SH¥(M\H,J) to SHY (\2H, J). This continuation map is induced by a family of
pairs (H}, J;) such that

(1) they are equal to (\;H — €, J) outside a closed subset of U g for some smooth
non-decreasing family of constants A, and some smooth non-increasing family
of constants e;
(2) (Hf,J7?) is a fixed approximating pair (H, ,J, ) for (A H, J) for s < 0;
(3) (Hg,J§) is a fixed approximating pair (H,", J*,t) for (\oH, J) for s > 0;
(4) 2H; >o0.
We need to show that the continuation map trajectories stay inside a compact set.
Suppose we have some map u : R x S' — M satisfying the continuation map
equations which join orbits inside U g :

8su+,]t58tu: JfXHf

(H{,J})

These can be rewritten in the following way:

We have (H},J?) = (M,H — €5,J) outside some compact subset R of Ug. Let
SCR x5! be a compact submanifold so that u(S) is disjoint from R and u(S) C U,
Hence we have that u restricted to S satisfies

(du — X)\nges & dt)g’l =0.
The constants ¢; do not matter so our equation becomes
(du — Xg ®'y)3’1 =0

where v = M.dt. Here dy > 0 because )\, is non-decreasing. Hence by the maxi-
mum principle we have that .S must be contained entirely inside U g . This implies
that the image of each continuation map u must be contained inside Ug and hence
inside a fixed compact set. Hence we have a well-defined continuation map be-
tween SHY (H;,J;) and SHI (H;", J;). This induces a continuation map between
SH¥(M\H,J) and SHT (\H,J). If A € Ay then we define SHI (AH,J) as the
direct limit of SHZ (VH,J) where X' ¢ A tends to A from below. Hence we have a
filtered directed system (SH (AHy, J;)).

We wish to put some additional conditions on the pair (H, J) so that the asso-

ciated filtered directed system is an invariant related to symplectic homology. Here
are the additional conditions:
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1. (Bounded below property)
The Hamiltonian H is greater than or equal to zero, and there exists a compact
set K and a constant dg > 0 such that H > dy outside K.

2. (Liouville vector field property)
There exists an exhausting function fg, and 1-form 6y such that

(a) Oy — Op is exact where 0/ is the Liouville form on M.

(b) There exists a small ey > 0 such that dH(Xp,) > 0 in the region
H_I(O, er] where Xy, is the wp-dual of 0. We also require that
d(dH(Xy,, ))(Xe, ) > dH(Xp,,) in this region.

(c) There is a constant C such that dfs(Xg,) > 0 in the region f;'[C, o)
and f;ll(—oo, C] is non-empty and is contained in the interior of H—1(0).

3. (Action bound property)
There is a constant C'y and 1-form 6 such that the function —6(X ) — H must
be bounded above by C'y where X is the Hamiltonian vector field associated
to H;. We also require that 8 — 0, is exact.

If an SH, admissible pair (H,.J) has these additional conditions, then it is called
growth rate admissible.
Here are some important examples.

First example. Let Xy, be the vector field given by the wps-dual of 0.
Because M is a finite type convex symplectic manifold, we have a function fj; :
M — R such that, dfy(Xp,,) > 0 in the region where fy; > ¢ for some ¢ > 0 and
such that fys is exhausting. Let X, be the Hamiltonian vector field of fy;. Choose
some ¢ < ¢ < ¢y < -+ tending to infinity so that dfa(Xp,,) > 0 on f;,'(c;) for
each i. We perturb fis by a C° small amount to gys so that it has the following
property: gﬁ(ci) = f]\? (¢i) and dgp(Xp,,) is constant on a small neighbourhood
of g3/ (ci) for each i and dgps(Xg,,) > 0 for gas > c. The level sets A, := g;, (y) for
y > c are contact manifolds with contact form o, := 0] A,- Because

ay(XgM) = OM(XQM) = WM(X9M7X9M) = _dgM(XQM) <0,

we have that X,,, is non-trivial in the region {gas > c}. Because the vector field
Xy, is contained in T'A, (y > c), and because it is non-zero, it has a shortest orbit
inside A, (as A, is compact). The reason for this is that for each p € A, we can
choose coordinates z1,...,x9, around p so that X,,, = 0/0x, which means that
any flowline going through a smaller neighbourhood U of p must take some time
0y > 0 to pass through U. Because A, is compact, we can then cover it with finitely
many such neighborhoods U; which implies that any orbit must flow for time at
least min;dy,. Let 6(y) > 0 be smaller than min;dy,. We can assume that §(y) is a
smooth function of y.

Let h: R — R be a function with the property that h(z) =0 for x < ¢+ 1 and
h(xz) > 0 elsewhere. For x > ¢+ 1 we let h/(x) be smaller than 6(z)/gy and A’ > 0
whenever h > 0. We also assume that A’ is small enough so that A'(z)a(x)(X,,,) is
bounded above by a constant. The Hamiltonian flow of H := h(gas) in the region

gu < cis 0 and for z > c+1 in the region A, it is equal to some very small multiple
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of Xg,,/4,. We also need an additional technical condition which ensures that our
Hamiltonian H will satisfy the Liouville vector field property. We require that there
exists some €, > 0 with 2”(x) > 0 for 2 € (c+ 1,¢+ 1+ ¢€,). Fix A > ¢. In the
region {ga > A}, there are no 1-periodic orbits of AH. This is because all the orbits
of Xg|a, = W (x)Xy,, |4, have length greater than X because h' < d/gp < 05/
Also because H > 0 and a,(Xp) is bounded from above for > ¢, we have that
—0p (X ) — H is bounded from above so H satisfies the action bound property. The
Hamiltonian H satisfies the bounded below property because its zero set is compact,
it is greater than or equal to zero and is greater than some constant near infinity.
Note that log(h/(z)) tends to minus infinity as x tends to ¢+ 1 from above. Also the
derivative of this function is positive. This implies that the derivative h”(z)/h (x)
tends to infinity. Hence (after shrinking €j,) we can assume that h”(z) > vh/(z) for
z € (c+1,c+1+¢p,) where

v > (1 - d(gM<X9M))(XGM))/QM(X@M)2
in the region = € (c+1,c+1+¢p,). Because dH(Xy,,) = h'(gm)dgn(Xp,,) > 0 and

d(dH (Xo,,))(Xo,,) = h"(gar)dgas(Xo,,)? + B (gar)d (g (Xo,,)) (Xay,)
> W (gar)dgnr(Xg,,)

in the region H~1(0,ey) for some small ey > 0, H satisfies the Liouville vector
field property. We need to find a J so that (H,.J) satisfies a maximum principle.
Because dgys(Xg,,) is constant on a small neighbourhood of ¢; for each i, we have (by
flowing G; along Xjp,,) a small neighbourhood of G; := g;j (¢;) symplectomorphic
to (1 —e€;, 14+¢;) x G; with contact form x;garcy; where ;== 0|, is a contact form
and k; is a constant. This is a slice of a positive cylindrical end so we can choose J
so that it looks cylindrical in these regions. We define U /{{ to be any family of open
sets of the form g]\}l (—o0, ¢;) containing all the 1-periodic orbits of AH and such that
Uﬂ C Ug for A1 < A9. Hence by Lemma 9.1, there exists a J such that (AH,J)
satisfies the maximum principle with respect to U f . Hence (H,J) is growth rate
admissible.

Second example. Let fys and Xp,, be as above. Let @ := f]\?(—oo,C] be
a manifold with boundary such that Xj,, is transverse to the boundary of ) and
pointing outwards and dfas(Xg,,) > 0 outside Q). Even though the Liouville vector
field Xy,, may not be complete, we can still flow Q) along Xp,, so that we have that
the set (M \ Q) is diffeomorphic to some open subset U of [1,00) x Q) containing
{1} x0Q. We have that 0p/|y = ra where r parameterizes [1, 00) and o = 0yr|sg. We
call this a partial cylindrical end of M. We can ensure that the period spectrum of the
contact manifold 0@ is discrete and injective (after perturbing fy; very slightly). Let
J be an almost complex structure which is cylindrical inside U (i.e. droJ = —0).
Let € > 0 be a constant small enough so that r~1(1 + ¢) is still a compact manifold
transverse to Xy,,. Let H be a Hamiltonian such that H = h(r) in U and 0 inside Q.
We require that h(r) = 0 near r = 1 and h(r) =r— § forr > 1+€¢/2, and ', h" >0
and A’ > 0 when h > 0. We also require that h”(z) > 0 for € (1,14 ey) where
e > 0 is small.
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h(r)

r=1 7»:1-}—% r=1+

rol

For A not in the period spectrum of 0Q), we have that all of the 1-periodic
orbits of AH lie inside the compact set {r < ¢/2}. We define U}’ to be the open
set QU r 1([1,1 + ¢) for all \. The pair (AH,J) satisfies the maximum principle
with respect to U} by 9.1. Hence (H,J) is SH, admissible. We have that (H,.J)
satisfies the bounded below property and the Liouville vector field property because
Xo,, = T‘% in U, B/ >0 when h > 0 and A”(r) > 0 for r € (1,1 + ey). We also
have the that (H,.J) satisfies the action bound property because —05/(Xpy) — H =
rh'(r) —r+ § = § outside a compact set (where H =7 — {). All of this means that
(H,J) is growth rate admissible.

Suppose that (Ho, Jo), (H1,J1) is growth rate admissible with the property that
Ufo C Ufl for all A and such that (Hy,J;1) = (kHo + ¢1,Jo) outside a closed
subset of of Uf“. Suppose we have a non-decreasing family of pairs (Hy, J;) equal
to (keHo+ ¢, J) outside a closed subset of U)\H 9 for some smooth family of constants
k¢ > 1,¢ € R. Then we have a well-defined continuation map from SH # (AHo, Jo)
to SHI (AH1, J1) and this induces a morphism of filtered directed systems. We call
such a morphism a restricted continuation morphism. Suppose now we have two
growth rate admissible pairs (H\), J)) and (Hj, J]) with the following properties:

(1) vl =yl
(2) (Hy,Jy) = (Hy,Jq) on a neighbourhood of U,\Ui{{).

Then the filtered directed systems (SHZ (AH}, .J})) and (SH (\H], J})) are isomor-

phic because all 1-periodic orbits of non-negative action and all Floer trajectories

connecting them are identical. We call such a morphism a switch isomorphism.
The main theorem of this section is

Theorem 4.1. Let (H,J),(H',J") be growth rate admissible. Then the filtered
directed system (SH (\H, J)) is isomorphic to (SH (\H',.J")) as filtered directed
systems.

The isomorphism between these filtered directed systems is a composition of
restricted continuation morphisms and switch morphisms and inverses of these mor-
phisms.
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The reason why we mention restricted continuation morphisms and switch mor-
phisms is because we would like this result to hold if SHf had some additional
algebraic structure as well such as the pair of pants product so that it can be used
in future work. The point is that if restricted continuation morphisms and switch
morphisms are also morphisms preserving this additional algebraic structure then
we immediately get an invariance result for symplectic homology with this extra
structure.

We need some preliminary lemmas before we prove this theorem.

LEMMA 4.2. Let H be a Hamiltonian satisfying the Liouville vector field property,
then there is a growth rate admissible pair (HP, JP) such that

(1) H? = H on a small neighbourhood of H='(0) and (H?)~'(0) = H~*(0).

(2) =0y (Xpgr) — HP > 0 everywhere and —0y (Xpgr) — HP > 0 when HP > 0.

(3) —0u(Xpg»)—HP is greater than some constant 0, > 0 outside a large compact
set.

(4) The construction of HP only depends on H near H—'(0).

(5) There is a fixed compact set K’ such that all 1-periodic orbits of \HP are con-
tained in the interior of K'. This set is an embedded codimension 0 manifold
with boundary and we can ensure that it fits inside any open set containing
H=Y(0).

(6) Any solution u : S — M of the perturbed Cauchy—Riemann equations with
respect to (H,.J) where H >0, (H,.J) = (\H?, J) inside K" and u(dS) C K’
is contained in K'.

Here 0 is the 1-form that makes H satisfy the Liouville vector field property.

Note that this lemma also tells us the following fact about H: we have that
—0y(H) — H > 0 on some small neighbourhood of H~1(0). This will be useful later
on.

Proof of Lemma 4.2. The main idea of this proof is to use bump functions to extend
(H,J) restricted to a small neighbourhood of H~1(0) to a pair which looks like the
pair described in the second example. Here 6 is a 1-form such that 05 — 0,7 is an
exact 1-form. The vector field Xy, which is the wys-dual of 0 has the property
that there is a function fg such that dfy(Xy,,) > 0 inside a small neighbourhood of
the M \ H=1(0). We also have an ey such that Xy, (H) > 0 on H~1(0,e) by the
Liouville vector field property.

Because we are only interested in what H is near H~!(0) it can be anything
we like outside a neighbourhood of this set. So from now on (after changing H
outside a neighbourhood of H~1(0)) we can assume that H satisfies the bounded
below property. Let Q := fﬁl(—oo,C] be a manifold with boundary such that
Xy, is transverse to the boundary of @ and pointing outwards and dfy(Xy, ) > 0
outside Q and such that H~'(0) contains (). We have that 9Q is a contact manifold
with contact form o = fylag. We flow 9Q along Xy, so that we have that the
set (M \ Q) is diffeomorphic to some open subset U of [1,00) x dQ. This is our
partial cylindrical end. We have that 0|y = ra where r parameterizes [1, 00), and
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_ 0 :
Xy, = r3,; in the region U. We have

r
inside U. Because H satisfies the Liouville vector field property we have on a neigh-
bourhood of H~1(0), d (dH(Xy)) (Xg) > dH(Xy) > 0 outside H1(0). Because

Xg= r% on our partial cylindrical end this condition becomes

OH  ,0°H _ 0H

— >r— >0
"or tr arz ~ " or =
which in turn is equivalent to %—f, 8827[; > 0. We shrink ey so that H~1[0,ep] is
contained in V. We also have that
O’H 0
= —(—0g(Xy)—H).
" or 8r( 1 (Xn) )

Hence, we have that —0y(Xpy) — H > 0 in the region H1(0,€p). By the bounded
below property, there exists a constant dy > 0 such that H > dy outside V. We
shrink ey so that it is smaller than dgy. Choose a function ¢; : R — R such that
q1(z) =1 for < 2ey /3 and ¢i(x) = 0 for x > ey. Because dH (Xp,) > 0 on the
level set W := H!(ey/2), we have that this level set is regular and is a contact
manifold with contact form ag := 6p|w. There exists a function f : 0Q — [1,00)
such that under the identification of M \ @ with a subset of [1, 00) x 0Q),

W ={(f(z),z) |z €0Q} C[l,00) x Q.
We will write this set as (r/f)"1(1). We also have a new partial cylindrical end
which is the region {(r/f) > 1}. This is diffeomorphic to some codimension 0
submanifold with boundary of W x [1,00) where the cylindrical coordinate is (r/f)
and the contact form is 0|y . Let g2 be a function on R satisfying

(1) g2(x) =0forx <0

(2) (), q5(x) = 0.

(3) We let ¢h(z) be constant and equal to 1 for & > ¢,. Here §, is a constant
such that the level sets (r/f)~1(x) are all compact for 1 <z < §, + 1. So for
x> 0p, g =1 — L Where ¢, > 0 is a constant.

(4) For z > 0 we also choose ¢z so that ¢5(x) > 0.

Let HP := q1(H)H + kq2(r/ f — 1) where k > 0 is a constant to be determined. Here
q1(H) has support inside the region V because H > ey outside V. We have for
k> 0, that =0y (H?)(Xp,,) — HP > 0. This is because H? = H + rga(r/f — 1) in
H=Y0,2¢5/3) and —0y(H) — H > 0, =0y (q2(r/f — 1)) — g2(r/f — 1) > 0 in this
region because g2, ¢h,q5 > 0. Also =0y (r/f —1—1,) —7/f + tr = ¢, is greater than
some fixed constant outside H~!(—o0,2¢ex/3) hence by the action bound property
we get that —0p(Xpgr) — HP > 0 for k large enough. Hence in the region where
HP > 0, we have that =0y (Xg») — HP > 0.

We also let JP be an almost complex structure such that it is cylindrical on the
partial cylindrical end {(r/f) > 1} viewed as a subset of W x[1,00). We can perturb
f very slightly so that the period spectrum of W = (r/f)~%(1) is discrete. Define
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K’ := M\(r/f)"1(1,00). This is a compact codimension 0 manifold whose boundary
is W. Because the period spectrum of W is discrete and equal to A C (0, 00), we
have for all A € (0,00) \ A, AH? has all its 1-periodic orbits contained in a compact
subset of M. Also 9.1 with boundary inside K’ must stay in K’. This implies that
(HP, JP) satisfies the maximum principle. We also have that because H? > 0 and
H? = (r/f) — i, near infinity, H? satisfies the bounded below property. Because H
satisfies the Liouville vector field property, then so does HP as H? = H on a small
neighbourhood of H~1(0) and HP?~1(0) = H~'(0). We also have that it satisfies the
action bound property because —0g(r/f —t,) — (r/f — tr) = ¢, near infinity.
Finally property (6) is satisfied by Lemma 9.1 as well. i

Before we prove Theorem 4.1 we will prove a couple of weaker versions of it.
Here is one.

LEMMA 4.3.  Let (H,J),(H',J') be growth rate admissible pairs satisfying the
following properties:

(1) H' = H in a neighbourhood of H~1(0).

(2) H1(0) = H'"}(0).

(3) U =Ul.

(4) (H,J) = (H'+¢,J') outside a closed subset of Ul = N\U{.

Then there is a restricted continuation morphism from (SHZéﬁ (AH,J)) to
(SHf (AH',J")) which is an isomorphism. Its inverse is also a restricted contin-
uation morphism.

Proof of Lemma 4.3. By the bounded below property there exists a constant § > 0
with H, H' > § outside a compact set K. This implies that there exists constants
Q1,Q2 > 1 such that H < Q1H' and H' < Q2H. Let (H®,J®) (s € R) be a family
of pairs such that

(1) (H®,J%)=(H,J) for s < 0 and (H®,J*) = (Q:H',J’) for s > 0.

(2) We let (H®,J*) = (ksH + c5,J) outside a closed subset of NU{T for some

non-decreasing family of constants ks > 1, ¢s € R.

(3) 2L > .
The family of pairs (AH?®,J°) induces a continuation map ¢ from the group
SHY¥(\H,J) to SHY (A\QH',J"). A similar family of pairs induces a continua-
tion map ¢ from SHY (AH',.J") to SH (\Q2H',.J’). We also have that ¢/ o ¢ and
¢po¢’ are directed system maps for (SHf()\H’, J)) and (SHf()\H’, J')) respectively.
This is because the directed system maps are also continuation maps induced by in-
creasing families of Hamiltonians. Hence (SHY (AH,J)) and (SHZ (AH',J’)) are
isomorphic as directed systems. Also ¢ and its inverse ¢ are restricted continuation
morphisms. O

LEMMA 4.4. Let (H,J),(H',J') be growth rate admissible pairs such that H' =
H in a neighbourhood of H=(0) and H~*(0) = H'~'(0). Then (SH¥ (\H,J))
is isomorphic to (SHI (\H',J')) as filtered directed systems. The isomorphism
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between these filtered directed systems is a composition of restricted continuation
morphisms and switch morphisms and inverses of these morphisms.

This lemma is similar to Lemma 4.3 with one constraint removed.

Proof of Lemma 4.4. From Lemma 4.2 there is a pair (H?, JP) constructed from H.
This only depended on what H was on a small neighbourhood of H~1(0), so the
equivalent construction (H'?,J'*) is equal to (HP?, JP). Hence all we need to do in
this section is to prove that the filtered directed system (SH. # (AH, J)) is isomorphic
to (SHY (\H?, J?)).

