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Abstract. We study the optimal transport problem in sub-Riemannian mani-
folds where the cost function is given by the square of the sub-Riemannian distance.
Under appropriate assumptions, we generalize Brenier–McCann’s theorem proving
existence and uniqueness of the optimal transport map. We show the absolute con-
tinuity property of Wassertein geodesics, and we address the regularity issue of the
optimal map. In particular, we are able to show its approximate differentiability a.e.
in the Heisenberg group (and under some weak assumptions on the measures the
differentiability a.e.), which allows us to write a weak form of the Monge–Ampère
equation.

1 Introduction

The optimal transport problem can be stated as follows: given two probability mea-
sures μ and ν, defined on measurable spaces X and Y respectively, find a measurable
map T : X → Y with

T�μ = ν (i.e. ν(A) = μ(T−1(A)) for all A ⊂ Y measurable) ,

and in such a way that T minimizes the transportation cost. This last condition
means ∫

X
c
(
x, T (x)

)
dμ(x) = min

S�μ=ν

{∫
X

c
(
x, S(x)

)
dμ(x)

}
,

where c : X ×Y → R is some given cost function, and the minimum is taken over all
measurable maps S : X → Y with S�μ = ν. When the transport condition T�μ = ν
is satisfied, we say that T is a transport map, and if T also minimizes the cost we
call it an optimal transport map. Up to now the optimal transport problem has
been intensively studied in a Euclidean or a Riemannian setting by many authors,
and it turns out that the particular choice c(x, y) = d2(x, y) (here d denotes a
Riemannian distance) is suitable for studying some partial differential equations
(like the semi-geostrophic or porous medium equations), for studying functional
inequalities (like Sobolev and Poincaré-type inequalities) and for applications in
geometry (for example, in the study of the lower bound on the Ricci curvature of
manifolds). We refer to the books [AmGS], [V1,2] for an excellent presentation.
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After the existence and uniqueness results of Brenier for the Euclidean case
[Br] and McCann for the Riemannian case [M], people tried to extend the theory
in a sub-Riemannian setting. In [AmR] Ambrosio and Rigot studied the optimal
transport problem in the Heisenberg group, and recently Agrachev and Lee were able
to extend their result to more general situations such as sub-Riemannian structures
corresponding to 2-generating distributions [AL].

Two key properties of the optimal transport map turn out to be useful for many
applications: the first one is the fact that the transport map is differentiable a.e.
(this for example allows us to write the Jacobian of the transport map a.e.), and
the second one is that, if μ and ν are absolutely continuous with respect to the
volume measure, so are all the measures belonging to the (unique) Wasserstein
geodesic between them. Both these properties are true in the Euclidean case (see
for example [AmGS]) or on compact Riemannian manifolds (see [CoMS], [BeB]). If
the manifold is noncompact, the second property still remains true (see [FF, §5]),
while the first one holds in a weaker form. Indeed, although one cannot hope for
its differentiability in the non-compact case, as proved in [Fi, §3] (see also [AmGS])
the transport map is approximately differentiable a.e., and this turns out to be
enough for extending many results from the compact to the non-compact case. Up
to now, the only available results in these directions in a sub-Riemannian setting
were proved in [FiJ], where the authors show that the absolute continuity property
along Wassertein geodesics holds in the Heisenberg group.

The aim of this paper is twofold: on the one hand, we prove new existence and
uniqueness results for the optimal transport map on sub-Riemannian manifolds. In
particular, we show that the structure of the optimal transport map is more or less
the same as in the Riemannian case (see [M]). On the other hand, in a still large class
of cases, we prove that the transport map is (approximately) differentiable almost
everywhere, and that the absolute continuity property along Wasserstein geodesics
holds. This settles several open problems raised in [AmR, §7]: first of all, regarding
problem [AmR, §7(a)], we are able to extend the results of Ambrosio and Rigot
[AmR] and of Agrachev and Lee [AL] to a large class of sub-Riemannian manifolds,
not necessarily two-generating. Concerning question [AmR, §7(b)], we can prove
a regularity result on optimal transport maps, showing that under appropriate as-
sumptions (including the Heisenberg group) they are approximately differentiable
a.e. Moreover, under some weak assumptions on the measures, the transport map is
shown to be truly differentiable a.e. (see Theorem 3.7 and Remark 3.8). This allows
us, for the first time in this setting, to apply the area formula, and to write a weak
formulation of the Monge–Ampère equation (see Remark 3.9). Finally, Theorem 3.5
answers problem [AmR, §7(c)] not only in the Heisenberg group (which was already
solved in [FiJ]) but also in more general cases.

The structure of the paper is the following:
In section 2, we introduce some concepts of sub-Riemannian geometry and opti-

mal transport appearing in the statements of the results.
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In section 3, we present our results on the mass transportation problem in
sub-Riemannian geometry: existence and uniqueness theorems on optimal trans-
port maps (Theorems 3.2 and 3.3), absolute continuity property along Wasserstein
geodesics (Theorem 3.5), and finally regularity of the optimal transport map and
its consequences (Theorem 3.7 and Remarks 3.8, 3.9). For sake of simplicity, all the
measures appearing in these results are assumed to have compact supports. In the
last paragraph of section 3 we discuss the possible extensions of our results to the
non-compact case.

In section 4, we give a list of sub-Riemannian structures for which our differ-
ent results may be applied. These cases include fat distributions, two-generating
distributions, generic distribution of rank ≥ 3, nonholonomic distributions on three-
dimensional manifolds, medium-fat distributions, codimension-one nonholonomic
distributions, and rank-two distributions in four-dimensional manifolds.

Since the proofs of the theorems require lots of tools and results from sub-
Riemannian geometry, in section 5, we recall basic facts in sub-Riemannian ge-
ometry, such as the characterization of singular horizontal paths, the description
of sub-Riemannian minimizing geodesics, or the properties of the sub-Riemannian
exponential mapping. Then, we present some results concerning the regularity of
the sub-Riemannian distance function and its cut locus. These latter results are the
key tools in the proofs of the our transport theorems.

In section 6, taking advantage of the regularity properties obtained in the previ-
ous section, we provide all the proofs of the results stated in section 3.

Finally, in Appendix A, we recall some classical facts on semiconcave functions,
while in Appendix B we prove auxiliary results needed in section 4.

2 Preliminaries

2.1 Sub-Riemannian manifolds. A sub-Riemannian manifold is given by a
triple (M,Δ, g) where M denotes a smooth connected manifold of dimension n, Δ is
a smooth nonholonomic distribution of rank m < n on M , and g is a Riemannian
metric on M . (Note that in general the definition of a sub-Riemannian structure
only involves a Riemannian metric on the distribution. However, since in the sequel
we need a global Riemannian distance on the ambient manifold and we need to use
Hessians, we prefer to work with a metric defined globally on TM .) We recall that
a smooth distribution of rank m on M is a rank m subbundle of TM . This means
that, for every x ∈ M , there exist a neighborhood Vx of x in M , and a m-tuple
(fx

1 , . . . , fx
m) of smooth vector fields on Vx, linearly independent on Vx, such that

Δ(z) = Span
{
fx
1 (z), . . . , fx

m(z)
} ∀z ∈ Vx .

One says that the m-tuple of vector fields (fx
1 , . . . , fx

m) represents locally the dis-
tribution Δ. The distribution Δ is said to be nonholonomic (also called totally
nonholonomic, e.g. in [AS]) if, for every x ∈ M , there is a m-tuple (fx

1 , . . . , fx
m) of

smooth vector fields on Vx which represents locally the distribution and such that

Lie{fx
1 , . . . , fx

m}(z) = TzM ∀z ∈ Vx ,
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that is such that the Lie algebra spanned by fx
1 , . . . , fx

m, is equal to the whole tangent
space TzM at every point z ∈ Vx. (We recall that, for any family F of smooth vector
fields on M , the Lie algebra of vector fields generated by F , denoted by Lie(F), is
the smallest vector space S satisfying

[X,Y ] ⊂ S , ∀X ∈ F , ∀Y ∈ S ,

where [X,Y ] is the Lie bracket of X and Y .) This Lie algebra property is often
called Hörmander’s condition.

A curve γ : [0, 1] → M is called a horizontal path with respect to Δ if it belongs
to W 1,2([0, 1],M) and satisfies

γ̇(t) ∈ Δ(γ(t)) for a.e. t ∈ [0, 1] .

According to the classical Chow–Rashevsky theorem (see [B], [Cho], [Mo2], [R],
[Ri]), since the distribution is nonholonomic on M , any two points of M can be
joined by a horizontal path. That is for every x, y ∈ M there exists a horizontal
path γ : [0, 1] → M such that γ(0) = x and γ(1) = y. For x ∈ M , let ΩΔ(x) denote
the set of horizontal paths γ : [0, 1] → M such that γ(0) = x. The set ΩΔ(x),
endowed with the W 1,2-topology, inherits a Hilbert manifold structure (see [Mo2]).
The end-point mapping from x is defined by

Ex : ΩΔ(x) −→ M ,
γ �−→ γ(1) .

It is a smooth mapping. A path γ is said to be singular if it is horizontal and if
it is a critical point for the end-point mapping Ex, that is if the differential of Ex

at γ is singular (i.e. not onto). A horizontal path which is not singular is called
nonsingular or regular. Note that the regularity or singularity property of a given
horizontal path depends only on the distribution, not on the metric g.

The length of a path γ ∈ ΩΔ(x) is defined by

lengthg(γ) :=
∫ 1

0

√
gγ(t)

(
γ̇(t), γ̇(t)

)
dt . (2.1)

The sub-Riemannian distance dSR(x, y) (also called Carnot–Carathéodory distance)
between two points x, y of M is the infimum over the lengths of the horizontal paths
joining x and y. Since the distribution is nonholonomic on M , according to the
Chow–Rashevsky theorem (see [B], [Cho], [Mo2], [R], [Ri]) the sub-Riemannian dis-
tance is finite and continuous on M ×M . (In fact, thanks to the so-called Mitchell’s
ball-box theorem (see [Mo2]), the sub-Riemannian distance can be shown to be lo-
cally Hölder continuous on M × M .) Moreover, if the manifold M is a complete
metric space for the sub-Riemannian distance dSR, then, since M is connected, for
every pair x, y of points of M there exists a horizontal path γ joining x to y such
that

dSR(x, y) = lengthg(γ).

Such a horizontal path is called a sub-Riemannian minimizing geodesic between x
and y. (Note that, since the distribution Δ is nonholonomic on M , the topology de-
fined by the sub-Riemannian distance dSR coincides with the original topology of M
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(see [B], [Mo2]). Moreover, it can be shown that, if the Riemannian manifold (M,g)
is complete, then for any nonholonomic distribution Δ on M , the sub-Riemannian
manifold (M,Δ, g) equipped with its sub-Riemannian distance is complete.)

Assuming that (M,dSR) is complete, denote by T ∗M the cotangent bundle of M ,
by ω the canonical symplectic form on T ∗M , and by π : T ∗M → M the canonical
projection. The sub-Riemannian Hamiltonian H : T ∗M → R which is canonically
associated with the sub-Riemannian structure is defined as follows: for every x ∈ M ,
the restriction of H to the fiber T ∗xM is given by the nonnegative quadratic form

p �−→ 1
2

max
{

p(v)2

gx(v, v)

∣∣∣ v ∈ Δ(x) \ {0}
}

. (2.2)

Let
−→
H denote the Hamiltonian vector field on T ∗M associated to H, that is ι−→

H
ω =

−dH. A normal extremal is an integral curve of
−→
H defined on [0, 1], i.e. a curve

ψ( · ) : [0, 1] → T ∗M satisfying

ψ̇(t) =
−→
H (ψ(t)) , ∀t ∈ [0, 1] .

Note that the projection of a normal extremal is a horizontal path with respect to Δ.
For every x ∈ M , the exponential mapping with respect to x is defined by

expx : T ∗xM −→ M ,
p �−→ π(ψ(1)) ,

where ψ is the normal extremal such that ψ(0) = (x, p) in local coordinates. We
stress that, unlike the Riemannian setting, the sub-Riemannian exponential mapping
with respect to x is defined on the cotangent space at x.
Remark. From now on, all sub-Riemannian manifolds appearing in the paper are
assumed to be complete with respect to the sub-Riemannian distance.

