
LOCALIZATION FOR INVOLUTIONS IN
FLOER COHOMOLOGY

Paul Seidel and Ivan Smith

Abstract. We consider Lagrangian Floer cohomology for a pair of Lagrangian
submanifolds in a symplectic manifold M . Suppose that M carries a symplectic in-
volution, which preserves both submanifolds. Under various topological hypotheses,
we prove a localization theorem for Floer cohomology, which implies a Smith-type
inequality for the Floer cohomology groups in M and its fixed point set. Two appli-
cations to symplectic Khovanov cohomology are included.

1 Introduction

Suppose that we have a compact smooth manifold M with a smooth action of the
group G = Z/2 on it, whose fixed point set we denote by M inv. The classical Smith
inequality [Sm], [B] asserts that

dimH∗(M ;Z2) ≥ dimH∗(M inv;Z2) . (1)

This is an inequality of total dimensions, and does not hold separately in each degree
(similar inequalities hold for actions of G = Z/p with prime p; such generalizations
will not be considered in this paper). There are several ways of proving (1). One
of them involves equivariant cohomology H∗

G(M ;Z2) and the localization theorem,
which says that the restriction map

H∗
G(M ;Z2) −→ H∗(M inv;Z2)⊗Z2 H

∗(BG;Z2) (2)

becomes an isomorphism once one inverts the generator q of H∗(BG;Z2) = Z2[[q]].
The purpose of this paper is to develop an analogue of this for Lagrangian Floer
cohomology, with a view to applications to the link invariant introduced in [SeS1].

The overall setup is as follows (see section 3.1 for more details). We consider
a symplectic manifold M , which is assumed to be exact and convex at infinity,
and which carries a symplectic involution ι. L0, L1 ⊂ M are exact Lagrangian
submanifolds invariant under ι, which are supposed to be either compact or else
reasonably well-behaved at infinity. We denote the fixed point set byM inv. The fixed
parts Linv

k = Lk∩M inv are again automatically Lagrangian submanifolds. There are
three kinds of Floer cohomology groups involved: the ordinary Floer cohomology
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HF (Linv
0 , Linv

1 ) in M inv, the corresponding group HF (L0, L1) in M , and the G-
equivariant analogue of the latter. The first two are taken with Z2 coefficients, and
the last one is a module over Z2[[q]].

The exactness assumptions put us in a situation very close to standard Morse
theory. In spite of that, the analogue of the Smith inequality fails even in relatively
simple examples (see section 3.3), due to phenomena which have no analogues in
the classical context. In order to rule them out, we have to impose another strong
restriction on the local topology near the fixed point set, namely the existence of a
stable normal trivialization (defined in section 3.5).

Theorem 1. If a stable normal trivialization exists, the Smith inequality holds:

dimHF (L0, L1) ≥ dimHF (Linv
0 , Linv

1 ) . (3)

As in the classical setting, we will deduce this from the existence of a localization
map from equivariant Floer cohomology to Floer cohomology in the fixed point set
(Theorem 20). A good finite-dimensional model is equivariant Morse theory, in the
context where the Morse function does not have positive definite Hessian in normal
direction to the fixed point set. In this case, (2) is not just given by projection to a
quotient complex, and instead involves higher-dimensional moduli spaces. The way
we extract information from these spaces was influenced by Donaldson’s account
in [D]. The whole of section 2 is devoted to a detailed explanation of the Morse-
theoretic construction, where we are careful to use only arguments which are readily
transplanted into Floer theory. In particular, we never appeal to the isomorphism
between Morse and singular cohomology.

The existence of stable normal trivializations allows us to easily achieve equiv-
ariant transversality, which we rely on to define the localization map (in contrast,
the definition of equivariant Floer cohomology requires no such assumption). As
pointed out above, this is not just a technical condition. Our best guess for the
more general situation is that the localization map should take values in a version
of HF ∗(L0, L1) twisted by normal contributions (see Remark 22). This idea reflects
the influence of a somewhat different approach to localization in monopole Floer
homology, taken by Kronheimer and Mrowka in [KrM].

In spite of the restrictions on its validity, the Floer-theoretic Smith inequality
has nontrivial applications. We include two of them, both concerning the invariant
Kh∗

symp(κ) of oriented links κ ⊂ S3. This was introduced in [SeS1], and conjectured
to be isomorphic to Khovanov’s combinatorial construction [K], but is quite hard to
compute from the definition. First, we relate the symplectic Khovanov cohomology
of κ to the Heegaard Floer homology of the double branched cover Nκ → S3 via
spectral sequence arguments. This is similar to the relation between combinatorial
Khovanov cohomology and Heegaard Floer theory established in [OS4], even though
the actual constructions are quite different. In particular, we get

Corollary 2. For any oriented link κ ⊂ S3,

dimKh∗
symp(κ;Z2) ≥ 2 ·

∣∣H2(Nκ;Z)
∣∣ . (4)
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The right-hand side (which, by definition, vanishes if b1(Nκ) > 0) is also (twice)
the value of the Alexander polynomial at −1, known classically as the determinant
of the knot [Li, Cor. 9.2]. There is (currently unpublished) a spectral sequence from
combinatorial to symplectic Khovanov homology, at least with Z2 coefficients. To-
gether with the results of section 4 below, and the main theorem of [OS4], this
implies that for alternating knots the combinatorial and symplectic Khovanov ho-
mologies with Z2 coefficients have the same rank. The localization map also provides
additional information, which has no direct counterpart in any other known con-
struction. This should give rise to new link invariants, called cokernel polynomials,
conjecturally of relevance to the Jones polynomial (see section 4.5 for a discussion
of this and other possible further developments).

For our second application, consider the double covering S3 → S3 branched over
the unknot. Let κ̄ ⊂ S3 be an oriented link which avoids the branch locus, and κ
its preimage.

Corollary 3. For any κ as described above,

dimKh∗
symp(κ;Z2) ≥ dimKh∗

symp(κ̄;Z2) . (5)

In the original combinatorial Khovanov theory, any generator of the chain com-
plex for κ̄ lifts to two generators of the complex for κ, but their bi-degrees are in
general unrelated. As far as we know, the analogue of Corollary 3 for the combina-
torial theory is not known to hold.
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author would like to thank Robert Lipshitz, Ciprian Manolescu, Peter Ozsváth, and
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2 Morse Theory

2.1 Equivariant Morse cohomology. Let M be a closed smooth manifold,
equipped with an action of the group G = Z/2, or equivalently with an involution ι.
Form the Borel construction

Mborel = M ×G EG = M ×G S∞ −→ RP∞ = BG = S∞/G . (6)

This is a locally trivial bundle with fibre M and monodromy ι around the non-
trivial element of π1(RP

∞) = G. Classically, one defines equivariant cohomology as
the cohomology of Mborel, and this approach is also suitable in a Morse-theoretic
context, in particular if one wishes to avoid equivariant transversality issues. We
will explain one version of the resulting definition, chosen for its easy extendability
to Floer theory. The particular advantage is that the underlying moduli spaces are



GAFA LOCALIZATION FOR INVOLUTIONS 1467

solutions of a gradient-type equation on M , with the RP∞ direction serving only
as a parameter space. This is the approach used to define general family Floer
homology theories in [H]; a related idea for S1-equivariant Floer homology appears
earlier in [Vi].

Equip RP∞ with its standard Morse function h, whose pullback to the covering
space S∞ ⊂ R∞ is h(z0, z1, z2, . . . ) = |z1|2+2|z2|2+ · · · , and with its standard round
Riemannian metric (technically, it may be better to think of the infinite-dimensional
projective space as the union of its finite-dimensional counterparts, equipped with
the restrictions of the metric and Morse function). h has exactly one critical point
z(k) of each index k ≥ 0, and the associated gradient flow is regular (Morse–Smale).
Next, choose a smooth family of functions on the fibres of (6), or equivalently a
family of functions fz on M parametrized by z ∈ S∞ and satisfying f−z = fz ◦ ι. We
also want a corresponding family of metrics (to keep the notation reasonably short,
we don’t give names to the metrics; nevertheless, whenever we talk about ∇fz, it is
implicit that the associated metric should be used). This choice should be made in
such a way that the functions f (k) = fz(k) associated to the critical points are Morse.
Moreover, for technical convenience, we assume that our family is locally constant
in a small neighbourhood of each z(k). Denote by C∗,(k) the Morse cochain space
generated by the critical points of f (k). Define the Borel-type equivariant cochain
group to be

C∗
borel =

∞∏
k=0

C∗−k,(k). (7)

To see how the differential on this is constructed, take a map v : R → RP∞ which
is a gradient flow line of h, with limits z(j) and z(k) at negative respectively positive
times. Take also a map u : R→Mborel which lifts v, and which satisfies the equation

(du/ds)vert = ∇fv(s)(u(s)) . (8)

Here, we have used the locally trivial connection on Mborel → RP∞ to take the
vertical, or fibrewise, component of du/ds. If j = k, meaning that v is constant, this
is just a solution of the gradient flow equation for f (j), so its limits will be critical

points x
(j)
± of f (j). In the other cases, one can simplify the equation by trivializing

Mborel → RP∞ along (the closure of) v. With respect to this trivialization, fv(s) is a
family fv of functions on M , depending on the parameter s ∈ R, with the property
that fv,s = f (j) for s
 0, fv,s = f (k) for s� 0. In these terms, (8) is the associated
continuation map equation on M ,

du/ds = ∇fv,s(u(s)) . (9)

Clearly, the limits as s → ±∞ will be critical points x
(j)
− of f (j) and x

(k)
+ of f (k).

In either situation, fixing x
(j)
− and x

(k)
+ , we denote by Mborel

(
x

(j)
− , x

(k)
+
)
the moduli

space of pairs (v, u) mod common translation by R, excluding as usual the trivial
case where both v and u are constant. Provided that the Morse functions and
metrics have been chosen generically, these moduli spaces are smooth with

dimMborel
(
x

(j)
− , x

(k)
+
)
= iM
(
x

(k)
+
)
− iM
(
x

(j)
−
)
+ k − j − 1 , (10)
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where iM is the Morse index taken in the fibre. Moreover, there are compactifications

M̄borel
(
x

(j)
− , x

(k)
+
)
by broken solutions, with the same properties as in ordinary Morse

cohomology. We then define dborel : C
∗
borel → C∗+1

borel as usual by

dborel
(
x

(j)
−
)
=
∑
k

∑
x
(k)
+

#Mborel
(
x

(j)
− , x

(k)
+
)
x

(k)
+ , (11)

where # is counting isolated points mod 2. The cohomology of this complex is
isomorphic to ordinary equivariant cohomology (the proof is not difficult, but we
will not describe it here).

The construction above leaves a lot of freedom of choice, and that can even be a
little confusing. For instance, the structure of equivariant cohomology as a module
over H∗(RP∞;Z2) = Z2[q] is not immediately visible. To improve the situation,
note that there is an isometric embedding of RP∞ into itself, namely the infinite
shift τ(z0, z1, z2, · · · ) = (0, z0, z1, · · · ). This satisfies

τ∗h = h+ 1 , (12)

hence preserves the gradient flow of h. Lift τ to an embedding σ of Mborel into
itself, which is a fibrewise isomorphism (there are two ways of doing that, differing
by ι; just pick one). It then makes sense to ask that the family of Morse functions
should be invariant under this, in the sense that fz = σ∗(fτ(z)), and the same for

the metrics. In particular, all the f (k) can be identified with a fixed Morse function
f = f (0) on Mborel,0 = M , so that

C∗
borel = C∗[[q]] = C∗ ⊗Z2 Z2[[q]] , (13)

where C∗ is the Morse cochain space of f , and q is a formal variable of degree 1
(the distinction between polynomials C∗[q] and formal power series C∗[[q]], just like
that between a direct sum and product in (7), is irrelevant because only finitely
many powers of q appear in any given degree; we choose the formal power series
notation because that’s what appears naturally in more general contexts, compare
the discussion in [J]). The generator xqk of this corresponds to our previous x(k),
namely x considered as a critical point of f (k).

A little reflection shows that this still leaves enough freedom for all the necessary
transversality properties to hold (the same issue will appear later in Floer theory,
where the argument is entirely parallel, cf. section 3.2). Namely, consider flow lines v
of h going from z(0) to z(k) for some k > 0. The invariance condition only constrains
the choice of fv(s) for s � 0, where v converges to z(k). Hence, it still leaves
enough freedom to make the moduli spaces of solutions u lying over such v regular.
Invariance then implies that all other spaces are regular as well. In fact, these moduli
spaces only depend on x± ∈ M and the difference k − j, and we’ll therefore write
them as Mborel(x−, x+)

(k−j). The differential is then the Z2[[q]]-linear map defined
by

dborel(x−) = d(0) + d(1)q + d(2)q2 + · · · =
∑
i

(∑
x+

#Mborel(x−, x+)
(i) x+

)
qi. (14)
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It may be helpful to write down the first couple of terms in more concrete terms.
The start of the construction is the choice of f , and d(0) = d is the standard Morse
cohomology differential associated to that function. At the next level, h has two
gradient flow lines v(1,±) leading from z(0) to z(1). Correspondingly, we should
choose two families of Morse functions f (1),+ and f (1),− depending on a parameter
s ∈ R, satisfying

f (1),±
s = f for s
 0 ; f (1),+

s = f , f (1),−
s = ι∗f for s� 0 . (15)

Consider the associated continuation maps. In the + case, the endpoints of the fam-
ily f (1),+ are the same, which means that the continuation map is chain homotopic
to the identity. It will be strictly equal to the identity if one chooses f (1),+ constant,
and we will assume from now on that this is the case. After identifying the Morse
complexes of f and ι∗f in the obvious way, the other continuation map also becomes
an endomorphism of C∗. This is the Morse-theoretic realization of the action of ι on
cohomology, and we will denote it by ιmorse. One defines the q1 component of (14)
to be

d(1) = ιmorse − id . (16)

(Even though we work with Z2-coefficients, signs may occasionally appear in our
formulae. These are intended as an aid to the reader’s intuition, and may of course
be ignored.) Going beyond that, we have two one-parameter families of gradient
flow lines of h going from z(0) to z(2). The first family connects the broken flow
lines
(
v(1),−, τ

(
v(1),+
))

and
(
v(1),+, τ

(
v(1),−)). In principle, one should associate to

this a one-parameter family of continuation map equations, which then gives rise
to a chain homotopy from ιmorse to itself; however, in analogy with the previous
step, a careful choice of the relevant functions will ensure that the resulting mod-
uli space has no isolated points, so that the chain homotopy is zero. The second
family connects

(
v(1),+, τ

(
v(1),+
))

and
(
v(1),−, τ

(
v(1),−)), hence gives rise to a chain

homotopy between ι2morse and the identity, which will be the next component d(2)

of the equivariant differential. The following term can be thought of as a secondary
homotopy between d(2) ◦ ιmorse and ιmorse ◦d(2), but at even higher orders the picture
becomes too complicated to admit an intuitive interpretation.