There is a compact codimension 0 submanifold K’ with boundary containing
H~0) = (H?)~1(0) and all the 1-periodic orbits of AH? for every A € (0,00) \ A
(where A is discrete). We can assume that K is a subset of Ul = N\U{. It also has
the property that any solution of the perturbed Cauchy-Riemann equations with
respect to (H?,JP) with boundary in K’ is contained in K’. Let L : M — R be
a Hamiltonian such that L = H? on a small neighbourhood of K’ and such that
L > 0 outside K’. We also require that L = H outside a closed subset of U{!. We
let J;, be an almost complex structure compatible with the symplectic form such
that it is equal to J? on a small neighbourhood of K’ and equal to J outside a
closed subset of U{!. Because L = H on a small neighbourhood of H~1(0) = L=1(0)
and (L, Jp) = (H,J) outside a closed subset of U{!, we have that (L, .Jy) is growth
rate admissible. Let 6 be the 1-form such that 6 — 0, is exact and —0(Xy) — H
is bounded. Let ¢ > 0 be a constant greater than the function —(Xy) — L + 1.
Let L' : M — R be a function which is equal to L on a small neighbourhood of
L~1(0) and equal to L + ¢ on a small neighbourhood of M \ K’ and is greater than
0 everywhere else. Because —0(X/) — L' < 0 outside the interior of K’ and no
A-periodic orbits of L’ intersect the boundary of K’ for A outside some discrete set,
we have that all the 1-periodic orbits of AL’ of non-negative action are contained in
the interior of K’. Hence by part 6 from Lemma 4.2, we have that (AL, Jp) satisfies
the maximum principle with respect to (K’)° (the interior of K') for all A outside a
discrete subset. So we can define Uf/ = (K")°.

Let L' be equal to L’ inside K’ and equal to H? + ¢ outside K’. Again for
all A outside a discrete subset, all the 1-periodic orbits of non-negative action are
contained in the interior K’. Hence part (6) from Lemma 4.2, ensures that any
compact curve satisfying Floer’s equations with respect to (E’ , Jr) whose boundary
is contained in the interior of K’ must be contained in K’. Hence (L’,.Jp) satisfies

the maximum principle with respect to UAE/ := (K")°. Because UY' = UL = (K')°
for all A and (L, Jr) = (L', Jr) on a small neighbourhood of K’, we have a switch
isomorphism from (SHY (AL, Jy)) to (SH¥ (AL', J?)).

Lemma 4.3 tells us that (SHZ (AL, JP)) and (SHZ (\HP, J¥)) are isomorphic by
a restricted continuation morphism. Lemma 4.3 also tells us that (SHI (AL',.J))
and (SHZ (AH,.J)) are isomorphic. Hence (SHI (\H, J)) and (SHZ (AHP, JP)) are
isomorphic. O
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If (H, J1), (Hz, Jo) are growth rate admissible such that H; *(0) contains H, *(0)
then there is a natural morphism of filtered directed systems from (SHI (AHy, J;))
to (SHY (AHa, J5)). Here is how this morphism is constructed: we have a non-
decreasing family of Hamiltonians H® with H®* = H; for s <« 0 and such that
H?* = K for s > 0 where K satisfies

(1) K=1(0) = H;(0) and Hy = K on a small neighbourhood of K~1(0).
(2) K = H, outside a closed subset of U™,
(3) (K,Jp) is growth rate admissible.

We also require that H® = H; outside a closed subset of UlH !, The family of pairs
(H*,.J;) induces a continuation map from SHI (AHy,Jy) to SHI (AK,Jy). This
in turn induces a morphism of filtered directed systems from (SHI (AHy,J;)) to
(SH # (MK, J1)) as the continuation map commutes with the filtered directed system
maps. Our morphism is constructed by composing the above morphism with the
isomorphism from (SHY (K, J1)) to (SH (AHy, J5)) from Lemma 4.4. We call
such a morphism a growth rate admissible morphism.

LEMMA 4.5. The composition of two growth rate admissible morphisms is a growth
rate admissible morphism.

Proof of Lemma 4.5. The point is that composing switch morphisms gives us switch
morphisms, composing restricted continuation maps gives us restricted continuation
maps and if we have restricted continuation maps of the right form (so that some
maximum principle still applies) then restricted continuation maps can commute
with switch morphisms. Let (Hy,J1), (Ha, J2), (Hs, J3) be growth rate admissible
pairs with H ;11 (0) contained in H; *(0). We wish to show that the composition of
the growth rate admissible morphisms

Ey: (SHF(\H1, J1)) — (SHT (\Ha, J2))
By : (SHY (\Ha, Jo)) — (SH¥ (\H3, J3))
is a growth rate admissible morphism
Es: SHY (AHy, J1) — SHI (\Hs, J3) .

Let (H,J) be any growth rate admissible pair. By using methods from the proof
of Lemma 4.4, we can construct Hamiltonians Lﬁq and almost complex structures
Jy for i = 1,2,3 with the following properties:

(1) (Li)~H0) = Hil_l(O) and H; = L', near H; '(0).

(2) —HM(XL%) — L, < 0 outside a small neighbourhood K; of H; '(0).

(3) Any map s : S — M with boundary inside K; satisfying Floer’s equation with
respect to (L%, Ji) must be contained in K;. This statement is true even if
we change (Lﬁq, J}I) so that it is equal to something else outside K; as long
as the Hamiltonian stays positive.

(4) K3 C Ky C K.

(5) (L%, J%)is equal to (L3, J3) outside K3 and near K3 and (L, J},) is equal
to (L%, J%) outside Ko and near OKs.
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(6) (L%, JY) is equal to (H + £, J) for some large constant > 0 near infinity.

Note that the pair (L%, J}{) really depends on both H and J but we suppressed
J from the notation to make it less cluttered. We now construct a smooth non-
decreasing 1-parameter family of pairs (LY, J};) for ¢ € [1, 3] such that

(1) (L%, J%) are equal to the pairs constructed above with the same name for
i=1,2,3

(2) (L, ) = (L3, J3) outside K3 and near 0Ks.

(3) For t € [1,2], (LY, JY) = (L%, J%) outside Ky and near K.
This family gives us continuation maps:

i SHF(ALY, Jiy) — SHY (ALY, Ji)

that do not depend on the choice of (H, J) for any i < j, 4,7 = 1 or 2 or 3 because no
Floer trajectories connecting non-negative action orbits escape the region K3. The
point is that if we change (H, J), we only do this outside K3. The map \IJZHJ induces a
morphism of filtered directed systems from (SHf()\qu, Ji))) to (SH*()\L{LI, Jil))
The filtered directed systems are canonically isomorphic for any choice of (H,.J)
via a switch morphism and the maps \I/lHj are exactly the same for any choice of

(H,J). Hence we have filtered directed system maps Af; ; that are isomorphisms
from (SHZ (AL, JEY)) to (SHT(AL%, ,JE ). And we also have the relations
i i J J

Ao Wil o (A )t = Wi @

We also have a restricted continuation morphism ®; of from the filtered directed
system SH#(AL}{“ Jy,)) to SHY (\H;, J;)) (see Lemma 4.3). Its inverse ®; ! is also
a restricted continuation morphism. We have that 111515 o\II{‘E is induced entirely from
continuation maps and so it is exactly the same as the map \If{% Also composing ®;
or <I>Z-_1 with any of these maps (when possible) also induces restricted continuation
morphisms. We get that the growth rate admissible morphism FE; is equal to

®y0Af50 ‘Ij{g o 7!
and Fs is equal to

®30 A%jg o \1112% od,!
by looking at the proof of Lemma 4.4 and the definition of growth rate admissible
morphism. Hence their composition Es o F is equal to

®3 0 A§,3 o \Ifgg o A%’Q o \Ilfé o Q)fl.
By equation (2) we have that this composition is equal to
P30 A%,:a o Azls,z o ‘I’gé ° ‘I’fé © ‘I)fl = P30 A§,3 o A?,Z o ‘1’{{5 © ‘Pfl-

The composition of the switch morphisms Ag?g o A:{’,Q is the switch morphism A:ig
hence we have that Fs o E; is equal to

D30 A 50 Uik o B

which is equal to E3. Hence Ey o E; = F3 which gives us functoriality. O
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LEMMA 4.6.  Let (Hs,Js) be a smooth family of growth rate admissible pairs
parameterized by s € R such that for s; < sy, H;'(0) contains H,,'(0). For sy

greater than sy, the growth rate admissible morphism from (SH (\Hj,,J,)) to
(SH¥ (\H,,, J,,)) is an isomorphism.

Proof of Lemma 4.6. By a compactness argument and by functoriality (Lemma 4.5)
we only need to show that for each s € R, there is a s > 0 such that the result
is true for s; > s — Js; and so < s + d5. We will prove this by changing our pairs
(Hs, Js) to ones similar to the one described in Lemma 4.2. Then we note that if
all the orbits have non-negative action then SH, is equal to SHY hence we can
construct an inverse to our growth rate admissible morphism by using a decreasing
family of Hamiltonians.

Fix the Hamiltonian Hs. We can ensure that there is a continuous family of
small neighbourhoods Uy of H,"(0) in which —0(Xpy,)— Hy >0on Uy \ H,(0)
with respect to s’ by a 1-parameter version of the note after Lemma 4.2. This means
that there is a §; > 0 and a neighbourhood U of HS_,I(O) with —0(Xg_,) — Hy > 0
on U\ H'(0) for all |s — | < ds.

We first perturb Hs_;5, by a C° small amount near its zero set to K so that
(K, Js_s,) is still growth rate admissible and so that the interior of K~1(0) contains
H ' (0) and K~'(0) is contained in U. By Lemma 4.2 let (K?,.J? ;) be a pair
such that

(1) (KP,J?_5.) is growth rate admissible.

(2) K? = K on a small neighbourhood of K~1(0) and (K?)~*(0) = K~1(0).

(3) —0(KP) — KP > 0 everywhere and —0(K?) — KP > 0 when K? > 0.
We shrink U so that it is also contained in U{*. Choose an open set U’ whose
closure is contained in U and which still contains K~(0). Let p : M — R be a
bump function which is equal to 1 inside U’ and equal to 0 outside U. For k > 0
large enough and for |s — s'| < d5 we have that

H!, := pHy + kK?

satisfies —0(H.,) — H., > 0 because —0(K?) — K? > 0 in the relatively compact
region U \ U’ and so is bounded below by a positive constant. We define a new
family of almost complex structures J;, to be equal to Jf 5 outside U’ and equal
to Jy on a small neighbourhood of H'(0). We have that (H’,,.J!,) is growth rate
admissible.

We have that SH,(AH.,J!) is a filtered directed system isomorphic to
SHf()\H’,, !,) because —0(H.,) — H., > 0. Also we have that if (K',Y”) is any
pair equal to (H.,,J.,) outside U’ then SH,(AK',Y") is equal to SH.(\H],, J.,) as
the maximum principle ensures that continuation maps between these Hamiltonians
are well defined (and that these continuation maps do not have to be from non-
decreasing families of Hamiltonians as we are not considering action). Hence for all
|s" — s| < 0, the filtered directed systems (SH.(AH., J.,)) are all isomorphic.

Let s1,s9 be such that s — d; < s1 < s9 < s+ ds. We have a morphism ¢
of filtered directed systems from (SHI (AH. ,J! ) to (SH#()\H’ Ji,)). By the

817 S92
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previous discussion we also have a morphism ¢’ from

(SH#(\H.,, J.))) = (SH.(\H.,,J.))

DR EDRAD)
to
(SHZ(\H],,J.)) = (SH.(\H] ., J}))) .
Because these morphisms are induced by continuation maps, we have that ¢o ¢’ and
¢’ o ¢ are filtered directed system maps and hence by definition ¢ is an isomorphism
of filtered directed systems.

By Lemma 4.4, we have an isomorphism ®; of filtered directed systems from
(SH¥ (\Hy,, Js.)) to (SHfé()\Hgi, J;.)) for i = 1,2. This isomorphism and its inverse
are growth rate admissible morphisms. We have an isomorphism ®, Lo go®; from
(SHf(/\Hsl, Js,)) to (SHf(Ast Js,)). Because ¢, @1, &5 ' are growth rate admissi-
ble morphisms, we have by functoriality (Lemma 4.5) that ®; Logo® is also a growth
rate admissible morphism. Hence the natural morphism from (SHZ (AHy,, Js,)) to
(SH (\H,,, J,,)) is an isomorphism. O

LEmMMA 4.7.  Let (Ho,Jy), (H1,J1) be two growth rate admissible Hamiltonians
such that H; *(0) € Hy '(0). Suppose that there is a smooth family of Hamiltonians
G, satisfying the Liouville vector field property such that
(1) GH0) € G H0) if 51 < so.
(2) Go = Hy on a neighbourhood of Hy *(0) and Gy*(0)
(3) G1 = Hy on a neighbourhood of H; '(0) and G *(0)
Then the growth rate admissible morphism

(SH#(X\Ho, Jo)) — (SHZ (\H1, J1))

Hy (0).
H,;H0).

is an isomorphism.

Proof of Lemma 4.7. By using a construction similar to the one in the proof of
Lemma 4.6 combined with Lemma 4.2, we have for each s € [0, 1] there is a §; > 0
and a smooth family of growth rate admissible pairs (G%, J!) (t € (s — 0,5 — 05))
satisfying

(1) G = Gy on a neighbourhood of G5 '(0) and G;*(0) = (G%)~1(0).

(2) (GY,J9) = (Ho, Jo) on a neighbourhood of H;*(0) and (G3)~1(0) = H;*(0).

(3) (G1,J}) = (Hy, J1) on a neighbourhood of H;*(0) and (G})~'(0) = H;(0).
Hence by Lemma 4.6, we have for s — 0y < t; < to < t 4 J5 the natural filtered
directed system map from (SH (G, Ji)) to (SH (G2, J2)) is an isomorphism.

Hence by a compactness argument there is a sequence of growth rate admissible
pairs (A;,Y;) := (G%,Jii) for i = 1,...,k such that

(1) A;1(0) contains A;_ll (0).

(2) (Ak, Yi) = (G%’ Jll) and (A07YE)) = (va Jg)

(3) The morphism from (SH (4;,Y7)) to (SHI (Aiy1,Yi1)) is an isomorphism.
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We also have by Lemma 4.4 that the growth rate admissible morphisms
(SH¥ (Ho, Jo)) — (SHY (Ao, Vo))

and
are isomorphisms. Hence by functoriality of these morphisms we get that the growth

rate admissible morphism from (SHfE()\HO, Jo)) to (SHf()\Hl, J1)) is an isomor-
phism. O

LEMMA 4.8. Let (H,J) be a growth rate admissible pair. For any compact set
K C M, there exists a growth rate admissible pair (Hp, Ji) such that

(1) Hi'(0) contains both H~'(0) and K.
(2) The morphism from (SH¥ (\Hg, Jx)) to (SHI (AH, J)) is an isomorphism.

Proof of Lemma 4.8. For the purposes of this proof we may as well enlarge K
so that it contains H~1(0). By Lemma 4.7 all we need to do is create a family of
Hamiltonians Hg,(s € [0, 00]) such that

(1) H, satisfies the Liouville vector field property.

(2) H;'(0) contains H*(0) if s1 < s9.

(3) Ho = H and H;'(0) contains K for s > 1.
Let fu, Xy, be the function and Liouville vector field which enables (H, J) to satisfy
the Liouville vector field property. Let p be a bump function such that it is equal to 1
on a neighbourhood of K and 0 outside some larger compact set. Because the vector
field VH = ngH has compact support, its flow qﬁt is well defined everywhere. Let

= ((¢s )«H). For eH > 0 small enough we have that dH(Xp,,) > 0 inside

H=Y0,ep). Because (gbt )*Xp,, is proportional to Xy, we have that dHs(Xy,,) =

(qﬁy )« (dH((qﬁt )*X(;H)) > 0 in the region H;1(0,ep). Also because H satisfies the
Liouville vector field property, there exists a C such that fﬁl(—oo, (] is contained
in H;1(0) and df(Xp,) > 0 in f;;*(Cs, 00). Hence Hy satisfies the Liouville vector
field property for all s > 0. There is a constant C' so that f;;'(—oc,C] € H~1(0) and
df(V{;) > 0 in the region K \ f5'(—o0,C). Hence the time s flow of f;;'(—o0,C]
contains K for s > 1. Because f;;'(—00,C] is contained inside H~'(0) we have for
s> 1 that H;1(0) contains K.

By Lemma 4.2 there is a growth rate admissible pair (Hg, Jx ) such that H*(0) =
G51(0) for some s > 0 and such that Hx = G on a neighbourhood of H'(0). We
assume that s is large enough so that H[_(l(O) contains K. Hence by Lemma 4.7 we
have that the growth rate admissible morphism

(SHZ (\Hy, Jk)) — (SHZ (\H, J))

is an isomorphism. O

Proof of Theorem 4.1. Let K be a compact set whose interior contains both H~1(0)
and H'~1(0). By Lemma 4.8, there is a pair (H,.J;) with H{'(0) containing K; such
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that the growth rate admissible morphism from (SHZ (AH1,J1)) to (SHZ (AH, J))
is an isomorphism. Choose a compact set K3 whose interior contains H; 1(0). Let
(H!,J}) be a pair such that (H{)~!(0) contains K3 and such that the morphism from
(SH¥ (\H],J})) to (SHI (A\H',J')) is an isomorphism. By repeating this process,
we can find two more growth rate admissible pairs (Ha, J2),(Hj, J}) such that

(1) (H})~(0) is contained in the interior of H, *(0).

(2) The morphism from (SHI (AHa, J2)) to (SHI (\Hy, J1)) is an isomorphism.

(3) Hy'(0) is contained in the interior of (H})~1(0).

(4) The morphism from (SHI (AH}, Jb)) to (SHI (\H], J!)) is an isomorphism.
Hence we have the following sequence of morphisms:

(SH¥(AH3, Jy)) — (SHF (AHa, J2))
— (SHF(\H{, 1)) — (SH¥ (\Hy, J1))

where composing any two of these morphisms gives an isomorphism. By Theo-
rem 3.2, the middle morphism from the group (SH (AHs, J5)) to (SHI (AH/, J}))
is an isomorphism. Hence (SH?()\H, J)) is isomorphic to (SH (AH',J")). This
proves the theorem. O

COROLLARY 4.9. The filtered directed system (SHI (\H,.J)) is an invariant of M
up to exact symplectomorphism as long as this symplectomorphism preserves our
choice of trivialization T of the canonical bundle and our class b € H*(M, Z/27).
If M is complete (i.e. the wy-dual of 0y is an integrable vector field) then it is an
invariant up to general symplectomorphism (again preserving (7,b)).

Proof. All the properties defining growth rate admissibility, are invariants of M up
to exact symplectomorphism, hence by Theorem 4.1 we have that (SHI (AM,.J))
is an invariant up to exact symplectomorphism preserving (7,b). Suppose that
M is complete. Then it is the completion of some Liouville domain M hence by
[BEE, Lem. 1], if M, M’ are symplectomorphic then they are exact symplectomor-
phic. Hence (SHfé (AM, J)) is an invariant up to general symplectomorphism pre-
serving (7, b) in this case. m

Because it is an invariant up to exact symplectomorphism preserving (7,b), we
will write

(SHZ(M,0,)))

for any filtered directed system (SHZ (AH,J)) where we have chosen some growth
rate admissible pair (H, J) and a pair (7,b).

If (N, 0y) is a Liouville domain, then the interior of N, N is a finite type convex
symplectic manifold for the following reason: Let Xy, be the dfxy-dual of 0. By
flowing ON backwards along Xjy,, we get that a collar neighbourhood of dN is
equal to (1 — e, 1] x ON with Oy = ryan. Here ry parameterizes the interval and
an = On|oy. Let g : (1 —€,1) = R be a function which is equal to 0 near 1 — ¢
and tends to 400 near 1 and also that its derivative is positive near 1. We let
fn : N = R be a function which is 0 away from this collar neighbourhood and
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equal to g(ry) inside this collar neighbourhood. This shows that (N, 0y) has the
structure of a finite type convex symplectic manifold.

LEMMA 4.10.  Let (M,0) be a finite type convex symplectic manifold and let
Xg be the df-dual of 6. Let fyr : M — R be the exhausting function such that
dfvi(Xg) > 0 in f3,[C, 00) for some C > 0. We define N to be the Liouville domain
f ]\_41 (—o0, C]. We also assume that the period spectrum of the contact manifold ON is
discrete. Then the filtered directed systems (SH,(M,0,))) and (SH.(N°,0|yo0,)))
are isomorphic as long as the choice of trivialization T and homology class b for N°
is equal to such a choice for M restricted to NV.

