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Abstract. We study the limiting behavior of the Kähler–Ricci flow on
P(OPn ⊕OPn(−1)⊕(m+1)) for m, n ≥ 1, assuming the initial metric satisfies the Cal-
abi symmetry. We show that the flow either shrinks to a point, collapses to Pn or
contracts a subvariety of codimension m + 1 in the Gromov–Hausdorff sense. We
also show that the Kähler–Ricci flow resolves a certain type of cone singularities in
the Gromov–Hausdorff sense.

1 Introduction

The formation of singularities of the Kähler–Ricci flow on a compact Kähler manifold
M reveals the analytic and algebraic structures of M . It is well known that the
Kähler–Ricci flow converges to a Kähler–Einstein metric if M admits negative or
vanishing first Chern class for any initial Kähler metric [Y1], [Ca1], [Ts].

When the canonical bundle KM is not nef, the Kähler–Ricci flow will develop a
finite time singularity and one expects the Ricci flow to carry out surgeries through
the singularities in some natural and unique way. The flow (M, g(t)) should converge
in some suitable sense to a ‘limit manifold’ (M, gT ) as t tends to the singular time
T and continue on the new manifold starting at gT . This is referred to as canonical
surgery by the Ricci flow. If the Kähler manifold M is projective, then one hopes that
the canonical surgeries correspond to algebraic transformations such as divisorial
contractions or flips.

An analytic analogue of Mori’s minimal model program is laid out in [SoT3] for
how the Kähler–Ricci flow will behave on a general projective variety. More precisely,
it is conjectured that the Kähler–Ricci flow will either deform a projective variety
M to its minimal model after finitely many divisorial contractions and flips in the
Gromov–Hausdorff sense, or collapse in finite time. The existence and uniqueness
is proved in [SoT3] for the weak solution of the Kähler–Ricci flow through divisorial
contractions and flips. However, the Gromov–Hausdorff convergence at the singular
time is largely open. The program is established for Kähler surfaces in [SoW2,3].
More precisely, for the Kähler–Ricci flow on a Kähler surface M with an initial
Kähler metric g0, either the flow deforms M to a minimal surface or the volume
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tends to 0 in finite time, after finitely many contractions of (−1)-curves in the
Gromov–Hausdorff sense. In the work of [LT] the conjectural behavior of the flow
through a flip is discussed in relation to their V-soliton equation.

The goal of the current paper is to construct examples of small contractions and
resolution of singularities by the Kähler–Ricci flow. Let (X, g0) be a compact Kähler
manifold of complex dimension n ≥ 2. We write ω0 =

√−1
2π (g0)ijdzi ∧ dzj for the

Kähler form associated to g0. We consider the following Kähler–Ricci flow ω = ω(t)
given by

∂

∂t
ω = −Ric(ω) , ω|t=0 = ω0 , (1.1)

for Ric(ω) = −
√−1
2π ∂∂ log ωn, and g = g(t) is the metric associated to ω. The flow

admits a smooth solution on [0, t + ε) for some ε > 0, if and only if the cohomology
class of ω(t) given by [ω(t)] = [ω0] + t[KX ] is Kähler. The first singular time T is
characterized by

T = sup
{
t ∈ R | [ω0] + t[KX ] > 0

}
. (1.2)

Clearly T depends only on X and the Kähler class [ω0], and satisfies 0 < T ≤ ∞.
The manifold

Xm,n = P
(OPn ⊕OPn(−1)⊕(m+1))

is a projective toric manifold for m ≥ 0 and n ≥ 1. X0,n is exactly Pn+1 blown up at
one point. Xm,n does not admit a definite or vanishing first Chern class when n ≤ m
and Xm,n is Fano if and only if n > m. Xm,n has a special subvariety P0 of codimen-
sion m+1, defined as the zero section of projection P(OPn⊕OPn(−1)⊕(m+1)) → Pn.
There exists a morphism

Φm,n : Xm,n → P(m+1)(n+1) (1.3)

which is an immersion on Xm,n \ P0 and contracts P0 to a point. Ym,n, the image
of Xm,n via Φm,n is smooth if and only if m = 0 and then Y0,n is simply Pn+1.
When m ≥ 1, Ym,n has a cone singularity where P0 is contracted. In particular,
Ym,n = Yn,m is the projective cone in P(m+1)(n+1) over Pm × Pn via the Segre map
for m ≥ 1. It is also well known that Xm,n and Xn,m are birationally equivalent for
m ≥ 1, and differ by a flip for m 	= n.

In this paper, we always consider the Kähler metrics on Xm,n satisfying the Cal-
abi symmetric condition defined in [C1]. The precise definition is given in section 2.2.

Our first main result characterizes the limiting behavior of the Kähler–Ricci flow
(1.1) on Xm,n as t → T .

Theorem 1.1. Let g(t) be the solution of the Kähler–Ricci flow (1.1) on Xm,n

with the initial Kähler metric ω0 ∈ a0[DH ]+b0[D∞] satisfying the Calabi symmetry.
Let T > 0 be the first singular time of the flow.

(1) If m < n and b0/(m + 2) > a0/(n − m), then T = a0/(n − m) and on
Xm,n\P0, g(t) converges smoothly to a Kähler metric gT . Let (XT , dT ) be the
metric completion of (Xm,n \ P0, gT ). Then (XT , dT ) has finite diameter and
is homeomorphic to Ym,n as the projective cone in P(m+1)(n+1) over Pm × Pn
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via the Segre map. Furthermore, (Xm,n, g(t)) converges to (XT , dT ) in the
Gromov–Hausdorff sense as t → T .

(2) If m < n and b0/(m+2) = a0/(n−m), then T = a0/(n−m) and (Xm,n, g(t))
converges to a point in the Gromov–Hausdorff sense as t → T .

(3) If m < n and b0/(m+2) < a0/(n−m), then T = b0/(m+2) and (Xm,n, g(t))
converges to

(
Pn,

(
a0− n−m

m+2 b0
)
ωFS

)
in the Gromov–Hausdorff sense as t → T ,

where ωFS is the Fubini–Study metric on Pn.
(4) If m≥n, then T=b0/(m + 2) and (Xm,n, g(t)) converges to

(
Pn,

(
a0−n−m

m+2 b0

)
ωFS

)
in the Gromov–Hausdorff sense as t → T .

In the cases (3) and (4), the Kähler–Ricci flow can be continued on Pn starting
with

(
Pn,

(
a0 − n−m

m+2 b0
)
ωFS

)
and the flow will eventually become extinct in finite

time. The case (2) is related to the result in [So] that the Kähler–Ricci flow shrinks
to a point if and only if X is Fano, and the initial Kähler class is proportional to
c1(X), establishing the smooth case of a conjecture in [T2]. If this occurs, it is
natural to renormalize the flow so that the volume is constant. The problem of how
this normalized flow behaves is related to various notions of stability [Y2], [T2], [Do],
and is still open in general. Assuming the existence of a Kähler–Einstein metric [P2],
[TZh] or soliton [TZh], the flow is shown to converge to a Kähler–Einstein metric or
soliton respectively (see also [ST], [Zh]). The connection between stability conditions
and the behavior of the Kähler–Ricci flow has been studied in [PhS], [PhSSW1,2],
[R], [Sz], [To], [MuS], [ChW] for example.

Theorem 1.1 can also be viewed as an analogue of Theorem 1.1 in [SoW1]. We
apply ideas and techniques from [SoW1] to obtain many estimates in the proof of
Theorem 1.1. In fact, Theorem 1.1 can be generalized to

Xm,n,k = P
(OPn ⊕OPn(−k)⊕(m+1)) , k = 1, 2, . . .

In particular, Xm,n,1 = Xm,n and X0,1,k are exactly the rational ruled surfaces
considered in [SoW1].

We would also like to mention some known results about Kähler–Ricci solitons on
these manifolds. Xn,0 admits a Kähler–Ricci soliton [Ko], [Ca2]. Complete Kähler–
Ricci solitons are also constructed on vector bundles OPn(−1)⊕(m+1) by [FIK] when
m = 0 and by [Li] when m ≥ 1.

The general conjecture in [SoT3] predicts that the flow can also be continued in
the first case in Theorem 1.1 and the contracted variety should jump to its minimal
resolution by the flip. Our next result shows how the Kähler–Ricci flow can resolve
a certain type of projective cone singularities and confirms the weaker statement of
the general conjecture.