2.2 Invariant Morse functions. There is an alternative approach leading to
a somewhat smaller chain complex than (13), which however assumes equivariant
transversality. Suppose from now on that our manifold M comes with a G-invariant
Morse function f and an invariant Riemannian metric. Note that the restriction of
f to the fixed point set M inv ⊂ M is automatically again Morse. We will further
assume that the following conditions are satisfied:

• There is a constant ianti, called the normal index of f , such that for every
ι-invariant critical point, the Morse indices in M and M inv are related by

iM (x) = iM inv(x) + ianti . (17)

• The gradient flow of f and that of f |M inv both satisfy the Morse–Smale con-
dition.
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The two conditions are logically independent, but still related (since the first one
implies that moduli spaces of gradient flow lines in M and M inv have the same
dimension; if the dimension in M inv was bigger, the Morse–Smale conditions would
be contradictory).

Example 4. For a given M and ι, one can always find a function f which satisfies
the condition above. Namely, start with a Morse–Smale function on M inv; extend
it to a tubular neighbourhood of M inv in M by adding a large positive definite
quadratic form in normal directions (which means that ianti = 0); use a partition
of unity to patch it together with a given invariant Morse function on M \M inv;
and then perturb the result slightly if necessary, preserving symmetry. Still, the
conditions above are nontrivial, in the sense that they do not hold generically in
the space of invariant Morse functions. This will become more important when
discussing Floer theory, where topological obstructions to equivariant transversality
arise.

Before continuing, we need to set up some notation. Given critical points x−
and x+ of f , let M(x−, x+) be the standard Morse-theoretic moduli space of un-
parametrized gradient flow lines, excluding constant ones, and M̄(x−, x+) the com-
pactification by broken flow lines. We also want to consider trajectories whose limits
lie in a given G-orbit Gx± = {x±, ι(x±)}. The resulting moduli space, denoted by
M(Gx−, Gx+), carries aG-action. We writeM(Gx−, Gx+)

inv for the fixed part, and
M(Gx−, Gx+)

non for the quotient of the free part. The action extends to the com-
pactification M̄(Gx−, Gx+), and we analogously define spaces M̄(Gx−, Gx+)

inv,
M̄(Gx−, Gx+)

non. More concretely, note that if for instance x− is not ι-invariant,
then the G-action is free on the whole of M(Gx−, Gx+), and the quotient can be
identified withM(x−, x+)∪M(x−, ι(x+)). This also holds for the compactification,
and correspondingly in the case where x+ is not ι-invariant. In the remaining sit-
uation where both limit points are invariant, so that M(Gx−, Gx+) =M(x−, x+),
one can identify the fixed point set M(x−, x+)

inv with the space of flow lines in
M inv, and similarly for the compactification. A less trivial observation is that in
this situation, the Morse–Smale conditions and (17) imply that M̄(x−, x+)

inv is a
submanifold of codimension zero in M̄(x−, x+), hence open and closed. Therefore,
M̄(x−, x+)

non is a compact manifold with corners , being a quotient of a free G-
action on the compact manifold with corners M̄(x−, x+) \ M̄(x−, x+)

inv. (It is a
well-known problem that such compactifications do not have a canonical smooth
structure in transverse direction to the boundary strata, which means that they are
not quite “manifolds with corners” in the usual C∞ sense. This means that some
care needs to be taken when using standard differential topology constructions.) Let
C∗

inv be the graded vector space over Z2 freely generated by invariant critical points,
with the grading deg(x) = iM inv(x) = iM (x)− ianti. Similarly let C∗

non be the space
generated by pairs Gx = {x, ι(x)} of non-invariant critical points. One then has
natural maps
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dinv : C∗
inv −→ C∗+1

inv ,

dnon : C∗
non −→ C∗+1

non ,

D1 : C∗
non −→ C∗−ianti+1

inv ,

D2 : C∗−ianti
inv −→ C∗+1

non ,

(18)

defined as follows. dinv is the Morse cohomology differential for f |M inv, hence counts
the number of isolated ι-invariant connecting orbits. Since we use Z2-coefficients,
and the non-invariant connecting orbits between invariant critical points come in
pairs, we may just as well count all critical orbits, meaning that

dinv(x−) =
∑
x+

#M(x−, x+)x+ (19)

where the sum is over all invariant x+. Next, connecting trajectories between non-
invariant critical points come in pairs exchanged by ι. The map dnon counts each pair
once (formally, one can see this as the Morse differential for the induced function on
the quotient (M \M inv)/G):

dnon(Gx−) =
∑
Gx+

#M(Gx−, Gx+)
nonGx+ . (20)

Similarly D2 counts connecting trajectories from invariant to non-invariant critical
points, and vice versa for D1, again using the spaces M(Gx−, Gx+)

non.
To introduce yet another piece of data, we pick one out of each pair of non-

invariant critical points, and denote the resulting set of preferred points by P . One
can then count only those isolated connecting trajectories which go from a preferred
point to a non-preferred one, which yields another map

U : C∗
non −→ C∗+1

non . (21)

The Morse complex for f , in the ordinary sense, can now be written as C∗ =
C∗

non ⊕ C∗
non ⊕ C∗−ianti

inv , with the differential

d =

⎛⎝dnon 0 0
U dnon D2
D1 0 dinv

⎞⎠ . (22)

Here, the first copy of C∗
non is identified with the subspace of C∗ generated by the

critical points x ∈ P , whereas the second copy is generated by sums x + ι(x);
this explains the asymmetry in (22). The relation d2 = 0 yields various equations
between its components; some which will be relevant later on are

dnonD2 +D2dinv = 0 ,

dnonU + Udnon = D2D1 .
(23)

We can now introduce the equivariant Morse complex. Algebraically, this is
defined by starting with the canonical induced involution on C∗, namely

ιmorse(a, b, c) = (a, a+ b, c) , (24)

and the standard free resolution of the trivial Z2[G]-module, which is

P ∗ =
{
· · · −→ Z2[G]

id+ι−−−→ Z2[G]
id−ι−−−→ Z2[G] −→ 0

}
, (25)
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and forming HomZ2[G](P
∗, C∗). Concretely, the outcome is

C∗
borel = C∗

non[[q]]⊕ C∗
non[[q]]⊕ C∗−ianti

inv [[q]]

with

dborel = d+ (ιmorse − id)q =

⎛⎝ dnon 0 0
U + q dnon D2
D1 0 dinv

⎞⎠ . (26)

Here dnon, dinv, D1, D2, U have been extended to Z2[[q]]-linear maps in the obvious
way. To make the connection with the preceding, more general, construction, observe
that in the present context, one can extend f in a locally constant way to a family of
Morse functions on the fibres of Mborel. With these choices, our previous definition
of ιmorse agrees with (24), and the higher-order terms all vanish, which means that
(14) indeed reduces to (26).

Lemma 5. The elements (a, 0, 0), a ∈ C∗
non[[q]], together with their dborel-

images, span an acyclic subcomplex Z∗ ⊂ C∗
borel. Moreover, the inclusion j :

C∗
non ⊕ C∗−ianti

inv [[q]] → C∗
borel, (b, c) �→ (0, bq0, c) descends to an isomorphism of

graded vector spaces

C∗
non ⊕ C∗−ianti

inv [[q]] −→ C∗
borel/Z

∗. (27)

Proof. Since U counts gradient flow lines, it increases the value of our Morse function,
hence is nilpotent (of course, one can see this also just by looking at the grading).
As a consequence, the map

U + q : C∗
non[[q]] −→ C∗

non[[q]]/C
∗
nonq

0 (28)

is an isomorphism. This implies that the restriction of dborel to the subspace (a, 0, 0)
is injective, hence that Z∗ is acyclic, and also the bijectivity of (27). �

We write C∗
equiv = C∗

non⊕C∗−ianti
inv [[q]] and equip it with the differential and Z2[[q]]-

module structure induced from (27). The degree 1 endomorphism which generates
the module structure has quite a simple form, namely

Qequiv =

(
U 0
D1 q

)
. (29)

To write down the differential, we need some more notation. In general, given any
free graded Z2[[q]]-module A∗[[q]], one has a map |q=0 : A∗[[q]] → A∗ ⊂ A∗[[q]]
which forgets all terms of positive q-order, and an endomorphism ∂q : A∗[[q]] →
A∗−1[[q]] which kills the constant term and divides each higher-order term by q.
These are related by q∂q = id−|q=0. By (id+U∂q)

−1 we denote the geometric series
id+U∂q+U2∂2

q + · · · , which terminates because U is nilpotent. In this terminology,
the outcome of a straightforward computation is that

dequiv =

(
dnon |q=0(id + U∂q)

−1D2
0 dinv +D1(id + U∂q)

−1D2∂q

)
, (30)

where D1, D2, U have been extended to Z2[[q]]-linear homomorphisms between
C∗

inv[[q]], C∗
non[[q]] (this kind of extension will be made without explicit mention

from now on).
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2.3 The localization map. Each M̄ = M̄(Gx−, Gx+)
non is a free G-quotient,

hence carries an obvious double cover. Denote by ξ(Gx−, Gx+) = ξ → M̄ the asso-
ciated real line bundle. Following a well-known strategy, we will extract additional
information from these moduli spaces by intersecting the zero-sets of sufficiently
many sections of our line bundles. For technical reasons, we will use sections which
are continuous overall, and smooth on each stratum (the interior as well as bound-
ary strata). Obviously, one needs to check that the standard differential-topology
arguments go through in this context. Namely, suppose that we are given (a finite
or infinite number of) sections σ(1), σ(2), . . . of this type, satisfying the following
transversality condition for all k:

For each stratum S ⊂ M̄, the restriction of σ(k) to S ∩ (σ(1))−1(0) ∩
· · · ∩ (σ(k−1))−1(0) is transverse to the zero-section.

(31)

(this makes sense when seen as inductive in k, since the condition for k−1 will ensure
that the intersection in (31) is smooth). We then write M̄(k) for the intersection of
the zero-sets of all the σ(i), 1 ≤ i ≤ k, andM(k) for the intersection of this with the
interior M. Consider first the case when k is the dimension of the space M itself.
Since the boundary strata S are manifolds of smaller dimension, the transversality
assumption ensures that M̄(k) ∩ S = ∅, which means that M(k) = M̄(k) is a finite
subset of the interior M. We will then extract algebraic information as usual, by
counting the number of these points modulo 2 in that subset. Next, assume thatM
is of dimension k + 1, and define

∂M̄(k) = M̄(k) ∩ ∂M̄ = M̄(k) \M(k). (32)

In spite of the notation, it is by no means clear that this is a boundary in the
standard manifold sense. However, (31) at least ensures that (32) consists of finitely
many points, which all lie inside the top (codimension 1) boundary strata. Consider
the local picture near such a point, using a local chart R≥0 ×Rk → M̄ provided by
a suitable gluing map, and a local trivialization of ξ over it. In this chart, the σ(i),
1 ≤ i ≤ k, together give a map

s =
(
σ(1), . . . , σ(k)) : R≥0 × Rk −→ Rk, s(0) = 0 . (33)

By construction, s is continuous, and smooth on both strata {0}×Rk and R>0×Rk,
with regular zero-sets in each. In particular, the restriction of s to any sufficiently
small sphere {0}×Sk−1

ε is a map Sk−1
ε → Rk \{0} of degree ±1. If we then consider

the hemisphere Sk
ε ∩ (R≥0 × Rk), the restriction of s to that hemisphere must still

have an odd number of zeros, counted algebraically (this only uses continuity of s up
to the boundary). By choosing ε generically, one can ensure that s−1(0) intersects
the hemisphere transversally, hence the actual number of zeros is also odd. Now
assume that we remove from M̄(k) its intersection with such hemispheres around
each point of ∂M̄(k). The outcome is a compact one-manifold with boundary, which
by the local considerations above has an odd number of boundary points for each
point of ∂M̄(k), proving that that space itself consists of an even number of points.
In this slightly roundabout way, one arrives at the same result as in the more familiar
case of sections extending smoothly to the compactification.
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The moduli spaces M̄ and their line bundles have certain inductive relations to
each other, and the sections must be chosen accordingly. To see what this means,
take a point of ∂M̄. This has the form Gū = {ū, ι(ū)}, where ū = (u1, . . . , uk) is
a broken trajectory with k ≥ 2 pieces (the pieces are uj ∈ M(xj−1, xj) for some
critical points xj such that x0 ∈ Gx−, xk ∈ Gx+). From our previous discussion of
the compactification, we know that at least one of the pieces uj is not ι-invariant.
Suppose that j ∈ {1, . . . , k} is the largest number with that property. Clearly,
choosing one of the two elements in Gū is equivalent to choosing one of the two
{uj , ι(uj)}. Hence, there is a canonical isomorphism

ξGū
∼= ξ(Gxj−1, Gxj)Guj . (34)

Viewed more globally, the boundary stratum S ⊂ ∂M̄ to which Gū belongs has a
natural projection map to M(Gxj−1, Gxj)

non, which is such that ξ|S is canonically
isomorphic to the pullback of ξ(Gxj−1, Gxj). In this form, the statement extends
to the closure S̄, which projects to M̄(Gxj−1, Gxj)

non.