2.2 Preliminaries in optimal transport theory. As we already said in the
introduction, we recall that, given a cost function c : X ×Y → R, we are looking for
a transport map T : X → Y which minimizes the transportation cost

∫
c(x, T (x))dμ.

The constraint T#μ = ν being highly nonlinear, the optimal transport problem is
quite difficult from the viewpoint of calculus of variation. The major advance on this
problem was due to Kantorovich, who proposed in [K1,2] a notion of weak solution of
the optimal transport problem. He suggested to look for plans instead of transport
maps, that is probability measures γ in X × Y whose marginals are μ and ν, i.e.

(πX)�γ = μ and (πY )�γ = ν ,

where πX : X×Y → X and πY : X×Y → Y are the canonical projections. Denoting
by Π(μ, ν) the set of plans, the new minimization problem becomes the following:

C(μ, ν) = min
γ∈Π(μ,ν)

{∫
M×M

c(x, y)dγ(x, y)
}

. (2.3)

If γ is a minimizer for the Kantorovich formulation, we say that it is an optimal
plan. Due to the linearity of the constraint γ ∈ Π(μ, ν), it is simple using weak
topologies to prove existence of solutions to (2.3): this happens for instance whenever
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X and Y are Polish spaces, and c is lower semicontinuous and bounded from below
(see for instance [V1,2]). The connection between the formulation of Kantorovich
and that of Monge can be seen by noticing that any transport map T induces the
plan defined by (Id × T )�μ, which is concentrated on the graph of T . Hence the
problem of showing existence of optimal transport maps can be reduced to prove
that an optimal transport plan is concentrated on a graph. Moreover, if one can
show that any optimal plan in concentrated on a graph, since γ1+γ2

2 is optimal if so
are γ1 and γ2, uniqueness of the transport map easily follows.
Definition 2.1. A function φ : X → R is said c-concave if there exists a function
φc : Y → R ∪ {−∞}, with φc 
≡ −∞, such that

φ(x) = inf
y∈Y

{
c(x, y) − φc(y)

}
.

If φ is c-concave, we define the c-superdifferential of φ at x as

∂cφ(x) :=
{
y ∈ Y | φ(x) + φc(y) = c(x, y)

}
.

Moreover, we define the c-superdifferential of φ as

∂cφ :=
{
(x, y) ∈ X × Y | y ∈ ∂cφ(x)

}
.

As we already said in the introduction, we are interested in studying the optimal
transport problem on M ×M (M being a complete sub-Riemannian manifold) with
the cost function given by c(x, y) = d2

SR(x, y).
Definition 2.2. Denote by Pc(M) the set of compactly supported probability
measures in M and by P2(M) the set of Borel probability measures on M with
finite 2-order moment, that is the set of μ satisfying∫

M
d2

SR(x, x0)dμ(x) < +∞ for some x0 ∈ M .

Furthermore, we denote by P ac
c (M) (resp. P ac

2 (M)) the subset of Pc(M) (resp.
P2(M)) that consists of the probability measures on M which are absolutely con-
tinuous with respect to the volume measure.

Obviously Pc(M) ⊂ P2(M). Moreover, we remark that, by the triangle inequality
for dSR, the definition of P2(M) does not depend on x0. The space P2(M) can be
endowed with the so-called Wasserstein distance W2:

W 2
2 (μ, ν) := min

γ∈Π(μ,ν)

{∫
M×M

d2(x, y)dγ(x, y)
}

(note that W 2
2 is nothing else than the infimum in the Kantorovich problem). As

W2 defines a finite metric on P2(M), one can speak about geodesic in the metric
space (P2,W2). This space turns out, indeed, to be a length space (see for example
[AmGS], [V1,2]).

From now on, supp(μ) and supp(ν) will denote the supports of μ and ν respec-
tively, i.e. the smallest closed sets on which μ and ν are respectively concentrated.

The following result is well-known (see for instance [V2, Ch. 5]).
Theorem 2.3. Let us assume that μ, ν ∈ P2(M). Then there exists a c-concave
function φ such that the following holds: a transport plan γ ∈ Π(μ, ν) is optimal
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if and only if γ(∂cφ) = 1 (that is γ is concentrated on the c-superdifferential of φ).
Moreover, one can assume that the following hold:

φ(x) = inf
y∈supp(ν)

{
d2

SR(x, y) − φc(y)
} ∀x ∈ M ,

φc(y) = inf
x∈supp(μ)

{
d2

SR(x, y) − φ(x)
} ∀y ∈ M .

In addition, if μ, ν ∈ Pc(M), then both infima are indeed minima (so that
∂cφ(x) ∩ supp(ν) 
= ∅ for μ-a.e. x), and the functions φ and φc are continuous.

By the above theorem we see that, in order to prove existence and unique-
ness of optimal transport maps, it suffices to prove that there exist two Borel sets
Z1, Z2 ⊂ M , with μ(Z1) = ν(Z2) = 1, such that ∂cφ is a graph inside Z1 × Z2 (or
equivalently that ∂cφ(x) ∩ Z2 is a singleton for all x ∈ Z1).

3 Statement of the Results

3.1 Sub-Riemannian versions of Brenier–McCann’s theorems. The main
difficulty appearing in the sub-Riemannian setting (unlike the Riemannian situation)
is that, in general, the squared distance function is not locally Lipschitz on the
diagonal. This gives rise to difficulties which make the proofs more technical than
in the Riemannian case (and some new ideas are also needed). In order to avoid
technicalities which would obscure the main ideas of the proof, we will state our
results under some simplifying assumptions on the measures, and in section 3.4 we
will explain how to remove them.

Before stating our first existence and uniqueness result, we introduce the follow-
ing definition.
Definition 3.1. Given a c-concave function φ : M → R, we define the “moving”
set Mφ and the “static” set Sφ as

Mφ :=
{
x ∈ M | x 
∈ ∂cφ(x)

}
,

Sφ := M \Mφ =
{
x ∈ M | x ∈ ∂cφ(x)

}
.

We will also denote by π1 : M × M → M and π2 : M × M → M the canonical
projection on the first and on the second factor, respectively. In the sequel, D
denotes the diagonal in M × M , that is

D :=
{
(x, y) ∈ M × M | x = y

}
.

Furthermore, we refer the reader to Appendix A for the definition of a locally semi-
concave function.
Theorem 3.2 (Optimal transport map for absolutely continuous measures). Let
μ ∈ P ac

c (M), ν ∈ Pc(M). Assume that there exists an open set Ω ⊂ M × M such
that supp(μ × ν) ⊂ Ω, and d2

SR is locally semiconcave (resp. locally Lipschitz) on
Ω \ D. Let φ be the c-concave function provided by Theorem 2.3. Then,

(i) Mφ is open, and φ is locally semiconcave (resp. locally Lipschitz) in a neigh-
borhood of Mφ ∩ supp(μ). In particular φ is differentiable μ-a.e. in Mφ.
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(ii) For μ-a.e. x ∈ Sφ, ∂cφ(x) = {x}.
In particular, there exists a unique optimal transport map defined μ-a.e. by

T (x) :=
{

expx

(− 1
2 dφ(x)

)
if x ∈ Mφ ∩ supp(μ) ,

x if x ∈ Sφ ∩ supp(μ) ,

and for μ-a.e. x there exists a unique minimizing geodesic between x and T (x). (The
factor 1/2 appearing in front of dφ(x) is due to the fact that we are considering the
cost function d2

SR(x, y) instead of the (equivalent) cost 1
2d2

SR(x, y)).
The two main issues in the proof of the above theorem are the regularity of the

c-concave function φ provided by Theorem 2.3 and the existence and uniqueness of
minimizing projections of normal extremals between almost all pairs of points in ∂cφ.
Roughly speaking, the regularity properties of φ are consequences of regularity as-
sumptions made on the cost function while the second issue is tackled (as already
done by Agrachev and Lee in [AL]) by transforming a problem with end-point con-
straint into a problem with free end-point (see Proposition 5.5). Furthermore, as
can be seen from the proof (given in section 6), assertion (ii) in Theorem 3.2 always
holds without any assumption on the sub-Riemannian distance. That is, for any
optimal transport problem on a complete sub-Riemannian manifold between two
measures μ ∈ P ac

c (M) and ν ∈ Pc(M), we always have

∂cφ(x) = {x} for μ-a.e. x ∈ Sφ,

where φ is the c-concave function provided by Theorem 2.3. Such a result is a
consequence of a Pansu–Rademacher theorem which was already used by Ambrosio
and Rigot in [AmR].

Theorem 3.2 above can be refined if the sub-Riemannian distance is assumed to
be locally Lipschitz on the diagonal. In that way, we obtain the sub-Riemannian
version of McCann’s theorem on Riemannian manifolds (see [M]), improving the
result of Agrachev and Lee (see [AL]).
Theorem 3.3 (Optimal transport map for more general measures). Let
μ, ν ∈ Pc(M), and suppose that μ gives no measure to countably (n − 1)-rectifiable
sets. Assume that there exists an open set Ω ⊂ M ×M such that supp(μ× ν) ⊂ Ω,
and d2

SR is locally semiconcave on Ω\D. Suppose further that d2
SR is locally Lipschitz

on Ω, and let φ be the c-concave function provided by Theorem 2.3. Then,

(i) Mφ is open, and φ is locally semiconcave in a neighborhood of Mφ ∩ supp(μ).
In particular φ is differentiable μ-a.e. in Mφ.

(ii) For μ-a.e. x ∈ Sφ, ∂cφ(x) = {x}.
In particular, there exists a unique optimal transport map defined μ-a.e. by

T (x) :=
{

expx

(− 1
2 dφ(x)

)
if x ∈ Mφ ∩ supp(μ) ,

x if x ∈ Sφ ∩ supp(μ) ,

and for μ-a.e. x there exists a unique minimizing geodesic between x and T (x).
The regularity properties of the sub-Riemannian distance functions required in

the two results above are satisfied by many sub-Riemannian manifolds. In partic-
ular Theorem 3.2 holds as soon as there is no singular sub-Riemannian minimizing
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geodesic between two distinct points in Ω. In section 4, we provide a list of sub-
Riemannian manifolds which satisfy the assumptions of our different results.

3.2 Wasserstein geodesics. Thanks to Theorem 3.2, it is not difficult to deduce
the uniqueness of the Wasserstein geodesic between μ and ν. Moreover, the structure
of the transport map allows us to prove, as in the Riemannian case, that all the
measures inside the geodesic are absolutely continuous if μ is. This last property
requires however that, if (x, y) ∈ Ω, then all geodesics from x to y do not “exit
from Ω”.
Definition 3.4. Let Ω ⊂ M × M be an open set. We say that Ω is totally
geodesically convex if, for every (x, y) ∈ Ω and every geodesic γ : [0, 1] → M from x
to y, one has (

x, γ(t)
)
,
(
γ(t), y

) ∈ Ω ∀t ∈ [0, 1] .

Observe that, if Ω = U × U with U ⊂ M , then the above definition reduces to
say that U is totally geodesically convex in the classical sense.
Theorem 3.5 (Absolute continuity of Wasserstein geodesics). Let μ ∈ P ac

c (M),
ν ∈ Pc(M). Assume that there exists an open set Ω ⊂ M × M such that
supp(μ × ν) ⊂ Ω, and d2

SR is locally semiconcave on Ω \ D. Let φ be the c-concave
function provided by Theorem 2.3. Then there exists a unique Wasserstein geodesic
(μt)t∈[0,1] joining μ = μ0 to ν = μ1, which is given by μt := (Tt)#μ for t ∈ [0, 1],
with

Tt(x) :=
{

expx

(− t
2 dφ(x)

)
if x ∈ Mφ ∩ supp(μ) ,

x if x ∈ Sφ ∩ supp(μ) .

Moreover, if Ω is totally geodesically convex, then μt ∈ P ac
c (M) for all t ∈ [0, 1).