Theorem 1.2. Let Ym,n = Yn,m be a projective cone in P(m+1)(n+1) over Pm × Pn

via the Segre map and let g0 ∈ [O
P(m+1)(n+1)(1)] be the restriction of the Fubini–

Study metric of P(m+1)(n+1) on Ym,n.

(1) If m>n≥1, there exists a smooth solution g(t)∈Φ∗
m,n[O

P(m+1)(n+1)(1)]+t[KXm,n ]
of the Kähler–Ricci flow on (0, T = 1/(m+2))×Xm,n such that on Xm,n\P0 

Ym,n\{O}, g(t) converges smoothly to g0 as t → 0, and (Xm,n, g(t)) converges
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to (Ym,n, g0) in the Gromov–Hausdorff sense as t → 0. Furthermore, g(t) has
uniformly bounded local potential in L∞ for t ∈ [0, T ). If there exists another
solution ĝ(t) satisfying the above conditions, then g(t) = ĝ(t).

(2) If m = n ≥ 1, there exists a smooth solution g(t) ∈ (1 − (m + 2)t)[g0] of the
Kähler–Ricci flow on Yn,n \ {O} for t ∈ (0, T = 1/(m + 2)) such that

• (Yt, dt), the metric completion of (Yn,n \ {O}, g(t)) is homeomorphic to
(Yn,n, g0).

• g(t) converges to g0 smoothly on Yn,n \ {O} as t → 0, and g(t) has
uniformly bounded local potential in L∞ for t ∈ [0, T ).

• (Yn,n, dt) converges to (Yn,n, g0) in the Gromov–Hausdorff sense as t → 0
and converges to a point in the Gromov–Hausdorff sense as t → T .

If there exists another solution ĝ(t) satisfying the above conditions, then
g(t) = ĝ(t).

The above theorem shows that the Kähler–Ricci flow resolves the cone singularity
of Ym,n for m > n ≥ 1 in the Gromov–Hausdorff sense. It suggests that the Kähler–
Ricci flow smooths out not only the initial singular metric, but also the initial
underlying variety. Combining (1) in Theorem 1.1 and (1) in Theorem 1.2, the
Kähler–Ricci flow replaces Xm,n by Xn,m as an analytic flip in the Gromov–Hausdorff
sense, if we are allowed to continue the Kähler–Ricci flow at t = T with the Fubini–
Study metric restricted on Ym,n. We believe that the Kähler–Ricci flow should
perform the flip for Xm,n without replacing the singular metric gT by the Fubini–
Study metric as the initial metric at the singular time.

On the other hand, the Kähler–Ricci flow does not change the underlying man-
ifold Yn,n for n ≥ 1 even though KYn,n is not a Cartier divisor. This is because
Xn,n is the resolution of Yn,n and the canonical divisor KXn,n vanishes along the
exceptional locus over the singularity O.

The organization of the paper is as follows. In section 2, we describe flips, the
Calabi ansatz and the Kähler–Ricci flow on P(OPn ⊕OPn(−1)⊕(m+1)). In section 3,
we prove the small contraction by the Kähler–Ricci flow if the volume does not tend
to zero when approaching the singular time. In section 4, we show that the Kähler–
Ricci flow collapses if the volume tends to zero when approaching the singular time.
In section 5, we describe how the Kähler–Ricci flow resolves singularities of Ym,n.

2 Background

2.1 An example of flips. We will describe a family of projective bundles over
Pn so that one can construct a flip. The detailed algebraic construction can be found
in section 1.9 of [D].

Let E be the vector bundle over a projective space Pn defined by
OPn ⊕OPn(−1)⊕(m+1). We let

Xm,n = P
(OPn ⊕OPn(−1)⊕(m+1))

be the projectivization of E and it is a Pm+1 bundle over Pn. In particular,
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X0,n is Pn+1 blown up at one point. Let D∞ be the divisor in Xm,n given by
P(OPn(−1)⊕(m+1)), the quotient of OPn(−1)⊕(m+1). We also let D0 be the divisor
in Xm,n given by P(OPn ⊕OPn(−1)⊕m), the quotient of OPn ⊕OPn(−1)⊕m. In fact,
N1(Xm,n) is spanned by [D0] and [D∞]. We also define the divisor DH on Xm,n by
the pullback of the divisor on Pn associated to OPn(1). Then

[D∞] = [D0] + [DH ]

and

[KXm,n ] = −(m + 2)[D∞]− (n−m)[DH ] = −(n + 2)[D∞] + (n−m)[D0] . (2.1)

The above formulas can be easily obtained by induction on m and the adjunc-
tion formula. In particular, D∞ is a big and semi-ample divisor and any divisor
a[DH ] + b[D∞] is ample if and only if a > 0 and b > 0. Hence Xm,n is Fano if and
only if n > m.

Let P0 be the zero section of πm,n : Xm,n → Pn, which is the intersection of the
m + 1 effective divisors as the quotient of OPn ⊕ OPn(−1)⊕m. In fact, the linear
system |[D∞]| is base-point-free and it induces a morphism

Φm,n : Xm,n → P(m+1)(n+1). (2.2)

Φm,n is an immersion on Xm,n \ P0 and it contracts P0 to a point. Ym,n, the image
of Φm,n in P(m+1)(n+1), is a projective cone over Pm×Pn in P(m+1)(n+1) by the Segre
embedding

[Z0, . . . , Zm]× [W0, . . . , Wn] → [Z0W0, . . . , ZiWj , . . . , ZmWn] ∈ P(m+1)(n+1)−1.

Note that Ym,n = Yn,m.
The following diagram gives a flip from Xm,n to Xn,m for 0 < m < n:

Xm,n Xn,m

Ym,n

�
�
��Φm,n

� � � � � � � � � � � � � � ��Φ̃

�
�
�� Φn,m

(2.3)

Furthermore, Xm,n and Xn,m are birational to each other.

2.2 Calabi ansatz. In this section, we will define the Calabi ansatz constructed
by Calabi [C1] (also see [Li]). To apply the Calabi symmetry, we instead consider
the vector bundle

E = OPn(−1)⊕(m+1).

Let ωFS be the Fubini–Study metric on Pn. Let h be the hermitian metric on
OPn(−1) such that Ric(h) = −ωFS . The induced hermitian metric hE on E is given
by hE = h⊕(m+1). Under local trivialization of E, we write

eρ = hξ(z)|ξ|2, ξ = (ξ1, ξ2, . . . , ξm+1) ,

where hξ(z) is a local representation for h (note that hE has the same eigen-
values as h(z) does). In particular, if we choose the inhomogeneous coordinates
z = (z1, z2, . . . , zn) on Pn, we have

hξ(z) =
(
1 + |z|2) .
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Therefore,
ρ = log

(
(1 + |z|2)|ξ|2) . (2.4)

In the future calculations, we will always compute in terms of ρ.
We would like to find appropriate conditions for a ∈ R and a smooth real valued

function u = u(ρ) such that

ω = aωFS +
√−1
2π

∂∂u(ρ) (2.5)

defines a Kähler metric on Xm,n. In fact,

ω =
(
a + u′(ρ)

)
ωFS +

√−1
2π

hξe
−ρ

(
u′δαβ + hξe

−ρ(u′′ − u′)ξᾱξβ
)∇ξα ∧∇ξβ. (2.6)

Here,
∇ξα = dξα + h−1

ξ ∂hξξ
α

and {dzi,∇ξα} is dual to the basis

∇zi =
∂

∂zi
− h−1

ξ

∂hξ

∂zi

∑
α

ξα ∂

∂ξα
,

∂

∂ξα
.

The following criterion is due to Calabi [C1].

Proposition 2.1. ω as defined above is a Kähler metric if and only if

(1) a > 0.
(2) u′ > 0 and u′′ > 0 for ρ ∈ (−∞,∞).
(3) U0(eρ) = u(ρ) is smooth on (−∞, 0] and U ′

0(0) > 0.
(4) U∞(e−ρ) = u(ρ)− bρ is smooth on [0,∞) for some b > 0 and U ′∞(0) > 0.