Proof of Lemma 4.10. Let U C [1,00) x ON be the partial cylindrical end of M
obtained by flowing 0N along Xjy. Let r be the coordinate parameterizing [1, c0). We
have that § = ra inside U where a = 6|gy. By flowing ON backwards along Xy we
can extend U to U’ (containing M \ N) so that it is now a subset of (0, 00) x ON. We
also extend r so it now parameterizes the larger interval (0,00). Let h: (0,00) — R
be a function such that h(r) = 0 near r = 0 and h(r) =r for r > 1 — § where § > 0
is small. We also assume that h > 0 and A’ > 0 for h > 0. We set H to be equal
to h(r) where r is well defined and 0 otherwise. We let J be an almost complex
structure on M such that it is cylindrical on the region {r > 1 —¢}. The pair (H, J)
is growth rate admissible (this is because it is basically the same as the pair from
the second example mentioned earlier). The pair (H|yo,J|yo) is also growth rate
admissible. Let A C (0, 00) be the period spectrum of ON. If A € (0,00) \ A then all
the 1-periodic orbits of AH are contained in N?. Also because J is cylindrical, by
Corollary 9.3 all the Floer trajectories connecting orbits of AH or continuation map
Floer trajectories joining A\{ H and Ao H are contained in N°. This ensures that the
filtered directed systems (SHI (AH,.J)) and (SHI (AH|yo, J|no)) are isomorphic.
This completes the lemma. O

LEMMA 4.11.  Suppose that (M,0) and (M',§") are convex deformation equiva-
lent, then (SHI (M,0,))) and (SHI (M’,0',\)) are isomorphic as filtered directed
systems (again the choice of trivialization 7 and homology class b for M’ must be
the same as that of M ).

Proof of Lemma 4.11. Let far, X9, N be as in the previous lemma. By Corollary 8.3,
we have that (M, 6) is convex deformation equivalent to the completion (N,68y).
Let rx be the cylindrical coordinate of N. We can extend the cylindrical end
[1,00) x ON to (0,00) x ON inside N by flowing ON backwards along the Liou-
ville vector field Xp, . By applying Lemma 4.10 twice (once to (M,#) and once to
(N,0x)) we get that (SHI(M,6,))) is isomorphic to (SHZ (N°,0|x = Ox|n,A))
which is isomorphic to (SHY (N, 0y, \)).

Similarly we have that there is a Liouville domain N’ such that the filtered di-
rected system (SHI(M’,0,))) is isomorphic to (SHZ#(]/\P,HN/, A)) and such that
(M',0") is convex deformation equivalent to (]/V\’ ,On+). Because convex deformation
equivalence is an equivalence relation we get that (N ,0n) is convex deformation
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equivalent to (]/\7\’, Ox+). Also both (N,6y) and (]/V\’, On) are complete so by Corol-
lary 8.6 they are exact symplectomorphic. Hence by Lemma 4.9 we have that the
groups (SHf(N,@N, A)) and (SHf(N’,HN/, A)) are isomorphic. This implies that
(SH.(M,0,))) and (SH.(M',0',)\)) are isomorphic. m

Motivated by Lemma 4.9 we have the following definition:
DEFINITION 4.12. For any finite type convex symplectic manifold M, we define
T(M,0) :=T((SH¥(M,0,)))).
Sometimes we write I'(M) if it is clear what the Liouville form 0 is.

We will show later in Corollary 4.15 that this is the same growth rate as in
Definition 2.3.

In some cases, we wish to consider orbits of all actions and not just ones of non-
negative action. Let (H,J) be growth rate admissible such that —0y(Xy) —H >0
for some 6y where 0 —0) is exact. Let (H)y, Jy) be a smooth family of Hamiltonians
parameterized by A > 1 such that (H), Jy) = (AH + ¢y, J) outside a closed subset
of U ){q . Here ¢, is a smooth family of constants. Basically by the maximum principle
we have that SH,(Hy, Jy) is well defined and for A; < Ay there is a morphism from
SH,.(Hy,,Jx ) to SH.(H),, Jy,). Note that outside a closed subset of Ufl, AH has
no 1-periodic orbits of negative action and hence no 1-periodic orbits outside this
closed subset. This morphism is induced by the smooth family of pairs (Hy, J))
from A; to Ao. Hence (SH,(H),J))) forms a filtered directed system.

LEMMA 4.13. Suppose that —0(Xpg) — H > 0 then (SH(Hy, J))) is isomorphic
to (SHY (M, 0, ))).

Proof of Lemma 4.13. Because the action of all the 1-periodic orbits of AH are
non-negative, we have that SH,(\H,J) = SHI (AH,J). This isomorphism com-
mutes with the filtered directed system maps because they are continuation maps
induced from an increasing family of Hamiltonians. Hence the filtered directed sys-
tem (SH,(\H,.J)) is isomorphic to (SHI (\H, J)).

Let ¢ : R — [0, 1] be a smooth function such that ¢(z) = 0 for x < 0 and ¢(z) =1
for > 1. By joining (AH, J) with (H,J)) via a smooth family of pairs (H3, J5)
such that (H3,J5) = (AH + q(s)cy, J) outside a closed subset of U, we have by
the maximum principle a well-defined continuation isomorphism from SH,(AH, J)
to SH.(Hy, Jy). This monorphism commutes with the continuation maps. Also the
continuation map induced by the family (H,®,.J, ®) gives us an inverse to the above
morphism. This is because the composition of these two continuation maps is a
continuation map induced by some family of pairs equal to (AH + ¢(s)c), J) near
infinity and these are homotopic through such families of pairs to the constant pair.
The constant pair gives us the identity map.

Hence we have that the filtered directed system (SH.(AH,.J)) is isomorphic to
(SH,(Hy, Jy)). Hence we have that (SHI (AH, J)) is isomorphic to (SH,(Hy, Jy)).
This proves the lemma. O
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COROLLARY 4.14.  Let N be a Liouville domain and let rn be the cylindrical
coordinate of N. Suppose also that the period spectrum of ON is discrete. Let J
be an almost complex structure that is cylindrical near infinity. Let (Hy,J)) be a
family of Hamiltonians such that Hy = Ary + ¢y outside a large compact set K for
some family of constants cy. Suppose also that Jy is equal to J outside K. Then
(SH.(Hy, Jy)) is isomorphic as a filtered directed system to (SHf(]/\\f, On, N)).

Proof of Corollary 4.14. Let h:[1,00) — R be a function such that h(z) = 0 for
near 1 and h(z) = z — 2 for z > 3. Suppose also that h'(z),h"(z) > 0. Let H be a
Hamiltonian such that H = 0 inside N C N and H = h(ry) outside N. Inside N,
—0(Xpg) — H = 0. Outside N,

CO(Xy) — H = rah/(ry) — h(ry) = /1 N (2)de > 0.

Hence —0(Xpy) — H > 0. This pair is growth rate admissible for reasons similar
to the reason why the second example mentioned earlier is growth rate admissible.
Hence by Lemma 4.13 we get our result. O

The problem is that the growth rate I'(M,b) has a different definition to the
one given in Definition 2.3. We recall the definition here: In section 2.2, we defined
SHEM(N) for a Liouville domain N which is the direct limit of SH=(H, J) where
(H,J) is a pair defined on N and is cylindrical at infinity and less than 0 on N. For
A1 < Ag, there is a natural map SH="(N) — SH=*2(N). This is a filtered directed
system (SH:"(N)) whose direct limit is SH,(N).

LEMMA 4.15. The filtered directed system (SHEY(N)) is isomorphic to
(SH«(N,0n,))). Hence Definitions 2.3 and 4.12 are equivalent. We assume that
the period spectrum on N is discrete.

Proof of Lemma 4.15. Let (H,J) be the pair defined in the proof of Corollary 4.14.
We will first construct a family of pairs (Hy,Jy). Let r be the cylindrical coordi-
nate of N. We will construct an isomorphism from SH,(\H,J) to S H*S)‘(N ) that
commutes with the filtered directed system maps.

Fix A > 1. We construct the Hamiltonian H, as follows: H, is constant and
equal to —1/a inside N. This construction only works if a is sufficiently large. In
the region N\ N we let H, = go(r) where gq(r) = —1/a near r = 1, ¢,(r), g"(r) > 0
and g.(r) = a(r —1- é) forr > 1+ é We also require that in a neighbourhood of
the region 1 + 36%\ <r<l+ 6%\ that g(a) is equal to

1 3 1

Here is a picture:



GAFA GROWTH RATE OF SYMPLECTIC HOMOLOGY AND AFFINE VARIETIES 401

a(r—1-1)

a

We let J, be anything we like inside N and J, is cylindrical outside N. If we
have a periodic orbit inside the level set = ¢, then its action is ¢g’(¢) — g(c). The
derivative of this with respect to ¢ is ¢’(¢) + cg”(¢) — ¢'(¢) = ¢g”(c). Because g’ > 0
we have that orbits in the level set 7 = ¢y have action less than or equal to the ones
in the level set » = ¢9 for ¢; < 9. Let e =1+ % All the 1-periodic orbits in the
region r < e have action less than or equal to eg’(e) — g(e) and all the orbits in the
region r > e have action greater than or equal to this same quantity. Also because
g(r)=—=2+ (A= 2)(r—1— 51) in the region (e — ¢, e for € > 0 small,

eg'<e>—g<e>=e(A—;;)+i—(*;;) (6—1—2a;_3>

Because J is cylindrical and H is linear in the region (e — ¢,e], we can use the
maximum principle Corollary 9.3 to ensure that any Floer trajectory connecting
orbits of action < A must be contained in {r < e}.

We can construct another growth rate admissible pair (H, J!) where (H], J!) =
(Ha, Jo) in the region {r < e} and H, = —1 + (A\— ) (r — 1 — 55—) outside this
region. Then SH,(H!,J!) = SHEY(H,, J,). Also for a; < ay, a similar maximum
principle argument ensures that the transfer map

SH,(H. ,J. )= SH.(H. ,J.)

al?’ “ax a2’ “az
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coming from the family (H’ is identical to the transfer map

ai+t(az—a1)’ a1+t(a2 al )
SHEMHgy, Jay) —>SH<A Hay, Jay)
)

coming from the family (Hg, 44(ay—ay)» Jay+t(as—ar)

Also because the slope of H] is equal to A — % near infinity we have that

SH,.(\H,J) is isomorphic to lim SH,(H!,J.). Hence SH,(\H, J) = SH=(N) be-
cause lim SH, (H!,J.) is equal to lim SHMH,,J,). By ensuring that the pairs

a’“a
(Hy, Jo),(H,,J.) smoothly increase with A and looking at the resulting continu-
ation maps (and by Corollary 9.3 we get that the filtered directed system maps
for (SH,(A\H,J)) are identical to the ones for (SH="(N)). Hence these directed
systems are isomorphic. Hence (SHZ (N,6y,\)) is isomorphic to (SHEY(N)) by
Corollary 4.14. 0

We will now prove Theorem 2.4 which says that growth rate is an invariant of a
finite type Liouville manifold up to symplectomorphism.

Proof of Theorem 2.4. By Corollary 4.15 we have that growth rate is equal
to I‘(S’Hf(M, Or,N\)). By Lemmas 4.9 and 3.1, we have that the growth rate
T(SHZ (M, 0y, \)) is an invariant of M up to symplectomorphism. Hence T'(M) is
an invariant of M up to symplectomorphism preserving the class b € H?(M, Z/27)
and the choice of trivialization 7. O

4.2 Growth rate of cotangent bundles. We let K be a field. Let (Q, g) be a
Riemannian manifold, and let L* := LS)‘2(Q, g) be the space of free loops of length
< A\2. For \; < \y we have a natural inclusion L* < L*2. This gives us a filtered
directed system (H,(L* K)). We define I'(Q,K) to be equal to I'((H.(L* K))).
Note that @) has exponential growth if and only if there is some field K such that
['(Q,K) = co. We define wy € H*(T*Q,Z/27Z) to be the pullback of the second
Stiefel-Whitney class of (). We also have a canonical choice of trivialization 7¢ of
the canonical bundle of T*@Q induced by the volume form on ). The cotangent
bundle T*@ is the completion of the unit cotangent bundle D*(Q) which is a Liouville
domain. Let 6g be the Liouville form on 7%Q. This is locally equal to >, pidg;
where p; are momentum coordinates and ¢; are position coordinates in ). In this
section we will prove

Theorem 4.16. The filtered directed systems (H.(L")) and
(SHF(T*Q, 0q, A, (1g,w2))) are isomorphic.

This means we get the following corollary:
COROLLARY 4.17. T'(T7Q, (1g,w2)) =I'(Q).

Before we prove this theorem we need a slightly different definition of growth
rate. Let (N, 60x) be a Liouville domain. Let 7y be the radial coordinate for the
cylindrical end ON x[1, 00) of N. We assume that the period spectrum of the contact
boundary N is a discrete subset P of R. We say that a Hamiltonian H : S! x N>R
is quadratic admissible if
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(1) There exists constants b, b’ € R such that H + b < ir < H+V in the region
ry > 1; We also require that vy +b < dH ( ) < rn +b. This ensures that
if H has some 1-periodic orbit inside the reglon a < ry < [ then its action is
greater than a(a + b) + b — 152 and less than B(8 + ) + b — 1a?

(2) There is a sequence I3 < [y < --- tending to infinity such that [; ¢ P and
H = L% + d; on a small nelghbourhood of the hypersurface {ry = [;}
where d is a constant (in particular H has no 1-periodic orbits near these
hypersurfaces). This also ensures that the 1-periodic orbits starting at say
rny = « do not stray too far away from this hypersurface.

(3) The sequence [; satisfies [;/l;—1 < k where k is a constant.

(4) We need that H > l;ry — %l? + d; in the region ry > ;.

By Lemma 2.2 we can perturb any quadratic admissible Hamiltonian so it becomes
non-degenerate and remains quadratic admissible. Let H be such a Hamiltonian.
We also define an almost complex structure J such that J is equal to some cylindrical
almost complex structure on a neighbourhood of {ry = I;} for each i. We say that
J is compatible with H if this is true. Such a pair (H,J) is said to be quadratic
admissible. Lemma 9.1 tells us that we can define SHEY(H, J) (see [R, §21.3] for
an alternative way of defining this). These groups form a filtered directed system
where all the filtered directed system maps come from the natural inclusions. Hence
we have a filtered directed system (SH. *S)‘Q(H ).

LEMMA 4.18. The filtered directed system (SH*S)‘Z(H, J)) is isomorphic to
(SHEN(N)).

We need a preliminary algebraic lemma.

LEMMA 4.19. Let (V,),(V])) be two filtered directed systems and let 1 < Iy < Iy
< --- be a sequence tending to infinity such that l;/l;—1 < K for some constant K.
Suppose for each x € [1,00) we have a map p,; from V to Vlz whenever l; > cx
where ¢ > 1 is some constant. We assume that p, commutes with the filtered
directed system maps (i.e. if azy : Vo = Vy and aj ; : V) — V] are filtered directed
system maps then we requlre that py joayy = a, J oaz i) Suppose we also have maps
pw : Vll — V, for l; < 'z which also commute with the filtered directed system
maps (here ¢ > 1 is a constant). Then (V,,) is isomorphic to (V).

Proof of Lemma 4.19. Let azy : V, — V, and a,, : V; — V be the directed
system maps. We first construct a map ¢ : V — Vj. as follows: choose [; so that
1 <lij/z < K. We define ¢ as aj, g, opm We can define ¢' : V] — Vj., in a
similar way as p} Kz © % L Because PaisDh » commutes with the directed system
maps, we have that $od and ¢ o ¢ are directed system maps and hence we have
an isomorphism. O

Proof of Lemma 4.18. We have a sequence [; satisfying [;/l;_1 < k where H =
%7”12\/ + d; in a neighbourhood of ry = I;. Here d; is a constant. We define H; as

follows:

(1) H; = H in the region ry < l; — §; where §; is a very small constant.
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(2) H; = fi(rn) on a small neighbourhood of l; — §; < rn < I; where f/, fI' > 0.
We can then ensure that H; has no orbits in this neighbourhood.
(3) Hi =lirny — %l? + d; in the region ry > [;.
(4) H > H; for all i (this can be done by the last condition that a quadratic
admissible Hamiltonian satisfies). We also want that H;_; < H; for all i.
Let K, s > 1 be a smooth family of Hamiltonians such that
(1) 0Ks/0s > 0.
(2) Ky is linear at infinity of slope s.
(3) Ki, = H;.
We have that (SH.(Kj,J)) is a filtered directed system.

Because every orbit is contained in a region of the form I;_; < ry <I; and

lifl(lifl + b) + b/ - %lz < _GN(XH) —H < l’L(ll + b/) +0b— %l?—la

we have constants A, B so that any orbit starting on the level set ry = ¢ must have
action between Ac? and Be?. Choose I; so that Al? > A2, All orbits of H and K,
of action < A? are contained inside the region 7y < l;. The maximum principle
(Corollary 9.2) ensures that all Floer trajectories connecting these orbits must be
2 2
contained inside 7y < I;. Hence SH=" (H,J) = SH= (Ki,,J). We have a natural
map: ,
SHEN (K, J) — SH(Ky,,J) .
Composing these two maps gives us a natural map
P SHY (H,J) = SH.(K,,, ).

Because the filtered directed system maps for H are induced by inclusions and
the filtered directed system maps for K are induced by non-decreasing families of
Hamiltonians we have that p) ; commutes with the filtered directed system maps as
described in the statement of Lemma 4.19.

Now choose \ so that Bl? < A2. Then all orbits of K 1, have action < A2, So the
subcomplex of C’FE/\2 (H,J) generated by orbits in the region rny < I; is isomorphic
to the chain complex CFy(Kj,,J). Hence there is a natural morphism

Pt SHL(K;,, J) — SHEY (H, J).
These morphisms also commute with the natural directed system maps. So by

Lemma 4.19, (SH*S/\Q (H,J)) is isomorphic to (SH,.(Ks,.J)) which in turn by Corol-
lary 4.14 and Lemma 4.15 is isomorphic to (SH«(N, \)). O

Proof of Theorem 4.16. By Lemma 4.18, we get that (SH;’\Q(H, J)) is isomorphic
to (SHI (T*Q, g, \)) for any quadratic admissible pair (H,J). Using the metric
on (), we have a functional S defined on the loopspace £ given by sending a loop
1:S'=R/Z - Q to \/fol |l'(t)[2dt. We have that H,(S~!(—oc, )]) is a filtered
directed system where the directed system maps come from the natural inclusion
maps. From [SW, Cor.1.2] we have a quadratic admissible pair (H,.JJ) with the
property that there is an isomorphism SH*S)‘2 (H, J, (1g,w2)) = H,(S™!(—00, A]) for
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all A\. This isomorphism commutes with the directed system maps as well. Hence
we get that (SH;’\2(H, J, (1, w2))) is isomorphic to (H,(S™1(—o0,\]) as directed
systems. Let LI%;Q be the set of loops [ of length < X such that |I’(¢)| is constant.
This space is homotopic to L*@Q. We have that S(I) is equal to the length of [ when
I € L55. The result in [An] tell us that the inclusion L5)Q < S (—o00, )] is a
homotopy equivalence. Hence L=* is homotopy equivalent to S~ (—o0, A]. We now
get that (SH*S)‘Q (H, J, (1g,w2))) is isomorphic to (H.(L=*Q)) as directed systems.

Hence (SHI (T*Q, 00, A, (1g,w2))) is isomorphic to (H. (L)) as directed systems. O

4.2.1 The growth rate and fundamental group. Let G be a finitely
generated group, and let A := {gi1,...,gr} be a set of generators for G. Let G°"8
be the set of elements of G modulo conjugacy classes. Let r; be the number of
elements of G°°"¢ which can be expressed as a product of at most ¢ generators. We
define I'°°"8(@G) to be lim; log r;/logi. This definition is independent of the choice of
generators. The reason is as follows: Suppose ¢/, ..., g}, is another set of generators,
then all we need to do is show that the growth rate associated to A is the same as the
growth rate associated to the union of the generators: B := {g1,..., 0k, ¢}, -G }-
Let 7 be the number of elements of G°°"® which can be expressed as a product of
at most 7 elements of B. Then r; < 7“; because A C B. We have that there exists
a K € N such that each element of B can be expressed as a product of at most K
elements of A. Therefore r;, < Kr; for all i (where K is independent of ¢). Hence
the growth rates are the same.

LEMMA 4.20. Let QQ be a compact oriented manifold, then

I(Q) > T (m(Q)) -

Proof. We need to show the following fact: there exists a constant P depending only
on @ such that for every pair of free loops v1, 72 in @), there exists a free loop v and
elements k1 and ko of 71(Q) such that +; represents the conjugacy class [k;], and ~
represents the conjugacy class [k1.k2] with I(y) < (y1) + I(7y2) + P. Here [ denotes
the length of a loop with respect to the metric g. This is done as follows: Choose a
constant P such that for every pair of points q1, g2 € @, there exists a path joining
them of length < %P. Also choose a basepoint a € . Join v and 2 to a using
paths of length < %P. This gives us elements ki, ko € m1(Q, a). The composition of
such loops gives us a loop of length < I(y1) + (y2) + P.