Definition 6. Let σ = {σ(Gx−, Gx+) : M̄(Gx−, Gx+)→ ξ(Gx−, Gx+)} be a fam-
ily of sections, one for each pair (Gx−, Gx+). We call σ consistent if it is compatible
with (34), in the sense that σ(Gx−, Gx+)Gū equals σ(Gxj−1, Gxj)Guj under that
isomorphism.

The consistency condition prescribes the behaviour of σ(Gx−, Gx+) on each stra-
tum of the boundary, in terms of the sections over smaller-dimensional moduli spaces.
One can easily check that the consistency conditions for various strata do not con-
tradict each other, so that consistent families of sections can be constructed induc-
tively. In fact, the freedom in the choice of such a family is quite large, so standard
transversality theory applies. Specifically, let σ(1), σ(2), . . . be an infinite sequence of
consistent families of sections. We say that this sequence is regular if its restriction
to any fixed moduli space satisfies (31) for all k. An easy transversality argument
shows that regularity is a generic property.

Suppose that we have chosen a regular consistent sequence. As before, we can
then consider the cut-down moduli spaces M(k) = M(Gx−, Gx+)

non,(k) and their
compactifications. Define

D
(k)
1 : C∗

non −→ C∗−ianti+k+1
inv ,

D
(k)
1 (Gx−) =

∑
x+

#M(Gx−, x+)
non,(k) x+ . (35)

Of course, only finitely many of these are nonzero. To simplify the notation, we
arrange them into a power series whose “variable” is the operation ∂q:

D1 : C∗
non[[q]] −→ C∗−ianti+1

inv [[q]] ,

D1 = D
(0)
1 +D

(1)
1 ∂q +D

(2)
1 ∂2

q + · · · .
(36)

In the same way, but this time using the case where both x− and x+ are invariant,
one defines operations X(k) : C∗

inv → C∗+k+1
inv and packages them into a series X :

C∗
inv[[q]]→ C∗+1

inv [[q]]. Note that while D
(0)
1 = D1 as defined previously, X(0) is new:
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it counts the pairs of non-invariant flow lines connecting invariant critical points,
which do not contribute to the ordinary differential d.

Remark 7. One can legitimately wonder why there are no higher-order maps

D
(k)
2 associated to moduli spaces which go from invariant x− to non-invariant x+.

The reason lies in the notion of consistency adopted here: any broken flow line
in M̄(Gx−, Gx+)

non has the property that its last piece is non-invariant. Hence,
choosing a representative x+ trivializes the line bundle ξ(Gx−, Gx+) in a way which
is compatible with (34), which means that no nontrivial information can be obtained
in this way.

Of course, one could reverse the conventions by choosing the smallest possible j

in (34). That would lead to a different algebraic formalism, with trivial maps D
(k)
1

and nontrivial maps D
(k)
2 . Ultimately, one expects the resulting localization map to

be the same up to homotopy, but we have not checked that this is the case.

Lemma 8. dinvX+Xdinv = D1D2.

In components, this means that dinvX
(k) + X(k)dinv = D

(k)
1 D2 for each k. The

proof is standard: one looks at those x± such that iM (x+)−iM (x−) = k+2, which is
where the spaceM(x−, x+)

non,(k) is one-dimensional, and counts its boundary points
in the sense of (32). The only case worth mentioning is that of broken trajectories of
the form (u1, u2) ∈ M̄(x−, x1) × M̄(x1, x+), where x1 is an invariant critical point
with iM (x1) = iM (x−)+1, and both u1, u2 are non-invariant trajectories, the G-orbit
of the latter lying in the subspace {σ(1) = · · · = σ(k) = 0}. Such a broken trajectory
gives rise to a pair of boundary points in our moduli space, namely G(u1, u2) and
G(ι(u1), u2). The contributions of these two points cancel, and therefore our formula
does not contain a term corresponding to this boundary stratum.

The situation where x+ is ι-invariant, but x− is not, can be exploited a little
further. Suppose that x− ∈ P . Then, as mentioned before, M̄(x−, x+) projects
isomorphically to the quotient M̄ = M̄(Gx−, x+)

non. This provides a canonical
nowhere-zero section of the associated line bundle, which we denote by σpref =
σ(Gx−, x+)

pref (these sections do not normally satisfy the consistency condition
above). Define a subset of M =M(Gx−, x+)

non by

M(k,≥) =M(Gx−, x+)
non,(k,≥) =

{
σ(1) = · · · = σ(k) = 0 , σ(k+1)/σpref ≥ 0

}
, (37)

and similarly for the compactification, M̄(k,≥) ⊂ M̄. In the case where dim M = k,
there are no points in (37) where σ(k+1) = 0, and also no points at infinity in the
compactification. By counting points in these spaces, one gets new operations

S
(k)
1 : C∗

non −→ C∗−ianti+k+1
inv , (38)

which we again write as a single power series S1. As an example, suppose that
M(Gx−, x+)

non is zero-dimensional, so that k = 0. Then, since σ(1) is nowhere

zero, it picks out a representative for each orbit Gu in the moduli space. S
(0)
1 counts

only those Gu for which σ(1)/σpref > 0, which more concretely means that the
representative selected by σ(1) starts at the preferred point x−. The other relevant
situation is when dim M = k+1. In that case, (37) is a smooth one-manifold whose
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boundary isM(k+1), and compactifying adds finitely many points at infinity, which
can be treated in the same way as (32). In analogy with the previous lemma, this
leads to the following.

Lemma 9. dinvS1 + S1dnon = XD1 + D1U + (D1 − D1)/∂q, where the formal

quotient in the last term stands for (D1 −D1)/∂q = D
(1)
1 +D

(2)
1 ∂q +D

(3)
1 ∂2

q + · · · .
Again, this is best understood by writing out the equation in components,

dinvS
(k)
1 + S

(k)
1 dnon = D

(k)
1 U +X(k)D1 +D

(k+1)
1 . (39)

The most interesting terms are D
(k)
1 U and S

(k)
1 dnon, which appear together in the

following way. Take x−, x+ such that iM (x+) − iM (x−) = k + 2; we assume
as before that the representative x− is chosen to lie in P . Take a pair ū =
(u1, u2) ∈ M(x−, x1) ×M(x1, x+), where x1 is a non-invariant critical point, and
Gu2 ∈ M(x1, x+)

non,(k). By the transversality assumptions, σ(k+1)(Gu2) �= 0. If
x1 ∈ P , then Gū will lie on the boundary of M̄(x−, x+)

non,(k,≥) iff σ(k+1)(Gu2) > 0.

The total contribution of such points to our formula is S
(k)
1 (dnon −U). In the other

case x1 /∈ P , Gū lies on the boundary iff σ(k+1)(Gu2) < 0, and this contributes

(D
(k)
1 − S

(k)
1 )U . Adding up the two terms yields the desired D

(k)
1 U + S

(k)
1 dnon.

Consider the map

λ : (C∗
equiv, dequiv) −→

(
C∗−ianti

inv [[q]], dinv
)
,

λ(b, c) = c+X∂q(c) + S1(id + U∂q)
−1D2∂

2
q (c) .

(40)

This makes sense since U is nilpotent, which together with our previous observations
implies that the formula contains only finitely many powers of ∂q. Direct computa-
tion using (23) and Lemmas 8, 9 shows that λ is a chain homomorphism. Combined
with the canonical projection from C∗

borel to C∗
equiv, it induces a homomorphism

Λ : H∗(Cborel, dborel) −→ H∗−ianti(Cinv, dinv)[[q]] . (41)

We call Λ the bare localization map.

Lemma 10. For sufficiently large m, the composition λQm
equiv is a map of Z2[[q]]-

modules. This means that
qλQm

equiv = λQm+1
equiv , (42)

and similarly for all formal power series in q.

Proof. Since λ only contains finitely many powers of ∂q, there is an l � 0 such
that qλ(0, c)− λ(0, qc) vanishes for c ∈ qlC∗

inv[[q]]. Using again the nilpotency of U ,
one can choose m in such a way that Qm

equiv(C
∗
equiv) ⊂ {0} ⊕ qlC∗

inv[[q]], and then

obviously qλQm
equiv = λ diag(0, q)Qm

equiv = λQm+1
equiv. �

For m as above, define Λ(m) : H∗(Cborel, dborel) → H∗−ianti+m(Cinv, dinv)[[q]] to
be the map induced by λQm

equiv. We call this the m-normalized localization map.

Lemma 11. After tensoring over Z2[[q]] with Z2((q)) = Z2[[q]][q
−1], Λ(m) becomes

an isomorphism. Equivalently, the kernel of the original Λ(m) is the torsion part of
H∗(Cborel, dborel) as a Z2[[q]]-module, and its cokernel is finite-dimensional.
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Proof. All nontrivial terms in our definitions involve counting gradient flow lines,
hence are strictly increasing with respect to the filtration by values of our Morse
function. In particular

λQm
equiv(b, c) = (0, qmc) + terms which increase the filtration . (43)

Hence, this chain map has finite-dimensional kernel and cokernel, and then the same
applies to the induced map on cohomology. �

Remark 12. We want to outline a possible technical alternative. This avoids
the choice of sections and the transversality issues involved in cutting down moduli
spaces, but it assumes the existence of fundamental chains [M̄] (in the sense of
cubical singular homology), which moreover should be compatible with the product
structure of the boundary strata. The construction of such chains in Floer theory is
part of the formalism of [FOOO]; the Morse case is similar but simpler.

Instead of the line bundle ξ → M̄ = M̄(Gx−, Gx+)
non, consider the underlying

double cover S(ξ) = M̄(Gx−, Gx+) \ M̄(Gx−, Gx+)
inv. One can define cocycle

representatives for the first Stiefel–Whitney class w1(ξ) as follows. Pick a singular
zero-cocycle v on S(ξ), which is simply a function S(ξ)→ Z2, such that the fibrewise
involution takes v to 1 − v. Its coboundary dv is necessarily invariant under the
involution, which means that it is the pullback of a one-cocycle w on M̄. Explicitly,
to determine the value of w on a chain [0, 1] → M̄, one lifts that chain to S(ξ)
arbitrarily, and then takes the difference of the values of v at the endpoints, which is
independent of the choice of lift. In particular, by looking at closed loops, one sees
that w measures their liftability, hence represents w1(ξ). We assume that cocycles
v have been chosen on all of our moduli spaces, compatibly with (34), and take the

resulting cocycles w. Then, D
(k)
1 and X(k) can be defined by evaluating the k-th

power wk on the fundamental chain [M̄].
Consider now the case where x− is ι-invariant, but x+ is not. In that case, the

subspace M̄(x−, x+) ⊂ S(ξ) provides a canonical section s of S(ξ). To define S(k),
we evaluate s∗(v)wk on the fundamental chain. By construction d(s∗(v)wk) = wk+1,
which is the mechanism leading to Lemma 9 in this framework.

2.4 The Smith inequality. The decreasing filtration of C∗
borel by powers of q

yields a spectral sequence, whose starting page consists of infinitely many copies of
ordinary Morse cohomology:

Epq
1 =

{
Hq(C, d) , p ≥ 0 ,

0 , p < 0 .
(44)

As we have seen above, the first differential, in the nontrivial case p ≥ 0, is id− ι∗ :
Epq

1 → Ep+1,q
1 . In a similar but technically simpler vein, multiplication by q defines

a universal coefficient sequence

· · ·H∗−1(Cborel, dborel)
q−→ H∗(Cborel, dborel)→ H∗(C, d)→ · · · (45)

Using either approach, one sees that the rank of H∗(Cborel, dborel) as a Z2[[q]]-module
is bounded above by the dimension of H∗(C, d). More precisely, from (45) one gets
the following statement:
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Lemma 13. Let rfree be the number of generators of the torsion-free part of the
Z2[[q]]-module H∗(Cborel, dborel), and rtor the same for the torsion part. Then

rfree + 2rtor = dimH∗(C, d) . (46)

On the other hand, by Lemma 11, the rank of the torsion-free part is isomorphic
to that of H∗(Cinv, dinv)[[q]]. This implies the Smith inequality in the following form:

Lemma 14. The total dimension of H∗(Cinv, dinv) is less than or equal to that of
H∗(C, d). Equality holds iff H∗(Cborel, dborel) is torsion-free as a Z2[[q]]-module, or
equivalently if the spectral sequence (44) degenerates at the E1 term.

It is possible to extract a little additional information, going beyond the Smith
inequality, from the localization map. We know that the cokernel of Λ(m) is a finitely
generated torsion Z2[[q]]-module, hence can be written as

coker(Λ(m)) =
⊕
k

(
Z2[[q]]/q

dk+1)ak (47)

where ak are homogeneous generators, and dk ≥ 0. We define the cokernel poly-
nomial to be

Pcoker(t) = t−m
∑
k

(−1)deg(ak)tdk ∈ Z[t, t−1] . (48)

This is independent of m since, by construction, Λ(m+1) = qΛ(m).

