
ALGEBRAIC TORSION IN CONTACT MANIFOLDS

Janko Latschev and Chris Wendl

(with appendix by Michael Hutchings)

Abstract. We extract an invariant taking values in N∪{∞}, which we call the order
of algebraic torsion, from the Symplectic Field Theory of a closed contact manifold,
and show that its finiteness gives obstructions to the existence of symplectic fillings
and exact symplectic cobordisms. A contact manifold has algebraic torsion of order 0
if and only if it is algebraically overtwisted (i.e. has trivial contact homology), and
any contact 3-manifold with positive Giroux torsion has algebraic torsion of order 1
(though the converse is not true). We also construct examples for each k ∈ N of
contact 3-manifolds that have algebraic torsion of order k but not k − 1, and derive
consequences for contact surgeries on such manifolds.

The appendix by Michael Hutchings gives an alternative proof of our cobor-
dism obstructions in dimension three using a refinement of the contact invariant in
Embedded Contact Homology.

1 Introduction

1.1 Main results. Symplectic field theory (SFT) is a very general theory of holo-
morphic curves in symplectic manifolds which was outlined by Eliashberg, Givental
and Hofer [EGH], and whose analytical foundations are currently under development
by Hofer, Wysocki and Zehnder, cf. [H2]. It contains as special cases several theories
that have been shown to have powerful consequences in contact topology – notably
contact homology and Gromov–Witten theory – but the more elaborate structure of
“full” SFT has yet to find application, as it is usually far too complicated to compute.
Our goal here is to introduce a numerical invariant, which we call algebraic torsion,
that is extracted from the full SFT algebra and whose finiteness gives obstructions
to the existence of symplectic fillings and exact symplectic cobordisms. Algebraic
torsion is defined in all dimensions, and we illustrate its effectiveness by proving
explicit nonexistence results for exact symplectic cobordisms whose ends are certain
prescribed nonfillable contact 3-manifolds, see Corollary 1 below. To the best of our
knowledge, results of this type are new and seem to be beyond the present reach of
more topologically oriented methods such as Heegaard Floer homology.

From the point of view taken in this paper, which is adapted from [CL] and
described in more detail in section 2, the SFT of a contact manifold (M, ξ) is the
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homology HSFT
∗ (M, ξ) of a Z2-graded BV∞-algebra (A[[�]],DSFT), where A has

generators qγ for each good closed Reeb orbit γ with respect to some nondegenerate
contact form for ξ, � is an even variable, and the operator

DSFT : A[[�]]→ A[[�]]
is defined by counting rigid solutions to a suitable abstract perturbation of a J-
holomorphic curve equation in the symplectization of (M, ξ). The domains for these
solutions are punctured closed Riemann surfaces, and near the punctures the solu-
tions have so-called positive or negative cylindrical ends. It follows from the exact-
ness of the symplectic form in the symplectization that all such curves must have at
least one positive end. Algebraically, this translates into the fact that the ground
ring R[[�]] of A consists of closed elements with respect to DSFT. This motivates
the following:

Definition 1.1. Let (M, ξ) be a closed manifold of dimension 2n−1 with a positive,
co-oriented contact structure. For any integer k ≥ 0, we say that (M, ξ) has algebraic
torsion of order k (or simply algebraic k-torsion) if [�k] = 0 in HSFT

∗ (M, ξ).

Note that although the version of SFT described in [EGH] has coefficients in the
group ring of H2(M), the homology HSFT

∗ (M, ξ) above is defined without group ring
coefficients – one can always do this at the cost of reducing the usual Z-grading to a
Z2-grading (see section 2 for details). We will introduce group ring coefficients later
to obtain a more refined invariant, cf. Definition 1.8.

In order to state our first main result, we need a few standard concepts. Recall
that a strong symplectic filling of a contact manifold (M, ξ) is a compact symplectic
manifold (W,ω) with ∂W = M for which there exists a vector field Y , defined near
the boundary and pointing transversely outward there, with LY ω = ω (i.e. Y is
a Liouville vector field) and such that ιY ω|M is a contact form for ξ giving the
correct co-orientation. More generally, a symplectic cobordism with positive end
(M+, ξ+) and negative end (M−, ξ−) is a compact symplectic manifold (W,ω) with
boundary M+ � (−M−) and a vector field as above with ξ± = ker (ιY ω|M±), with
the difference that Y is required to point outward only along M+ and inward along
M−. Note that since LY ω = d(ιY ω) = ω, the symplectic form is always exact near
the boundary of a symplectic cobordism, though it need not be exact globally. The
flow of Y can be used to identify a neighborhood of ∂W with(

[0, ε) ×M−, d(es(ιY ω)|M−)
)
�
(
(−ε, 0] ×M+, d(es(ιY ω)|M+)

)
,

and so any symplectic cobordism in the above sense can be completed by gluing a
positive half of the symplectization of (M+, ξ+) and a negative half of the symplec-
tization of (M−, ξ−) to the respective boundaries. Holomorphic curves in completed
symplectic cobordisms are the main object of study in SFT, with the symplectization
R×M being an important special case of a completed symplectic cobordism.

A symplectic cobordism (W,ω) is called exact if the vector field Y as described
above extends globally over W ; equivalently, this means ω = dλ for a 1-form λ on W
whose restrictions to M± define contact forms for ξ±. From the above definition of
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algebraic torsion and the general formalism of SFT, we draw the following conse-
quence, which is our first main result and is proven in section 2.

Theorem 1. If (M, ξ) has algebraic torsion then it is not strongly fillable.
Moreover, suppose there is an exact symplectic cobordism having contact mani-
folds (M+, ξ+) and (M−, ξ−) as positive and negative ends respectively: then if
(M+, ξ+) has algebraic k-torsion, so does (M−, ξ−).

Remark 1.2. It is time for a more or less standard disclaimer: All the theorems
regarding SFT that we shall state in this introduction depend on the analytical
foundations of SFT, which remains a large project in progress by Hofer, Wysocki
and Zehnder (see e.g. [H2]). In particular, the main technical difficulty which is the
subject of their work is to establish a sufficiently well-behaved abstract perturbation
scheme so that HSFT

∗ (M, ξ) is well defined and the natural maps induced by counting
solutions to a perturbed holomorphic curve equation in symplectic cobordisms exist.
We shall take it for granted throughout the following that such a perturbation scheme
exists and has the properties that its architects claim (cf. Remark 3.7) – the further
details of this scheme will be irrelevant to our arguments. Note however that our
main applications, Corollaries 1 and 3, can also be proved using the embedded
contact homology techniques described in the appendix (cf. Theorem 7), and thus
do not depend on any unpublished work in progress.

Remark 1.3. Algebraic torsion has some obvious applications beyond those that
we will consider in this paper, e.g. it is immediate from the formalism of SFT dis-
cussed in section 2 that any contact manifold with algebraic torsion satisfies the
Weinstein conjecture.

The simplest example of algebraic torsion is the case k = 0: we will show in
section 2 (Proposition 2.9) that this is equivalent to (M, ξ) having trivial contact
homology, in which case it is called algebraically overtwisted, cf. [BN1]. This is the
case, for instance, whenever (M, ξ) is an overtwisted contact 3-manifold, and in
higher dimensions it has been shown to hold whenever (M, ξ) contains a plastikstufe
[BN2], or when (M, ξ) is a connected sum with a certain exotic contact sphere [BK].

In dimension three, there are also many known examples of contact manifolds
that are tight but not fillable. An important class of examples is the following: (M, ξ)
is said to have Giroux torsion if it admits a contact embedding of (T 2 × [0, 1], ξT )
where

ξT = ker
[
cos(2πt) dθ + sin(2πt) dφ

]
in coordinates (φ, θ, t) ∈ T 2 × [0, 1] = S1 × S1 × [0, 1]. It was shown by D. Gay [G]
that contact 3-manifolds with Giroux torsion are never strongly fillable, and a com-
putation of the twisted Ozsváth–Szabó contact invariant due to Ghiggini and Honda
[GhH] shows that Giroux torsion is also an obstruction to weak fillings whenever the
submanifold T 2× [0, 1] ⊂M separates M . There are obvious examples of manifolds
with these properties that are also tight. On T 3 = S1 × S1 × S1 for example with
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coordinates (φ, θ, t), the contact form

cos(2πNt) dθ + sin(2πNt) dφ

has Giroux torsion for any integer N ≥ 2, but it also has no contractible Reeb orbits,
which implies that its contact homology cannot vanish. The original motivation for
this project was to find an algebraic interpretation of Giroux torsion that implies
nonfillability. The solution to this problem is the following result, which is implied
by the more general Theorem 6 below:

Theorem 2. If (M, ξ) is a contact 3-manifold with Giroux torsion, then it has
algebraic 1-torsion.

While it is possible that “overtwisted” and “algebraically overtwisted” could be
equivalent notions in dimension three, it turns out that the converse of Theorem 2
is not true. We will show this using a special class of contact manifolds constructed
as follows: assume Σ+ and Σ− are compact (not necessarily connected) oriented
surfaces with nonempty diffeomorphic boundaries, and denote by

Σ = Σ+ ∪ Σ−

the closed oriented surface obtained by gluing them along some orientation reversing
diffeomorphism ∂Σ+ → ∂Σ−. We shall assume Σ to be connected. The common
boundary of Σ± forms a multicurve Γ ⊂ Σ. Then by a construction originally due
to Lutz [L], the product S1×Σ admits a unique (up to isotopy) S1-invariant contact
structure ξΓ for which the loops S1 × {z} are positively/negatively transverse for z
in the interior of Σ±, and Legendrian for z ∈ Γ. (We will give a more explicit
construction of this contact structure in section 4.) By an argument due to Giroux
(see [M]), (S1 × Σ, ξΓ) has no Giroux torsion whenever it has the following two
properties:

• No connected component of Γ is contractible in Σ;
• No two connected components of Γ are isotopic in Σ.

It is easy to find examples (see Figure 1) for which both these conditions are satisfied,
as well as the assumption in the following result:

Theorem 3. If either of Σ+ or Σ− is disconnected, then the S1-invariant contact
manifold (S1 × Σ, ξΓ) described above has algebraic 1-torsion. In particular, there
exist contact 3-manifolds that have algebraic 1-torsion but no Giroux torsion.

Remark 1.4. Theorem 1 implies that the examples in Theorem 3 are not strongly
fillable. The latter has been established previously via vanishing results for the
Ozsváth–Szabó contact invariant in sutured Floer homology, see [HoKM], [M], [Ma].

Examples showing that algebraic torsion is interesting for all orders can be con-
structed in almost the same way. In the construction of S1-invariant contact mani-
folds (S1 × Σ, ξΓ) above, assume that Σ± are both connected with k ≥ 1 boundary
components, and that Σ− has genus 0 and Σ+ has genus g′ > 0. The surface Σ
obtained by gluing will have genus g = g′ + k − 1. We denote the resulting contact
manifold by (Vg, ξk) := (S1 × Σ, ξΓ). We then obtain
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Σ−

Σ+

Γ

Figure 1: A surface Σ = Σ+∪ΓΣ− such that (S1×Σ, ξΓ) has algebraic 1-torsion
but no Giroux torsion.

Theorem 4. (Vg, ξk) has algebraic torsion of order k − 1, but not k − 2.

The proof that (Vg, ξk) has algebraic torsion of order k− 1 will be a consequence
of Theorem 6 below, which relates algebraic torsion in dimension 3 to the geometric
notion of planar torsion recently introduced by the second author [We4]. This is
discussed in detail in section 3. The proof that there is no algebraic torsion of
lower order occupies a large part of section 4. It is based on a combination of
algebraic properties of SFT and a construction of certain explicit contact forms for
the contact structures ξk, for which the Reeb dynamics and the holomorphic curves
can be understood sufficiently well.

Combining Theorems 1 and 4 yields the following consequence.

Corollary 1. Suppose g ≥ k ≥ 2. Then for any exact symplectic cobordism with
negative end (Vg, ξk), the positive end does not have algebraic (k − 2)-torsion.
In particular, there exists no exact symplectic cobordism with positive end (Vg+, ξk+)
and negative end (Vg− , ξk−) if k+ < k− (Figure 2).

Remark 1.5. The inclusion of the word “exact” in the above corollary is crucial,
as a recent construction due to the second author [We5] shows that non-exact sym-
plectic cobordisms exist between any two contact 3-manifolds with planar torsion.

Remark 1.6. Sometimes exact cobordisms are known to exist when the negative
end has a smaller order of algebraic torsion than the positive end, e.g. Etnyre and
Honda [EtH] have shown that any positive end is allowed if the negative end is
overtwisted (meaning 0-torsion, in the present context). Similarly, Jeremy Van
Horn-Morris has explained to us that a Stein cobordism with negative end (Vg, ξk)
and positive end (Vg+1, ξk+1) does always exist; cf. Remark 4.18 in section 4 for an
outline of the construction. Together with Corollary 1, this gives infinite sequences
of contact 3-manifolds such that each is exactly cobordant to its successor, but not
vice versa.
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S1×

S1×

(W,dλ)

(V4, ξ3)

(V2, ξ2)

Figure 2: An example of an exact symplectic cobordism that cannot exist
according to Corollary 1.

Remark 1.7. The case k+ = 1 of Corollary 1 can be deduced already from the
argument used by Hofer [H1] to prove the Weinstein conjecture for overtwisted con-
tact structures. Indeed, (Vg+ , ξk+) is always overtwisted if k+ = 1, and transplanting
Hofer’s argument from the symplectization to an exact symplectic cobordism shows
that (Vg− , ξk−) must then have a contractible Reeb orbit for all nondegenerate con-
tact forms, which is easily shown to be false if k− ≥ 2. In this sense, the obstruc-
tions coming from algebraic torsion may be seen as a “higher order” generalization
of Hofer’s argument, which incidentally was the starting point for the development
of SFT.

To obtain a more sensitive invariant, we now introduce a more general notion
of algebraic torsion using SFT with group ring coefficients. Namely, for any linear
subspace R ⊂ H2(M ;R), one can define the algebra of SFT with coefficients in the
group ring R[H2(M ;R)/R], which means keeping track of the classes inH2(M ;R)/R
represented by the holomorphic curves that are counted. We shall denote the SFT
with corresponding coefficients by HSFT

∗ (M, ξ;R). The most important special cases
are R = H2(M ;R) and R = {0}, called the untwisted and fully twisted cases re-
spectively, and R = kerΩ with Ω a closed 2-form on M . We shall abbreviate the
untwisted case by HSFT

∗ (M, ξ) = HSFT
∗ (M, ξ;H2(M ;R)), and often write the case
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R = kerΩ as
HSFT
∗ (M, ξ,Ω) := HSFT

∗ (M, ξ; ker Ω) .

Definition 1.8. If (M, ξ) is a closed contact manifold, for any integer k ≥ 0
and closed 2-form Ω on M we say that (M, ξ) has Ω-twisted algebraic k-torsion if
[�k] = 0 in HSFT

∗ (M, ξ,Ω). If this is true for all Ω, or equivalently, if [�k] = 0 in
HSFT
∗ (M, ξ; {0}), then we say that (M, ξ) has fully twisted algebraic k-torsion.

To see the significance of algebraic torsion with more general coefficients, we
consider a more general notion of symplectic fillings, for which the symplectic form
need not be exact near the boundary.

Definition 1.9. Suppose (W,ω) is a compact symplectic manifold with boundary
∂W = M , and ξ is a positive (with respect to the boundary orientation) co-oriented
contact structure on M . We call (W,ω) a stable symplectic filling of (M, ξ) if the
following conditions are satisfied:

(1) ω|ξ is nondegenerate and the induced orientation on ξ is compatible with its
co-orientation;

(2) ξ admits a nondegenerate contact form λ such that the Reeb vector field Xλ

generates the characteristic line field on ∂W ;
(3) ξ admits a complex bundle structure J which is tamed by both dλ|ξ and ω|ξ.
Note that the compactness results in [BEHWZ] are stated for compatible J , but

they hold without change for tamed J as well. A strong filling with Liouville vector
field Y is also a stable filling whenever the contact form ιY ω|M is nondegenerate,
which can always be assumed after a small perturbation. In general, the boundary
of a stable filling is a stable hypersurface as defined in [HZ], meaning it belongs to
a 1-parameter family of hypersurfaces in (W,ω) whose Hamiltonian dynamics are
all conjugate. In particular, the pair (λ, ω|M ) defines a stable Hamiltonian structure
on M (cf. [CV]).

Theorem 5. If (M, ξ) is a closed contact manifold with Ω-twisted algebraic torsion
for some closed 2-form Ω on M , then it does not admit any stable filling (W,ω) for
which ω|M is cohomologous to Ω. In particular, if (M, ξ) has fully twisted algebraic
torsion, then it is not stably fillable.

Recall that for dimM = 3, (W,ω) with ∂W = M is said to be a weak symplectic
filling of (M, ξ) if ω|ξ > 0. Thus a stable filling is also a weak filling. What’s
far less obvious is that the converse is true up to deformation: by [NW, Th. 2.8],
every weak filling can be deformed near its boundary to a stable filling of the same
contact manifold, hence weak and stable fillability are completely equivalent notions
in dimension three. Theorem 5 thus implies

Corollary 2. Contact 3-manifolds with fully twisted algebraic torsion are not
weakly fillable.