3.3 Regularity of the transport map and the Monge–Ampère equation.
The structure of the transport map provided by Theorem 3.2 also allows us to prove
in certain cases the approximate differentiability of the optimal transport map, and
a useful Jacobian identity. Let us first recall the notion of approximate differential.
Definition 3.6 (Approximate differential). We say that f : M → R has an approx-
imate differential at x ∈ M if there exists a function h : M → R differentiable at x
such that the set {f = h} has density 1 at x with respect to the volume measure.
In this case, the approximate value of f at x is defined as f̃(x) = h(x), and the
approximate differential of f at x is defined as d̃f(x) = dh(x).

It is not difficult to show that the above definitions make sense. In fact, h(x)
and dh(x) do not depend on the choice of h, provided x is a density point of the set
{f = h}.

To write the formula of the Jacobian of T , we will need to use the notion of
Hessian. We recall that the Hessian of a function f : M → R is defined as the
covariant derivative of df : Hess f(x) = ∇df(x) : TxM×TxM → M . Observe that the
notion of the Hessian depends on the Riemannian metric on TM . However, since the
transport map depends only on dSR, which in turn depends only on the restriction
of metric to the distribution, a priori it may seem strange that the Jacobian of T
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is expressed in terms of Hessians. However, as we will see below, the Jacobian of T
depends on the Hessian of the function z �→ φ(z)−d2

SR(z, T (x)) computed at z = x.
But since φ(z) − d2

SR(z, T (x)) attains a maximum at x, x is a critical point for the
above function, and so its Hessian at x is indeed independent on the choice of the
metric.

The following result is the sub-Riemannian version of the properties of the trans-
port map in the Riemannian case. It was proved on compact manifolds in [CoMS],
and extended to the noncompact case in [Fi]. The main difficulty in our case comes
from the fact that the structure of the sub-Riemannian cut-locus is different with
respect to the Riemannian case, and so many complications arise when one tries to
generalize the Riemannian argument to our setting. Trying to extend the differen-
tiability of the transport map in great generality would need some new results on the
sub-Riemannian cut-locus which go beyond the scope of this paper (see the Open
Problem in section 5.8). For this reason, we prefer to state the result under some
simplifying assumptions, which however hold in the important case of the Heisen-
berg group (see [Mo2]), or for example for the standard sub-Riemannian structure
on the three-sphere (see [BoR]).

We refer the reader to section 5.8 for the definitions of the global cut-locus
CutSR(M).
Theorem 3.7 (Approximate differentiability and Jacobian identity). Let μ∈P ac

c (M),
ν ∈ Pc(M). Assume that there exists a totally geodesically convex open set
Ω ⊂ M × M such that supp(μ × ν) ⊂ Ω, d2

SR is locally semiconcave on Ω \ D,
and for every (x, y) ∈ CutSR(M) ∩ (Ω \ D) there are at least two distinct sub-
Riemannian minimizing geodesics joining x to y. Let φ be the c-concave function
provided by Theorem 2.3. Then the optimal transport map is differentiable for μ-a.e.
x ∈ Mφ ∩ supp(μ), and it is approximately differentiable μ-a.e. Moreover,

Y (x) := d(expx)−1
2dφ(x) and H(x) := 1

2Hess d2
SR( · , T (x))|z=x

exist for μ-a.e. x ∈ Mφ ∩ supp(μ), and the approximate differential of T is given by
the formula

d̃T (x) =
{

Y (x)
(
H(x) − 1

2Hess φ(x)
)

if x ∈ Mφ ∩ supp(μ) ,
Id if x ∈ Sφ ∩ supp(μ) ,

where Id : TxM → TxM denotes the identity map.
Finally, assuming both μ and ν absolutely continuous with respect to the volume

measure, and denoting by f and g their respective density, the following Jacobian
identity holds:

det
(
d̃T (x)

)
=

f(x)
g(T (x))


= 0 μ-a.e. (3.1)

In particular, f(x) = g(x) for μ-a.e. x ∈ Sφ ∩ supp(μ).

Remark 3.8 (Differentiability a.e. of the transport map). If we assume that f 
= g
μ-a.e., then by the above theorem we deduce that T (x) 
= x μ-a.e. (or equivalently
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x 
∈ ∂cφ(x) μ-a.e.). Therefore the optimal transport is given by

T (x) = expx

(− 1
2dφ(x)

)
μ-a.e. ,

and in particular T is differentiable (and not only approximate differentiable) μ-a.e.

Remark 3.9 (The Monge–Ampère equation). Since the function z �→
φ(z) − d2

SR(z, T (x)) attains a maximum at T (x) for μ-a.e. x, it is not difficult to
see that the matrix H(x)− 1

2Hess φ(x) (defined in Theorem 3.7) is nonnegative def-
inite μ-a.e. This fact, together with (3.1), implies that the function φ satisfies the
Monge–Ampère type equation

det
(

H(x) − 1
2
Hess φ(x)

)
=

f(x)
|det(Y (x))| g(T (x))

for μ-a.e. x ∈ Mφ .

In particular, thanks to Remark 3.8,

det
(

H(x) − 1
2
Hess φ(x)

)
=

f(x)
|det(Y (x))| g(T (x))

μ-a.e.

provided that f 
= g μ-a.e.

3.4 The non-compact case. Let us briefly show how to remove the compact-
ness assumption on μ and ν, and how to relax the hypothesis supp(μ× ν) ⊂ Ω. We
assume μ, ν ∈ P2(M) (so that Theorem 2.3 applies), and that μ × ν(Ω) = 1. Take
an increasing sequence of compact sets K� ⊂ Ω such that ∪�∈NK� = Ω. We consider

ψ�(x) := inf
{
d2

SR(x, y) − φc(y) | y s.t. (x, y) ∈ K�

}
.

Since now φc is not a priori continuous (and so ∂cψ� is not necessarily closed), we
first define

φc
�(y) := inf

{
d2

SR(x, y) − ψ�(x) | x s.t. (x, y) ∈ K�

}
,

and then consider

φ�(x) := inf
{
d2

SR(x, y) − φc
�(y) | y s.t. (x, y) ∈ K�

}
.

In this way the following properties hold (see for example the argument in the proof
of [V2, Prop. 5.8]):

– φ� and φc
� are both continuous;

– ψ�(x) ≥ φ(x) for all x ∈ M ;
– φc(y) ≤ φc

�(y) for all y ∈ π2(K�);
– φ�(x) = ψ�(x) for all x ∈ π1(K�).

This implies that ∂cφ ∩ K� ⊂ ∂cφ�, and so

∂cφ ∩ Ω ⊂
⋃
�∈N

∂cφ� .

One can therefore prove (i) and (ii) in Theorem 3.2 with φ� in place of φ, and from
this and the hypothesis μ×ν(Ω) = 1 it is not difficult to deduce that (x, ∂cφ(x))∩Ω
is a singleton for μ-a.e. x (see the argument in the proof of Theorem 3.2). This
proves existence and uniqueness of the optimal transport map.
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Although in this case we cannot hope for any semiconcavity result for φ (since, as
in the non-compact Riemannian case, φ is just a Borel function), the above argument
shows that the graph of the optimal transport map is contained in the union of ∂cφ�.
Hence, as in [FF, §5] one can use ∂cφ� to construct the (unique) Wasserstein geodesic
between μ and ν, and in this way the absolutely continuity of all measures belonging
to the geodesic follows as in the compactly supported case.

Finally, the fact that the graph of the optimal transport map is contained in
∪�∈N∂cφ� allows us also to prove the approximate differentiability of the transport
map and the Jacobian identity, provided that one replaces the hessian of φ with the
approximate hessian (we refer the reader to [Fi, §3] to see how this argument works
in the Riemannian case).

4 Examples

The aim of the present section is to provide a list of examples where some of our the-
orems apply. For each kind of sub-Riemannian manifold that we present, we provide
a regularity result for the associated squared sub-Riemannian distance function. We
leave to the reader to check in each case which of our theorems holds under that
regularity property. Before giving examples, we recall that, if Δ is a smooth distri-
bution on M , a section of Δ is any smooth vector field X satisfying X(x) ∈ Δ(x)
for any x ∈ M . For any smooth vector field Z on M and every x ∈ M , we shall
denote by [Z,Δ](x), [Δ,Δ](x), and [Z, [Δ,Δ]] the subspaces of TxM given by

[Z,Δ](x) :=
{
[Z,X](x) | X section of Δ

}
,

[Δ,Δ](x) := Span
{
[X,Y ](x) | X,Y sections of Δ

}
,[

Z, [Δ,Δ]
]
(x) := Span

{
[Z, [X,Y ]](x) | X,Y sections of Δ

}
.

4.1 Fat distributions. The distribution Δ is called fat if, for every x ∈ M and
every vector field X on M such that X(x) ∈ Δ(x) \ {0}, there holds

TxM = Δ(x) + [X,Δ](x) .

The above condition being very restrictive, there are very few fat distributions (see
[Mo2]). Fat distributions on three-dimensional manifolds are the rank-two distribu-
tions Δ satisfying

TxM = Span
{
f1(x), f2(x), [f1, f2](x)

} ∀x ∈ M ,

where (f1, f2) is a 2-tuple of vector fields representing locally the distribution Δ.
A classical example of fat distribution in R

3 is given by the distribution spanned by
the vector fields

X1 =
∂

∂x1
, X2 =

∂

∂x2
+ x1

∂

∂x3
.

This is the distribution appearing in the Heisenberg group (see [AmR], [B], [FiJ]). It
can be shown that, if Δ is a fat distribution, then any nontrivial (i.e. not constant)
horizontal path with respect to Δ is nonsingular (see [CR], [Mo2], [Ri]). As a
consequence, Theorems 5.9 and 5.11 yield the following result.
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Proposition 4.1. If Δ is fat on M , then the squared sub-Riemannian distance
function is locally Lipschitz on M × M and locally semiconcave on M × M \ D.

4.2 Two-generating distributions. A distribution Δ is called two-generating if

TxM = Δ(x) + [Δ,Δ](x) ∀x ∈ M .

Any fat distribution is two-generating. Moreover, if the ambient manifold M has
dimension three, then any two-generating distribution is fat. The distribution Δ in
R

4 which is spanned by the vector fields

X1 =
∂

∂x1
, X2 =

∂

∂x2
, X3 =

∂

∂x3
+ x1

∂

∂x4
,

provides an example of distribution which is two-generating but not fat. It is easy
to see that, if the distribution is two-generating, then there are no Goh paths (see
section 5.9 for the definition of Goh path). As a consequence, by Theorem 5.11 we
have
Proposition 4.2. If Δ is two-generating on M , then the squared sub-Riemannian
distance function is locally Lipschitz on M × M .

The above result and its consequences in optimal transport are due to Agrachev
and Lee (see [AL]).

4.3 Generic sub-Riemannian structures. Let (M,g) be a complete Rieman-
nian manifold of dimension ≥ 4, and m ≥ 3 be a positive integer. Denote by Dm

the space of rank m distributions on M endowed with the Whitney C∞ topology.
Chitour, Jean and Trélat proved that there exists an open dense subset Om of Dm

such that every element of Om does not admit nontrivial minimizing singular paths
(see [ChJT1,2]). As a consequence, we have
Proposition 4.3. Let (M,g) be a complete Riemannian manifold of dimension
≥ 4. Then, for any generic distribution of rank ≥ 3, the squared sub-Riemannian
distance function is locally semiconcave on M × M \ D.

This result implies in particular that, for generic sub-Riemannian manifolds, we
have existence and uniqueness of optimal transport maps, and absolute continuity
of Wasserstein geodesics.

4.4 Nonholonomic distributions on three-dimensional manifolds. As-
sume that M has dimension 3 and that Δ is a nonholonomic rank-two distribution
on M , and define

ΣΔ :=
{
x ∈ M | Δ(x) + [Δ,Δ](x) 
= R

3} .

The set ΣΔ is called the singular set or the Martinet set of Δ. As an example, take
the nonholonomic distribution Δ in R

3 which is spanned by the vector fields

f1 =
∂

∂x1
, f2 =

∂

∂x2
+ x2

1
∂

∂x3
.