Example 15. Take M = Rn (this is noncompact, but that will be irrelevant since
the gradient flow is still well-behaved), with ι(x) = −x, and a function f that
satisfies f(x) = −‖x‖2 near the origin and f(x) = ‖x‖2 outside a compact subset.
In this case ianti = n, H∗(Cborel, dborel) = H∗(C, d)[[q]] = Z2[[q]], and

Λ(qk) =

{
0 , k < n ,

qk−n, k ≥ n .
(49)

This shows clearly why only the rescaled maps Λ(m) are well-behaved with respect
to the Z2[[q]]-module structure.

3 Floer Cohomology

3.1 Basic setup. We will work in a limited framework which remains close to
Morse theory, hence makes it unproblematic to carry over our previous constructions.
Namely, let (M,ω, I) be an exact symplectic manifold with a compatible almost
complex structure, which is convex at infinity. Exactness means that the symplectic
form is the exterior derivative of a distinguished one-form θ. Convexity at infinity
says that there is an exhaustion (a sequence of relatively compact open subsets
U1 ⊂ U2 ⊂ · · · whose union is M), such that if S is a connected compact Riemann
surface with nonempty boundary, and u : S → M an I-holomorphic map with
u(∂S) ⊂ Uk, then necessarily u(S) ⊂ Uk+1 (symplectic structures obtained from
plurisubharmonic exhaustive functions on Stein manifolds satisfy these properties,
and so do more general Liouville manifolds). We will consider pairs of Lagrangian
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submanifolds (L0, L1) in M satisfying a relative version of the same conditions. First
of all, both θ|L0 and θ|L1 are exact one-forms. Secondly, L0∩L1 is compact. Finally,
there is an exhaustion of M such that any I-holomorphic map u : S →M , for S as
before and with u(∂S) ⊂ L0 ∪ L1 ∪ Uk, satisfies u(S) ⊂ Uk+1. Note that the last
two conditions are automatically satisfied if L0, L1 are themselves compact, which
is the case in most applications. We allow noncompact Lagrangian submanifolds
since they will appear later as a technical tool, as well as in some examples.

The Floer cohomology HF (L0, L1) is a vector space over Z2 (under suitable
assumptions, this can be Z/m graded for some m, or even Z graded, but in this
section we’ll stick to the general ungraded context). To define it, choose a compactly
supported time-dependent Hamiltonian H ∈ C∞

c ([0, 1] ×M,R), whose associated
Hamiltonian isotopy (φt) has the property that φ1(L0) intersects L1 transversally.
The (necessarily finitely many) intersection points provide generators for the Floer
cochain complex CF (L0, L1). For the differential, we choose a generic family J
of almost complex structures, which is a time-dependent and compactly supported
perturbation of I. Given two intersection points x±, we denote by M(x−, x+) the
moduli space of Floer trajectories

u : R× [0, 1] −→M ,

u(s, 0) ∈ L0 , u(s, 1) ∈ L1 ,

∂su+ J(t, u)
(
∂tu−X(t, u)

)
= 0 ,

lim
s→±∞u(s, t) = y±(t) ,

(50)

where X denotes the Hamiltonian vector field of H, meaning that ω(X, ·) = dH, and
y± are flow lines of X with y±(1) = x±. To further clarify the sign conventions used
here, we remind the reader that (50) can be viewed as the gradient flow equation
for the action functional on path space P = {y : [0, 1]→ M, y(0) ∈ L0, y(1) ∈ L1}.
If we write θ|Lk = dFk, then this is given by

A(y) =

(∫ 1

0
y∗θ +Ht(y(t))dt

)
+ F0(y(0))− F1(y(1)) . (51)

3.2 The equivariant theory. We now add symmetry, in the form of an in-
volution ι of M preserving ω, θ and I. We also assume that both Lagrangian
submanifolds are invariant under this symmetry. One then has an equivariant Floer
cohomology HFborel(L0, L1), which is a module over Z2[[q]]. To define it, we return
to the Borel construction (6). Each fibre Mborel,z contains canonical Lagrangian
submanifolds L0,z and L1,z. In addition, choose a time-dependent Hamiltonian and
almost complex structure (Hz, Jz), smoothly depending on z. When z = z(k) is a
critical point, the H(k) should satisfy the transverse intersection condition required
to make the associated Floer cochain space CF (L0, L1)

(k) well-defined. Moreover,
the family (Hz, Jz) should be locally constant near each critical point. As in (7) we
then set

CFborel(L0, L1) =
∞∏
k=0

CF (L0, L1)
(k). (52)

The differential dborel counts solutions of the coupled equations
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v : R −→ RP∞,

dv/ds = ∇h(v) ,

u : R× [0, 1] −→Mborel ,

(∂su)
vert + Jv(s)(t, u)

(
(∂tu)

vert −Xv(s)(t, u)
)
= 0 ,

(53)

with asymptotics
(
z(j), x

(j)
−
)
and
(
z(k), x

(k)
+
)
. This is analytically unproblematic,

since (53) is either Floer’s equation (if v is constant), or else a continuation map
equation for u parametrized by the finite-dimensional moduli space of gradient flow
lines v. For generic choices of almost complex structures, the resulting moduli spaces

Mborel
(
x

(j)
− , x

(k)
+
)
are smooth and admit a compactification with the same properties

as in the Morse-theoretic case. Note that in general, the energy bounds depend on j
and k, which means that the differential can contain infinitely many terms. Hence,
the use of the direct product in (52) is mandatory.

It is possible to simplify the setup by requiring compatibility of our choices with
the self-embedding τ : RP∞ → RP∞. In that situation

CFborel(L0, L1) = CF (L0, L1)[[q]] , dborel = d(0) + d(1)q + d(2)q2 + · · · (54)

The leading term d(0) is the ordinary Floer differential associated to (H, J) =(
H(0), J (0)

)
. The next term d(1) measures the difference between two continuation

maps. One is a continuation for a family connecting (H, J) to its pullback (ι∗H, ι∗J),
and the other connects (H, J) to itself. The latter can be chosen constant, in which
case the situation is precisely analogous to (16).

It was proved in [KS, Prop. 5.13] that for a generic invariant choice of (H, J),
all solutions of (50) which are not entirely contained in M inv will be regular. In
particularly simple cases, this already enables one to get a better understanding of
equivariant Floer cohomology. One such case is the following:

Lemma 16. If L0 ∩ L1 ∩M inv = ∅, then HFborel(L0, L1) is of finite rank over Z2.

Proof. In this case, we can clearly choose (H, J) to be invariant and regular. This
allows us to copy the strategy from Lemma 5, which means to find an acyclic sub-
space Z ⊂ CFborel(L0, L1) such that CFborel(L0, L1)/Z has exactly one generator
for each orbit of intersection points. �

In general, equivariant transversality fails to hold, and not just for technical rea-
sons. There are topological obstructions that have no parallel in finite-dimensional
Morse theory, and which affect the overall picture substantially. This phenomenon
had already been noticed in the context of monopole Floer homology [KrM], which
can be viewed as an S1-equivariant theory.

3.3 An example. Take M = R×S1×R2 with coordinates (p1, q1, p2, q2), where
q1 ∈ S1 = R/Z, and the standard symplectic structure ω = dp1 ∧ dq1 + dp2 ∧ dq2.
This is invariant under the involution ι(p1, q1, p2, q2) = (p1, q1,−p2,−q2). One of our
Lagrangian submanifolds will be the cylinder

L0 = {p1 = p2 = 0} . (55)

The other is a Moebius band, constructed from two overlapping pieces. Fix some
small δ > 0. Choose a function ψ+ : (−δ, 1/2 + δ) → R such that ψ+(s) = −1 for
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s ≤ δ; ψ+(s) = 1 for s ≥ 1/2− δ; and ψ′
+(s) > 0 for s ∈ (δ, 1/2− δ). Similarly, take

ψ− : (1/2− δ, 1 + δ)→ R such that ψ−(s) = −1 for s ≤ 1/2 + δ; and ψ−(s) = 1 for
s ≥ 1− δ. Then

L1 = L1,+ ∪ L1,− ,

L1,+ =
{
q1 ∈ (−δ, 1/2 + δ) , p1 = ψ′

+(q1)q
2
2/2 , p2 = ψ+(q1)q2

}
,

L1,− =
{
q1 ∈ (1/2− δ, 1 + δ) , p1 = ψ′

−(q1)p
2
2/2 , q2 = −ψ−(q1)p2

}
.

(56)

If we write ω = dθ with θ = p1 dq1 + (p2 dq2 − q2 dp2)/2, both Lk are exact. More-
over, the associated Liouville flow ρt(p1, q1, p2, q2) = (etp1, q1, e

t/2p2, e
t/2q2) preserves

the Lk. Hence, if we choose a suitable almost complex structure I (not the standard
complex structure, but one which is compatible with the Liouville flow at infinity),
maximum principle arguments (compare [KS, Lem. 5.5], for instance) ensure that
HF ∗(L0, L1) is well-defined. The same holds for their fixed parts. The following
computation shows that the Smith inequality is violated in this case.

Lemma 17. HF ∗(Linv
0 , Linv

1 ) ∼= Z2 ⊕ Z2, whereas HF
∗(L0, L1) = 0.

Proof. The first part is easy: inside M inv = R×S1, we have Linv
0 = Linv

1 = {0}×S1,
hence HF ∗(Linv

0 , Linv
1 ) ∼= H∗(S1;Z2).

For the second part, we need to take a closer look at the construction (56).
Identify the subset R × (−δ, 1/2 + δ) × R2 ⊂ M with the cotangent bundle of
(−δ, 1/2 + δ)× R, where the base coordinates are (q1, q2) and the fibre coordinates
(p1, p2). In this picture L0 is the zero-section, and L1 is the graph of the derivative
of the function f+(q1, q2) = ψ+(q1)q

2
2/2. Hence, intersection points of these two

submanifolds correspond to critical points of f+, which are exactly the points where
q2 = 0. Exactly one of those, corresponding to the unique solution of ψ+(q1) = 0, is
not a Morse–Bott critical point (which means that L0 and L1 fail to intersect cleanly
there). Now identify R × (1/2 − δ, 1 + δ) × R2 ⊂ M with the cotangent bundle of
(1/2 − δ, 1 + δ) × R, but where this time the base coordinates are (q1, p2) and the
fibre coordinates (p1,−q2). There, L0 is the conormal bundle of (1/2−δ, 1+δ)×{0},
and L1 is the graph of the derivative of f−(q1, p2) = ψ−(q1)p2

2/2. Intersection points
correspond to critical points of f−|(1/2− δ, 1 + δ) × {0}, which are all Morse–Bott
since that function vanishes identically.

Suppose that we deform f± to f̃± = f± + εr(q1), where r is a Morse function
on S1 with a minimum at 0 and a maximum at 1/2, and ε > 0 small. In the first
cotangent bundle picture above, f̃+ has only the two obvious critical points (0, 0)
and (1/2, 0), for any sufficiently small value of ε, which means that there are no
additional critical points branching out from the degenerate one. This is by a sign
consideration: ∂f̃+/∂q1 = ψ′(q1)q2

2/2 + r′(q1) > 0 whenever q1 ∈ (0, 1/2). In the
second cotangent bundle picture, the same consequence holds for more standard
reasons (this is a Morsification of a clean intersection, as in [Po]). We actually
want to deform L1 by an exact isotopy which is fixed at infinity and which, near its
intersection with L0, corresponds to the change of Morse functions discussed above.
Denote the result by L̃1.
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The Floer complex CF ∗(L0, L̃1) has two generators x±, corresponding to the
minimum and maximum of r. Choose (Jt) to be ι-invariant but otherwise generic.
The moduli spaceM(x−, x+) is divided into open and closed subsets corresponding
to different homotopy classes, and each of these subsets has a different expected di-
mension. The subspace M(x−, x+)

inv contains exactly two solutions, clearly visible
as strips in M inv = R × S1. Consider the strip which lies in R × (1/2, 1). As part
of the standard comparison between Floer theory and Morse theory, the index of
this strip can be computed as the difference of the Morse indices of f̃+|{p2 = 0} at
the endpoints. As a consequence, this particular strip lies in the part ofM(x−, x+)
having expected dimension 0 (the other strip, inside R × (0, 1), turns out to have
expected dimension −1). Hence, if we choose (Jt) generic (while preserving its sym-
metry), this strip will be regular in the total space, and in fact the zero-dimensional
part of M(x−, x+) will be regular and contain an odd number of points. The parts
ofM(x−, x+) of different expected dimension may not be regular, but they will be-
come regular if we make a small perturbation which breaks the symmetry. The Floer
differential, computed after making such a perturbation, is therefore nonzero. �

3.4 The normal polarization. The key to the example above was the difference
between Maslov indices in M and M inv. However, this is only the simplest in a
series of obstructions, and the remaining ones have nothing to do with the grading
on Floer cohomology. The following general discussion of these obstructions is only
for motivation, and (except for some notation which will reappear elsewhere) not
needed for the main results of the paper.