Let g1, ,gr be generators for m(Q,a). Let C' be a constant greater than
l(g;) for each i. For C > 1 we have that rank(HOS(CJrP)C(LQ)) is an upper bound
for the number of loops of word length < ¢. Also the growth rate associated to
HOS(CHD)C(LQ) is the same as the growth rate of HOSC(LQ). Hence I'(T*Q, (1q,w2))
is an upper bound for T'°°"8(7(Q)). i

LEMMA 4.21. Let G be the free product of 3 non-trivial groups then
[m(G) = 0.
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Proof of Lemma 4.21. Let G = A% BxC where A, B,C are non-trivial. Let a, b, c
be non-trivial elements in A, B, C. Choose a subset I C {1,...,k}. Let q;(i) be a
function which is 1 if ¢ € I and 0 otherwise. Let aj := be Hle(aqf(i))(bc)l_‘ﬂ(i)).

Every element of G can be written uniquely in the form f := Hé:o h; where
h; € A or B or C and h;_1 is not in the same group A, B,C as h;. There is
an I’ < 1/2 such that h; = h;, for all i < . The element Hi;éif& hi is called
the conjugation interior of f. We can conjugate f by some element g so that the
conjugation interior is of the form Hﬁ;il,;} h; where hy 41 is not in the same group
Aor Bor C as hj_y_1. This is called a standard conjugation interior. If we have
?:1 ; as described above then a rotation of Hé‘/ﬂ h;- is the operation
where we replace it with 7 Hé-l:_ll R} or we do the reverse.

If we conjugate f by any element g then the standard conjugation interior can
only change by a sequence of rotations.

The conjugation interior of a; is equal to a; and it is standard. Hence if aj/ is
conjugate to ay then I = I’ + j where we view {1,...,k} as the cyclic group with k
elements. We say that I’ is a rotation of I if I = I’ +j for some j € Z. Also the word
length of all these a;’s with respect to the generators a, b, ¢ are all the same. This
word length is between 2 4 k and 2 4 2k. Hence the number of conjugacy classes of
elements of G of word length between 2+ k and 242k in a, b, ¢ is at least the number
of subsets I C {1,...,k} modulo rotation which is at least 2¥/k. Hence the growth

rate of G is bounded below by the growth rate of 2¥/k and hence is infinite. O

some element [

5 Compactifications of Algebraic Varieties

5.1 Making the divisors orthogonal. Let (M,w) be a symplectic manifold
of dimension 2n. Let Sy, ..., S be symplectic submanifolds of real co-dimension 2.
For each I C {1,...,k} we define S; to be N;c;S;. We say that Si,...,Sy are
symplectically intersecting if they intersect transversally and St is a symplectic sub-
manifold for each I C {1,...,k}. For any symplectic submanifold S C M, we define
its w-orthogonal bundle NS to be the vector sub-bundle of TM|g given by vectors
u satisfying w(u,v) = 0 for each v € T'S.

DEFINITION 5.1. We say that S1,...,Sg intersect positively if

(1) They are symplectically intersecting.

(2) Let I C {1,...,k} be a disjoint union I; Ll Iy, Ny the w-orthogonal bundle of
St inside S7, and Na the w-orthogonal bundle of Sy inside Sy,. The bundle
TS; & Ny @ N is isomorphic to TM|g. Each bundle T'Sy, N1 and No has an
orientation induced by w and hence their direct sum does. We require that
the natural orientation on this direct sum matches the orientation induced by
w" on TM]|s.

DEFINITION 5.2. Let Q1,...,Q; be a collection of symplectic submanifolds of any
dimension. Let U be any subset of M. We say that Q1,...,Q are orthogonal along
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U if for eachi,j € {1,...,k} (i# j) and x € UNQ; N Qj, the w orthogonal normal
bundle to Q; at x is contained in T'S;. We just say they are orthogonal if they are
orthogonal along M.

The aim of this section is to deform positively intersecting submanifolds so that
they become orthogonal.

LEMMA 5.3. Let Si,...,S; be any finite set of positively intersecting symplec-
tic submanifolds. There is a smooth family of positively intersecting symplectic
submanifolds S! such that

(1) S =5, for alli € {1,...,k}.

(2) All the S} intersect orthogonally.

(3) St = Sk.

We need some preliminary lemmas and definitions before we prove the above
lemma.

LEMMA 5.4. Suppose we have k smooth families of symplectic submanifolds
St,...,S} parameterized by t € [0,1] and that S%,..., S} are symplectically inter-
secting for each t. Suppose also that SY, ... ,S,g are positively intersecting. Then for
eacht, St,..., S}; are also positively intersecting.

Proof of Lemma 5.4. For I C {1,...,k} let S} be equal to N;eySt. If T is the disjoint
union of I; and 5 then we define N} to be equal to the w-orthogonal bundle of S*
inside SZ‘ We have a smooth family of bundles T'S} & N{ @ NJ, and the orientation
of TSY & NY & NY agrees with that of TM\S?. Hence because we have a smooth

family of bundles, the orientation of T'S} & Ni & N} agrees with the orientation of

TM’33 . O
From now on, R?" is the standard symplectic vector space with coordinates

T1,Y1, - -+, Tn,Yn and symplectic form wgg = 2?21 dx; N\ dy;.

LEMMA 5.5. Let Sy,...,S) be codimension 2 symplectic vector subspaces of R?"

such that Sy = {xn,y, = 0} and where Si,..., Sy are positively intersecting. Then

forallp >0, Sy, ..., Sy are positively intersecting with respect to the new symplectic

form wy, 1= wsq + pdry A dy,.

Proof of Lemma 5.5. Let I C {1,...,k}. If k € I then Sy is a subset of Sk,
hence w,, restricted to Sy is equal to wiq restricted to Sy and hence St is symplectic
with respect to w, for all 1 > 0. Now suppose that k& ¢ I. Then S is transverse
to Sk. Let I be the wgq orthogonal subspace of S; to Sy NS, C S;. This is a two-
dimensional symplectic subspace. Let N be the wgq orthogonal bundle to S; N Sk
inside Si. We know that N @ (S;NS;) @ F has the same orientation as R?" because
Si,..., Sk are positively intersecting. Also N @ (S; N Sk) has the same orientation
as Sy because N and S} are wgq orthogonal. Hence the orientation on F' is the same
as the orientation induced by restricting dx,, A dy, to F'. Hence w, restricted to F’
is a volume form on F for all ;4 > 0. Also F is still orthogonal to S; N Sy inside Sy
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with respect to w, because w,(V, W) = wgq(V, W) for all vectors V, W where V is
tangent to Sj. Hence w, restricted to Sy is still a symplectic form.

So S1,...,Sy is symplectically intersecting with respect to w,, for all x. Because
S1,..., Sk are positively intersecting with respect to wg = wgtq we have by Lemma 5.3
that Sp,..., Sk are all positively intersecting with respect to w,, for all x> 0. O

LEMMA 5.6.  Let Sy,...,SE be transversally intersecting codimension 2 vector
subspaces of R?" such that Sy, = {x,y, = 0}. Suppose that Sy N S, ..., Sk_1 N Sk
are symplectically intersecting inside Sy, then for large enough p > 0 we have
that Sy, ..., Sy are symplectically intersecting with respect to the symplectic form
Wy 1= Wstd + pdxy A dyp.

Proof of Lemma 5.6. Let I C {1,...,k}. If k € I then St is a symplectic manifold
with respect to w,. From now on we will assume that k& ¢ I. We have that S;
intersects Sy transversally. Let F' C St be the vector subspace of S; which consists
of vectors which are wgq orthogonal to Sy N Sk. First of all F' is of dimension at
least 2 because the set of vectors wsy orthogonal to Sy N Sy, inside R?™ is 2(|I] + 1)
dimensional and Sy is 2(n—|I|) dimensional. Here |/| means the number of elements
in I. Also F has dimension at most 2 because it must be orthogonal to S; N Sy
inside S7. Hence St is equal to (S; N Sk) @ F and wgq restricted to Sy splits up
under this direct sum as w; ® we. Because St N Sy is symplectic by assumption
we have that wy is a symplectic form. Also dzx, A dy, restricted to F' is a non-
degenerate 2-form because F' is 2-dimensional and transverse to Si. So for large
enough p, wy + pdx, A dy,|F is a symplectic form on F. Hence wgiq + pdzy, A dyy,
is a symplectic form on S; for large enough p. Hence we have shown that Sy is
symplectic for all I with respsect to wgq + pdx, A dy, for large enough > 0. O

We have a parameterized version of this lemma that will be needed where we
have a continuous family SY,..., S} ; parameterized by ¢ € @ where @ is some
compact topological space. The result is that S,..., Sg_l,Sk are symplectically
intersecting with respect to w,, for p sufficiently large.

LEMMA 5.7. Let S), be a codimension 2 symplectic vector subspace of R?".
Let Aq,..., A1 be symplectically intersecting symplectic vector subspaces of Sj.
Let B be the space of (k — 1)-tuples of 2n — 2 dimensional symplectic vector sub-
spaces (S1,...,Sk_1) of R®™ such that Si, ..., Sy are positively intersecting and such
that S; NSy, = A;. If B is non-trivial then it deformation retracts onto the point
(A + Sé-, oo A + Skl) where SkL is the symplectic orthogonal subspace to Sy.

In particular we also get that (A + SkL, o A+ Skl) are also positively in-
tersecting and hence A1, ..., A;_1 are positively intersecting inside S.

Proof of Lemma 5.7. By a linear symplectic change of coordinates we can assume
that Sy = {xn,yn =0}. We will show that B is weakly contractible and hence
contractible. Let Si,...,Sk—1 be a point in B. The subspace Sy;  x—1} is at least
two dimensional and transverse to Sg. Let W C Sy 1) be a two-dimensional
symplectic vector subspace transverse to Si. Such a subspace exists for the following
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reason: We have that S, ..., S intersect transversally and because these are codi-
mension 2 vector subspaces we have that k < n. Hence Sg; x_1y has codimension
at most 2(n — 1) which means that it is at least 2 dimensional. This space is also
transverse to S;. Hence we can find such a two-dimensional subspace W. The vector
subspace W is also contained in .5; for each 1 < ¢ < k — 1. Hence 5; is a direct
sum of vector spaces (S; N Sy) @ W for each 1 <i <k —1. Let S7,...,S] | be a
family of points in B continuously parameterized by points ¢ in some sphere S™.
Let ¢9 : R? — ﬂf:_fo be a continuous family of linear embeddings parameterized
by ¢ such that the image of ¢? is transverse to S;. Now choose a continuous family
of maps ¢f : R? — R?" parameterized by (¢,) € S™ x [0,1] such that they are
linear embeddings transverse to S, ¢4 = ¢? and such that ¢{ is a linear isomor-
phism to S,i‘. We now have a family of transversally intersecting (not necessarily
symplectic) vector subspaces S* := A; @ image(¢?). We have that S2° = §¢ and
ST = A; @ Si-. By (a parameterized version of) Lemma 5.6, we have that S** is
symplectically intersecting with respect to w,, := wsiq + pdr, A dy, where p > 0 is
very large (here we really need that Sg’t is parameterized by a compact family and
this is why we need to prove weak contractibility first). Let ®, be a linear automor-

phism sending (z1,Y1,. .., Tn—1,Yn—1,Tn,Yn) tO (a:l,yl,...,xn_l,yn_l,xn,ﬁyn).
Then ®jw, = wsta. This automorphism also preserves Sy and S ,CL, SO @ZS?J = Sg’l.
By Lemma 5.5 we have that & Sq’ is positively intersecting for all ¢ € [0, 1].

We concatenate the 1sot0ples S’qo and @7 Sf’t giving us a new family of vector
subspaces (o7, .. N 1) deﬁned as follows:
0

(1) For t €[0,1/2], % = &5, 5.

(2) Fort € [1/2,1], 0¥ = @*Sq’Qt L
By Lemma 5.4 we get that (01 ye - O'k 1,Sk) are positively intersecting because
(07%..., 080, S)) are. Hence (a?’t,.. Lot ) are points in B parameterized by
q € S™ starting at S7,...,S} | and ending at A1 & S, ..., Ay & Sj-. Hence B is
weakly contractible and hence contractible. O

LEMMA 5.8.  Let 8; be the space of k-tuples of positively intersecting 2n — 2
dimensional symplectic vector subspaces Si,...,S; of R?". Then §;, deformation
retracts onto the space of positively intersecting wstq orthogonal vector subspaces
of R?",

Proof of Lemma 5.8. Throughout the proof of the lemma, we use the following fact:
suppose that we have a fibration p whose fibers deformation retract to the fibers of
a subfibration p’. Then the total space of p deformation retracts to the total space
of p.

We proceed by induction on dimension. Suppose this is true for all R? with
I < n and consider R?". We define S£i 1 as the space of positively intersecting 2n —4
dimensional symplectic vector subspaces Aq,..., Ar_1 of Sg. Then this deforma-
tion retracts to the space of orthogonally intersecting subspaces by our induction
hypothesis.
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We have a fibration,
P8, — &1,

sending (S1,...,S5;) to Sk. We have an inclusion Sfﬁl s P71(S;) sending
Ap, .. Ag—q to (A1 + S,ﬁ, e A1+ SkL) where SkL is the symplectic orthogo-
nal subspace to S;. So from now on we view Sff , as a subspace of P_l(Sk) and
the union U Sk6518ff | as a subfibration of P. The fiber P~!(S}) is also a fibra-
tion Q : P~Y(Sg) — 8%, where Q(S1,...,S%) = (S1 N Sk, ..., Sk_1 N Sk). The
fiber of @ over a point (Aj,..., Ax_1) consists of subspaces Bj, ..., Bx_1 positively
intersecting S such that B; NSy = A;. This deformation retracts to the point
(A1 + Sit, ..., A1 + Sit) by Lemma 5.7. Hence P~1(Sy) deformation retracts
to the space Sfﬁ 1 which by our induction hypothesis deformation retracts to the
space of orthogonally intersecting subspaces of R?*~2. This implies that 8, defor-
mation retracts to the space of orthogonally intersecting subspaces. This proves our
lemma. O

LEMMA 5.9. Let S C M be a symplectic submanifold of M. Suppose that the
w-orthogonal bundle mg : NS — S has structure group G C U(n). Then there is a
neighbourhood U S and a projection p : US — S whose fiber is symplectomorphic
to the ball B, of radius € and such that its structure group is G and whose fibers
are orthogonal to S.

There is also a vector field L on US whose flow ¢; is well defined for all negative t
and such that et (¢_;)*wys = wys—+ (e —1)7*ws where wys and wg are the symplectic
forms on US and S respectively (here S is identified with the zero section). Inside
the fiber B, C C", this vector field is equal to ), %8%1- where (r;,df;) are polar
coordinates for the i-th factor of C in C".

Proof of Lemma 5.9. This proof is very similar to the proof of [MS, Th.6.3]. Let
(Va)aeca be a finite covering of S with trivializations V,, x C" of the symplectic
fibration. Choose a partition of unity p, : Vo, — R subordinate to this cover. Let
men be the natural projection from V, x C" to C". We define o, := ), r?d&
where (74, 6;) are polar coordinates for the i-th C factor of the fiber C". We write
7:= )., d((pa o ms)on) which is equal to

T= Zd(pa 0mg) A 0o + pa © Tsdo, -
«

Because o, restricted to the zero section is zero and T'S is in the kernel of do, we
have that wyg := mgw|s + 7 is a symplectic form on a small neighbourhood of the
zero section. This is because [|d(po 0 Tg) A 04 is small relative to ||po 0 mgdo, || and
|T5w|s|| near the zero section. Let NS, be the open subset consisting of vectors of
modulus less than € where € is small enough so that wgrg is still a symplectic form
on NS.. We have by a Moser theorem [MS, Th. 3.3] that for some e small enough, a
neighbourhood of S is symplectomorphic to N.Se. This has structure group G and
fibers B..
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The fibers are orthogonal to S because if we have any vector v tangent to .S and
another one w tangent to the fiber, then 7§w|s(v,w) = 0 because w is in the kernel
of this symplectic form. Also d(ps o ms) A 0q(v,w) = 0 because o, vanishes on S.
Finally do, (v, w) vanishes because T'S is in the kernel of do,. Hence wyg(v,w) =0
and hence the fibers are orthogonal to S.

Let L be the vector field on NS, which is tangent to the fibers of mg and equal
to >, %% on the fibers. This is well defined because ), fai is invariant under
the U(n) action on C". We have that the Lie derivative of p, o7g.0, with respect to
L is pa o 7s.04 (because the flow of L does not change p, o 7s). Hence (¢;)*1 = el

where ¢, is the flow of L. Hence
e (p_)*wys = (e — Dwl|s +wys -
0

LemMA 5.10. Let p : US — S be a fibration described in Lemma 5.9 and let
N C N’ be open subsets of the zero section such that the closure of N is contained
in N (S here is compact and it may or may not have a boundary). Let Si,..., Sk
be positively intersecting codimension 2 submanifolds such that

(1) n;S; is the zero section.

(2) S; intersects the fibers transversely.

(3) S; intersect orthogonally on p~(N')

(4) S;Np~Y(q) is a symplectic vector subspace of B C C" for each q € S.
Then there is a family of manifolds S} (t € [0,1])

(1) S! are positively intersecting symplectic manifolds with respect to the sym-
plectic form wyg + Tp*wg for sufficiently large T > 0.
) ;S is the zero section.
3) SY=5,.
) Stnp Y(N) =S, np Y(N).
) S} are all orthogonal along the zero section.
6) S’t S; outside some neighbourhood of the zero section.

Proof of Lemma 5.10. By Lemma 5.8, there is a family of submanifolds W} of US
transverse to all the fibers such that

(1) Wi np~1(q) are positively intersecting symplectic vector subspaces of p~*(q)
for all ¢ € S.
(2) Wt mtersect each fiber of p transversely.
(3) W,
4) w S on p~H(N).
(5) T/VZ1 Np~1(q) are orthogonal inside p~1(gq) for all ¢ € S;.
Note that W} become positively intersecting symplectic submanifolds with respect
to the symplectic form wyrg + Tp*wg for all sufficiently large T > 0.
For each s € [0,1], we can construct (using a bump function) a smooth fam-
ily of codimension 2 submanifolds U"* (t € [0,1]) such that Uis T — W outside

7
some closed subset of US containing the zero section, U;” S — W! near the zero

(]
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section and U;”* = W#. We can also assume that Uis’t = W¢ on p~!(N) because
W7 = W/ in this region. For each s, there is a constant d; > 0 such that for all
t €[s—ds,5+ 0s), Uls’t, ey U,‘z’t are positively intersecting symplectic submanifolds
with respect to wyg + Tp*wg for all sufficiently large T > 0. We also assume that
Uf’t are transverse to all the fibers of p for all ¢t € [s — g, s + J5].

Let L be the vector field described in the statement of Lemma 5.9 and let ¢; be
its flow. For any S > 0 we have that ¢_g(U; ’t) is still a symplectic submanifold

with respect to the symplectic form wyg + T'p*wg because
e*(¢-g)*(wus + Tp*ws) = wus + (T + 2¢° — Dp*ws .

From now on we define qS_T(UiS’t) to be equal to gb_T(UZ-S’t) inside ¢_p(US) and
equal to U " outside ¢_7(US). This is a well-defined symplectic manifold because
U;’t N p~Y(q) is linear outside some closed subset of US containing the zero section
for all ¢ € S and the flow of L is tangent to any submanifold with this property.
We also have that ¢,T(UZ§’t) are all positively intersecting symplectic submanifolds.
Also because L is tangent to the fibers of p, we have that ¢_p(U; ’t) is transverse to
all the fibers.

By compactness, there exists a finite sequence s1 < so < --+ < s; such that the
intervals (s;, s; + d0s;) cover (0,1]. This is because we can choose s; = 0 and then
cover [0s,, 1] with the open intervals (s;, s; + ds,) by compactness. We assume that
s; =1 and sij41 € (84,8 + 6s,).