We remark that given a, b > 0, the Kähler metric constructed above lies in the
Kähler class

ω = aωFS +
√−1
2π

∂∂u(ρ) ∈ a[DH ] + b[D∞] (2.7)

and
0 < u′(ρ) ≤ b . (2.8)

2.3 The Kähler–Ricci flow on Xm,n. Straightforward calculations show that
the induced volume form of ω is given by

ωm+n+1 = (a + u′)nhm+1
ξ e−(m+1)ρ(u′)mu′′

(
ωn

FS ∧
m+1∏
α=1

√−1
2π

dξα ∧ dξᾱ

)
. (2.9)

Therefore,

−Ric(ω) =
√−1
2π

∂∂
(
log[(a + u′)n(u′)mu′′]− (m + 1)ρ

)
+ (m− n)ωFS .

It is straightforward to check that the Calabi ansatz is preserved by the Ricci
flow. Indeed, the Kähler–Ricci flow

∂ω

∂t
= −Ric(ω) , ω|t=0 = ω0 = a0ωFS +

√−1
2π

∂∂u0 ∈ a0[DH ] + b0[D∞] (2.10)
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is equivalent to the following parabolic equation:

a′(t)ωFS +
√−1
2π

∂∂
∂u

∂t
= (m− n)ωFS +

√−1
2π

∂∂
(
log[(a + u′)n(u′)mu′′]− (m + 1)ρ

)
.

Separating the variables, we have that

a = a(t) = a0 − (n−m)t (2.11)

and
∂u

∂t
= log

[
(a + u′)n(u′)mu′′]− (m + 1)ρ + ct , (2.12)

where
ct = − log u′′(0, t)−m log u′(0, t)− n log

(
a(t) + u′(0, t)

)
. (2.13)

The constant ct is chosen such that ∂u
∂t (0, t) = 0. From the formula (2.1) and the

Kähler class evolves by [ω] = (a0 − (n−m)t)[DH ] + (b0 − (m + 2)t)[D∞], and so

b = b(t) = b0 − (m + 2)t . (2.14)

It is straightforward to show that equation (2.12) admits a smooth solution
u satisfying the Calabi ansatz as long as the Kähler–Ricci flow admits a smooth
solution, by comparing u to the solution of the Monge–Ampère flow associated to
the Kähler–Ricci flow.

Next, the evolution equations for u′ and u′′ are given by
∂u′

∂t
=

u′′′

u′′ +
mu′′

u′ +
nu′′

a + u′ − (m + 1) , (2.15)

∂u′′

∂t
=

u(4)

u′′ −
(u′′′)2

(u′′)2
+

mu′′′

u′ − m(u′′)2

(u′)2
+

nu′′′

a + u′ −
n(u′′)2

(a + u′)2
, (2.16)

as can be seen from differentiating (2.12).

3 Small Contractions by the Kähler–Ricci Flow

The first singular time of the Kähler–Ricci flow on Xm,n is given by

T = sup
{
t > 0 | [ω0] + t[KXm,n ] > 0

}
. (3.1)

Since Xm,n is not a minimal model, T <∞.
In the section, we assume that at the singular time T , a(T ) = 0 and b(T ) > 0,

i.e. the Kähler–Ricci flow does not collapse. This is equivalent to

n > m ,
b0

m + 2
>

a0

n−m
.

In this case, the first singular time of the flow is given by T = a0
n−m .

Let us first explicitly write down the contraction map Φm,n. In local trivializa-
tion for Xm,n, {1, ξα, ziξ

α}i=1,...,n,α=1,...,m+1 extend to global holomorphic sections
in [D∞], furthermore, they span H0(Xm,n,O([D∞])). Then the free linear system
of |[D∞]| induces the following morphism

Φm,n : (zi, ξ
α) ∈ Xm,n → [1, ξα, ziξ

α] ∈ P(m+1)(n+1).
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The pullback of the Fubini–Study metric is given by

ω̂ =
√−1
2π

∂∂ log
(

1 +
m+1∑
α=1

|ξα|2 +
∑

1≤i≤n,1≤α≤m+1

|ziξ
α|2

)

=
√−1
2π

∂∂ log
(

1 +
(

1 +
n∑

i=1

|zi|2
)(m+1∑

α=1

|ξα|2
))

=
√−1
2π

∂∂ log(1 + eρ) .

Let
û(ρ) = log(1 + eρ) .

Then
√−1
2π ∂∂û extends to the pullback of the Fubini–Study metric ω̂ given by Φm,n.

In particular, Ym,n has an isolated cone singularity and ω̂ is a asymptotically cone
metric on Ym,n near the cone singularity.

Now we list some well-known results for some useful uniform estimates. We begin
by rewriting the Kähler–Ricci flow as a parabolic flow of Monge–Ampere type. We
let ω0 be the initial Kähler metric and Ω a smooth volume form on Xm,n. Let
χ =

√−1
2π ∂∂ log Ω and ωt = ω0 + tχ ∈ [ω0] + t[KXm,n ] be the reference form. Then

the Kähler–Ricci flow is equivalent to

∂ϕ

∂t
= log

(
ωt +

√−1
2π ∂∂ϕ

)m+n+1

Ω
, ϕ|t=0 = 0 . (3.2)

Then there exists a unique solution ϕ ∈ C∞([0, T ) × Xm,n). Furthermore, we
have the following well-known estimates due to [TZ]:

1. There exists C > 0 such that on [0, T )×Xm,n,

|ϕ| ≤ C . (3.3)

2. There exists C > 0 such that on [0, T )×Xm,n,(
ωt +

√−1
2π

∂∂ϕ

)m+n+1

≤ CΩ . (3.4)

3. For any K ⊂⊂ Xm,n \ P0, there exists for each k = 0, 1, 2, . . ., a constant
Ck,K > 0 such that on [0, T )×Xm,n,

‖ϕ‖Ck([0,T )×K) ≤ Ck,K . (3.5)

We also have the following estimates as the parabolic Schwarz lemma.

Lemma 3.1. There exists C > 0 such that on [0, T )×Xm,n,

ω ≥ Cω̂ .

Proof. The proof is given in [SoW1], [So] and makes use of the L∞-estimate of ϕ. �

By comparing ω(t) and ω̂, we immediately have the following estimate.

Corollary 3.1. There exists C > 0 such that on [0, T )×Xm,n,

a + u′ ≥ Cû′ =
Ceρ

1 + eρ
.
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Lemma 3.2. There exists C > 0 such that on [0, T )×Xm,n,

(
(u′)m+n+1)′ ≤ Ce(m+1)ρ

(1 + eρ)m+2 . (3.6)

Proof. The inequality (3.6) follows immediately from the volume estimate (3.4) by
the following observation:
(
(u′)m+n+1)′ ≤ (m + n + 1)(a + u′)n(u′)mu′′ ≤ C1(1 + û′)n(û′)mû′′ ≤ C2e

(m+1)ρ

(1 + eρ)m+2 .

The last inequality follows from the definition of û. �

Corollary 3.2. There exists C > 0 such that on [0, T )×Xm,n,

u′(ρ) ≤ Ce
m+1

m+n+1
ρ. (3.7)

Proof. Using Proposition 2.1 and integrating (3.6) from −∞ to ρ, we have(
u′(ρ)

)m+n+1 ≤ C

∫ ρ

−∞
e(m+1)ρdρ + lim

ρ→−∞
(
u′(ρ)

)m+n+1 =
C

m + 1
e(m+1)ρ .

�

We also notice that 0 < u′(ρ) < b(t) for ρ ∈ (−∞,∞) by (2.7) because
ω ∈ a(t)[DH ] + b(t)[D∞]. Therefore, u′ is uniformly bounded above for t ∈ [0, T ).

Proposition 3.1. There exists C > 0 such that on [0, T )×Xm,n,

u′′ ≤ Cu′. (3.8)

Proof. Let H = log u′′ − log u′. Notice that by Proposition 2.1, for fixed t ∈ [0, T )
and near ρ = −∞, u(ρ) = U0(eρ) for some smooth function U0, and near ρ = ∞,
u(ρ) = U∞(e−ρ) + bρ for some smooth function U∞ and b > 0.

lim
ρ→−∞

u′′

u′ = lim
ρ→−∞

(U0(eρ))′′

(U0(eρ))′
= lim

ρ→−∞

(
U ′

0 + eρU ′′
0

U ′
0

)
= 1 + lim

ρ→−∞ eρ U ′′
0

U ′
0

= 1 ,

lim
ρ→∞

u′′

u′ = lim
ρ→∞

(U∞(e−ρ) + bρ)′′

(U∞(e−ρ) + bρ)′
= lim

ρ→∞
e−ρU ′∞ + e−2ρU ′′∞
−e−ρU ′∞ + b

= 0 .