Figure 3 in section 3 below shows some examples to which this result applies,
including one that has no Giroux torsion; see also Theorem 6 below, and [NW].
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In higher dimensions, it is not hard to find examples of stable fillings for which the
symplectic form is not exact near the boundary, though it’s less obvious whether
there are also examples which are not strongly fillable. Such examples are found
in the work in progress by Massot, Niederkrüger and the second author [MNW],
which defines a suitable generalization of weak fillings to arbitrary dimensions: in
a nutshell, (W,ω) with ∂W = M is a weak filling of (M, ξ) if ω tames an almost
complex structure J that preserves ξ and is also tamed by the natural conformal
symplectic structure on ξ. Under this definition, one can use an existence result of
Cieliebak–Volkov [CV] to show that weak and stable fillability are equivalent, see
[MNW] for details. Thus SFT also gives obstructions to weak filling in all dimensions,
where the distinction between “strong” and “weak” is detected algebraically via the
choice of coefficients.

As already mentioned, the second author [We4] recently introduced a new class
of filling obstructions in dimension three called planar torsion, which also has a
non-negative integer-valued order. A contact 3-manifold is then overtwisted if and
only if it has planar 0-torsion, and Giroux torsion implies planar 1-torsion. We will
recall the definition of planar torsion and Ω-separating planar torsion in section 3,
and prove the following generalization of Theorem 2.

Theorem 6. Suppose (M, ξ) is a closed contact 3-manifold, Ω is a closed 2-form
on M and k ≥ 0 is an integer.

(1) If (M, ξ) has planar k-torsion then it also has algebraic k-torsion.
(2) If (M, ξ) has Ω-separating planar k-torsion then it also has Ω-twisted algebraic

k-torsion.

Remark 1.10. Together with Theorem 1 and Corollary 2, this yields new proofs
that contact 3-manifolds with planar torsion are not strongly fillable, and also not
weakly fillable if the planar torsion is fully separating. These two results were first
proved in [We4] and [NW] respectively. The former also proves a vanishing result
for the ECH contact invariant which is closely analogous to Theorem 6 and has thus
far been inaccessible from the direction of Heegaard Floer homology. Our argument
in fact implies a refinement of this vanishing result in terms of the relative filtration
on ECH introduced in the appendix; see Theorem 7 below.

We can now state a more geometric analogue of Corollary 1. The notion of planar
torsion gives rise to a contact invariant PT(M, ξ) ∈ N ∪ {0,∞}, the minimal order
of planar torsion, defined by

PT(M, ξ) := sup
{
k ≥ 0

∣∣ (M, ξ) has no planar �-torsion for any � < k
}
.

This number is infinite whenever (M, ξ) is strongly fillable, and is positive if and
only if (M, ξ) is tight. Recall that contact connected sums and (−1)-surgeries always
yield Stein cobordisms between contact 3-manifolds (see e.g. [Ge2]). The following
can then be thought of as demonstrating a higher-order variant of the well-known
conjecture that such surgeries always preserve tightness.
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Corollary 3. For any g ≥ k ≥ 1, PT(Vg, ξk) = k − 1. Moreover, suppose (M, ξ)
is any contact 3-manifold that can be obtained from (Vg, ξk) by a sequence of

• contact connected sums with itself or exactly fillable contact manifolds, and/or
• contact (−1)-surgeries.

Then PT(M, ξ) ≥ k − 1.

At present, we do not know any example for which the minimal order of algebraic
torsion is strictly smaller than the minimal order of planar torsion, but Theorem 3
seems to suggest that such examples are likely to exist.

Here is a summary of the remainder of the paper. In section 2 we review the
algebraic formalism of SFT as a BV∞-algebra, in particular proving Theorems 1
and 5. In section 3 we review the definition of planar torsion and prove Theorem 6,
as an easy application of some results on holomorphic curves from [We4]. The S1-
invariant examples (S1 × Σ, ξΓ) are then treated at length in section 4, leading to
the proofs of Theorems 3 and 4. We close with a brief discussion of open questions
and related issues in section 5.

In Michael Hutchings’ appendix to this paper, it is shown that the applications
to 3-dimensional contact topology described above can also be proved using methods
from embedded contact homology. Indeed, as remarked above, all of our examples
of contact 3-manifolds with algebraic torsion can also be shown to have vanishing
ECH contact invariant, suggesting that a refinement of the latter should exist which
could detect the order of torsion. The appendix carries out enough of this program to
suffice for our applications. In particular, Hutchings associates to any closed contact
3-manifold (M, ξ) with generic contact form λ, compatible complex structure J and
positive number T ∈ (0,∞], two non-negative (possibly infinite) integers fT (M,λ, J)
and fT

simp(M,λ, J). These can be finite only if the ECH contact invariant vanishes,
and they have the property that

f
T+

simp(M
+, λ+, J+) ≥ fT−(M−, λ−, J−)

whenever there is an exact cobordism (X, dλ) with λ = esλ± at the positive/negative
end and T− ≥ T+ (cf. Theorem A.9). Since fT and fT

simp are defined by counting
embedded holomorphic curves in symplectizations, our SFT computations can be
reinterpreted as estimates of these integers, leading to the following.

Theorem 7. (1) If (M, ξ) has planar k-torsion, then ξ admits a nondegenerate
contact form λ and generic complex structure J such that f∞simp(M,λ, J) ≤ k.

(2) For any g ≥ k ≥ 1, (Vg, ξk) admits a sequence of generic contact forms and
complex structures (λi, Ji) such that

(a) fTi(Vg, λi, Ji) ≥ k − 1 for some sequence of real numbers Ti → +∞;
(b) For i < j, there is an exact symplectic cobordism (X, dλ) such that λ

matches esλi at the positive end and esλj at the negative end.

As mentioned in Remark 1.2 above, this immediately implies an alternative proof
of Corollaries 1 and 3, cf. Corollary A.10 in the appendix.
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2 Review of SFT as a BV∞-Algebra

The general framework of SFT, in particular its algebraic structure, was laid out in
[EGH] (see also [E2] for a more recent point of view), whereas the analytic foun-
dations are the subject of ongoing work by Hofer–Wysocki–Zehnder (see [H2]). In
this section, we will take the existence of SFT as described in [EGH] for granted
and review a version of the theory which is readily derived from this description (cf.
[CL] for some details of this translation). To keep the discussion reasonably brief,
we will frequently refer to these sources for details. Theorems 1 and 5 will be simple
consequences of the algebraic properties of SFT.

2.1 Review of the basic setup of SFT. Let (M, ξ) be a closed manifold
of dimension 2n − 1 with a co-oriented contact structure. To describe SFT, one
needs to fix a nondegenerate contact form λ, as well as some additional choices,
which we denote by a single letter f (for framing). The most important of these
are a cylindrical almost complex structure J on the symplectization of M , coherent
orientations for the moduli space of finite energy J-holomorphic curves, an abstract
perturbation scheme for the J-holomorphic curve equation and suitable spanning
surfaces for Reeb orbits.

Given a linear subspace R ⊂ H2(M ;R), let RR := R[H2(M ;R)/R] denote the
group ring over R of H2(M ;R)/R, whose elements we write as

∑
aiz

di with ai ∈ R

and di ∈ H2(M ;R)/R. Define A = A(λ) to be the Z2-graded algebra with unit over
the group ring RR, generated by variables qγ , where γ ranges over the collection of
good closed Reeb orbits for λ (cf. [EGH, fnote p. 566; Rems. 1.9.2, 1.9.6]), and the
degree of qγ is defined as

|qγ | := n− 3 + μCZ(γ) mod 2 .

Here μCZ(γ) denotes the mod 2 Conley–Zehnder index of the closed orbit γ, which
is defined in terms of the linearized Poincare return map for γ (cf. [EGH, p. 567]).
We also introduce an extra variable � of even degree and consider the algebra of
formal power series A[[�]].

To construct the differential, one chooses a cylindrical almost complex structure
J on the symplectization (R×M,ω = d(esλ)). To be precise, we say that an almost
complex structure J on R ×M is adapted to λ if it is R-invariant, maps the unit
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vector ∂s in the R-direction to the Reeb vector field Xλ of λ, and restricts to a
tamed complex structure on the symplectic vector bundle (ξ, dλ). After a choice
of spanning surfaces as in [EGH, p. 566, see also p. 651], the projection to M of each
finite energy holomorphic curve u can be capped off to a 2-cycle in M , and so it gives
rise to a homology class in H2(M), which we project to define [u] ∈ H2(M ;R)/R.

As explained in [CL, §6], the count of suitably perturbed J-holomorphic curves
in R×M with finite Hofer energy gives rise to a differential operator

DSFT : A[[�]]→ A[[�]]
such that

• DSFT is odd and squares to zero;
• DSFT(1) = 0; and
• DSFT =

∑
k≥1Dk�

k−1, where Dk : A → A is a differential operator of order
≤ k.

More precisely,

Dk =
∑

Γ+,Γ−,g,d

|Γ+|+g=k

ng(Γ−,Γ+, d)
1

C(Γ−,Γ+)
qγ−1

· · · qγ−s− z
d ∂

∂qγ+
1

· · · ∂

∂qγ+
s+

,

where the sum ranges over all non-negative integers g ≥ 0, homology classes
d ∈ H2(M ;R)/R and ordered (possibly empty) collections of good closed Reeb or-
bits Γ± = (γ±1 , . . . , γ

±
s±) such that s+ + g = k. The number ng(Γ−,Γ+, d) ∈ Q

denotes the count of (suitably perturbed) holomorphic curves of genus g with posi-
tive asymptotics Γ+ and negative asymptotics Γ− in the homology class d, including
asymptotic markers as explained in [EGH, p. 622f]. Finally, C(Γ−,Γ+) ∈ N is a
combinatorial factor defined as

C(Γ−,Γ+) = s−!s+!κγ−1
· · · κγ−s−κγ+

1
· · · κγ+

s+
,

where κγ denotes the covering multiplicity of the Reeb orbit γ.
Observe in particular that for Q = qγ1 · · · qγr , the constant coefficient (i.e. the

element of the ground ring) in Dk(Q) for k ≥ r corresponds to the count of holo-
morphic curves of genus k − r with positive asymptotics Γ = {γ1, . . . , γr} and no
negative ends.

The homology of (A[[�]],DSFT) is denoted by HSFT
∗ (M,λ, f;R). Note that by

definition the operator DSFT commutes with � and with elements of RR. As DSFT

is not a derivation, the homology is not an algebra, but only an RR[[�]]-module.
However, the element 1 ∈ A and all its RR[[�]]-multiples are always closed by the
second property above, and so they define preferred homology classes. The special
case R = H2(M ;R) is of particular importance: then RR reduces to the trivial
group ring R and we abbreviate

HSFT
∗ (M,λ, f) := HSFT

∗
(
M,λ, f;H2(M ;R)

)
,

which we refer to as the SFT with untwisted coefficients. Similarly, for any closed
2-form Ω on M , we abbreviate the special case R = ker Ω ⊂ H2(M ;R) by

HSFT
∗ (M,λ, f,Ω) := HSFT

∗ (M,λ, f; ker Ω)
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and call this the SFT with Ω-twisted coefficients. The fully twisted SFT is

HSFT
∗

(
M,λ, f; {0}

)
,

defined by taking R to be the trivial subspace. Observe that the inclusions {0} ↪→
kerΩ ↪→ H2(M ;R) induce natural R[[�]]-module morphisms

HSFT
∗

(
M,λ, f; {0}

)
→ HSFT

∗ (M,λ, f,Ω)→ HSFT
∗ (M,λ, f) .

A framed cobordism (X,ω, fX ) with positive end (M+, λ+, f+) and negative end
(M−, λ−, f−) is a symplectic cobordism (X,ω) with oriented boundaryM+�(−M−),
together with the following additional data:

• a Liouville vector field Y , defined near the boundary, pointing outward at M+

and inward at M−, such that ιY ω|M± = λ±;
• a tamed almost complex structure J interpolating between the given cylindrical

structures J± at the ends;
• coherent orientations for the moduli spaces of finite energy J-holomorphic

curves in the completion of X;
• an abstract perturbation scheme compatible with f+ and f−; and
• spanning surfaces for the cobordism as described in [EGH, p. 571f].

As explained in [CL, §8], such a cobordism gives rise to a morphism from
HSFT
∗ (M+, λ+, f+) to HSFT

∗ (M−, λ−, f−) after suitably twisting the differential as
follows.

Suppose R± ⊂ H2(M
±;R) and R(X) ⊂ kerω ⊂ H2(X;R) are linear sub-

spaces such that the maps H2(M
±;R) → H2(X;R) induced by the inclusions

M± ↪→ X map R± into R(X). Define the group rings RR± = R[H2(M ;R)/R±]
and RR(X) = R[H2(X;R)/R(X)], and let (A±[[�]],D±

SFT) denote the BV∞-algebras

as defined above for (M±, λ±, f±) with coefficients in RR± . We also denote by A−X
the algebra generated by the q−γ with coefficients in RR(X) instead of RR− , Novikov
completed as described in [EGH, p. 624] (note that integration of ω gives a well
defined homomorphism H2(X;R)/R(X) → R). The inclusions M± ↪→ X give rise
to morphisms H2(M

±;R)/R± → H2(X;R)/R(X) and RR± → RR(X), which in

particular determine a morphism of algebras A− → A−X .
Now (X,ω, fX) gives rise to several structures, the first of which is an element

A ∈ �−1A−X [[�]] satisfying D−
SFT(e

A) = 0, which is obtained from counting holomor-
phic curves in X with no positive punctures (these may exist only if X is not exact).
Using this, one can define a twisted differential D−

X : A−X [[�]] → A−X [[�]] by the
formula

D−
X(Q) = e−AD−

SFT(e
A ·Q) .

In this way, we get a twisted version of SFT for (M−, λ−, f−), which depends on
(X,ω, fX).

Remark 2.1. Above we have defined two kinds of twisted versions of SFT, namely
SFT twisted with respect to a closed two-form, and the twisted SFT of the negative
end of a (non-exact) symplectic cobordism. We hope that it is always clear from the
context which kind of twisting is meant.
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The other structure one obtains is a chain map Φ = eφ : (A+[[�]],D+
SFT) →

(A−X [[�]],D−
X ) determined by a map φ = φX : A+ → A−X [[�]] satisfying

• φ is even and φ(1) = 0;
• eφD+

SFT = D−
Xeφ; and

• φ =
∑

k≥1 φk�
k−1, where each φk : A+ → A−X is a differential operator of order

≤ k over the zero morphism.

Here we remind the reader that, given a morphism ρ : A1 → A2 between graded
commutative algebras, a homogeneous linear map D : A1 → A2 is a differential
operator of order ≤ k over ρ if for each homogeneous element a ∈ A1 the map
x 
→ D(ax)− (−1)|D||a|ρ(a)D(x) is a differential operator of order ≤ k− 1, with the
convention that the zero map has order ≤ −1.

The map φ counts holomorphic curves in X with at least one positive puncture.
The first condition above translates to the fact that Φ(1) = 1. Again Φ is �-linear,
so it induces a morphism of R[[�]]-modules H∗(A+,D+

SFT) → H∗(A−X ,D−
X), which

maps the preferred class [1] ∈ H∗(A+,D+
SFT) and its RM+ [[�]]-multiples to the

corresponding classes in H∗(A−X ,D−
X).

To discuss the invariance properties of SFT, one studies holomorphic curves in
topologically trivial cobordisms R×M . More precisely, given two contact forms λ±

for the same contact structure ξ, there is a constant c > 0 and an exact symplectic
form ω = d(esλs) on R × M such that the primitive λs agrees with cλ− at the
negative end and with λ+ at the positive end of the cobordism. Similarly, one finds
a framing fR×M compatible with given framings f± at the ends. Note that in this
case kerω = H2(X) = H2(M), so we can choose R± = R = R(X) and observe that
the completion process in the definition of A−X is trivial since ω is exact, giving rise
to a natural identification of A−X with A−. Likewise, A ∈ �−1A− vanishes as the
cobordism is exact. Since rescaling of λ does not influence the count of holomorphic
curves, we obtain a chain map (A+[[�]],D+

SFT)→ (A−[[�]],D−
SFT).

Reversing the roles of λ+ and λ−, one obtains a similar chain map in the other
direction, and a deformation argument implies that both compositions are chain
homotopic to the identity maps on (A±,D±

SFT), respectively. In particular, they
induce RR[[�]]-module isomorphisms on homology, so that the contact invariant

HSFT
∗ (M, ξ;R) := HSFT

∗ (M,λ, f;R)

is well defined up to natural isomorphisms. It is important for us to observe that, by
construction, these morphisms are the identity onRR[[�]] ⊂ A±, thusHSFT

∗ (M, ξ;R)
comes with preferred homology classes associated to the elements of RR[[�]]. Consid-
ering the special cases whereR is {0}, ker Ω or H2(M ;R) again gives rise to the fully
twisted, Ω-twisted and untwisted versions respectively, with natural R[[�]]-module
morphisms

HSFT
∗

(
M, ξ; {0}

)
→ HSFT

∗ (M, ξ,Ω)→ HSFT
∗ (M, ξ) . (2.1)

Remark 2.2. The above discussion of morphisms can be refined slightly as follows.
Given a nondegenerate contact form λ and a constant T > 0, we can consider the
linear subspace A(λ, T ) ⊂ A(λ) in the corresponding chain level algebra generated
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by all the monomials of the form qγ1 · · · qγr for which the total action is bounded
by T , i.e.

r∑
j=1

∫
γj

λ < T .

