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BASED ON MULTILINEAR ESTIMATES

Jean Bourgain and Larry Guth

Abstract. We apply the Bennett–Carbery–Tao multilinear restriction estimate in
order to bound restriction operators and more general oscillatory integral operators.
We get improved Lp estimates in the Stein restriction problem for dimension at
least 5 and a small improvement in dimension 3. We prove similar estimates for
Hörmander-type oscillatory integral operators when the quadratic term in the phase
function is positive definite, getting improvements in dimension at least 5. We also
prove estimates for Hörmander-type oscillatory integral operators in even dimensions.
These last oscillatory estimates are related to improved bounds on the dimensions
of curved Kakeya sets in even dimensions.

1 Summary

Let S ⊂ Rn be a smooth, compact hyper-surface with positive definite second fun-
damental form. Let σ be its surface measure.

We prove the following result with respect to the Fourier restriction/extension
problem.

Theorem 1. Assume the exponent p satisfies⎧⎪⎨⎪⎩
p > 24n+3

4n−3 if n ≡ 0 (mod3) ,

p > 2n+1
n−1 if n ≡ 1 (mod3) ,

p > 4(n+1)
2n−1 if n ≡ 2 (mod3) .

(1.1)

Then the inequality

‖μ̂‖p � Cp

∥∥∥∥dμdσ
∥∥∥∥
∞

(1.2)

holds for measures μ � σ such that dμ
dσ ∈ L∞(S, σ).

See section 3. For n = 3 (resp. n = 4), the exponent in (1.2) is 10/3 (resp. 3)

and coincides with the condition p ≥ 2(n+2)
n resulting from the bilinear L2-approach

in [T1]. For n ≥ 5, the result is new.
Recall that, according to the restriction conjecture, due to E. Stein, cf. [S1], (1.1)

should remain valid for all p > 2n
n−1 .
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We also point out that if S is the (n − 1)-sphere or paraboloid, then (1.2) may
be strengthened to

‖μ̂‖p ≤ Cp

∥∥∥∥dμdσ
∥∥∥∥
p

(1.2′)

for p satisfying (1.1) (the argument combines Theorem 1, the Maurey–Nikishin fac-
torization theorem and invariance considerations, the usual way; cf. [Bo1]).

The main ingredient in our approach is the multilinear theory developed in [BCT]
that we will recall in section 5. In section 2, we treat the case n = 3 to explain the
method in its simplest form. In section 4, the analysis is refined further and combined
with T. Wolff’s Kakeya maximal function estimate [Wo1] to establish (1.1) for n = 3
under the condition

p > 3
3

10
. (1.3)

Thus we have the following small improvement of the p > 10/3 result in 3D.

Theorem 2. For n = 3 and S as above, we have

‖μ̂‖p ≤ Cp

∥∥∥∥dμdσ
∥∥∥∥
∞

for p > 3
3

10
, (1.4)

assuming μ � σ and dμ
dσ ∈ L∞(S, dσ).

By using ‘ε-removal lemmas’, Theorems 1 and 2 may be derived from a weaker
‘local’ version, more precisely:

Theorem 1′. Let n ≥ 3 and S as above.
Denote

Q
(p)
R = max ‖μ̂‖Lp(BR) ,

where the maximum is taken over all measures μ � σ on S such that ‖dμ/dσ‖∞ ≤ 1.
Then, for all ε > 0,

Q
(p)
R � Rε , (1.5)

provided p satisfies (1.1).

and

Theorem 2′. The same statement for n = 3 and p ≥ 3 3
10 .

The use of such ε-removal lemmas is by now standard (cf. [T2]), but we will
include an argument for completeness sake in the Appendix, since we process here
L∞ − Lp inequalities rather than Lp − Lp inequalities, as in [T2].

The technique used applies also in the variable coefficient (Hörmander) setting.
Thus we consider oscillatory integral operators

(Tλf)(x) =

ˆ
eiλψ(x,y)f(y)dy

(‖f‖∞ ≤ 1
)

(1.6)

with real analytic phase function
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ψ(x, y) = x1y1 + · · ·+ xn−1yn−1 + xn〈Ay, y〉+O
(|x| |y|3)+O

(|x|2|y|2) (1.7)

and A non-degenerate. (x ∈ Rn, y ∈ Rn−1 are restricted to a neighborhood of 0.)
Our concern is then in which range of p, a bound

‖Tλf‖p ≤ cλ−n/p (1.8)

holds. Recall Stein’s result [S2]

‖Tλf‖p ≤ c‖f‖2 for p ≥ 2(n+ 1)

n− 1
. 1.9)

Also, for n odd, there are examples showing that, replacing ‖f‖2 by ‖f‖∞, an in-

equality (1.8) may only hold for p ≥ 2(n+1)
n−1 (see [Bo2]).

Lee observed in [L] that Stein’s estimate may be improved if we make the ad-
ditional hypothesis that A in (1.7) is positive (or negative) definite. He extended
the bilinear approach from [T1] to the variable coefficient setting. In particular, he

proved that (1.8) holds (up to a factor λε) if p ≥ 2(n+2)
n . We will prove in section 5

that (1.8) holds under the condition (1.1). Thus we have

Theorem 3. Let Tλ be as above with A positive or negative definite in (1.7). Then

‖Tλf‖p ≤ Cpλ
−n/p‖f‖∞ (1.10)

holds for p satisfying (1.1).

If n = 3 or 4, Theorem 3 agrees with the results of [L], and for n ≥ 5, it is new.
For n even, there is the following statement (with only the non-degeneracy as-

sumption on A).

Theorem 4. Let n be even and Tλ as above, assuming in (1.7) that A is non-
degenerate. Then

‖Tλf‖p ≤ Cpλ
−n/p‖f‖∞ for p >

2(n+ 2)

n
. (1.11)

(Apart from the endpoint, the condition on p in Theorem 4 was already previ-
ously observed to be best possible, cf. [Bo2].)

It turns out, rather surprisingly, that for n = 3 the exponent 10/3 in Theorem 3 is
also optimal. In section 6, we describe a specific example (with A elliptic), making
the comparison with the hyperbolic case, and explaining the role of the Kakeya
compression phenomenon. For n = 3, in both elliptic and hyperbolic cases, there
may be a curved Kakeya compression in a 2-dimensional set at the coarse scale
1
/√

λ, but the local behaviour of the oscillatory integrals is different.
The proof of Theorems 3 and 4 is based on an application of Theorem 6.2 in

[BCT], but we need a version without the extra λε-factors. Hence, we proceed to ‘ε-
removal’ at the multilinear stage (see Appendix), which also provides an alternative
strategy to derive Theorem 1 directly, without passing through Theorem 1′ (let us
point out that this ε-removal argument applies only to our particular application of
[BCT], Theorem 6.2, see section 5.)
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Returning to curved Kakeya compression, it is shown that a curved Kakeya set
in even dimension n has Minkowski dimension at least n

2 + 1 (see section 6). This
statement was known to be optimal (see [Bo2]).

Details are given in section 7 for n = 4, where it is shown how to derive this
property from multi-linear Kakeya-type results. This strategy may be seen as the
essence of our paper and is basically repeated to obtain the oscillatory integral
bounds cited above.

Returning to Theorem 3, we should point out the application to the Bochner–
Riesz multilinear problem. Recall that the Bochner–Riesz multiplier Sδ is defined
by (Sδf)

∧(ξ) = (1 − |ξ|2)δ+f̂(ξ). Equivalently Sδf = f ∗ Kδ, where Kδ has the
asymptotic

Kδ(x) ∼ e±2πi|x|/|x|n+1
2

+δ. (1.12)

The problem is then to obtain the optimal condition on δ ≥ 0 to satisfy

‖Sδf‖Lp(Rn) ≤ C‖f‖Lp(Rn). (1.13)

C. Fefferman’s counterexample to the ball-multiplier conjecture implies that cer-
tainly δ > 0 for p �= 2 (note that the problem is self-dual). In view of (1.12), the
condition

δ > max
(
0,
∣∣∣12 − 1

p

∣∣∣n− 1
2

)
(1.14)

is clearly necessary. It is conjectured that (1.14) also suffices for (1.13) to hold and
this was proven for n = 2 in [CS] and, independently, in [H].

In fact, Hörmander’s approach consists in reducing the study of convolution by
Kδ to some specific oscillatory integral operator Tλ, of the type considered above
(note that regarding dimension, the Rd − Rd problem is replaced by an Rd−1 − Rd

problem in this reduction). As a corollary of our Theorem 3 together with the
standard factorization and rotational invariance considerations (already mentioned
above), we obtain (cf. [Bo2] for details).

Theorem 5. Let n ≥ 3. Then the Bochner–Riesz conjecture holds providing
max(p, p′) satisfies (1.1).

On the geometric side, the Kakeya-type maximal function underlying the
Bochner–Riesz operators (sometimes called the ‘Nikodym maximal function’) in-
volves also averaging over straight line segments and, for n = 3, T. Wolff’s 5

2 -
inequality is again known to hold (see [Wo1]). Thus in principle, one could expect
the proof of Theorem 2 to carry over and lead to the validity of the Bochner–Riesz
conjecture for max(p, p′) ≥ 3 3

10 , if n = 3. We do not pursue the details of this
matter here. In fact, it is very likely that the exponent 3 3

10 from Theorem 2 may be
improved further, by reorganizing and refining the method. No serious attempt was
made to do so, as our primary goal is to show how to obtain some progress over the
present results, keeping the arguments as simple as possible.

Finally, let us cite [T3] as a survey work on the problems discussed in this paper
and where the reader will find much background material and references.



GAFA BOUNDS ON OSCILLATORY INTEGRAL OPERATORS 1243

Acknowledgement. The first author was partially supported by NSF grant DMS-
0808042 and DMS-0835373. The second author was supported by NSF grant DMS-
0635607 and the Monell Foundation.

The authors are most grateful to the referee for a careful reading and commenting
on an earlier manuscript, that led to many improvements.

2 An Approach to the Restriction Problem in 3D

(alternative proof of the L10/3-bound)

1. Consider the oscillatory integral operator

Tf(x) =

ˆ
eiφ(x,y)f(y)dy (|f | ≤ 1)

where y ∈ Ω is a neighborhood of 0 ∈ R2 and x ∈ R3 ∩ [|x| < R],

φ(x, y) = x1y1 + x2y2 + x3φ1(y) (1.1)

with φ1(y) = y2
1 + y2

2 (paraboloid), or more generally

φ1(y) = 〈Ay, y〉+O
(|y|3) (A = positive definite) (1.2)

(we will comment on the indefinite case at the end of this section).

The purpose of this section is to explain in a simple case how the multi-linear
theory from [BCT] can be exploited to produce results in the usual restriction prob-
lem.

Given a phase function φ as above, we introduce at a given point y ∈ Ω the
vector

Z = Z(y) = ∂y1(∇xφ) ∧ ∂y2(∇xφ) =
(−∂1φ1(y),−∂2φ1(y), 1

)
. (1.3)

For simplicity, we carry over the discussion for the case of the paraboloid, thus

φ1(y) = y2
1 + y2

2 .

In this case, the transversality condition of {Z(y(i)), i = 1, 2, 3}, where y(i) is re-
stricted to some small disc Ωi ⊂ Ω (as needed for the trilinear L3-bound from [BCT])
amounts to non-collinearity of Ω1,Ω2,Ω3.

Discussion of the general situation (1.2) would require the introduction of the
Gauss map associated to the surface

(y1, y2) �→
(
y1, y2, φ1(y)

)
(see section 3).

2. Fix K (a large parameter).
Partition Ω =

⋃
Ωα,Ωα balls of size 1/K; yα ∈ Ωα. There are ∼ K2 values of α.

Write

Tf(x) =
∑
α

eiφ(x,yα)
[ˆ

Ωα

ei[φ(x,y)−φ(x,yα)]f(y)dy

]
=
∑
α

eiφ(x,yα)(Tαf)(x) . (2.1)
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Note that ∣∣∇x[φ(x, y)− φ(x, yα)]
∣∣ ≤ 1

K for y ∈ Ωα .

Take a smooth rapidly decaying bump function η s.t. η̂(ω) = 1 on [ω ∈ R3; |ω| ≤ 1].
Let ηK(x) = 1

K3 η
(
x
K

)
satisfying η̂K(ω) = 1 for |ω| < 1

K .
Thus

Tαf = Tαf ∗ ηK
and ∣∣Tαf(x)

∣∣ ≤ ˆ ∣∣Tαf(z)
∣∣ ∣∣ηK(x− z)

∣∣dz .
Restrict x to a ball B(a,K) ⊂ R3. Set a = 0.

For x ∈ B(0,K) ∣∣Tαf(x)
∣∣ ≤ ˆ ∣∣Tαf(z)

∣∣ζK(z)dz = cα , (2.2)

where
ζ(x) = max

|x−x′|≤1

∣∣η(x′)∣∣ .
3. Denote c∗ = max cα = cα∗ . Let K1 � K be a second large parameter. We
distinguish several possibilities.

(3.1) Non-coplanar interaction.
There are α, β, γ such that cα, cβ , cγ > K−4c∗ and

|yα − yβ | ≥ |yα − yγ | ≥ dist
(
yγ , yα + R(yβ − yα)︸ ︷︷ ︸

≡(yα,yβ)

)
> 103 1

K . (3.1′)

..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..........

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.

•

•

•yγ yα

yβ

In this situation we use the trilinear theory from [BCT].
(3.2) Non-transverse interaction.

If |yα − yα∗ | > 1/K1, then cα ≤ K−4c∗. Here we use rescaling (cf. [TVV]).
(3.3) Transverse coplanar interaction.

There is α∗∗ with cα∗∗ > K−4c∗, |yα∗ − yα∗∗ | > 1/K1.
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Assuming (3.1) fails, it follows that, moreover,

cα ≤ K−4c∗ if dist
(
yα, �(yα∗ , yα∗∗)

)
> 103K1

K
.

In this case we rely on the by now standard square function estimates going back to
A. Cordoba’s work [Co].

4. Assume (3.1)
For x ∈ B(0,K), by (2.2), (1.1)∣∣Tf(x)∣∣ ≤∑

α

cα < K2c∗ < K6(cαcβcγ)
1/3.

Hence, for q ≥ 3

|Tf(x)|q ≤ |Tf(x)|3

≤ K18
ˆ

|Tαf |(z1)|Tβf |(z2)|Tγf |(z3) ζK(z1)ζK(z2)ζK(z3)dz1dz2dz3

≤ K18
∑

α,β,γ (3.1′)

ˆ
|Tαf |(x−z1)|Tβf |(x−z2)|Tγf |(x−z3)ζK(z1)ζK(z2)ζK(z3) .

The corresponding contribution is estimated using the trilinear bound from
[BCT]:ˆ

BR

|Tαf |(x− z1)|Tβf |(x− z2)|Tγf |(x− z3)dx < Rε.C(K) < R2ε. (4.1)

5. Assume (3.2). For x ∈ B(0,K), estimate

|Tf(x)| ≤ 10max
τ

∣∣∣∣ˆ
Ω̃τ

eiφ(x,y)f(y)dy

∣∣∣∣+ ∑
|yα−yα∗ |>1/K1

cα

≤ 10max
τ

∣∣T̃τf(x)
∣∣+K−2c∗ , (5.1)

where Ω =
⋃
Ω̃τ is a partition of Ω in balls of size 1/K1.

Thus (5.1) implies for x ∈ B(0,K)

|Tf(x)|q ≤ C

∼K2
1∑

τ=1

|T̃τf |q(x) + CK−2q
∼K2∑
α=1

ˆ
|Tαf |q(x− z)ζK(z)dz . (5.2)

The corresponding contribution is at most

C
∑
τ

ˆ
BR

|T̃τf |q + CK−2q
∑
α

ˆ
BR

|Tαf |q. (5.3)

At this point, we define y′ by y = ȳ + y′, and we use the (parabolic) rescaling∣∣∣∣ˆ|y−ȳ|<ρ
eiφ(x,y)f(y)dy

∣∣∣∣ =∣∣∣∣ˆ|y′|<ρ
ei[(x1+2ȳ1x3)y′1+(x2+2ȳ2x3)y′2+x3|y′|2]f(ȳ + y′)dy′

∣∣∣∣ = (5.4)
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and
‖(5.4)‖Lq(BR) ≤ Cρ2ρ−4/qQρR (5.5)

where we define
QR = max

|f |≤1
‖Tf‖Lq(BR) . (5.6)

Substituting (5.5) in (5.3) gives the contribution (ρ = 1/K1 and ρ = 1/K)

CK2
1 .K

−2q+4
1 Qq

R/K1
+ CK−2q.K2.K−2q+4Qq

R/K

and hence for the Lq-norm

< CK
−2(1− 3

q
)

1 QR/K1
+ CK−4+ 6

εQR/K . (5.7)

6. Assume (3.3). Thus, denoting � = �(yα∗ , yα∗∗), for x ∈ B(a,R)∣∣∣∣ˆ
dist (y,)>104 K1

K

eiφ(x,y)f(y)dy

∣∣∣∣ ≤ ∑
dist (yα,)>103 K1

K

∣∣Tαf(x)
∣∣ < K2K−4c∗

< K−2
ˆ ∣∣Tα∗f(a− z)

∣∣ζK(z)dz . (6.1)

Hence∣∣∣∣ˆ
dist (y,)>104 K1

K

eiφ(x,y)f(y)dy

∣∣∣∣q < K−2q
∼K2∑
α=1

ˆ ∣∣Tαf(x− z)
∣∣qζK(z)dz , (6.2)

and by (5.5), the corresponding contribution is at most

K−2.K
2
q .K

4
q
−2

QR/K < K−2QR/K . (6.3)

Considering the partition Ω =
⋃

Ω̃τ in balls of size 1/K1 and fixing x ∈ B(a,K),
there are clearly the following alternatives:

(6.4) |Tf(x)| < Cmaxτ
∣∣´

Ω̃τ
eiφ(x,y)f(y)dy

∣∣;
(6.5) There are τ, τ ′ such that dist (Ω̃τ , Ω̃τ ′) > 106/K1 and∣∣∣∣ˆ

Ω̃τ

eiφ(x,y)f(y)dy

∣∣∣∣, ∣∣∣∣ˆ
Ω̃τ ′

eiφ(x,y)f(y)dy

∣∣∣∣ > 1

10K2
1
|Tf(x)| .