The submanifold ¢_T(Ul-s’t) is still equal to W7 outside some closed subset of
US containing the zero section and equal to Wit near the zero section. Suppose we
have found a family S! (¢ € [0, s,,—1]) such that S! = S; outside some relatively
compact open set O and such that SZ-S L Wf""_1 near 0. We also suppose that
St = S; on p~1(N). We now consider s,,. Let O, C O be an open set containing
the zero section such that S;™~" = W ™' on a neighbourhood of the closure of
Oy, for all 7. For T large enough, we have G; := d)_T(UiSm_l’t) is equal to W™
inside a neighbourhood of the closure of US \ O,,. Note that G; is well defined for
t € [Sm—1, Sm] because (Sym—1 — 0s,, 1, Sm—1 + Js,, ;) contains [S;m_1, Sm|. We define
St for t € [$m—1,8m] to be equal to S;™"' outside O,, and equal to Gy inside Oy,.
This is a manifold because these manifolds agree on the boundary of O,, and just
outside Oy,. Also we have that S;™ is equal to W™ near 0 because Uis m=bSm does.
We have that S! = S; on p~}(N) because Uf’t has this property and the flowing
along L preserves this property.

Hence by induction we have constructed a family S! equal to S; outside O and
such that S;' = S} is equal to W} near the zero section. Because W are orthogonal
at the zero section, we get that Si1 are also orthogonal at the zero section. Finally
St =S; on p~}(N). This proves the lemma. O

LEmMA 5.11. Let Si,...,Sk be positively intersecting symplectic manifolds in M
and S1,...,S; in M'. Let NS;, NS} be their respective symplectic normal bundles.
Suppose that there is a series of symplectomorphisms ¢; : S; — S} and symplectic
bundle isomorphisms N¢; : NS; — NS; covering ¢; such that ¢;, ¢; and N¢;, N,
agree when restricted to S; N.S; for all i, j.
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Then there is a symplectomorphism ® from a neighbourhood of U;.S; to a neigh-
bourhood of U;S! such that ®|s, = ¢; and D®|ng, = N¢;.

Suppose in addition that a neighbourhood N St of Sy is identical to a neighbour-
hood of NS and that for i € I, ¢; and N¢; restricted to Sy is the identity map for
all i. Then we may assume that ® is Hamiltonian near S; and C' small.

Proof of Lemma 5.11. We will first construct a diffeomorphism ¥ from a neighbour-
hood of U;S; to a neighbourhood of U;S! such that ¥|s, = ¢; and D¥|ng, = N¢;
(i-e. every vector v in N,S; is sent to a vector in Ny, )55 equal to N¢;(v)). We do
this by induction: Suppose that we have found such a symplectomorphism ¥’ on
a neighbourhood of u;’;—llsi and consider U | S;. By using an exponential map we
have a diffeomorphism ¢y, from a neighbourhood of S, to a neighbourhood of S’
such that D¢y, induces the morphism N¢,,. On U’Z;_ll(Si N Sp)) we have that bm
and ¥’ agree. Also D¢2m|u§2‘1105m is equal to D‘I’/|u§i‘11ﬂsm' Hence if we look at their

graphs inside M x M’, they are tangent along U7 1 (S;NS,,) x M’ so we can perturb
the graph of ¢,, by a C! small amount so that it still stays the graph of a diffeo-
morphism ¢ and such that it agrees with ¥’ on a neighbourhood of U (SN Sy
Hence we can extend ¥’ over S, with the appropriate properties.

Finally, we can use a standard Moser deformation argument to deform ¥ into
a symplectomorphism @ such that the differential of ® at U;S; agrees with the
differential of ¥ at U;S;. This ensures that ® has the properties we want.

Now suppose in addition that a neighbourhood NS of Sy is identical to a neigh-
bourhood of NS} and that for i € I, ¢; and N¢; restricted to St is the identity map
for all .. We can construct a smooth family S! ¢ € [0, 1] of positively intersecting
submanifolds which are C! close to each other so that on a small neighbourhood of
ST, SZQ is equal to S; for all 7. Also we want that globally, Si1 is equal to S; for all 7.
We can also assume that they are all symplectomorphic to each other, so we have
a smooth family of symplectomorphisms ¢! from S; to S! and also a smooth family
of normal bundle maps N¢! so that when ¢ = 1 they all coincide with ¢; and N¢;.
By a parameterized version of the above discussion we have a smooth family of
symplectomorphisms ®' from a neighbourhood of U;S; to a neighbourhood of U;S?
such that ®f|s, = ¢! and D®!|ys, = N¢l. In addition we can assume that ®° is
the identity map near S; (because we can choose our associated diffeomorphism ¥
to have this property). Because ¢; and N¢; are the identity maps on S; we have
that ®! is C' small near S7. Let V; := %Q)t be a smooth family of symplectic vector
fields defined near S;. These are Hamiltonian vector fields near S; because V; = 0
on S7 and a small neighbourhood of S; deformation retracts onto S;. Hence &' is
a Hamiltonian symplectomorphism near S; because it is Hamiltonian isotopic to ®°
near S; which is the identity map. Hence ® := ®! has the required properties. 0O

LEMMA 5.12. Let (M,w) be a symplectic manifold and let S be a compact
symplectic submanifold and N, N’ open subsets of M such that the closure of N is
contained in N'. Let Sy,...,Sy be positively intersecting symplectic submanifolds
with N;S; = S and such that they are orthogonal along S, and such that they are
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also orthogonal in N'. Then there exists a C' small perturbation of Si,..., Sy to
S1,..., S, such that Si,...,S; are orthogonal on a small neighbourhood of S, and
Si = Si,...,8;, = Sy outside a small neighbourhood of S and also inside N. We
may also arrange that T'S, = T'S; along S.

Proof of Lemma 5.12. We prove this by induction on the dimension of M. So we
suppose it is true in lower dimensions. Choose a small neighbourhood U.S of S as in
Lemma 5.9 where p: US — S is a symplectic fibration whose fibers are orthogonal
to S.

Consider the positively intersecting submanifolds (S;NSk)i=1,... k1 inside Si. By
our induction hypothesis we can perturb them by a C' small amount to Vi,. .., Vi_1
such that

(1) V; = S; inside N” C Sk and also outside a small neighbourhood M C Sj of
S NS,. Here N” is an open subset whose closure is contained in N’ N S and
such that it contains closure of N N S;.

(2) V; intersect orthogonally along a small neighbourhood of S N Sy.

Let ¢ be a projection from a small neighbourhood of S; to S whose fibers
are orthogonal to Sy. Let W; := ¢ %(V;) for i = 1,...,k — 1. These symplectic
submanifolds are tangent to S; along S and orthogonal on a neighbourhood p~*(.S)
of S. Because the normal bundle to Sy is two dimensional and S;, W; are orthogonal
to Sk in the region (Sp N N”) and of codimension 2, we have that their tangent
spaces coincide in this region. By Lemma 5.11 there is a C! small Hamiltonian
symplectomorphism (defined near S) sending W; to S; for each i in the region
p~L(N") and fixing Si. Choose a neighbourhood of O of S small enough so that
NNO C p~1(SpNN"). This means that W; = S; inside NNO. Hence we can perturb
S;fori=1,...,k—1by a C! small amount to S/ so that it coincides with W; on a
small neighbourhood of S (inside O) and is equal to S; outside O and is unchanged
in N. This means that S} = S; inside N and S/ is orthogonal on a neighbourhood
of S. Also T'S! = T'S; along S. Hence S} has the properties we want. O

LeEmMA 5.13. Let Si,...,S; be positively intersecting symplectic submanifolds
inside some symplectic manifold (M,w) and let I C {1,...,k}. Suppose that
S1, ..., 8 intersect orthogonally on some neighbourhood N of St N (Ug1S;).
Then there is a family of positively intersecting symplectic manifolds S! (t € [0, 1])
with
(1
2) St=05, fori¢ 1.

) SY =5,
)

3) S = S; on some open subset containing St N (U;grS;).
)
)

)

S’il are all orthogonal on an arbitrarily small neighbourhood NSy of St.

5) S! =S, outside an arbitrarily small neighbourhood of the closure of N S;.
6) ﬁie[Sf =Sj.

N

(
(
(
(
(

Proof of Lemma 5.13. By Lemma 5.9, there is a neighbourhood US of S; and a
projection py : US — St such that the fibers of p; are symplectomorphic to B, and
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whose structure group is U(n). There is also a vector field L tangent to the fibers
of py such that e'(¢_;)*w = w+ (€' — 1)p*w|s and such that it is radial in the fibers.
We define S := S7 and wg := w|g.

We prove the lemma now by reducing it to the linear case in Lemma 5.10. For
each i € I, consider the following manifold:

T; := UgesTo(Si Nnp () -

Here Ty(S; Np~1(q)) means the tangent space at 0 of S; Np~1(q) inside the tangent
space of the linear fiber p~!(q) at 0 which is canonically identified with p~!(q)
(because p~!(gq) is an open ball in C"). We have that T} is symplectic near S;. By a
parameterized version of Lemma 5.11 there is a C! small diffeomorphism preserving
the fibers of p; sending T; to S; in the region p~1(N) for all i € I (possibly after
shrinking NNV slightly) and such that it is a symplectomorphism when restricted to
each fiber. We push forward the U(n — |I|) structure group of py : US — S via this
fiberwise diffeomorphism as well so that S; restricted to each fiber p~1(q) is linear
for each ¢ € N.

For each i € I, we can perturb S; by a C'! small amount (without moving Sy) so
that S; = T; on a small neighbourhood P of the zero section and so that the .S; are
all still positively intersecting symplectic submanifolds. We can also assume that
this perturbation only happens outside some neighbourhood of Sy M (U;¢15;).

So from now on (after shrinking US) we can assume that S; N p~!(q) is linear
inside p~!(q) for all ¢ and i € I. This means we have a codimension 0 submanifold
S C S; with boundary disjoint from S; N (Uigl&;) such that (.S;);cr are orthogonal
away from S and on a neighbourhood N of the boundary of S. Let US be equal to
p~1(9).

By Lemma 5.10 (using US) we can find a family of submanifolds S! so that

(1) S! are positively intersecting symplectic manifolds with respect to the sym-

plectic form wyg + Tp*wg for sufficiently large 7' > 0.

(2) NSt is the zero section.

(3) SY =5,

(4) Stnp t(N) = S;np1(N).

(5) S} are all orthogonal along the zero section.

(6) S! = S; outside some small neighbourhood of S.
We define ¢_7(S?) to be equal to ¢_r(S?) inside =7 (US) and S! outside ¢~ 7 (US).
These are also positively intersecting submanifolds with the properties stated above
(because ¢* rwys = wys + (1 — e Dp*w|s).

The problem is we want these symplectic manifolds to be orthogonal on a neigh-
bourhood of Sy. But this can be done by perturbing ¢_7(S?) by a C! small amount
inside US (by Lemma 5.12), hence ¢_7(S?) has all the properties we want. m

In the previous lemma we have that N;c ISf = S7. We also have a smooth family
of diffeomorphisms ¥, from S; to S! which are the identity on S; and outside a small
neighbourhood of S;. Because a neighbourhood of St inside S! deformation retracts
to Sy, we have that any 2-cycle in S! near S; is homologous to a 2-cycle in Sy. This
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means that the integral of w|g, over this 2-cycle C is the same as the integral of w| st
over ¥, (C). Also away from this neighbourhood we have that S! = S; so any 2-cycle
evaluated on w|g, is the same as the one evaluated on U*wg:. All of this implies that
U ([w]|gt) is equal to [w]|s, and by a Moser theorem we can then ensure that this is a
symplecéomorphism if the S; are compact. Hence (by using another Moser theorem)
there is a smooth family of symplectomorphisms P! : Nhd(S;) — Nhd(S}) where Nhd
means ‘a small neighbourhood of’. These symplectomorphisms fix S; and hence by
a similar cohomological argument (as explained earlier), we have that P! is in fact a
Hamiltonian symplectomorphism, so by using a cutoff function we can extend these
symplectomorphisms to Hamiltonian symplectomorphisms: P} : M — M.

Proof of Lemma 5.3. We basically proceed by induction on subsets I where
I c{1,...,k}. In order to do induction, we need a total order on this finite set.
Here is the following total order: We say that I < J when
(1) [I] > |J]; or
(2) |I| =|J| with I # J and the highest number in J \ (J N I) is smaller than the
highest number in I\ (J N I).

Fix some I C {1,...,k}. Suppose by our induction hypothesis, we have deformed
S1,...,Sk through positively intersecting symplectic manifolds so that they are or-
thogonal on a small neighbourhood N of Uj~;S; and consider S;. By Lemma 5.13,
we can deform S; through positively intersecting submanifolds S! such that

(1) S
(2) S S for i¢l.
(3) S; i are all orthogonal on some small neighbourhood of S7.

(4) St S; outside an arbitrarily small neighbourhood of S;.
Because S! = S, outside an arbitrarily small neighbourhood O of S, we can assume
that (O N S ;)\ IV is empty for all j ¢ I. This means that S} are still orthogonal
along N and also on some small neighbourhood of S7.

Hence by induction we have proven that we can deform S; through positively
intersecting symplectic submanifolds so that they are orthogonal on a neighbourhood
of U;S; and hence are orthogonal everywhere.

Let (S!)* be this deformation. The problem is that (S})! is not equal to S, for
all t. The paragraph before this proof tells us that there is a sequence of symplecto-
morphisms P,ﬁ sending Sy, to (S;)! such that P is the identity map. So we can
pull back (S})" via P} for all i and this ensures that we get a family of positively
intersecting submamfolds St such that S are all positively intersecting, SY = S; and
S}; = Sk O

5.2 Making the smooth affine variety nice at infinity.

LEMMA 5.14. Suppose that Si,...,Sy are positively intersecting codimension 2
symplectic submanifolds of (M,w) such that they are also orthogonal. There exist
small neighborhoods U S; of S; and projections m; : US; — S; such that

(1) Forl1<ii<ig<---<i <k,
T O+ Oy & ﬂé-:lUSij - S{i1,-~~7il}

l
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has fibers that are symplectomorphic to Hé-:l]D)6 where D, is the disk of
radius €.

(2) If we look at a fiber Hélee of mj, o---om, then for 1 < m <, m;, maps
this fiber to itself. It is equal to the natural projection

05— De — Iy jznDe

eliminating the m-th disk Dg.

(3) The symplectic structure on U S; induces a natural connection for m;, o---om;,
given by the w orthogonal vector bundles to the fibers. We may require the
associated parallel transport maps to be elements of U(1) x --- x U(1) where
U(1) acts on the disk D, by rotation.

Proof of Lemma 5.14. Suppose we have a bundle p : V — B with a [[\", U(1)
structure where the fiber is D" where Dy is the € ball in C and the m-th copy of
U(1) rotates the m-th D, factor in D!*. Suppose that the base B has a symplectic
structure wp. We can construct a symplectic structure on the total space V as
follows: Let V; C V be the sub-bundle whose fiber is the subset is the i-th copy of
D, in DI*. This has a U(1) structure group. By Lemma 5.9, there is a symplectic
structure wy; on V; such that the fibers of V; have the standard symplectic structure
on D. € C. We can ensure that the parallel transport maps are in U(1) as well as
follows: On V;, there is an S* action A : S' — diffeo(V;) such that it fixes the map
p and rotates the fibers of V; (i.e. it corresponds to the action given by rotating the
fiber D, C C). We define

wy; ;:/ A(t)*wdt.
g1

This is a symplectic form if we shrink ¢ > 0 a bit. Also the new symplectic form
on V; ensures that the parallel transport maps are in U(1). Let P, : V — V; be the
natural projection to V; where (ay,...,ay) in the fiber D" is projected to the i-th
D, factor. We define wy := % o, P*wy,. Any symplectic structure on a bundle
with a [, U(1) structure group as described above is said to be bundle compatible.
The good thing about bundle compatible symplectic structures is that the maps P;
satisfy all the properties as described in the start of this lemma (where 7; is replaced
by P;). Also if we have an open subset U of B and bundle compatible symplectic
structures on p~!(U), then by using similar methods and partitions of unity, we can
ensure that there is a bundle compatible symplectic form on V' which coincides with
the symplectic form on p~!(U) possibly after shrinking p~(U) a tiny bit. We will
call the maps P; the divisor projections.

In order to prove our lemma, we basically proceed by induction on subsets [

where I C {1,...,k}. In order to do induction, we need a total order on this finite
set. Here is the following total order: We say that I < J when
(1) [ > |J]; or

(2) |I| = |J| with I # J and the highest number in J\ (J N I) is smaller than the
highest number in I\ (JN1I).
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Let I, be the L-th subset in this total order. If I C {1,...,k} then we write p; to
mean the map
Ty O+ + O Mgy = ﬂé‘:lUSij - S{il,.-~7il}

where I = {iy,...,4} and 41,...,4 are distinct. Suppose by our induction hy-
pothesis there exists a neighbourhood Ur_1 of U;<r—1S7, such that for each ¢ with
1 < ¢ < k, we have a neighbourhood U;_1 N US; of S; and a projection map
i Up—1 NUS; - S; N Ur_; such that for each I C {1,...,k}, the map p; has
the structure of a J],.; U(1) bundle which is bundle compatible with the symplec-
tic structure. We will also assume that the maps m; are the associated divisor
projections for py locally around Sy inside Up_;. Even though U.S; has not been
constructed yet, we will use the notation Ur_1 NUS; for the part of US; that has
been constructed inside U _1. We write I := I;,. We want to extend Uy_1 to Uy,
containing S; and US;NUr_1 to US;NUy, along with the maps 7; so that they satisfy
the properties as stated above. The normal bundle of S; has a natural [[,.; U(1)
structure group because its tangent bundle is the intersection N;T'S;. Hence by the
previous discussion and using an exponential map, we can extend the maps m; over
a neighbourhood and we can extend the symplectic structure w|y, _, to w’ over some
neighbourhood of Sy so that

(1) =7 has has the structure of a [[,.; U(1) bundle with fiber [[;.; De.
(2) The symplectic structure w’ is bundle compatible.
(3) the maps m; are the associated bundle projections.

The symplectic structure w’ coincides with the symplectic structure wy; on T'S7, and
the symplectic normal bundles are the same although the symplectic form on one
normal bundle is a positive scalar multiple of the other. We can make the symplectic
forms coincide exactly along S; by pushing forward w’ by a diffeomorphism induced
by a vector field which is 0 on S; and which is tangent to the normal bundle so that
it rescales the symplectic form w’ on this normal bundle so it coincides with wyy.
Hence by a Moser theorem we can ensure that w’ coincides with wy; (we have to
deform the maps 7; as well). The problem is that because we have deformed the
maps 7;, the image of m; might not coincide with S; away from U;¢;S; anymore.
But by Lemma 5.11, there is a symplectomorphism which is the identity near U;¢;S;
moving all the m;’s so that their image is in .5;. Hence m; has all the properties we
want and is defined on a neighbourhood Uy, of S;.

Hence by induction we have maps m; defined on some neighbourhood of U;S;
with the properties stated as in the lemma. O

Let S1,...,SL (t € [0,1]) be a smooth family of codimension 2 symplectic sub-
manifolds such that for each fixed t, S%,..., S}, are positively intersecting. We write
St .= UZ‘J‘(S;t N S;)

LEMMA 5.15. There is a smooth family of symplectomorphisms ®; from M \ S°
to M\ S sending SY \ S° to St \ St for each i.

In particular this means that there is a smooth family of symplectomorphisms
induced by ®; from M \ (U;SY) to M \ (U;S?).
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We first need a preliminary lemma:

LEMMA 5.16.  Suppose M is any symplectic manifold (open or closed without
boundary) and let 1, : S < M (t € [0,1]) be any smooth family of proper symplectic
embeddings of the symplectic manifold S (without boundary). Then there is a family
of Hamiltonian symplectomorphisms ¢; : M — M such that ¢q is the identity and
¢¢ sends the image of 1y to the image of 1.

Proof of Lemma 5.16. By a Moser theorem, there is a neighbourhood U of ¢y(5)
(which gets very thin near infinity) and a smooth family of symplectic embeddings
t; + U < M such that j|s = ;. We can also ensure that there is a smooth
submersion 7 : U — S whose fibers are all wjs-orthogonal to S. We will also assume
that U deformation retracts to S.

For each t, there is a symplectic vector field V; on «,(U) defined as & (i}(p)) at
p € ,(U). This vector field has the following property: for any compact subset s
of S, there is an ¢, > 0 such that for all T € [0,1] the flow ¢, (i/x()) of Vi is well
defined and satisfies ¢, (¢ (r)) C t4(k) for all |t — T| < e,. We will say that any
vector field satisfying this property satisfies property Q.