Since the energy of holomorphic curves contributing to DSFT is non-negative and
given by the action difference of the asymptotics, the operator DSFT restricts to
define a differential

DSFT : A(λ, T )[[�]]→ A(λ, T )[[�]] .
Moreover, if ω = d(esλs) is a symplectic form on R ×M such that λ agrees with
λ+ at the positive end and cλ− at the negative end, then the resulting morphism
respects the truncation with suitable rescaling, i.e. it gives rise to a chain map

ΦT :
(
A(λ+, T )[[�]],D+

SFT

)
→

(
A(cλ−, T )[[�]],D−

SFT

)
=

(
A(λ−, T/c)[[�]],D−

SFT

)
.

Beware however that, due to the rescaling of forms for the cylindrical cobordisms,
there is no meaningful filtration on HSFT

∗ (M, ξ;R).
In the proof of Theorem 4 we will use this refinement in the situation where

λ− has only its periodic orbits of action at most T nondegenerate, in which case
the truncated complex (A(λ−, T )[[�]],D−

SFT) can still be constructed with all the
required properties.

It is useful to consider how the chain map Φ : (A+[[�]],D+
SFT) → (A−X [[�]],D−

X )
induced by a symplectic cobordism (X,ω) simplifies whenever certain natural extra
assumptions are placed on X. First, suppose that (X,ω) is an exact cobordism. As
we already observed above, in this case X contains no holomorphic curves without
positive ends, hence the “twisting” term A ∈ �−1A−X [[�]] vanishes. Moreover, since
kerω = H2(X;R), we can set R(X) = H2(X;R) and reduce RR(X) to the untwisted
coefficient ring R. Making corresponding choices R± = H2(M

±;R) so that RR± = R

for the positive and negative ends, we then have a natural identification of the two
chain complexes (A−X [[�]],D−

X ) and (A−[[�]],D−
SFT), hence the aforementioned chain

map yields the following:

Proposition 2.3. Any exact symplectic cobordism (X,ω) with positive end
(M+, ξ+) and negative end (M−, ξ−) gives rise to a natural R[[�]]-module morphism
on the untwisted SFT,

ΦX : HSFT
∗ (M+, ξ+)→ HSFT

∗ (M−, ξ−) .

Now suppose (X,ω) is a strong filling of (M+, ξ+), which we may view as a
symplectic cobordism whose negative end (M−, ξ−) is the empty set. For any given
subspace R(X) ⊂ kerω, the Novikov completion RR(X) of RR(X) need not be triv-

ial, but the chain complex (A−X [[�]],D−
X ) has no generators other than the unit,

and its differential vanishes, hence its homology is simply RR(X)[[�]]. Choosing
R ⊂ H2(M ;R) so that the natural map H2(M ;R) → H2(X;R) induced by the
inclusion M ↪→ X takes R into R(X), we also obtain a natural R[[�]]-module mor-
phism RR[[�]]→ RR(X)[[�]]. Note that since ω is necessarily exact near ∂X, we can
always choose R(X) = kerω and R = H2(M ;R). We obtain
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Proposition 2.4. Suppose (X,ω) is a strong filling of (M, ξ), and R(X) ⊂ kerω ⊂
H2(X;R) and R ⊂ H2(M ;R) are linear subspaces for which the natural map from
H2(M ;R) to H2(X;R) takes R into R(X). Then there is a natural R[[�]]-module
morphism

ΦX : HSFT
∗ (M, ξ;R)→ RR(X)[[�]] ,

which acts on RR[[�]] ⊂ HSFT
∗ (M, ξ;R) as the natural map to RR(X)[[�]] induced

by the inclusion M ↪→ X. In particular, the untwisted SFT of (M, ξ) admits an
R[[�]]-module morphism

ΦX : HSFT
∗ (M, ξ)→ Rkerω[[�]] .

Finally, we generalize the above to allow for stable symplectic fillings as defined
in the introduction. Recall that if (X,ω) is a stable filling of (M, ξ) and we write
Ω := ω|M , then ξ admits a nondegenerate contact form λ and complex structure Jξ
such that ω|ξ and dλ|ξ both define symplectic bundle structures taming Jξ, and the
Reeb vector field Xλ generates ker Ω. In particular, the pair (λ,Ω) is then a stable
Hamiltonian structure, meaning it satisfies

1. λ ∧ Ωn−1 > 0;
2. dΩ = 0;
3. kerΩ ⊂ ker dλ.

A routine Moser deformation argument shows that a neighborhood of ∂X in (X,ω)
can then be identified symplectically with the collar(

(−ε, 0] ×M,d(tλ) + Ω
)

for ε > 0 sufficiently small. Choose a small number ε0 > 0 and define

T :=
{
ϕ ∈ C∞([0,∞)→ [0, ε0)) | ϕ′ > 0 everywhere and ϕ(t) = t near t = 0

}
.

Then, if ε0 is small enough, every ϕ ∈ T gives rise to a symplectic form ωϕ on the

completion X̂ := X ∪M ([0,∞)×M), defined by

ωϕ =

{
ω on X,

d
(
ϕ(t)λ

)
+Ω on [0,∞)×M .

Define a cylindrical almost complex structure on [0,∞)×M which maps ∂s toXλ and
restricts to Jξ on ξ; due to the compatibility assumptions on Jξ, this is ωϕ-tamed
for all possible choices of ϕ ∈ T . We can thus extend it to a generic ωϕ-tamed

almost complex structure J on X̂. Then one can generalize the previous discussion
by considering punctured J-holomorphic curves u : Ṡ → X̂ that satisfy the finite
energy condition

E(u) := sup
ϕ∈T

∫
Ṡ
u∗ωϕ .

This definition of energy is equivalent to the one given in [BEHWZ] in the sense
that bounds on either imply bounds on the other; it follows that the compactness
theorems of [BEHWZ] apply to sequences uk of punctured J-holomorphic curves for
which E(uk) is uniformly bounded. Such a bound exists for any sequence of curves
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with fixed genus, asymptotics and homology class. Note also that the restriction of
J to the cylindrical end is also adapted to λ in the usual sense, thus the upper level
curves that appear in holomorphic buildings arising from the compactness theorem
are precisely the curves that are counted in the definition of HSFT

∗ (M,λ, f;R).
The above observations yield the following generalization of Proposition 2.4.

Proposition 2.5. Suppose (X,ω) is a stable symplectic filling of (M, ξ), and
R(X) ⊂ kerω ⊂ H2(X;R) and R ⊂ H2(M ;R) are linear subspaces such that the
natural map H2(M ;R)→ H2(X;R) takes R into R(X). Then there exists a natural
R[[�]]-module morphism

ΦX : HSFT
∗ (M, ξ;R)→ RR(X)[[�]] ,

which acts on RR[[�]] as the natural map to RR(X)[[�]] induced by the inclusion
M ↪→ X. In particular, defining a 2-form on M by Ω = ω|M , the Ω-twisted SFT of
(M, ξ) admits an R[[�]]-module morphism

ΦX : HSFT
∗ (M, ξ,Ω)→ Rkerω[[�]] .

Example 2.6. The following shows that aside from defining filling obstructions,
SFT can also provide information as to the classification of symplectic fillings. Con-
sider for instance the tight contact structure ξ0 on S1×S2, which it acquires as the
boundary of the Stein domain S1 × B3 ⊂ T ∗S1 × R2. Presenting (S1 × S2, ξ0) via
a symmetric summed open book with disk-like pages (see Definition 3.1), one can
find a Reeb orbit that is uniquely spanned by two rigid holomorphic planes whose
homology classes differ by the generator [S2] := [{∗}×S2] ∈ H2(S

1×S2;R). Hence,
in the notation established at the beginning of this section, the fully twisted SFT
satisfies a relation of the form[

1− z[S
2]
]
= 0 ∈ HSFT

∗
(
S1 × S2, ξ0; {0}

)
.

Then, if (X,ω) is any weak filling of (S1×S2, ξ0), Proposition 2.5 gives a map from
HSFT
∗ (S1 × S2, ξ0; {0}) to the Novikov completion of R[H2(X;R)] whose action on

R[H2(M ;R)][[�]] is determined by the inclusion S1×S2 ↪→ X. In light of the above
relation, this implies that the natural map H2(S

1 × S2;R) → H2(X;R) takes [S2]
to zero. In fact, this is known to be true: it follows from the disk filling argument
of Eliashberg [E1], which implies that every weak filling of S1 × S2 is diffeomorphic
to a blow-up of S1 ×B3.

Another example is provided by the standard 3-torus (T 3, ξ0), which is the bound-
ary of the Stein domain T 2 × D ⊂ T ∗T 2 and can also be presented by a symmetric
summed open book, but with cylindrical pages. One can then choose a 1-dimensional
subspace R ⊂ H2(T

3;R) with generator d0 represented by a pre-Lagrangian torus,
so that counting holomorphic cylinders yields relations of the form[

(1− zd1)�
]
=

[
(1− zd2)�

]
= 0 ∈ HSFT

∗ (T 3, ξ0;R)

for both of the other canonical generators d1, d2 ∈ H2(T
3;R). Applying Proposi-

tion 2.5 again, one can use this to show that for any weak filling (X,ω) of (T 3, ξ0)
such that

∫
d0
ω = 0, and in particular for any strong filling, the natural map
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H2(T
3,R) → H2(X;R) has its image in a space of dimension at most one. This

is also known to be true: by a combination of arguments in [We3] and [NW], (X,ω)
must in this case be a symplectic blow-up of the standard Stein filling T 2 × D.

2.2 Algebraic torsion and its consequences. As above, we write R for some
given linear subspace in H2(M ;R), and use the notation RR = R[H2(M ;R)/R] for
the corresponding group ring. Recall the following definition from the Introduction.

Definition 2.7. For any integer k ≥ 0, we say that (M, ξ) has algebraic torsion
of order k with coefficients in RR if [�k] = 0 in HSFT

∗ (M, ξ;R). We single out the
following special cases:

• (M, ξ) has (untwisted) algebraic k-torsion if [�k] = 0 ∈ HSFT
∗ (M, ξ).

• For a closed 2-form Ω on M , (M, ξ) has Ω-twisted algebraic k-torsion if
[�k] = 0 ∈ HSFT

∗ (M, ξ,Ω).
• (M, ξ) has fully twisted algebraic k-torsion if [�k] = 0 ∈ HSFT

∗ (M, ξ; {0}).
By default, when we speak of algebraic torsion without specifying the coefficients,

we will always mean the untwisted version. Observe that due to the morphisms
(2.1), fully twisted torsion implies Ω-twisted torsion for all closed 2-forms Ω, and
it is not hard to show that the converse is also true. Likewise, Ω-twisted torsion
for any one closed 2-form Ω implies untwisted torsion, and k-torsion for any choice
of coefficients implies (k + 1)-torsion for the same coefficients since DSFT(Q) = �k

implies DSFT(�Q) = �k+1.

Remark 2.8. Since all power series in R[[�]] are naturally closed elements of the
SFT chain complex, one can define a seemingly more general notion than algebraic
torsion via the condition

[f(�)] = 0 ∈ HSFT
∗ (M, ξ)

for any nonzero power series f ∈ R[[�]]. In fact, this is not more general: all elements
of the form 1 +O(�) can be inverted in R[[�]] via alternating series, thus [f(�)] = 0
implies untwisted algebraic k-torsion where k ≥ 0 is the largest integer with f(�) =
�kg(�) for some g ∈ R[[�]]. The situation changes when one considers the vanishing
of nonzero elements of RR[[�]] in HSFT

∗ (M, ξ;R): as shown by Example 2.6 above,
this does not always imply nonfillability, but it can yield topological restrictions on
the symplectic fillings that exist.

The special case k = 0 is not a new concept; the following result is stated for the
untwisted theory but has obvious analogues for any choice of coefficients RR.

Proposition 2.9. The following statements are equivalent.

(i) (M, ξ) has algebraic 0-torsion.
(ii) HSFT

∗ (M, ξ) = 0.
(iii) (M, ξ) is algebraically overtwisted in the sense of [BN1], i.e. its contact homol-

ogy is trivial.
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Proof. The only claim not immediate from the definitions is that (i) implies (ii),
for which we use a variation on the main argument in [BN1]. For Q1, Q2 ∈ A[[�]],
define

[Q1, Q2] := DSFT(Q1Q2)−DSFT(Q1)Q2 − (−1)|Q1|Q1DSFT(Q2)

to be the deviation of DSFT from being a derivation. Note that since the first term
D1 in the expansion of DSFT is a derivation, we always have [Q1, Q2] = O(�). One
also easily checks that DSFT is a derivation of this bracket, in the sense that

DSFT[Q1, Q2] = −[DSFTQ1, Q2]− (−1)|Q1|[Q1,DSFTQ2] .

These signs are correct because the bracket has odd degree.
Now suppose DSFT(P ) = 1, and define a map B : A[[�]]→ A[[�]] as an alternat-

ing sum of iterated brackets with P , i.e. as

B(Q) := Q− [P,Q] + [P, [P,Q]] − . . .

Clearly [P,B(Q)] = Q − B(Q) and DSFT(B(Q)) = B(DSFT(Q)), and so, if
DSFT(Q) = 0, then

DSFT

(
P ·B(Q)

)
=

[
P,B(Q)

]
+DSFT(P ) · B(Q) = Q−B(Q) +B(Q) = Q ,

proving that every closed element in A[[�]] is exact. �

With the algebraic formalism in place, the proofs of Theorems 1 and 5 are now
immediate.

Proofs of Theorems 1 and 5. Suppose (X,ω) is an exact symplectic cobor-
dism with positive end (M+, ξ+) and negative end (M−, ξ−). Then, if [�k] =
0 ∈ HSFT

∗ (M+, ξ+), the same must be true in HSFT
∗ (M−, ξ−) due to Proposition 2.3.

Likewise, if (X,ω) is a strong filling of (M, ξ), then Proposition 2.4 gives an
R[[�]]-module morphism fromHSFT

∗ (M, ξ) to RR(X)[[�]], where RR(X) is the Novikov

completion of R[H2(X;R)/ ker ω]. Since no power of � vanishes in RR(X)[[�]], the

same must be true in HSFT
∗ (M, ξ), completing the proof of Theorem 1. Theorem 5

follows by exactly the same argument, using Proposition 2.5 and observing that
HSFT
∗ (M, ξ,Ω) depends only on (M, ξ) and the cohomology class of Ω. �

3 Relation to Planar Torsion in Dimension 3

This section describes the relation of algebraic torsion to planar torsion, and in
particular provides the proof of Theorem 6.

3.1 Review of planar torsion. We begin by reviewing briefly the notion of
planar torsion, which is defined in more detail in [We4]. A planar torsion domain
is a special type of contact manifold with boundary which generalizes the thickened
torus (T 2 × [0, 1], ξT ) in the definition of Giroux torsion. We can define it in terms
of open book decompositions as follows.

Recall first that if M̌ is a closed oriented (not necessarily connected) 3-manifold
with an open book decomposition π̌ : M̌ \ B̌ → S1, then the open book can be
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“blown up” along part of its binding to produce a manifold with boundary: for any
given binding component γ ⊂ B̌, this means replacing γ with its unit normal bundle.
The latter is then a 2-torus T in the boundary of the blown-up manifold M , and
it comes with a canonical homology basis {μ, λ} ⊂ H1(T ), where μ is the meridian
around the boundary of a neighborhood of γ and λ is a boundary component of a
page. Given any two binding components γ1, γ2 ⊂ B̌, one can then produce a new
manifold via a so-called binding sum, which consists of the following two steps:

1. Blow up at γ1 and γ2 to produce boundary tori T1 and T2 with canonical
homology bases {μ1, λ1} and {μ2, λ2} respectively.

2. Attach T1 to T2 via an orientation reversing diffeomorphism T1 → T2 that
maps λ1 to λ2 and μ1 to −μ2.

Combining both the blow-up and binding sum operations for a given closed manifold
with an open book π̌ : M̌ \ B̌ → S1, one obtains a compact manifold M , possibly
with boundary, carrying a fibration

π : M \ (B ∪ I)→ S1,

where B is an oriented (possibly empty) link consisting of all components of B̌ that
have not been blown up, and I is a special (also possibly empty) collection of 2-tori
which are each the result of identifying two blown-up binding components in a bind-
ing sum. The tori T ⊂ I∪∂M each carry canonical homology bases {μ, λ} ⊂ H1(T ),
where for T ∈ I, μ is defined only up to a sign. These homology bases together
with the fibration π determine a so-called blown-up summed open book π on M ,
with binding B and interface I. Its pages are the connected components of the
fibers π−1(const). We call a blown-up summed open book irreducible if the fibers
π−1(const) are connected, which means it contains only a single S1-family of pages.
In general, every manifold M with a blown-up summed open book π can be written
as a union of irreducible subdomains,

M = M1 ∪ . . . ∪Mn ,

whereMi are manifolds with boundary that each carry irreducible blown-up summed
open books πi, whose pages are pages of π, and they are attached to each other
along tori in the interface of π.