If (6.4), write

|Tf(x)| ≤ C

[∼K2
1∑

τ=1

∣∣∣∣ˆ
Ω̃τ

eiφ(x,y)f(y)dy

∣∣∣∣q]1/q = (6.6)

and by (5.4), (5.5)

‖(6.6)‖Lq(BR) ≤ K
2
q

1 .K
4
q
−2

1 QR/K1
< K

−2(1− 3
q
)

1 QR/K1
. (6.7)

Assume (6.5). Estimate further
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Ω̃τ

eiφ(x,y)f(y)dy

∣∣∣∣ ≤ ∣∣∣ ∑
Ωα⊂Ω̃τ

dist (yα,)≤103 K1
K

eiφ(x,y2)(Tαf)(x)
∣∣∣+ ∑

Ωα⊂Ω̃τ

dist (yα,)>103 K1
K

|Tαf |

= (6.8) + (6.9) ,

and similarly for
∣∣´

Ω̃τ ′
eiφ(x,y)f(y)dy

∣∣.
The contribution of (6.9) was evaluated in (6.1), (6.3).
Thus it remains to obtain a bound onˆ

B(a,K)

∣∣∣ ∑
Ωα⊂Ω̃τ

dist (yα,)≤103 K1
K

eiφ(x,yα)(Tαf)(x)
∣∣∣q/2∣∣∣ ∑

Ωα⊂Ω̃τ ′
dist (yα,)≤103 K1

K

eiφ(x,yα)(Tαf)(x)
∣∣∣q/2dx
(6.10)

.......

.......

.......
.......
.......
........
.........
..........

............
..................

.....................................................................................................................................................................................................................................................................
.............
..........
.........
........
........
.......
.......
.......
.......
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.........
..........

............
..................

.....................................................................................................................................................................................................................................................................
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.................

.................
.................
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.................
.........

.................
.................

.................
.................
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.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.........

......................

......................

�

Ω̃τ ′

Ω̃τ

By Hölder’s inequality, assuming q < 4

(6.10) � K3(1− q
4
)
[ˆ

B(a,K)
| · · · |2 | · · · |2dx

]q/4
. (6.11)

Considerˆ
B(a,K)

| · · · |2 | · · · |2

≤
∑

Ωα1 ,Ωα2⊂Ω̃τ∩Δ
Ωα′

1
,Ωα′

2
⊂Ω̃τ ′∩Δ

∣∣∣∣ˆ
B(a,K)

Tα1fTα2fTα′
1
f Tα′

2
f ei[φ(x,yα1 )−φ(x,yα2 )··· ]dx

∣∣∣∣ (6.12)

where Δ =
{
y ∈ B(0, 1); dist (y, �) < 103K1

K

}
.

Rewriting

φ(x, yα1)− φ(x, yα2)− φ(x, yα′
1
) + φ(x, yα′

2
)

=
〈
(x1, x2), yα1 − yα2 − yα′

1
+ yα′

2

〉
+ x3
(
φ1(yα1)− φ1(yα2)− φ1(yα′

1
) + φ1(yα′

2
)
)
,

we see that in (6.12) we may restrict the summation to those quadruples
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(α1, α2, α
′
1, α

′
2) for which{

|yα1 − yα2 − yα′
1
+ yα′

2
| � 1

K ,∣∣φ1(yα1)− φ1(yα2)− φ1(yα′
1
) + φ1(yα′

2
)
∣∣ � 1

K .

(6.13)

(6.13′)

Let � = b+ Rv (|v| = 1) and |yαi − (b+ tiv)| < 103K1
K , |yα′

1
− (b+ t′iv)| < 103K1

K .
Recall from (6.5) that

|t1 − t2|, |t′1 − t′2| ≤
2

K1
, |t1 − t′1| >

106

K1
.

Hence (6.13), (6.13’) imply by the preceding{
|t1 − t2 − t′1 + t′2| � CK1

K ,∣∣t21 − t22 − (t′1)2 + (t′2)2
∣∣ � CK1

K ,

(6.14)

(6.14′)

and we obtain from the separation property that∣∣(t1 + t2)− (t′1 + t′2)
∣∣ � C

K2
1

K
. (6.14′′)

Hence |t1 − t2|, |t′1 − t′2| < C
K2

1
K , thus |yα1 − yα2 |, |yα′

1
− yα′

2
| < C

K2
1

K .
Consequently,

(6.12) � K8
1

∑
Ωα⊂Ω̃τ∩Δ
Ωα′⊂Ω̃τ ′∩Δ

ˆ
B(a,K)

∣∣(Tαf)(x)
∣∣2∣∣(Tα′f)(x)

∣∣2dx (6.15)

and

(6.10), (6.11) � K3(1− q
4
)K2q

1 K3q/4
[ ∑

Ωα⊂Ω̃τ∩Δ

c2α

]q/4[ ∑
Ωα′⊂Ω̃τ ′∩Δ

c2α′
]q/4

� K3K2q
1

(
K

K1

)( q
2
−1) [∑

cqα

]
(6.16)

< K
3q
2

+1
1 K

q
2
−1
∑
α

ˆ [ˆ
B(a,K)

∣∣Tαf(x− z)
∣∣qdx]ζK(z)dz . (6.16′)

Summing over the balls B(a,K) implies an estimate

K
3
2
+ 1

q

1 K
1
2
− 1

q

(∑
α

‖Tαf‖qLq(BR)

) 1
q
< K

3
2
+ 1

q

1 K
5
q
− 3

2QR/K . (6.17)

Collecting contributions (4.1), (5.7), (6.7), (6.3), (6.17) implies that

QR � C(K)Rε +K
−2(1− 3

q
)

1 QR/K1
+K−2QR/K +K

3
2
+ 1

q

1 K
5
q
− 3

2QR/K , (6.18)

and hence an appropriate choice of K1,K shows that

QR � Rε for q > 10
3 . (6.19)

Remark. The use of different scales in previous analysis (and even more so in
section 3) is reminiscent of the ‘induction on scales’ approach in [Wo2] and [T1],
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although the present argument is considerably simpler. In particular, it suffices to
take K,K1 to be large constants, rather than R-dependent (i.e. Rε-factors), though
this point is inessential.

7. One may also consider the hyperbolic case, for instance

φ(x, y) = x1y1 + x2y2 + x3y1y2 . (7.1)

The hyperbolic case was studied by Vargas in [V], adapting the bilinear method.
She proved the same estimates in the hyperbolic case that Tao proved in the elliptic
case – in particular that the restriction operator is bounded from L∞ into Lp for
p > 10/3. Our method gives nearly the same estimate, losing a factor of Rε.

The preceding may be repeated verbatim, except for the analysis of (6.13′). The
condition becomes (v2

1 + v2
2 = 1)

|v1| |v2|
∣∣t21 − t22 − (t′1)

2 + (t′1)
2∣∣ � C

K1

K
, (7.2)

and the case where v1 or v2 is small has to be treated separately.
Suppose |v2| < 1/K1. Let Ω =

⋃
1≤s�K1

ωs be a partition in horizontal stripes of
width 1/K1. Recalling (6.1)–(6.3), for x ∈ B(a,R), the only significant contribution
to Tf(x) is given by

2max
s

∣∣∣∣ˆ
ωs

eiφ(x,y)f(y)dy

∣∣∣∣ � [∑
s

∣∣∣∣ˆ
ωs

eiφ(x,y)f(y)dy

∣∣∣∣q]1/q, (7.3)

since � = b+ tv = b+ te1 + 0(1/K1) by assumption on v.
The contribution of (7.3) is at most

K
1/q
1 .

∥∥∥∥ˆ
ω
eiφ(x,y)f(y)dy

∥∥∥∥
Lq(BR)

, (7.4)

where ω = [0, 1]× [0, 1/K1].
A rescaling (x, y) �→ (x1,K1x2,K1x3;K1x3; y1,

1
K1

y2
)
shows that∥∥∥∥ˆ

ω
eiφ(x,y)f(y)dy

∥∥∥∥
Lq(BR)

≤ K
−1+ 2

q

1 QR ,

which in (6.18) gives an extra term K
−1+ 3

q

1 QR.

3 Higher Dimensional Restriction Estimates

The method presented in section 2 easily generalizes to arbitrary dimension, con-
sidering the Fourier restriction/extension problem for a smooth, compact hyper-
surface S in Rn with positive definite second fundamental form. For x ∈ S, denote
x′ ∈ S(n−1) the normal vector at the point x and let ∼ : S(n−1) → S be the Gauss
map. Thus x̃′ = x.

In this section, we establish Theorem 1′, implying in turn Theorem 1 by the
‘ε-removal lemma’ presented in the Appendix.
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1. Let U1, . . . , Un ⊂ S be small caps such that |x′1 ∧ · · · ∧ x′n| > c for xi ∈ Ui.
Let M be large and Di ⊂ Ui (1 ≤ i ≤ n) discrete sets of 1

M -separated points.
Let BM ⊂ Rn be a ball of radius M . Then, for q = 2n

n−1 
BM

n∏
i=1

∣∣∣ ∑
ξ∈Di

a(ξ)eix.ξ
∣∣∣q/n � M ε

n∏
i=1

[ ∑
ξ∈Di

|a(ξ)|2
]q/2n

. (1.1)

Proof. This is just a discretized version of Theorem 1.16 in [BCT] as our assumption
on U1, . . . , Un ensures the required transversality condition (see the discussion at the
beginning of section 5).

We can assume BM centered at 0. Introduce functions gi on Ui defined by{
gi(ζ) = a(ξ) if |ζ − ξ| < c

M , ξ ∈ Di ,

gi(ζ) = 0 otherwise ,
(1.2)

(c>0 a small constant). One may then replace
∑

ξ∈Di

a(ξ)eix.ξ by c′Mn−1
´
S
gi(ζ)e

ix.ζσ(dζ)

if x ∈ BM . Henceˆ
BM

n∏
i=1

∣∣∣ ∑
ζ∈Di

a(ξ)eix.ξ
∣∣∣q/ndx

� M (n−1)q
ˆ
BM

n∏
i=1

∣∣∣∣ˆ
S
gi(ζ)e

ixζσ(dζ)

∣∣∣∣q/ndx
[BCT]� M (n−1)q+ε

n∏
i=1

‖gi‖q/nL2(Ui)
∼ M

n−1
2

q+ε
n∏

i=1

[ ∑
ξ∈Di

|a(ξ)|2
]q/2n

.

(1.3)

Since
ffl
BM

refers to the average, (1.1) follows, since q = 2n
n−1 .

2. Let S ⊂ Rn be as above and 2 ≤ m ≤ n. Let V be an m-dimensional subspace
of Rn, P1, . . . , Pm ∈ S such that

P ′1, . . . , P
′
m ∈ V and |P ′1 ∧ · · · ∧ P ′m| > c , (2.1)

and U1, . . . , Um ⊂ S sufficiently small neighborhoods of P1, . . . , Pm.
Let M be large and Di ⊂ Ui (1 ≤ i ≤ m) discrete sets of 1

M -separated points
ξ ∈ S such that dist (ξ′, V ) < c/M . Let gi ∈ L∞(Ui)(1 ≤ i ≤ m). Then, letting
q = 2m

m−1 ,  
BM

m∏
i=1

∣∣∣∣∑
ξ∈Di

(ˆ
|ζ−ξ|<c/M

gi(ζ)e
ix.ζσ(dζ)

)∣∣∣∣q/mdx

� M ε

{ 
BM

m∏
i=1

[∑
ξ∈Di

∣∣∣∣ˆ|ζ−ξ|< c
M

gi(ζ)e
ix.ζσ(dζ)

∣∣∣∣2]1/2m}q

.

(2.2)

Proof. Performing a rotation, we may assume V = [e1, . . . , em] and denote Ṽ the
image of V ∩S(n−1) under the Gauss map. Let again BM be centered at 0. For each
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ξ ∈ ⋃m
i=1 Di there is by assumption some ξ̂ ∈ S ∩ Ṽ , |ξ − ξ̂| < c/M . Writeˆ

|ζ−ξ|<c/M
gi(ζ)e

ix.ζσ(dζ) = eix.ξ̂
ˆ
|ζ−ξ|<c/M

gi(ζ)e
ix.(ζ−ξ̂)σ(dζ) . (2.3)

Since in the second factor of (2.3), |ζ − ξ̂| = o(1/M), we may view it as a constant
a(ξ) on BM ⊂ Rn.

Thus we need to estimate 
BM

{ m∏
i=1

∣∣∣∑
ξ∈Di

eix.ξ̂a(ξ)
∣∣∣q/m}dx . (2.4)

Writing x = (u, v) ∈ B
(m)
M ×B

(n−m)
M , (2.4) may be bounded by

max
v∈B(n−m)

M

 
B

(m)
M

{ m∏
i=1

∣∣∣ ∑
ξ∈Di

eiu.πm(ξ̂)av(ξ)
∣∣∣q/m}du (2.5)

with av(ξ) = eiv.ξ̂a(ξ).
Since S has positive definite second fundamental form, πm(S ∩ Ṽ ) ⊂ V =

[e1, . . . , em] is a hypersurface in V with same property and the normal vector at
πm(ξ̂) = (ξ̂)′ ∈ V . Since (2.1), application of (1.1) with n replaced by m and Di by
{πmξ̂; ξ ∈ Di} gives the estimate on (2.5)

� M ε
m∏
i=1

[ ∑
ξ∈Di

|a(ξ)|2
]q/2m

and (2.2) follows.

3. Essential use is made of scaling.

Denote Q
(p)
R a bound on ∥∥∥∥ˆ

S
g(ξ)eix.ξσ(dξ)

∥∥∥∥
Lp(BR)

with g ∈ L∞(S), |g| ≤ 1 and with S as specified in the beginning of section 3.
Parametrize S (locally) as{

ξi = yi (1 ≤ i ≤ n− 1) ,

ξn = y2
1 + · · ·+ y2

n−1 +O
(|y|3) , (3.1)

with y taken in a small neighborhood of 0.
Let Uρ be a ρ-cap on S and evaluate∥∥∥∥ˆ

Uρ

g(ξ)eix.ξσ(dξ)

∥∥∥∥
Lp(BR)

.

Thus in (3.1) we restrict y to a ball B(a, ρ) ⊂ Rn−1 and evaluate∥∥∥∥ˆ
B(a,ρ)

g(y)ei[x1y1+···+xn−1yn−1+xn(|y|2+O(|y|3))]dy
∥∥∥∥
Lp(BR)

. (3.2)
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A shift y �→ y − a and a change of variables x′i = xi + xn(2ai + · · · ) (1 ≤ i < n)
permits to set a = 0. Rescale y = ρy′ to obtain

ρn−1
∥∥∥∥ˆ

B(0,1)
g(ρy′)ei[ρx1y′1+···+ρxn−1y′n−1+ρ2xn(|y′|2+ρO(|y′|3))]dy′

∥∥∥∥
Lp(BR)

,

and a further rescaling in x, x′i = ρxi (1 ≤ i ≤ n− 1), x′n = ρ2xn, gives

ρn−1−(n+1)/p
∥∥∥∥ˆ

B(0,1)
g(ρy′)ei[x

′
1y

′
1+···+x′

n−1y
′
n−1+x′

n(|y′|2+ρO(|y′|3))]dy′
∥∥∥∥
Lp(BρR)

≤ ρn−1−(n+1)/pQ
(p)
ρR .

(3.3)

4. Let g ∈ L∞(S), |g| ≤ 1 and consider for x ∈ BRˆ
S
g(ξ)eix.ξσ(dξ) . (4.1)

Let
Rε � Kn � Kn−1 � · · · � K1

be suitably chosen.
Start decomposing S =

⋃
α Uα(1/Kn) in caps of size 1/Kn and write

(4.1) =
∑
α

ˆ
Uα(1/Kn)

g(ξ)eix.ξσ(dξ) =
∑
α

cα(x) .

Fixing x, there are 2 possibilities:

(4.2) There are α1, α2, . . . , αn such that∣∣cα1(x)
∣∣, . . . , ∣∣cαn(x)

∣∣ > K−n
n max

α

∣∣cα(x)∣∣ (4.3)

and
|ξ′1 ∧ · · · ∧ ξ′n| > c(Kn) for ξi ∈ Uαi ; (4.4)

(4.5) The negation of (4.2), which implies that there is an (n − 1)-dim subspace
Vn−1 such that∣∣cα(x)∣∣ ≤ K−n

n max
α

∣∣cα(x)∣∣ if dist (Uα, Ṽn−1) �
1

Kn
.