And so we can apply maximum principle for H in [0, T )× (−∞,∞).

∂H

∂t
=

1
u′′

{
u(4)

u′′ −
(u′′′)2

(u′′)2
+

mu′′′

u′ − m(u′′)2

(u′)2
+

nu′′′

a + u′ −
n(u′′)2

(a + u′)2

}

− 1
u′

{
u′′′

u′′ +
mu′′

u′ +
nu′′

a + u′ − (m + 1)
}

.

Suppose that H(t0, ρ0) = sup[0,t0]×(−∞,∞) H(t, ρ) is achieved for some t0 ∈ (0, T ),
ρ0 ∈ (−∞,∞). At (t0, ρ0), we have

H ′ =
u′′′

u′′ −
u′′

u′ = 0

and
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H ′′ =
u(4)

u′′ −
(u′′′)2

(u′′)2
− u′′′

u′ +
(u′′)2

(u′)2
=

u(4)

u′′ −
u′′′

u′ ≤ 0 .

Then at (t0, ρ0),

0 ≤ ∂H

∂t

=
1
u′′

{
u(4)

u′′ −
(u′′′)2

(u′′)2
+

mu′′′

u′ − m(u′′)2

(u′)2

}
− 1

u′

{
u′′′

u′′ +
mu′′

u′ − (m + 1)
}

+
n

a + u′

{
u′′′

u′′ −
u′′

a + u′ −
u′′

u′

}

≤ −(m + 1)u′′

(u′)2
+

m + 1
u′ − nu′′

(a + u′)2

≤ m + 1
u′ (1− eH) .

Therefore, by the maximum principle, H(t0, x0) ≤ 0 and so

sup
[0,T )×(−∞,∞)

H(t, ρ) ≤ sup
(−∞,∞)

H(0, ρ) < ∞ .

The proposition then follows. �

We have the following immediate corollary by combining Proposition 3.1 and
Corollary 3.2.

Corollary 3.3. There exists C > 0 such that on [0, T )×Xm,n,

u′′(ρ) ≤ Ce
m+1

m+n+1
ρ .

Corollary 3.4. There exists C > 0 such that on [0, T )×Xm,n,

ω ≤ C
(
ωFS + ω̂ + e−

n
m+n+1

ρω̂
)
. (3.9)

Proof. The corollary holds for t ∈ [0, T ) and ρ ∈ [0,∞) from the estimates in (3.5)
away from P0 since ωFS + ω̂ is a smooth Kähler metric on Xm,n. It suffices to prove
the corollary for ρ ≤ 0.

Applying Corollary 3.2 and Corollary 3.3, for (t, ρ) ∈ [0, T )× (−∞, 0], we have

ω ≤ C1
(
1 + e

m+1
m+n+1

ρ)ωFS + C1hξe
− n

m+n+1
ρ(δαβ + hξe

−ρξᾱξβ)
√−1
2π

∇ξα ∧∇ξβ

≤ C2ωFS + C2hξe
− n

m+n+1
ρ

m+1∑
α=1

√−1
2π

∇ξα ∧∇ξα .

The corollary follows by comparing the above estimates to

ω̂ =
eρ

1 + eρ
ωFS +

hξ

1 + eρ

(
δαβ − hξ

1 + eρ
ξᾱξβ

) √−1
2π

∇ξα ∧∇ξβ

≥ C3e
ρωFS + C3hξ

√−1
2π

∇ξα ∧∇ξα

for ρ ≤ 0 and some C3 > 0. �
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Let ω(T ) = limt→T− ω(t) be the closed positive (1, 1)-form with bounded local
potentials. Then by the estimates of ω(t) away from P0 as in (3.5), ω(T ) is a smooth
Kähler metric on Xm,n \P0 and ω(t) converges in C∞(Xm,n \P0) to ω(T ) as t → T .

Theorem 3.1. Let (XT , dT ) be the metric completion of (Xm,n \ P0, ω(T )). Then
(XT , dT ) has finite diameter and is homeomorphic to Ym,n as the projective cone in
P(m+1)(n+1) over Pm × Pn via the Segre map. Furthermore, (Xm,n, g(t)) converges
to (XT , dT ) in the Gromov–Hausdorff sense as t → T−, and there exists C > 0 such
that, for t ∈ [0, T ),

diam
(
Xm,n, g(t)

) ≤ C .

Proof. Let Uκ = {eρ ≤ κ} be a κ-tubular neighborhood of the zero section P0. We
will use local coordinates (zi, ξα) for i = 1, . . . , n and α = 1, . . . , m+1. For any fixed
fibre Xz = (πm,n)−1(z) for z = (z1, . . . , zn) ∈ Cn, there exists C1 > 0, such that the
restriction of the evolving metric is bounded by

ω|Xz =
√−1
2π

u′′e−2ρ∂eρ ∧ ∂̄eρ + u′e−ρ

√−1
2π

∂∂eρ −
√−1
2π

u′e−2ρ∂eρ ∧ ∂̄eρ

≤
√−1
2π

u′′e−2ρ∂eρ ∧ ∂̄eρ + u′e−ρ

√−1
2π

∂∂eρ

≤ C1hξe
− n

m+n+1
ρ
∑
α

√−1
2π

dξα ∧ dξᾱ.

We first show that for any ε > 0, there exists κε > 0 such that for any z ∈ Cn,
κ < κε and t ∈ [0, T ),

diam
(
Xz ∩ Uκ, g(t)

)
< ε .

• We begin with estimates in the radial direction. We can always assume ρ ≤ 0.
For any point ξ ∈ Xz, we consider the radial line segment γ(r) = rξ joining 0
and ξ in Cm+1 for 0 ≤ r ≤ 1. Note that eρ = (1+ |z|2)|ξ|2, then the arc length
of γ is given by

|γ|g(t) ≤ C2

∫ |ξ|

0
e
− n

2(m+n+1)
ρ(1 + |z|2)1/2

dr

= C2

∫ |ξ|

0

(
1 + |z|2) m+1

2(m+n+1) r−
n

m+n+1 dr

≤ C3
{
(1 + |z|2)|ξ|2} m+1

2(m+n+1)

≤ C3 κ
m+1

2(m+n+1)

for some fixed constant Ci > 0, i = 2, 3.
• We now consider the behavior of g(t) on S|ξ|, the sphere centered at ξ = 0

with radius rξ = |ξ| in Cm+1 with respect to the Euclidean metric. Let gS2m+1

be the standard metric on the unit sphere S2m+1 in Cm+1. If S|ξ| ⊂ Xz ∩ Uκ,
then there exist C4 > 0 such that

g(t)|S|ξ| ≤
√−1C1e

− n
m+n+1

ρ(1 + |z|2)dξ ∧ dξ̄|S|ξ|
≤ C4e

− n
m+n+1

ρ(1 + |z|2)|ξ|2gS2m+1
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= C4e
m+1

m+n+1
ρgS2m+1

= C4κ
m+1

m+n+1 gS2m+1 .

Combining the above estimates, any two points in Xz∩Uκ can be connected with by
a piecewise smooth curve in Xz ∩Uκ with arbitrarily small arc length if κ is chosen
sufficiently small.

Now we consider points (0, ξ) and (w, ξ) ∈ Uκ and we can assume ξ = (ξ1, 0, . . . , 0)
after the unitary transformation. We will then consider a straight line segment

γ(s) =
{
(z, ξ) | z = sw, ξ = (ξ1, 0, . . . , 0)

}
.

There exists C5 > 0, such that the restriction of g(t) on the submanifold V =
{ξ = (ξ1, 0, 0, . . . , 0)} is bounded by

g(t)|V ∩Uκ = (a + u′)ωFS +
√−1
2π

u′′ z̄izj

(1 + |z|2)2
∑
i,j

dzi ∧ dzj̄

≤ C5
(
a + e

m+1
m+n+1

ρ)ωFS +
√−1C5e

m+1
m+n+1

ρ z̄izj

(1 + |z|2)2
∑
i,j

dzi ∧ dzj̄

≤ C5
(
a0−(n−m)t+κ

m+1
m+n+1 )ωFS+

√−1C5e
m+1

m+n+1
ρ z̄izj

(1+|z|2)2
∑
i,j

dzi ∧ dzj̄ .