Let 0y, be the wys-dual of V;. This is some closed 1-form. Because U is homotopic
to S, there exists another closed 1-form v on S such that v + (1})*6y, is exact. Let
v = m*v and let X! be a smooth family of vector fields defined only on ¢;(U)
whose wy-dual is 7. We have that X! is tangent to ¢}(S) because the fibers of 7
are symplectically orthogonal to S. Because X! is tangent to ¢;(5), we have that
XL + V; satisfies property Q. Because the wys-dual of this vector field is exact, we
have a smooth family of Hamiltonians H; : «}(U) — R whose associated Hamiltonian
vector field is Xt +V;. By using a cutoff function, we can assume that H; is a smooth
family of Hamiltonians on the whole of M.

The problem with this family of Hamiltonians is that the associated Hamiltonian
vector field may not be integrable. In order to make it integrable (while still ensuring
that it satisfies property Q), we do the following: Let f be some exhausting function
on M. Then f,, s) is also exhausting because v is a proper embedding. We can
perturb f by a C° small amount near ¢; to create a new function f; which is equal to
7 f near 14,(S) C 1;(U) (here by abuse of notation we view 7 as the pushforward of
the map 7 : U — S). We can also assume that f; is a smooth family of exhausting
functions. The Hamiltonian flow of f; preserves i4(S) again because the fibers of 7
are orthogonal to S. Also because f; is a small perturbation of f, we can assume
that it is an exhausting function.

Choose some rapidly increasing positive function g : R — R such that go f; + H,
is exhausting for all ¢ € [0, 1]. Because the Hamiltonian flow of go f; preserves ¢(.5),
we have that the flow of go f; + H; satisfies property Q. Also this Hamiltonian vector
field is integrable for the following reason: Let Ky, t € [0,1] be a smooth family of
exhausting Hamiltonians. We will show that its Hamiltonian flow is integrable. Let
g : R — R be a positive smooth function such that

dK
g(x) > sup th(y) :
te[0,1], ye K, (—o0,x]
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We choose G to be any function with G’ = 1/g. Let p(t) be a path in M satisfying
dp(t)/dt = Xk,. We have

d dK, dK,

2 (Fu(p(0) = = (0(1) + dEy(Xx,) = = (0(1) < 9(Ku(p(1)) -

Hence

(@) < 1.

This implies that the function t — G(K;(p(t))) is less than t + C for some con-
stant C'. This means that if p(0) starts in K '(a) then p(t) must be contained in
K;'(—00,G7(t + C)]. This implies that X, is integrable.

This means that g o f; + H; has an integrable Hamiltonian flow that satisfies
property Q. In particular the Hamiltonian flow sends ¢o(.S) to ¢(.S) at time ¢. 0

Proof of Lemma 5.15.  For induction purposes, we will assume that this lemma is
true in all dimensions less than 2n. For j = 1,...,n, we will write A% as the union
U‘I|:n,j(ﬂieij). This is the union of all dimension 2j strata in U;S;. Suppose for
j' < j, there is a smooth family of symplectomorphisms ®; j» from M \A?, to M \A;,
sending A% |\ AY to A%, |\ A’,. We now wish to show the same thing for j. We have
(by our previous assumption) in particular a smooth family of symplectomorphisms
induced by ®;,;_1 sending the complement of A9—1 to the complement of A;_l
in M. Note that A; \ A;_l is a disjoint union of manifolds inside M \ A;_l. All
these manifolds are compactified by some smooth normal crossing divisor smoothly
depending on t. Because we have assumed that the lemma is true in all dimensions
less than 2n, there is also a smooth family of symplectomorphisms W, from A?\Ag-)fl
to A§ \ A§_1 starting at the identity symplectomorphism. We have a smooth family
of embeddings ¢ := (I){_ll’t oW, of A? \ A9—1 into M \ Ag_l. By Lemma 5.16, there
is a smooth family of Hamiltonian symplectomorphisms Fy : M \ A?—1 — M\ A?_l
where Fp is the identity and F; sends the image of ¢y to the image of ;. Hence
the smooth family of symplectomorphisms ®;_;; o F; sends the image of ¢ inside
M\ AY_| to AL\ A% inside M\ AL .

Hence by induction, we have found a smooth family of symplectomorphisms from
M\ A% | to M\ Al | starting at the identity sending AY \ A% | to Af \ AL .
Because A!,_; = S' and A!\ Al is the disjoint union of S!\ S for all 4, the previous
statement is the statement of the lemma. Hence we have proven the Lemma. O

Let S, ..., Sk be positively intersecting inside M. We can assume that S;\U;; S;
is connected because we can replace a disconnected such manifold with a union of
connected manifolds. Let 6 be a 1-form on the complement M \ (U;S;) such that
df = wyr. Let W be a small symplectic submanifold of M of dimension 2 symplec-
tomorphic to some small disk Ds C C of radius § > 0. Suppose that W is disjoint
from S;, j # ¢ and W intersects S; orthogonally at 0 € D (i.e. it is tangent to the
normal bundle of S;). Let (r,9) be polar coordinates on Ds. Then 6 pulls back to
a 1-form on W\ {0}. We have that df = rdr A d on the punctured disk Ds \ {0}.

Hence 6 is cohomologous to %dﬁ + r;d?d for some constant ;. Suppose that we had
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some other disk W' intersecting S; orthogonally and disjoint from the other S;’s.
Because S; \ U;£;S; is connected, there is a smooth family W; joining W’ and W.
Hence the constant x; associated to W' is the same as the constant ; associated
to W. Hence k; is an invariant of # and S;. We call k; the wrapping of 6 around S;.

LEMMA 5.17. Suppose that Si,..., Sy are orthogonal positively intersecting sub-
manifolds of a compact symplectic manifold (M,wys) and suppose that there is a
1-form 6 such that

(1) df = wyy.

(2) The wrapping of 6 around S; for each i is negative.
Then there exists a function f defined on M \ U;S; such that (M \ U;S;, 0 + df) has
the structure of a finite type convex symplectic manifold.

The form 6 + df restricted to a fiber D, of the maps m; minus the origin as

2
described in Lemma 5.14 is (% + mi)dﬂi where (r;,v;) are polar coordinates for D
and k; < 0 is the wrapping number of 6 around S;.

Proof of Lemma 5.17. We proceed by induction on the ordering < mentioned in
Lemma 5.14. Let nr; : US; — S; be the maps as described in the proof of Lemma
5.14. Suppose inductively we have for all I’ < I we have a function f’ such that
0 + df’ is equal to (Ziel’(g + mi)dﬁi) on the fiber [[,.;,De. We now wish to
modify f on US; away from a very small neighbourhood of Uj¢;S; so that it has
the properties we want.

We do this as follows: If we look near U;¢;S;, 0 + df’ has the form we want
because I U {j} < I and the map 7 inside USjy;y preserves the fibers of 7
and corresponds to the projection

Il De—]]D..
ielU{j} icl
eliminating the D, corresponding to j. Because 6 + df’ restricted to a fiber of 7y is

2
Ti

cohomologous to Zid( 5 + ﬂi)dz%, there is a smooth function f” from US7 to R
such that 6 4 df’ + df” restricted to each fiber is of the form Zie[(% + k;)dY;. Such

a function exists because 0 + df’ — Ziel(g + /@;)dﬁi restricted to each fiber of 7y is
exact, so for each fiber ﬂl_l(q) we have a function f, which is unique up to adding
a constant such that this 1-form is equal to df,. We can assume that f; smoothly
depends on ¢ by adding some function of the form x o7 (this basically follows from
a parameterized version of the Poincaré lemma). Hence we can view f; as a function
f” which has the properties we want.

Near U;j¢7S; we have that 6 + df’ already has the form we want, hence f” must
be of the form 77h in this region. By extending h to the whole of Sy, we can subtract
mih from f” so that f” = 0 near U;¢;S;. This means that 6 +df’ + df" restricted to

2
each fiber of 77 is equal to Eie[(% + Hi)d’l%, and also because f” = 0 near UjerS;,
it also has this form for all other maps 7 where I’ < I. Hence by induction we
2
have shown that there is some function f such that 4-df =, I(% —|—/€¢)d19i inside

the fibers of 7y for all I. This is the second part of the lemma.
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We now wish to show that we have the structure of a finite type convex symplectic
manifold. Let v : (0,¢) — R be a function which is equal to 0 near € and tends to
infinity as we reach 0 and which has non-positive derivative. We assume it has
negative derivative near 0. Then we view v(r;) as a function on the complement
of S; as we can extend it by zero away from US;. We have that ) . v(r;) is an
exhausting function. Let X, ) be the Hamiltonian vector field of v(r;). Because
the w-orthogonal plane bundle to the fibers D, of US; are contained in the level
sets of 7;, we have that X, is tangent to the fibers of m; inside US; and is zero
elsewhere. Also X,(,,) restricted to some fiber D, is equal to Xy (ry)|p, Which is equal
to — ()

- %. Hence X, (,,)(0 +df) < 0 for r small enough because r; is negative. If
Xpyar is the wys-dual of O+df then Xg 4 (d(D-; v(ri))) = —(32; Xuiry)) (0+df) > 0.
This is greater than zero near U;S; because for each point p near U;S;, we have that
V'(r;) > 0 for some i. Hence (M \ U;S;,0 + df) has the structure of a finite type

convex symplectic manifold. This proves the lemma. O

Let P be a smooth projective variety, and D some effective divisor so that

(1) D is a smooth normal crossing divisor. i.e. it is a union of smooth complex
hypersurfaces which are transversally intersecting.
(2) P\ D is isomorphic to A where A is a smooth affine variety.

Let L be a line bundle on P and || -|| a metric on L so that if F' is its curvature form
then —iF restricted to A is a Kéahler form but this may not be true along D. Let
s be a section of L so that s1(0) = D. We will call d°log||s|| a compactification
1-form associated to A. Recall that we have another 1-form on A coming from
an embedding ¢ : A < CV. This is described before Lemma 2.1. This is given

2
by o* Y, %dY; where (r;,6;) are polar coordinates on the ith factor of CV. The
following lemma is almost exactly the same as [Se, Lem. 4].

LEMMA 5.18.  We have that (A, d“log||s||) makes A into a finite type convex
symplectic manifold convex deformation equivalent to (A,04).

Proof of Lemma 5.18.  This lemma will be done in three steps. In Step 1 we
show that (A, d“log||s||) is a finite type convex symplectic manifold. In Step 2 we
will show that if d°log ||s'||" is another compactification 1-form then (A, d¢log||s||)
is convex deformation equivalent to (A, dlog ||s’||"). Finally in Step 3 we will show
that (A, d°log||s||) is convex deformation equivalent to (A,64).

Step 1. Let p € D and choose local holomorphic coordinates z1,...,z, and a
trivialization of L around p so that s = 2" --- 2" (w; > 0). The metric ||.| on L
is equal to e?|.| for some function v with respect to this trivialization where |.| is
the standard metric on C. So

dlog 5] = =y — (3 widlog|zi])

If we take the vector field Y := —210., --- — 2,0.,, then dlog (|z;])(Y) = —1 and
Y.4p tends to zero. Hence dlogl|s|| is non-zero near infinity. If Xgejoq s is the
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dd¢log ||s||-dual of d°log||s| then —dlog (||s]|)(Xae1ogs) = Ildlog]s||[|* > 0 near
infinity. Hence (A, d°log ||s||) is a finite type convex symplectic manifold.

Step 2. Suppose now that P, D', L’ ' || - || are different choices of compactifi-
cation, effective divisor, line bundle, section and metric satisfying similar properties
to P,D,L,s and || -||. Here P\ D’ is isomorphic to A. By applying the Hironaka
resolution of singularities theorem again [H] we have a third compactification P”
and morphisms 7 : P” — P, «’ : P” — P. We pull back L and L’ to P" as well as
the sections s, s’ giving us new line bundles L L and sections s s and §'. By abuse of
notation we write || - || and | - || for the metrics on L and L’ which are the pullbacks
of |||l and ||- || respectively. Again we look at some local coordinate chart zy,..., z,
and vector field Y around some point p € D” where D" = P”\ A. Using the same
arguments as before we have

(tlog 3] + (1 — t) log [|5"[|') (¥) > 0

near infinity for all ¢ € [0,1]. Hence (A,d°log ||s||) and (A,d"log ||s'||") are convex
deformation equivalent.

Step 3. In this step we will need to refer to the proof of Lemma 2.1 so the
reader must be familiar with this lemma first. Let R := Y, r?/4. We have that
04 = —d°R. Basically from the proof of Lemma 2.1 we have a compactification
1-form equal to —d°f(R) where f is a non-decreasing function. We have that
(A, —d°(tR + (1 — t)f(R))) is a convex deformation equivalence from (A,f04) to
(A,—d°f(R)). The reason why this is a convex deformation equivalence is that the
level sets of R and f(R) coincide (up to reparameterization). By Step 2 we have
(A,0) is convex deformation equivalent to (A, —d°f(R)). Hence (A,0) is convex
deformation equivalent to (A,64). O

LEMMA 5.19. Let M be a smooth projective variety and let U;S; be a smooth
normal crossing divisor such that ), a;S; is ample for some ai,...,a; € N\ {0}.
The complement A := M \ U;S; is an affine variety and it has a natural 1-form 6
with df = wys. We have that (A,0) is convex deformation equivalent to A with
the natural 1-form 64 coming from some embedding of A into CV (see section 2.1).
Then S1,..., Sy are positively intersecting and the wrapping number of 6 around S;
is negative.

Proof of Lemma 5.19. The natural 1-form 6 is a compactification 1-form as de-
scribed earlier. We have an ample line bundle L coming from ), a;S;. There is a
metric ||. | on L whose associated curvature form F' has the property that iF' is a
positive (1,1)-form. This is our symplectic form wy; on M. Choose a holomorphic
section s of L whose zero set is exactly >, a;S; (i.e. the zero set has multiplicity a;
at S;). Then our 1-form 6 is d°log||s|| where d® = d o J where J is our complex
structure on M.

First of all, the divisors S; are positively intersecting submanifolds because J
is compatible with the symplectic form wjy; and all the S;’s are holomorphic sub-
manifolds. So the hard part is proving that 6 wraps negatively around S;. Let
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p be a point in S; disjoint from U;.;S; and choose a small holomorphic disk Ds
disjoint from U;;S; and intersecting S; at p only. We can assume that this disk is
intersecting 5; orthogonally because the wjys-orthogonal bundle to \5; is holomorphic.
The line bundle L restricted to this disk Ds C C is equal to a;{0} where {0} means
the divisor at 0 and the section s; has a zero of multiplicity ¢ at 0. This means we
can choose a trivialization of L so that s; is equal to z% where z is the complex
coordinate on Ds.

We have that dd¢log ||z% || = dd®log ||1]| so the wrapping number of § around S;
corresponds to the cohomology class of

d®log ||| — d®log |[1]| = a;d°log |z| + d”log [[1[| — d”log [|1]]
= a;d°log |z| = —a;d? .
Here | .| is the standard euclidean metric on Ds C C and 9 is the angular coordinate
on Ds. This is a negative multiple of diJ; and hence we have that § wraps around S;

negatively. By Lemma 5.18 we get that (A, 604) is convex deformation equivalent to
(A,0). O

Putting all these lemmas together gives us the following theorem:

Theorem 5.20. Let A be a smooth affine variety. Then A is convex deformation
equivalent to a finite type convex symplectic manifold (W, 6y) with the following
properties:

(1) W is symplectomorphic to M \ U;S; where S; are codimension 2 symplectic
submanifolds transversely intersecting.

(2) There are neighborhoods US; of S; and fibrations m; : US; — S; satisfying
the properties stated in Lemma 5.14.

(3) Ow restricted to the fiber D¢ of m; is equal to (7“12 + k;)dv; for some k; < 0.

Proof of Theorem 5.20.  We first compactify A to a smooth projective variety
and then by using [H], we blow up this projective variety so that A = M \ U;S]
for some transversely intersecting complex hypersurfaces S, inside a new smooth
projective variety M. These are positively intersecting symplectic submanifolds of
M and the natural 1-form 6 (df = wys) on A wraps negatively around S; for each i
by Lemma 5.19.

By Lemma 5.3, there is a smooth family of positively intersecting symplectic
submanifolds S! such that SY = S/ and S} are orthogonal. Let S* := U, ;(S! N S]t)
By Lemma 5.15, there is a smooth family of symplectomorphisms ®; from M \ S°
to M\ S starting at the identity and sending S\ S? to St \ S°.

This means that the symplectomorphisms ®; also induce symplectomorphisms
from M \ U;S? to M \ U;St. Also 6; := (®¢|pp\u,50)+0 wraps around S! negatively
because the symplectomorphism @] M\U;S? extends smoothly over S; to ®;. This

means by Lemma 5.17, there is an exact 1-form df such that 6 +df makes M \ U;S}
into a finite type convex symplectic manifold with the property that 61 +df restricted
to each fiber D, of 7r; is equal to (ri2+/~ii)d19i where k; < 0. So if we set W := M \U; S}
and Oy := 61 + df then we have proven the lemma. O
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6 The Growth Rate of Affine Varieties

DEFINITION 6.1.  Let (Mj,01),(Ma,02) be two exact symplectic manifolds. We
say that My, Ms are exact symplectomorphic at infinity if there are open subsets
U; C M; and a symplectomorphism

\I’:Ml\U1—>M2\U2
such that

(1) The closure of U; is compact inside M;.
(2) W sends compact sets in My \ Uy to compact sets in My \ Us.
(3) W is an exact symplectomorphism (i.e. ¥*0y = 61 + df ).

DEFINITION 6.2.  Let (Wi, 0w,), (Wa,0w,) be two convex symplectic manifolds.
We say that they are convex deformation equivalent at infinity if there is a sequence
of convex symplectic manifolds (Q;,0q,) for i =1,---k such that

(1) @1 is convex deformation equivalent to W.

(2) Qp is convex deformation equivalent to Wi.

(3) Q; is convex deformation equivalent to ;41 or they are exact symplectomor-
phic at infinity.

Note that being convexr deformation equivalent at infinity is an equivalence rela-
tion.

Theorem 6.3. Suppose that a finite type convex symplectic manifold B and a
smooth affine variety A are convex deformation equivalent at infinity. Then filtered
directed system (SH;Z7é (B,0p,A)) is isomorphic to a filtered directed system (V)
where the dimension |V,| satisfies |V;| < P(z) for some polynomial P. The degree
of this polynomial is less than or equal to m o4 where m 4 is defined in the introduction.

This has the following direct corollary:
Theorem 6.4. We have I'(B) < m4.

Theorem 1.1 follows directly from Theorem 6.4 where we set B = A. Theorem 1.2
also follows from Theorem 6.4. Here is a statement of this theorem: Suppose that the
boundary of a Liouville domain M is algebraically Stein fillable, then T'(M) < m4.

Proof of Theorem 1.2. The boundary of M is contactomorphic to the boundary
of A. This means that we can deform M through a family of Liouville domains to
a new Liouville domain M’ such that the contact form on OM’ coincides exactly

with the contact form on 9A. This means that the completions M’ and A := A are
exact symplectomorphic at infinity because their cylindrical ends are identical. Also
M’ is convex deformation equivalent to M which means that M and - A are convex
deformation equivalent at infinity. By Theorem 6.4, we have that F(M ) < oo which
proves Theorem 1.2. O
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Before we prove Theorem 6.3, We need some lemmas: The first lemma gives us a
slightly more general definition of growth rate which will be useful for our purposes.
Let (H,J) be a growth rate admissible Hamiltonian on some finite type convex
symplectic manifold (W, fy) and let k > 0 be any constant. Let Ay < Ag. Then

there is a natural morphism from SHLO’K)‘l}(/\lH, J) to SHLO’K)‘Q]()\QH, J) given by
first composing the morphism

SO H, 7)) — sHY™M L1, J)
induced by the continuation map followed by the morphism

SHP"™ M (\H, T) — SHY™ (0 H, J)
given by the natural inclusion map of chain complexes. We could have done this the
other way around by starting with an inclusion of chain complexes:

SO |7, 1) — sHY™ 01, )

and then composing it with a continuation map. But this gives us exactly the same
map. Because we can swap inclusion maps and continuation maps, we have that
these maps satisfy functoriality properties which means we get a filtered directed
system:

(SHP™N(\H, 7)) .

LEMMA 6.5. The filtered directed system described above is isomorphic to
(SHE (W, 0)).

Proof of Lemma 6.5. We have a natural map ¢ from S (AH, J) to SHf()\H, J)
given by inclusion of chain complexes. This commutes with the filtered directed sys-
tem maps so is a morphism of filtered directed systems. There is a constant K > 1
and a 1-form 6 such that § — 0y is exact, kK > 1 and —0(Xy) — H < kK by the

action bound property. We have a map ¢’ from SHf(/\H, J) to SH,[KO’HK/\} (K\H, J)
constructed as follows: First of all we have an isomorphism from SHY (\H, J) to

SHLO’HKA)(/\H ,J) because all the 1-periodic orbits have action less than kKA. We
then compose this isomorphism with the continuation map:

SHON O, 1) = SHON (KAH, ).