If (4.2), clearly by (4.3)∣∣∣∣ˆ
S
g(ξ)eix.ξσ(dξ)

∣∣∣∣ ≤ Kn−1
n max

∣∣cα(x)∣∣ ≤ K2n−1
n

[ n∏
i=1

∣∣cαi(x)
∣∣]1/n

andˆ
x(4.2)

∣∣∣∣ˆ
S
g(ξ)eix.ξσ(dξ)

∣∣∣∣p � Kp(2n−1)
n

∑
α1,...,αn

(4.4)

ˆ
BR

n∏
i=1

∣∣∣∣ˆ
Uαi(1/Kn)

g(ξ)eix.ξσ(dξ)

∣∣∣∣p/n.
(4.6)
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In view of (4.4), the [BCT]-estimate applies to each (4.6) term. Thus

ˆ
BR

n∏
i=1

∣∣∣∣ˆ
Uαi(1/Kn)

g(ξ)eix.ξσ(dξ)

∣∣∣∣ 2
n−1

dx � C(Kn)R
ε. (4.7)

Assuming

p ≥ 2n

n− 1
(4.8)

we see that
(4.6) < C(Kn)R

ε (4.9)

(here and in the sequel, C(K) refers to some power of K).
Next consider the case (4.5). Thus

|(4.1)| ≤
∣∣∣∣ˆ

dist (ξ,Ṽn−1)�1/Kn

g(ξ)eix.ξσ(dξ)

∣∣∣∣+ 1

Kn
max
α

∣∣∣∣ˆ
Uα(1/Kn)

g(ξ)eix.ξσ(dξ)

∣∣∣∣
= (4.10) + (4.11) ,

where Vn−1 depends on x.
Note that, using the argument explained earlier in section 1, we may view

|cα(x)| as essentially constant on balls of size Kn (literally speaking, this is of
course incorrect and what was done is a replacement of |cα(x)| by a majorant
|cα| ∗ ηKn

, ηK (x) = 1
Kd η(

x
K ) and η a suitable bump function – we do not repeat

these technicalities here.)
Thus the bound (4.10) + (4.11) may be considered valid on B(x,Kn), with a

same linear space Vn−1.
The contribution of (4.11) to

∥∥´ g(ξ)eix.ξσ(dξ)
∥∥
p
is bounded by

1

Kn

(∑
α

∥∥∥∥ˆ
Uα

g(ξ)eix.ξσ(dξ)

∥∥∥∥p
p

) 1
p

� 1

Kn
.K

n−1
p

n .

(
1

Kn

)n−1−n+1
p

Q
(p)
R/Kn

=

(
1

Kn

)n(1− 2
p
)

Q
(p)
R/Kn

<
1

Kn
Q

(p)
R .

4.12)

Consider the term (4.10). Proceeding similarly, write for x ∈ B(x̄,Kn)ˆ
dist (ξ,Ṽn−1)� 1

Kn

g(ξ)eix.ξσ(dξ)

=
∑
α

ˆ
Uα( 1

Kn−1
)∩[dist |ξ,Ṽn−1)� 1

Kn
]
g(ξ)eix.ξσ(dξ) =

∑
α

c(n−1)
α (x) .

(4.13)

We distinguish the cases:

(4.14) There are α1, . . . , αn−1 such that∣∣c(n−1)
α1

(x)
∣∣, . . . , ∣∣c(n−1)

αn−1
(x)
∣∣ > K

−(n−1)
n−1 max

α

∣∣c(n−1)
α (x)

∣∣ (4.15)

and

|ξ′1 ∧ . . . ∧ ξ′n−1| > c(Kn−1) for ξi ∈ Uαi

(
1

Kn−1

)
. (4.16)
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(4.17) Negation of (4.14), implying that there is an (n−2)-dim subspace Vn−2 ⊂ Vn−1
(depending on x) such that∣∣c(n−1)

α (x)
∣∣ < K

−(n−1)
n−1 max

α

∣∣c(n−1)
α (x)

∣∣ for dist (Uα, Ṽn−2) �
1

Kn−1
.

This space Vn−2 can then again be taken the same on a Kn−1-neighborhood
of x.

We analyze the contribution of (4.14). By (4.15)

|(4.13)| < K2n−3
n−1

[n−1∏
i=1

∣∣c(n−1)
αi

(x)
∣∣] 1

n−1

(4.18)

and hence 
B(x̄,Kn)

x satisfies (4.14)

∣∣∣∣ˆ
dist (ξ,Ṽn−1)� 1

Kn

g(ξ)eix.ξσ(dξ)

∣∣∣∣p

≤ K
p(2n−3)
n−1

∑
α1,...,αn−1

(4.16)

 
B(x̄,Kn)

{n−1∏
i=1

∣∣∣∣ˆ
Uαi (

1
Kn−1

)∩[dist (ξ,Ṽn−1)� 1
Kn

]
g(ξ)eix.ξσ(dξ)

∣∣∣∣ p
n−1
}

(4.19)

We use the bound (2.2) to estimate the individual integrals

 
B(x̄,Kn)

{n−1∏
i=1

∣∣∣∣ˆ
Uαi (

1
Kn−1

)∩[dist (ξ,Ṽn−1)� 1
Kn

]
g(ξ)eix.ξσ(dξ)

∣∣∣∣} q
n−1

with q =
2(n− 1)

n− 2
. (4.20)

Thus m = n− 1, V = Vn−1 and Pi is the center of Uαi(1/Kn−1). Let M = Kn and
Di the centers of a cover of Uαi(

1
Kn−1

) by caps Uα(1/Kn).

By (2.2) we get an estimate

(4.20) � Kε
nC(Kn−1)

{ 
B(x̄,Kn)

n−1∏
i=1

[ (i)∑
α

∣∣∣∣ˆ
Uα(1/Kn)

g(ξ)eix.ξσ(dξ)

∣∣∣∣2] 1
2(n−1)

}q

(4.21)

where in
∑(i) the sum is over those α such that Uα(1/Kn) ⊂ Uαi(1/Kn−1) and

Uα(1/Kn) ∩ Ṽn−1 �= φ. Clearly

(4.21) � Kε
nC(Kn−1)

{ 
B(x̄,Kn)

[ ∑
Uα(1/Kn)∩Ṽn−1 �=φ

∣∣∣∣ˆ
Uα(1/Kn)

g(ξ)eix.ξσ(dξ)

∣∣∣∣2]1/2}q

.

(4.22)
If

p ≥ 2(n− 1)

n− 2
= q , (4.23)

the contribution of (4.15) may be estimated replacing p by q = 2(n−1)
n−2 , and using

the [BCT] bound (4.7) with n replaced by n − 1 and Kn by Kn−1. This gives a
bound Rε.
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Thus we assume

p <
2(n− 1)

n− 2
. (4.24)

Then

(4.19)1/p � C(Kn−1)K
ε
n

 
B(x̄,Kn)

[ ∑
Ua(1/Kn)∩Ṽn−1 �=φ

∣∣∣∣ˆ
Uα(1/Kn)

g(ξ)eix.ξσ(dξ)

∣∣∣∣2]1/2.
4.25)

Note that Uα(1/Kn) ∩ Ṽn−1 �= φ for ∼ Kn−2
n values of α.

Hence, by Hölder’s inequality, the integrand in (4.25) is at most

K
(n−2)( 1

2
− 1

p
)

n

[∑
α

∣∣∣∣ˆ
Uα(1/Kn)

g(ξ)eix.ξσ(dξ)

∣∣∣∣p]1/p (4.26)

where α is unrestricted in the α-summation. Substituting (4.26) in (4.25) gives

(4.19) � C(Kn−1)K
(n−2)( p

2
−1)+ε

n

 
B(x̄,Kn)

[∑
α

∣∣∣∣ˆ
Uα(1//Kn)

g(ξ)eix.ξσ(dξ)

∣∣∣∣p]
and integrating over BR permits to bound the (4.14)-contribution by

C(Kn−1)K
(n−2)( 1

2
− 1

p
)+ε

n

[∑
α

∥∥∥∥ˆ
Uα(1/Kn)

g(ξ)eix.ξσ(dξ)

∥∥∥∥p
Lp(BR)

]1/p
. (4.27)

Invoking again the rescaling inequality (3.3), this gives

C(Kn−1)K
(n−2)( 1

2
− 1

p
)+n−1

p
−(n−1)+n+1

p
+ε

n QR/Kn
= C(Kn−1)K

n+2
p
−n

2
+ε

n . (4.28)

Taking Kn sufficiently large compared with Kn−1, we see that the (4.14)-contri-

bution is taken care of if either p ≥ 2(n−1)
n−2 or

p > 2 + 4
n . (4.29)

Thus we impose

p > min

(
2(n− 1)

n− 2
,
2(n+ 2)

n

)
. (4.30)

Next we need to consider the contribution of (4.17).
The analysis is analogous to the preceding, replacing n − 1 by n − 2 and Kn

byKn−1. More precisely, if

p <
2(n− 2)

n− 3
(4.31)

the local estimate (4.25) becomes

c(Kn−2)K
ε
n−1

 
B(x̄,Kn−1)

[ ∑
Uα(1/Kn−1)∩Ṽn−2 �=φ

∣∣∣∣ˆ
Uα(1/Kn−1)

g(ξ)eix.ξσ(dξ)

∣∣∣∣2]1/2 (4.32)

and Uα(1/Kn−1) ∩ Ṽn−2 �= φ for ∼ Kn−3
n−1 values of α.
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This leads to the condition on p

p > min

(
2(n− 2)

n− 3
,
2(n+ 3)

n+ 1

)
. 4.33)

The continuation of the process is clear.

Eventually we see that the exponent p needs to satisfy

p > 2min

{
k

k − 1
,
2n− k + 1

2n− k − 1

}
for all 2 ≤ k ≤ n . (4.34)

Hence we obtain

Theorem 1′. Q(p)
R � Rε provided

p ≥ 2
4n+ 3

4n− 3
if n ≡ 0 (mod 3) ,

p ≥ 2n+ 1

n− 1
if n ≡ 1 (mod 3) ,

p ≥ 4(n+ 1)

2n− 1
if n ≡ 2 (mod 3) .

4 Improving Upon the Exponent in the 3D Restriction Problem

We consider the case of the paraboloid (though the argument generalizes).
Going back to the analysis in section 2, the main idea is to collect the contri-

butions obtained at different scales, rather than performing an induction on scale
argument. This will allow us to bring into play also T. Wolff’s 5

2 -bound for the
Kakeya maximal function (see [Wo1]).

1. Representation at scale 1. Fix large parameters K � K1 � 1

.......

.......
........
.........

...............
.......................................................................................................................................

..........
........
.......
.......

.......

.......
........
..........

...................................................................................................................................
.........
........
.......
....

.......

.......

.......

.......

.......
.......
.......
.......
.......
........
........
........
........
.........
.........

..........
...........

............
..............

...................

..................

..............
............
...........
..........
.........
.........
........
........
........
.......
.......
.......
.......
.......
.......
.......
.......
.......
...............

.........
.........
.........
.........
.........
.........
.....

1
K

fi = f |B(ai, 1
K

)

Recalling the analysis in section 2, we have

|Tf | ≤ C(K) max
i1,i2,i3

non-collinear

(|Tfi1 |.|Tfi2 | |Tfi3 |) 13 + max
L

dist (L′,L′′)> 1
K1

∣∣∣∑
i∈L′

Tfi

∣∣∣ 12 ∣∣∣ ∑
i∈L′′

Tfi

∣∣∣ 12
+max

a

∣∣T (f |B(a,1/K1))
∣∣

= (1.1) + (1.2) + (1.3) .
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Here L′,L′′ ⊂ L are separated segments of a ‘line’ L.

................
................

................
................

................
................

................
................

................
................

................
................

................
................

................
................

................
....

................
................

................
................

................
................

................
................

................
................

................
................

................
................

................
................

................
....

........................

........................

1
K

Since [ 
B(a,K)

(1.2)4
]1/4

≤ C(K1)
(∑

i∈L
|Tfi|2

)1/2
,

we may write

(1.2) = φ.
(∑

i∈L
|Tfi|2

)1/2

with ( 
B(a,K)

|φ|4
)1/4

< c(K1)

and φ constant on balls of radius 1.
In what follows, we identify small discs ⊂ Ω and the corresponding caps ⊂ S

obtained as image under the map y �→ (y1, y2, y
2
1+y2

2), which are both denoted by τ .

2. Representation of Tfτ (by rescaling). Let τ be a δ-cap and rescale.
Up to linear transformation of the form⎧⎪⎨⎪⎩

x′1 = x1 + a1x3 ,

x′2 = x2 + a2x3 ,

x′3 = x3 ,

and reduction to scale 1 by transformation⎧⎪⎨⎪⎩
x′1 = δx1 ,

x′2 = δx2 ,

x′3 = δ2x3 ,

we obtain

.......

.......

.......
.......
.......
........
........
.........
..........

.............
........................

...........................................................................................................................................................................................................................................................................
.............
...........
.........
........
........
.......
.......
.......
.......
.......
...........................

....
..............................................................

................................
...........................................

................

1
δ

x1, x2

x3

1
δ2

1

Applying at unit scale the representation from subsection 1 of this section and
scaling back, we obtain on the

(
K
δ × K

δ × K
δ2

)
-box
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K
δ

1
δ

K
δ2

1
δ2

|Tfτ |≤C(K) max
τ1,τ2,τ3non-collinear

|Tfτ1|
1
3 |Tfτ2|

1
3 .|Tfτ3|

1
3

(2.1)

+φτ max
L

(
∑

τi∈L
|Tfτi|2

) 1
2

where τi is a δ
K
−cap

(2.2)

+ max
τ ′⊂τδ/K1−cap

|Tfτ ′| (2.3)

Given a δ-cap τ , denote
o
τ the polar set

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........................................................................................................

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
...

......................................................................................................

.............................

..........................................................

..........................................................

.............................

τ → o→ τ = (1
δ × 1

δ × 1
δ2
) box

δ

1
δ

o→ τ

τ
δ2

1
δ2

On every K
o
τ -box B, φτ satisfies 

B
φ4
τ =

1

|B|
ˆ
B
φ4
τ

=
δ4

K3 .δ
−4

ˆ
B(a,K)

φτ (δ
−1x′1, δ

−1x′2, δ
−2x′3)

4 dx′1dx
′
2dx

′
3

< C(K1)

(2.4)

and φτ is essentially constant on
o
τ -boxes.

3. Iteration. Apply the decomposition (2.1)–(2.3) to each Tfτi in (2.2) and Tfτ ′

in (2.3).
Considering Tfτi , let φτi be the corresponding factor appearing in (2.2).

Thus φτi is constant on
o
τ i-boxes and

ffl
B′ φ

4
τi < C(K1) if B

′ is a K
o
τ i-box.

Let B′ be a K
o
τ i-box and subdivide B′ as

B′ =
⋃

B′α
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with B′α
o
τ i-boxes. Then ˆ

B′
φ4
τφ

4
τi ∼
∑
α

[φτi |B′
α
]4
ˆ
B′

α

φ4
τ . (3.1)

Note that
o
τ i is an

[
K
δ × K

δ × K2

δ2

]
-box in direction ξi-normal at τi. Let ξ be any

normal for τ . Thus �(ξ, ξi) < δ and K
o
τ is contained in

[
2K

δ × 2K
δ × 2K

δ2
]-box in

direction ξi. It follows that
o
τ i may be partitioned in K

o
τ -boxes B and hence by (2.4) 

B′
α

φ4
τ ≤ max

B

 
B
φ4
τ < C(K1) . (3.2)

Substituting (3.2) in (3.1) gives

C(K1)
∑
α

ˆ
B′

α

φ4
τi = C(K1)

ˆ
B′

φ4
τi < C(K1)

2|B′| . (3.3)

Note also that in (2.2) L consists of at most K δ
K -discs. Iteration of (2.1)–(2.3),

where we terminate the process for (2.1) and continue for (2.2), gives a representation

|Tf | ≤
Rε max

1>δ> 1√
R

max
Eδ

[ ∑
τ∈Eδ

(
φτ |Tfτ1 |1/3|Tfτ2 |1/3|Tfτ3 |1/3

)2]1/2
(3.4)

+ max
E1/√R

[∑
τ∈E

(
φτ |Tfτ |

)2]1/2
(3.5)

where

Eδ consists of at most 1/δ disjoint δ-caps τ , (3.6)

τ1, τ2, τ3 ⊂ τ are
1

Kδ
-size and non-collinear , (3.7) 

B
φ4
τ < C(K1)

log 1/δ
logK < R

logC(K1)
logK � Rε if B is a

o
τ -box . (3.8)

Fix dyadic 1 > δ > 1/
√
R and consider

max
Eδ

[ ∑
τ∈Eδ

(
φτ |Tfτ1 |1/3 |Tfτ2 |1/3 |Tfτ3 |1/3

)2]1/2
(3.9)

with Eδ and τ1, τ2, τ3 as above.
In what follows, we will make several estimates on (3.9) considering various

norms.