Therefore, there exist C6, C7 > 0 such that the arc length of γ(s) for 0 ≤ s ≤ 1
is bounded by

|γ|g(t) ≤ C6

∫ 1

0
e

m+1
2(m+n+1)

ρ s|w|2
1 + |z|2 ds + C6

(
a0 − (n−m)t + κ

m+1
m+n+1

)1/2

≤ C6

∫ 1

0

(
1+|z|2) m+1

2(m+n+1)
−1|ξ| m+1

m+n+1 s|w|2ds + C6
(
a0−(n−m)t + κ

m+1
m+n+1

)1/2

≤ C7
{
(1 + |w|2)|ξ|2} m+1

2(m+n+1) + C7
(
a0 − (n−m)t + κ

m+1
m+n+1

)1/2

≤ C7κ
m+1

2(m+n+1) + C7
(
a0 − (n−m)t + κ

m+1
m+n+1

)1/2
.

In general, given two points (z, ξ) and (z′, ξ′) ∈ Uκ, we can assume |ξ| ≤ |ξ′|
without loss of generality. Let ξ̂ = (ξ1, 0, . . . , 0) such that |ξ̂| = |ξ|.

distg(t)
(
(z, ξ), (z′, ξ′)

)
≤ distg(t)

(
(z, ξ), (z, ξ̂)

)
+ distg(t)

(
(z′, ξ′), (z′, ξ̂)

)
+ distg(t)

(
(0, ξ̂), (z′, ξ̂)

)
+ distg(t)

(
(z, ξ̂), (0, ξ̂)

)
≤ C8κ

n+1
2(m+n+1) + C8

(
a0 − (n−m)t

)1/2

for C8 > 0. Hence for any ε > 0, there exist κε > 0 and Tε ∈ (0, T ) such that for
any 0 < κ < κε and t ∈ (Tε, T ),

diam(Uκ \ P0, g(t)) < ε .

This shows that diam(Xm,n, g(t)) is uniformly bounded above for t ∈ [0, T ).
Similar arguments show that the metric completion (XT , dT ) of (Xm,n \ P0, ω(T ))
is compact and is homeomorphic to (Ym,n, ĝ) as a metric space after replacing
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a = a0 − (m− n)t by 0. Standard argument shows that (Xm,n, g(t)) converges to
(XT , dT ) in the Gromov–Hausdorff sense as t → T (cf. [SoW1]). �

4 Finite Time Collapsing

4.1 The case m ≥ n, or m < n and b0

m+2
< a0

n−m
. In this section, we

consider the Kähler–Ricci flow on Xm,n with the initial class a0[DH ] + b0[D∞] such
that

m ≥ n

or
n > m ,

b0

m + 2
<

a0

n−m
.

The first singular time of the flow is given by

T =
b0

m + 2
. (4.1)

The following lemma is an immediate consequence of the observation (2.8).

Lemma 4.1. For t ∈ [0, T ) and ρ ∈ (−∞,∞), we have

0 < u′ < b = b0 − (m + 2)t = (m + 2)(T − t) . (4.2)

The general volume estimate (3.4) gives us the upper bound for the volume form.

Lemma 4.2. There exists C > 0 such that on [0, T )×Xm,n,

ω(t)m+n+1 ≤ CΩ .

Corollary 4.1. There exists C > 0 such that for ρ ∈ (−∞,∞) and t ∈ [0, T ),

0 < u′ ≤ C min(T − t, eρ) (4.3)

and
0 < b− u′ ≤ Ce−

1
m+1

ρ. (4.4)

Proof. We apply similar arguments as in Corollary 3.2.
• By Lemma 4.2,[

(u′)m+1]′ ≤ C1(a + u′)n(u′)mu′′ ≤ C2(1 + û′)n(û′)mû′′.

For ρ ∈ (−∞,∞), integrating the above inequality from −∞ to ρ, we have

(u′)m+1(ρ) ≤ C3

∫ ρ

−∞
e(m+1)ρdρ ≤ C4e

(m+1)ρ.

The estimate (4.3) follows by combining Lemma 4.1.
• We also have[

(u′)m+1]′ ≤ C5(a + u′)n(u′)mu′′ ≤ C6(1 + û′)n(û′)mû′′ ≤ C7e
−ρ.

Then after integrating the above inequality from ρ to ∞, we have

bm+1 − (u′)m+1(ρ) ≤ C8

∫ ∞

ρ
e−ρdρ ≤ C9e

−ρ.
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The estimate (4.4) follows immediately from the elementary inequality

(A−B)p ≤ Ap −Bp

for A ≥ B ≥ 0 and p ∈ Z+. �

Proposition 4.1. There exists C > 0 such that on [0, T )× (−∞,∞),

u′′ ≤ C min{u′, bt − u′} . (4.5)

Proof. The same argument as in Proposition 3.1 can be applied to show that u′′/u′

is uniformly bounded above on [0, T )× (−∞,∞).
Let H = log{u′′/(b − u′)}. Then limρ→−∞ H = −∞ and limρ→∞ H = 0. The

evolution equation for H is given as follows.

∂H

∂t
=

1
u′′

{
u(4)

u′′ −
(u′′′)2

(u′′)2
+

mu′′′

u′ − m(u′′)2

(u′)2
+

nu′′′

a + u′ −
n(u′′)2

(a + u′)2

}

+
1

b− u′

{
u′′′

u′′ +
mu′′

u′ +
nu′′

a + u′ − (m + 1)
}

.

We also have

H ′ =
u′′′

u′′ +
u′′

b− u′

and

H ′′ =
u(4)

u′′ −
(u′′′)2

(u′′)2
+

u′′

b− u′H
′.

Suppose sup[0,t0)×(−∞,∞) H = H(t0, ρ). Then at (t0, ρ0), straightforward calcu-
lations show that

0 ≤ ∂H

∂t
< 0 ,

which is a contradiction. Thus

sup
[0,T )×(−∞,∞)

H ≤ sup
{0}×(−∞,∞)

H ≤ C .

�

We then have the following immediate corollary.

Proposition 4.2. There exists C > 0 such that on [0, T )× (−∞,∞),

u′′ ≤ C min(T − t, eρ, e−ρ) . (4.6)

Proof. It suffices to prove that eρu′′ is bounded above by the previous lemma. Let
Hγ = e−teγρu′′ for γ ∈ (0, 1). Then the evolution of Hγ is given by

∂

∂t
Hγ = e−teγρ

(
u(4)

u′′ −
(u′′′)2

(u′′)2
+

mu′′′

u′ − m(u′′)2

(u′)2
+

nu′′′

a + u′ −
n(u′′)2

(a + u′)2

)
−Hγ .

Also for any t ∈ [0, T ),
lim

|ρ|→∞
Hγ(ρ) = 0 .
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Suppose Hγ(t0, ρ0) = sup[0,t0]×(−∞,∞) Hγ(t, ρ). Then at (t0, ρ0), we have

u(4) ≤ −γu′′′, u′′′ = −γu′′,

by the maximum principle, and then

0 ≤ ∂

∂t
Hγ ≤ −Hγ .

Hence Hγ ≤ supρ∈(−∞,∞) Hγ(0, ρ) and there exists C > 0 such that for t ∈ [0, T )
and γ ∈ (0, 1), Hγ ≤ C. By letting γ → 1, we can uniformly bound e−teρu′′ on
[0, T )× (−∞,∞) from above and the lemma follows. �

We then obtain uniform bounds for the evolving metrics from the upper bound
on u′ and u′′.

Corollary 4.2. There exists C > 0 such that on [0, T )×Xm,n,

a(t)ωFS ≤ ω(t) ≤ (
a(t) + C(T − t)

)
ωFS + C min

{
(T − t)(e−ρ + eρ)ω̂, ω̂

}
. (4.7)

Proof. It suffices to compare u′, u′′ with û′ = eρ

1+eρ , û′′ = eρ

(1+eρ)2 . Notice that

T − t ≤ C1(T − t)(eρ + e−ρ)
eρ

1 + eρ
= C1(T − t)(eρ + e−ρ)û′,

T − t ≤ C2(T − t)(eρ + e−ρ)
eρ

(1 + eρ)2
= C2(T − t)(eρ + e−ρ)û′′,

eρ ≤ C3
eρ

1 + eρ
= C3û

′ when ρ → −∞ ,

eρ ≤ C4
eρ

(1 + eρ)2
= C4û

′′ when ρ → −∞ ,

and

e−ρ ≤ C5
eρ

(1 + eρ)2
= C5û

′′ when ρ →∞ .