It is easy to show that the singular set of Δ is the plane {x1 = 0}. This distribution
is often called the Martinet distribution, and ΣΔ the Martinet surface. The singular
horizontal paths of Δ correspond to the horizontal paths which are included in ΣΔ.
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This means that necessarily any singular horizontal path is, up to reparameteriza-
tion, a restriction of an arc of the form t �→ (0, t, x̄3) ∈ R

3 with x̄3 ∈ R. This kind of
result holds for any rank-two distribution in dimension three (we postpone its proof
to Appendix B):
Proposition 4.4. Let Δ be a nonholonomic distribution on a three-dimensional
manifold. Then ΣΔ is a closed subset of M which is countably 2-rectifiable. More-
over, a nontrivial horizontal path γ : [0, 1] → M is singular if and only if it is
included in ΣΔ.

Proposition 4.4 implies that for any pair (x, y) ∈ M ×M (with x 
= y) such that
x or y does not belong to ΣΔ, any sub-Riemannian minimizing geodesic between
x and y is nonsingular. As a consequence, thanks to Theorems 5.9 and 5.11, the
following result holds:
Proposition 4.5. Let Δ be a nonholonomic distribution on a three-dimensional
manifold. The squared sub-Riemannian distance function is locally Lipschitz on
M × M \ (ΣΔ × ΣΔ) and locally semiconcave on M × M \ (D ∪ ΣΔ × ΣΔ).

We observe that, since ΣΔ is countably 2-rectifiable, for any pair of measures
μ, ν ∈ Pc(M) such that μ gives no measure to countably 2-rectifiable sets, the
conclusions of Theorem 3.3 hold.

4.5 Medium-fat distributions. The distribution Δ is called medium-fat if, for
every x ∈ M and every vector field X on M such that X(x) ∈ Δ(x) \ {0}, there
holds

TxM = Δ(x) + [Δ,Δ](x) +
[
X, [Δ,Δ]

]
(x) .

Any two-generating distribution is medium-fat. An example of medium-fat distribu-
tion which is not two-generating is given by the rank-three distribution in R

4 which
is spanned by the vector vector fields

f1 =
∂

∂x1
, f2 =

∂

∂x2
, f3 =

∂

∂x3
+ (x1 + x2 + x3)2

∂

∂x4
.

Medium-fat distribution were introduced by Agrachev and Sarychev in [ASa] (we
refer the interested reader to that paper for a detailed study of this kind of distribu-
tions). It can easily be shown that medium-fat distributions do not admit nontrivial
Goh paths. As a consequence, Theorem 5.11 yields
Proposition 4.6. Assume that Δ is medium-fat. Then the squared sub-Riemannian
distance function is locally Lipschitz on M × M \ D.

Let us moreover observe that, given a medium-fat distribution, it can be shown
that for a generic smooth complete Riemannian metric on M the distribution does
not admit nontrivial singular sub-Riemannian minimizing geodesics (see [ChJT1,2]).
As a consequence, we have
Proposition 4.7. Let Δ be a medium-fat distribution on M . Then, for “generic”
Riemannian metrics, the squared sub-Riemannian distance function is locally semi-
concave on M × M \ D.

Notice that, since two-generating distributions are medium-fat, the latter result
holds for two-generating distributions.
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4.6 Codimension-one nonholonomic distributions. Let M have dimen-
sion n, and Δ be a nonholonomic distribution of rank n − 1. As in the case of
nonholonomic distributions on three-dimensional manifolds, we can define the sin-
gular set associated to the distribution as

ΣΔ :=
{
x ∈ M | Δ(x) + [Δ,Δ](x) 
= TxM

}
.

The following result holds (we postpone its proof to Appendix B):
Proposition 4.8. If Δ is a nonholonomic distribution of rank n− 1, then the set
ΣΔ is a closed subset of M which is countably (n − 1)-rectifiable. Moreover, any
Goh path is contained in ΣΔ.

From Theorem 5.11, we have
Proposition 4.9. The squared sub-Riemannian distance function is locally Lips-
chitz on M × M \ (ΣΔ × ΣΔ).

Note that, as for medium-fat distributions, for generic metrics the function d2
SR

is locally semiconcave on M × M \ (D ∪ ΣΔ × ΣΔ).

4.7 Rank-two distributions in dimension four. Let (M,Δ, g) be a com-
plete sub-Riemannian manifold of dimension four, and let Δ be a regular rank-two
distribution, that is

TxM = Span
{
f1(x), f2(x), [f1, f2](x), [f1, [f1, f2]](x), [f2, [f1, f2]](x)

}
for any local parametrization of the distribution. In [S] Sussmann shows that there is
a smooth horizontal vector field X on M such that the singular horizontal curves γ
parametrized by arc-length are exactly the integral curves of X, i.e. the curves
satisfying

γ̇(t) = X(γ(t)) .

By the way, it can also be shown that those curves are locally minimizing between
their end-points (see [LS], [S]). For every x ∈ M , denote by O(x) the orbit of x by
the flow of X, and set

Ω :=
{
(x, y) ∈ M × M | y /∈ O(x)

}
.

Sussmann’s theorem, together with Theorem 5.9, yields the following result:
Proposition 4.10. Under the above assumption, the function d2

SR is locally
semiconcave in the interior of Ω.

As an example, consider the distribution Δ in R
4 spanned by the two vector

fields
f1 =

∂

∂x1
, f2 =

∂

∂x2
+ x1

∂

∂x3
+ x3

∂

∂x4
.

It is easy to show that a horizontal path γ : [0, 1] → R
4 is singular if and only if it

satisfies, up to reparameterization by arc-length,

γ̇(t) = f1(γ(t)) ∀t ∈ [0, 1] .

By Proposition 4.10 we deduce that, for any complete metric g on R
4, the function

d2
SR is locally semiconcave on the set

Ω =
{
(x, y) ∈ R

4 × R
4 | (y − x) /∈ Span{e1}

}
,
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where e1 denotes the first vector in the canonical basis of R
4. Consequently, for any

pair of measures μ ∈ P ac
c (M), ν ∈ Pc(M) satisfying supp(μ × ν) ⊂ Ω, Theorem 3.2

applies (or more in general, if μ×ν(Ω) = 1, we can apply the argument in section 3.4).

5 Facts in Sub-Riemannian Geometry

Throughout this section (M,Δ, g) denotes a sub-Riemannian manifold of rank m <n,
which is assumed to be complete with respect to the sub-Riemannian distance. As in
the Riemannian case, the Hopf–Rinow theorem holds. In particular any two points
in M can be joined by a minimizing geodesics, and any sub-Riemannian ball of fi-
nite radius is a compact subset of M . We refer the reader to [Mo2, App.D] for the
proofs of those results. In the following subsections, we present a list of basic facts
in sub-Riemannian geometry, whose the proofs may be found in [Mo2] and [Ri].

5.1 Nonholonomic distributions vs. nonholonomic control systems. Any
nonholonomic distribution can be locally parameterized by a nonholonomic control
system, that is by a smooth dynamical system with parameters called controls.
Indeed, assume that V is an open subset of M such that there are m smooth vector
fields f1, . . . , fm on V which parametrize the nonholonomic distribution Δ on V,
that is which satisfy

Δ(x) = Span
{
f1(x), . . . , fm(x)

} ∀x ∈ V ,

and
Lie{f1, . . . , fm}(x) = TxM ∀x ∈ V .

Given x ∈ V, there is a correspondence between the set of horizontal paths in ΩΔ(x)
which remain in V and the set of admissible controls of the control system

ẋ =
m∑

i=1

uifi(x) .

A control u ∈ L2([0, 1], Rm) is called admissible with respect to x and V if the
solution γx,u to the Cauchy problem

ẋ(t) =
m∑

i=1

ui(t)fi(x(t)) for a.e. t ∈ [0, 1] , x(0) = x ,

is well-defined on [0, 1] and remains in V. The set Ux of admissible controls is an
open subset of L2([0, 1], Rm).
Proposition 5.1. Given x ∈ M , the mapping

Ux −→ ΩΔ(x) ,
u �−→ γx,u .

is one-to-one.

Given x ∈ M , the end-point-mapping from x, from the control viewpoint, takes
the following form

Ex : Ux −→ M
u �−→ γx,u(1)
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This mapping is smooth. The derivative of the end-point mapping from x at u ∈ Ux,
that we shall denote by dEx(u), is given by

dEx(u)(v)= dΦu(1, x)
∫ 1

0

(
dΦu(t, x̄)

)−1
( m∑

i=1

vi(t)fi

(
γx,u(t)

))
dt ∀v∈L2([0, 1], Rm

)
,

where Φu(t, x) denotes the flow of the time-dependent vector field Xu defined by

Xu(t, x) :=
m∑

i=1

ui(t)fi(x) for a.e. t ∈ [0, 1], ∀x ∈ V ,

(note that the flow is well-defined in a neighborhood of x). We say that an admissible
control u is singular with respect to x if dEx is singular at u. Observe that this is
equivalent to say that its associated horizontal path is singular (see the definition of
singular path given in section 2). It is important to notice that the singularity of a
given horizontal path does not depend on the metric but only on the distribution.

5.2 Characterization of singular horizontal paths. Denote by ω the canon-
ical symplectic form on T ∗M and by Δ⊥ the annihilator of Δ in T ∗M minus its zero
section. Define ω as the restriction of ω to Δ⊥. An absolutely continuous curve
ψ : [0, 1] → Δ⊥ such that

ψ̇(t) ∈ ker ω(ψ(t)) for a.e. t ∈ [0, 1]

is called an abnormal extremal of Δ.
Proposition 5.2. A horizontal path γ : [0, 1] → M is singular if and only if it
is the projection of an abnormal extremal ψ of Δ. The curve ψ is said to be an
abnormal extremal lift of γ.

If the distribution is parametrized by a family of m smooth vector fields f1, . . . , fm

on some open set V ⊂ M , and if in addition the cotangent bundle T ∗M is trivi-
alizable over V, then the singular controls, or equivalently the singular horizontal
paths which are contained in V, can be characterized as follows. Define the pseudo-
Hamiltonian H0 : V × (Rn)∗ × (Rm) �→ R by

H0(x, p, u) =
m∑

i=1

uip
(
fi(x)

)
.

Proposition 5.3. Let x ∈ V and u be an admissible control with respect to x
and V . Then, the control u is singular (with respect to x) if and only if there is an
arc p : [0, 1] → (Rn)∗ \ {0}in W 1,2 such that the pair (x = γx,u, p) satisfies{

ẋ(t) = ∂H0
∂p

(
x(t), p(t), u(t)

)
=

∑m
i=1 ui(t)fi(x(t)) ,

ṗ(t) = −∂H0
∂x

(
x(t), p(t), u(t)

)
= −∑m

i=1 ui(t)p(t) · dfi(x(t)) ,
(5.1)

for a.e. t ∈ [0, 1] and

p(t) · fi(x(t)) = 0 ∀t ∈ [0, 1] , ∀i = 1, . . . ,m . (5.2)

A control or a horizontal path which is singular is sometimes called abnormal. If
it is not singular, we call it nonsingular or regular.
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5.3 Sub-Riemannian minimizing geodesics. As we said in section 2, since
the metric space (M,dSR) is assumed to be complete, for every pair x, y ∈ M there
is a horizontal path γ joining x to y such that

dSR(x, y) = lengthg(γ) .

If γ is parametrized by arc-length, then using Cauchy–Schwarz inequality it is easy
to show that γ minimizes the quantity∫ 1

0
gγ(t)

(
γ̇(t), γ̇(t)

)
dt =: energyg(γ) ,

over all horizontal paths joining x to y. This infimum, denoted by eSR(x, y), is
called the sub-Riemannian energy between x and y. Since M is assumed to be
complete, the infimum is always attained, and the horizontal paths which minimize
the sub-Riemannian energy are those which minimize the sub-Riemannian distance
and which are parametrized by arc-length. In particular, one has

eSR(x, y) = d2
SR(x, y) ∀x, y ∈ M .