4. We assume |f | ≤ 1. By rescaling, for τ1, τ2, τ3 ⊂ τ as in (3.7),ˆ
BR

|Tfτ1 |.|Tfτ2 |.|Tfτ3 | ≤ δ2
ˆ
BδR

|TgU1 | |TgU2 | |TgU3 | . (4.1)

with |g| < 1 and U1, U2, U3 ⊂ B1 of size ∼ 1/K and not collinear.
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Hence, from [BCT] ˆ
BδR

|TgU1 | |TgU2 | |TgU3 | � Rε (4.2)

and ˆ
BR

|Tfτ1 |.|Tfτ2 |.|Tfτ3 | � δ2Rε. (4.3)

By (3.6) and Hölder[ ∑
τ∈Eδ

(
φτ |Tfτ1 |1/3.|Tfτ2 |1/3.|Tfτ3 |1/3

)2]1/2
≤ |Eδ|1/6

[∑
τ

φ3
τ |Tfτ1 |.|Tfτ2 |.|Tfτ3 |

]1/3
≤ δ−1/6

[∑
τ

φ3
τ |Tfτ1 | |Tfτ2 | |Tfτ3 |

]1/3
(4.4)

where in (4.4) τ ranges over a partition in δ-discs (note that (4.4) does not depend
on Eδ anymore).

We obtain

‖(3.9)‖L3(BR) ≤ δ−1/6
[∑

τ

ˆ
φ3
τ |Tfτ1 | |Tfτ2 | |Tfτ3 |

]1/3
. (4.5)

Consider a partition of BR in
o
τ -boxes B. Since |Tfτi | are ≈ constant on

o
τ i-boxes,

hence on each B,ˆ
φ3
τ |Tfτ1 | |Tfτ2 | |Tfτ3 | ≈

∑
B

(|Tfτ1 | |Tfτ2 | |Tfτ3 |)∣∣B(ˆ
B
φ3
τ

)
≈
∑
B

[ˆ
B
|Tfτ1 |.|Tfτ2 |.|Tfτ3 |

]  
B
φ3
τ

(3.8)� Rε

ˆ
BR

|Tfτ1 |.|Tfτ2 |.|Tfτ3 |
(4.3)
< Rεδ2. (4.6)

Therefore
‖(3.9)‖L3(BR) � Rεδ−1/6 (4.7)

which is our first bound.

5. Take 3 ≤ p ≤ 4.
By Hölder again

(5.1) = max
Eδ

[ ∑
τ∈Eδ

(φτ |Tfτ1 |1/3|Tfτ2 |1/3|Tfτ3 |1/3)2
]1/2

≤ (1δ ) 12− 1
p

[∑
τ

φp
τ

(|Tfτ1 |.|Tfτ2 |.|Tfτ3 |)p/3]1/p
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implying

‖(5.1)‖p ≤
(1
δ

) 1
2
− 1

p

[∑
τ

ˆ
BR

φp
τ

(|Tfτ1 |.|Tfτ2 |.|Tfτ3 |) p3 ]1/p. (5.2)

As in (4.6) ˆ
BR

φp
τ (|Tfτ1 |.|Tfτ2 |.|Tfτ3 |)p/3

≤
[

max
B

o
τ−box

 
B
φp
τ

][ˆ
BR

(|Tfτ1 |.|Tfτ2 |.|Tfτ3 |)p/3]
≤ Rε

[ˆ
BR

|Tfτ1 |.|Tfτ2 |.|Tfτ3 |
]
.δ6( p

3
−1)

< Rεδ2p−4 (5.3)

by (3.8), (4.3) and since ‖Tfτ1‖∞ < δ2.
Substituting (5.3) in (5.2) gives

Rε
(1
δ

) 1
2
− 1

p
(1
δ

) 2
p δ

2− 4
p = Rεδ

3
2
− 5

p . (5.4)

Hence
‖(3.9)‖Lp(BR) � Rε for p ≥ 10

3 = p0 . (5.5)

Returning to (5.1), let 0 < λ < 1 be a parameter and denote

gτ = |Tfτ1 |1/3.|Tfτ2 |1/3.|Tfτ3 |1/3 and gτ,λ = gτ1[gτ∼λδ2] . (5.6)

Then by (4.3) ˆ
BR

[gτ,λ]
p < (λδ2)p−3

ˆ
BR

(gτ,λ)
3 � Rελp−3δ2p−4 (5.7)

and {ˆ
BR

max
Eδ

[ ∑
τ∈Eδ

(φτgτ,λ)
2
]p0/2}1/p0

� Rελ
1− 3

p0 = Rελ
1
10 . (5.8)

Let 1 ≤ μ < ∞ be another parameter and decompose each φτ as

φτ =
∑

μ dyadic

φτ,μ where

φτ,μ = φτ1[φτ∼μ]

φτ,1 = φτ1[φτ≤1]
(5.9)

If B is a
o
τ -box, (3.8) implies for μ > 1 

B
φ

p0

τ,μ ≤ μ−4+p0

 
B
φ4
τ � Rεμ−2/3. (5.10)

Hence, instead of (5.8), we obtain{ˆ
BR

max
Eδ

[ ∑
τ∈Eδ

(φτ,μgτ,λ)
2
]p0/2}1/p0

� Rελ1/10.μ−1/5. (5.11)
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Next, we perform a different type of estimate. Clearly

max
Eδ

[ ∑
τ∈Eδ

(φτ,μgτ,λ)
2
]1/2 ≤ μ

(∑
τ

g2
τ,λ

)1/2
(5.12)

with τ ranging over a partition in δ-caps.
We apply the usual procedure to bound (5.12) by a Kakeya maximal function.
Writing

|Tfτi | � |Tfτi | ∗ (δ41o
τ
)

we have

gτ (x) �
ˆ { 3∏

i=1

[|Tfτi | ∗ (δ41o
τ
)
]1/3}

(z)(δ41o
τ
)(x− z)dz

=

ˆ
ω(z)(δ41o

τ
)(x− z)dz , (5.13)

and

g2
τ,λ(x) � δ4

ˆ (
ω21[ω�λδ2]

)
(z)1o

τ
(x− z)dz . (5.14)

Further,ˆ
BR

ω2 1[ω�λδ2] �
1

λδ2

ˆ
ω3

� 1

λδ2

ˆ {ˆ [ 3∏
i=1

|Tfτi |(x− zi)

]
dx

}[ 3∏
i=1

(δ41o
τ i
)(zi)

]
dz1dz2dz3

� Rελ−1. (5.15)

Hence, from (5.14), (5.15), we obtain a representation

g2
τ,λ � Rεδ4λ−1

ˆ
1o
τ
(· − y)Pτ (dy) . (5.16)

From (5.16) and convexity∥∥(5.12)∥∥
Lp0 (BR) � Rελ−1/2μδ2

∥∥∥[∑
τ

1o
τ
(x− yτ )

]1/2∥∥∥
Lp0 (BR)

= Rελ−1/2μδ2
[ˆ [∑

τ

1o
τ
(x− yτ )

]5/3
dx

]3/10

(5.17)

for some choice of {yτ}-points in R3.

At this point we can invoke the L5/2-bound for the R3-Kakeya maximal function.
In its dual formulation, we have∥∥∥∑

v∈S
1Tv

∥∥∥
L5/3

≤ ( 1
κ

) 1
5
+

(5.18)

where T is a translate of a tube of width κ and length 1 in direction v ∈ S ⊂ S2,
where S consists of κ-separated points.
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Rescaling by a factor δ2 and applying (5.18) with κ = δ, it follows∥∥∥∑
τ

1 o→τ
(· − yτ )

∥∥∥
L5/3

� δ−
19
5
−. (5.19)

Hence
(5.17) � Rελ−1/2μδ1/10. (5.20)

which is our final estimate.
Summarizing (4.7), (5.11), (5.20), we have∥∥∥max

Eδ

[ ∑
τ∈Eδ

(φτgτ )
2
]1/2∥∥∥

L3(BR)
� Rεδ−1/6 (5.21)

and ∥∥∥max
Eδ

[ ∑
τ∈Eδ

(φτ,μgτ,λ)
2
]1/2∥∥∥

L10/3(BR)
� Rεmin(λ1/10μ−1/5, λ−1/2μδ1/10)

� Rεδ1/60 . (5.22)

Let

q =
33

10
.

Interpolating between (5.12), (5.22), it follows that

‖(3.4)‖Lq(BR) � Rε. (5.23)

6. Remains to bound ‖(3.5)‖q.
Estimate∥∥∥[∑

τ∈E

(
φτ |Tfτ |

)2]1/2∥∥∥
L3(BR)

≤ (√R
)1/6{∑

τ

ˆ
BR

φ3
τ |Tfτ |3

}1/3
(6.1)

where in the second sum, τ ranges over a full position in 1/
√
R-caps.

Since |Tfτ | � 1/R, (3.8) implies that

(6.1) � R
1
12

+ε. (6.2)

On the other hand, using the decomposition (5.9), we obtain the following esti-
mates on ∥∥∥ max

E1/√R

[∑
τ∈E

(
φτ,μ|Tfτ |

)2]1/2∥∥∥
L
p0
BR

. (6.3)

Using (5.10), we get

(6.3) ≤ (√R
) 1

2
− 1

po

(∑
τ

∥∥φτ,μ|Tfτ |
∥∥p0
L
p0
BR

) 1
p0

� (√R
) 1

2
− 1

p0
+ε

μ−
1
5R

1
p0

(√
R
) 4

p0
−2 � Rεμ−

1
5 . (6.4)

Using the bound φτ,μ � μ and the inequality

|Tfτ |2 � 1

R2

ˆ
|Tfτ |2(y) 1o

τ
(x− y)dy (6.5)
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and ˆ
BR

|Tfτ |2 � 1 (6.6)

for τ ⊂ S2 a 1√
R
-cap, we obtain similarly to (5.17)

(6.3) ≤ μ
∥∥∥(∑

τ

|Tfτ |2
)1/2∥∥∥

L
p0
BR

� μ

R

[∥∥∥∑
τ

1o
τ
(· − yτ )

∥∥∥
L
5/3
BR

]1/2
(5.19)� μ

R
R

19
20 = μR−

1
20

+ε. (6.7)

Hence, from (6.4), (6.7)

(6.3) � Rεmin
(
μ−

1
5 , μR−

1
20
)� R−

1
120

+ε . (6.8)

Interpolation between (6.1), (6.8) implies

‖(3.5)‖Lq(BR) � Rε. (6.9)

Hence, we proved

Theorem 2′.
‖Tf‖Lq(BR) � Rε for q ≥ 33

10
, |f | ≤ 1 (6.10)

(implying Theorem 2).

7. One can check how the preceding argument improves if one had the optimal
Kakeya maximal function bound at disposal, thus

‖Mδ‖3→3 � (1δ )ε . (7.1)

Recall (5.11) {ˆ
BR

max
Eδ

[ ∑
τ∈Eδ

(φτ,μgτ,λ)
2
]5/3}3/10

� Rελ1/10μ−1/5. (7.2)

Next, apply (5.17) with p0 = 3∥∥∥max
Eδ

[ ∑
τ∈Eδ

(φτ,μgτ,λ)
2
]1/2∥∥∥

L3(BR)

� Rελ−1/2μ
1

R

[ˆ [∑
τ

1o
τ
(x− yτ )

]3/2
dx

]1/3
� Rελ−1/2μ . (7.3)

For the (3.5) contribution, recall (6.3), (6.4)∥∥∥ max
E1/√R

[∑
τ∈E

(
φτ,μ|Tfτ |

)2]1/2∥∥∥
L
10/3
(BR)

� Rεμ−1/5 , (7.4)



GAFA BOUNDS ON OSCILLATORY INTEGRAL OPERATORS 1265

and using (6.5), (6.6), (7.1)

‖ · · · ‖L3
(BR)

� Rεμ . (7.5)

Interpolation between (7.2), (7.3) and (7.4), (7.5) gives

‖Tf‖Lq1 (BR) � Rε for q ≥ 36

11
= 3, 27 . . . and |f | ≤ 1 . (7.6)

This leads to an improved Theorem 2 with 3 3
10 replaced by 36

11 .

8. The exponent 3 3
10 from Theorem 2 may be improved further by refining the

argument presented in subsections 4–6 of this section in order to obtain a better
dependence on the parameters λ and μ.

First, note that if in (4.6) we replace φτ by φτ,μ, (4.7) becomes∥∥∥max
Eδ

[ ∑
τ∈Eδ

(
φτ,μ|Tfτ1 |1/3|Tfτ2 |1/3|Tfτ3 |1/3

)2]1/2∥∥∥
L3(BR)

� Rεδ−1/6μ−1/3. (8.1)

The effect of the parameter λ in (5.20) can be improved by using Wolff’s X-ray
transform inequality [Wo3] rather than the Kakeya maximal function bound. Recall
that

‖Xg‖
L
10/3
e (L10

x )
� Cε‖g‖5/2,ε for all ε > 0 , (8.2)

if g is supported by B(0, 1) and where for � = x+ Re, e ∈ S(2), x ∈ [e]⊥, we denote

(Xf)(e, x) =

ˆ

f . (8.3)

Dualizing (8.2), it follows that if {τ ′α} are unit tubes of width δ centered at 0 and
with δ-separated directions, then∥∥∥∥∑

α

ˆ
ηα(z)1τ ′α(x− z)dz

∥∥∥∥
5/3

� δε
[∑

α

δ2‖ηα‖10/7
10
9

]7/10
(8.4)

provided supp ηα ⊂ B(0, 1).
We have to bound {ˆ

BR

[∑
τ

(φτ,μgτ,λ)
2
]5/3}3/10

≤ μ

{∑
β

ˆ
Qβ

(∑
τ

g2
τ,λ

)5/3
}3/10

(8.5)

where {Qβ} denotes a partition of BR in boxes of size δ−2. With x′ = δ2x, z′ = δ2z,

(5.14) = δ−2
ˆ (

ω21[ω>λδ2]
)
(δ2z′)1

δ2
o
τ
(x′ − z′)dz′

≡
ˆ

ητ (z
′)1

δ2
o
τ
(x′ − z′)dz′. (8.6)

Thus, from (8.4), (8.6)
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∥∥∥∑
τ

g2
τ,λ

∥∥∥
L5/3(Bδ−2 )

� δ−
18
5
−ε
[∑

τ

δ2‖ητ‖10/7
L10/9(B1)

]7/10

� δ−
28
5
−ε[→

τ
Av‖(ω1[ω>λδ2])(δ

−2z′)‖20/7
L20/9(B1)

]7/10

� δ−
1
5
−ε →

τ
Av
[‖ωλ‖20/7

L20/9(Bδ−2 )

]7/10
(8.7)

where ωλ = ω1[ω>λδ2] depends on τ .
Hence, clearly

(8.5) � μδ−
1
10

+εmax
τ

[∑
β

‖ωλ‖10/3
L20/9(Qβ)

]3/10
. (8.8)

Interpolating between the bounds

max
β

‖ωλ‖L2/3(Qβ) � (λδ2)−2 max
β

‖ω‖3
L2(Qβ) � (λδ2)−2

and (∑
β

‖ωλ‖3
L3(Qβ)

)1/3 � Rεδ2/3 (by (4.3))

it follows that
(8.8) � Rεμλ−1/5δ1/10. (8.9)

Using (8.9) as a substitute for (5.20) and interpolating between (5.11), (8.9) and
(8.1) gives the estimate

‖(3.4)‖q � Rε for q =
56

17
. (8.10)

Further improvement of the exponent may be achieved by exploiting the better
distributional properties of the functions φτ , namely 

B∩Qρδ−2

|φτ |4 � Rερ−1/2 (8.11)

if B is a
o
τ -box (recall that

o
τ is a 1

δ × 1
δ × 1

δ2
-box) and Qρδ−2 is a ρδ−2-ball with

δ < ρ < 1 (as follows from the discussion in the beginning of this section).
This property permits indeed the use of the better estimate for sets satisfying a

‘two-ends condition’, given by the main lemma in Wolff’s Kakeya maximal function
bound [Wo1, Lem. 3.1].

5 The Variable Coefficient Case

We consider Hörmander type oscillatory integral operators of the form

(Tλf)(x) =

ˆ
eiλψ(x,y)f(y)dy (5.1)

with real analytic phase function ψ of the form
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ψ(x, y) = x1y1 + · · ·+ xd−1yd−1 + xd
(〈Ay, y〉+O(|y|3))+O

(|x|2|y|2) (5.2)

and 〈Ay, y〉 a non-degenerate quadratic form.
Here x (resp. y) are restricted to a neighborhood of 0 ∈ Rd (resp. 0 ∈ Rd−1). In

order to bring (5.1) in the format considered earlier, rescale x → x/λ to obtain a
phase function

φ(x, y) = x1y1 + · · ·+ xd−1yd−1 + xd
(〈Ay, y〉+O(|y|3))+ λφν

(
x
λ , y
)

(5.3)

and φν at least quadratic in both x, y. Thus (5.1) becomes

(Tf)(x) =

ˆ
eiφ(x,y)f(y)dy (5.4)

with x restricted to |x| < o(λ). This formulation appears as a perturbation of the
restriction problem and preceding analysis can be generalized to this setting.