Just as an open book on M determines a special class of contact forms, we
define a Giroux form on a manifold M with a blown-up summed open book to be
any contact form λ with the following properties:

1. The Reeb vector field Xλ is everywhere positively transverse to the pages and
positively tangent to the oriented boundaries of their closures.

2. The characteristic foliation cut out by ξ = kerλ on each boundary or interface
torus T ⊂ I ∪ ∂M has closed leaves in the homology class of the meridian.

Note that whenever λ is a Giroux form, the binding consists of periodic orbits of
Xλ, and each torus in I ∪ ∂M is foliated by periodic orbits. A Giroux form can
be defined for any blown-up summed open book that contains no closed pages, and
it is then unique up to deformation. We say that a contact structure ξ on M is
supported by a given blown-up summed open book if and only if it can be written
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as the kernel of a Giroux form. The effect of a binding sum on supported contact
structures is then equivalent to a special case of the contact fiber sum defined by
Gromov [Gr] and Geiges [Ge1].

Definition 3.1. A blown-up summed open book is called symmetric if it has no
boundary and contains exactly two irreducible subdomains, each with pages of the
same topological type, and each with empty binding and (interior) interface.

Symmetric examples are constructed in general by taking any two open books
with diffeomorphic pages, choosing an oriented diffeomorphism from the binding of
one to the binding of the other and constructing the corresponding binding sum on
their disjoint union. Supported contact manifolds that arise in this way include the
tight S1 × S2 (with disk-like pages) and the standard T 3 (cylindrical pages).

We call an irreducible blown-up summed open book planar if its pages have
genus 0, and a general blown-up summed open book is then partially planar if it
contains a planar irreducible subdomain in its interior.

Definition 3.2. For any integer k ≥ 0, a planar torsion domain of order k (or
simply planar k-torsion domain) is a connected contact 3-manifold (M, ξ), possibly
with boundary, with a supporting blown-up summed open book π, such that

(1) M contains a planar irreducible subdomain MP ⊂ M in its interior, whose
pages have k + 1 boundary components;

(2) M \MP is not empty; and
(3) π is not symmetric.

We then call the subdomains MP and M \MP the planar piece and the padding
respectively.

A contact 3-manifold is said to have planar k-torsion whenever it admits a con-
tact embedding of a planar k-torsion domain.

Definition 3.3. Suppose (M, ξ) is a contact 3-manifold containing a planar k-
torsion domain M0 ⊂ M with planar piece MP

0 for some k ≥ 0, and Ω is a closed
2-form on M . If every interface torus T ⊂ M0 lying in MP

0 satisfies
∫
T Ω = 0,

then we say that (M, ξ) has Ω-separating planar k-torsion. We say that (M, ξ) has
fully separating planar k-torsion if this is true for every closed 2-form on M , or
equivalently, each of the relevant interface tori separates M .

Example 3.4. The simplest examples of planar torsion domains have the form
S1 × Σ, where Σ is an orientable surface (possibly with boundary), the contact
structure is S1-invariant and the resulting dividing set Γ ⊂ Σ contains the boundary.
This may be viewed as a blown up summed open book whose pages are the connected
components of Σ\Γ, so the binding is empty, and the interface and boundary together
are S1 × Γ. Some special cases are shown in Figure 3.

Remark 3.5. Another phenomenon that is allowed by the definition but not seen
in the cases S1×Σ of Example 3.4 is for an irreducible subdomain to have interface
tori in its interior, due to summing of a single connected open book to itself at
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1
0

23

Figure 3: Some examples of convex surfaces and dividing sets that determine
S1-invariant planar torsion domains, of orders 1, 0, 3 and 2 respectively. The
examples at the top right and bottom left are both fully separating. The bottom
right example defines a closed manifold contactomorphic to the example (V4, ξ3)
from Theorem 4. Note that in this case, it’s important that the two surfaces on
either side of the dividing set are not diffeomorphic (so that the summed open
book is not symmetric).

different binding components. Examples of this are shown in Figure 4, which also
illustrates the fact that the choice of planar piece (and consequently the order of
planar torsion) is not always unique, even for a fixed planar torsion domain.

It is shown in [We4] that a contact manifold has planar 0-torsion if and only if
it is overtwisted, and every contact manifold with Giroux torsion also has planar
1-torsion. The latter is the reason why Theorem 6 implies Theorem 2.

3.2 Proof of Theorem 6. With these definitions in place, Theorem 6 follows
easily from an existence and uniqueness result proved in [We4] for J-holomorphic
curves in blown-up summed open books. Namely, suppose (M, ξ) is a closed contact
3-manifold containing a compact and connected 3-dimensional submanifoldM0, pos-
sibly with boundary, on which ξ is supported by a blown-up summed open book π
with binding B, interface I and induced fibration π : M0 \ (B ∪ I) → S1. Assume
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20

Figure 4: Schematic representations of two summed open books that include
“self summing”, i.e. interface tori in the interior of an irreducible subdomain.
Assuming trivial monodromy, the example at the left is obtained from the tight
S1 × S2 with its obvious cylindrical open book by summing one binding com-
ponent to the other: the result is a Stein fillable contact structure on the torus
bundle over S1 with monodromy −1. At the right, the additional subdomain
with disk-like pages turns it into a planar torsion domain: the 3-manifold is the
same, but the contact structure is changed by a half Lutz twist and is thus over-
twisted. Note that in this example either irreducible subdomain can be taken
as the planar piece, so it is both a 0-torsion domain and a 2-torsion domain.

there are N ≥ 2 irreducible subdomains

M0 = M1 ∪ . . . ∪MN ,

of which M1 lies fully in the interior of M0, and denote the corresponding restrictions
of π by

πi : Mi \ (Bi ∪ Ii)→ S1

for i = 1, . . . , N , with Bi := B ∩Mi and Ii := I ∩ intMi. Note that while π itself is
not necessarily well defined at ∂Mi, πi always has a continuous extension to ∂Mi.
Assume the pages in Mi have genus gi ≥ 0, where g1 = 0. In particular, M0 is a
planar torsion domain with planar piece M1.

Proposition 3.6 [We4]. For any number τ0 > 0, (M, ξ) admits a Morse–Bott
contact form λ and compatible Fredholm regular almost complex structure J with
the following properties.

(1) On M0, λ is a Giroux form for π.
(2) The Reeb orbits in B are nondegenerate and elliptic, and the components of

I ∪ ∂M0 are all Morse–Bott submanifolds.
(3) All Reeb orbits in B1∪I1∪∂M1 have minimal period at most τ0, while every

other closed orbit of the Reeb vector field Xλ in M has minimal period at
least 1.

(4) For each irreducible subdomain Mi with gi = 0, the fibration πi : Mi\(Bi∪Ii)
→ S1 admits a C∞-small perturbation π̂i : Mi \ (Bi ∪ Ii)→ S1 such that the
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interior of each fiber π̂−1i (τ) for τ ∈ S1 lifts uniquely to an R-invariant family
of properly embedded surfaces

S(i)
σ,τ ⊂ R×Mi , (σ, τ) ∈ R× S1,

which are the images of embedded finite energy J-holomorphic curves

u(i)σ,τ =
(
a(i)τ + σ, F (i)

τ

)
: Ṡi → R×Mi ,

all of them Fredholm regular with index 2, and with only positive ends.
(5) Suppose u : Ṡ → R ×M is a finite energy punctured J-holomorphic curve

which is not a cover of a trivial cylinder, and such that all its positive asymp-
totic orbits are simply covered and contained in B1 ∪ I1 ∪ ∂M1, with at most
one positive end approaching each connected component of B1 ∪ ∂M1 and at
most two approaching each connected component of I1. Then u has genus

zero and parametrizes one of the surfaces S
(i)
σ,τ described above.

Recall that a J-holomorphic curve is called Fredholm regular if it corresponds to
a transversal intersection of the appropriate section of a Banach space bundle with
the zero-section, see for example [We2]. We also say that J is Fredholm regular if
every somewhere injective J-holomorphic curve is Fredholm regular; this is a generic
condition due to [D]. If u is a rigid curve that is Fredholm regular, this implies in
particular that u can be perturbed uniquely to a solution of any sufficiently small
perturbation of the nonlinear Cauchy–Riemann equation.

Proof of Theorem 6. The following is an adaptation of the argument used in [We4]
to show that planar torsion kills the ECH contact invariant, and it can similarly
be used to compute an upper bound on the integer fT

simp(M,λ, J) defined via ECH
in the appendix. Given a closed 2-form Ω on M , let k0 ≤ k be the smallest order
of Ω-separating planar torsion that (M, ξ) admits. We will prove that (M, ξ) then
has Ω-twisted algebraic k0-torsion, which as previously observed, implies algebraic
k-torsion. The statement for untwisted algebraic torsion is then the special case
where Ω = 0. Throughout the proof, for any d ∈ H2(M ;R), we denote by

d̄ ∈ H2(M ;R)/ ker Ω

the corresponding equivalence class.
SupposeM0 ⊂ (M, ξ) is a planar k0-torsion domain with planar piece MP

0 ⊂M0,
such that [T ] ⊂ ker Ω ⊂ H2(M ;R) for every interface torus T lying in MP

0 . Denote
by

πP : MP
0 \ (BP ∪ IP )→ S1

the corresponding fibration in the planar piece. Write the connected components of
the binding, interface and boundary respectively as

BP = γ1 ∪ . . . ∪ γm ,

∂MP
0 = T1 ∪ . . . ∪ Tn ,

IP = Tn+1 ∪ . . . ∪ Tn+r ,

where by definition we have

m+ n+ 2r = k0 + 1 and n ≥ 1 .
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Now, given the special Morse–Bott contact form λ0 and compatible almost complex
structure J0 provided by Proposition 3.6, we consider the moduli space

M(J0) :=M0(γ1, . . . , γm, T1, . . . , Tn, Tn+1, Tn+1, . . . , Tn+r, Tn+r;J0)

of unparametrized J0-holomorphic curves u : Ṡ → R×M such that

1. Ṡ has genus 0, no negative punctures and m+ n+ 2r positive punctures

z1, . . . , zm, ζ1, . . . , ζn, w
+
1 , w

−
1 , . . . , w

+
r , w

−
r .

2. For the punctures listed above, u approaches the simply covered orbit γi at zi,
any simply covered orbit in Ti at ζi and any simply covered orbit in Tn+i at
both w+

i and w−i .

By Proposition 3.6, M is a connected 2-dimensional manifold consisting of an R-
invariant family of embedded Fredholm regular curves that project to the pages
in MP

0 . Note here we are using the fact that the blown-up summed open book
on M0 is not symmetric, so in particular the padding M0 \ MP

0 cannot contain
additional genus 0 curves with the asymptotic behavior that definesM(J0). It also
cannot contain any genus 0 curves asymptotic to a proper subset of the same orbits,
as this would mean the existence of an Ω-separating planar torsion domain with
order less than k0.

We next perturb the Morse–Bott data (λ0, J0) to generic nondegenerate data
(λ, J) by the scheme described in [B], extend J to a suitable framing f and as-
sume that HSFT

∗ (M,λ, f,Ω) is well defined (see Remark 3.7 below). Recall that the
perturbation to nondegenerate data is achieved by choosing a Morse function on
each of the relevant Morse–Bott families of orbits and using it to alter the contact
form in small neighborhoods of these families. In our case, each Morse-Bott family
is parametrized by a circle, so we may assume without loss of generality that our
Morse function on S1 has exactly two critical points, which correspond to the two
orbits in the family that survive as nondegenerate orbits after the perturbation.
Moreover, J-holomorphic curves are obtained as perturbations of J0-holomorphic
“cascades”, i.e. multi-level buildings composed of a mixture of holomorphic curves
with gradient flow lines along the Morse–Bott manifolds. We may therefore assume
after the perturbation that each of the tori Ti for i = 1, . . . , n + r contains two
nondegenerate simple Reeb orbits γei and γhi , elliptic and hyperbolic respectively.
These orbits come with preferred framings determined by the tangent spaces to Ti,
and in these framings their Conley–Zehnder indices are

μCZ(γ
e
i ) = 1 and μCZ(γ

h
i ) = 0 .

There are also two embedded J-holomorphic index 1 cylinders (corresponding to
gradient flow lines along the Morse–Bott family)

v±i : R× S1 → R×M

whose projections to M are disjoint and fill the two regions in Ti separated by γei
and γhi , so the homology classes they represent are related to each other by

[v+i ]− [v−i ] = [Ti] ∈ H2(M ;R) ,
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and for a suitable choice of coherent orientation, these two together contribute terms
of the form (

z[Ti] − 1
)
qγh

i

∂

∂qγe
i

to the operator DSFT. The curves in M(J0) likewise give rise to a unique J-
holomorphic punctured sphere in the space

M(J) :=M0(γ1, . . . , γm, γh1 , γ
e
2, . . . , γ

e
n, γ

e
n+1, γ

e
n+1, . . . , γ

e
n+r, γ

e
n+r;J)

with puncture ζ1 asymptotic to γh1 and all other punctures asymptotic to elliptic
orbits. This curve is embedded and has index 1, thus if d ∈ H2(M ;R) denotes the
homology class defined by the pages in MP

0 with attached capping surfaces, then
this curve produces a term

zd̄�m+n+2r−1 ∂

∂qγh
1

m∏
i=1

∂

∂qγi

n∏
i=2

∂

∂qγe
i

r∏
i=1

1

2

∂

∂qγe
n+i

∂

∂qγe
n+i

in DSFT. We thus define the monomial

F = qγ1 . . . qγmqγh
1
qγe

2
. . . qγe

n
qγe

n+1
qγe

n+1
. . . qγe

n+r
qγe

n+r

and compute,

DSFTF = zd̄�k0 +

n+r∑
i=2

(
z[Ti] − 1

)
qγh

i

∂F

∂qγe
i

.

Every term in the summation now vanishes since [Ti] ⊂ ker Ω, implying that �k0 is
exact. �

Remark 3.7. To make the above computation fully rigorous, one must show that
the relevant count of curves doesn’t change under a suitable abstract perturbation,
e.g. as provided by [H2]. The curves that were counted in the above argument are
Fredholm regular and will thus survive any such perturbation, but we also need
to check that no additional curves appear. If any such curves exist, then in the
unperturbed limit they must give rise to nontrivial holomorphic cascades in the
natural compactification of M(J0), see [BEHWZ]. It suffices therefore to observe
that in the above setup, all possible cascades are accounted for by the J0-holomorphic
pages in MP

0 , due to the uniqueness statement in Proposition 3.6.

4 S1-Invariant Examples in Dimension 3

In this section we consider the special examples (S1 × Σ, ξΓ) described in the in-
troduction, and prove in particular Theorems 3 and 4. Note that the examples
(Vg, ξk) of Theorem 4 can be constructed via a summed open book as follows. Fix
g ≥ k ≥ 1, and let (M−, ξ−) denote the closed contact 3-manifold supported by a
planar open book π− : M− \B− → S1 with k binding components and trivial mon-
odromy. Similarly, let (M+, ξ+) be the contact manifold supported by an open book
π+ : M+ \B+ → S1 with pages of genus g − k + 1 > 0, k binding components and
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trivial monodromy. Choosing any one-to-one correspondence between the connected
components of B+ and B−, we produce a new closed contact manifold (M, ξ) by tak-
ing the binding sum of (M+, ξ+)�(M−, ξ−) along corresponding binding components
as described in section 3; this produces a closed planar (k−1)-torsion domain which
is contactomorphic to (Vg, ξk).

To complete the proof of Theorem 4, we will have to show that certain types of
holomorphic curves in R×Vg do not exist (at least algebraically), which would need
to exist if �k−2 were exact (see Lemma 4.15 below). To do this, we will construct
a precise model for contact manifolds of the form (S1 × Σ, ξΓ), in which all the
relevant holomorphic curves can be classified. The proof of Theorem 3 will also
follow immediately from this classification.

4.1 Holomorphic curves in (S1 × Σ, ξΓ). The basic idea of our model for
(S1 ×Σ, ξΓ) will be to choose data so that the singular foliation of Σ defined by
the gradient flow lines of a suitable Morse function gives rise to a foliation of the
symplectization by holomorphic cylinders, which can be counted by Morse homology.
We will then be able to exclude all the other relevant curves by a combination of
intersection arguments and index estimates.

For the constructions carried out below, the following lemma turns out to be
convenient.

Lemma 4.1. Suppose Σ is a compact connected oriented surface with nonempty
boundary, and h̃ : Σ→ R is a smooth Morse function with all critical points in the
interior and none of index 2, and with ∂Σ = h̃−1(1). Then there exists a conformal
structure j on Σ, compatible with the orientation, and a smooth, strictly increasing
function ϕ : R→ R such that h := ϕ ◦ h̃ : Σ→ R satisfies

−d(dh ◦ j) > 0 ,

and each boundary component has a collar neighborhood biholomorphically identi-
fied with (−δ, 0]×S1 for some small δ > 0, so that in these holomorphic coordinates
(s, t) ∈ (−δ, 0] × S1 we have

h(s, t) = es.