Assume from now that γ is a given horizontal path minimizing the energy between
x and y. Such a path is called a sub-Riemannian minimizing geodesic. Since γ
minimizes also the distance, it has no self-intersection. Hence we can parametrize
the distribution along γ: there is an open neighborhood V of γ([0, 1]) in M and
an orthonormal family (with respect to the metric g) of m smooth vector fields
f1, . . . , fm such that

Δ(z) = Span
{
f1(z), . . . , fm(z)

} ∀z ∈ V .

Moreover, since γ belongs to W 1,2([0, 1],M), there exists a control uγ ∈ L2([0, 1], Rm)
(in fact, |uγ(t)|2 is constant), which is admissible with respect to x and V, such that

γ̇(t) =
m∑

i=1

uγ
i (t)fi(γ(t))dt for a.e. t ∈ [0, 1] .

By the discussion above, we know that uγ minimizes the quantity∫ 1

0
gγx,u(t)

( m∑
i=1

ui(t)fi

(
γx,u(t)

)
,

m∑
i=1

ui(t)fi

(
γx,u(t)

))
dt =

∫ 1

0

m∑
i=1

ui(t)2dt =: C(u) ,

among all controls u ∈ L2([0, 1], Rm) which are admissible with respect to x and V,
and which satisfy the constraint

Ex(u) = y .

By the Lagrange multiplier theorem, there is λ ∈ (Rn)∗ and λ0 ∈ {0, 1} such that

λ · dEx(uγ) − λ0dC(uγ) = 0 . (5.3)

Two cases may appear, either λ0 = 0 or λ0 = 1. By restricting V if necessary,
we can assume that the cotangent bundle T ∗M is trivializable with coordinates
(x, p) ∈ R

n × (Rn)∗ over V.
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First case: λ0 = 0. The linear operator dEx(uγ) : L2([0, 1], Rm) → TyM
cannot be onto, which means that the control u is necessarily singular. Hence there
is an arc p : [0, 1] → (Rn)∗ \ {0} in W 1,2 satisfying (5.1) and (5.2). In other terms,
γ = γx,uγ admits an abnormal extremal lift in T ∗M . We also says that γ is an
abnormal minimizing geodesic.

Second case: λ0 = 1. In local coordinates, the Hamiltonian H (defined in
(2.2)) takes the following form:

H(x, p) =
1
2

m∑
i=1

(
p · fi(x)

)2 = max
u∈Rm

{ m∑
i=1

uip · fi(x) − 1
2

m∑
i=1

u2
i

}
(5.4)

for all (x, p) ∈ V × (Rn)∗. Then the following result holds.
Proposition 5.4. Equality (5.3) with λ0 = 1 yields the existence of an arc
p : [0, 1] −→ (Rn)∗ in W 1,2, with p(1) = λ/2, such that the pair (γ = γx,uγ , p)
satisfies{

γ̇(t) = ∂H
∂p

(
γ(t), p(t)

)
=

∑m
i=1

[
p(t) · fi(γ(t))

]
fi(γ(t)) ,

ṗ(t) = −∂H
∂x

(
γ(t), p(t)

)
= −∑m

i=1
[
p(t) · fi(γ(t))

]
p(t) · dfi(γ(t)) ,

(5.5)

for a.e. t ∈ [0, 1] and

uγ
i (t) = p(t) · fi(γ(t)) for a.e. t ∈ [0, 1], ∀i = 1, . . . ,m . (5.6)

In particular, the path γ is smooth on [0, 1]. The curve γ and the control uγ are
called normal.

The curve ψ : [0, 1] → T ∗M given by ψ(t) = (γ(t), p(t)) for every t ∈ [0, 1] is a
normal extremal whose the projection is γ and which satisfies ψ(1) = (y, λ/2). We
say that ψ is a normal extremal lift of γ. We also say that γ is a normal minimizing
geodesic.

To summarize, the minimizing geodesic (or equivalently the minimizing con-
trol uγ) is either abnormal or normal. Note that it could be both normal and
abnormal. For decades the prevailing wisdom was that every sub-Riemannian min-
imizing geodesic is normal, meaning that it admits a normal extremal lift. In 1991,
Montgomery found the first counterexample to this assertion (see [Mo1,2]).

5.4 The sub-Riemannian exponential mapping. Let x ∈ M be fixed. The
sub-Riemannian exponential mapping from x is defined by

expx : T ∗xM −→ M
p �−→ π(ψ(1)) ,

where ψ is the normal extremal so that ψ(0) = (x, p) in local coordinates. Note that
H(ψ(t)) is constant along a normal extremal ψ, hence we have

energyg(π(ψ)) =
(
lengthg(π(ψ))

)2 = 2H(ψ(0)) .

The exponential mapping is not necessarily onto. However, since (M,dSR) is com-
plete, the image of the exponential mapping, expx(T ∗x M) can be shown to contain
an open dense subset of M . This result, which was obtained recently by Agrachev
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(see [A2]), is a consequence of the following fact (which appeared in [RiT1], see also
[AL]), which is also crucial in the proofs of Theorems 3.2, 3.3.
Proposition 5.5. Let y ∈ M , and assume that there is a function φ : M → R

differentiable at y such that

φ(y) = d2
SR(x, y) and d2

SR(x, z) ≥ φ(z) ∀z ∈ M .

Then there exists a unique minimizing geodesic between x and y, which is the
projection of the normal extremal ψ : [0, 1] → T ∗M satisfying ψ(1) =

(
y, 1

2dφ(y)
)
.

In particular x = expy

(− 1
2dφ(y)

)
.

5.5 The horizontal eikonal equation. As in the Riemannian case, the sub-
Riemannian distance function from a given point satisfies a Hamilton–Jacobi equa-
tion. This fact is important for the proof of Theorem 3.3. Let us first recall the
definition of viscosity solution:
Definition 5.6. Let F : T ∗M × R → R be a given continuous function, and let
U an open subset of M . A continuous function u : U → R is said to be a viscosity
subsolution on U of the Hamilton–Jacobi equation

F
(
x, du(x), u(x)

)
= 0 (5.7)

if and only if, for every C1 function φ : U → R satisfying φ ≥ u, we have

∀x ∈ U , φ(x) = u(x) =⇒ F
(
x, dφ(x), u(x)

) ≤ 0 .

Similarly, a continuous function u : U → R is said to be a viscosity supersolution of
(5.7) on U if and only if, for every C1 function ψ : U → R satisfying ψ ≤ u we have,

∀x ∈ U , ψ(x) = u(x) =⇒ F
(
x, dψ(x), u(x)

) ≥ 0 .

A continuous function u : U → R is called a viscosity solution of (5.7) on U if it is
both a viscosity subsolution and a viscosity supersolution of (5.7) on U .

Proposition 5.7. For every x ∈ M the function f( · ) = dSR(x, · ) is a viscosity
solution of the Hamilton–Jacobi equation

H
(
y, df(y)

)
= 1

2 ∀y ∈ M \ {x} . (5.8)

5.6 Compactness of minimizing geodesics. The compactness of minimizing
curves is crucial to prove regularity properties of the sub-Riemannian distance. Let
us denote by W 1,2

Δ ([0, 1],M) the set of horizontal paths γ : [0, 1] → M endowed with
the W 1,2-topology. For every γ ∈ W 1,2

Δ ([0, 1],M), the energy of γ with respect to g
is well-defined. The classical compactness result taken from Agrachev [A1] reads as
follows:
Proposition 5.8. For every compact K ⊂ M , the set

K :=
{
γ ∈ W 1,2

Δ ([0, 1],M) | ∃x, y ∈ K with eSR(x, y) = energyg(γ)
}

is a compact subset of W 1,2([0, 1],M).
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5.7 Local semiconcavity of the sub-Riemannian distance. As we said in
section 2, the sub-Riemannian distance can be shown to be locally Hölder con-
tinuous on M × M , but in general it has no reason to be more regular. Within
the next sections, we are going to show that, under appropriate assumptions on
the sub-Riemannian structure, dSR enjoys more regularity properties, such as local
semiconcavity or locally Lipschitz regularity.

Recall that D denotes the diagonal of M × M , that is the set of all pairs of the
form (x, x) with x ∈ M . Thanks to Proposition 5.8, the following result holds:
Theorem 5.9. Let Ω be an open subset of M × M such that, for every pair
(x, y) ∈ Ω with x 
= y, any minimizing geodesic between x and y is nonsingular.
Then the distance function dSR (or equivalently d2

SR) is locally semiconcave on
Ω \ D.

Since Theorem 5.9 plays a crucial role in the present paper and does not appear
in this general form in [CR], we prefer to give a sketch of its proof. We refer the
reader to [CR], [Ri] for more details.
Proof. Let us fix (x, y) ∈ Ω\D and show that dSR is semiconcave in a neighborhood
of (x, y) in M × M \ D. Let Ux and Uy be two compact neighborhoods of x and y
such that Ux ×Uy ⊂ Ω \D. Denote by K the set of minimizing horizontal paths γ in
W 1,2

Δ ([0, 1], Rm) such that γ(0) ∈ Ux and γ(1) ∈ Uy. Thanks to Proposition 5.8, K is
a compact subset of W 1,2([0, 1],M). Let (x′, y′) ∈ Ux ×Uy be fixed. Since (M,dSR)
is assumed to be complete, there exists a sub-Riemannian minimizing geodesic γx′,y′

between x′ and y′. Moreover, by assumption it is nonsingular. As before we can
parametrize Δ by a family of smooth orthonormal vector fields along γx′,y′ , and we
denote by ux′,y′

the control in L2([0, 1], Rm) corresponding to γx′,y′ . Since ux′,y′
is

nonsingular, there are n linearly independent controls vx′,y′
1 , . . . vx′,y′

n in L2([0, 1], Rm)
such that the linear operator

Ex′,y′
: R

n −→ R
n

α �−→
m∑

i=1

αidEx′
(
ux′,y′)(

vx′,y′
i

)
is invertible. Set

Fx′,y′
: R

n × R
n −→ R

n × R
n

(z, α) �−→
(

z,Ez

(
ux′,y′

+
m∑

i=1

αiv
x′,y′
i

))

This mapping is well-defined and smooth in a neighborhood of (x′, 0), satisfies

Fx′,y′
(x′, 0) = (x′, y′) ,

and its differential at (x′, 0) is invertible. Hence, by the inverse function theorem,
there are an open ball Bx′,y′

centered at (x′, y′) in R
n × R

n and a function Gx′,y′
:

Bx′,y′ → R
n × R

n such that

Fx′,y′ ◦ Gx′,y′
(z,w) = (z,w) ∀(z,w) ∈ Bx′,y′

.
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Denote by
(
αx′,y′)−1 the second component of Gx′,y′

. From the definition of the
sub-Riemannian energy between two points we infer that for any (z,w) ∈ Bx′,y′

we
have

eSR(z,w) ≤
∥∥∥∥ux′,y′

+
m∑

i=1

((
αx′,y′)−1(z,w)

)
i
vx′,y′
i

∥∥∥∥
2

L2

.

Set

φx′,y′
(z,w) :=

∥∥∥∥ux′,y′
+

m∑
i=1

((
αx′,y′)−1(z,w)

)
i

∥∥∥∥
L2

∀(z,w) ∈ Bx′,y′
.

We conclude that, for every (x′, y′) ∈ Ux × Uy, there is a smooth function φx′,y′

such that dSR(z,w) ≤ φx′,y′
(z,w) for any (z,w) in Bx′,y′

. By compactness of K and
thanks to a quantitative version of the inverse function theorem, the C1,1 norms
of the functions φx′,y′

are uniformly bounded and the radii of the balls Bx′,y′
are

uniformly bounded from below by a positive constant for x′, y′ in Ux ×Uy. Then the
result follows from Lemma A.1. �

5.8 Sub-Riemannian cut locus. For every x ∈ M the singular set of dSR(x, · ),
denoted by Σ(dSR(x, · )), is defined as the set of points y 
= x ∈ M where dSR(x, · )
(or equivalently d2

SR) is not continuously differentiable. The cut-locus of x is defined
as

CutSR(x) := Σ
(
dSR(x, · ))

and the global cut-locus of M as

CutSR(M) :=
{
(x, y) ∈ M | y ∈ CutSR(x)

}
.