Let Linv
k = Lk ∩M inv be the part of Lk fixed by the involution. Take the fixed

part of the path space, P inv = {y : [0, 1] → M inv, y(0) ∈ Linv
0 , y(1) ∈ Linv

0 }. The
normal polarization is a map

P inv −→ U/O , (57)

unique up to homotopy, which describes the geometry in normal direction. It can
be defined as follows. Let TManti → [0, 1]×M inv be the normal bundle to the fixed
locus, pulled back to [0, 1]×M inv. On the subsets {k} × Linv

k this carries canonical
Lagrangian subbundles TLanti

k , given by the normal bundles to the fixed parts of the
Lagrangian submanifolds. This bundle-theoretic datum is classified by a map(

[0, 1]×M inv, ({0} × Linv
0 ) ∪ ({1} × Linv

1 )
)
−→ (BU,BO) . (58)

By looking at the graph of any path, this induces a map (57). Note that we can
pass to loop spaces one more time, and (using real Bott periodicity) obtain a map

ΩP inv −→ Ω(U/O) � Z×BO . (59)

There is an equivalent infinite-dimensional viewpoint, related to the previous one
through index theory. For each y ∈ P inv, let Hy be the Hilbert space of W 1/2-
sections of y∗TManti with boundary conditions y(k) ∈ TLanti

k (since W 1/2-functions
are not continuous, this should strictly speaking be defined as the closure of the space
of smooth functions with the same boundary conditions). Hy carries a bounded
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symmetric bilinear form

Qy(Y1, Y2) = ω

(
Y1,

∇Y2

dt

)
, (60)

where ∇ is any symplectic connection on TManti. This leads to a polarization of the
Hilbert bundle H → P inv in the sense of [CJS]. Like any polarized Hilbert bundle,
this is classified by a map P inv → BGLres into the restricted Grassmannian of a
real Hilbert space. The connection with the previous viewpoint is given by [PrS,
Prop. 6.2.4], which says that there is a homotopy equivalence BGLres � U/O.

To see the relevance of this to transversality problems, consider (50) for generic
invariant (H, J). Let u be a solution which is entirely contained in M inv, with
limits x±. The associated linearized operator Du is itself equivariant, hence can be
decomposed into its invariant and anti-invariant parts

Du = Dinv
u ⊕Danti

u . (61)

Dinv
u controls deformations which remain inside M inv. By the standard transversal-

ity arguments, we can assume that this is onto for all u. The anti-invariant part
governs deformations in normal direction. For equivariant transversality, it is nec-
essary that these operators be onto as well, and our definition of a localization map
further requires them to be actually invertible. There is a topological obstruction
to this, given by an appropriate family Fredholm index. To express this in slightly
simpler terms, fix a base point u0 ∈ M(x−, x+)

inv, and consider the family of real
Fredholm operators Du ⊕ D∗

u0
over M(x−, x+)

inv. On the other hand, we have a
mapM(x−, x+)

inv → ΩP inv, unique up to homotopy, which is constructed by gluing
together u and u0 topologically to an annulus with boundary on (Linv

0 , Linv
1 ). The

family index theorem shows that our family of operators Du ⊕D∗
u0

is classified by
the composition of this map with (59).

In the example from section 3.3, the bundle TManti is trivial. If we choose the
obvious trivialization, then TLanti

0 is compatible with that, but TLanti
1 is not, being a

family of Lagrangian subspaces over S1 with nonzero Maslov index. This means that
the relative first Chern class 2crel1 ∈ H2(BU,BO;Z) evaluates nontrivially on (58).
As a consequence, the map π0(ΩP inv)→ π0(Z×BO) = Z is nontrivial. This shows
that holomorphic strips u in M inv with the same endpoints can have operators
Danti

u with different indices, which is indeed what we saw in our previous concrete
computation.

3.5 Equivariant transversality. While (57) appears to be the fundamental
obstruction, we will assume a stronger condition which works on the level of (58),
and essentially amounts to a nullhomotopy of that map. We consider M , (L0, L1),
and ι as in section 3.1. Let n be the complex dimension of M , and nanti the complex
codimension of the fixed point set. (The case where the fixed point set has compo-
nents of different dimensions would be an easy generalization.)

Definition 18. A stable normal trivialization consists of the following data:

• A trivialization of unitary vector bundles over M inv,

φ : TManti ⊕ CN −→ Cnanti+N (62)

for some N ≥ 0.
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• A Lagrangian subbundle Λ0 ⊂ (TManti⊕CN )|([0, 1]×L0) such that Λ0|{0} × L0
= TLanti

0 ⊕ RN and φ(Λ0|{1} × L0) = Rnanti+N .
• A Lagrangian subbundle Λ1 ⊂ (TManti ⊕ CN )|([0, 1] × L1) such that

Λ1|{0} × L1 = TLanti
1 ⊕ iRN and φ(Λ1|{1} × L1) = iRnanti+N .

If this exists, we say that (M,L0, L1) have stably trivial normal structure.

Assume from now on that we are given a stable normal trivialization. Take the
product M̃ = M × CN with the standard product symplectic structure. Equip it
with the involution ι̃ = ι × (−id), so that M̃ inv = M inv. Fix a relatively compact
open subset U inv ⊂ M inv. By a standard Moser argument, there is an open subset
Ũ ⊂ M̃ with Ũ ∩ M̃ inv ⊃ U inv and a (codimension zero) symplectic embedding

Φ̃ : Ũ −→M inv × Cnanti+N (63)

which is G-equivariant, equals the identity on the fixed point set, and whose normal
derivative along the fixed point set is given by the trivialization φ. Similarly, there
are G-invariant Lagrangian submanifolds L̃k ⊂ M̃ , k = 0, 1, with the following
properties. L̃0 is obtained from L0×RN by a compactly supported exact Lagrangian
isotopy, and similarly L̃1 from L1 × iRN . These isotopies are trivial on the fixed
part, and

L̃0 ∩ Ũ = Φ̃−1(Linv
0 × Rnanti+N ) ,

L̃1 ∩ Ũ = Φ̃−1(Linv
1 × iRnanti+N ) .

(64)

To define the relevant isotopies, one proceeds in two steps. The infinitesimal
change of Λk in direction of the [0, 1] variable is expressed by a fibrewise quadratic
form. Extend this arbitrarily to a real quadratic form on TManti ⊕ CN →
[0, 1]×M inv. Next, find a compactly supported time-dependent Hamiltonian func-
tion Hk ∈ C∞([0, 1]× M̃,R) which is G-invariant, vanishes on the fixed point set,
and whose Hessians along U are given by the previously constructed quadratic form.
The associated Hamiltonian isotopy then produces Lagrangian submanifolds which
satisfy (64) infinitesimally, meaning that their derivatives in direction normal to
the fixed point sets map to Rnanti+N and iRnanti+N under φ. Improving this to the
desired statement is another standard Moser type construction.

For the application to equivariant transversality problems, we fix a time-depen-
dent Hamiltonian and almost complex structure (H inv, J inv) on M inv which are
suitable for defining the Floer cohomology inside the fixed point set. This require-
ment includes the necessary regularity property of all moduli spaces M(x−, x+)

inv.
We choose U inv so that for any map u in these moduli spaces, u(R× [0, 1]) ⊂ U inv,
which is possible due to the convexity assumptions we have imposed. Now, consider
data (H̃, J̃) on M̃ which are G-equivariant and, in addition to the usual properties,
satisfy the following conditions:

• H̃|U inv = H inv, and the Hessian of any H̃(t, · ) in normal direction to the fixed
point set vanishes along U inv.

• Along U inv, J̃ agrees with the pullback of the product structure J inv×i by (63).
Moreover, the first derivatives of these two structures also agree along U inv.



GAFA LOCALIZATION FOR INVOLUTIONS 1485

Take any u ∈M(x−, x+)
inv, consider it as a solution of Floer equation in M̃ associ-

ated to (H̃, J̃), and take the associated linearized operator D̃u. By assumption, its
invariant part D̃inv

u is surjective. The conditions imposed above ensure that the anti-
invariant part D̃anti

u is the standard ∂̄-operator for maps [0, 1]×R→ Cnanti+N with
real and imaginary boundary conditions along {0} × R and {1} × R, respectively;
which is invertible.

Lemma 19. For a generic choice of (H̃, J̃) subject to the conditions above, all
solutions of (50) are regular.

Proof. This is essentially the same argument as in [Se, §14c]. By construction, all
invariant solutions are regular. The others are taken care of by [KS, Prop. 5.13];
the additional requirements on (H̃, J̃) are unproblematic here, since they do not
constrain the behaviour outside the fixed point set. �

3.6 The localization map. It is not hard to see that passing from M and
(L0, L1) to their stabilized versions M̃ and (L̃0, L̃1) does not affect Floer cohomology
or its equivariant version. In fact, if one chooses the almost complex structures and
Hamiltonian perturbations in a specific way, the chain complexes will be the same.
For generally unrelated choices, this means that we have quasi-isomorphisms

CF (L0, L1)
�−→ CF (L̃0, L̃1) ,

CFborel(L0, L1)
�−→ CFborel(L̃0, L̃1) ,

(65)

which are themselves unique up to homotopy. From now on, we fix a stable normal
trivialization, and define (L̃0, L̃1) as well as (H̃, J̃) as in the previous section. This
in particular allows us to define a complex CFequiv(L̃0, L̃1) as in section 2.2, which
comes with a canonical quasi-isomorphism

CFborel(L̃0, L̃1)
�−→ CFequiv(L̃0, L̃1) . (66)

The proof that this is a quasi-isomorphism, carried over from Lemma 5, uses the
nilpotency of the operator U , which holds because we have a well-defined action
functional underlying our Morse theories.

Write M(x−, x+) for the moduli spaces associated to (H̃, J̃). Invertibility of
the anti-invariant part D̃u for any u ∈ M(x−, x+)

inv means that M(x−, x+)
inv ⊂

M(x−, x+) is an open and closed subset, and the same holds for the compactifica-
tions. Following the process from section 2.2, one uses these moduli spaces to define
a bare localization chain map

λ : CFequiv(L̃0, L̃1) −→ CF (L̃inv
0 , L̃inv

1 )[[q]] = CF (Linv
0 , Linv

1 )[[q]] . (67)

From a technical viewpoint, this goes either via a choice of consistent sections, or
alternatively via singular chains as outlined in Remark 12. It is useful to keep in mind
that, because of exactness, the overall dimension of our moduli spaces is bounded
above, which means that the formal power series in ∂q entering into the definition
are still polynomials. Moreover, the analogues of Lemmas 10 and 11 hold. The
outcome, combined with our previous observations (65) and (66), is the following:
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Theorem 20. There is a sequence of Z2[[q]]-module maps

Λ(m) : HFborel(L0, L1) −→ HF (Lfix
0 , Lfix

1 )[[q]] , (68)

defined for m � 0 and satisfying Λ(m+1) = qΛ(m). Moreover, these maps become
isomorphisms after tensoring with Z2((q)).

One can prove that these maps depend only on the (homotopy class of the)
stable normal trivialization. We will not give the argument here. By construction,
equivariant Floer cohomology fits into a long exact sequence analogous to (45),

· · · → HFborel(L0, L1)
q−→ HFborel(L0, L1)→ HF (L0, L1)→ · · · (69)

By the same argument as in section 2.4, this and Theorem 20 imply the Floer-
theoretic Smith inequality, in the form stated in the Introduction (Theorem 1).

A particularly simple numerical consequence is as follows. Assume that Linv
0 and

Linv
1 are orientable. Then, HF (Linv

0 , Linv
1 ) admits a modulo 2 grading so that its

Euler characteristic is, up to a dimension-dependent sign, the intersection number
±[Linv

0 ] · [Linv
1 ]. One can refine this by taking the fundamental groups into account.

Namely, for every connected component C of the path space P inv we have a direct
summand HFC(L

inv
0 , Linv

1 ), whose Euler characteristic ±[Linv
0 ] ·C [Linv

1 ] takes into
account only the intersection points whose associated constant paths lie in C. The
Smith inequality immediately yields the following lower bound:

Corollary 21. If, in addition to our other assumptions, Linv
0 and Linv

1 are
orientable, we have

dimHF (L0, L1) ≥
∑
C

∣∣[Linv
0 ] ·C [Linv

1 ]
∣∣ . (70)

Remark 22. Let’s return to the general situation from section 3.1, without the as-
sumption of stable normal triviality. We can still choose (H, J) equivariantly so that
their fixed parts (H inv, J inv) give rise to regular moduli spaces inside M inv. Suppose
that the compactified moduli spaces M̄inv = M̄(x−, x+)

inv have been equipped with
fundamental chains, as in Remark 12. In addition, they carry canonical families of
Fredholm operators Danti

u measuring the obstruction to normal regularity, in the
sense of (59). Denote by

η −→ M̄inv (71)

the negative virtual index bundle of the family (negative means taking
[cokernel]− [kernel]). The restriction of this bundle to any boundary stratum in
the compactification naturally decomposes as a direct sum of the bundles associated
to the various factors (this is just an abstract formulation of the usual gluing the-
orem for indices). Suppose that we are given singular cocycle representatives p of
the total Stiefel–Whitney polynomial,

[p] = 1 + w1(η) + w2(η) + · · · ∈ H∗(M̄inv;Z2) , (72)

which moreover should be compatible with each other via restriction to the bound-
ary strata and the isomorphisms mentioned above (we will not consider the tech-
nical details of how to construct such representatives here). Now pass to cochains



GAFA LOCALIZATION FOR INVOLUTIONS 1487

with coefficients in Z2((q)), and make p into a homogeneous element p̂ of degree
−index(Danti

u ), by multiplying its graded pieces with appropriate powers of q±1 (if
the moduli space has components with different indices, this has to be done sepa-
rately on each component, of course). One can then define a twisted Floer differ-
ential on CFtwisted(L

inv
0 , Linv

1 ) = CF (Linv
0 , Linv

1 )((q)) by evaluating these cocycles on
the fundamental chains:

dtwisted(x−) =
∑
x+

〈
p̂, [M̄(x−, x+)

inv]
〉
x+ . (73)

The resulting cohomology groups HFtwisted(L
inv
0 , Linv

1 ) reduce to ordinary Floer co-
homology in the presence of a stable normal trivialization. We would like to propose
these twisted groups as the candidate target for a localization map defined in general.