First recall the [BCT] result in the variable coefficient case (see [BCT, Th. 6.2]
which treats the d-linear case, but generalizes to lower levels of multi-linearity as
formulated in [BCT, (40)] for φ linear in x).

Thus let 1 < k ≤ d and

(Tif)(x) =

ˆ
Ui

eiφi(x,y)f(y)dy (1 ≤ i ≤ k) (5.5)

with φi as in (5.3). We assume the transversality condition∣∣Z1(x, y
(1)) ∧ · · · ∧ Zk(x, y

(k))
∣∣ > c for all x and y(i) ∈ Ui , (5.6)

where
Z(x, y) = ∂y1(∇xφ) ∧ · · · ∧ ∂yd−1

(∇xφ) . (5.7)

Then ∥∥∥∥( k∏
i=1

|Tifi|
)1/k∥∥∥∥

q

� λε

( k∏
1

‖fi‖2

)1/k

(5.8)

with q = 2k
k−1 and x restricted |x| < o(|λ|).

Note that in the restriction problem, Z(x, y) = Z(y) and (5.6) amounts to
transversality of the normal vectors at the corresponding hypersurface S which is
the graph of ∂φ/∂xd.

It turns out that the λε-factor may be removed in (5.8) at the cost of increasing q
to q1 > 2k

k−1 . Thus, as proven in Lemma A.3 in the Appendix, under the assumptions
(5.5)–(5.7), one has∥∥∥∥( k∏

i=1

|Tifi|
)1/k∥∥∥∥

q1

≤ Cq1

( k∏
1

‖fi‖2

)1/k

for q1 >
2k

k − 1
. (5.8′)

Using (5.8′) instead of (5.8) in section 2 and section 3 to bound global multilinear
contributions, will eliminate the Rε-factors (cf. section 3, (4.7) and (4.9) for in-
stance), without the need for an ε-removal at the end (note that the Kε-factors
coming from a local application in section 3, (1.1) and (2.2) are harmless).
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Remark. We do not claim removal of the λε-factor in Theorem 6.2 in [BCT], but
only in its present application to the operators Ti given by (5.5).

Returning to the analysis from section 2, section 3, also some adjustment is
needed with respect to the parabolic rescaling argument that we discuss next.

Note that if we restrict |y| < 1
K and rescale, letting y = y′

K ; x1 = Kx′1, . . . , xd−1 =
Kx′d−1 and xd = K2x′d, we obtainˆ

eiφ
′(x′,y′)f

(
y′

K

)
dy′ where |x′1|, . . . , |x′d−1| <

λ

K
, |x′d| <

λ

K2 , (5.9)

and

φ′(x′, y′) = x′1y
′
1 + · · ·+ x′d−1y

′
d−1 + x′d

(
〈Ay′, y′〉+ 1

K
O
(|y′|3))

+ λφν

(
Kx′1
λ

, . . . ,
Kx′d−1

λ
,
K2x′d
λ

;
y′

K

)
, (5.10)

with x′ subject to the restrictions (5.9).
Comparing with (5.4), we see that one needs to consider the more general setting

of operators

(Tf)(x) =

ˆ
eiφ(x,y)f(y)dy restricting |x1|, . . . , |xd−1| < R1 and |xd| < R (5.11)

(R ≤ R1), and

φ(x, y) = x1y1 + · · ·+xd−1yd−1 +xd
(〈Ay, y〉+0(|y|3))+Rφν

(
x1

R1
, . . . ,

xd−1

R1
,
xd
R

; y

)
(5.12)

(here we use that φν is at least quadratic in y).
It has to be shown that (5.8′) remains valid. It turns out that the issue can be

reduced to the R = R1 case. We give the details. Let q > 2k
k−1 .

Partition the region

Q =
[|x1|, . . . , |xd−1| < R1

]× [|xd| < R
]
=
⋃

s≤R1/R

Qs

into R-cubes, and write

ˆ
Q

( k∏
1

|Tifi|
)q/k

dx =
∑
s

ˆ
Qs

( k∏
1

|Tifi|
)q/k

dx . (5.13)

Partition the y-domain Ω ⊂ Rd−1 in cubes Ωα of size ∼ 1/R centered at yα and
write

(Tifi)(x) =

(i)∑
α

eiφ(x,yα)
[ˆ

Ωα

fi(y)e
i[φ(x,y)−φ(x,yα)]dy

]
.

Restricting x ∈ Qs, the factors [ ] are approximatively constant

ci,α =

ˆ
Ωα

fi(y)e
i[ϕ(x̄,y)−ϕ(x̄,yα)]dy
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where x̄ is the center of Qs. For |z| < R

|Tifi|(x̄+ z) ≈
∣∣∣∣ (i)∑

α

eiη(z,yα)eiφ(x̄,yα)ci,α

∣∣∣∣
with η(z, yα) = φ(x̄+ z, yα)− φ(x̄, yα). Hence, defining

gi(y) = ci,αe
iφ(x̄,yα) for y ∈ Ωα ,

we have

|Tifi|(x̄+ z) ≈ Rd−1
∣∣∣∣ˆ eiη(z,y)gi(y)dy

∣∣∣∣ .
From (5.8′),

ˆ
B(0,R)

[ k∏
1

|Tifi|(x̄+ z)

]q/k
≤ CRq(d−1)

( k∏
1

‖gi‖2

)q/k

≤ CR
q(d−1)

2

[ k∏
1

( (i)∑
α

|ci,α|2
)1/2]q/k

≤ CR
q(d−1)

2

{ k∏
1

[ (i)∑
α

∣∣∣∣ˆ
Ωα

fi(y)e
iφ(x̄,y)dy

∣∣∣∣2]1/2}q/k

.

Since x̄ is any point in Qs, we obtain

R
q(d−1)

2
−d

ˆ
Qs

{ k∏
1

[ (i)∑
α

∣∣∣∣ˆ
Ωα

fi(y)e
iφ(x,y)dy

∣∣∣∣2]1/2}q/k

. (5.14)

Summing over s gives

ˆ
Q

[ k∏
1

|Tifi|
]q/k

< CR
q(d−1)

2
−d

ˆ
Q

k∏
1

[ (i)∑
α

∣∣∣∣ˆ
Ωα

fi(y)e
iφ(x,y)dy

∣∣∣∣2]q/2k. (5.15)

Note thatˆ
Q

∣∣∣∣ˆ
Ωα

fi(y)e
iφ(x,y)dy

∣∣∣∣2
≤ R. max

|xd|<R

ˆ ∣∣∣∣ˆ
Ωα

fi(y)e
i[x1y1+···+xd−1yd−1+Rφν( x1

R1
,··· ,xd−1

R1
,
xd
R

;y)]
dy

∣∣∣∣2dx1 · · · dxd−1

� R

ˆ
Ωα

|fi|2, (5.16)

using standard orthogonality considerations.
Also there is the trivial bound∣∣∣∣ˆ

Ωα

fi(y)e
iφ(x,y)dy

∣∣∣∣ ≤ |Ωα|1/2
(ˆ

Ωα

|fi|2
)1/2

≤ R−
d−1
2

(ˆ
Ωα

|fi|2
)1/2
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implying ∑
α

∣∣∣∣ˆ
Ωα

fi(y)e
iφ(x,y)dy

∣∣∣∣2 � R−(d−1)‖fi‖2
2 . (5.17)

From (5.15), (5.16), (5.17) and Hölder’s inequality, it follows that

(5.15) ≤ CRq d−1
2
−d
{ k∏

1

(
R1− d−1

2
(q−2)‖fi‖q2

)}1/k

≤ C

( k∏
1

‖fi‖q2
)1/k

, (5.18)

as claimed.
We also observe that at suitable local scale, the phase function φ(x, y) given

by (5.12) may be linearized in x, reducing to the restriction setting. Let x =
a+ z ∈ B(a, ρ) and write

φ(x, y) = φ(a, y) + ψ(z, y) + Ω(z, y) , (5.19)

denoting

ψ(z, y) = z1y1 + · · ·+ zd−1yd−1 + zd
(〈Ay, y〉+ 0(|y|3))

+
R

R1

〈
z′,∇x′φν

(
a′

R1
,
ad
R
; y

)〉
+ zd∂xd

φν

(
a′

R1
,
ad
R
; y

)
, (5.20)

with x = (x′, xd) and where∣∣Ω(z, y)∣∣ = o(1) provided ρ = o
(√

R
)
. (5.21)

Since Ω does not oscillate on B(a, ρ), it may be ignored in the phase function.
A suitable coordinate change in y brings ψ in the form

ψ(z, y) = z1y1 + · · ·+ zd−1yd−1 + zd
(〈A′y, y〉+O(|y|3)) (5.22)

with A′ a perturbation of A, hence A′ non-degenerate (and positive definite if A is
positive definite).

Using previous considerations, it is essentially straightforward to carry out the
analysis from section 2 and section 3 in the setting (5.11), (5.12), assuming again that
A is positive definite and using (5.8′) to bound the global multilinear contributions.

Hence, we obtain

Theorem 3. Consider the operator (5.1) with ψ as in (5.2) and A positive definite.
Then

‖Tλf‖Lp
loc

≤ Cpλ
−d/p‖f‖∞ , (5.23)

provided

p > 2
4d+ 3

4d− 3
if d ≡ 0 (mod 3) ,

p >
2d+ 1

d− 1
if d ≡ 1 (mod 3) ,

p >
4(d+ 1)

2d− 1
if d ≡ 2 (mod 3) .



GAFA BOUNDS ON OSCILLATORY INTEGRAL OPERATORS 1271

In particular, for d = 3, we obtain the condition p > 10/3. Interestingly, it turns
out that this is the optimal exponent (as we will explain in the next section).

Without assuming A positive definite, it is well-known that the condition

p ≥ 2(d+ 1)

d− 1
(5.24)

may be optimal range of validity for the inequality (5.19), when d is odd (cf. [B]).

It was shown also in [Bo2] that for d even, there is some p(d) < 2(d+1)
d−1 such that

‖Tλf‖Lp
loc

� λ−d/p‖F‖∞. (5.25)

The following statement makes this more precise.

Theorem 4. Consider the operator (5.1) with ψ as in (5.2) and A non-degenerate.
For d even, one has the inequality

‖Tλf‖Lp
loc

≤ Cpλ
−d/p‖f‖∞ for p >

2(d+ 2)

d
. (5.26)

(the exponent 2(d+2)
d was already known to be optimal).

Proof (sketch). We consider the setting (5.11), (5.12). Define the integer

k = d
2 + 1 .

Thus the condition on the exponent q in (5.8′) becomes q > 2(d+2)
d .

Following the procedure from section 2 and section 3, we fix a large parameter
K and restrict x to a K-ball BK = B(a,K). Subdividing the y-domain Ω in balls
Ωα of size 1/K and considering the operators

(Tαf)(x) =

ˆ
Ωα

eiφ(x,y)f(y)dy

we consider the following two alternatives.

Case 1 . On BK , we may estimate

|Tf | < C(K)|Tαif | (5.27)

for some α1, . . . , αk such that (5.6) holds for y(1) ∈ Ωα1 , . . . , y
(k) ∈ Ωαk

(with con-
stant c ∼ 1/K).

Case 2 . Failure of Case 1 . This implies that on BK

|Tf | �
∣∣∣∑
α∈A

Tαf
∣∣∣+max

α
|Tαf | (5.28)

where
⋃

α∈AΩα is contained in an ∼ 1
K -neighborhood of the (k − 2)-manifold, ob-

tained by requiring Z(a, y) given by (5.7) to belong to some (k−1)-dim linear space.
In particular,

#A � Kk−2. (5.29)
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In Case 1, write on BK

|Tf | ≤ C(K)
∑

α1,...,αk
(5.6) holds

( k∏
1

|Tαif |
)1/k

. (5.30)

The collected contribution may then be estimated using the k-linear bound and gives
the estimate

� C(K) . (5.31)

In Case 2, we proceed more crudely than in section 3 (note that lower-dimensional
restriction of the y-variable may lead to degenerate phase functions if the quadratic
form 〈Ay, y〉 is not assumed definite.)

From (5.28)( 
BK

|Tf |q
)1/q

≤
( 

BK

∣∣∣∑
α∈A

Tαf
∣∣∣q)1/q

+
(∑

α

|Tαf |q
)1/q

= (5.32) + (5.33) .

Estimate

(5.32)q ≤
[ 

BK

∣∣∣∑
α∈A

Tαf
∣∣∣2] [∑

α∈A
|Tαf |

]q−2

∼
[∑
α∈A

|Tαf |2
] [∑

α∈A
|Tαf |

]q−2
(using simple orthogonality)

< |A|1− 2
q
+(q−2)(1− 1

q
)
∑
α

|Tαf |q.

Recalling (5.29)

(5.32) ≤ K
(k−2)(1− 2

q
)
(∑

α

 
BK

|Tαf |q
)1/q

(5.34)

(
that also captures (5.33)

)
.

Thus the collected contribution over the BK is bounded by

K
(k−2)(1− 2

q
)
(∑

α

‖Tαf‖qq
)1/q

≤ K
(k−2)(1− 2

q
)+ d−1

q max
α

‖Tαf‖q . (5.35)

Rescaling gives the estimate

< K
(k−2)(1− 2

q
)+ d−1

q
−(d−1)+ d+1

q Q
(q)
R1
K

, R
K2

= K
d+2
q
− d

2Q. (5.36)

(denoting Q
(p)
R1,R

a bound on T : L∞ → Lp
|x′|<R1,|xd|<R given by (5.11)

)
.

Since q > 2(d+2)
d , this concludes the argument.
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6 Some Examples

We present in this section an example for n = 3 that will illustrate the optimality
of the exponent 10/3 in Theorem 3. It will also explain the differences between the
elliptic and hyperbolic cases.

Consider the following phase function

φ(x, y) = −x1y1 − x2y2 +
1
2x3y

2
1 + x2

3y1y2 +
1
2(x3 + x3

3)y
2
2 . (6.1)

First analyze the [BCT] transversality condition. Thus

∇xφ =
(−y1,−y2,

1
2(y

2
1 + y2

2) + 2x3y1y2 +
3
2x

2
3y

2
2
){

∂y1∇xφ = (−1, 0, y1 + 2x3y2) ,

∂y2∇xφ = (0,−1, y2 + 2x3y1 + 3x2
3y2) ,

Z(Φ)(y, x) = ∂y1∇xφ ∧ ∂y2∇xφ = (y1 + 2x3y2, y2 + 2x3y1 + 3x2
3y2, 1)

=

(
A

(
y1
y2

)
, 1

)
where A = Ax =

(
1 2x3

2x3 1+3x2
3

)
is a perturbation of identity.

Concerning condition (40) in [BCT], if one fixes x and restrict y = (y1, y2) to
non-collinear discs U1, U2, U3 ⊂ R2, clearly

det
(
Z(φ)(y(1), x), Z(φ)(y(2), x), Z(φ)(y(3), x)

) �= 0

for y(i) ⊂ Vi.

Next, consider the Kakeya type sets associated with (6.1).{
∂y1φ = −x1 + x3y1 + x2

3y2 ,

∂y2φ = −x2 + x2
3y1 + (x3 + x3

3)y2 ,
(6.2)

and

Γy is parametrized by

{
x1 = y1x3 + y2x

2
3 ,

x2 = y1x
2
3 + y2(x3 + x3

3) .
(6.3)

If we shift Γy by (y2, 0, 0), the tubes{
x1 = y1x3 + y2x

2
3 + y2

x2 = y1x
2
3 + y2(x3 + x3

3)
(6.4)

are contained in the surface
S : x1x3 = x2 .

Thus again one gets 2D-compression, similar to the hyperbolic example

ψ(x, y) = −x1y1 − x2y2 + 2x3y1y2 + x2
3y

2
2 . (6.5)

See also [W].
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We try to exploit this compression as well as possible to make the oscillatory
integral ˆ

eiλφ(x,y) f(y)dy (6.6)

(with an appropriate f) large.
At this stage, there seems to be quite a difference between (6.1) and (6.5). For

(6.5), just take

f(y) = eiy
2
1 . (6.7)

Then ˆ
eiλψ(x,y)f(y)dy =

ˆ
loc

eiλ[(y1+x3y2)2−(x1y1+x2y2)]dy (6.8)

and restricting x to a 1
λ -neighborhood of S

(6.8) ≈
ˆ
loc

eiλ[(y1+x3y2)2−x1(y1+x3y2)]dy .

Setting u = y1 + x3y2, stationary phase implies

|(6.8)| ∼ 1√
λ
.

and hence

‖(6.8)‖Lq
x
∼ 1√

λ

( 1
λ

)1/q
�
( 1
λ

)3/q
for q ≥ 4 .