In contrast with the Riemannian case, the sub-Riemannian global cut-locus of M
always contains the diagonal (see [A1]). A covector p ∈ T ∗x M is said to be conjugate
with respect to x ∈ M if the mapping expx is singular at p, that is if dexpx(p) is
singular. For every x ∈ M we denote by Conjmin(x) the set of points y ∈ M \ {x}
for which there is p ∈ T ∗xM which is conjugate with respect to x, and such that

expx(p) = y and eSR(x, y) = 2H(x, p) .

The following result holds (see [RiT2], [Ri]):
Proposition 5.10. Let Ω be an open subset of M ×M . Assume that Ω is totally
geodesically convex and that the sub-Riemannian distance is locally semiconcave on
Ω \ D. Then, for every x ∈ M , we have({x} × CutSR(x)

) ∩ Ω =
({x} × (Σ(dSR(x, · )) ∪ Conjmin(x) ∪ {x})) ∩ Ω .

Moreover, the set ({x} × CutSR(x)) ∩ Ω has Hausdorff dimension ≤ n − 1, and the
function dSR is of class C∞ on the open set Ω \ CutSR(M).

An important property of the Riemannian distance function is that it fails to be
semiconvex at the cut locus (see [CoMS, Prop. 2.5]). This property plays a key role
in the proof of the differentiability of the transport map. We do not know if that
property holds in the sub-Riemannian case:
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Open problem. Assume that dSR is locally semiconcave on M × M \ D. Let
x, y ∈ M , and assume that there exists a function φ : M → R twice differentiable at
y such that

φ(y) = d2
SR(x, y) and d2

SR(x, z) ≥ φ(z) ∀z ∈ M .

Is it true that y /∈ CutSR(x)?

5.9 Locally Lipschitz regularity of the sub-Riemannian distance. Since
any locally semiconcave function is locally Lipschitz, Theorem 5.9 above gives a
sufficient condition that insures the Lipschitz regularity of d2

SR out of the diagonal.
In [AL] Agrachev and Lee show that, under some stronger assumption, one can
prove global Lipschitz regularity. A horizontal path γ : [0, 1] → M will be called a
Goh path if it admits an abnormal lift ψ : [0, 1] → Δ⊥ which annihilates [Δ,Δ], that
is, for every t ∈ [0, 1] and every local parametrization of Δ by smooth vector fields
f1, . . . , fm in a neighborhood of γ(t), we have

ψ(t) · ([fi, fj](γ(t))
)

= 0 ∀i, j = 1, . . . ,m .

Note that if the path γ is constant on [0, 1], it is a Goh path if and only if there is
a differential form p ∈ T ∗γ(0)M satisfying

p · fi(γ(0)) = p · [fi, fj ](γ(0)) = 0 ∀i, j = 1, . . . ,m ,

where f1, . . . , fm is as above a parametrization of Δ in a neighborhood of γ(0).
Agrachev and Lee proved the following result (see [AL, Th. 5.5]):
Theorem 5.11. Let Ω be an open subset of M×M such that any sub-Riemannian
minimizing geodesic joining two points of Ω is not a Goh path. Then the function
d2

SR is locally Lipschitz on Ω × Ω.

6 Proofs of the Results

6.1 Proof of Theorem 3.2. Let us first prove (i). We easily see that Mφ

coincides with the set {
x ∈ M | φ(x) + φc(x) < 0

}
.

Thus, since both φ and φc are continuous, Mφ is open. Let us now prove that φ is lo-
cally semiconcave (resp. locally Lipschitz) in an open neighborhood of Mφ ∩ supp(μ).
Let x ∈ Mφ ∩ supp(μ) be fixed. Since x 
∈ ∂cφ(x), there is r > 0 such that
dSR(x, y) > r for any y ∈ ∂cφ(x). In addition, since the set ∂cφ is closed in M × M
and supp(μ × ν) ⊂ Ω, there exists a neighborhood Vx of x which is included in
Mφ ∩ π1(Ω) and such that

dSR(x,w) > r ∀z ∈ Vx , ∀w ∈ ∂cφ(z) .

Let φx,r : M → R be the function defined by

φx,r(z) := inf
{
d2

SR(z, y) − φc(y) | y ∈ supp(ν) , dSR(z, y) > r
}

.

We recall that supp(μ × ν) ⊂ Ω and that d2
SR is locally semiconcave (resp. locally

Lipschitz) in Ω \ D. Thus, up to considering a smaller Vx, we easily get that the
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function φx,r is locally semiconcave (resp. locally Lipschitz) in Vx. Since φ = φx,r

in Vx, (i) is proved.
To prove (ii), we observe that it suffices to show the result for x belonging to

an open set V ⊂ M on which the horizontal distribution Δ(x) is parametrized by
a orthonormal family a smooth vector fields {f1, . . . , fm}. Moreover, up to working
in charts, we can assume that V is a subset of R

n.
First of all we remark that, since all functions z �→ d2

SR(z, y) − φc(y) are locally
uniformly Lipschitz with respect to the sub-Riemannian distance when y varies in
a compact set, also φ is locally Lipschitz with respect to dSR. Up to a change of
coordinates in R

n, we can assume that the vector fields fi are of the form

fi =
∂

∂xi
+

n∑
j=m+1

aij(x)
∂

∂xj
∀i = 1, . . . ,m ,

with aij ∈ C∞(Rn). Therefore, thanks to [MonS, Th. 3.2], for a.e. x ∈ V, φ is
differentiable with respect to all vector fields fi for a.e. x ∈ V, and

φ(y) − φ(x) −
m∑

i=1

fiφ(x)(yi − xi) = o
(
dSR(x, y)

) ∀y ∈ V . (6.1)

Recalling that μ is absolutely continuous, we get that (6.1) holds at μ-a.e. x ∈ V.
Thus it suffices to prove that ∂cφ(x) = {x} for all such points.

Let us fix such an x. We claim that

fiφ(x) = 0 ∀i = 1, . . . ,m . (6.2)

Indeed, fix i ∈ {1, · · · ,m} and denote by γx
i (t) : (−ε, ε) → M the integral curve of

the vector field fi starting from x, i.e.{
γ̇x

i (t) = fi

(
γx

i (t)
) ∀t ∈ (−ε, ε) ,

γx
i (0) = x .

By the assumption on x, there is a real number �i such that

lim
t→0

φ(γx
i (t)) − φ(x)

t
= �i .

By construction, the curve γx
i is horizontal with respect to Δ. Thus, since

g(γ̇x
i (t), γ̇x

i (t)) = 1 for any t, we have

dSR

(
x, γx

i (t)
) ≤ |t| ∀t ∈ (−ε, ε) .

This gives
φ
(
γx

i (t)
) ≤ φ(x) + d2

SR

(
γx

i (t), x
) ≤ φ(x) + t2,

which implies that �i = 0 and proves the claim.
Assume now by contradiction that there exists a point y ∈ ∂cφ(x) \ {x}, with

(x, y) ∈ Ω. Then the function

z �→ φ(z) − d2
SR(z, y) ≤ φc(x)

attains a maximum at x. Let γx,y : [0, 1] → M denote a minimizing geodesic from x



148 A. FIGALLI AND L. RIFFORD GAFA 

to y. Then

φ
(
γx,y(t)

)− d2
SR

(
γx,y(t), y

) ≤ φ(x) − d2
SR(x, y) ∀t ∈ [0, 1] ,

or equivalently

φ
(
γx,y(t)

)− φ(x) ≤ d2
SR

(
γx,y(t), y

) − d2
SR(x, y) ∀t ∈ [0, 1] .

Observe now that, by (6.1) together with (6.2), we have

φ
(
γx,y(t)

)− φ(x) = o
(
dSR(γx,y(t), x)

)
= o

(
tdSR(x, y)

)
.

On the other hand, d2
SR(γx,y(t), y) = (1 − t)2d2

SR(x, y). Combining all together, for
all t ∈ [0, 1] we have

o
(
tdSR(x, y)

)
= φ

(
γx,y(t)

)− φ(x) ≤ d2
SR

(
γx,y(t), y

) − d2
SR(x, y)

= −2td2
SR(x, y) + o

(
tdSR(x, y)

)
,

that is
2td2

SR(x, y) ≤ o
(
tdSR(x, y)

) ∀t ∈ [0, 1] .

As x 
= y, this is absurd for t small enough, and the proof of (ii) is completed.
Since supp(μ× ν) ⊂ Ω, we immediately have that any optimal plan γ is concen-

trated on ∂cφ∩Ω. Moreover, combining (i) and (ii), we obtain that ∂cφ(x))∩supp(ν)
is a singleton for μ-a.e. x. This easily gives existence and uniqueness of the optimal
transport map.

To prove the formula for T (x), we have to show that

∂cφ(x) ∩ supp(ν) = expx

(−1
2dφ(x)

)
for all x ∈ Mφ∩ supp(μ) where φ is differentiable. This is a consequence of Proposi-
tion 5.5 applied to the function z �→ φ(z)+φc(y) at the point x. Moreover, again by
Proposition 5.5, the geodesic from x to T (x) is unique for μ-a.e. x ∈ Mφ ∩ supp(μ).
Since T (x) = x for x ∈ Sφ ∩ supp(μ), the geodesic is clearly unique also in this case.

6.2 Proof of Theorem 3.3. We will prove only (ii), as all the rest follows as in
the proof of Theorem 3.2.

Let us consider the “bad” set defined by

B :=
{
x ∈ Sφ ∩ supp(μ) | (∂cφ(x) \ {x}) ∩ supp(ν) 
= ∅} .

We have to show that B is μ-negligible. For each k ∈ N, we consider the sequence
of function constructed as follows:

φk(x) := inf
{
d2

SR(x, y) − φc(y) | y ∈ supp(ν) , dSR(x, y) > 1/k
}

.

Since supp(μ× ν) ⊂ Ω and d2
SR is locally semiconcave in Ω \D, the functions φk are

locally semiconcave in a neighborhood of B.
Thus, by Theorem A.4 and the assumptions on μ, there exists a Borel set G,

with μ(G) = 1, such that all φk are differentiable in G. Since for any x ∈ B there
exists y ∈ ∂cφ(x) \ {x} such that dSR(y, x) > 1/k for some k, we deduce that⋃

k∈N

{φ = φk} ⊃ B .
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This gives that, up to set of μ-measure zero, B coincides with ∪k∈NAk, where

Ak := B ∩ {φ = φk} ∩ G.

Hence, to conclude the proof, it suffices to show that μ(Ak) = 0 for all k ∈ N.
Let x ∈ Ak. Then, if y ∈ ∂cφ(x) and dSR(x, y) > 1/k, the function

z �→ φk(z) − d2
SR(z, y) ≤ φc(x) (6.3)

attains a maximum at x. Therefore, if we show that dφk(x) = 0 for μ-a.e. x ∈ Ak,
equation (6.3) together with the semiconcavity of d2

SR(z, y) for z close to x would
imply that d2

SR( · , y) is differentiable at x, and its differential is equal to 0. This
would contradict Proposition 5.7, concluding the proof. Therefore we just need to
show that dφk(x) = 0 μ-a.e. in Ak.

Let X be a smooth section of Δ such that gx(X(x),X(x)) = 1 for any x ∈ M .
We claim the following:

Claim 1. For μ-a.e. x ∈ Ak, dφk(x) · X(x) ≤ 0.
Since we can apply Claim 1 with a countable set of vector fields {X�}�∈N such

that {X�(x)}�∈N is dense in Δ(x) for all x ∈ supp(μ), Claim 1 clearly implies that
dφk(x) = 0 μ-a.e. in Ak. Let us prove the claim.

Let dg denote the Riemannian distance associated to the Riemannian metric g,
and θ(x, t) denote the flow of X, that is the function θ : M × R → M satisfying

d

dt
θ(x, t) = X

(
θ(x, t)

)
, θ(x, 0) = x .