To illustrate the effect of twisting, we can return to the example from section 3.3.
In that case, the unique nontrivial moduli space M(x−, x+)

inv consisted of two
points, one of which was regular in M (which means that Danti

u has index 0), whereas
the other was irregular (the index would be −1). By definition, p̂ is 1 on one point
and q on the other point, so that

dtwisted(x−) = (1 + q)x+ . (74)

Therefore HFtwisted(L
inv
0 , Linv

1 ) = 0, which is consistent with the conjectured exis-
tence of a localization map.

4 From Symplectic Khovanov to Heegaard Floer

4.1 Algebraic geometry and topology. We begin by recalling some features
of the specific transverse slices from [SeS1], and simultaneously equip them with
involutions. Fix an integer m ≥ 1. Let S ⊂ sl2m(C) be the affine subspace consisting
of matrices of the form

A =

⎛⎜⎜⎜⎜⎝
A1 I
A2 I
. . . . . .

Am−1 I
Am 0

⎞⎟⎟⎟⎟⎠ (75)

with A1 ∈ sl2(C), Ak ∈ gl2(C) for k > 1, and where I ∈ gl2(C) is the identity matrix.
Let Sym0

2m(C) be the subspace of the symmetric product Sym2m(C) consisting of
collections with center of mass zero. Symmetric polynomials yield an isomorphism
Sym0

2m(C) ∼= C2m−1. Consider the adjoint quotient map χ : S → Sym0
2m(C), which

takes a matrix A to the collection of its eigenvalues. If we identify Sym0
2m(C) ∼=

C2m−1 as before, this map is just given by the nontrivial coefficients of the charac-
teristic polynomial. In our case,

det(x−A) = det(A(x)) , where

A(x) = xmI − xm−1A1 − xm−2A2 − · · · −Am ∈ gl2(C[x]) .
(76)

The part of χ lying over the open subset Conf02m(C) ⊂ Sym0
2m(C) of configurations

(unordered 2m-tuples of pairwise distinct points) is a differentiable fibre bundle. Fix
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some t ∈ Conf02m(C), and denote the fibre of χ at that point by Y. By definition,
this is a smooth affine variety of complex dimension 2m. Consider the holomorphic
involution which transposes each of the Ak:

ι : S −→ S , ι(A1, . . . , Am) = (Atr
1 , . . . , A

tr
m) . (77)

Clearly, the function (76) is ι-invariant, hence we get an induced involution on Y.
The fixed point sets S inv ⊂ S and Y inv ⊂ Y are defined by the vanishing of the m
functions (Ai)12 − (Ai)21.

Manolescu [Ma, Th. 1.1] showed that Y can be identified with an open subset of
a Hilbert scheme. More precisely, for our given t ∈ Conf02m(C) and the associated
monic polynomial f(x) =

∏
i(x − ti), consider the smooth affine algebraic surface

X = {f(x) + yz = 0} ⊂ C3. What Manolescu constructed is an embedding

Y −→ Hilbm(X ) , (78)

whose image is the open subset of those subschemes whose image under projection
x : X → C is again of length m. We use slightly different coordinates on X than [Ma,
§2.4], but it is straightforward to adapt the explicit formulae given there. Inspection
of those formulae shows that ι corresponds to exchanging y and z. Take the fixed
point set of the last-mentioned involution of X , which is the affine hyperelliptic curve
X inv = {f(x) + y2 = 0} ⊂ C2.

Lemma 23. The restriction of (78) yields an embedding

Y inv −→ Symm(X inv) . (79)

Its image consists of those divisors D = p1 + · · ·+ pm which contain no fibre of the
hyperelliptic involution, which means no pair (x, y) + (x,−y).
Proof. This could be derived from the previous result, which is what happens in
[Ma, §7]. However, restriction to the fixed point set actually simplifies the picture
considerably, and we therefore prefer to give a self-contained account, starting with
the description of the map. Take some point in Y inv, and write the associated matrix
from (76) as

A(x) =

(
W (x) V (x)
V (x) U(x)

)
. (80)

By construction U and W are monic of degree m, and their xm−1 coefficients sum
to zero; while V has degree ≤ m− 1. Since f(x) = UW − V 2, the ideal(

U(x), y − V (x)
)
⊂ C[x, y] (81)

contains f(x) + y2, hence defines a subscheme of X inv ⊂ C2. It is obvious that (81)
has length m, and the same holds for its intersection with C[x] ⊂ C[x, y]. The latter
property means that the image of our subscheme under the projection x : X inv → C

is still of length m. Finally, since X inv is a smooth curve, the Hilbert scheme is
the same as the symmetric product. This defines the map (79), and shows that its
image lies in the previously described open subset.

In the reverse direction, take a degree m effective divisor D = p1 + · · · + pm on
X inv which contains no fibre of the hyperelliptic involution. Write pi = (xi, yi), and
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set U(x) =
∏

i(x − xi). If the xi are pairwise distinct, take the unique polynomial
V (x) of degree ≤ m − 1 for which V (xi) = yi. In general, several of the xi can
coincide, but only if the corresponding yi are all nonzero and coincide as well. In
that case, one can still find a unique V which, at each such point, approximates the
branch of

√
−f(x) with value yi to order equal to the appropriate multiplicity. By

construction, f(x)+V 2 is divisible by U , and we then define W by f(x)+V 2 = UW .
Since deg(V ) ≤ m− 1, W is necessarily monic of degree m. Finally, since the roots
of f have center of mass zero, the xm−1 coefficients of the polynomials U and W
must sum to zero. Then defining A(x) as in (80) yields a point in Y inv. �

Remark 24. The embedding described above has a natural extension to the
whole of S inv. Namely, let T → Sym0

2m(C) be the family of double branched covers
f(x) + y2 = 0, where f ranges over all monic polynomials of degree 2m with zero
subleading coefficient. The total space T is a smooth variety of dimension 2m. To
this, one can associate its relative Hilbert scheme H = Hilbm(T /Sym0

2m(C)). More
explicitly, T is a subvariety of C2 × Sym0

2m(C), and correspondingly H lies inside
Hilbm(C2)× Sym0

2m(C). By the same formula as before, we then get an embedding
fibered over Sym0

2m(C),
S inv −→ H . (82)

Let C be the completion of X inv to a closed smooth algebraic curve, and q± its
points at infinity. Inside the Jacobian Jac(C) of degree m line bundles, take the
theta divisor

Θ =
{
L : H0(L(−q+ − q−)) �= 0

}
. (83)

This makes sense since C is of genus m − 1, and L(−q+ − q−) of degree m − 2.
Consider Y inv as a subset of Symm(C) via (79).

Lemma 25. The restriction of the Abel–Jacobi map Symm(C) → Jac(C) to Y inv

is a fibre bundle over Jac(C) \ Θ with fibre C∗. Moreover, that fibre bundle is
topologically trivial.

Proof. Take D = p1+ · · ·+pm, where pi �= q±. If the line bundle L = O(D) lies in Θ,
there is a rational function r which vanishes at q± and has poles of the appropriate
orders at the points of D. Writing pi = (xi, yi), then clearly r

∏
i(x− xi) has poles

of order m−1 at q±, and none elsewhere, hence is of the form g(x)+yh(x) for some
polynomials g, h. Since y has a pole of order m at q±, it follows that h = 0, so
r = g(x)/

∏
i(x − xi), where g must have degree ≤ m − 1. But then, r either has

a pole of order ≥ 2 at a fixed point of the hyperelliptic involution, or two poles at
points (x,±y), hence D cannot lie in the image of (79).

Conversely, suppose that H0(L(−q+−q−)) = 0, which by Riemann–Roch means
H1(L(−q+ − q−)) = 0. Then evaluation at q± defines an isomorphism H0(L) →
Lq+ ⊕ Lq− . Hence, there is a C∗ worth of divisors within the pencil |L| which avoid
q+ and q−. If such a divisor contains a fibre of the hyperelliptic involution, one can
find a linearly equivalent one containing both points q±, which is a contradiction
to the original assumption. Hence, all our C∗ family of divisors lie in the image
of (79). This argument actually shows that Y inv → Jac(C) \ Θ can be identified



1490 P. SEIDEL AND I. SMITH GAFA 

with the complement of the two coordinate sections inside the CP 1-bundle with
fibres P(C⊕Hom(Lq+ , Lq−)). One can define such a CP 1-bundle over the Jacobian
for any two points of the curve C, and its topological type is independent of which
points one chooses. In particular, by taking the two points to coincide, one sees
that the bundle is topologically trivial (its restriction to Jac(C) \ Θ must then be
holomorphically trivial as well, since that space is affine and hence Stein). �

Lemmas 23 and 25 are actually variations on arguments from [Mu], the main
difference being that [Mu] concerns hyperelliptic curves which have a branch point
at infinity.

Lemma 26. The first Chern class c1(Symm(X inv)) is represented by the Poincaré
dual of −D, where D = Symm(X inv) \ Y inv.

Proof. D is the image of a map C × Symm−2(X inv) → Symm(X inv). Its closure
is a map CP 1 × Symm−2(C) → Symm(C). Well-known facts about linear systems
on hyperelliptic curves [ACGH, p. 13] imply that the image of this map is precisely
the preimage of Θ under the Abel–Jacobi map. On the other hand, c1(Symm(C))
is represented by 2[Symm−1(C) × {point}] minus the preimage of Θ [M, p. 337].
Restricting to Symm(X inv) kills the first summand. �

Remark 27. As a variety cut out inside affine space (the space S inv) by inde-
pendent equations (the coefficients of χ), Y inv carries an algebraic volume form,
determined up to a constant. Lemma 26 says that its extension to Symm(X inv) has
simple zeros along the irreducible divisor D, which means that it yields a trivializa-
tion of the canonical bundle of Symm(X inv) twisted by O(−D).

4.2 Symplectic forms and Lagrangian submanifolds. In [SeS1], we equip-
ped S with an exact Kähler form Ω as follows. Fix some α > m, and for each 1 ≤
k ≤ m choose a strictly subharmonic function ψk : C→ R, such that ψk(z) = |z|α/k
at infinity. Apply ψk to each entry of Ak, and let ψ be the sum of the resulting
terms, which is an exhausting plurisubharmonic function. Then set

Ω = −ddcψ. (84)

Any Kähler form defines a symplectic connection on the regular part of χ : S →
Sym0

2m(C). However, since the fibres are non-compact, one may not be able to
integrate the associated horizontal vector fields to obtain parallel transport maps.
This difficulty can be addressed by taking the horizontal vector fields and adding
a multiple of the fibrewise Liouville vector field dual to Θ = −dcψ. It is proved
in [SeS1] that in this way, one can get modified parallel transport maps defined on
arbitrarily large compact subsets, which is enough for applications. In our case,
since both Ω and Θ are ι-invariant, the modified parallel transport is equivariant.

Let ω = dθ be the restriction of Ω = dΘ to our chosen fibre Y, which lies over
t = (t1, . . . , t2m) ∈ Conf02m(C). Parallel transport and vanishing cycle arguments
can be used to construct certain Lagrangian submanifolds in Y. Recall that a cross-
ingless matching ℘ is the union of m disjoint embedded closed arcs in C, whose
2m endpoints are precisely the ti. To each such ℘ one can associate a compact
Lagrangian submanifold L℘ ⊂ Y.
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Lemma 28. For every ℘, L℘ ⊂ Y is ι-invariant. Moreover, there is a diffeomorphism
L℘

∼= (S2)m, under which ι|L℘ corresponds to the involution (p, q, r) �→ (q, p, r) of
each factor S2 ⊂ R3.

Proof. We need to recall the construction of the L℘ as relative vanishing cycles,
which proceeds by induction on m (see [SeS1] for details). Let S ′ be the analogue
of (75) inside sl2m−2(C), and χ′ : S ′ → Sym0

2m−2(C) its adjoint quotient map. Fix
t′ = (t′1, . . . , t′2m−2) ∈ Conf02m−2(C), where in addition each t′i is assumed to be
nonzero. Denote by Y ′ the fibre of χ′ at that point, and by ι′ the involution on
it. Suppose that we have a crossingless matching ℘′ for t′, which consists of paths
that avoid the origin, and let L℘′ be the associated Lagrangian submanifold. Next,
consider the disc Dε ⊂ Sym0

2m(C) consisting of points (t′1, . . . , t′2m−2,−
√
z,
√
z) for

|z| < ε. The restriction of χ to that disc is a holomorphic function

χ : χ−1(Dε) −→ Dε, (85)

which has a Morse–Bott nondegenerate critical submanifold in the fibre over z = 0.
That submanifold can be canonically identified with Y ′. In fact, a neighbourhood
of the critical submanifold inside χ−1(Dε) can be identified with a neighbourhood
of Y ′×{0} ⊂ Y ′×C3, in such a way that the map (85) is (A, p, q, r) �→ p2 + q2 + r2.
Finally, inspection of the construction shows that these identifications can be made
ι-equivariant, where the corresponding involution on Y ′ × C3 is

(A, p, q, r) �−→ (ι′(A), q, p, r). (86)

Inside χ−1(Dε), consider the subspace W of all points that converge to a point of
L℘′ under the negative gradient flow of the real part of (85). That subspace is diffeo-

morphic to a neighbourhood of L℘′×{0} ⊂ L℘′×R3. Set t =
(
t′1, . . . , t′2m−2,−

√
δ,
√
δ
)

for some small δ > 0, and let ℘ be the crossingless matching for t obtained by adding
an interval

[
−
√
δ,
√
δ
]
to ℘′. One produces L℘ by intersecting W with the fibre of

(85) over δ.
If we make the induction assumption that L℘′ is ι

′-invariant, it follows from the
construction that L℘ has the analogous property, and then the same holds for any
crossingless matching with 2m strands by using parallel transport. Similarly, the
proof in [SeS1, §5B] that L℘

∼= (S2)m carries through equivariantly, and implies the
fact about ι|L℘ stated above. �

Temporarily, let’s specialize to the following situation. Take real numbers
τ1 < · · · < τm which add up to zero, and consider the polydisc Dm

ε ⊂ Sym0
2m(C)

consisting of points(
τ1 +

√
z1, τ1 −

√
z1, . . . , τm +

√
zm, τm −

√
zm
)

(87)

for |zi| < ε. Let t be the point obtained by taking all zi = δ > 0, where δ is small,
and ℘ the crossingless matching which consists of the intervals

[
τi −

√
δ, τi +

√
δ
]
.