The corollary follows from Corollary 4.1 and Proposition 4.2. �

Proposition 4.3. For any ε > 0, there exists Tε ∈ (0, T ) such that for t ∈ (Tε, T )
and any fibre Xz with z ∈ Pn,

diam
(
Xz, g(t)|Xz

)
< ε .

Proof. We consider the following open set Vκ ⊂ Xm,n for κ > 0 defined by

Vκ = {κ−1 < eρ < κ} .

Since ω|Xz ≤ Cω̂|Xz , for any ε > 0, there exists κε > 0 such that for all t ∈ [0, T )
and κ > κε,

diam
(
Xz ∩ (X \ Vκ), g(t)

)
< ε/2

by a similar argument in the proof of Theorem 3.1. On the other hand, in V2κε ,
ω|Xz ≤ C(T − t)ω̂|Xz . Then there exists Tε < T such that

diam
(
Xz ∩ V2κε , g(t)

)
< ε/2 .

The proposition then follows easily. �
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Theorem 4.1. There exists C > 0 such that for t ∈ [0, T ),

diam
(
Xm,n, g(t)

) ≤ C .

Furthermore, (Xm,n, g(t)) converges to
(
Pn,

(
a0 − n−m

m+2 b0
)
ωFS

)
in the Gromov–

Hausdorff sense as t → T .

Proof. Let Vκ = {κ−1 ≤ eρ ≤ κ} for κ > 0. From the calculation above, there exists
C > 0 such that on Vκ,

aωFS ≤ ω(t) ≤ aωFS + C(T − t)ωFS + Cκ(T − t)ω̂ ,

and so ω(t) converges to ωFS uniformly in C0(Vκ1) as t → T . On the other hand,
the diameter of any fibre Xz for z ∈ Pn tends to 0 uniformly as t → T .

We now choose a smooth map σ : Pm → Xm,n such that the image of σ sits in
the interior of V1. Then the theorem follows by a similar argument in the proof of
Theorem 5.1 in [SoW1]. �

4.2 The case m < n and b0

m+2
= a0

n−m
. In this case, Xm,n is Fano and

the initial Kähler class is proportional to c1(Xm,n). The first singular time of the
Kähler–Ricci flow is T = b0

m+2 = a0
n−m . By Perelman’s diameter estimates, we have

diam
(
Xm,n, g(t)

) ≤ C(T − t)

for a constant C > 0 and so the flow becomes extinct at t = T .

5 Resolution of Singularities by the Kähler–Ricci Flow

5.1 Resolution by the Fubini–Study metric and its Ricci curvature.
Consider the morphism Φm,n : Xm,n → P(m+1)(n+1) as defined in (2.2). We as-
sume that m, n ≥ 1. The restriction of the Fubini–Study metric on Ym,n, the image
of Φm,n, is given by

ω̂ =
√−1
2π

∂∂ log(1 + eρ)

=
eρ

1 + eρ
ωFS + hξ

(
1

1 + eρ
δαβ − 1

(1 + eρ)2
hξξ

ᾱξβ

) √−1
2π

∇ξα ∧∇ξβ.

Its induced volume from on Ym,n is given by

ω̂m+n+1 = hm+1
ξ

enρ

(1 + eρ)m+n+2

(
ωn

FS ∧
m+1∏
α=1

√−1
2π

dξα ∧ dξᾱ

)
.

We can now calculate the Ricci form.

−Ric(ω̂) =
√−1
2π

∂∂
(
nρ− (m + n + 2) log(1 + eρ)

)
+ (m− n)ωFS

= (m− n)ωFS +
√−1
2π

∂∂ûRic
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=
(

m− (m + n + 2)eρ

1 + eρ

)
ωFS + hξe

−ρ

{(
n− (m + n + 2)eρ

1 + eρ

)
δαβ

+ e−ρ

(
(m + n + 2)e2ρ

(1 + eρ)2
− n

)
hξξ

ᾱξβ)
}√−1

2π
∇ξα ∧∇ξβ,

where ûRic = nρ− (m + n + 2) log(1 + eρ).
Let O be the vertex of Ym,n as the projective cone over Pm × Pn. We define

(Ym,n)reg = Ym,n \ {O} as the nonsingular part of Ym,n.

Lemma 5.1. We define ω̂ε = ω̂−εRic(ω̂). Then there exists ε0 > 0, such that ω̂ε > 0
on (Ym,n)reg, the nonsingular part of of Ym,n for ε ∈ (0, ε0).

Proof. It suffices to check for ρ ≤ 0 because ω̂ is Kähler on Ym,n \ {O} and
Ric(ω̂) is smooth away from O. The calculation is straightforward by assuming
ξ = (|ξ|, 0, . . . , 0) after certain U(m + 1) transformation. �

Let X̃m,n be the blow-up of Xm,n along the zero section P0. Then we have the
following commutative diagram from section 1.9 in [D].

Xm,n X̃m,n Xn,m

Pn Pm × Pn
Pm

�

πm,n

�ϑ1

�

Ψ

�ϑ2

�

πn,m

�p1 �p2

(5.1)

Proposition 5.1. The metric completion of ((Ym,n)reg, ω̂ε) is a compact metric
space isomorphic to X̃m,n for sufficiently small ε > 0. In particular, ω̂ε extends to a
smooth Kähler metric on X̃m,n.

Proof. The potential ûε of ω̂ε is given by

ûε = û + εûRic = nερ +
(
1− (m + n + 2)ε

)
log(1 + eρ) .

It suffices to compare ω̂ε to a smooth Kähler metric on X̃m,n. We let

ũ = aρ + b log(1 + eρ)

with a, b > 0. In particular, ũ = ûε when a = nε and b = 1− (m + n + 2)ε. Then

ω̃ =
√−1
2π

∂∂ũ

=
(

a + b
eρ

1 + eρ

)
ωFS +

√−1
2π

e−ρhξ

(
ũ′δαβ + hξe

−ρ(ũ′′ − ũ′)ξᾱξβ
)∇ξα ∧∇ξβ.

ω̃ restricted on each fibre Pm+1 ∩ (Xm,n \ P0) is give by

hξe
−ρ

(
ũ′δαβ + e−ρ(ũ′′ − ũ′)hξξ

ᾱξβ
)√−1

2π
dξα ∧ dξβ̄

whose metric completion is exactly Pm+1 blown up at one point. Note that√−1
2π

∂∂ρ =
√−1
2π

∂∂ log
(
(1 + |z|2)|ξ|2)
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is exactly the pullback of the product of Fubini–Study metrics on Pm × Pn by Ψ.
Therefore,

√−1
2π ∂∂ũ blows up along the zero section P0 and replaces P0 by the ex-

ceptional divisor E = Pm × Pn.
Furthermore, ω̃ lies in a Kähler class aΨ∗[√−1

2π ∂∂ρ
]
+ b(Φm,n ◦ ϑ1)∗[ω̂] on X̃m,n.

Also ω̂ is positive on X̃m,n \ (Pm × Pn). Therefore, aΨ∗
√−1
2π ∂∂ρ + b(Φm,n ◦ ϑ1)∗ω̂

defines a smooth Kähler metric on X̃m,n for a, b > 0 and the proposition follows by
choosing ε > 0 sufficiently small. �

For a given projective embedding X ↪→ PN of a normal variety X, the Ricci
curvature is well defined on Xreg, the nonsingular part of X, for the restriction of the
Fubini–Study metric ωFS . We consider ωε = ωFS − ε Ric(ωFS) for sufficiently small
ε > 0. Let (X̃, dε) be the metric completion of (Xreg, ωε). Then Proposition 5.1
suggests that X̃ is possibly a resolution of singularities for X. However, such a
resolution is not necessarily minimal as shown in the example above. This leads
us to consider the Kähler–Ricci flow as a certain smoothing process to resolve the
singularity of a general normal variety. The goal of the section is to show that indeed
the Kähler–Ricci flow gives an optimal resolution of singularities for Ym,n.