Fix ε > 0 small, and consider the “cone” around the curve t �→ θ(x, t) given by

Cε
x :=

{
y ∈ Ω | ∃ t ∈ [0, ε] such that dg(θ(x, t), y) ≤ εt

}
.

Moreover, we define

Rε :=
{
x ∈ supp(μ) ∩ Ak | Ak ∩ Cε

x = {x}} .

Claim 2. Rε is countably (n − 1)-rectifiable for any ε > 0.
Indeed, since the statement is local, we can assume that we are in R

n, Moreover,
since X is smooth, we can assume that there exists v̄ ∈ R

n such that Cε
x contains

the “euclidean cone”

C̄ε/2
x :=

{
y ∈ Ω | ∃ t ∈ [0, ε/2] such that |x + tv̄ − y| ≤ c0

ε
2t
}

,

where c0 > 0. Thus it suffices to prove that

R̄ε/2 :=
{
x ∈ supp(μ) ∩ Ak | Ak ∩ C̄ε/2

x = {x}}
is (n − 1)-rectifiable for any ε > 0.
Assume now that z, z′ ∈ R̄ε/2, with z 
= z′. Then, since z 
∈ C̄

ε/2
z′ , we have

|z′ + tv̄ − z| > c0
ε
2t ∀t ∈ [0, ε/2] ,

or equivalently
|z − tv̄ − z′| > c0

ε
2t ∀t ∈ [0, ε/2] .
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This implies that

z′ 
∈ C̄ε/2,−
z :=

{
y ∈ Ω

∣∣ ∃ t ∈ [
0, ε

2

]
such that |x − tv̄ − y| ≤ c0

ε
2

}
.

Since z, z′ ∈ R̄ε/2 were arbitrary, we have proved that for all z ∈ R̄ε/2

R̄ε/2 ∩
(
C̄ε/2

z ∪ C̄ε/2,−
z

)
= {z} .

By [CS, Th. 4.1.6] R̄ε is countably (n−1)-rectifiable for any ε > 0, and this concludes
the proof of Claim 2.

Let us come back to the proof of Claim 1. Thanks to Claim 2 we just need to
show that

x ∈ (
supp(μ) ∩ Ak

) \ (∪jR1/j

)
=⇒ dφk(x) · X(x) ≤ 0 .

Let x ∈ (supp(μ) ∩ Ak) \ (∪jR1/j). Then φ(x) = φk(x), and there exists a sequence

of points {xj} such that xj 
= x and xj ∈ Ak ∩ C
1/j
x for all j ∈ N. In particular

φ(xj) = φk(xj) for all j ∈ N. Since x ∈ Sφ, we have x ∈ ∂cφ(x), and so

φ(z) − φ(x) ≤ d2
SR(z, x) ∀z ∈ M .

Let tj ∈ [
0, 1

j

]
be such that dg(θ(x, tj), xj) ≤ 1

j tj. Then, since d2
SR is locally Lips-

chitz, we get

φk(xj) − φk(x) = φ(xj) − φ(x) ≤ d2
SR(xj , x)

≤ 2d2
SR

(
θ(x, tj), xj

)
+2d2

SR

(
θ(x, tj), x

)
≤ Cdg

(
θ(x, tj), xj

)
+2d2

SR

(
θ(x, tj), x

)
≤ C

j tj + 2d2
SR

(
θ(x, tj), x

)
.

We now observe that, since X is a unitary horizontal vector field, dSR(θ(x, tj), x) ≤ tj.
Moreover, tj = dg(xj, x) + o(dg(xj , x)) as j → ∞. Therefore, up to subsequences,
one easily gets (looking everything in charts)

lim
j→+∞

xj − x

dg(xj , x)
= X(x) ,

which implies
dφk(x) · X(x) ≤ 0 ,

as wanted.

6.3 Proof of Theorem 3.5. Let us first prove the uniqueness of the Wasser-
stein geodesic. A basic representation theorem (see [V2, Cor. 7.22]) states that any
Wasserstein geodesic necessarily takes the form μt = (et)#Π, where Π is a proba-
bility measure on the set Γ of minimizing geodesics [0, 1] → M , and et : Γ → M
is the evaluation at time t: et(γ) := γ(t). Thus uniqueness follows easily from
Theorem 3.2.

The proof of the absolute continuity of μt is done as follows. Fix t ∈ (0, 1), and
define the functions

φ1−t(x) := inf
y∈supp(ν)

{
d2

SR(x, y)
1 − t

− φc(y)
}

,
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φc
t(y) := inf

x∈supp(μ)

{
d2

SR(x, y)
t

− φ(x)
}

.

It is not difficult to see that
d2

SR(x, z)
t

+
dSR(z, y)2

1 − t
≥ d2

SR(x, y) ∀x, y, z ∈ M . (6.4)

Indeed, for all ε > 0,

d2
SR(x, y) ≤ (

dSR(x, z) + dSR(z, y)
)2 ≤ (1 + ε)d2

SR(x, z) +
(
1 + 1

ε

)
d2

SR(z, y) .

Choosing ε > 0 so that 1+ ε = 1/t, (6.4) follows. Since φ(x)+ φc(y) ≤ d2
SR(x, y) for

all x ∈ supp(μ) and y ∈ supp(ν), by (6.4) we get[
dSR(z, y)2

1 − t
−φc(y)

]
+

[
d2

SR(x, z)
t

−φ(x)
]
≥ 0 ∀x ∈ supp(μ) , y ∈ supp(ν) , z ∈ M.

This implies
φ1−t(z) + φc

t(z) ≥ 0 ∀z ∈ M . (6.5)

We now remark that (6.4) becomes an equality if and only if there exists a geodesic
γ : [0, 1] → M joining x to y such that z = γ(t). Hence by the definition of Tt(x) we
get

dSR(x, Tt(x))2

t
+

dSR(Tt(x), T (x))2

1 − t
= d2

SR

(
x, T (x)

)
for μ-a.e. x . (6.6)

Moreover, since

φ(x) + φc(T (x)) = d2
SR

(
x, T (x)

)
for μ-a.e. x ,

we obtain
φ1−t

(
Tt(x)

)
+ φc

t

(
Tt(x)

)
= 0 for μ-a.e. x ,

or equivalently
φ1−t(z) + φc

t(z) = 0 for μt-a.e. z . (6.7)

Let us now decompose the set Mφ ∩ supp(μ) as

Ak :=
{
x ∈ Mφ ∩ supp(μ) | dSR(x, y) > 1/k ∀y ∈ ∂cφ(x)

}
.

Since Tt(x) = x on Sφ ∩ supp(μ), defining μk
t := μt�Tt(Ak) we have

μt =
(∪kμ

k
t

) ∪ μ�(Sφ∩supp(μ)) ∀t ∈ [0, 1] .

Thus it suffices to prove that μk
t is absolutely continuous for each k ∈ N.

We consider the functions

φk,1−t(x) := inf
{

d2
SR(x, y)
1 − t

− φc(y)
∣∣∣ y ∈ supp(ν), dSR(x, y) >

1 − t

k

}
.

φc
k,t(y) := inf

{
d2

SR(x, y)
t

− φ(x)
∣∣∣ y ∈ supp(ν), dSR(x, y) >

t

k

}
.

Since dSR(x, T (x)) > 1/k for x ∈ Ak, they coincide respectively with φ1−t and φc
t

inside Tt(Ak). Thus, thanks to (6.5) and (6.7) we have

φk,1−t(z) + φc
k,t(z) ≥ φ1−t(z) + φc

t(z) ≥ 0 ∀z ∈ M ,

with equality μt-a.e. on Tt(Ak).
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Observe now that, by the compactness of the supports of μ and ν, and the fact
that Ω is totally geodesically convex, supp(μ×μt) and supp(μt×ν) are compact and
contained in Ω. Thus, since d2

SR is locally semiconcave on Ω\D, both functions φk,1−t

and φc
k,t are locally semiconcave in a neighborhood of Tt(Ak). It follows from [FF,

Th.A.19] that both differentials dφk,t(z), dφc
k,1−t(z) exist and are equal for μ-a.e.

z ∈ Ts(Ak). Moreover, again by [FF, Th.A.19], the map z �→ dφk,t(z) = dφc
k,1−t(z)

is locally Lipschitz on Ts(Ak). Since for x ∈ Ak we have

φk,t( · ) ≤ dSR(x, ·)2
t

− φ(x) on
{
z | dSR(x, z) > t/k

}
with equality at Tt(x) for μ-a.e. x ∈ Ak, by Proposition 5.5 we get

x = expTt(x)
(−1

2dφk,t(Tt(x))
)

for μ-a.e. x ∈ Ak .

Denoting by Φt : T ∗M → T ∗M the Euler–Lagrange flow (i.e. the flow of the Hamil-
tonian vector field

−→
H ), we see that the map

Ft,k(z) := expz

(−1
2dφk,t(z)

)
= Φt

(
z,−1

2dφk,t(z)
)

is locally Lipschitz on supp(μt) ∩ Tt(Ak). Therefore it is clear that μk
t cannot have

a singular part with respect to the volume measure, since otherwise the same would
be true for (Ft,k)#(μk

t ) = μ�Ak
. This concludes the proof of the absolute continuity.

6.4 Proof of Theorem 3.7. We recall that, by Theorem 3.2, the function φ
is locally semiconcave in a neighborhood of Mφ ∩ supp(μ). Thus, since μ is ab-
solutely continuous with respect to the volume measure, by Theorem A.5 dφ(x) is
differentiable for μ-a.e. x ∈ Mφ ∩ supp(μ). By Theorem 3.2, for μ-a.e. x there ex-
ists a unique minimizing geodesic between x and T (x). Thanks to our assumptions
this implies that T (x) = expx

( − 1
2dφ(x)

)
do not belong to CutSR(x) for μ-a.e.

x ∈ Mφ ∩ supp(μ). Hence Proposition 5.10 implies that the function

(z,w) �→ d2
SR(z,w)

is smooth near (x, T (x)). Exactly as in the Riemannian case, this gives that the
map x �→ expx

(−1
2dφ(x)

)
is differentiable for μ-a.e. x, and its differential is given by

Y (x)
(
H(x)− 1

2Hess 2
xφ

)
(see [CoMS, Prop. 4.1]). On the other hand, since T (x) = x

for x ∈ Sφ ∩ supp(μ), it is clear by Definition 3.6 that T is approximately differen-
tiable μ-a.e. in Sφ ∩ supp(μ), and that its approximate differential is given by the
identity matrix I. This proves the first part of the theorem.

To prove the change of variable formula, we first remark that, since both μ and
ν are absolutely continuous, there exists also an optimal transport map S from ν
to μ, and it is well-known that S is an inverse for T a.e., that is

S ◦ T = Id μ-a.e. , T ◦ S = Id ν-a.e.

(see for instance [AmGS, Rem. 6.2.11]). This gives in particular that T is a.e. injec-
tive. Applying [AmGS, Lem. 5.5.3] (whose proof is in the Euclidean case, but still
works on a manifold) we deduce that |det(d̃T (x))| > 0 μ-a.e., and that the Jacobian
identity holds.
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A Locally Semiconcave Functions

The aim of this section is to recall some basic facts on semiconcavity. Throughout
this section, M denotes a smooth connected manifold of dimension n.