Proof. To construct j with the required properties, we start by choosing oriented
coordinates (s, t) ∈ (−2δ, 0] × S1 on a collar neighborhood of each boundary com-
ponent such that h̃(s, t) = es in these coordinates. In this collar neighborhood, we
simply define j by requiring j(∂s) = ∂t and j(∂t) = −∂s. Note that

−d(dh̃ ◦ j) = es ds ∧ dt > 0

on these collars.
Next we choose oriented Morse coordinates near the critical points, such that

locally
h̃(x, y) = x2 ± y2 + h̃(0) .

In such coordinates, we can define j such that j(∂x) = λ∂y and j(∂y) = − 1
λ∂x for

some λ > 0. A computation then yields
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−d(dh̃ ◦ j) =
(
2
λ ± 2λ

)
dx ∧ dy ,

which is positive whenever 0 < λ < 1.
Now extend j arbitrarily to all of Σ and consider the function h = ϕ ◦ h̃, where

ϕ : R→ R is a smooth function with ϕ′ > 0 and ϕ′′ ≥ 0. Observe that the 2-form

μ := −dh̃ ∧ (dh̃ ◦ j)
is everywhere non-negative, and vanishes precisely at the critical points of h̃. We
then compute,

−d(dh ◦ j) = −(ϕ′ ◦ h̃) d(dh̃ ◦ j) + (ϕ′′ ◦ h̃)μ . (4.1)

This is already positive whenever −d(dh̃ ◦ j) is positive, which is true on a neigh-
borhood of the critical points and the boundary. Outside of this neighborhood, we
have μ > 0 and can thus arrange −d(dh ◦ j) > 0 by choosing ϕ so that

ϕ′′

ϕ′
≥ K

for a sufficiently large constant K > 0. Since −d(dh̃ ◦ j) > 0 on the collar neigh-
borhoods (−2δ, 0] × S1 of ∂Σ, we are free to set ϕ′′ = 0 in [−δ, 0] × S1. Now
since −d(dh ◦ j) > 0 everywhere, (4.1) implies that this property will survive a
further post-composition with an increasing affine function, hence through such a
composition we can arrange without loss of generality that ϕ(s) = s on the collar
neighborhoods [−δ, 0] × S1. �

Let Σ− and Σ+ denote compact oriented and possibly disconnected surfaces, such
that each connected component has non-empty boundary and the total number of
boundary components of Σ− and Σ+ agrees. On each of the surfaces Σ±, we choose
a function h± and conformal structure j± as provided by the lemma and define a
1-form by

β± = −dh± ◦ j± .

This induces a symplectic form σ± and Riemannian metric g± on Σ±, defined by

σ± = dβ±, g± = σ±( · , j± · ) .
Since dh± = es ds in holomorphic coordinates (s, t) ∈ (−δ, 0]×S1 near each compo-
nent of the boundary, we find

σ± = es ds ∧ dt , ∇h± = ∂s .

Denote the union of all these collar neighborhoods of ∂Σ± by

U± ⊂ Σ± .

The gradient ∇h± is a Liouville vector field pointing orthogonally outward at ∂Σ±.

Remark 4.2. Since the subharmonicity condition on the pair (h±, j±) is open,
there is some freedom in the construction. In particular, by perturbing the conformal
structure if necessary we can achieve that the flow of ∇h± is Morse–Smale.

We now glue Σ+ and Σ− together along an orientation preserving diffeomorphism
∂Σ+ → ∂Σ− to create a closed oriented surface

Σ = Σ+ ∪ (−Σ−) ,
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divided into two halves by a special set of circles Γ := ∂Σ+ ⊂ Σ. We will always
assume Σ is connected, and as the above notation suggests we assign it the same
orientation as Σ+, which is opposite the given orientation on Σ−. On each connected
component of U+ and U−, one can define new coordinates

S1 × [0, δ) � (θ, ρ) := (t,−s) for (s, t) ∈ U+ ,

S1 × (−δ, 0] � (θ, ρ) := (t, s) for (s, t) ∈ U− ,

and then define the gluing map and the smooth structure on Σ so that each com-
ponent of U := U+ ∪ U− ⊂ Σ inherits smooth positively oriented coordinates
(θ, ρ) ∈ S1 × (−δ, δ).

Choose a function g0 : [−δ, δ] → R with g0(ρ) = ±1 for ρ near ±δ, g0(0) = 0,
g′0 ≥ 0 and g′0 > 0 near ρ = 0 and a function γ : [−δ, δ] → R with γ(ρ) = ∓e∓ρ for
ρ near ±δ, γ′ > 0 wherever g′0 = 0, γ(ρ) > 0 for ρ < 0 and γ(ρ) < 0 for ρ > 0. For
ε ∈ (0, 1), we then set

gε(ρ) = g0(ρ) + ε2γ(ρ) ,

which satisfies

• g′ε > 0 for sufficiently small ε > 0;
• gε(ρ) = ±(1− ε2e∓ρ) for ρ near ±δ;
• gε(0) = 0.

Now define a smooth family of functions hε : Σ→ R by

hε =

⎧⎪⎨⎪⎩
1− ε2h+ on Σ+ \ U+ ,

gε(ρ) for (θ, ρ) ∈ U ,

−1 + ε2h− on Σ− \ U− .

For each fixed ε > 0, hε is a Morse function with all its critical points in Σ \ U ,
and they are precisely the critical points of h±.

Next choose a function f0 : [−δ, δ] → R such that f0(ρ) = 0 for ρ near ±δ, f0 ≥ 0
everywhere and ρ ·f ′0(ρ) ≤ 0 for ρ �= 0 and f ′′0 (0) < 0, and a function ψ : [−δ, δ] → R

with ψ(ρ) = e±ρ for ρ near ∓δ, ψ ≥ 0 everywhere and ρ · ψ′(ρ) < 0 for ρ �= 0. Then
we define

fε(ρ) = f0(ρ) + εψ(ρ) .

With these choices in place, we denote the coordinate in S1 by φ and define a
smooth family of 1-forms λε on S1 × Σ by

λε =

⎧⎪⎨⎪⎩
εβ+ + hε dφ on S1 × (Σ+ \ U+) ,
fε(ρ) dθ + gε(ρ) dφ on S1 × U ,

εβ− + hε dφ on S1 × (Σ− \ U−) .
(4.2)

Observe that S1 × Σ admits a natural summed open book with empty binding,
interface I = S1 × Γ, fibration

π : S1 × (Σ \ Γ)→ S1 : (φ, z) 
→
{
φ if z ∈ Σ+ ,

−φ if z ∈ Σ− ,

and the meridians on S1 × Γ generated by the circles S1 × {const}.
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Proposition 4.3. There exists ε0 > 0 with the following properties:

(i) For any ε ∈ (0, ε0], λε is a positive contact form on S1×Σ and is a Giroux form
for the summed open book described above. Moreover, for all these contact
forms each component of the interface S1 × Γ is a Morse–Bott submanifold of
Reeb orbits pointing in the ∂θ-direction.

(ii) For any ε ∈ (0, ε0] and for each φ ∈ S1, the leaves of the characteristic foliation
on {φ} × Σ are precisely the gradient flow lines of hε.

(iii) The 2-form ω = d(esλs) is symplectic on (0, ε0]× S1 ×Σ, where s denotes the
coordinate on the first factor.

Proof. To prove (i), note that the natural co-orientation induced by the summed
open book on its pages is compatible with the orientations defined on Σ± by j±,
for which σ± are positive volume forms. To prove the contact condition on
S1 × (Σ± \ U±), observe that λε → ±dφ on this region as ε → 0, so the contact
planes are almost tangent to the pages. Thus it suffices to observe that dλε is
positive on Σ± \ U±, which is clear since dλε = εσ± when restricted to the pages.

On S1×U , a routine computation shows that the contact condition follows from
fεg

′
ε − f ′εgε > 0. But this is easily computed to equal

fεg
′
ε − f ′εgε = f0g

′
0 − f ′0g0 + ε(ψg′0 − ψ′g0) +O(ε2) .

Our conditions on the various functions ensure that all four summands are non-
negative, with the first one strictly positive for ρ near 0 and the last one strictly
positive for ρ away from zero. So for ε0 > 0 sufficiently small, the contact condition
holds for all ε ∈ (0, ε0] on S1 × U as well. Here it is also easy to compute the Reeb
vector field Xλε : writing Dε = fεg

′
ε − f ′εgε, we have

Xλε(φ, ρ, θ) =
1

Dε(ρ)

[
g′ε(ρ)

∂

∂θ
− f ′ε(ρ)

∂

∂φ

]
. (4.3)

Our assumptions on f ′ε(ρ) then imply that Xλε always has a component in the
negative ∂φ-direction for ρ ∈ (−δ, 0), and in the positive ∂φ-direction for ρ ∈ (0, δ),
while at ρ = 0 it points in the ∂θ-direction. Moreover, the condition gε(0) = 0
implies that the contact planes at ρ = 0 are tangent to the circles S1×{const}, thus
λε is a Giroux form. The Morse–Bott condition at S1 × Γ follows from f ′′ε (0) < 0,
which for small ε > 0 follows from f ′′0 (0) < 0. This concludes the proof of (i).

Next we verify that the characteristic foliation on {φ} × Σ matches the gradi-
ent flow of hε. This is obvious in U , where both characteristic leaves and gradi-
ent flow lines are simply straight lines in the ∂ρ-direction. On Σ± \ U±, a vector
v ∈ TΣ± is tangent to the characteristic foliation if and only if β±(v) = 0, imply-
ing dh±(j±v) = 0 and thus v is orthogonal to the level sets of h±, which makes it
proportional to ∇h± as claimed, and establishes (ii).

Finally, consider the two-form ω = d(esλs). On R × S1 × U , we have λs =
fs dθ + gs dφ and so

ω = es(ds ∧ λs + dfs ∧ dθ + dgs ∧ dφ) ,

with

dfs = f ′s dρ+ ψ ds ,
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dgs = g′s dρ+ 2sγ ds .

One then computes

ω ∧ ω = es(fsg
′
s − f ′sgs + ψg′s − 2γsf ′s) ds ∧ dθ ∧ dρ ∧ dφ

here, and observe that all four terms are non-negative, with the first one strictly
positive for small s > 0, so ω is symplectic here.

On R × S1 × (Σ+ \ U), we have λs = sβ+ + (1 − s2h+) dφ, and so another
computation shows

ω ∧ ω = e2s
(
s σ+ ∧ ds ∧ dφ+O(s2)

)
here, which is also a positive volume form for small enough s > 0. A similar
computation on R× S1 × (Σ− \ U) finishes the proof of part (iii). �

From now on, denote the contact structure on S1 × Σ for ε ∈ (0, ε0] by

ξε = kerλε .

Due to Gray’s stability theorem, ξε is independent of ε up to isotopy, and it is
isomorphic to ξΓ.

Remark 4.4. From the discussion above it is clear that for every φ ∈ S1, {φ} ×Σ
is a convex surface for ξε with dividing set Γ, positive part Σ+ and negative part Σ−.
In particular, the Euler class e(ξε) ∈ H2(S1×Σ) satisfies 〈e(ξε), [{∗}×Σ]〉 = χ(Σ+)−
χ(Σ−). It follows from the S1-invariance of ξε that the Euler class vanishes on all
cycles of the form S1 × γ for closed curves γ ⊂ Σ. Thus

e(ξε) =
[
χ(Σ+)− χ(Σ−)

]
PD

[
S1 × {∗}

]
.

The following assertion can be checked by a routine computation.

Lemma 4.5. The Reeb vector field Xλε on S1 × (Σ± \ U±) is given by

Xλε =
1

1 + ε2(|∇h±|2g± − h±)

(
± ∂

∂φ
+ εj±∇h±

)
. (4.4)

�

In particular, this shows that every critical point z ∈ Crit(hε) gives rise to a
periodic orbit

γz := S1 × {z}
of Xλε . We shall denote by γnz the n-fold cover of γz for any n ∈ N and z ∈ Crit(hε).
Observe that there is always a natural trivialization of the contact bundle along γnz ,
defined by choosing any frame at a point and transporting by the S1-action.

We next define a compatible complex structure Jε on ξε as follows. On S1×(Σ±\Γ),
the projection S1 × Σ→ Σ defines a bundle isomorphism

πΣ : ξε|S1×(Σ\Γ) → TΣ|S1×(Σ\Γ) ,

which we can use to define Jε : ξε → ξε on S1 × (Σ± \ U±) by
Jε = π∗Σj± . (4.5)
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Since ∂ρ ∈ ξε on S1 × U , we can now extend Jε to this region by setting

Jε∂ρ = αε(ρ)
[
fε(ρ)∂φ − gε(ρ)∂θ

]
,

for any smooth family of functions αε : (−δ, δ) → (0,∞) which equals ±1/gε near
ρ = ±δ, so in particular for ε > 0, Jε satisfies

dρ(Jε∂ρ) = 0 and dλε(∂ρ, Jε∂ρ) > 0 .

Extend Jε to an R-invariant almost complex structure

Jε : T
(
R× (S1 × Σ)

)
→ T

(
R× (S1 ×Σ)

)
in the standard way, i.e. by setting Jε∂s = Xλε where s is the R-coordinate. Then
for each z ∈ Crit(hε), there is a trivial cylinder

R× S1 → R× (S1 × Σ) : (s, t) 
→ (s, t, z) ,

which can be reparametrized to define an embedded Jε-holomorphic curve of Fred-
holm index 0. We shall abbreviate this curve by R× γz, and similarly write R× γnz
for the obvious Jε-holomorphic n-fold cover of R× γz.

Proposition 4.6. For ε ∈ (0, ε0], suppose x : R→ Σ is a solution to the gradient
flow equation ẋ = ∇hε(x) approaching z± ∈ Crit(hε) at ±∞. Then there exists a
proper function a : R→ R, unique up to a constant, such that the embedding

ux : R× S1 → R× (S1 × Σ) : (s, t) 
→
(
a(s), t, x(s)

)
is a Jε-complex curve. Both ends of u are positive if and only if the two critical
points z+ and z− lie on opposite sides of the interface.

Proof. For any z ∈ Σ, regard ∇hε(z) as a vector in T(φ,z)(S
1 × Σ) for some fixed

φ ∈ S1, and observe that ∇hε(z) ∈ (ξε)z due to Proposition 4.3. Thus we can define
an S1-invariant vector field

v(φ, z) = Jε∇hε(z) ,

which takes values in ξε and vanishes only at S1 × Crit(hε). For z ∈ Σ± \ U±, (4.5)
implies that v(φ, z) is a linear combination of j±∇hε(z) and ∂φ, and the same is true
for z ∈ U due to the condition dρ(Jε∂ρ) = 0. By (4.3) and (4.4), the Reeb vector
field Xλε is also a linear combination of the same two vector fields everywhere, and
is of course linearly independent of v except when the latter vanishes, from which
we conclude

∂φ ∈ RXλε ⊕ Rv

everywhere on S1×Σ. It follows that Jε∂φ is everywhere a linear combination of ∂s
and ∇hε, so the desired complex curves are obtained by integrating the distribution

R∂φ ⊕ RJε∂φ .

In particular, this generates a foliation whose leaves include an R-invariant family
of cylinders of the form ux described above for each nontrivial gradient flow line
x : R→ Σ, and the trivial cylinders R× γz defined above for each z ∈ Crit(hε). The
signs of the cylindrical ends can now be deduced from the orientations of the Reeb
orbits, using the fact that the orientations of γz and γζ in the S1-direction match if
and only if z and ζ lie on the same side of the dividing set Γ. �
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From the proposition it follows that each of the embeddings ux is a (not nec-
essarily Jε-holomorphic) parametrization of a finite energy Jε-holomorphic curve,
whose Fredholm index ind(ux) is the sum of the Conley–Zehnder indices at its ends
if both are positive, or the difference if one end is negative. We shall abuse notation
by identifying the map ux : R×S1 → R× (S1×Σ) with the unique unparametrized
Jε-holomorphic curve it determines, and do the same with the obvious unbranched
multiple cover

unx(s, t) := ux(s, nt)

for each n ∈ N.

Proposition 4.7. Assume h+ and h− are chosen so that their gradient flows
are Morse–Smale (see Remark 4.2). Then after possibly adjusting the gluing map
∂Σ+ → ∂Σ−, there exist functions

(0, ε0]→ (0,∞) : ε 
→ Tε

(0, ε0]→ N : ε 
→ Nε

with limε→0 Tε = limε→0Nε = +∞ such that the following conditions hold for all
ε > 0:

(1) ∇hε is Morse–Smale.
(2) Every closed orbit of Xλε with period less than Tε is either in S1×U or is γnz

for some z ∈ Crit(hε) and n ≤ Nε.
(3) For all n ≤ Nε, γ

n
z is nondegenerate as an orbit ofXλε and has Conley–Zehnder

index

μCZ(γ
n
z ) =

{
1 if ind(z) = 0 or 2 ,

0 if ind(z) = 1 ,
(4.6)

with respect to the S1-invariant trivialization of ξε along γnz , where ind(z)
denotes the Morse index of z.