Again this commutes with the filtered directed system maps because continuation
maps and action inclusion maps commute.
The map ¢ o ¢’ is the composition:

SH#*(NH,J) — SH™ N (\mH, 7)
— SHON(KAH, J) — SHF(KA\H, J) .

This is the natural continuation map because action inclusion and continuation maps
commute so the above composition is equal to the following composition:

SH#(\H, J) — SH> N (\H, J)
— SH#(\H,J) — SH¥ (K\H, J).
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Also because all the 1-periodic orbits of AH have action less than kKX, we have
that the composition of the first two maps is the identity map. Hence ¢ o ¢ is a
continuation map.

We also have that ¢/ o ¢ is a continuation map because it is equal to the natural
composition:

SH"*N\H, J) — SH¥(\H, J)
— SHYFNH, 7y — SHYEN (kaH, T) .

Because all 1-periodic orbits of AH have action less than kK \ the composition of
the first two maps is identical to the natural inclusion map. Hence ¢’ o ¢ is a directed
system map and so ¢, ¢’ give us our isomorphism of filtered directed systems. O

LEMMA 6.6. Suppose we have a Hamiltonian H : W — R, a function P : R — R
and a small open neighbourhood N of H~1(0) such that

(1) H satisfies the Liouville vector field property.

(2) For every ) outside some discrete subset, there is a C? small perturbation H
of AH such that all the 1-periodic orbits of Hy inside N are non-degenerate
and the number of such orbits is bounded above by P(\).

Then there is a filtered directed system (Vy) isomorphic to (SHZ (W, 8y)) such that
the rank of V) is bounded above by P(\).

Proof of Lemma 6.6. 1f H was growth rate admissible and N = W then this lemma
would be fairly straightforward as the rank of SH, is bounded above by the number
of non-degenerate orbits. The problem is that it may not be growth rate admissible.
Instead we will construct a growth rate admissible Hamiltonian HP such that all the
1-periodic orbits of sufficiently low action are the same as the ones of H and then
invoke Lemma 6.5.
By Lemma 4.2, there is a growth rate admissible pair (H?, JP) such that
(1) H? = H on a small neighbourhood of H~1(0) and (H?)~1(0) = H~*(0).
(2) —0p(Xpgr) — HP > 0 everywhere.
(3) =0 (Xpr) — HP > 0 when HP > 0.
(4) —0p(Xpr) — HP is greater than some constant 0z > 0 outside some compact
set.

Here 0 is the 1-form that makes H satisfy the Liouville vector field property.

Let A be the function —0y(Xg») — HP. The level sets of HP near (H?)~1(0)
are compact because HP satisfies the bounded below property. Let vy > 0 be a
constant so that for all = € (0,vy] we have that (HP)~!(x) is compact and regular
and contained inside NN{H? = H}. Also because A(x) > dp outside some compact
set, A > 0 and A(y) > 0 if and only if HP(y) > 0, there is a constant e4 > 0
with the property that A=1([0,e4]) is contained in the region (H?)~!([0,vy]). For
A > 1, any 1-periodic orbit of AH? of action < Ae4 must be contained in the region
(HP)~71([0,v]). This orbit is also contained inside N and the region where HP is
equal to H.
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Choose a sequence of perturbations K ;\ that C? converge to AH where the number
of 1-periodic orbits of K} contained inside N is bounded above by P()) and so that
all of these orbits are non-degenerate. We make the perturbation small enough so
that orbits of action less than or equal to Aeyq are contained in some fixed open
subset U of {H? = H} NN such that U contains (H?)"1([0,¢]). Let p: W — R
be a bump function which is 0 on a small neighbourhood of the closure of U and 1
in the region where H? # H. Let H} := (1 — p)K} + pAHP. These Hamiltonians
C' converge to AHP. Hence, for large enough i, we have that the action of all the
1-periodic orbits of Hf\ that are not entirely contained in U is greater than Ae4/2.
For large enough ¢ we also have a sequence of constants §; tending to 0 such that
(H{)7'([0, A\e — &;]) contains all the orbits of action < Ae4/2 and so that there are
no orbits on the boundary of U; := (H%) ([0, A4 — &;]). We can also assume that
U, CcU.

By Lemma 2.2, we perturb H;\ again to H;\’ by a C? small amount outside the
closed set U; so that H/AZ = K;\ inside U;, all of its 1-periodic orbits outside U;
are non-degenerate of action greater than Ae4/2 and such that it is equal to H}
near infinity. For large enough i, (Hj\",ﬂ’) is growth rate admissible where H /\i
has only non-degenerate orbits and such that all of its orbits of action less than or
equal to Aeq/2 are in the region where this Hamiltonian is equal to Kﬁ\ Hence the
number of 1-periodic orbits of HI; of action less than or equal to Ae4/2 is bounded
above by P(\). This implies that the rank of V) := SHLO’/\€A/2](H:\i, JP) is bounded
above by P(A). By lemma 6.5, the filtered directed system (V) is isomorphic to
SH (W, 6y). This proves the Lemma. O

Suppose we have a Hamiltonian H and a function P such that there is a small
neighbourhood N of H~'(0) where H, P,N satisfy the properties of the previous
Lemma, then we say that H is P bounded.

LEMMA 6.7. Suppose that (W, 0y,) and (W', 0y) are finite type convex symplectic
manifolds that are convex deformation equivalent at infinity. Suppose also that we
have a Hamiltonian H on W and a function P : R — R such that

(1) H satisfies the Liouville vector field property.
(2) H is P bounded.

Then W' also admits a Hamiltonian H' satisfying the Liouville vector field property
and that is P bounded.

Proof of Lemma 6.7. Let Xp, be the dfy-dual of 0y,. Let fyy be an exhausting
function such that dfw (X, ) > 0 when fyr > Cw for some Cy. By Lemma 8.1,
there is a family of 1-forms 6§;, such that
(1) doyy, is symplectic.
) Ow =09,
) 05, = 0w in the region f~1(—o0, Cy].
) 63 is complete.
5) The db§-dual Xgév of 0}, satisfies Xg;v = nggev for some positive function
gs which smoothly depends on s.

(2
(3
(4
(
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We have a similar family of 1-forms 65},, on W’ and a similar function fy such that
these 1-forms are all equal on fy;(—00, Cy~]. The pairs (W, 605;) (vesp. (W', 05,.))
are all finite type convex symplectic manifolds because their Liouville vector fields
are all of the form g;Xg,, (resp. hsXp,,) for some smooth family of functions gs
(resp. hs) and the same reason ensures that this is a convex deformation. We can
assume that the closure of H~1(0) is contained in f;;'(—o0,Cyy). Hence Oy = 65
on some compact set whose interior contains H~1(0). This implies that H satisfies
the Liouville vector field property and is P bounded on (W,6y;,) for all s and in
particular for (W, 6};,). Let Xgy, be the dO},-dual of 0};,. If @, is the flow of this

vector field then ®;6];, = e'0];, which implies that H; := ®;(H) is still P bounded.
In particular we can ensure that the compact set H, 1(0) is arbitrarily large.
Because (W, 0};,) and (W, 0‘1,[/,) are complete finite type convex symplectic man-
ifolds that are convex deformation equivalent at infinity, we have by Lemma 8.7
that they are exact symplectomorphic at infinity. Let ¢ : W\ Ky — W'\ Ky be
this exact symplectomorphism. By the previous discussion, we can assume that the
interior of H; '(0) contains Ky. We define K’ on W’ by pushing H; forward via
¢ and then defining K’ to be zero inside K. This Hamiltonian still satisfies the
Liouville vector field property and is P bounded on (W', 0i,). Let ®, be the flow
of the vector field Xe‘l/v/. For large enough T', H' := (®/,)* K’ has the property that

(H")71(0) is a subset of fv}l,(—oo,CW/). Because 6, = Oy inside fv}l,(—oo,CW/),
we have that H' is P bounded on (W, 63,,) for all s and in particular on (W', 0y). O

Given some smooth affine variety A, we will construct a Hamiltonian H on A
satisfying the Liouville vector field property. By Theorem 5.20, the smooth affine
variety A is exact symplectomorphic to a finite type convex symplectic manifold
W described as follows: We start with a compact symplectic manifold M and a of
set of transversely intersecting symplectic submanifolds S; (i = 1,...,k). We write
S{iy,...i;y for the intersection M;S;;. There are small neighborhoods US; of S; and
projections 7; : US; — S; and a positive integer ny (the number of such S;’s) such
that

(1) For 1 <ip <io <+ < < nyy,
l
T, OOy ! mj:lUSij - S{h,--.ﬂ'z}

has fibers that are symplectomorphic to Hé-:l]D)6 where D, is the disk of
radius €.

(2) If we look at a fiber l'[é-leD6 of mj, o---om,, then for 1 < m <, m;,, maps
this fiber to itself. It is equal to the natural projection

l l
i De = M5y jopn D

eliminating the m-th disk Dk.

(3) The symplectic structure on U.S; induces a natural connection for m;, o - - - o 7,
given by the w orthogonal vector bundle to the fibers. We require the associ-
ated parallel transport maps to be elements of U(1) x --- x U(1) where U(1)
acts on the disk D, by rotation.
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The finite type convex symplectic manifold W we want is symplectomorphic to
M\ U;S;. Let r; : US; — R be the function such that when we restrict r; to a fiber
D¢ of 7;, we get that r; is the distance from the origin. This uniquely determines r;
because m; has a U(1) structure group.

We will now construct our Hamiltonian on the Liouville manifold W. Let v :

[0,¢) — [0,00) be a smooth function satisfying
2

(1) Near t =€, v(t) = 0 and near 0, v(t) = § — t2.

(2) v <0 when v > 0.

(3) There is one point x where v”(z) = 0 and v(z) > 0 (i.e. the graph of v has
exactly one point of inflection). In particular, v”(x) is negative when v(x) > 0
is small.

(4) If v(x) > 0 is small then we require that x < —k; for each 7 and x < 1.

v(ri)

INUY

I
T
€

7

The function v(r;) : US; — R can be extended smoothly by 0 to the whole of M.
From now on we will write v(r;) as this function from M to R. Let H := >, v(r;).
Theorem 5.20 also says that the Liouville form 0y, on W satisfies 0y restricted to
a fiber D, of 7; is equal to (7"@2 + ki)dvY; where r;,J; are polar coordinates on D, and
ki < 0 is some constant. Because the level sets of v(r;) contain the w4-orthogonal
vector bundle to the fibers of 7;, we have that its Hamiltonian flow is contained in the
fibers and is equal to —%”V/(Ti)aiﬁi. We have that Oy (Xpy) = —T?;fi v'(r;). Hence
if Xy, is the dfy-dual of Oy then dH(Xy, ) = —0w(Xg) > 0 and dH(Xy,,) =
—0w (Xg) > 0 when H > 0. The derivative with respect to r; of Oy (Xp) is

(-3 + Zi%)y’(ri) - %V”(ri) which is negative when v(r;) > 0 is small because
v'(ri) > vV'(r;) and k; is negative. Hence d (dH (Xgy,)) (Xoy,) = Ow (Xoy, (x4)) > 0.
Hence H satisfies the Liouville vector field property. We will call H a Hamiltonian

compatible with a compactification of A.

LEMMA 6.8. The Hamiltonian H is P bounded for some polynomial of degree at
least d where
d =n — min (% dimR{S[ | S] 75 (Z)}) .

Proof of Lemma 6.8. The basic idea here is that the orbits of AH form manifolds
with corners coming from the divisors. The number of such manifolds is bounded
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above by some constant times A% and the number of such manifolds up to diffeomor-
phism is finite. We use a Morse function on each of these manifolds with corners to
perturb them into non-degenerate orbits and this gives us our bound. From now on
we will assume that W is connected.

We write US7 for N;e;US;. The Hamiltonian flow of AH in the region
USr\ UJ%IUSJ fixes the fibers [],.;De and for each i € I it rotates the i-th fiber

in this product by an angle of —)\Q%V’ (r;). Hence the fixed points of the time-\
flow H form manifolds with corners. These are diffeomorphic to N;c;U.S; minus the
union of the interiors of US; for all ¢ ¢ I. There is also one such connected manifold
of codimension 0 which is diffeomorphic to W minus the union of the interiors of
US; for all i. Let 7 be a constant greater than the supremum of —4v/(t)/t. This is
bounded because v/(t) is a multiple of ¢ near 0. There are at most [7A/2m|™("*)
such manifolds of codimension m for 1 < m < d and 0 such manifolds for m > d.
Also there are at most anzo ("nvl") diffeomorphism types of such manifolds.

Let h : M — R be a function such that h restricted to M;S;; is Morse for any
11 < 1y < --- < 4. We also assume it has the following properties:

(1) his a C* small perturbation of H.
(2) On a small neighbourhood of the closure of v(r;) > 0, we have that h =
v(ri(1 —6p)) for some small 6, > 0.

We now perturb AH as follows: Consider a manifold Y of fixed points of the Hamil-
tonian flow of AH in the region where there is an i1 < is < --- < 4; such that
V'(ry) # 0 if and only if k¥ = i, for some j. This manifold is contained in the region
N;US;;. Let Ny be a small neighbourhood of Y such that the only fixed points of
AH inside Ny are ones in Y. The manifold is of codimension [ and is a codimension
0 submanifold with corners inside the closed manifold Y := ﬂé-:l{ﬁ;j = s;} for some
s1,...,5 €R. Infact Y =Y N Nkziviiv(ry) = 0} Let p : Ny — R be a bump
function which is 0 outside some compact set in W and 1 near Y. Let

il = h|s

i10eeriy
We perturb AH to
H := \H + by ph.

For ¢y sufficiently small, there are no fixed points in the region where the derivative
on p is non-zero by a compactness argument. The point is that if there were such
orbits for Jy small, then there would a sequence of dy’s converging to zero with a
fixed point in the region where dp # 0. But this would imply by compactness that
AH would also have such an orbit which is a contradiction. There are no 1-periodic
orbits of H near the boundary of Y for the following reason: We have that Y is a
manifold with corners. Near a codimension k > 1 corner of Y,

H=v(riy) + - v(ry) +v(rg) + - v,
for some ji - - - j not equal to any of 4y, - - - iz. Hence in this region H is equal to
v(ri )+ Fvlry) +vg) +- + ()
+0y (v(riy = 0p) + -+ v(ry, — 6p) +v(rj, (L= 6p)) + -+ v(rj, (1= 04))) .
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Let J :={i1,...,4;,j1,---,Jk}- Near this codimension k corner, the Hamiltonian H
preserves the fibers [, ; De of

ﬂ'jl O'--O7'l‘jk07'l'i1 O--'Oﬂ'il.
These Hamiltonians also split up as a sum:

> v(rs) + Sy (v(ri(1 = 6n)))

jeJ
on this fiber J[;c;De. Near the boundary of the closure of v(r;) > 0,
v(rj) + 6y (v(r;(1 — 6p))) has no 1-periodic orbits for dy, §;, sufficiently small. Hence
H has no 1-periodic orbits near this codimension & corner of Y. This implies that
H has no 1-periodic orbits on a small neighbourhood of 9Y.

Hence all the fixed points of H are contained in the region where v(ry,) = 0 for
all such k satisfying k # 4;Vj. In this region, we have that the Hamiltonians h and
MAH Poisson commute because the Hamiltonian vector field of A is contained in the
horizontal plane distribution of the fibration m;, o --- o m;, which is contained in the
level set of AH. Let p € Y be a fixed point of H. The symplectic tangent bundle
splits into R? @R?"~2, Here R? is the tangent space of the fiber of m;, o -om;; and
R?7~2 is the symplectic complement (this is the Horizontal plane bundle coming
from the natural connection on this fibration). The linearized return map restricted
to R? is the same as the linearized return map of the Hamiltonian 22:1 v(ri;)
restricted one of the fibers of m;, o---om;,. Because this fiber is symplectomorphic
to a product of disks, we get that the flow is equal to the flow of 2321 v(Rj)
on (D.)! where R; is the j-th radial coordinate on D,. Because this Hamiltonian
system splits as a product of autonomous non-degenerate Hamiltonians, we have
that this Linearized return map has an [ dimensional eigenspace with eigenvalue 1.
This eigenspace is spanned by the Hamiltonian vectors X, Ry J=1... ,1 at this

point. The linearized return map of h when restricted to the symplectic complement
R?7=2 is conjugate to the linearized return map of the Hamiltonian Sy hln, Si, inside

N;S;,. Because this is a C? small Morse function (for dy > 0 sufficiently small),
this has no eigenvalue equal to 1. This implies that the linearized return map at p
of the autonomous Hamiltonian H has a 2 dimensional eigenspace with eigenvalue
1 which is spanned by the Hamiltonian vectors X, gy at p. Also the number of
critical points created from the manifold Y of fixed points is at most the number of
critical points of h\mj Si, - If we perturb all such manifolds of fixed points of AH we

get an non-degenerate autonomous Hamiltonian with at most CA? (S1)! families of
fixed points where C' is some constant greater than the sum over all strata N;S;, of
the number of critical points of hln; Si, multiplied by 27.2"W. We will also perturb
the fixed points where AH = 0 so that it becomes non-degenerate in this region. Let
My be the number of such fixed points (such a number can be independent of \).
Finally using work from [CFHW], we perturb each (S')! family of orbits away
from the divisors U;S; into 2! orbits creating a Hamiltonian ¢ : S'xW — R where all
of its orbits are non-degenerate. Really [CFHW] deals with S! families of periodic
orbits and not (S')! families, but because our Hamiltonian H restricted to each
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fiber R? splits up as a sum > v(R;) we can perturb v(R;) first (if we view such a
function as a function on one of the R? factors of R?). Hence the number of orbits
of o is bounded above by 24™=ACN? 4 M. This implies that H is P bounded where
P is the polynomial 2C\?. 0

Proof of Theorem 6.3. From the discussion before Lemma 6.8 we can find a
Hamiltonian H which is compatible with a compactification of A. We can choose
an appropriate compactification M of A so that the constant d in Lemma 6.8 is
equal to m4. Hence by this lemma we have that H satisfies the Liouville vector field
property and is P bounded where P is a polynomial of degree at most m 4.
Because A, B are convex deformation equivalent at infinity, by Lemma 6.7 we
have that B also admits a Hamiltonian H’ that satisfies the Liouville vector field
property and is P bounded. By Lemma 6.6 we then have that (SHY (B,6p)) is
isomorphic to a filtered directed system (V) where |Vy| < P(X). This proves the
theorem. O

7 Finite Covers of Smooth Affine Varieties

In this section we will prove Theorem 1.5. We will prove the following which has
Theorem 1.5 as a direct corollary:

Theorem 7.1. Suppose that a finite type convex symplectic manifold B and a finite
cover A of a smooth affine variety A are convex deformation equivalent at infinity.
Then filtered directed system (SH (B,0p,)\)) is isomorphic to a filtered directed
system (V) where the dimension |V, | satisfies |V,| < Q(x) for some polynomial Q.
The degree of this polynomial is less than or equal to ma where m 4 is defined in
the introduction.

Proof of Theorem 7.1. By looking at the proof of Theorem 6.3 we see that A admits
a Hamiltonian H which satisfies the Liouville vector field property and which is P
bounded for some polynomial P of degree m4.

Let p: A — A be the covering of degree k. We can pull back this Hamiltonian H
to H. This also satisfies the Liouville vector field property and is also kP bounded.
It satisfies the Liouville vector field property because we can lift any Liouville vector
field on A to a Liouville vector field on A. It is kP bounded for the following reason:
If H' is any Hamiltonian and H’ its lift to A then any orbit of H' projects down
to an orbit of H'. This orbit is non-degenerate if and only if the projected orbit is
non-degenerate. There are at most k orbits of H' that project to a given orbit of H.
Hence the number of non-degenerate orbits of H’ is bounded above by k times the
number of non-degenerate orbits of H'. Also the action of this orbit is equal to the
action of the projected orbit.

Hence by Lemma 6.7, B admits a Hamiltonian which is kP bounded. Hence by
Lemma 6.6 we get that (SHZ (B, 63, \)) is isomorphic to (V) where the dimension
|V| satisfies |V;| < kP(x). Hence we have proven this theorem where () = kP. O
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8 Appendix A: Convex Symplectic Manifolds

Recall that a convex symplectic manifold is a manifold M together with a 1-form 6
(1) w:=d# is a symplectic form.
(2) The w-dual Xy of 6 is a vector field satisfying dfys(Xg) > 0 in the region
f]\}l(AM) where Ajp; C R is an unbounded subset and fp; : M — R an
exhausting function.