In the elliptic case, this type of construction seems impossible.
But one can make the following one, which will explain where the condition

q ≥ 10/3 comes from.
Instead of (6.7), take in (6.6)

f(y) =
∑
s<
√
λ

σs1[ s√
λ
, s+c√

λ
](y2)e

iλ s√
λ
y1 . (6.9)

where σs = ±1 and c > 0 is a small constant.
Hence

(6.6) =
∑
s<
√
λ

σs

{ˆ
s√
λ
<y2<

s+c√
λ

e
iλ[φ(x,y)+ s√

λ
y1]dy

}
. (6.10)

Denoting R the region

R =

[
x3 ∼ 1 and |x2 − x1x3| = o

(
1√
λ

)]
, (6.11)

write ˆ
loc

|(6.6)|qdx ≥
ˆ
R
|(6.10)|qdx . (6.12)

Averaging the right side of (6.12) over signs σs = ±1, we clearly obtain
ˆ
R

{∑
s<
√
λ

∣∣∣∣ˆ s√
λ
<y2<

s+c√
λ

e
iλ[φ(x,y)+ s√

λ
y1]dy

∣∣∣∣2}q/2

dx . (6.13)
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Since

φ(x, y) =
1

2
x3

[(
y1 + x3y2 − x1

x3

)2

+
(
y2 +

x1x3−x2

x3

)2
]
− 1

2

[
x2

1
x3

+
(x1x3−x2)

2

x3

]
,

we have

φ(x, y)+
s√
λ
y1 =

1

2
x3

[(
y1+x3y2−x1

x3
+

s√
λ

1

x3

)2

+

(
y2− s√

λ
+
x1x3−x2

x3

)2]
+η(x, s) .

(6.14)
Therefore, from definition of R

(6.13) ∼
ˆ
R

{∑
s<
√
λ

∣∣∣∣ˆ s√
λ
<y2<

s+c√
λ

e
iλ
2
x3(y1+x3y2−x1

x3
+ s√

λ

1
x3

)2
dy

∣∣∣∣2}q/2

dx . (6.15)

Stationary phase shows that for |x1| = o(x3) and s = o
(√

λ
)
, the inner integral

in (6.15) is O(1/λ).
Hence

(6.13) ∼ ( 1
λ

) 3q
4 |R| ∼ ( 1

λ

) 3q+2
4

by (6.11), and

‖(6.6)‖q �
( 1
λ

) 3
4
+ 1

2q . (6.16)

Clearly (6.1) can only hold provided q ≥ 10/3.

7 Curved Kakeya Estimates

1. Let’s begin by describing curved Kakeya problems in Rn. We have a collection of
tubes Ti. Each tube Ti is the δ-neighborhood of a curve Γi in the unit ball in Rn. The
goal of the curved Kakeya problem is to assume some geometric information about
the tubes Ti and use it to prove estimates for the Lp norms of

∑
i χTi and/or for

the volume of the union of tubes ∪Ti. Either kind of estimate is a way of measuring
how much the tubes Ti overlap.

Let δ > 0 be a small number.
We assume that each curve has C2 norm � 1, and that each curve is an algebraic

curve of degree � 1. We assume that each curve is contained in the unit ball. (I.e.,
Γi is the restriction of an algebraic curve to the unit ball.)

We define Ti to be the δ-neighborhood of Γi. At each point x ∈ Ti, we can
approximately define the tangent direction to the tube Ti at x. Namely, pick any
point x′ ∈ Γi∩B(x, δ) and define vi(x) to be the unit tangent vector to Γi at x

′. Since
Γi has C

2-norm � 1, choosing different points x′ in B(x, δ) will lead to an ambiguity
of size � δ. So the function vi(x) is well-defined up to O(δ) on the tube Ti.

2. Assuming the Γi algebraic, we prove the following slightly stronger version of
the multilinear Kakeya estimate for curved tubes due to [BCT]. The next statement
deals with the 3-linear setting in R4 (for simplicity), but can be generalized to k-
linear in Rn.



1276 J. BOURGAIN AND L. GUTH GAFA 

Theorem 6. Suppose Γi are algebraic curves restricted to the unit 4-ball with
degree � 1 and C2 norm � 1. Let Ti denote the δ-neighborhood of Γi. Define
approximate tangent vectors vi(x) for x ∈ Ti as above. Suppose that the number of
tubes Ti is N . Then the following estimate holds:

ˆ
B4

[ N∑
i=1

χTi

N∑
j=1

χTj

N∑
k=1

χTk
|vi ∧ vj ∧ vk|

]1/2
� δ4N3/2. (2.1)

Choosing the curves Γi in the subspace [e1, e2, e3] implies immediately the same
statement in R3 with δ4 replaced by δ3 in (2.1).

Since we may repeat tubes Ti, we obtain also the weighted version from Theo-
rem 6.

The proof of the multilinear estimate follows the Dvir polynomial method, in-
troduced for problems over finite fields in [D]. The polynomial method was applied
to multilinear Kakeya problems in Rn in [G], and we will use results from there.

We will build an algebraic hypersurface Z of controlled degree which is con-
centrated where the tubes Ti overlap heavily, and we will study the intersections
between Z and the curves Γi.

Recall the definition of directed volume VS(v) :=
´
S |v · N | dvolS , where N de-

notes the normal vector to S. We need a curved version of the cylinder estimate,
Lemma 2.1 in [G].

Lemma 2.2. If Z is an algebraic surface in R4 of degree D, and if Γi is a curve of
degree d, and if Qα are disjoint cubes of side length ∼ δ which cover Ti, and if xα is
the center point of Qα, then the following inequality holds:∑

α

δ−3VZ∩Qα

(
vi(xα)

)
� dD . (2.3)

Proof. The idea of the proof is to interpret δ−3VZ∩Qα(vi(xα)) in a nice way: this
quantity is roughly the average number of intersections of Z ∩Qα with a translation
of Γi by a random vector v of length � δ. The total number of intersections of Z
with (almost every) translate of ΓI is at most dD by Bezout’s theorem.

The errors caused by vi(x) varying by ∼ δ as x varies in Qα contribute about
δD per cube and so at most D to the final answer.

In the paper [G], tubes had thickness 1. Our tubes have thickness δ, so it’s
convenient to re-normalize certain quantities. If Q ⊂ R4 is a cube of side length δ,
then

V ren
Z∩Q(v) := δ−3VZ∩Q(v) . (2.4)

We recall the notion of ‘visibility’ that plays a crucial role in [G].
The visibility of Z∩Qmeasures the directed volume of Z∩Q in various directions,

and if there is even one direction where Z ∩Q has low directed volume, the visibility
goes down a lot. The renormalized visibility has the following definition.

V isren[Z ∩Q] := Vol
({v such that |v| ≤ 1 and V ren

Z∩Q(v) ≤ 1})−1
. (2.5)
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As in [G], one needs to introduce modified versions V is and V of V is and V ,
obtained by a suitable averaging over Z. They have all good properties of the
originals and moreover depend continuously on Z. See [G] for details.

Next, we state a key result from [G, §5, p. 14], in our renormalized setting.

Lemma 2.6. Consider the standard δ-lattice in R4. Let M be a function from the
set of 4-cubes Q in this lattice to Z+ ∪ {o}. Then there is an algebraic hypersurface
of degree D such that

V isren[Z ∩Q] ≥ M(Q) for all Q , (2.7)

and

D < C
[∑

Q

M(Q)
]1/4

. (2.8)

Let Qα be a set of δ-cubes that cover the unit 4-ball. For each cube, define

F (Qα) :=
∑

Ti,Tj , and Tk intersect Qα

|vi ∧ vj ∧ vk| .

Here vi, vj , vk are evaluated at xα, the center of Qα.

Lemma 2.9. The sum
∑

α δ
4F (Qα)

1/2 � d3/2δ4N3/2.

The sum on the left-hand side is very close to the integral over the 4-ball we
want to estimateˆ

B4

[ N∑
i=1

χTi

N∑
j=1

χTj

N∑
k=1

χTk
|vi ∧ vj ∧ vk|

]1/2
∼
∑
α

δ4F (Qα)
1/2. (2.10)

We compare our discrete sum and the integral below. First we prove the lemma.

Proof. We construct a surface of degree � D (for a large D) so that for all α

V isren[Z ∩Qα] ≥ D4F (Qα)
1/2
[∑

α

F (Qα)
1/2
]−1

. (2.11)

(We can use any D, but we need D big enough so that the RHS is at least 1 for
all α.)

The existence of Z follows indeed from Lemma 2.6, taking for M(Qα) the RHS
of (2.11).

We show that

D
[∑

α

F (Qα)
1/2
]2/3

� dDN (2.12)

which is equivalent with (2.9). Write using (2.11).

D
[∑

F (Qα)
1/2
]2/3

�
∑

F (Qα)
1/3V̄ isren(Qα)

1/3D−1/3 �

=
∑
α

[
D−1V isren(Qα)

∑
Ti,Tj ,Tk meetQα

∣∣vi ∧ vj ∧ vk(xα)
∣∣]1/3.
(2.13 )
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Linear Algebra Lemma. For any three vectors vi, vj , vk, the following inequality
holds

V isren[Z ∩Qα]|vi ∧ vj ∧ vk| � DV
ren
Z∩Qα

(vi)V
ren
Z∩Qα

(vj)V
ren
Z∩Qα

(vk) (2.14)

Proof. We abbreviate V
ren
Z∩Qα

by V and V isren by V is.

We use the following facts. The function V maps R4 to R. It is non-negative. It
scales by the formula V (λv) = λV (v) for any λ > 0 and v ∈ R4. It is convex. And
finally |v| ≤ V (v) � D|v| (where the lower bound is ensured by enlarging Z with
∼ 1/δ hyperplanes.)

Now V is is defined as Vol{v ∈ B4 | V (v) ≤ 1}−1. So we have to prove that

Vol
{
v ∈ B4|V (v) ≤ 1

}
� |vi ∧ vj ∧ vk|D−1V (vi)

−1V (vj)
−1V (vk)

−1. (2.15)

Let v0 be a unit vector perpendicular to the plane spanned by vi, vj , vk. Let
e0 = v0/D. Then V (e0) ≤ 1. Also, let ei := vi/V (vi), so that V (ei) = 1. Define
ej , ek similarly. Since V (v) ≥ |v|, it follows that |ei| ≤ 1. Since V is convex, V ≤ 1 on
the convex hull of the eight points ±e0,±ei,±ej ,±ek. This convex hull lies in B4. Its
volume is approximately |e0∧ei∧ej ∧ek|. Since e0 is perpendicular to the other vec-
tors, this wedge is equal to |e0||ei∧ej∧ek| = D−1|vi∧vj∧vk|V (vi)

−1V (vj)
−1V (vk)

−1,
proving (2.15).

From (2.14)

(2.13) �
∑
α

[ ∑
Ti,Tj ,Tk meetQα

V
ren
Z∩Qα

(vi)V
ren
Z∩Qα

(vj)V
ren
Z∩Qα

(vk)
]1/3

=
∑
α

∑
Ti meetsQα

V
ren
Z∩Qα

(vi) =
N∑
i=1

∑
Qα meets Ti

V
ren
Z∩Qα

(vi) .

By the cylinder estimate, the last line is bounded � NdD as required.
This proves Lemma 2.9.
Finally, we return to the integral and show that the error in our discrete approx-

imation is not too big:

ˆ
B4

[ N∑
i=1

χTi

N∑
j=1

χTj

N∑
k=1

χTk

∣∣vi(x) ∧ vj(x) ∧ vk(x)
∣∣]1/2dx

=
∑
α

ˆ
Qα

[ N∑
i=1

χTi

N∑
j=1

χTj

N∑
k=1

χTk
|vi ∧ vj ∧ vk|

]1/2
dx

≤
∑
α

ˆ
Qα

[ ∑
Ti,Tj ,Tk meetQα

∣∣vi(x) ∧ vj(x) ∧ vk(x)
∣∣]1/2dx

≤
∑
α

ˆ
Qα

[ ∑
Ti,Tj ,Tk meetQα

∣∣vi(xα) ∧ vj(xα) ∧ vk(xα)
∣∣]1/2 + Error (2.16)

where
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Error �
∑
α

ˆ
Qα

[∑
i,j,k

χT̃i
χT̃j

χT̃k
|vi ∧ vj |δ

]1/2
� δ1/2

(ˆ
B4

∑
i,j

χTiχTj |vi ∧ vj |dx
)1/2(ˆ

B4

∑
χTk

)1/2

∼ N1/2δ2
(ˆ

B4

∑
i,j

χTiχTj |vi ∧ vj |dx
)1/2

. (2.17)

By Lemma 2.9, the first term in (2.16) is bounded by C.δ4d3/2N3/2.
In (2.17) we encounter a 2-linear version of our original 3-linear integral.
This can be estimated by a much easier argument in the same spirit.
We show that ˆ

B4

XTiXTj |vi ∧ vj | < Cδ4d2. (2.18)

Hence (2.17) < CN3/2δ4d and this completes the proof of Theorem 8.
It remains to justify (2.18). Thus

Lemma 2.19. Suppose that Γ1 and Γ2 are degree d algebraic curves in B4 and C2

curves of norm � 1, and Ti are δ tubes around Γi.
Then ˆ

B4

χT1χT2

∣∣v1(x) ∧ v2(x)
∣∣dx � d2δ4. (2.19)

Proof (sketch). (This is an easier version of the 3-linear estimate (2.1)).
Cut the unit ball into δ cubes Qα.
PickD a large degree. Choose Z a degreeD hypersurface so that V

ren
Z∩Qα

(x) ≥ |x|
and

V isren[Z ∩Qα] � D4∣∣v1 ∧ v2(xα)
∣∣[∑

α

∣∣v1 ∧ v2(xα)
∣∣]−1

. (2.20)

Now our integral is roughly

δ4
∑

Qα⊂T1∩T2

∣∣v1 ∧ v2(xα)
∣∣ . (2.21)

The error in this approximation is δVol(T1 ∩ T2) � dδ4 which is not larger than
the main term.

It suffices to prove ∑
α

|v1 ∧ v2| � d2. (2.22)

Manipulating (2.20), we see that∑
α

|v1 ∧ v2| � D−4
[∑

α

V isren[Z ∩Qα]
1/2|v1 ∧ v2|1/2

]2
(by a linear algebra lemma like the one above)

� D−2
[∑

V
ren

(v1)
1/2V

ren
(v2)

1/2
]2



1280 J. BOURGAIN AND L. GUTH GAFA 

≤ D−2
(∑

α

V
ren

(v1)
)(∑

α

V
ren

(v2)
)
.

Now the first term in parentheses is essentially the average number of intersec-
tions between Z and Γi after translating Γi by a random vector of length � δ, and
so it has size at most dD by Bezout’s theorem. (Compare the cylinder estimate
above.) The same applies to the second term. So the whole expression is bounded
� d2.

3. Application to curved Kakeya sets. Again we restrict ourselves to n = 4
but the result generalize to even dimension n (the exponent 3/2 in Theorem 7 below
is then replaced by 1 + 2

n .)
Let the curves {Γi} be as specified in the beginning of this section. We also make

an ‘angle assumption’ for pairs of curves, as follows.
The index set {i} is given a geometric structure. For each curve i, we associate

a point yi in Bn−1(1). We assume that the points yi are δ-separated. We make the
following crucial geometric assumption. If a point x lies in Ti and in Tj , then the
angle between vi(x) and vj(x) is � |yi − yj |. This assumption prevents too many
near-tangencies in the overlaps of the tubes.

Theorem 7. Under the hypotheses above, for all p > 3/2,∥∥∥∑
i

χTi

∥∥∥
p
� δ−3+4/p. (3.1)

Hence, any curved Kakeya set in R4 (defined from algebraic curves of controlled
degree and controlled C2 norm) has Minkowski dimension at least 3. (We will
indicate later on in this section how to generalize this last claim to C∞-curves.)

Examples (cf. [Bo2]) show that the statement in Theorem 7 is best possible.
The proof of Theorem 7 uses an inductive argument, where we assume that a

good estimate holds for a partial sums
∑

yi∈ small ball χTi and then we prove that a
good estimate holds for a partial sum on yi in a larger ball.

Theorem 7′. Let Ti obey the hypotheses from Theorem 7 . Suppose that p > 3/2.
Suppose that ρ is a scale in the range δ ≤ ρ ≤ 1. Let Bρ denote any ball of radius
ρ in B3(1). Then the following estimate holds:∥∥∥ ∑

yi∈Bρ

χTi

∥∥∥
p
� δ

−3+ 4
p ρ

3− 1
p . (3.2)

When ρ = 1, Theorem 7′ implies Theorem 7. When ρ = δ, Theorem 7′ is trivial.
We will prove Theorem 7′ by induction on ρ. So we are allowed to assume that
Theorem 7′ holds for all ρ̄ < ρ/2. In other words, we know∥∥∥ ∑

yi∈Bρ̄

χTi

∥∥∥
p
≤ αδ−3+4/pρ̄3−1/p. (3.3)

In this equation α is a large constant that we will choose later. Assuming (3.3),
we will prove that the same estimate holds for balls of radius ρ, with the same
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constant α. In other words, we will prove∥∥∥ ∑
yi∈Bρ

χTi

∥∥∥
p
≤ αδ−3+4/pρ3−1/p. (3.4)

Once we have proven (3.4), the inductive argument shows that Theorem 7′ holds
for all ρ, and we are done. The idea of the proof is as follows. We cover Bρ with
smaller balls, and then write

∑
yi∈Bρ

as a sum of contributions from the smaller
balls. To bound the Lp norm of this sum, we use a combination of two tools. First,
(3.3) bounds the Lp norms of the contributions from each smaller ball. By itself this
is not enough, but it shows that, for (3.4) to fail, we need to have points where many
smaller balls are contributing. The size of this effect is controlled by the multilinear
estimate.