Proof. Up to parametrization, the flow of ∇hε matches that of ∇h± on Σ± \ U±
and ∂ρ on U . Thus if ∇h± are both Morse–Smale, any flow lines of ∇hε connecting
two index 1 critical points must pass through Γ, and can thus be eliminated by a
small rotation of the gluing map ∂Σ+ → ∂Σ−. The existence of the function Tε

with limε→0 Tε =∞ follows from (4.4), as all orbits outside of S1×U other than the
γnz for z ∈ Crit(hε) correspond to closed orbits of j±∇h± in level sets of h±, with
periods that become infinitely large as ε→ 0. We can then define

Nε := max{n ∈ N | All γnz have periods < Tε as orbits of Xλε} ,
and observe thatNε →∞ as ε→ 0 since the periods of γz converge to 1. The formula
for μCZ(γ

n
z ) is a standard computation from Floer theory relating Conley–Zehnder

indices to Morse indices, see for example [SZ]. �

We will assume from now on that the conditions of Proposition 4.7 are satisfied.
Then ∇hε is Morse–Smale for all ε ∈ (0, ε0], and it will follow that each of the Jε-
holomorphic cylinders ux corresponding to gradient flow lines x : R → Σ between
critical points z−, z+ ∈ Crit(hε) has positive Fredholm index. Indeed, these cylinders
come in five types:
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1. z− ∈ Σ− with index 0 and z+ ∈ Σ+ with index 2: then ind(ux) = 2 and both
ends are positive.

2. z−, z+ ∈ Σ+ with indices 1 and 2: then ind(ux) = 1 and one end is negative.
3. z−, z+ ∈ Σ− with indices 0 and 1: then ind(ux) = 1 and one end is negative.
4. z− ∈ Σ− with index 0 and z+ ∈ Σ+ with index 1: then ind(ux) = 1 and both

ends are positive.
5. z− ∈ Σ− with index 1 and z+ ∈ Σ+ with index 2: then ind(ux) = 1 and both

ends are positive.

This classification is exactly the same for the multiply covered cylinders unx(s, t) for
all n ≤ Nε.

Proposition 4.8. For every gradient flow line x : R → Σ, the corresponding
Jε-holomorphic cylinders unx for n ≤ Nε are all Fredholm regular.

Proof. By the criterion in [We2, Th. 1] an immersed, connected finite energy Jε-
holomorphic curve u with genus g asymptotic to nondegenerate Reeb orbits is Fred-
holm regular whenever

ind(u) > 2g − 2 + #Γ0 ,

where the integer #Γ0 ≥ 0 denotes the number of ends at which u approaches orbits
with even Conley–Zehnder index. In the case at hand, we always have g = 0 and
either ind(u) = 2 with #Γ0 = 0 or ind(u) = 1 with #Γ0 = 1, so the criterion is
satisfied in all cases. �

It follows that the embedded cylinders ux for all gradient flow lines x on Σ,
together with the trivial cylinders R×γz for z ∈ Crit(hε), form a stable finite energy
foliation in the sense of [HWZ2], [We1].

In the following, we will make use of the intersection theory for punctured holo-
morphic curves, defined by Siefring [Si]. This theory defines an intersection number

u ∗ v ∈ Z

for any two asymptotically cylindrical maps u, v from punctured Riemann surfaces
into the symplectization of a contact 3-manifold, with the following properties:

• u ∗ v is invariant under homotopies of u and v through asymptotically cylin-
drical maps.

• u ∗ v ≥ 0 whenever both are finite energy pseudoholomorphic curves that are
not covers of the same somewhere injective curve, and the inequality is strict
if they have nonempty intersection.

Lemma 4.9. Suppose u and v are finite energy pseudoholomorphic curves in the
symplectization R ×M of a contact manifold (M, ξ), such that u has no negative
ends, and the positive punctures ζ ∈ Γ+

v of v are asymptotic to Reeb orbits denoted
by γζ . Then

u ∗ v =
∑
ζ∈Γ+

v

u ∗ (R× γζ) .
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Proof. By R-translation we can assume the image of u is contained in [0,∞) ×M ,
and can then homotop v through a family of asymptotically cylindrical maps so that
its intersection with [0,∞)×M consists only of the trivial half-cylinders [0,∞)× γζ
for ζ ∈ Γ+

v . The lemma thus follows from the homotopy invariance of u ∗ v. �

It is possible in general to have u∗v > 0 even if u and v are disjoint holomorphic
curves: in this case intersections can “emerge from infinity” under generic pertur-
bations, and excluding this typically requires the computation of certain winding
numbers. We will only need to worry about this in one special case:

Lemma 4.10. For any z ∈ Crit(hε), a gradient flow line x : R→ Σ that begins and
ends on opposite sides of the interface, and n ≤ Nε, (R × γnz ) ∗ ux = 0.

Proof. The curves R × γnz and ux obviously do not intersect since x does not pass
through any critical points, so we only have to check that there are no asymptotic
contributions to (R× γnz ) ∗ux. This is trivially true unless z is one of the end points
of x, so assume the latter. Then the definition of the intersection number in [Si]
implies that (R × γnz ) ∗ ux = 0 if and only if the asymptotic end of unx approaching
γnz has the largest possible asymptotic winding about the orbit. This bound on the
winding is an integer α−(γnz ), which is the winding of a particular eigenfunction of
the Hessian of the contact action functional, and was shown in [HWZ1] to be related
to the Conley–Zehnder index by

μCZ(γ
n
z ) = 2α−(γ

n
z ) + p(γnz ) ,

where p(γnz ) ∈ {0, 1}. Since μCZ(γ
n
z ) is either 0 or 1 by Proposition 4.7, we conclude

α−(γnz ) = 0, which is obviously the same as the winding of unx about γnz as it
approaches asymptotically. �

Proposition 4.11. Suppose u : Ṡ → R×(S1×Σ) is a finite energy Jε-holomorphic
curve which is not a cover of a trivial cylinder and has all its positive ends asymptotic
to Reeb orbits of the form γnz for z ∈ Crit(hε) and n ≤ Nε. Then u is a cover of ux
for some gradient flow line x : R→ Σ.

Proof. If u is neither a cover of any ux nor of a trivial cylinder over γz for some
z ∈ Crit(hε), then it must have a nontrivial intersection with one of the curves ux,
implying u ∗ ux > 0. By a small perturbation using positivity of intersections, we
can assume also that x is a generic flow line, connecting an index 0 critical point
z− ∈ Σ− to an index 2 critical point z+ ∈ Σ+. Then ux has no negative ends, so u∗ux
is the sum of the intersection numbers of ux with all the positive asymptotic orbits
of u by Lemma 4.9. But these are all zero by Lemma 4.10, giving a contradiction. �

Proposition 4.12. Suppose x : R → Σ is a gradient flow line of hε and u : Ṡ →
R× (S1 × Σ) is a Jε-holomorphic multiple cover of ux with covering multiplicity at
mostNε. Then ind(u) ≥ 1, and the inequality is strict unless the cover is unbranched,
i.e. u = unx for some n ≤ Nε.
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Proof. The index formula for u is

ind(u) = −χ(Ṡ) + 2c1(u
∗ξ) + μCZ(u) ,

where μCZ(u) is the sum of the Conley–Zehnder indices of its positive asymptotic
orbits minus those of its negative asymptotic orbits, and c1(u

∗ξ) is the relative first
Chern number of the bundle u∗ξ → Ṡ with respect to the natural trivialization of
each orbit γnz . The latter vanishes due to the S1-invariance (cf. Remark 4.4). For the
Conley–Zehnder indices, we use Proposition 4.7, distinguishing between two cases:

• If x passes through Γ, then both ends of ux are positive and thus all ends of u
are positive. Moreover, the Morse–Smale condition guarantees that ux cannot
have both its ends at hyperbolic critical points with Conley–Zehnder index 0,
hence μCZ(u) ≥ 1.

• Otherwise, ux has a positive end at an elliptic critical point z+ with
μCZ(γz+) = 1 and a negative end at a hyperbolic critical point z− with
μCZ(γz−) = 0, so again μCZ(u) ≥ 1.

As a result, ind(u) ≥ −χ(Ṡ) + 1, which is strictly greater than 1 unless Ṡ is a
cylinder, in which case there are no branch points. �

Proposition 4.13. Suppose z ∈ Crit(hε) and u : Ṡ → R × (S1 × Σ) is a Jε-
holomorphic multiple cover of R × γz with covering multiplicity at most Nε. Then
ind(u) ≥ 0, and the inequality is strict unless u has exactly one positive end.

Proof. If ind(z) = 1, then Proposition 4.7 implies that all asymptotic orbits of u have
Conley–Zehnder index 0 in the natural trivialization, hence ind(u)=−χ(Ṡ)≥ 0, with
equality if and only if Ṡ is a cylinder, implying it has one positive and one negative
end. Otherwise, the asymptotic orbits of u all have Conley–Zehnder index 1, so if
g ≥ 0 is the genus of u and its sets of positive and negative punctures are denoted
by Γ+ and Γ− respectively, we have

ind(u) = −χ(Ṡ) + #Γ+ −#Γ− = −(2− 2g −#Γ+ −#Γ−) + #Γ+ −#Γ−

= 2g − 2 + 2#Γ+ = 2g + 2
(
#Γ+ − 1

)
≥ 0 .

�

Remark 4.14. The moduli spaces of Jε-holomorphic curves in R× (S1×Σ) can be
oriented coherently whenever all asymptotic orbits are nondegenerate and “good”,
see [EGH], [BM]. In particular, the spaces of cylinders unx covering gradient flow lines
x can be given orientations that match a corresponding set of coherent orientations
for the spaces of Morse gradient flow lines.

4.2 Proofs of Theorems 3 and 4. The results of the previous subsection give
enough information on Jε-holomorphic curves in R × (S1 × Σ) to prove the main
theorems. Recall that the natural compactification of the moduli space of finite
energy punctured holomorphic curves consists of holomorphic buildings, which in
general may have multiple levels and nodes, see [BEHWZ].
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Proof of Theorem 3. Assume Σ− is disconnected and let Σ1
− and Σ2

− denote two
of its connected components. Then we can choose the Morse functions h± so that
h− has exactly one index 0 critical point in each of Σ1

− and Σ2
−, denoted by z1− and

z2− respectively, and h+ has an index 1 critical point z+ ∈ Σ+ such that the two
negative gradient flow lines of hε flowing out of z+ end at z1− and z2− respectively.
In particular, there is a unique gradient flow line x1 connecting z1− to z+. By
Proposition 4.11, the set of all Jε-holomorphic buildings with no negative ends and
positive ends approaching any subset of the two simply covered orbits γz+ and γz1−
consists of the following:

1. The cylinder ux1 with two positive ends at γz+ and γz1− .

2. All cylinders ux corresponding to gradient flow lines x connecting z1− to index 1
critical points in Σ1

−. Each of these cylinders has one positive and one negative
end, with the positive end approaching γz1− .

Since both of these orbits are nondegenerate and all of the holomorphic curves in
question are Fredholm regular by Proposition 4.8, they all survive any sufficiently
small perturbation to make λε nondegenerate and Jε generic, as well as the intro-
duction of an abstract perturbation for the holomorphic curve equation. The chain
complex for SFT can therefore be defined so as to contain two special generators
qγ

z1−
and qγz+ such thatDSFT(qγ

z1−
qγz+ ) is computed by counting the Jε-holomorphic

curves listed above (cf. Remark 3.7). We claim now that for a suitable choice of
coherent orientations, the algebraic count of cylinders of the second type is zero.
Indeed, the orientations can be chosen compatibly with a choice of coherent ori-
entations for the space of gradient flow lines (cf. Remark 4.14), thus the count of
these cylinders matches the count of all gradient flow lines connecting z1− to index
1 critical points in Σ1

−. The latter computes a part of the term d〈z1−〉 in the Morse
cohomology of Σ, but since z1− is the only index 0 critical point in Σ1

−, 〈z1−〉 is a
closed generator of the Morse cohomology, and the claim follows. We conclude that
only the cylinder ux1 with two positive ends gives a nontrivial count, and thus

DSFT

(
qγ

z1−
qγz+

)
= � .

�

Recall from Remark 2.2 that if all the Reeb orbits below some given action T > 0
are nondegenerate, then one can define a truncated complex (A(λ, T )[[�]],DSFT).
The proof that (Vg, ξk) has no algebraic (k− 2)-torsion for k ≥ 2 depends on estab-
lishing the following criterion.

Lemma 4.15. Suppose K is a non-negative integer and (M, ξ) is a closed contact
manifold admitting a contact form λ, compatible almost complex structure J and
constant T > 0 with the following properties:

(1) All Reeb orbits of λ with period less than T are nondegenerate.

(2) For every pair of integers g ≥ 0 and r ≥ 1 with g+ r ≤ K +1, let M1
g,r(J ;T )

denote the space of all index 1 connected J-holomorphic buildings in R×M
with arithmetic genus g, no negative ends, and r positive ends approaching
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orbits whose periods add up to less than T . Then M1
g,r(J ;T ) consists of

finitely many smooth curves (i.e. buildings with only one level and no nodes),
which are all Fredholm regular.

(3) There is a choice of coherent orientations for which the algebraic count of

curves in M1
g,r(J ;T ) is zero whenever g + r ≤ K + 1.

Then if DSFT : A(λ, T )[[�]] → A(λ, T )[[�]] is defined by counting solutions to a
sufficiently small abstract perturbation of the J-holomorphic curve equation, there
is no Q ∈ A(λ, T )[[�]] such that

DSFT(Q) = �K +O(�K+1) .

Proof. We begin by observing that since all the buildings in M1
g,r(J ;T ) are smooth

Fredholm regular curves, the count of the corresponding moduli space of solutions
under any suitable abstract perturbation will remain 0 (cf. Remark 3.7).

Recall now thatDSFT has an expansionDSFT =
∑

D��
� in powers of �, whereD�

counts (perturbed) holomorphic curves whose genus and number of positive punc-
tures add up to �. The assumption (3) now guarantees that, for every Q ∈ A(λ, T )
each term ofD�(Q) with � ≤ K contains at least one q-variable. So ifQ ∈ A(λ, T )[[�]]
is arbitrary, we can write its differential uniquely as

DSFT(Q) = P +O(�K+1) ,

with P a polynomial of degree at most K in � whose nontrivial terms each contain
at least one q-variable. This establishes the claim. �

We now fix one of our specific examples (Vg, ξk). The two sides Σ+ and Σ− of
Σ are then both connected, so we can choose each of the functions h± : Σ± → R to
have a unique local minimum; in this case hε : Σ→ R for ε > 0 has a unique index
0 critical point in Σ− and a unique index 2 critical point in Σ+. Recall that for any
ε ∈ (0, ε0], Proposition 4.3 gives an exact symplectic cobordism(

[ε, ε0]× (S1 × Σ), d(esλs)
)

relating the contact forms eελε and eε0λε0 . Then for any sufficiently C∞-small
function Fε : S

1 × Σ→ R, the subdomain

Xε :=
{
(s,m) ∈ R× (S1 × Σ) | ε+ Fε(m) ≤ s ≤ ε0

}
gives an exact symplectic cobordism between eε0λε0 and eελ′ε, where λ′ε is the per-
turbed contact form

λ′ε := eFελε .

By Proposition 4.7, λε has nondegenerate orbits up to period Tε except in S1 × U ,
thus one can choose a generic C∞-small function Fε with compact support in S1×U
so that λ′ε has only nondegenerate orbits up to period Tε (the fact that generic
perturbations in an open subset suffice follows from the appendix of [ABW]). Choose
a corresponding complex structure J ′ε on the perturbed contact structure ξ′ε := ker λ′ε
such that J ′ε is C

∞-close to Jε. The proof of Theorem 4 now rests on the following
observation.
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Lemma 4.16. The assumptions of Lemma 4.15 are satisfied with λ = λ′ε, J = J ′ε,
T = Tε and K = k − 2.

Proof. It will turn out that it suffices to count holomorphic buildings for the unper-
turbed structure Jε, so to start with, suppose u is an index 1 Jε-holomorphic building
in R× (S1 ×Σ) with no negative ends and at most k − 1 positive ends, asymptotic
to orbits whose periods add up to less than Tε. We claim that u is then a smooth
curve (with only one level and no nodes), and is a cylinder of the form unx for some
gradient flow line x : R → Σ of hε and n ≤ Nε. Indeed, we start by arguing that
none of the asymptotic orbits of u can lie in the region S1 ×U . By Proposition 4.7,
all asymptotic orbits of u outside this region are of the form γnz for z ∈ Crit(hε),
and thus have trivial projections to Σ. Moreover, all closed Reeb orbits in S1 × U
project to U as closed curves homologous to some positive multiple of a component
of Γ, oriented as boundary of Σ+. It follows that the projection of u to Σ provides a
homology from the sum of these curves to zero. Since there are k components of Γ,
but only at most k − 1 ends of u, there is at least one component of S1 × U which
does not contain any asymptotics of u. Using this interface component, it is easy
to construct a closed curve on Σ which has nonzero intersection number with the
projected asymptotics of u in U ⊂ Σ, proving that the sum cannot be homologous
to zero. This contradiction proves our claim that none of the asymptotics can lie in
S1 × U .