Exhausting means that fjs is bounded from below and the preimage of every com-
pact set is compact.

We now need to describe various ways of deforming (M,#). The first kind of
deformation is the most restrictive: Two convex symplectic manifolds (M, ), (M’,6)
are strongly deformation equivalent if there is a diffeomorphism ¢ : M — M’, an
exhausting function g : M — R and a smooth family of 1-forms 6; (¢ € [0,1]) on M
such that

(1) wy := db; is symplectic.
(2) If Xy, is the wi-dual of 6; then dg(Xp,) > 0 on g~1(A,) where A, C [0, 00) is
unbounded.
(3) 0p =6 and 6, = ¢*0'.
Two convex symplectic manifolds (M, 0), (M',0") are convex deformation equivalent
if there is a finite sequence (Mji,01), ..., (Mg, 0;) such that

(Mlyel) = (M’ 0)7 (Mkaek) = (M,’el)

and such that for each ¢ < k, (M;,0;) is strongly deformation equivalent to
(Mit1,0i41).

An important class of convex symplectic manifolds are the complete ones. A
complete convexr symplectic manifold is a convex symplectic manifold such that the
associated Liouville vector field V' (the w-dual of ) is integrable for all time. A
(strong) convex deformation (M,60;) is called complete if the associated Liouville
vector fields Xy, are integrable.

LEMMA 8.1. Let (M,0) be a convex symplectic manifold and let K C M be any
compact set. There exists a smooth family of 1-forms 60y,(t € [0,1]) on M such that
(1) 6o =106
(2) wy := db; is a symplectic form.
(3) If Xy, is the wi-dual of 0, then there is a smooth family of functions f; : M —
R such that Xy, = f;Xg, and 0 < f; < 2.
(4) The vector field Xy, is integrable.
(5) Ot = oK.

Proof of Lemma 8.1. Let Xy be the df-dual of 0. Let A C [0, 00) be an unbounded
subset and f an exhausting function such that df(Xy) > 0 on f~!(A). Note that
each a € A is a regular value of f because df(Xy) > 0 on f~!(a) which implies
in particular that df # 0 on f~!(a). Because f is smooth, there exists a sequence
c1 < ¢ < --- tending to infinity such that ¢; is in A and Xy is transverse to
f~(c;) and pointing outwards. We choose ¢; large enough so that f~!(—ooc,¢;)
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contains K. By flowing along Xy there is a neighbourhood of the manifold C; :=
f~(c;) diffeomorphic to [1—¢;, 1+ €] x C; with 6 = r;a; where r; parameterizes the
interval and «; = 6|¢,. Again we make these neighborhoods small enough so that
they are disjoint from K. Let N; be this neighbourhood and let N be the union of
all these neighborhoods. We can make these neighborhoods small enough so that
they are disjoint and also so that ¢; < 1/2.
We will now construct 6;: Let g; : [1 — ¢;,1 4 ¢;] — R be smooth functions such
that

(1) g; > 0.

(2) In the region [1 — €, 1 — 2¢;/3], we have g;(r;) = r;.

(3) In the region [1 —€;/2,1+ ¢€;/2] we have g;/g. < €;.

(4) gi/g; <1 or equivalently log(g;)" > 1.

(5) In the region [1 + 2¢;/3,1 + ¢;] we have g;(r;) = k;r; where k; > 1 is some

large constant.

We define g!(r;) := (1 — t)r; + tgi(r;). We define ¢ := —oco. Let Z; := H;;ll k; for
i >1and Z; := 1. In the region f~1(¢;_1,¢;) \ N, we define 6, := ((1—1t) +1t=;)6. In
the region N; we define 0; as ((1 —t) + tZ;)g!(r;)c;. This definition ensures that 6;
(t € [0,1]) is a smooth family of 1-forms.

Outside N;, we have that 6; is equal to some locally constant function multiplied
by 0, hence df, is still symplectic. In the region N;, we have that df; = ((1 — t) + t=;)
((¢")edr; A o + riday;). This is symplectic because «; is a contact form and gf/ > 0.
Hence df; is symplectic for all ¢. Outside N; we have that the w;-dual Xy, of 0y
is equal to V because rescaling 6 by a locally constant function does not change
the associated dual vector field. Inside N; we have that Xy, = gf/ gf’a%i which is
equal to V = ri(% multiplied by some positive function f;. Because g;/g; < €;
in the region [1 — ¢;/2,1 + ¢;/2], if we flow any point p in the region where r; =
1 — €;/2 along the vector field Xy, for time 1 to a point ¢, then ¢ is still contained
in [1—¢/2,14¢/2] x C;. This ensures that the vector field Xy, is complete and
hence (M, 6;) is complete. We also have that f; < 2 because f; = 1 outside N and

is equal to 9 < 1 < 2 inside N;. Finally we have that 6y = 6 by definition and

/ - PR
g? T 1_67,

Ol = Oo| i because N is disjoint from K. O

We also have a 1-parameter version of this lemma as follows (with almost exactly
the same proof): Suppose (M, 05) (s € [0, 1]) is a smooth family of convex symplectic
manifolds such that we have a function f : M — R and an unbounded A C [0, c0)
with df (X, > 0 on f~1(A) where Xp, is the dfs-dual of 6;. Then there is a two
parameter family of 1-forms 05, (s,t) € [0, 1]? satisfying

(1) O50 =0s.

(2) wsy = dbs; is a symplectic form.

(3) If Xy, is the ws-dual of 05, then there is a smooth family of functions fs ¢
such that Xy, , = fs+Xp,, and 0 < fs¢ < 2.

(4) The vector field Xy, , is integrable for each s € [0, 1].
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COROLLARY 8.2. FEvery convex symplectic manifold is strongly deformation equiv-
alent to a complete convex symplectic manifold.

Proof. Let far, Xg be the associated function and Liouville vector field of M. There
is an unbounded A C [0, 00) such that dfy;(Xg) > 0 in f~1(A). Let (M,6;) be the
family of convex symplectic manifolds described in the Lemma 8.1 above. If X, is
the associated Liouville vector field of (M, 6;) then because Xy, = f; Xy for some
smooth family of functions f; > 0, we have that dfy;(Xp,) > 0 in f~1(A). Hence we
have that (M, 6;) is our strong convex deformation. O

COROLLARY 8.3. Let far, Xg be the associated function and Liouville vector
field of M. Suppose M is of finite type which means that dfy;(Xp) > 0 in the
region f~[C, o), then M is convex deformation equivalent to the completion of the
Liouville domain f~!(—o0,C].

Proof. Let (M,0;) be the family of 1-forms as in Lemma 8.1 and let Xy, = f: Xy
be the associated family of Liouville vector fields. Then dfys(Xp,) > 0 in the region
f]\? [C,00). Let D := f]\}l(—oo, C] and let @ = 01]pp.. By flowing the contact
manifold (0D, «) along Xy, (which is integrable) we obtain a diffeomorphism ¢ from
D x [1,00) to f3;[C,00) such that ¢*0; = ra where r parameterizes [1,c0). Also by
the previous Corollary 8.2 we have that (M, 0) is convex deformation equivalent to
(M, 6,). Hence (M, 6;) is convex deformation equivalent to the completion (D, 6;). 0

Suppose we have a convex deformation equivalence (M, 6;). We say that this is
a complete convexr deformation equivalence if the df;-dual Xy, of 6; is an integrable
vector field for each ¢ € [0, 1].

LEMMA 8.4. Let (M,0),(M’,0") be complete convex symplectic manifolds that

are convex deformation equivalent. Then there is a complete convex deformation
equivalence between (M, 0) and (M',0’).

We need a preliminary lemma first.

LEMMA 8.5. Suppose (M, 0),(M’,0") are compete convex symplectic manifolds that
are strongly deformation equivalent. Then there is a complete strong deformation
equivalence between them.

Proof of Lemma 8.5.  Let (M,6s) be the strong deformation equivalence. Let
Xy, be the associated Liouville vector fields and let f : M — R and A C [0, 00)
(unbounded) be such that df(Xp,) > 0 on f~(A). By Lemma 8.1 there is a two
parameter family of 1-forms 0 ,((s,t) € [0,1]?) such that

(1) O50 =0s.

(2) wsy = dbs; is a symplectic form.

(3) If Xy, , is the ws-dual of Oy, then there is a smooth family of functions fi

such that Xy, , = fs+Xp,, and 0 < fs¢ < 2.
(4) The vector field Xy, , is integrable for each s € [0, 1].
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Let p: [0,1] — [0,1]? be a smooth path starting at (0,0) and ending at (1,0) whose
image is equal to {0} x [0, 1]U[0, 1] x {1}U{1} x [0, 1]. Then (M, 6,,;) is our complete
strong convex deformation. This is because Xp, , (vesp. X, ;) is integrable because
it is equal to fs0Xg,, (resp. fs1Xq,,) with 0 < f; < 2 for all s,¢. This is also
because f1; is integrable for all ¢. This completes the lemma. O

Proof of Lemma 8.4. Let (M,6;) be the convex deformation between (M, 6) and
(M',0"). This means that we break up (M, 6s) into a finite number of strong defor-
mations (M,01),...,(M,0%). Let V} be the associated Liouville vector fields. For
a given strong deformation (M, #°) there is an unbounded set A; C [0,00) and a
function g; : M — R such that g;(V}) > 0 in g; 1(A). By the parameterized version
of Lemma 8.1 we can replace 0 with ngt such that

(1) 92,0 = ‘92-

(2) wl,:=db., is a symplectic form.
(3) If VS’;t is the wi’t—dual of 9@7,5, then there is a smooth family of functions fg’t

such that V;t = ;tsto and 0 < fi, <2.

(4) The vector field V| is integrable for each s € [0, 1].

We now replace the deformation (M, 01) by the concatenation (M, #'}) of the homo-
topies: (M, «9&775) and (M, 0751’1). This is still a strong deformation because g1 (V) > 0
in the region g;'(A;). For 1 < i < k we replace (M,#%) with the concatena-
tion (M, 6") of: (M,617L,), (M, 0,) and (M,6;,). This again is a strong defor-
mation using the function g; and unbounded set A; C [0,00). The reason why
gi(VfEit) > 0 in g; '(4;) is because Vf:it is flz_ll_tVtZ where ff_ll_t > 0. Finally
we replace the deformation (M,6%) with the concatenation (M, 6'%) of (M, 9’&;),
(M, 9375), (M, 921) and (M, Glf’l_t). Hence we have a new convex deformation equiv-
alence (M, 0’%), ooy (M, H’f) with the property that 9”',0”1 is complete for all 7.
By Lemma 8.5, we can replace this with a new convex deformation equivalence:
(M, 0"}), ..., (M, 0”?) with the property that 6”! is complete for all 1 < i < k,
t €10,1]. This is a complete convex deformation equivalence. o

COROLLARY 8.6.  Suppose that (M,0),(M,0") are complete convex symplectic
manifolds that are convex deformation equivalent. Then they are exact symplecto-
morphic to each other.

Proof of 8.6. By Lemma 8.4 there is a complete convex deformation equivalence
between (M, 0) and (M,6"). Hence by [CE, Prop.12.2] we get that they are exact
symplectomorphic. O

We also need another lemma similar to Corollary 8.6 except that we will be
dealing with convex deformation equivalence at infinity as in Definition 6.2.

LEMMA 8.7.  Suppose that (W,0w), (W' 0y) are complete finite type convex
symplectic manifolds that are convex deformation equivalent at infinity. Then they
are exact symplectomorphic at infinity.
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Proof of Lemma 8.7. By the definition of convex deformation equivalent at infinity,
we have a sequence of convex symplectic manifolds: (Q;,0q,) for i = 1,...,k such
that

(1) @1 is convex deformation equivalent to Wj.

(2) Qy is convex deformation equivalent to W.

(3) Q; is convex deformation equivalent to Q;+1 or they are exact symplectomor-

phic at infinity.

First of all (by using the fact that the identity map is an exact symplectomorphism
and also a convex deformation equivalence), we can assume that k is even and
that for odd i, that Q;, Q;41 are convex deformation equivalent and for even ¢ that
Qi, Q41 are exact symplectomorphic at infinity.

Suppose we have two convex symplectic manifolds (A, 64), (B, 0p) that are exact
symplectomorphic at infinity. We wish to find two complete convex symplectic
manifolds A and B that are exact symplectomorphic at infinity and such that A is
convex deformation equivalent to A and B is convex deformation equivalent to B.
Let ¢ : A\ K4 — B\ Kp be the exact symplectomorphism at infinity where K4, Kp
are relatively compact sets. By possibly enlarging K4 a little bit, we can ensure
that there is a function f : A — R such that ¢*0g = 04 + df. Let N be a small
neighbourhood of the closure of K4. By Lemma 8.1, there is a family of 1-forms 6%
such that

(1) d? is symplectic.

(2) 64 +df =069.

(3) 6%x = 0%

(4) 01 is complete.

(5) The df%-dual Xps, of 07 satisfies Xpgs = gX(,% for some positive function g.

We can also define 0% to be equal to 0 near Kp and equal to ¢.(6%) outside Kp.

These are all convex symplectic manifolds because their Liouville vector fields are
all of the form gsXg, 14 (resp. gsXp,) for some family of functions g5 and the same
reason ensures that this is a convex deformation. Also by [Mc, Lem. 8.3], we have
that (A, 64) is convex deformation equivalent to (A, 8 4+df). This means that (A, 604)
(resp. (B,0p)) is convex deformation equivalent to the complete convex symplectic
manifold A := (A4,60Y) (resp. B := (B,0})). Also A,B are exact symplectomorphic
at infinity.

The previous discussion ensures (by changing the convex deformation equiva-
lences from @; to Q;11) that we can assume that the convex symplectic manifolds
Q; are all complete convex symplectic manifolds. Note we can also assume that Q)1
and @), are complete because W and W' are complete. By Corollary 8.6 this implies
that for all odd ¢, @; is exact symplectomorphic to ();+1 and hence in particular
they are exact symplectomorphic at infinity. Because the property of being exact
symplectomorphic at infinity is transitive, we have that W, W’ are exact symplecto-
morphic at infinity. This proves the lemma. O
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9 Appendix B: A Maximum Principle

Let N be a manifold and 6 a 1-form on N so that

(1) w:=d# is a symplectic form.

(2) The w-dual Xy of 0 is transverse to the boundary of N and pointing inwards.
Let S be a compact Riemann surface with boundary and complex structure j and
a l-form on S. Let H : S x N — R be a family of Hamiltonians parameterized by S.
We sometimes write this as a family of functions H, : N — R parameterized by
o € S. Let J, be a family w compatible almost complex structures parameterized
by o € S. A small neighbourhood of N is diffeomorphic to ON x [1,1+ ex) where
0 = ra. Here r parameterizes the interval [1,1 + ey) and a = 0|sny. We require
that 6 o J, = dr and that H, = f(r) for some function f with f(1) = 1 and
/(1) = 1 near ON. The differential dH uniquely splits up as dgH + dyH where
vectors tangent to N are contained in the kernel of dgH and vectors tangent to S are
in the kernel of dy H. We can view dgH as a family of 1-forms on S parameterized
by N, so for each p € N we define dsH. ) to be dsH restricted to S x {p}. We
require that dsH .,y Ay + H(-,p)d(vy) > 0 for each p € N.

Let u : S — N satisfy (du— Xp, ®7)3;1 = 0 at each point o € S. In other words,

du— Xpg, @y + Jy0(du—Xg, @7)oj=0. (3)
The aim of this section is to prove

LEMMA 9.1. Ifu(0S) C ON then u(S) C ON.

This lemma is similar to [AbS, Lem. 7.2]. Before we prove Lemma 9.1 we need
to define the geometric energy and topological energy of u. The geometric energy is
defined as

fpgeom . /S Hdu — XHU ®7‘|L270

where || - ||z, is the norm coming from the metric w( -, J,(-)) and some compatible
metric on (S, 7). The topological energy is defined as

E®oP .— / w'w+d(u"Hyv) .
S

Here u*H, is the function sending o € S to H(o,u(0)). We define u*dyH to be
the 1-form on S such that for each vector V on S, (v*dnH)(V) = dyH(V, us(V)).
Similarly we define (u*dsH)(V') to be (dsH)(V,u.(V)).
Let o be a point on S and s+ it a local holomorphic chart around o where 0y, 0,
have magnitude 1 at (s,t) = (0,0) and where o is the point (0,0). We have
ldu = Xu, @ 4|17, = w(@su — Xu,7(9s), 0w — Xu,7(5))
= u*w(0s, 0) — v(0s)dNH (Opu) + v(0¢)dn H(Osu)
= u*w(0s,0) + (u*(dnH) A ~)(0s, ) .
Also dyH (0u) means that we consider d,u as a vector inside {o} x N and then
contract it with dH. The expression dyH (Jsu) has a similar meaning. Hence
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B8 (u) = fS urw + fs w*dyH A ~y. We have that
du*Hyy) =u*dyH ANy +u*dsH Ny +u*Hydy .

Hence we have
Egeom(u) — EtOP(u) — / (u*dsH Ny + U*Hcrde)
S

which implies that E&°™ (u) < EYP(u).

Proof of Lemma 9.1.  'We suppose that u(9S) C ON. We just need to show that
E8°°™ (1) = 0 as this will force our surface S to map to a Reeb orbit of 9N. We have
that E'P(u) > E&°™M(y), so we now need to show that E'*P(u) = 0. By Stokes’
theorem we have

Emp(u):/ w0+ u Hyy.
as

Because H, = f(r) with f/(1) = 1, we have that —Xp, is equal to the Reeb vector
field on ON. Hence 0(Xp,) = —1 = —H,, along ON as f(1) =1. So

E*P(u)= [ fo(du— Xy, ®7)
oS

:/ engouu—XHa@w)o(—j):/ dr o (du— Xr, ®7) o (—j).
0S oS

Because dr(Xp, ) = 0 our integral becomes

E'P(y) = —/ droduoy.
oS

If a vector V is tangent to S and pointing in the direction in which 95 is oriented
then j(V') points inwards. This implies that dr o du o j(V)) > 0 because r increases
as we move towards the interior of N. Hence

E*P(y) <0.
Hence E%°°™(u) vanishes which gives us our result. O

Here are two applications of this lemma: Let M be a Liouville domain with 1-
form 0);. Then its completion M has a cylindrical end M X [1,00) with cyhndrlcal
coordinate rp;. We define K : M — R to be an autonomous Hamiltonian on M
which equals k(rps) near OM where k' > 0. Let H,; be a family of Hamiltonians
parameterized by (s,t) € R x S! so that H,; = K + as near M where a, is a
smooth family of constants. We require that 0H /0s > Oas/0s. We define J,; to be
a smooth family of almost complex structures which are cylindrical near OM.

COROLLARY 9.2. Suppose that uj : R x St — M satisfies the perturbed Cauchy—

Riemann equations
Osu1 + Js,tatul = Js,tXHs,t

and that uy(s,t) € M for |s| > 1. Then uyi(s,t) € M for all (s,t) € R x S*.

Proof of Corollary 9.2. Let S be equal to u;'(OM x [1,00)). We perturb
OM slightly so that S is a codimension 0 submanifold with boundary. We define
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H, = % +1. We let v = k'(1)dt and so (dsH1)(. py Ay + (H1)(. pydy > 0.
We have that u; satisfies the perturbed Cauchy Riemann equations with respect to
Hy and J,;. We also have that H; is equal to h(ry) = % + 1 near OM
and so h(1) = /(1) = 1. By using Lemma 9.1 with N = OM x [1,00) we have that

u1(S) must be contained inside M. Hence the image of u; is contained in M. O

COROLLARY 9.3. Let g : R — R be a function satisfying ¢'(s) > 0. Suppose
in addition that H > k(1) — k(1) + as inside OM X [1,00), then any solution:
ug i R x ST — M of

Osug + Js1Opug = Js 1 X g6y, ,

with ua(s,t) € M for |s| > 1 has image contained in M.

Proof of 9.3.  Again we define Hy := Hokl—as 9 We let v = K'(1)g(s)dt.

k' (1
Because Hy,0H1/0s > 0, we have (dsH1)(. ) /(\%/+ (H1)(. pydy > 0. We then apply
Lemma 9.1 to give us our result. O
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