Let K be a large constant to be determined later. We cover Bρ by K3 smaller
balls, each of radius at most 10ρ/K. We call each of these smaller balls a “clump”.
Hence our set of tubes is divided into ∼ K3 clumps.

We divide B4 into two regions, depending on how the tubes through x are divided
among the clumps. We call a point x ∈ B4 “narrow” if there exist < 104K clumps
which contain half of the tubes through the point x. We call x “broad” if it is not
narrow. Let N ⊂ B4 be the set of narrow points, and N c ⊂ B4 the set of broad
points.

Our inductive hypothesis directly controls
∥∥∑

yi∈Bρ
χTi

∥∥
Lp(N).

Lemma 3.5. Let p > 3/2. Assuming (3.3), and assuming that K = K(p) is
sufficiently large, the following estimate holds:ˆ

Narrow

[ ∑
yi∈Bρ

χTi

]p
dx ≤ (1/2)αpδ4−3pρ3p−1. (3.6)

More explicitly, we say that K is sufficiently large if [2 · 107]pK−2p+3 < 1/2.
Notice that this condition depends only on p.

Proof. Fix x ∈ Narrow. We divide the sum
∑

yi∈Bρ
χTi(x) into clumps:

∑
yi∈Bρ

χTi(x) ≤
K3∑
j=1

[ ∑
yi∈ clump(j)

χTi(x)
]
. (3.7)

Now since x is narrow, the sum on the right-hand side is controlled by the sum
from only 104K clumps. In other words, we can pick a set C(x) of at most 104K
clumps so that

(3.7) ≤ 2
∑

j∈C(x)

[ ∑
yi∈ clump(j)

χTi(x)
]
. (3.8)

Now by Holder’s inequality, this last sum is dominated by

(3.8) ≤ 2
[ ∑
j∈C(x)

( ∑
yi∈ clump(j)

χTi(x)
)p]1/p

[104K]
p−1
p .
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Putting together the string of inequalities we just proved, we see that for each
x ∈ Narrow, [ ∑

yi∈Bρ

χTi(x)
]p ≤ 2p[104K]p−1

K3∑
j=1

( ∑
yi∈ clump(j)

χTi(x)
)p

.

Now integrating over the narrow set, we get

ˆ
Narrow

[ ∑
yi∈Bρ

χTi(x)
]p
dx ≤ 2p[104K]p−1

K3∑
j=1

ˆ
B4

( ∑
yi∈ clump(j)

χTi(x)
)p

dx. (3.9)

But by induction (3.3), the integral involving each smaller clump in (3.9) is
controlled ˆ

B4

( ∑
yi∈ clump(j)

χTi(x)
)p

dx ≤ αpδ4−3p(10ρ/K)3p−1.

Plugging this estimate into (3.8), we getˆ
Narrow

[ ∑
yi∈Bρ

χTi(x)
]p
dx ≤ 2p[104K]p−1K3αpδ4−3p(10ρ/K)3p−1. (3.10)

Grouping terms in the right-hand side, we get

≤ [2 · 104 · 103]pK−2p+3αpδ4−3pρ3p−1.

We choose K = K(p) sufficiently large so that

[2 · 107]pK−2p+3 < 1/2 .

Since p > 3/2, we can choose K sufficiently large to make this inequality hold.
This proves Lemma 3.5.

At this point we fix K = K(p).
Next we have to control the contribution from the broad points in B4. We do

this using the multilinear estimate.

Lemma 3.11. Let Broad ⊂ B4 denote the set of broad points.ˆ
Broad

∣∣∣ ∑
yi∈Bρ

χTi

∣∣∣3/2 ≤ C(K)δ−1/2ρ7/2. (3.12)

Proof. Let x ∈ B4 be a broad point. The broadness of x leads to the following
estimate:∣∣∣ ∑
yi∈Bρ

χTi(x)
∣∣∣3≤ ρ−2C(K)

∑
yi∈Bρ

χTi(x)
∑

yj∈Bρ

χTj (x)
∑

yk∈Bρ

χTk
(x)
∣∣vi(x)∧vj(x)∧vk(x)∣∣ .

(3.13)
This holds because most triples of tubes through a broad point lie in clumps that

fail to be coplanar, and so we have |vi(x) ∧ vj(x) ∧ vk(x)| ≥ ρ2/C(K).
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Taking the square root of (3.13) and integrating, we get
ˆ
Broad

∣∣∣ ∑
yi∈Bρ

χTi

∣∣∣3/2
≤ C(K)ρ−1

ˆ
B4

[ ∑
yi∈Bρ

χTi(x)
∑

yj∈Bρ

χTj (x)
∑

yk∈Bρ

χTk
(x)
∣∣vi(x)∧vj(x)∧vk(x)∣∣]1/2dx.

(3.14)

But the right-hand side is controlled by the multilinear estimate. The number
of points yi ∈ Bρ is ≤ 100[ρ/δ]3. According to Theorem 6, the right-hand side is
bounded above by

(3.14) �K ρ−1δ4[ρ/δ]9/2 = δ−1/2ρ7/2,

proving Lemma 3.11.
The estimate in Lemma 3.11 controls the L3/2 norm of

∑
χTi on the broad set.

There is an obvious estimate for the L∞ norm, and by combining them we can
estimate the Lp norm for our choice of p > 3/2.

We clearly have the L∞ bound

sup
x

∣∣∣ ∑
yi∈Bρ

χTi

∣∣∣ � ρ3δ−3. (3.15)

Since our p > 3/2, we see thatˆ
Broad

∣∣∣ ∑
yi∈Bρ

χTi

∣∣∣pdx � [ρ3δ−3]p−3/2
ˆ
Broad

∣∣∣ ∑
yi∈Bρ

χTi

∣∣∣3/2dx .
Applying Lemma 3.11 to bound the last integral, we see thatˆ

Broad

∣∣∣ ∑
yi∈Bρ

χTi

∣∣∣pdx ≤ C(K)ρ3p−1δ4−3p. (3.16)

Now we choose α large enough that C(K) ≤ (1/2)αp. (So α depends on K
and p.) Now we know thatˆ

Broad

∣∣∣ ∑
yi∈Bρ

χTi

∣∣∣pdx ≤ (1/2)αpρ3p−1δ4−3p. (3.17)

and (3.6), (3.17) imply (3.4).
This concludes the proof of Theorem 7′ and hence Theorem 7.

4. Estimates for Ck curves. We can prove estimates for Ck-curved Kakeya
sets by approximating the Ck curves using polynomials. This idea was suggested
to us by Alex Nabutovsky. He referred us to Jackson’s theorem in approximation
theory and related results.

The results in this section look far from optimal, but we wanted to show that
something can be done for non-algebraic curves as well with these methods.
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Jackson-Type Theorem. If f : [0, 1] → R has Ck norm 1, then we can approxi-
mate f by a degree d polynomial P so that∣∣f(x)− P (x)

∣∣ � d−k for all x ∈ [0, 1] . (4.1)

In particular, we may approximate a Ck curve Γi by a degree d algebraic curve
with the same δ-tube and with d � δ−1/k.

Remark. This algebraic curve will be just the graph of a degree d polynomial.
There are many more algebraic curves and so one may hope for a better estimate,
but it would take some more sophisticated approximation theory.

Tracking the dependence on degree in Theorem 7, the following estimate is ob-
tained.

Theorem 7′′. Under the hypotheses in section 3, for all p > 3/2,∥∥∥∑
i

χTi

∥∥∥
p
� d3/2pδ−3+4/p. (4.2)

Hence we get the following estimate for Ck curves Γi with k ≥ 2 obeying the
angle condition:

Theorem 8. Under the hypotheses above, for all p > 3/2,∥∥∥∑
i

χTi

∥∥∥
p
�k δ

−3+ 4
p
− 3

2pk . (4.3)

In particular, for C∞ curves we have essentially the same estimate that we had
for algebraic curves.

An immediate consequence of Theorem 8 is the following result on the Minkowski
dimension of curved Kakeya sets.

Theorem 9. Any curved Kakeya set in 4D associated to C∞-curves obeying the
angle condition, has Minkowski dimension at least 3.

The method described in section 7 can be generalized to higher dimensions. In
particular, for n even, smooth curved Kakeya sets in Rn have Minkowski dimension
at least n

2 +1. This statement, which in some sense is the companion to Theorem 4,
is the sharp version of a phenomenon first observed in [Bo2]. Note that for n odd,
(algebraic) curved Kakeya sets may have Minkowski dimension n+1

2 (cf. [Bo2]).

8 Further Comments

It is not quite clear at this point what is the exact potential of the method introduced
in this paper (when the optimal result is not attained) and we have not tried to push
the techniques to their limit. In particular, further improvements in Theorem 2 are
not out of the question and one could also explore if the more refined strategy used to
obtain Theorem 2 in 3D has a higher-dimensional counterpart (possibly improving
upon Theorem 1).
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Returning to inequality (5.8′) in section 5, we present next an alternative proof
for n = 3 of the following statement (which suffices for the application to Theorem 3
when n = 3).

Proposition 8.1. Under the transversality assumption (5.6), (5.7) in section 5 one
has the 3-linear estimate in 3D∥∥∥∥ 3∏

i=1

(
T

(i)
λ fi
)∥∥∥∥

Lq/3

< λ
− 9

q

3∏
i=1

‖fi‖2 for q >
10

3
, (8.2)

where the operators T
(i)
λ are given by (5.1), (5.2) with positive definite quadratic

form and the phase functions are assumed algebraic of bounded degree.

Proposition 8.1 is weaker then (5.8′) in section 5, but may be obtained directly
without the need for an ε-removal lemma; hence this argument may have some
interest.

Returning to the argument in [BCT] (which is similar to the one in [Bo1]) there
are basically two steps, that will be suitably modified.

1. The first step in the approach involves the ‘intermediate scale’ |x| < 1/
√
λ.

At this scale, as explained in (5.19)–(5.23) in section 5, the problem may be
linearized in x. This allows us to derive a trilinear bound from the bilinear
2 × 2 → q

2 estimate for q > 2(d+1)
d = 10

3 due to [T1] in the restriction theory
rather than relying on a bootstrap. We point out that the linear result from
[T1] for the paraboloid and, more generally, smooth hypersurfaces with pos-
itive definite second fundamental form, may fail without this last hypothesis
(for instance for a hyperbolic paraboloid, cf. [V]), if there are no additional
assumptions.

2. At the second stage of the argument, the issue is the 3-linear Kakeya estimate
(in the curved case), which is Proposition 6.8 in [BCT]. Here another factor
λε enters into their argument. However, Theorem 6 of the paper may be used,
since it immediately implies (by lowering the dimension from R4 to R3).

Proposition 8.3. Denoting {τi} δ-neighborhoods of a family {Γi} of smooth alge-
braic curves of degree � 1 in B(0, 1) ⊂ R3 and vi the tangent vector at a given point
p ∈ Γi, one hasˆ [∑

i,j,k

λiμjηkXτi∧τi∧τk |vi∧vj∧vk|
]1/2

< Cδ3
(∑

|λi|
)1/2(∑ |μj |

)1/2(∑ |ηk|
)1/2

.

Proof of Proposition 8.1. Rescaling x → x/λ, we obtain the phase function

φ(x, y) = λφ
(
x
λ , y
)

where |x| = o(λ) .

Partition the y-domain Ω into boxes Ωα of size 1/
√
λ centered at points yα. Write

for y ∈ Ωα

φ(x, y) = φ(x, yα) +
〈∇yφ(x, yα)

〉
O

(
λ|y − yα|2

)
where the last term may be dropped.



1286 J. BOURGAIN AND L. GUTH GAFA 

Tαf(x) =

ˆ
Ωα

ei〈∇yφ(x,yα),y−yα〉f(y)dy , (8.4)

and write
Tf(x) =

∑
α

eiφ(x,yα)(Tαf)(x) . 8.5)

Next, introduce a variable z ∈ B
(
0,
√
λ
)
, writing

Tf(x+ z) ∼
∑
α

eiφ(x+z,yα)(Tαf)(x) . (8.6)

Returning to (8.2), write

ˆ
B(0,λ)

[ 3∏
i=1

|T (i)fi|
]q/3

∼ λ−
3
2

ˆ
B(0,λ)

∥∥∥∥ 3∏
i=1

(
T (i)fi

)
(x+ z)

∥∥∥∥q/3
Lq/3(|z|<√λ)

dx (8.7)

with T (i)fi(x+ z) replaced by (8.6).

Estimate
∥∥∏3

i=1

∥∥
q/3 ≤ ∥∥∏i=1,2

∥∥1/2
q/2

∥∥∏
i=2,3

∥∥1/2
q/2

∥∥∏
i=3,1

∥∥1/2
q/2.

Denoting
η(z, y) = φ(x+ z, y)− φ(x, y) (x fixed) ,

we boundˆ
B(0,

√
λ)

∣∣∣∑
α

eiη(z,yα)(T (1)
α f1
)
(x)
∣∣∣q/2∣∣∣∑

β

eiη(z,yβ)(T (2)
β f2
)
(x)
∣∣∣q/2dz . (8.8)

Define functions g1, g2 by

g1(y) = eiη(z,yα)(T (1)
α f1
)
(x) for y ∈ Ωα , (8.9)

and similarly for g2.
Clearly

(8.8) ∼ λq

ˆ
B(0,

√
λ)

∣∣∣∣ˆ eiη(z,y)g1(y)dy

∣∣∣∣q/2∣∣∣∣ˆ eiη(z,y)g2(y)dy
∣∣∣q/2dz . (8.10)

Since, following (5.19)-(5.22) in section 5, η has the form

η(z, y) = z1y1+z2y2+z3
(〈Ay, y〉+O(|y|3))+O

(
|z| |x|

λ
|y|2
)
+O

( |z|2
λ

|y|2
)
; (8.11)

the last term in (8.11) may be dropped for |z| < √
λ. Hence η(z, y) may be viewed

as linear in z, of the form

z1y1 + z2y2 + z3〈A′y, y〉+O
(|z| |y|3) 8.12)

with A′ positive definite.
Applying the bilinear 2× 2 → q/2 bound from [T1], it follows that

(8.10) � λq‖g1‖q/22 ‖g2‖q/22

∼ λq/2
[∑

α

∣∣(T (1)
α f1
)
(x)
∣∣2]q/4[∑

β

∣∣(T (2)
β f2)(x)

∣∣2]q/4. (8.13)
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From (8.13), the following bound on (8.7) is obtained

λ
1
2
(q−3)

ˆ
B(0,λ)

{ 3∏
i=1

[∑
α

∣∣(T (i)
α fi
)
(x)
∣∣2]q/6}dx . (8.14)

The next step is to capture the factors in (8.14) by curved Kakeya maximal functions.
From definition of Tα

|Tαf |2(x) = |f̂α|2
(∇yφ(x, yα)

)
where fα = f |Ωα . (8.15)

Let b be a standard bump function on Rd−1. Then |f̂α|2 may be recovered by an
average of translates b

( ξ−·√
λ

)
with averaging weight λ−1‖fα‖2

2.

Denoting
c(i)α = ‖fi,α‖2

2 (i = 1, 2, 3)

satisfying ∑
α

c(i)α = ‖fi‖2
2 , (8.16)

we obtain, therefore,

∑
α

∣∣(T (i)
α fi
)
(x)
∣∣2 � λ−1

(i)∑
α,ν

b
(
λ−

1
2 (∇yφ(x, yα)− ξα,ν)

)
.c(i)α,ν , (8.17)

where c
(i)
α,ν > 0,

∑
ν c

(i)
α,ν = c

(i)
α and∑

α,ν

c(i)α,ν = ‖fi‖2
2 . (8.18)

Substituting (8.17) in (8.14), one gets

λ−
3
2

ˆ
B(0,λ)

{ 3∏
i=1

[ (i)∑
α,ν

b
(
λ−

1
2 (∇yφ(x, yα)− ξα,ν)

)
c(i)α,ν

]q/6}
dx

= λ
3
2

ˆ
B(0,1)

{ 3∏
i=1

[ (i)∑
α,ν

c(i)α,νb
(
λ−

1
2 (∇yφ(λx

′, yα)− ξα,ν)
)]q/6}

dx′. (8.19)

We may now apply Proposition 8.3. In the present trilinear setting, |vi∧vj ∧vk| > c
and hence ∥∥∥∥ 3∏

i=1

[∑
s

λ(i)
s Xτs(i)

]∥∥∥∥
L1/2

≤ cδ6
3∏

i=1

[∑
s

∣∣λ(i)
s

∣∣] , (8.20)

where δ = 1/2 and the tubes τ are of the form

λ−1∣∣∇yφ(λx, y)− ξ
∣∣ < λ−1/2. (8.21)

Interpolation of (8.20) with the obvious L∞-bound gives, for r ≥ 1/2,∥∥∥∥ 3∏
i=1

[∑
s

λ(i)
s X

τ
(i)
s

]∥∥∥∥
Lr

≤ cδ
3
r

3∏
i=1

[∑
s

∣∣λ(i)
s

∣∣] . (8.22)
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Application of (8.22) to (8.19) with r = q
6 > 5

9 implies, by (8.18)

(8.7), (8.14), (8.19) < Cλ3/2
( 1√

λ

)3 3∏
i=1

‖fi‖q/32 8.23)

and in view of the initial rescaling, (8.2) follows.