Lemma 29. There is a contractible totally real half-dimensional submanifold
Δ ⊂ χ−1(Dm

ε ) with the following property. The restriction of χ to Δ yields a map
Δ → [0, ε)m, which has (δ, . . . , δ) as a regular value. Moreover, the intersection of
Δ with the fibre at that point is precisely L℘.
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Proof. There is a special point in the fibre over (0, . . . , 0) ∈ Dm
ε , and local coor-

dinates (u1, v1, w1, . . . , um, vm, wm) on χ−1(Dm
ε ) centered at that point, in which

χ = (u2
1 + v2

1 + w2
1, . . . , u

2
m + v2

m + w2
m). Take the real locus in those coordinates.

Then, its intersection with the fibre over (δ, . . . , δ) is isotopic to L℘ as a totally
real submanifold inside that fibre, see [SeS1, Lem. 30]. One can easily extend that
isotopy to yield Δ with the desired properties. �

Perutz ([P], building on results of Varouchas [V1]) provided a direct construction
of Kähler forms on symmetric products, which we will now adapt to our purpose.
Choose a Kähler form α on X inv, which should be invariant under the hyperelliptic
involution. Let N ⊂ Confm(X inv) be a relatively compact open subset, which we
think of as a subset of Symm(X inv) whose closure is disjoint from the big diagonals.
Then [P, Prop. 7.1] there is an exact Kähler form on Symm(X inv), whose restriction
to N agrees with the product of m copies of α. We may additionally assume that
this Kähler form is still invariant under the hyperelliptic involution, and choose a
one-form primitive with the same property. Pull both back to Y inv via (79), and
denote the result by ωP = dθP .

For each embedded path in C whose endpoints belong to t = (t1, . . . , t2m), and
which otherwise avoids t, there is an associated simple closed curve in X inv, invariant
under the hyperelliptic involution. In particular, a crossingless matching yields m
disjoint such curves, which then give rise to a torus T℘ ⊂ Confm(X ) ∩ Y inv ⊂ Y inv

in the way familiar from Heegaard Floer theory. If the subset N in the previous
construction is chosen so that it contains T℘, that torus will be Lagrangian with
respect to ωP . Since the hyperelliptic involution acts by −1 on H1(T℘;R) but
preserves θP , the torus is also automatically exact.

We also find it useful to mention a variant of this construction, which combines
Perutz’ ideas with ones of Manolescu [Ma, §4]. Choose a Kähler form β on C2, which
should be invariant under the involution

(x, y) �−→ (x,−y) . (88)

Let O ⊂ Confm(C2) be a relatively compact open subset, which we think of as a
subset of Hilbm(C2) whose closure is disjoint from the preimage of the big diago-
nal under the Hilbert–Chow map Hilbm(C2) → Symm(C2). Again using results of
Varouchas [V1,2], one can construct a Kähler form on Hilbm(C2) whose restriction
to O agrees with the product of m copies of β. Take the product of that form
with an arbitrary Kähler form on Sym0

2m(C) ∼= C2m−1, and pull that back via the
embedding

S inv −→ H −→ Hilbm(C2)× Sym0
2m(C) (89)

from Remark 24. We denote the result by ΩM , and write it as ΩM = dΘM for some
one-form ΘM . As before, we may assume that both ΩM and ΘM are invariant under
the involution which corresponds to (88) under (89), concretely

(U, V,W ) �−→ (U,−V,W ) . (90)

The restrictions of ΩM and ΘM to Y inv are written as ωM and θM , respectively. By
the same argument as for ωP , the tori T℘ are exact Lagrangian with respect to ωM ,
provided that the subset O has been chosen sufficiently large.
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Both ωP and ωM share the common feature of being in product form on a large
subset of Y inv ⊂ Symm(X inv) which is disjoint from the big diagonal. Also, both
forms extend to Symm(X inv), but the extension of ωP is still exact, while that of
ωM is not (for the last-mentioned fact, see work in progress by Lekili–Perutz). On
the other hand, ωM comes from a Kähler form defined on the whole of S inv, while
ωP does not.

Lemma 30. Fix a crossingless matching ℘. There is an isotopy of embedded tori
Lr ⊂ Y inv interpolating between L0 = Linv

℘ and L1 = T℘. Moreover, each Lr is exact
Lagrangian with respect to an appropriate exact symplectic form ωr = dθr.

Proof. Suppose first that our chosen point t is of the form (87), where τ ∈ Conf0m(C)
and the zk ∈ C∗ are small, and that ℘ consists of the union of the straight paths
joining τk ±

√
zk. Recall that Linv

℘ is constructed as an iterated vanishing cycle for

Ω|S inv. In this particular case (compare [SeS1, Lem. 30] or Lemma 29 above), the
vanishing cycle construction can be carried out entirely within a neighbourhood of
a particular point in Y inv, whose image under S inv → H→ Hilbm(C2)→ Symm(C2)
is (x1, y1) = (τ1, 0), . . . , (xm, ym) = (τm, 0). Importantly, that point does not lie on
the big diagonal. It is then easy to see that if we use ΩM instead, we get an iterated
vanishing cycle which lies in Confm(X inv) ∩ Y inv, and which is the product of m
disjoint simple closed curves invariant under the hyperelliptic involution, isotopic to
the preimages of the arcs in ℘. Such a torus is then necessarily exact Lagrangian
isotopic to T℘ (see [Ma, Prop. 4.3], where a parallel argument is carried out in the
context of the whole space Y rather than the fixed point set Y inv). Interpolating lin-
early between Ω|S inv and ΩM then yields a family of vanishing cycles which provides
the rest of the desired isotopy.

In order to derive the general case from this, we’d like to use parallel transport,
which means that we again have to modify our Kähler forms. Take a function
h : R→ R such that h′′(ρ) ≥ 0 everywhere, and

h′(ρ)

⎧⎪⎨⎪⎩
= 0 , ρ ≤ R0 ,

> 0 , R0 < ρ < R1 ,

= 1 ρ ≥ R1 ,

(91)

where R0 < R1 are large positive constants. Replacing ψ by h(ψ) in (84) yields a
two-form which is nonnegative on complex tangent lines, which vanishes on a large
compact subset, and which outside an even larger compact subset agrees with Ω.
Following [Ma, Eq. (23)], we take

Ω̃M = εΩM − ddch(ψ)|S inv (92)

for some small ε > 0. To understand the properties of this form, consider first
its restriction ω̃M to Y inv. On a large compact subset ω̃M = εωM , hence the tori
T℘ are still Lagrangian (and exact Lagrangian, if one uses the obvious one-form
primitive). On the other hand, at infinity ω̃M = εωM +ω|Y inv is close to ω|Y inv. Fix
a sufficiently large level set of the original plurisubharmonic function ψ|Y inv. This
is regular, by [SeS1, Lem. 41], and of contact type with respect to ω|Y inv. Hence, it
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is also of contact type for ω̃M if we choose ε sufficiently small. One can arrange that
the same holds not just in a single fibre, but over a finite path in the base of the
fibration S inv ∩χ−1(Conf02m(C))→ Conf02m(C). This is enough to define symplectic
parallel transport along this path, at least on a large compact subset of the fibres
which contains our Lagrangian tori (compare [KS, §6a]). Moreover, the same will be
true for the family of symplectic forms which interpolates linearly between Ω|S inv

and Ω̃M .
With this in mind, the strategy for proving the general case is as follows. We find

a path in Conf02m(C) which connects our given t = t0 to some other point t1 of the
form (87), and a smooth family ℘s of crossingless matchings with endpoints ts, which
deforms ℘ = ℘0 to the collection of straight paths ℘1 joining the points of t1 in the
way described before. Each fibre Y inv

s = χ−1(ts)∩S inv can be equipped with the one-
parameter family of Kähler forms ωr,s obtained by restricting (1− r)Ω|S inv + rΩ̃M .
For s = 1 and arbitrary r, we have a family of tori in Y inv

s which are Lagrangian
with respect to ωr,s (this is the isotopy provided by the previously proved special
case). On the other hand, the Heegaard Floer construction provides another family
of tori, for arbitrary s and r = 1. We pull all these tori back to Y inv = Y inv

0 by
symplectic parallel transport. This yields an isotopy connecting T℘ with Linv

℘ (since

the latter is by definition compatible with parallel transport for Ω|S inv). �

4.3 Floer cohomology. The spaces Y are smooth affine varieties, hence satisfy
the convexity condition from section 3.1 (take a sequence of balls in S ∼= C4m−1, and
intersect them with Y to form the required exhaustion). Moreover, the symplectic
form ω is exact, and the Lagrangian submanifolds L℘ are compact and (since they
are simply-connected) necessarily exact. Clearly, the same properties carry over
to the fixed parts Linv

℘ inside Y inv. Hence, for any two crossingless matchings ℘±,
we have a well-defined Floer cohomology HF (L℘+ , L℘,−), as well as the equivariant
versionHFborel(L℘+ , L℘−), and finally Floer cohomology taken inside the fixed locus,
HF (Linv

℘+
, Linv

℘−).

Lemma 31. The pair (L℘+ , L℘−) in Y has stably trivial normal structure (in fact,
there is a preferred homotopy class of stable normal trivializations).

Proof. Since Y is the regular fibre of a map C4m−1 → C2m−1, its tangent bundle
carries a stable trivialization, which is unique up to homotopy (since it depends on
splitting a short exact sequence of complex differentiable vector bundles). The same
argument shows that parallel transport maps respect the stable trivialization, up to
canonical homotopy.

Consider a crossingless matching ℘ as in Lemma 29, and let Δ be the totally real
submanifold constructed there. We have a commutative diagram of vector bundles
over L℘,

0 �� TL℘ ⊗R C

∼=
��

�� (TΔ|L℘)⊗R C

∼=
��

�� L℘ × Cm ��

=
��

0

0 �� TY|L℘
�� T (χ−1(Dm

ε ))|L℘
�� L℘ × Cm �� 0

(93)
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Since Δ is contractible, TΔ is trivial, and this induces a stable trivialization of
TL℘. Diagram-chasing in (93) shows that the complexification of this trivialization
is canonically homotopic to the trivialization of TY|L℘ constructed before. Because
of our previous remarks about parallel transport, the same is true for any crossingless
matching.

The same argument goes through equivariantly. More explicitly, TY has an
equivariant stable trivialization, TL℘ has an equivariant stable trivialization, and
under the natural isomorphism TL℘ ⊗ C ∼= TY|L℘, there is an equivariant homo-
topy between these two trivializations, which in turn is determined uniquely up to
homotopies. Restriction to fixed point sets and to the anti-invariant directions there
now yields the desired normal trivializations. �

Our general theory from section 3.6 now provides a localization map

HFborel(L℘+ , L℘−) −→ HF (Linv
℘+

, Linv
℘−)[[q]] , (94)

which becomes an isomorphism after inverting q, and an inequality of ranks

dimHF (L℘+ , L℘−) ≥ dimHF (Linv
℘+

, Linv
℘−) . (95)

Lemma 32. HF (Linv
℘+

, Linv
℘−)

∼= HF (T℘+ , T℘−).

This follows from Lemma 30 applied to both crossingless matchings (one checks
easily that this can be done, meaning that the symplectic forms can be taken to
be the same in both isotopies), and standard invariance properties of Floer coho-
mology. Note that by construction, ωP and θP extend to Symm(X inv). Hence, we
can also form the Floer complex of the T℘± inside that larger space. We will de-
note the differential which defines this theory by d̄, and the resulting cohomology
by HF (T℘+ , T℘−).