Now Proposition 4.7 implies that all the asymptotic orbits of u are of the form
γnz for z ∈ Crit(hε) and n ≤ Nε. Proposition 4.11 then implies that every component
curve in the levels of u is one of the following:

1. a cover of a trivial cylinder R× γz for some z ∈ Crit(hε);
2. a cover of the cylinder ux for some gradient flow line x : R → Σ of hε, con-

necting critical points of hε on opposite sides of Γ.

By Proposition 4.13, all curves of the first type have non-negative index. Proposi-
tion 4.12 implies in turn that all curves of the second type have index at least 1, and
there must be at least one such curve since u has no negative ends. Since ind(u) = 1,
it follows that u contains exactly one curve of the second type, which is an un-
branched cover unx for some gradient flow line x and n ≤ Nε, and all components of
u that are covers of trivial cylinders have exactly one positive end. Combinatorially,
this is only possible if u has precisely one nontrivial connected component, which is
of the form unx.

By Proposition 4.8, the curves unx are all Fredholm regular, thus they will all sur-
vive the small perturbation of Jε to J ′ε; in fact the lack of nontrivial Jε-holomorphic
buildings means that no additional J ′ε-holomorphic buildings can appear under this
perturbation. Thus it will suffice to show that the algebraic count of the Jε-
holomorphic cylinders unx for n ≤ Nε is zero. For this, choose a system of coherent
orientations for the gradient flow lines of hε, and a corresponding system of ori-
entations for the moduli spaces of Jε-holomorphic curves (see Remark 4.14). The
relevant count of holomorphic curves is then the same as a certain count of gradi-
ent flow lines: we are interested namely in all index 1 holomorphic cylinders unx for
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which both ends are positive, and these correspond to the gradient flow lines x that
pass through Γ and connect an index 1 critical point on one side to an index 0 or 2
critical point on the other. Consider in particular the set of all gradient flow lines
that connect the unique index 2 critical point z+ ∈ Σ+ to any index 1 critical point
in Σ−. The count of these flow lines calculates part of the differential ∂〈z+〉 in the
Morse homology of Σ, but since there is no other critical point of index 2, 〈z+〉 is
necessarily closed in Morse homology, implying that the relevant algebraic count of
flow lines is zero. Applying the same argument to the unique index 0 critical point
in Σ− using Morse cohomology, we find indeed that the algebraic count of cylinders
unx with two positive ends for any n ≤ Nε vanishes. �

Remark 4.17. The preceding result also establishes the conditions of Proposi-
tion A.6 in the appendix, thus implying the lower bound stated in Theorem 7.

Proof of Theorem 4. In light of Theorem 6, it remains to show that [�k−2] does not
vanish in HSFT

∗ (Vg, ξk).
We will argue by contradiction and suppose �k−2 vanishes in HSFT

∗ (Vg, ξk).
Choose a nondegenerate contact form λ such that there is a topologically trivial
cobordism X with positive end (Vg, λ) and negative end (Vg, e

ε0λε0). Choose all
necessary data to define DSFT on A(λ)[[�]] such that it computes HSFT

∗ (Vg, ξk). In
particular, there exists Q ∈ A(λ)[[�]] such that

DSFT(Q) = �k−2.

Writing Q = Q1 + O(�k−1), we find a polynomial Q1 of degree at most k − 2 in �

with the property that

DSFT(Q1) = �k−2 +O(�k−1) .

Note that since Q1 is a polynomial in the q-variables, there exists some T > 0 such
that in fact Q1 ∈ A(λ, T )[[�]].

Now choose ε > 0 so small that eεTε > T . Gluing the cobordism Xε constructed
above to X, we obtain an exact cobordism with positive end (Vg, λ) and negative
end (Vg, e

ελ′ε) which according to Remark 2.2 gives rise to a chain map,

ΦT :
(
A(λ, T )[[�]],DSFT

)
→

(
A(λ′ε, e−εT )[[�]],DSFT

)
,

where the right-hand side admits the obvious inclusion into (A(λ′ε, Tε)[[�]],DSFT).
But then DSFTΦT (Q1) = ΦTDSFT(Q1) = �k−2 + O(�k−1), which contradicts Lem-
mas 4.15 and 4.16. This contradiction shows that �k−2 cannot vanish inHSFT

∗ (Vg, ξk),
completing the proof of the theorem. �

Remark 4.18. We conclude this section by giving the rough idea of how to
construct the exact cobordisms with positive end (Vg+1, ξk+1) and negative end
(Vg, ξk) alluded to in Remark 1.6; this was explained to us by J. Van Horn-Morris.
First observe that if Vg = S1 × Σ with Σ = Σ+ ∪Γ Σ− and Vg+1 = S1 × Σ′

with Σ′ = Σ′+ ∪Γ′ Σ
′
−, then one can transform the former to the latter by pick-

ing two distinct points p−, p+ in the same connected component of Γ and attaching
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2-dimensional 1-handles H := D1 × D1 along the corresponding points in both ∂Σ+

and ∂Σ−, producing Σ′+ and Σ′− respectively with a preferred orientation reversing
diffeomorphism ∂Σ′+ → ∂Σ′−. A Stein cobordism between (Vg, ξk) and (Vg+1, ξk+1)
is then constructed by “multiplying the handle attachment by an annulus”. More
precisely, we define the two Legendrian loops �± = S1 × {p±} ⊂ Vg, and attach to
these a 4-dimensional round 1-handle

Ĥ := H× [−1, 1] × S1 ∼= D1 ×
(
D2 × S1

)
with boundary

∂Ĥ = ∂−Ĥ ∪ ∂+Ĥ :=
(
∂D1 × (D2 × S1)

)
∪
(
D1 × ∂(D2 × S1)

)
.

This produces a smooth cobordism from Vg to Vg+1, and one can make it into a Stein

cobordism by regarding Ĥ as an “S1-invariant Weinstein handle”, with a Morse–
Bott plurisubharmonic function with critical set {(0, 0)} × S1, isotropic unstable
manifold D1 × {0} × S1 and coisotropic stable manifold {0} × D2 × S1. Perturbing
the Morse–Bott function to a Morse function with critical points of index 1 and 2
along {(0, 0)} × S1, one sees that the same cobordism can be obtained by attaching
a combination of standard Stein 1-handles and 2-handles. One can then use open
book decompositions [V] to show that the resulting contact structure on Vg+1 is the
one determined by the dividing curves Γ′ ⊂ Σ′.

5 Outlook

We close by mentioning a few questions that arise from the results of this paper.
As shown in the appendix, algebraic torsion in dimension three seems to be

closely related to the ECH contact invariant; indeed, all of our examples are contact
manifolds for which the latter vanishes, and they exhibit a correspondence between
the minimal order of algebraic torsion and the integers f and fsimp defined by Hutch-
ings. It is unclear however whether a precise relationship between these invariants
exists in general, as SFT counts a much larger class of holomorphic curves than
ECH.

It is presumably also possible to define a corresponding invariant in Heegaard
Floer homology, but the latter is apparently still unknown.

Question 1. Is there a Heegaard Floer theoretic contact invariant that implies ob-
structions to Stein cobordisms between pairs of contact 3-manifolds whose Ozsváth–
Szabó invariants vanish?

Remark 5.1. There is an obvious Stein cobordism obstruction in Heegaard Floer
homology, defined in terms of the largest integer k ≥ 1 for which the contact invariant
is in the image of the kth power of the so-called U -map. (Note that one could define
an exact cobordism obstruction in ECH in precisely the same way.) Nontrivial
examples of this obstruction have been computed by Karakurt [K]. Interestingly,
since this invariant is only really interesting in cases where the contact invariant is
nonvanishing, Karakurt’s results are completely disjoint from ours.
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In contrast to ECH or Heegaard Floer homology, SFT is also well defined in
higher dimensions, and it remains to find interesting examples beyond the 0-torsion
examples that are known from [BN2], [BK]. Some candidates arise in [MNW]: in
particular, the authors define a higher-dimensional generalization of Giroux torsion
which obstructs strong fillability and conjecturally implies algebraic 1-torsion. They
also find examples of contact forms in all dimensions that have this form of torsion
but don’t admit any contractible Reeb orbits, implying there is no algebraic 0-
torsion, and in some cases the examples are also known to be weakly (and hence
stably) fillable, implying that they do not have any fully twisted algebraic torsion.

Conjecture. For all integers k ≥ 1 and n ≥ 2, there exist infinitely many closed
(2n−1)-dimensional contact manifolds that have algebraic torsion of order k but not
k−1. There also exist (2n−1)-dimensional contact manifolds that have (untwisted)
algebraic k-torsion but admit stable symplectic fillings.

Finally, one wonders to what extent algebraic torsion might also give obstructions
to non-exact cobordisms. Results in [We5] show that Corollary 1 for instance is false
without the exactness assumption, and the reason is that a non-exact cobordism
between (M+, ξ+) and (M−, ξ−) does not in general imply a morphism

HSFT
∗ (M+, ξ+)→ HSFT

∗ (M−, ξ−) .

On the other hand, if (M+, ξ+) has algebraic torsion, then (M−, ξ−) clearly cannot
be fillable, and as was explained in section 2, a non-exact cobordism does give a
map from HSFT

∗ (M+, ξ+) to a suitably twisted version of HSFT
∗ (M−, ξ−), where the

twisting is defined by a count of holomorphic curves without positive ends in the
cobordism. It is however unclear whether the vanishing of [�k] in this twisted SFT
also implies a result for the untwisted theory. A promising class of test examples is
provided by the so-called capping and decoupling cobordisms constructed in [We5],
for which the holomorphic curves without positive ends can be enumerated precisely.

Question 2. If (M+, ξ+) and (M−, ξ−) are related by a non-exact symplectic
cobordism and (M+, ξ+) has algebraic torsion of some finite order, must (M−, ξ−)
also have algebraic torsion of some (possibly higher) finite order? Is there a precise
relation between these orders for the capping/decoupling cobordisms constructed in
[We5]?

Appendix

ECH Analogue of Algebraic k-Torsion

by Michael Hutchings

The purpose of this appendix is to define an analogue of algebraic k-torsion in em-
bedded contact homology (ECH). Specifically, given a closed oriented 3-manifold Y ,
a nondegenerate contact form λ on Y , and an almost complex structure J on R×Y as
needed to define the ECH chain complex, we define a number f(Y, λ, J) ∈ N∪{∞},
which is similar to the order of algebraic torsion. It is not known whether this
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number is an invariant of the contact manifold (Y, ξ = Kerλ). Nonetheless, this
number, together with some variants thereof, can be used to reprove some of the
results on nonexistence of exact symplectic cobordisms between contact manifolds
that are proved in the main paper using algebraic torsion. In addition, the results
in this appendix do not depend on any unpublished work: in particular we do not
use any symplectic field theory or Seiberg–Witten theory here.

A.1 Basic recollections about ECH. We begin by recalling what we will need
to know about the definition of ECH.

Let Y be a closed oriented 3-manifold with a nondegenerate contact form λ. Let
R denote the Reeb vector field determined by λ, and let ξ = Ker(λ) denote the
corresponding contact structure. Choose a generic almost complex structure J on
R× Y such that J is R-invariant, J(∂s) = R where s denotes the R coordinate, and
J(ξ) = ξ, with dλ(v, Jv) ≥ 0 for v ∈ ξ. To save verbiage below, we refer to the pair
(λ, J) as ECH data for (Y, ξ). From these data one defines the ECH chain complex
ECC(Y, λ, J) as follows.

An orbit set is a finite set of pairs α = {(αi,mi)} where the αi’s are distinct
embedded Reeb orbits and the mi’s are positive integers. The homology class of
the orbit set α is defined by [α] :=

∑
imi[αi] ∈ H1(Y ). The orbit set α is called

admissible if mi = 1 whenever αi is hyperbolic (i.e. its linearized return map has
real eigenvalues). The ECH chain complex is freely generated over Z by admissible
orbit sets.

Now let α = {(αi,mi)} and β = {(βj , nj)} be two orbit sets with [α] =
[β] ∈ H1(Y ).

Definition A.1. Define MJ(α, β) to be the moduli space of holomorphic curves
u : (Σ, j)→ (R× Y, J), where the domain Σ is a (possibly disconnected) punctured
compact Riemann surface, and u has positive ends at covers of αi with total covering
multiplicity mi, negative ends at covers of βj with total covering multiplicity nj, and
no other ends. We consider two such holomorphic curves to be equivalent if they
represent the same 2-dimensional current in R× Y .

Let H2(Y, α, β) denote the set of relative homology classes of 2-chains in Y with
∂Y =

∑
imiαi −

∑
j njβj ; this is an affine space over H2(Y ). Any holomorphic

curve u ∈MJ(α, β) determines a class [u] ∈ H2(Y, α, β). If Z ∈ H2(Y, α, β), define

MJ(α, β, Z) =
{
u ∈ MJ(α, β) | [u] = Z

}
.

Also the ECH index is defined by

I(α, β, Z) := cτ (Z) +Qτ (Z) +
∑
i

mi∑
k=1

CZτ (α
k
i )−

∑
j

nj∑
k=1

CZτ (β
k
j ) . (A.1)

Here τ is a trivialization of ξ over the Reeb orbits αi and βj ; cτ (Z) denotes the
relative first Chern class of ξ over Z with respect to the boundary trivializations
τ ; Qτ (Z) denotes the relative self-intersection pairing; and CZτ (γ

k) denotes the
Conley–Zehnder index with respect to τ of the kth iterate of γ. These notions are
explained in detail in [Hu1,2]. The ECH index of a holomorphic curve u ∈ MJ(α, β)
is defined by I(u) := I(α, β, [u]).
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We will need the following facts, which are proved in [Hu2, Th. 4.15] and [HuS,
Cor. 11.5]:

Proposition A.2. (a) If u ∈ MJ(α, β) does not multiply cover any component of
its image, then ind(u) ≤ I(u), where ind denotes the Fredholm index.

(b) If J is generic and u ∈MJ (α, β), then:

• I(u) ≥ 0, with equality if and only if u is R-invariant (as a current).
• If I(u) = 1, then u = u0 � u1 where u1 is embedded and connected, ind(u1) =

I(u1) = 1, and u0 is R-invariant (as a current).

The differential ∂ on the ECH chain complex is now defined as follows: If α is
an admissible orbit set, then

∂α :=
∑
β

∑
{u∈MJ (α,β)/R|I(u)=1}

ε(u) · β .

Here the sum is over admissible orbit sets β with [α] = [β], and ε(u) ∈ {±1} is a
sign explained in [HuT2, §9]. The signs depend on some orientation choices, but the
chain complexes for different sign choices are canonically isomorphic to each other.
It is shown in [HuT1,2] that ∂ is well-defined and (what is much harder) ∂2 = 0.
The homology of the chain complex is the embedded contact homology ECH(Y, λ, J).
Note that the empty set ∅ is a legitimate generator of the ECH chain complex, and
∂∅ = 0. The homology class [∅] ∈ ECH(Y, λ, J) is called the ECH contact invariant .

Taubes has shown that ECH(Y, λ, J) is canonically isomorphic to a version of
Seiberg–Witten Floer cohomology [T], and in particular depends only on Y . In
addition, under this isomorphism the ECH contact invariant depends only on ξ and
agrees with an analogous contact invariant in Seiberg–Witten Floer cohomology.
However, we will not need these facts here.

There is also a filtered version of ECH which is important in applications. If
α = {(αi,mi)} is an orbit set, define the symplectic action

A(α) :=
∑
i

mi

∫
αi

λ .

It follows from the conditions on J that the ECH differential decreases symplec-
tic action, i.e. if 〈∂α, β〉 �= 0 then A(α) > A(β). Hence for each L ∈ (0,∞], the
submodule ECCL(Y, λ, J) of ECC(Y, λ, J) generated by admissible orbit sets of ac-
tion less than L is a subcomplex. The homology of this subcomplex is denoted by
ECHL(Y, λ, J), and called filtered ECH . Of course, taking L =∞ recovers the usual
ECH.

It is shown in [HuT3] that filtered ECH does not depend on J (we will not use this
fact here). However, filtered ECH does depend on the contact form λ. In particular,
if c is a positive constant, then an almost complex structure J as needed to define
the ECH of λ determines an almost complex structure (which we also denote by J)
as needed to define the ECH of cλ, with the same holomorphic curves. There is then
a canonical isomorphism of chain complexes

ECCL(Y, λ, J) = ECCcL(Y, cλ, J) , (A.2)

induced by the obvious bijection on generators.
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A.2 The relative filtration J+. We now recall from [Hu2, §6] how to define a
relative filtration on ECH which is similar to the exponent of � in SFT.

Let α and β be admissible orbit sets with [α]=[β]∈H1(Y ), and let Z∈H2(Y, α, β).
Similarly to (A.1), define

J+(α, β, Z) := −cτ (Z) +Qτ (Z) +
∑
i

mi−1∑
k=1

CZτ (α
k
i )−

∑
j

nj−1∑
k=1

CZτ (β
k
j ) + |α| − |β| .