5.2 The case m �= n. In the section, we will consider the Kähler–Ricci flow on
Ym,n with the initial metric ω0 = b0ω̂ for some b0 > 0. Since Ym,n = Yn,m, we can
assume that m > n.

We choose the potential for ω̂ to be

û = log(1 + eρ) .

Then, the calculation in section 2.3 suggests that the Kähler–Ricci flow should be
equivalent to a parabolic PDE for u as below,

∂u

∂t
= log

[
(a + u′)m(u′)nu′′]− (n + 1)ρ , u|t=0 = b0û , (5.2)

with a(t) = (n−m)t, or
∂u

∂t
= log

[
(a + u′)n(u′)mu′′]− (m + 1)ρ , u|t=0 = b0û , (5.3)

with a(t) = (m− n)t, since a0 = 0.
We have to choose (5.3) because m > n and a(t) should be nonnegative for t > 0.

This can be seen by the class evolution of the Kähler–Ricci flow because Xm,n is the
only resolution of Ym,n such that KXm,n is Q-Cartier and the class [ω̂]+ε[KXm,n ] > 0
for sufficiently small ε > 0. Hence, now we can lift the Kähler–Ricci flow on Ym,n to
the one on Xm,n starting with ω̂.

Note that ω̂ has bounded local potential and for any smooth Kähler metric ω0
on Xm,n, there exists C > 0 such that

ω̂ ≤ Cω0 .

By [SoT3], ω̂ ∈ K[ω̂],∞(Xm,n) (cf. [SoW2]) and there exists a unique weak Kähler–
Ricci flow on Xm,n starting with ω̂. Furthermore, the solution becomes a smooth
Kähler metric on Xm,n once t > 0. Therefore, it suffices to study the behavior of
the solution as t → 0+.



258 J. SONG AND Y. YUAN GAFA 

We first write down the equivalent parabolic flow of Monge–Ampere type for the
Kähler–Ricci flow. Since [ω̂] + t[KXm,n ] > 0 for sufficiently small t > 0, there exists
a smooth volume form Ω with χ =

√−1
2π ∂∂ log Ω, such that

ωt = ω̂ + tχ > 0 ,

for t ∈ (0, T ), where T = sup{t > 0 | [ω̂] + t[KXm,n ] > 0}. Let the solution of the
Kähler–Ricci flow be given as ω(t) = ωt +

√−1
2π ∂∂ϕ. Then

∂ϕ

∂t
= log

(
ωt +

√−1
2π ∂∂ϕ

)m+n+1

Ω
, ϕ|t=0 = 0 . (5.4)

It is proved in [SoT3], that ϕ ∈ C∞((0, T ) ×Xm,n) ∩ C∞([0, T ) × (Xm,n \ P0))
and

‖ϕ‖L∞([0,T/2]×Xm,n) <∞ .

Lemma 5.2. Then there exists C > 0, such that on [0, T/2]×Xm,n,

ωm+n+1 ≤ C max
{
1, e−(m−n)ρ}Ω , (5.5)

and on [T/2, T )×Xm,n,
ωm+n+1 ≤ CΩ .

Proof. It suffices to show that the lemma holds on [0, T/2] × (−∞, 0], as one can
easily obtain the estimate ωm+n+1 ≤ C1Ω away from the zero section P0 (see [SoT3]),
as well as for t ≥ T/2 (see [SoW1]), for C1 > 0.

Let v = ∂u
∂t . Then the evolution of v is given by

∂v

∂t
=

nv′

a + u′ +
mv′

u′ +
v′′

u′′ +
n(m− n)

a + u′ . (5.6)

Let H = e−t(v+(m−n)ρ). Then by (5.3), H(0) ≤ C2 +mρ ≤ C2 on ρ ∈ (−∞, 0]
for C2 > 0. One can calculate the evolution for H,

∂H

∂t
=

nH ′

a + u′ +
mH ′

u′ +
H ′′

u′′ −H −m(m− n)e−t

u′ ≤ nH ′

a + u′ +
mH ′

u′ +
H ′′

u′′ −H. (5.7)

One notices that limρ→−∞ H(t, ρ) = −∞ for any t by Proposition 2.1. Hence the
maximum of H(t, ·) is achieved away from P0 for t ≥ 0. Since the Käher–Ricci
flow is smoothly defined away from P0, it follows from the maximum principle that
H ≤ C3 on [0, T/2] × (−∞, 0] for C3 > 0. Therefore, by (5.3) again, there exists
C4 > 0, such that

(a + u′)n(u′)mu′′ = ev+(m+1)ρ = eetH+(n+1)ρ ≤ C4e
(n+1)ρ.

On the other hand, there exists C5 > 0 such that, on (−∞, 0],

(1 + û′)n(û′)mû′′ ≥ C5e
(m+1)ρ.

Combining them, there exists C6 > 0, such that on (−∞, 0],

ωm+n+1 ≤ Ce−(m−n)ρΩ .

�
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Lemma 5.3. There exists C > 0 such that on [0, T/2]×Xm,n,

ω ≥ Cω̂ . (5.8)

Proof. Let θ be a smooth Kähler metric on Xm,n. We consider the Kähler–Ricci
flow on Xm,n with initial metric

ωε,0|t=0 = b0ω̂ + εθ .

Then by the same argument as in [SoW1], [So], we can show that there exists C > 0
such that for any ε ∈ (0, 1), the solution ωε(t) of the Kähler–Ricci flow is bounded
below by

ω ≥ Cω̂

on t ∈ (0, T/2]×Xm,n. �

Proposition 5.2. There exist A1 and A2 > 0 such that for t ∈ [0, T/2] and ρ ≤ 0,

u′′ ≤ A1u
′ ≤ A2 e

n+1
m+n+1

ρ ,

Proof. By the volume comparison in Lemma 5.2, there exist C1, C2 > 0 such that
for t ∈ [0, T/2) and ρ ≤ 0,

(a + u′)m(u′)nu′′ ≤ C1e
−(m−n)ρ(1 + û′)n(û′)mû′′ ≤ C2e

(n+1)ρ.

Applying the same argument in Corollary 3.2, there exists C3 > 0 such that for
t ∈ [0, T ) and ρ ≤ 0,

u′ ≤ C3e
n+1

m+n+1
ρ.

Let H = log u′′ − log u′. To prove H is uniformly bounded from above, one just
imitates the argument as in Proposition 3.1 and in addition checks at t = 0 when
u = b0û,

H(0) = log û′′ − log û′ = − log(1 + eρ) ≤ 0 .

�

Corollary 5.1. There exists C > 0 such that on [0, T/2]×Xm,n,

C−1ω̂ ≤ ω ≤ C
{
aωFS + ω̂ + e−

m
m+n+1

ρω̂
}

, (5.9)

where a = (m− n)t.

Theorem 5.1. (Xm,n, g(t)) converges to (Ym,n, ĝ) in the Gromov–Hausdorff sense
as t → 0+.

Proof. It is proved in [SoT3] that g(t) converges to ĝ in C∞ topology of Xm,n \ P0.
Let Uκ = {eρ ≤ κ} be the κ-tubular neighborhood of P0. Then it suffices to show
that for any ε > 0, there exist κε > 0 and Tε ∈ (0, T/2] such that for any κ < κε and
t ∈ (0, Tε),

diam
(
Uκ \ P0, g(t)

)
< ε .

This can be proved by a similar argument as in the proof of Theorem 3.1. �
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Theorem 5.2. (Xm,n, g(t)) converges to
(
Pn, (m−n)b0

m+2 ωFS

)
in the Gromov–Hausdorff

sense as t → T−.

Proof. It follows directly from the equation (2.14) that b(T ) = 0 and so the singular
time is given by T = b0

m+2 . Immediately, we have a(T ) = (m−n)b0
m+2 from (5.3). The

theorem thus follows from Theorem 4.1 as the Kähler–Ricci flow on Ym,n becomes
the Kähler–Ricci flow on Xm,n after arbitrary short time t > 0. In particular, the
limiting metric is equal to a(T )ωFS on Pn. �

5.3 The case m = n. We now consider the Kähler–Ricci flow on Yn,n starting
with b0ω̂ = b0

√−1
2π ∂∂û, where û = log(1 + eρ). We would like to lift the flow to the

one on Xn,n. If we let

T = sup
{
t > 0 | [ω̂] + t[KXn,n ] is big and semi-ample

}
,

then
T =

b0

n + 2
> 0 .