Up to now we have worked with ungraded groups, but the next step will require
at least relative gradings. Both Y and Y inv admit algebraic volume forms (since they
are complete intersections inside affine spaces). Since the L℘ are simply-connected,
they admit gradings, so HF (L℘+ , L℘−) is Z-graded in a way which is unique up to
a constant. Through the stable normal trivialization, the fixed parts Linv

℘ inherit

gradings, so HF (Linv
℘+

, Linv
℘−) is again Z-graded up to a constant. This carries over to

HF (T℘+ , T℘−) via Lemma 32, but it is no longer true for HF (T℘+ , T℘−). Namely,
consider a Floer trajectory u which contributes to d̄, having endpoints x±, and
which intersects the divisor D with total multiplicity k. One can arrange that the
almost complex structures used are standard near D, so that necessarily k ≥ 0, with
equality iff u avoids D altogether. Because of the behaviour of the algebraic volume
form, see Remark 27, the difference between the indices of x± in the given grading
is 2k + 1. In other words, one can write d̄ = d0 + d1 + · · · , where dk has degree
2k + 1, and where the k = 0 term is the differential which yields HF (T℘+ , T℘−). A
standard filtration and spectral sequence argument then shows that

dim HF (T℘+ , T℘−) ≥ dim HF (T℘+ , T℘−). (96)

4.4 Link invariants. Fix the crossingless matching ℘ corresponding to a se-
quence of m nested horseshoes lying in the upper half-plane, with endpoints t =
(t1, . . . , t2m) on the real line. As discussed before, we can associate to this a
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Lagrangian submanifold L℘ ⊂ Y. A braid β on m strands gives rise to a loop
β× id ∈ Br2m = π1(Conf

0
2m(C)) based at t. Hence, via (rescaled) parallel transport

maps, we get another Lagrangian submanifold, denoted by (β× id)(L℘) for simplic-
ity. On the other hand, we can form the closure of β, by taking the braid described
by β× id in R2× [0, 1], and capping strands with a copy of ℘ above and its reflection
below. This yields an oriented link κ = κβ . Recall the following from [SeS1]:

Definition 33. The symplectic Khovanov cohomology Kh∗
symp(κ) is the La-

grangian Floer cohomology HF ∗+m+w(L℘, (β × id)(L℘)).

Here, we turn L℘ into a graded Lagrangian submanifold, and then use the canoni-
cal lifts of monodromy maps to graded symplectic diffeomorphisms to get an induced
grading of (β × id)(L℘). These determine an absolute grading of Floer cohomology,
which is independent of all choices. We shift this grading by the number of strands
and by the writhe w of β. The main theorem of [SeS1] is that this group is invariant
under the Markov moves, and hence indeed depends only on the oriented link itself.
The proof of this theorem goes over routinely to the equivariant case, and shows
that the equivariant symplectic Khovanov cohomology, defined as

Kh∗
symp,eq(κ)

def
= HF ∗+m+w

borel

(
L℘, (β × id)(L℘)

)
, (97)

is an oriented link invariant. Note that unlike the case of Khsymp itself, we do not at
present have a conjectural analogue for this construction in the framework of com-
binatorial Khovanov cohomology. Similarly, we can work with the fixed parts of our
Lagrangian submanifolds, and define a fixed part symplectic Khovanov cohomology

Kh∗
symp,inv(κ)

def
= HF ∗+(m+w)/2(Linv

℘ , (β × id)(Linv
℘ )
)
. (98)

Again, direct imitation of the arguments of [SeS1] implies this is an oriented link
invariant. Note that the grading is now either in Z or Z + 1

2 , depending on the
parity of m+w (which is the number of components of κ modulo 2). To explain the
occurrence of (m + w)/2, recall that the grading shift in the original construction
of Khsymp arose when discussing invariance under Markov II− moves, see [SeS1,
Lem. 57], and had to do with the Morse index of a local maximum of a Morse function
on S2. In the fixed point theory, the analogous discussion applies to a Morse function
on the circle S1. What one finds is that if braids β ∈ Brm and β̃± = σ±1

m β ∈ Brm+1
are related by adding a positive respectively negative half-twist in the additional
strand, and if ℘ respectively ℘̃ denote the standard crossingless matchings, then

HF ∗(Linv
℘ , (β × id)(Linv

℘ )
) ∼= HF ∗(Linv

℘̃ , (β̃+ × id)(Linv
℘̃ )
)
,

HF ∗(Linv
℘ , (β × id)(Linv

℘ )
) ∼= HF ∗+1(Linv

℘̃ , (β̃− × id)(Linv
℘̃ )
)
.

(99)

The discrepancy for Markov II− relative to Markov II+ is compensated for by
shifting the grading by 1/2 each way in (98). Note that in addition to the various
Floer cohomology theories, we have the localization map (94). It is easy to see that
this is invariant under Markov I moves. The expected behaviour is that it remains
unchanged under Markov II+ moves, and gets multiplied by q under Markov II−.
We have not checked the details, since there are no applications at present (however,
see section 4.5 below for some speculative ideas in that direction).
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Let Nκ be the double cover of S3 branched along κ. If we consider the tori T℘,
(β × id)(T℘) as lying inside Symm(X inv), they are the Heegaard tori for a Morse
function on Nκ#S1 × S2 with two local minima and maxima, as in [LL]. Moreover,
these tori are weakly admissible, compare [Ma, Prop. 7.4]. Hence, the Floer coho-
mology groups previously denoted by HF (T℘, (β × id)(T℘)) are just the Heegaard

Floer groups ĤF (Nκ#S1 × S2) from [OS2], with coefficients in Z2. We also have
(see for instance [LL, Th. 2.4])

ĤF (Nκ#S1 × S2) ∼= ĤF (Nκ)⊗H∗(S1;Z2) . (100)

With this in mind, the Smith inequality (95) and the filtration argument (96) yield
the following.

Corollary 34. For any oriented link κ ⊂ S3, we have the following inequality of
ranks between cohomology groups with Z2 coefficients:

dimKhsymp(κ) ≥ 2 dim ĤF (Nκ) . (101)

�

ĤF (Nκ) breaks up into summands indexed by Spinc structures. The Euler
characteristic of each summand is ±1 if H1(Nκ) is finite, or zero if it is infinite
[OS1, Prop. 5.1]. Moreover, the Spinc structures themselves form an affine space
over H1(Nκ). This and (101) immediately imply Corollary 2 from the Introduction.

4.5 Speculations. It is possible that the Floer cohomology groups inside Y inv

and Symm(X inv) always coincide, but we cannot prove that (a claimed proof of this,
which was present in an earlier preprint version of this paper, contained an error
concerning the general symplectic geometry properties of embeddings of affine vari-
eties). A particularly interesting aspect of this relationship is the grading. Suppose

that κ is a knot. Then each summand of ĤF (Nκ) corresponding to a given Spinc

structure carries a relative Z-grading [OS2]. In [OS3] those gradings were lifted to
an absolute Q-grading. On the other hand, our groups Kh∗

symp,inv(κ) come with an
absolute Z+ 1/2-grading. Both gradings are of Maslov type, meaning that the dif-
ference between two generators joined by a Floer-type disc equals the Maslov index
of that disc. Hence, if one decomposes Kh∗

symp,inv(κ) into direct summands indexed

by connected components of the relevant path space in Y inv, the difference between
the two absolute gradings is constant on each component (we ignore the components
which contribute trivially to Floer cohomology). The set of rational numbers en-
countered as differences could potentially be a knot invariant (and if one restricts
to the components corresponding to Spin rather than Spinc structures, even a knot
concordance invariant, following a similar philosophy to that of [MaO]).

Example 35. Let κ be the left-handed trefoil. A variant of the argument at the
end of [SeS1] shows that

Kh∗
symp,inv(κ)

∼= H∗− 1
2 (S1)⊕H∗− 1

2 (S1)⊕H∗− 1
2 (S1) . (102)

The Ozsváth–Szabó Q-degrees of the corresponding generators of ĤF
∗
(Nκ) are

−1/2, 1/6, 1/6, and the connect sum with S1× S2 produces associated pairs of gen-
erators whose degrees are further shifted by ±1/2. Hence, the grading differences
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are 3/2, 5/6, 5/6. The first number is the one corresponding to the unique Spin
structure.

Another possible object of study would be refined invariants obtained from the
localization map (94), in particular the cokernel polynomials (48).

Conjecture 36. Suppose that κ = κβ is the link closure of a braid β ∈ Brm with
writhe w. The polynomial (−1)m+wt(m+w)/2Pcoker(t) is an oriented link invariant.
For quasi-alternating links, this coincides with the normalized Jones polynomial,

Vκ(s) =
(−1)m+wt(m+w)/2Pcoker(t)

t1/2 + t−1/2

∣∣∣∣
s=t−1

(103)

Recall that Pcoker(t) measures the complexity of the torsion Z2[[q]]-module which
is the cokernel of the renormalized localization map. The additional expression
involving m + w compensates for the change in this map under Markov II−. As
mentioned in the Introduction, with Z2 coefficients there is a (currently unpublished,
but related to work of Rezazadegan [R]) spectral sequence going from combinatorial
Khovanov cohomology to its symplectic counterpart. On the other hand, the total
rank of combinatorial Khovanov cohomology agrees with that of ĤF (Nκ#S1 × S2)
in the quasi-alternating case. In view of our results, this implies that, over Z2,
Khsymp(κ) and Khsymp,inv(κ) both have rank which equals that of combinatorial
Khovanov cohomology. In fact, both theories are then supposed to be versions of
combinatorial Khovanov cohomology, but with the bigrading collapsed in different
ways, analogously to [KS, Cor. 1.5]. Conjecture 36 is an attempt to recover aspects
of that bigrading by a comparison argument. Unfortunately, it is very unlikely that
such an attempt would work for general knots and links.

5 Symmetric Links

Take Sym2m(C) and equip it with the involution which takes t = (t1, . . . , t2m) to
−t = (−t1, . . . ,−t2m). The fixed point set is the subset Sym2m(C)inv of those t which
can be written in such a way that t2i−1 = −t2i. There is a natural isomorphism

Sym2m(C)inv ∼= Symm(C) (104)

which takes a point t in the form written above to t̄ = (t22, t
2
4, . . . , t

2
2m). Similarly, one

defines the subspace Conf2m(C)inv of symmetric configurations, which is identified
with Confm(C∗) by restricting (104).

Without changing notation, we will consider the slice S consisting of matrices of
the form (75) but inside gl2m(C), which means that trace(A1) no longer needs to be
zero. So S ∼= C4m, and the adjoint quotient map χ goes to Sym2m(C) ∼= C2m.
Otherwise, its properties are essentially unchanged. In particular, if one takes
t ∈ Conf02m(C), then the fibre Y = χ−1(t) is the same as before, and the other
smooth fibres are diffeomorphic to it through parallel transport. Assume that m is
even, and consider the following involution on S:

ι(A1, . . . , Am) = (−A1, A2,−A3, A4, . . . ,−Am−1, Am) . (105)
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This covers the involution t �→ −t of Sym2m(C). Moreover, if t ∈ Conf2m(C)inv,
then the fixed part Y inv of the fibre Y = χ−1(t) can be identified with Ȳ = χ̄−1(t̄),
where t̄ corresponds to t under (104), and χ̄ : S̄ → Symm(C) is the slice and adjoint
quotient map for glm(C). We write this fact concisely as

Y inv = Ȳ . (106)

One can arrange for the symplectic form Ω on S to be invariant under (105).
Its restriction to the fixed point set yields a form Ω̄ on S̄ in the same general class.
Hence, the rescaled parallel transport map associated to paths in Conf2m(C)inv

will be equivariant, and their restrictions to fixed point sets reduce to the corre-
sponding maps for the associated paths in Confm(C∗) ⊂ Confm(C). Next, fix some
t ∈ Conf2m(C)inv, and a crossingless matching ℘ which is symmetric in the same
sense. Its image under x �→ x2 is a crossingless matching ℘̄ with endpoints in t̄,
which additionally avoids the origin. The associated Lagrangian submanifolds are
related as follows:

Lemma 37. Under the identification (106), the fixed part Linv
℘ is Lagrangian isotopic

to L℘̄.

This follows from the construction as vanishing cycles, approached directly as
in [SeS1, Lem. 30] (the inductive construction from Lemma 28 would not work here
because of the symmetry constraints: if we move the points of t̄ so that two of them
come together, four of the points of the corresponding t will come together in pairs,
and the points where they come together cannot lie at the origin).

Lemma 38. For any two symmetric crossingless matchings ℘±, the pair (L℘+ , L℘−)
in Y has stably trivial normal structure.

The proof is by the same argument as in Lemma 31. As a consequence, we now
have an inequality

dimHF (L℘+ , L℘−) ≥ dimHF (L℘̄+ , L℘̄−) . (107)

To apply this to knot theory, we set t to be the collection of 2m-th roots
of unity, and ℘ the crossingless matching comprising the arcs of the unit circle
{exp(iπ[k/m, (k+1)/m]) | k = 0, 2, 4, . . . , 2m−2}. For any braid β ∈ π1(Conf2m(C))
with base point t, we again have two Lagrangian submanifolds L℘ and β(L℘).

Lemma 39. As an ungraded group, HF (L℘, β(L℘)) is the symplectic Khovanov
cohomology of the link formed by taking the circular plat closure of β. �

Here, the circular plat closure is the link obtained from the graph of β in R2×[0, 1]
by attaching a copy of ℘ to the top and bottom. Lemma 39 is a special case of a
more general result of Waldron [W, §4.2], who gives a general way of computing
symplectic Khovanov cohomology for links in admissible position in R3 (ones for
which the height function given by the z coordinate is a Morse function with all local
maxima in the half-space {z > 0} and all local minima in the half-space {z < 0}).

From now on, suppose that β is symmetric, which means that is is given by a
path in Conf2m(C)inv. Then, the circular plat closure is a link κ ⊂ R3 disjoint from
the z-axis. Taking the quotient under (x, y, z) �→ (−x,−y, z) then yields another
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link κ̄, which is the circular plat closure of the m-stranded braid β̄ corresponding
to β. Lemma 39 also applies to β̄, and implies that HF (L℘̄, β̄(L℘̄)) ∼= Khsymp(κ̄).
The inequality (107) therefore yields Corollary 3.

Example 40. Take a knot whose prime decomposition is of the form κ = #s
i=1miκi,

where each multiplicity mi is even. One can then arrange that κ is symmetric in
the sense considered above (and the quotient is κ̄ = #s

i=1(mi/2)κi). More interest-
ingly, there are prime knots preserved by (many inequivalent) involutions, see for
instance [S].
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