(A.3)
Here |α| denotes the cardinality of the admissible orbit set α. (There is also a more
general definition of J+ when the orbit sets are not necessarily admissible, but we
will not need this here.) If u ∈ MJ(α, β), define J+(u) := J+(α, β, [u]). There is
now the following analogue of Proposition A.2, proved in [Hu2, Prop. 6.9 & Th. 6.6].

Proposition A.3. Let α and β be admissible orbit sets with [α] = [β].

(a) If u ∈ MJ(α, β) is irreducible and not multiply covered and has genus g, then

J+(u) ≥ 2
(
g − 1 + |α|+

∑
i

(N+
i − 1) +

∑
j

(N−
j − 1)

)
. (A.4)

Here N+
i denotes the number of positive ends of u at covers of αi, and N−

j

denotes the number of negative ends of u at covers of βj . Moreover, equality
holds in (A.4) when ind(u) = I(u).

(b) If J is generic, and if u ∈MJ (α, β), then J+(u) ≥ 0.

Note that if u contributes to the ECH differential, then J+(u) is even. (Com-
paring (A.1) and (A.3) shows that the parity of J+(u) − I(u) is the parity of the
number of Reeb orbits αi or βj that are positive hyperbolic, which is the parity of
ind(u).) Thus we can decompose the ECH differential ∂ as

∂ = ∂0 + ∂1 + ∂2 + · · · (A.5)

where ∂k denotes the contribution from holomorphic curves u with J+(u) = 2k.
Since J+ is additive under gluing [Hu2, Prop. 6.5(a)], it follows that ∂2

0 = 0,
∂0∂1 + ∂1∂0 = 0, etc. Thus we obtain a spectral sequence E∗(Y, λ, J), where E1

is the homology of ∂0, and E2 is the homology of ∂1 acting on E1. Unfortunately,
this spectral sequence is not invariant under deformation of the contact form. The
reason is that although an exact symplectic cobordism induces a map on ECH which
(up to a given symplectic action) is induced by a chain map that somehow counts
(possibly broken) holomorphic curves [HuT3], Proposition A.3(b) does not generalize
to exact symplectic cobordisms. That is, the chain map induced by a cobordism can
include contributions from multiply covered holomorphic curves with J+ negative.
However, we can still use this spectral sequence to define a useful analogue of the
order of algebraic k-torsion.

A.3 The analogue of order of algebraic torsion. Let Y be a closed oriented
3-manifold, and let (λ, J) be ECH data on Y .



1188 MICHAEL HUTCHINGS GAFA 

Definition A.4. Define f(Y, λ, J) to be the smallest non-negative integer k such
that there exists x ∈ ECC(Y, λ, J) with

(∂0 + · · ·+ ∂k)x = ∅ .
Equivalently, f(Y, λ, J) is the smallest k such that ∅ does not survive to the Ek+1

page of the spectral sequence E∗(Y, λ, J). If no such k exists, define f(Y, λ, J) :=∞.

Of course, f(Y, λ, J) < ∞ if and only if the ECH contact invariant vanishes.
One can use the cobordism maps on ECH defined in [HuT3] (using Seiberg–Witten
theory) to show that f(Y, λ, J) does not depend on J . However, we will not need
this fact here.

There are now two difficulties in using f to obstruct exact symplectic cobordisms.
First, we would like to show that if there is an exact symplectic cobordism from
(Y+, λ+) to (Y−, λ−) then

f(Y+, λ+, J+) ≥ f(Y−, λ−, J−) . (A.6)

This would imply that f depends only on the contact structure and is monotone
with respect to exact symplectic cobordisms. Unfortunately, we cannot prove (A.6)
or these consequences (and we do not know whether these are true), due to the
aforementioned lack of invariance of the spectral sequence. Second, f(Y, λ, J) is
difficult to compute in practice, because often one only understands the ECH chain
complex up to a given symplectic action.

To deal with the latter difficulty, we can define a filtered version of f .

Definition A.5. Given L ∈ (0,∞], define fL(Y, λ, J) to be the smallest non-
negative integer k such that there exists x ∈ ECCL(Y, λ, J) with

(∂0 + · · ·+ ∂k)x = ∅ .
The following proposition can be used in calculations to give lower bounds on fL.

Proposition A.6. Let (λ, J) be ECH data on Y , and fix L ∈ (0,∞]. Let k be a
positive integer. Suppose that the algebraic count∑

{u∈MJ (α,∅,Z)/R}
ε(u) = 0 ,

whenever

• α is an admissible orbit set with A(α) < L; and
• Z ∈ H2(Y, α, ∅) is such that I(α, ∅, Z) = 1; and
• curves in MJ (α, ∅, Z) have genus g and N+ positive ends with g +N+ ≤ k.

Then fL(Y, λ, J) ≥ k.

In the third bullet point above, note that curves in MJ(α, ∅, Z) are embedded
and connected by Proposition A.2(b), and then g and N+ are uniquely determined
by α and Z. Here N+ is determined by [Hu2, Th. 4.15], while g is determined by
Proposition A.3(a).

Proof. Let α be an admissible orbit set with A(α) < L and let Z ∈ H2(Y, α, ∅) such
that I(α, ∅, Z) = 1 and J+(α, ∅, Z) < 2k. Then by Proposition A.2(b), curves in
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MJ(α, ∅, Z) are embedded and connected, so by Proposition A.3(a), such curves
have g + N+ ≤ k. Then by hypothesis, the algebraic count of such curves is zero.
This means that 〈∂iα, ∅〉 = 0 whenever i < k. �

We now prove a weaker version of (A.6), which will still allow us to obstruct
exact symplectic cobordisms. This requires the following additional definitions.

Definition A.7. An orbit set α = {(αi,mi)} is simple (with respect to J) if the
following hold:

• mi = 1 for each i.
• If β = {(βj , nj)} is another orbit set (not necessarily admissible), and if there

is a (possibly broken) J-holomorphic curve from α to β, then nj = 1 for each j.

Given L ∈ (0,∞], let ECCL
simp(Y, λ, J) denote the subcomplex of ECC(Y, λ, J) gen-

erated by simple admissible orbit sets α with A(α) < L.

Note that even when L = ∞, the homology of the subcomplex ECCL
simp is not

invariant under deformation of λ, as shown by the ellipsoid example in [Hu3].

Definition A.8. Define fL
simp(Y, λ, J) to be the smallest non-negative integer j

such that there exists x ∈ ECCL
simp(Y, λ, J) with

(∂0 + · · ·+ ∂k)x = ∅ .
If no such x exists, define fL

simp(Y, λ, J) :=∞.

Of course we always have fL
simp(Y, λ, J) ≥ fL(Y, λ, J). The main result of this

appendix is now the following theorem.

Theorem A.9. Let (λ±, J±) be ECH data on Y±. Suppose there is an exact
symplectic cobordism from (Y+, λ+) to (Y−, λ−). Then

fL
simp(Y+, λ+, J+) ≥ fL(Y−, λ−, J−)

for each L ∈ (0,∞].

Here is how Theorem A.9 can be used in practice to obstruct symplectic cobor-
disms. Below, write fsimp := f∞simp.

Corollary A.10. Suppose there exists an exact symplectic cobordism from (Y+, ξ+)
to (Y−, ξ−). Fix ECH data (λ+, J+) for (Y+, ξ+) and a contact form λ′− with
Ker(λ′−) = ξ−. Fix a positive integer k. Suppose that for each L > 0 there exist
ECH data (λ−, J−) for (Y−, ξ−) with fL(Y−, λ−, J−) ≥ k and an exact symplectic
cobordism from (Y−, λ′−) to (Y−, λ−). Then fsimp(Y+, λ+, J+) ≥ k.

Proof. The first hypothesis implies that there exist a positive constant c and an
exact symplectic cobordism from (Y+, cλ+) to (Y−, λ′−). The second hypothesis
then implies that for each L > 0 there exist ECH data (λ−, J−) for (Y−, ξ−) with
fL(Y−, λ−, J−) ≥ k and an exact symplectic cobordism from (Y+, cλ+) to (Y−, λ−).
By the scaling isomorphism (A.2) and Theorem A.9 we have

f c−1L
simp (Y+, λ+, J+) = fL

simp(Y+, cλ+, J+) ≥ k .

Since L was arbitrary, we conclude that fsimp(Y+, λ+, J+) ≥ k. �
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Here is another corollary of Theorem A.9 which tells us a bit more about the
meaning of f .

Corollary A.11. Suppose (Y, ξ) is overtwisted. Then f(Y, λ, J) = 0 whenever
(λ, J) is ECH data for (Y, ξ).

Proof. The argument in the appendix to [Y] shows that one can find ECH data
(λ+, J+) for (Y, ξ) such that there is an embedded Reeb orbit γ with the following
properties:

• γ has smaller symplectic action than any other Reeb orbit.
• There is a unique Fredholm index 1 holomorphic plane u in R×Y with positive

end at γ.

The holomorphic plane u is embedded in R × Y , so I(u) = 1 also, and J+(u) = 0.
This means that ∂0{(γ, 1)} = ±∅. Since γ has minimal symplectic action, {(γ, 1)}
is simple. Thus fsimp(Y, λ+, J+) = 0. We can also assume, by multiplying λ+ by a
large positive constant, that there is an exact (product) symplectic cobordism from
(Y, λ+) to (Y, λ). Theorem A.9 with L =∞ then implies that f(Y, λ, J) = 0. �

One might conjecture that the converse of Corollary A.11 holds:

Conjecture A.12. Given a closed contact 3-manifold (Y, ξ), if f(Y, λ, J) = 0 for
all ECH data (λ, J) for (Y, ξ), then (Y, ξ) is overtwisted.

Remark A.13. Conjecture A.12 implies the well-known conjecture that if (Y−, ξ−)
is a closed tight contact 3-manifold, and if (Y+, ξ+) is obtained from (Y−, ξ−) by
Legendrian surgery, then (Y+, ξ+) is also tight.

Proof. Suppose (Y+, ξ+) is obtained from (Y−, ξ−) by Legendrian surgery. Recall
from [W] that there is an exact symplectic cobordism from (Y+, ξ+) to (Y−, ξ−). If
(Y+, ξ+) is overtwisted, then as explained above one can find ECH data (λ+, J+)
for (Y+, ξ+) such that fsimp(Y+, λ+, J+) = 0. Theorem A.9 then implies that
f(Y−, λ−, J−) = 0 for all ECH data (λ−, J−) for (Y−, ξ−). If we knew Conjec-
ture A.12, then we could conclude that (Y−, ξ−) is overtwisted. �

A.4 A cobordism chain map. We now state and prove the key lemma in the
proof of Theorem A.9.

Lemma A.14. Under the assumptions of Theorem A.9, there is a chain map

Φ : ECCL
simp(Y+, λ+, J+) −→ ECCL(Y−, λ−, J−)

with the following properties:

(a) Φ(∅) = ∅.
(b) There is a decomposition Φ = Φ0 +Φ1 + · · · such that∑

i+j=k

(∂iΦj − Φi∂j) = 0 (A.7)

for each non-negative integer k.
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Proof. The proof has four steps.

Step 1. We begin with the definition of Φ. Let (X,ω) be an exact symplectic
cobordism from (Y+, λ+) to (Y−, λ−). Let λ be a corresponding 1-form on X. There
exists a neighborhood N+ � (−ε, 0] × Y+ of Y+ in X in which λ = esλ+ where s
denotes the (−ε, 0] coordinate. Likewise there exists a neighborhoodN− � [0, ε)×Y−
of Y− in X in which λ = esλ−. We then define the “completion”

X =
(
(−∞, 0]× Y−) ∪Y− X ∪Y+ ([0,∞) × Y+

)
,

with smooth structure defined using the above neighborhoods. Choose a generic
almost complex structure J on X which agrees with J+ on [0,∞) × Y+, which
agrees with J− on (−∞, 0] × Y−, and which is ω-tame on X. If α+ and α− are
orbit sets in Y+ and Y− respectively, define MJ(α

+, α−) to be the moduli space
of J-holomorphic curves in X satisfying the obvious analogues of the conditions in
Definition A.2.

The crucial point in all of what follows is this:

(∗) If the orbit set α+ is simple, then a holomorphic curve inMJ(α
+, α−) cannot

have any multiply covered component. Also, a broken holomorphic curve aris-
ing as a limit of a sequence of curves inMJ(α

+, α−) cannot have any multiply
covered component in the cobordism level.

Note that the proof of (∗) uses exactness of the cobordism to deduce that every
component of a holomorphic curve in X has at least one positive end.

Another key point is that the definition of the ECH index I, and the index
inequality in Proposition A.2(a), carry over directly to holomorphic curves in X, see
[Hu2, Th. 4.15]. In particular, if α+ is simple and if u ∈ MJ (α

+, α−) has I(u) = 0,
then the index inequality applies to give ind(u) ≤ I(u), and since J is generic we
conclude that I(u) = 0 and u is an isolated point in the moduli space, cut out
transversely. As a result, we can define the map Φ as follows: If α+ is a simple
admissible orbit set in Y+ with A(α+) < L, then

Φ(α+) :=
∑
α−

∑
{u∈MJ (α+,α−)|I(u)=0}

ε(u) , (A.8)

where the first sum is over admissible orbit sets α− in Y−, and ε(u) ∈ {±1} is a sign
defined as in [HuT2, §9].

Step 2. We now show that Φ is well-defined, i.e. that the sum on the right-hand
side of (A.8) is finite, and we also prove that Φ satisfies property (a).

To start, note that if there exists u ∈ MJ(α
+, α−), then exactness of the cobor-

dism and Stokes’s theorem imply that A(α+) ≥ A(α−), with equality only if u is
the empty holomorphic curve. This has three important consequences. First, Φ
maps ECCL

simp to ECCL as required. Second, Φ(∅) = ∅. (The sign here follows
from the conventions in [HuT2, §9].) Third, for any simple admissible orbit set α+,
only finitely many admissible orbit sets α− can make a nonzero contribution to the
right-hand side of (A.8). So to prove that Φ is well-defined, we need to show that if
α+ is a simple admissible orbit set in Y+ and if α− is an admissible orbit set in Y−,
then there are only finitely many curves u ∈ MJ(α

+, α−) with I(u) = 0.
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Suppose to obtain a contradiction that there are infinitely many such curves.
By a Gromov compactness argument as in [Hu1, Lem. 9.8] we can then pass to a
subsequence that converges to a broken holomorphic curve with total ECH index
and total Fredholm index both equal to 0. By (∗), the level of the broken curve
in X cannot contain any multiply covered component. Consequently the index
inequality implies that this level has I ≥ 0, and so by Proposition A.2(a) all levels
have I = 0. The proof of [HuT1, Lem. 7.19] then shows that there is only one level
(i.e. there cannot be symplectization levels containing branched covers of R-invariant
cylinders). Thus the limiting curve is also an element of MJ(α

+, α−) with I = 0,
and since this is an isolated point in the moduli space we have a contradiction.

Step 3. We now show that Φ is a chain map. If α+ is a simple admissible orbit
set in Y+, then to prove that (∂Φ − Φ∂)α+ = 0, we analyze ends of the I = 1 part
of MJ(α

+, α−) where α− is an admissible orbit set in Y−. Again, by (∗), a broken
curve arising as a limit of such curves cannot contain a multiply covered component
in the cobordism level. Thus the proof of [HuT1, Lem. 7.23] carries over to show
that a broken curve arising as a limit of such curves consists of an ind = I = 0
piece u0 in the cobordism level, an ind = I = 1 piece u1 in a symplectization level,
and (if u1 is in R × Y−) possibly additional levels in R × Y− between u0 and u1
consisting of branched covers of R-invariant cylinders. The gluing analysis to prove
that the ECH differential has square zero [HuT1, Th. 7.20] then carries over with
minor modifications to prove that ∂Φ = Φ∂.

Step 4. We now show that Φ satisfies property (b). To do so, note that if u is a
holomorphic curve counted by Φ, then J+(u) is even by the same parity argument
as before. Also, since u contains no multiply covered component, and since every
component of u has a positive end, the proof of [Hu2, Th. 6.6] carries over to show
that J+(u) ≥ 0. We now define Φk to be the contribution to Φ from curves u with
J+(u) = 2k. Equation (A.7) then follows from the fact that J+ is additive under
gluing. �

A.5 Conclusion.

Proof of Theorem A.9. The decomposition (A.5) of the differential for (λ+, J+),
restricted to the subcomplex ECCL

simp(Y+, λ+, J+), gives rise to a spectral sequence
LE∗simp(Y+, λ+, J+), whose E1 term is the homology of ∂0 acting on

ECCL
simp(Y+, λ+, J+), and so forth. Likewise the decomposition (A.5) of the dif-

ferential for (λ−, J−), restricted to the subcomplex ECCL(Y−, λ−, J−), gives rise to
a spectral sequence LE∗(Y−, λ−, J−). By Lemma A.14(b), Φ induces a morphism of
spectral sequences

Φ∗ : LE∗simp(Y+, λ+, J+) −→ LE∗(Y−, λ−, J−) ,

which by Lemma A.14(a) sends ∅ to ∅. If fL
simp(Y+, λ+, J+) = k < ∞, then ∅ does

not survive to LEk+1
simp. Applying the morphism Φ∗ then shows that ∅ does not survive

to LEk+1(Y−, λ−, J−), so fL(Y−, λ−, J−) ≤ k. �
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