For an introduction to semiconcavity, we refer the reader to [CS] and [FF,
App.A]. A function u : U → R, defined on the open set U ⊂ M , is called lo-
cally semiconcave on U if for every x ∈ U there exist a neighborhood Ux of x and
a smooth diffeomorphism ϕx : Ux → ϕx(Ux) ⊂ R

n such that f ◦ ϕ−1
x is locally

semiconcave on the open subset Ũx = ϕx(Ux) ⊂ R
n. We recall that the function

u : U → R, defined on the open set U ⊂ R
n, is locally semiconcave on U if for every

x̄ ∈ U there exist C, δ > 0 such that

μu(y) + (1 − μ)u(x) − u
(
μx + (1 − μ)y

) ≤ μ(1 − μ)C|x − y|2, (A.1)

for all x, y in the ball Bδ(x̄) and every μ ∈ [0, 1]. This is equivalent to saying that
the function u can be written locally as

u(x) =
(
u(x) − C|x|2) + C|x|2 ∀x ∈ Bδ(x̄) ,

with u(x) − C|x|2 concave. Note that every locally semiconcave function is locally
Lipschitz on its domain, and thus by Rademacher’s theorem it is differentiable almost
everywhere on its domain (in fact a better result holds, see Theorem A.4). The
following result will be useful in the proof of our theorems.
Lemma A.1. Let u : U → R be a function defined on an open set U ⊂ R

n. Assume
that for every x̄ ∈ U there exist a neighborhood V ⊂ U of x̄ and a positive real
number σ such that, for every x ∈ V, there is px ∈ R

n such that

u(y) ≤ u(x) + 〈px, y − x〉 + σ|y − x|2 ∀y ∈ V . (A.2)

Then the function u is locally semiconcave on U .

Proof. Let x̄ ∈ U be fixed and V be the neighborhood given by assumption. Without
loss of generality, we can assume that V is an open ball B. Let x, y ∈ B and μ ∈ [0, 1].
The point x̂ := μx+(1−μ)y belongs to B. By assumption, there exists p̂ ∈ R

n such
that

u(z) ≤ u(x̂) + 〈p̂, z − x̂〉 + σ|z − x̂|2 ∀z ∈ B .

Hence we easily get

μu(y) + (1 − μ)u(x) ≤ u(x̂) + μσ|x − x̂|2 + (1 − μ)σ|y − x̂|2
≤ u(x̂) +

(
μ(1 − μ)2σ + (1 − μ)μ2σ

)|x − y|2
≤ u(x̂) + 2μ(1 − μ)σ|x − y|2,

and the conclusion follows. �

Another useful result is the following (see [CS, Cor. 3.3.8]):
Proposition A.2. Let u : U → R be a function defined on an open set U ⊂ M . If
both functions u and −u are locally semiconcave on U , then u is of class C1,1

loc on U .

Fathi generalized the proposition above as follows (see [F] or [FF, Th.A.19]):
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Proposition A.3. Let U be an open subset of M and u1, u2 : U → R be two
functions with u1 and −u2 locally semiconcave on U . Assume that u1(x) ≤ u2(x)
for any x ∈ U . If we define E = {x ∈ U | u1(x) = u2(x)}, then both u1 and u2 are
differentiable at each x ∈ E with du1(x) = du2(x) at such a point. Moreover, the
map x �→ du1(x) = du2(x) is locally Lipschitz on E .

A.1 Singular sets of semiconcave functions. Let u : U → R be a function
which is locally semiconcave on the open set U ⊂ M . We recall that, since such
a function is locally Lipschitz on U , its limiting subdifferential is always nonempty
on U . We define the singular set of u as the subset of U

Σ(u) := {x ∈ U | u is not differentiable at x} .

From Rademacher’s theorem, Σ(u) has Lebesgue measure zero. In fact, the following
result holds (see [CS], [Ri]):
Theorem A.4. Let U be an open subset of M . The singular set of a locally
semiconcave function u : U → R is countably (n − 1)-rectifiable, i.e. is contained in
a countable union of locally Lipschitz hypersurfaces of M .

A.2 Alexandrov’s second differentiability theorem. As shown by Alexan-
drov (see [V2]), locally semiconcave functions are two times differentiable almost
everywhere.
Theorem A.5. Let U be an open subset of R

n and u : U → R be a function
which is locally semiconcave on U . Then, for a.e. x ∈ U , u is differentiable at x and
there exists a symmetric operator A(x) : R

n → R
n such that the following property

is satisfied:

lim
t↓0

u(x + tv) − u(x) − tdu(x) · v − t2

2 〈A(x) · v, v〉
t2

= 0 ∀v ∈ R
n .

Moreover, du(x) is differentiable a.e. in U , and its differential is given by A(x).

B Proofs of Auxiliary Results

B.1 Proof of Proposition 4.4. The first part of the proposition is just a corol-
lary of Proposition 4.8 for n = 3. Let us prove the second part of the proposition.
Let γ : [0, 1] → M be a nontrivial singular horizontal path. Our aim is to show that,
for every t ∈ [0, 1], the point γ(t) belongs to ΣΔ. Fix t̄ ∈ [0, 1] and parametrize the
distribution by two smooth vector fields f1, f2 in an open neighborhood V of γ(t̄).
Let u ∈ L2([0, 1], R2), and let I be an open subinterval of [0, 1] containing t̄ such
that

γ̇(t) = u1(t)f1(γ(t)) + u2(t)f2(γ(t)) for a.e. t ∈ I .

Note that since γ is assumed to be nontrivial, we can assume that u is not identically
zero in any neighborhood of t̄. From Proposition 5.3 there is an arc p : [0, 1] →
(R3)∗ \ {0} in W 1,2 such that

ṗ(t) = −u1(t)p(t) · df1(γ(t)) − u2(t)p(t) · df2(γ(t)) for a.e. t ∈ I ,
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and
p(t) · f1(γ(t)) = p(t) · f2(γ(t)) = 0 ∀t ∈ I .

Let us take the derivative of the quantity p(t) · f1(γ(t)) (which is absolutely contin-
uous). We have for almost every t ∈ I,

0 =
d

dt

[
p(t) · f1(γ(t))

]
= ṗ(t) · f1(γ(t)) + p(t) · df1(γ(t)) · γ̇(t)

= −
∑
i=1,2

ui(t)p(t) · dfi(γ(t)) · f1(γ(t)) +
∑
i=1,2

ui(t)p(t) · df1(γ(t)) · fi(γ(t))

= −u2(t)p(t) · [f1, f2](γ(t)).

In the same way, if we differentiate the quantity p(t) · f2(γ(t)), we obtain

0 =
d

dt

[
p(t) · f2(γ(t))

]
= u1(t) · [f1, f2](γ(t)) .

Therefore, since u is not identically zero in any neighborhood of t̄, thanks to the
continuity of the mapping t �→ p(t) · [f1, f2](γ(t)) we deduce that

p(t̄) · [f1, f2](γ(t̄)) = 0 .

But we already know that p(t) · f1(γ(t̄ )) = p(t) · f2(γ(t̄)) = 0, where the two vec-
tors f1(γ(t̄ )), f2(γ(t̄ )) are linearly independent. Therefore, since p(t̄ ) 
= 0, we con-
clude that the Lie bracket [f1, f2](γ(t̄ )) belongs to the linear subspace spanned by
f1(γ(t̄ )), f2(γ(t̄ )), which means that γ(t̄ ) belongs to ΣΔ. Let us now prove that any
horizontal path included in ΣΔ is singular. Let γ such a path be fixed, set γ(0) = x,
and consider a parametrization of Δ by two vector fields f1, f2 in a neighborhood V
of x. Let δ > 0 be small enough so that γ(t) ∈ V for any t ∈ [0, δ], in such a way
that there is u ∈ L2([0, δ], R2) satisfying

γ̇(t) = u1(t)f1(γ(t)) + u2(t)f2(γ(t)) for a.e. t ∈ [0, δ] .

Let p0 ∈ (R3)∗ be such that p0 · f1(x) = p0 · f2(x) = 0, and let p : [0, δ] → (R3)∗ be
the solution to the Cauchy problem

ṗ(t) = −
∑
i=1,2

ui(t)p(t) · dfi(γ(t)) for a.e. t ∈ [0, δ] , p(0) = p0 .

Define two absolutely continuous function h1, h2 : [0, δ] → R by

hi(t) = p(t) · fi(γ(t)) ∀t ∈ [0, δ] , ∀i = 1, 2 .

As above, for every t ∈ [0, δ] we have

ḣ1(t) =
d

dt

[
p(t) · f1(γ(t))

]
= −u2(t)p(t) · [f1, f2](γ(t))

and
ḣ2(t) = u1(t)p(t) · [f1, f2](γ(t)) .

But since γ(t) ∈ ΣΔ for every t, there are two continuous functions λ1, λ2 : [0, δ] → R

such that

[f1, f2](γ(t)) = λ1(t)f1(γ(t)) + λ2(t)f2(γ(t)) ∀t ∈ [0, δ] .
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This implies that the pair (h1, h2) is a solution of the linear differential system{
ḣ1(t) = −u2(t)λ1(t)h1(t) − u2(t)λ2(t)h2(t) ,

ḣ2(t) = u1(t)λ1(t)h1(t) + u1(t)λ2(t)h2(t) .

Since h1(0) = h2(0) = 0 by construction, we deduce by the Cauchy–Lipschitz theo-
rem that h1(t) = h2(t) = 0 for any t ∈ [0, δ]. In that way, we have constructed an
abnormal lift of γ on the interval [0, δ]. We can in fact repeat this construction on
a new interval of the form [δ, 2δ] (with initial condition p(δ)) and finally obtain an
abnormal lift of γ on [0, 1]. By Proposition 5.2, we conclude that γ is singular.

B.2 Proof of Proposition 4.8. The fact that ΣΔ is a closed subset of M is
obvious. Let us prove that it is countably (n − 1)-rectifiable. Since it suffices to
prove the result locally, we can assume that we have

Δ(x) = Span
{
f1(x), . . . , fn−1(x)

} ∀x ∈ V ,

where V is an open neighborhood of the origin in R
n. Moreover, doing a change of

coordinates if necessary, we can also assume that

fi =
∂

∂xi
+ αi(x)

∂

∂xn
∀i = 1, . . . , n − 1,

where each αi : V −→ R is a C∞ function satisfying αi(0) = 0. Hence for any
i, j ∈ {1, . . . n − 1} we have

[fi, fj ] =
[(

∂αj

∂xi
− ∂αi

∂xj

)
+

(
∂αj

∂xn
αi − ∂αi

∂xn
αj

)]
∂

∂xn
,

and so

ΣΔ =
{

x ∈ V
∣∣∣ (∂αj

∂xi
− ∂αi

∂xj

)
+

(
∂αj

∂xn
αi − ∂αi

∂xn
αj

)
= 0 ∀i, j ∈ {1, . . . , n − 1}

}
.

For every tuple I = (i1, . . . , ik) ∈ {1, . . . , n − 1}k we denote by fI the C∞ vector
field constructed by Lie brackets of f1, f2, . . . , fn−1 as follows,

fI =
[
fi1, [fi2 , . . . , [fik−1

, fik ] . . .]
]
.

We call k = length(I) the length of the Lie bracket fI . Since Δ is nonholonomic,
there is some positive integer r such that

R
n = Span

{
fI(x) | length(I) ≤ r

} ∀x ∈ V .

It is easy to see that, for every I such that length(I) ≥ 2, there is a C∞ function
gI : V → R such that

fI(x) = gI(x)
∂

∂xn
∀x ∈ V .

Defining the sets Ak as

Ak :=
{
x ∈ V | gI(x) = 0 ∀I such that length(I) ≤ k

}
,

we have

ΣΔ =
r⋃

k=2

(Ak \ Ak+1) .
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We now observe that, thanks to the implicit function theorem, each set Ak \ Ak+1

can be covered by a countable union of smooth hypersurfaces. Indeed assume that
some given x belongs to Ak\Ak+1. This implies that there is some J = (j1, . . . , jk+1)
of length k +1 such that gJ(x) 
= 0. Set I = (j2, . . . , jk+1). Since gI(x) = 0, we have

gJ (x) =
(

∂gI

∂xj1

(x) +
∂gI

∂xn
(x)αj1(x)

)
∂

∂xn

= 0 .

Hence, either ∂gI
∂xj1

(x) 
= 0 or ∂gI
∂xn

(x) 
= 0. Consequently, we deduce that we have the
following inclusion

Ak \ Ak+1 ⊂
⋃

length(I)=k

{
x ∈ V | ∃ i ∈ {1, . . . , n} such that

∂gI

∂xi
(x) 
= 0

}
.

We conclude easily. Finally, the fact that any Goh path is contained in ΣΔ is obvious.
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Applications, 58. Birkhäuser Boston Inc., Boston, MA (2004).
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