By [SoT3], the Kähler–Ricci flow can always be lifted to the one on Xn,n for
t ∈ [0, T ). However the solution is in general not smooth since b0[ω̂] + t[KXn,n ] =
(b0 − (n + 2)t)[ω̂] vanishes on P0 of Xn,n for any t ≥ 0.

We apply the same method in [SoT3] by approximating the flow (5.4) by smooth
data. We consider the family of flows for δ ∈ (0, 1),

∂ϕδ

∂t
= log

(ωt + δωFS +
√−1
2π ∂∂ϕδ)m+n+1

Ω
, ϕδ|t=0 = 0 , (5.10)

where ωFS is the pullback of the Fubini–Study metric on Pn, ωt = (b0 − (n + 2))ω̂
and Ω is a smooth volume form on Xn,n with

√−1
2π ∂∂ log Ω = −(n + 2)ω̂.

The above perturbed flow is equivalent to the following family of parabolic flows,
∂uδ

∂t
= log

[
(δ + u′

δ)
n(u′

δ)
nu′′

δ

]− (n + 1)ρ , uδ|t=0 = b0û . (5.11)

Lemma 5.4. There exists C > 0 such that for t ∈ [0, T ) and δ ∈ (0, 1),

(δ + u′
δ)

n(u′
δ)

nu′′
δ ≤ C(1 + û′)n(û′)nû′′.

Proof. It suffices to prove the lemma for ρ ≤ 0 as the volume estimate holds true
away from the zero section P0(see [SoT3]). Let vδ = ∂uδ

∂t . Then

∂vδ

∂t
=

nv′δ
δ + u′

δ

+
nv′δ
u′

δ

+
v′′δ
u′′

δ

.

Let Hδ,ε = e−t(vδ + ερ) for ε ∈ (0, 1). Then there exists C1 > 0 such that
limρ→−∞ Hδ,ε ≤ C1 for fixed δ, ε and t ∈ [0, T ).

∂Hδ,ε

∂t
=

nH ′
δ,ε

δ + u′
δ

+
nH ′

δ,ε

u′
δ

+
H ′′

δ,ε

u′′
δ

− nεe−t

δ + u′
δ

− nεe−t

u′
δ

−Hδ,ε .

The maximum principle implies that there exists C2 > 0 such that for t ∈ [0, T ),
δ ∈ (0, 1), and ε ∈ (0, 1),

sup
t∈[0,T ),ρ∈(−∞,0]

Hδ,ε ≤ sup
t=0,ρ∈(−∞,0]

Hδ,ε + C2 .
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The lemma is then proved by checking Hδ,ε(0, ·) is bounded from above and letting
ε → 0. �

The following proposition can be proved in the same way as in Proposition 3.1.

Proposition 5.3. There exist C1, C2 > 0 such that for t ∈ [0, T ), ρ ∈ (−∞,∞)
and δ ∈ (0, 1),

u′′
δ ≤ C1u

′
δ ≤ C2 min

(
1, e

n+1
2n+1

ρ) . (5.12)

Corollary 5.2. There exists C > 0 such that for t ∈ [0, T ), δ ∈ (0, 1) and ρ ≤ 0,

ω(t) ≤ δωFS + Ce−
n

2n+1
ρω̂ . (5.13)

Furthermore, for any t ∈ [0, T ), there exists Ct > 0 such that

ω(t) ≥ Ctω̂ . (5.14)

Proof. Letting δ → 0 in equation (5.12), we have u′′ ≤ C1u
′ ≤ C2e

n+1
2n+1

ρ, for
constants C1, C2 > 0. Equation (5.13) then follows easily.

For any T ′ ∈ (0, T ), we can apply the argument in Lemma 5.3 to show that there
exists CT ′ > 0 such that for δ ∈ (0, 1) and on [0, T ′)×Xn,n,

ωδ = δωFS +
√−1
2π

∂∂uδ ≥ CT ′ω̂ .

Inequality (5.14) follows by letting δ → 0. �

Let (Xt, dt) be the metric completion of (Xn,n \ P0, ω(t)) for t ∈ (0, T ).

Theorem 5.3. For any t ∈ (0, T ), (Xt, dt) has finite diameter and (Xt, dt) is homeo-
morphic to the projective cone Yn,n over Pn×Pn via the Segre map. Furthermore, the
Gromov–Hausdorff distance D(t) = dGH((Xt, dt), (Yn,n, ĝ)) is a continuous function
in t ∈ [0, T ) and

lim
t→0

D(t) = 0 . (5.15)

Proof. We will consider the approximating Kähler–Ricci flow defined by (5.10). The
solution ωδ(t) = ωt + δθ +

√−1
2π ∂∂ϕδ is a smooth Kähler metric on (0, T )×Xn,n. Let

Uκ = {eρ ≤ κ} be the κ-tubular neighborhood of P0. By a similar argument in the
proof of Theorem 3.1, we can show that for any fixed t ∈ (0, T ) and ε > 0, there
exist κε > 0 and δε > 0, such that for any κ ∈ (0, κε) and δ ∈ (0, δε],

diam
(
Uκ, gδ(t)

)
< ε .

Since gδ(t) converges to g(t) in C∞-topology on (0, T )×Xn,n \P0, we can show by a
similar argument in [SoW1] that (Xt, dT ) has finite diameter and is homeomorphic
to (Yn,n, ĝ).

Now it suffices to show that D(t) is continuous and the rest of the theorem can
be proved by a similar argument in the proofs of Theorem 3.1 and Theorem 5.1. Fix
t0 ∈ (0, T ), we consider

D̂(t) = dGH

(
(Xt, dt), (Xt0 , dt0)

)
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for t ∈ [0, T ). We claim that
lim
t→t0

D̂(t) = 0 .

First note that ω(t) converges to ω(t0) in C∞ topology of Xn,n \ P0 as t → t0. On
the other hand, we can apply the same argument as before that, for any ε > 0, there
exists η > 0 and κε > 0 such that for any κ < κε and t ∈ (t0 − η, t0 + η) ∩ (0, T/2],

diam
(
Uκ \ P0, g(t)

)
< ε .

Also for any ε > 0, any κ > 0 and k > 0 , there exists η > 0 such that for
t ∈ [t0 − η, t0 + η) ∩ (0, T/2],∥∥ω(t)− ω(t0)

∥∥
Ck(Xn,n\Uκ) < ε .

Here the Ck norm is taken with respect to a fixed Kähler metric θ on Xn,n. Then
the claim follows by a similar argument in [SoW1]. �

Finally, we consider the limiting behavior of the Kähler–Ricci flow on Yn,n start-
ing with b0ω̂ for some b0 > 0. We have shown the existence of the solution g(t) as
in section 4.

Theorem 5.4. Let (Yn,n, dt) be the metric completion of (Yn,n \ {O}, g(t)). Then

lim
t→T

diam(Yn,n, dt) = 0 .

Proof. We again consider the perturbed flow (5.10). Notice that the Kähler class
along the flow is given by δ[ωFS ]+ (b0− (n+2)t)[ω̂], hence for all δ ∈ (0, 1), we have

0 < u′
δ ≤

(
b0 − (n + 2)

)
t = (n + 2)(T − t) .

By a similar argument as in the section 4.1, there exist C1 and C2 > 0 such that
on [0, T )× (−∞,∞)

u′′
δ ≤ C1u

′
δ ≤ C2 min

(
T − t, e

n+1
2n+1

ρ) , u′′
δ ≤ C2e

−ρ,

for δ ∈ (0, 1). By letting δ → 0, we have

u′′ ≤ C1u
′ ≤ C2 min

(
T − t, e

n+1
2n+1

ρ) , u′′ ≤ C2e
−ρ.

We thus have the estimates on Yn,n \ {O},
ω(t) ≤ C min

(
(T − t)(e−ρ + eρ)ω̂,

(
1 + e−

n
2n+1

ρ)ω̂)
.

Then by a similar argument in [SoW1], we can show that

lim
t→T

diam
(
Yn,n \ {O}, ω(t)

)
= 0 .

The theorem follows since (Yn,n, dt) is the metric completion of (Yn,n \{O}, g(t)). �
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