Appendix: Epsilon Removal Lemmas.

We consider first the restriction (or extension) problem.
What follows is basically a modification of Theorem 1.2 in [T2] on deriving

global restriction estimates from local ones. A significant difference is that instead
of considering bounds of the type (γ > 0)∥∥f̂ |S∥∥Lp(dσ) � Rγ‖f‖Lp(BR) , (1)

for f ∈ Lp(Rn), supp f ⊂ BR, we start from a local inequality of the form∥∥f̂ |S∥∥L1(dσ) � Rγ‖f‖Lp(BR) . (2)

Compared with the argument in [T2], this will require additional involvement of the
Maurey–Nikishin factorization theorem.

Lemma A.1. Assuming 1 < p < 2, 0 < γ � 1 and (2). Then∥∥f̂ ∣∣
S
‖L1(dσ) � ‖f‖p1 , (3)

for f ∈ Lp1(Rn) and
1

p1
>

1

p
+

C

log 1/γ
. (4)

In particular, if (1) holds for arbitrary small γ > 0, the global inequality (3) will
hold for any p1 < p.

We start by dualizing (2), implying that the operator

T : L∞(S, dσ) → Lp′(BR) : ϕ → ϕ̂σ|BR

(
p′ =

p

p− 1

)
satisfies ‖T‖ < Rγ . Hence, from the theory of absolutely summary operators, fixing
any r > p′ > 2, there is a probability measure μ on S, such that

‖ϕ̂σ‖Lp′ (BR) � Rγ‖ϕ‖Lr(dμ) . (5)

There is no harm in assuming dμ/dσ > 1/2.
We first enforce some smoothness for the density. Let τ : S → S be any diffeo-

morphism that is 1
R -close to the identity. Then, for |x| < R, a change of variables

gives

̂(ϕ ◦ τ)σ(x) =
ˆ

ϕ(τ(ξ)
)
e(x.ξ)σ(dξ)

=

ˆ
ϕ(ξ′)e

(
x.τ−1(ξ′)

)
Δ(ξ′)σ(dx′) where |1−Δ| � 1

R
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=

ˆ
(Δϕ)(ξ′)e(x.ξ′)σ(dξ′) (6)

+O

{∑
j≥1

1

j!

∣∣∣∣ˆ (Δψjϕ)(ξ
′)e(xξ′)σ(dξ′)

∣∣∣∣} , (7)

where (7) is obtained by Taylor expansion of e(x.(τ−1(ξ′) − ξ′)) and |ψj(ξ
′)| <

(R|τ−1(ξ′)− ξ′|)j < 1 by assumption on τ . Hence∣∣T (ϕ ◦ τ)∣∣ ≤ ∣∣T (ϕΔ)

∣∣∣∣+∑
j≥1

1

j!

∣∣T (Δψjϕ)
∣∣ ,

and applying (5) ∥∥T (ϕ ◦ τ)∥∥
Lp′ (BR) � Rγ‖ϕ‖Lr(dμ) .

Replacing ϕ by ϕ ◦ τ−1, we obtain

‖Tϕ‖p′ � Rγ‖ϕ ◦ τ−1‖Lr(dμ) = Rγ‖ϕ‖Lr(dμτ )

with μτ = (τ−1)∗[μ]. Averaging over τ as above allows us to smoothen out μ at scale
1/R and replace μ by a probability measure μ′ on S, μ � σ and dμ′/dσ = ρ ≥ 1/2
with ρ smooth at scale 1/R. Thus we have

‖ϕ̂σ‖
L
p′ (BR)

≤ Rγ‖ϕρ1/r‖Lr(dσ) , (8)

and dualizing ∥∥f̂ρ−1/r|S
∥∥
Lr′ (dσ) ≤ Rγ‖f‖p if supp f ⊂ BR . (8′)

In what precedes, we fixed R ≥ 1. Note that ρ depends on R.
Following [T2], define a finite collection of balls {B(aα, R)}Nα=1 in Rn as ‘sparse’

if, for α �= α′,
|aα − aα′ | > (NR)C (9)

(C some constant to specify).
Let now supp f ⊂ ⋃αB(aα, R), i.e.

f =

N∑
α=1

fα(x− aα) with supp fα ⊂ BR .

Hence,

f̂(ξ) =
∑

e(aα.ξ)f̂α(ξ)

and, since ‖ϕ‖1 = 1,∥∥f̂ |S∥∥L1(dσ) ≤
∥∥∥[∑ e(aα.ξ)f̂α(ξ)

]
ρ−

1
r (ξ)
∥∥∥
Lr′ (dσ)

. (10)

Note that by our construction of ρ, the function gα = f̂α.ρ
−1/r|S is smooth at scale

1/R. The sparsity of {aα} allows us then to estimate∥∥∥∥ N∑
1

e(aα.ξ)gα(ξ)

∥∥∥∥
Lr′ (dσ)

≤ 2
(∑

‖gα‖r′Lr′ (dσ)

)1/r′
. (11)
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This is basically Lemma 3.2 in [T2] and we include the argument for completeness
sake.

Establish (11) by interpolation.
More precisely, the claim will follow from an inequality for 1 ≤ s ≤ 2∥∥∥∥ N∑

1

e(aα.ξ)(ϕ̃α ∗ P1/R)(ξ)|S
∥∥∥∥
Ls(dσ)

�
(∑

‖ϕα‖sLs(dσ)

)1/s
, (12)

where {ϕα} are arbitrary functions in Ls(S, dσ), ∼ denotes a well-behaved extension
operator from L∗(S) → L∗(Rn) (take for instance the harmonic extension) and P1/R

is an 1
R -approximate identity.

For s = 1, (12) is trivial from triangle inequality and since ‖(ϕ̃∗P1/R)|S‖1 � ‖ϕ‖1.
For s = 2, we obtain for the square of the left side of (12)

N∑
1

‖ϕα‖2
2 +
∑
α �=α′

∣∣∣∣ˆ e
(
(aα − aα′).ξ

)
(ϕ̃α ∗ P 1

R
)(ξ).(ϕ̃α′ ∗ P1/R)(ξ)σ(dξ)

∣∣∣∣ , (13)

and show that the contribution of the off-diagonal is small.
Denoting Φα = ϕ̃α∗P1/R, we may assume supp Φ̂α ⊂ BR so that clearly, invoking

the decay of σ̂ and the fact that |aα − aα′ | � R∣∣∣∣ˆ e
(
(aα − aα′).ξ

)
Φα(ξ)Φα′(ξ)σ(dξ)

∣∣∣
� 1

|aα − aα′ |n−1
2

‖φ̂α‖1 ‖φ̂α′‖1 � Rn

|aα − aα′ |n−1
2

‖φα‖2 ‖φα′‖2

� Rn

|aα − aα′ |n−1
2

‖ϕα‖2‖ϕα′‖2 .

Consequently, the second term in (13) is bounded by the first, provided

max
α

∑
α′ �=α

1

|aα − aα′ |n−1
2

< R−n.

This will be ensured if we require, for α �= α′,

|aα − aα′ | > N
n+1

n(n−1)R
2n
n−1 , (14)

as implied by (9) for C large enough. Then (12) will hold for s = 2 and hence for
1 ≤ s ≤ 2. Thus we proved (11).

Application of (11) with gα = f̂α.ρ
−1/r|S and invoking (8′) implies that

∥∥f̂ |S∥∥L1(dσ) � Rγ

( N∑
α=1

‖fα‖r′p
)1/r′

� RγN
1
r′− 1

p ‖f‖p (15)

(recall that r > p′ is arbitrary).
Thus inequality (15) holds provided supp f is contained in a sparse collection of

N balls of radius R.
The next ingredient is the following covering lemma (Lemma 3.3) from [T2].
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Lemma A.2. Suppose E ⊂ Rn is a finite union of 1-cubes and take 0 < δ < 1. Then
there exist O

(1
δ |E|δ) sparse collections of balls that cover E, such that the balls in

each collection have radius at most O
( |E|C1/δ)

.

Of course the number of balls in each collection is trivially bounded by |E|.
Assume supp f ⊂ E and apply Lemma A.2 to E (assume a union of 1-cubes).

Hence,

E ⊂
⋃

j� 1
δ
|E|δ

⋃
a∈Ej

B(a,Rj)

with Rj � |E|C1/δ
and {B(a,Rj); a ∈ Ej} sparse for each j; #Ej ≤ N = |E|.

Writing f =
∑

fj , fj = f
∣∣⋃

a∈Ej B(a,Rj)
, application of inequality (15) to each fj

implies ∥∥f̂ |S∥∥L1(dσ) �
1
δ |E|γC1/δ+δN

1
r′− 1

p ‖f‖p . (16)

Taking δ ∼ 1
log 1/γ and r < p′ + 1

log 1/γ , we conclude that∥∥f̂ |S∥∥L1(dσ) �γ |E| C
log 1/γ ‖f‖p . (17)

Let p1 < p and f ∈ Lp1(Rn), ‖f‖p1 ≤ 1, which we assume constant on c-cubes
(c ∼ 1).

Decompose in level sets

f =
∑
k≥0

f
∣∣
[2−k−1≤|f |<2−k] =

∑
fk

with supp fk = Ek, Ek a union of Nk c-cubes and 2−kp1Nk � 1.
From (17) ∥∥f̂k|S∥∥L1(dσ) � N

c
log 1/γ

k ‖fk‖p � 2
k[ cp1

log 1/γ
+ p1

p
−1]

,

and, therefore, ∥∥f̂ |S∥∥L1(dσ) < Cγ , (18)

provided
C

log 1/γ
< 1− p1

p
. (19)

which amounts to condition (4).
Arguing like in [T2], we showed that (18) holds for any function f ∈ Lp1(Rn) of

the form f =
∑

ξ∈L λξ1B(ξ,c) with
∑ |λξ|p1 ≤ 1 and L a (shifted) 1-lattice. Taking

c > 0 a sufficiently small constant as to ensure that 1̂B(0,c)
is positive on S, it follows

that ∥∥∥[∑
ξ∈L

λξe(x.ξ)
]∣∣∣

S

∥∥∥
L1(dσ)

< C
(∑

|λξ|p1
)1/p1

. (20)

Another averaging over translates L of the Zn-lattice gives (3).
This completes the proof of Lemma A.1.
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Next, we prove the upsilon-removal lemma in the variable coefficient multilinear
case. Recall the setting.

Consider Tλ and in (1.4), (1.5) with fixed, large λ and define

(Tf)(x) =

ˆ
eiφ(x,y)f(y)dy (21)

with

φ(x, y) = x1y1 + · · ·+ xn−1yn−1 + xn
(〈Ay, y〉+O(|y|3))+ λφν

(
x
A , y
)

(22)

as in section 5, where |x| = o(λ), |y| = o(1) and A non-degenerate.
Let 2 ≤ k ≤ n and U1, . . . , Uk fixed balls in y-space satisfying the transversality

condition (5.6). For j = 1, . . . k, denote

Tjf =

ˆ
Uj

eiφ(x,y)f(y)dy . (23)

Clearly the [BCT] result implies that if 1 < R < o(λ), then∥∥∥∥( k∏
j=1

|Tjfj |
)1/k∥∥∥∥

Lq(BR)
� Rε

( k∏
j=1

‖fj‖2

)1/k

(24)

with q = 2k
k−1 and BR = B(0, R). This statement is also easily seen to imply (24)

with BR = B(a,R) any R-ball with |a| = o(λ).
Our aim is to remove the Rε-factor at the cost of increasing slightly the expo-

nent q. Thus:

Lemma A.3. Under the above assumptions and taking q1 > 2k
k−1 , we have an

inequality ∥∥∥∥( k∏
j=1

|Tjfj |
)1/k∥∥∥∥

q1

≤ Cn,k,q1

( k∏
j=1

‖fj‖2

)1/k

. (25)

(Note that we do not claim removal of the λε-factor in Theorem 6.2 from [BCT], as
the context of our Lemma A.3 is more restrictive, since the Tj-operators are given
by (22), (23).)

Let ‖fj‖2 = 1 and F =
(∏k

1 |Tjfj |
)1/k

.
Let E ⊂ Rd be obtained as the union of a sparse collection of R-balls B(aα, R),

|aα| = o(λ) with α = 1, . . . , N . We will show that

‖F |E‖q < CεR
ε. (26)

Using Lemma A.2, this will imply that for E′ ⊂ Rn any finite union of 1-cubes we
have

‖F |E′‖q < 1
δCε|E′|δ+εC1/δ

, (27)

with δ > 0 a parameter. Hence, for all ε < 0,

‖F |E′‖q < C ′ε|E′|ε, (28)

from where one easily deduces that ‖F‖q1 < Cq1 for q1 > q.
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Let E =
⋃

B(aα, R) be as above and fix α. Write for x ∈ B(aα, R)

(Tf)(x) =

ˆ
ei[φ(x,y)−φ(aα,y)]

(
eiφ(aα,y)f(y)

)
ωj(y)dy (29)

with ωj a smooth localization on Uj .
Denoting g(y) = eiφ(aα,y)f(y),

(29) =

ˆ [ˆ
ei[φ(x,y)−φ(aα,y)+ξy]ωj(y)dy

]
ĝ(ξ)dξ . (30)

Since |∇y[φ(x, y)− φ(aα, y)]| � |x− aα| � R, we may clearly replace in (30) the
function g by PR1g = (ĝηR1

)∨, denoting ηR1
(z) = η(z/R1) where 0 ≤ η ≤ 1 is a

smooth bump function with η(0) = 1, and taking say

R1 = 100NR . (31)

The remaining contribution to (30) will then indeed by L∞-bounded by
0((NR)−C).

Defining
fα = e−iφ(aα,y)PR1

(
eiφ(aα,y)f

)
,

we can thus replace Tf by Tfα on B(aα, R). Note that |fj,α| ≤ |fj | ∗ | ∨→ ηR1 | may
clearly be assumed supported by Uj .

Estimate

‖F |E‖qq =
∑
α

‖F |B(aα,R)‖qq

=
∑
α

∥∥∥(∏
j

∣∣Tj(fj,α)
∣∣)1/k∥∥∥q

Lq(B(aα,R))
+ o(1)

24≤ CεR
qε
∑
α

(∏
j

‖fj,α‖2

)q/k
+ o(1)

< CεR
qεmax

j

[∑
α

‖fj,α‖q2
]
+ o(1) . (32)

Since q > 2,(∑
α

‖fα‖q1
)1/q ≤

(∑
‖fα‖2

2

)1/2
=
(∑

α

∥∥PR1(e
iφ(aα,y)f)

∥∥2
2

)1/2
. (33)

To bound (33), take functions {ζα} such that supp ζ̂α ⊂ B(0, R1) and
∑

α ‖ζα‖2
2 = 1

and evaluate ∑
α

〈
eiφ(aα,·)f, ζα

〉 ≤ ∥∥∥∑
α

eiφ(aα,y)ζα(y)
∥∥∥

2
‖f‖2 . (34)

For the off-diagonal terms α �= β∣∣〈eiφ(aα,·)ζα, eiφ(aβ ,·)ζβ
〉∣∣ = ∣∣∣∣ˆ ei[φ(aα,y)−φ(aβ ,y)](ζαζ̄β)(y)dy

∣∣∣∣ . (35)

where
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φ(a, y)−φ(a′, y) = (a1−a′1)y1 + · · ·+ (ad−1−a′d−1)yd−1+(ad − ad′)
(〈Ay, y〉+O(|y|3))

+ λ

[
φν

(a
λ
, y
)
− φν

(
a′

λ
, y

)]
satisfies either ∣∣∇y[φ(a, y)− φ(a′, y)]

∣∣ � |a− a′|
or ∣∣detD2

y[φ(a, y)− φ(a′, y)]
∣∣ � |a− a′|n−1.

Hence, recalling the sparsity assumption |aα − aβ | > (NR)C � R1, it follows that

(34) � |aα − aβ |−
n−1
2 ‖ζ̂α‖1 ‖ζ̂β‖1 � Rn−1

1 (NR)−C‖ζα‖2 ‖ζβ‖2 . (36)

Therefore, (34) ≤ 2
(∑ ‖ζα‖2

2
)1/2 ≤ 2 and (33) is bounded. Inequality (26) now

follows from (32), completing the proof of Lemma A.3.

References

[BCT] J. Bennett, T. Carbery, T. Tao, On the multilinear restriction and Kakeya
conjectures, Acta Math. 196 (2006), 261–302.

[Bo1] J. Bourgain, Besicovitch type maximal operators and applications to Fourier anal-
ysis, Geom. Funct. Anal. 1:2 (1991), 147–187.

[Bo2] J. Bourgain, Some new estimates on oscillatory integrals, Annals Math. St., Prince-
ton UP, 42 (1995), 83–112.

[CS] L. Carleson, O. Sjolin, Oscillatory integrals and a multilinear problem for the
disc, Studia Math. 44 (1972), 287–299.

[Co] A. Cordoba, Geometric Fourier analysis, Ann. Inst. Fourier 32:3 (1982), 215–226.

[D] Z. Dvir, On the size of Kakeya sets in finite fields, JAMS, to appear;
arxiv:8003.2336

[G] L. Guth, The endpoint case in the Bennett–Carbery–Tao multilinear Kakeya con-
jecture, Acta Math., to appear.
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