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A ZOLL COUNTEREXAMPLE TO A GEODESIC

LENGTH CONJECTURE

Florent Balacheff, Christopher Croke and

Mikhail G. Katz

Abstract. We construct a counterexample to a conjectured inequality
L ≤ 2D, relating the diameter D and the least length L of a nontrivial
closed geodesic, for a Riemannian metric on the 2-sphere. The construc-
tion relies on Guillemin’s theorem concerning the existence of Zoll surfaces
integrating an arbitrary infinitesimal odd deformation of the round metric.
Thus the round metric is not optimal for the ratio L/D.

1 Zoll Surfaces and Guillemin Deformation

Given a Riemannian metric on the 2-sphere, we consider its diameter D and
the length L of its shortest nontrivial closed geodesic. The first inequality
relating the two invariants was obtained by the second-mentioned author
[C], who proved the bound L ≤ 9D. The constant in the inequality was
successively improved by M. Maeda [M], A. Nabutovsky and R. Rotman
[NR1], and S. Sabourau [S]. The best known bound is L ≤ 4D. Nabutovsky
and Rotman conjectured the inequality L ≤ 2D [NR1, Intro.], meaning that
the round metric of S2 is optimal for the relationship between these two
invariants. We give a few examples of surfaces satisfying the case of equality
L = 2D:

1. a surface of revolution in R
3 obtained from an ellipse with major axis

on the x-axis;
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2. a circular “pillow”, obtained by doubling the flat unit disk;
3. a more general pillow obtained by doubling the region enclosed by a

closed curve of constant width in the plane;
4. rotationally invariant Zoll surfaces.

The existence of such diverse examples may have led one to expect that
none of these metrics is optimal for the ratio L/D.

It turns out that a counterexample to the inequality L ≤ 2D may be
found among Zoll surfaces, namely surfaces all of whose geodesics are closed,
and whose prime geodesics all have equal length 2π ([Z]). More precisely,
while the rotationally symmetric Zoll surfaces do satisfy (the boundary
case of equality of) the conjectured inequality, there exist other families of
Zoll surfaces such that L > 2D. Such surfaces can be obtained as smooth
variations of the round metric.

Let (S2, g0) be the 2-sphere endowed with the round metric. Denote by
a : S2 → S2 its antipodal map. Let C∞

odd(S2, R) be the space of smooth odd
functions on S2, i.e. smooth real valued functions f satisfying f ◦ a = −f .
The following existence theorem for Zoll surfaces is due to V. Guillemin [G].

Theorem 1.1 (Guillemin). For every f ∈ C∞
odd(S2, R), there exists a

smooth one-parameter family gt = Ψf
t g0 of smooth Zoll metrics such that

Ψf
0 = 1, the conformal factor Ψf

t satisfies (dΨf
t /dt)|t=0 = f , and all prime

periodic geodesics of (S2, gt) have length 2π.

Note that this result is a converse to P. Funk’s theorem [F], to the effect
that a smooth variation gt = Φtg0 of the round metric by smooth Zoll
metrics necessarily satisfies (dΦt/dt)|t=0 ∈ C∞

odd(S2, R). A survey of Zoll
surfaces appeared in [B, Chap. 4], see also [LM].

We exploit such Guillemin deformations to show that the round metric
is not even a local maximum of the ratio L/D among Zoll surfaces. The
precise statement of our result relies on the notion of a Y -like set.

Definition 1.2. A subset of the unit circle is called Y -like if it contains a
triple of vectors {u, v,w} such that there exist positive real numbers a > 0,
b > 0, c > 0 satisfying au + bv + cw = 0. A subset of the unit tangent
bundle US2 of S2 will be called Y -like if its intersection with the unit
tangent vectors at p is Y -like for every p ∈ S2.

Note that a subset of the unit circle is Y -like if and only if every open
semicircle contains an element of the set.

We will denote by ds0 the element of length for the round metric g0

on the sphere. The notion of an amply negative function is motivated in
Remark 2.4 below.
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Definition 1.3. An odd function f is called amply negative if the set of
unit tangent directions to great half-circles τ , satisfying

∫

τ fds0 < 0, is a
Y -like subset of US2.

Theorem 1.4. If f is an amply negative function then the smooth vari-

ation {gt} = Ψf
t g0 of the round metric g0 by smooth Zoll metrics satisfies

L(gt) > 2D(gt) for sufficiently small t > 0.

Combined with the existence of amply negative functions proved in
section 5, our theorem yields the desired counterexample.

These metrics also provide a counterexample to another conjecture of
Nabutovsky and Rotman [NR2, Conj. 1, p. 13]. Their conjecture would
imply that for every point p of a closed Riemannian manifold (M,g), there
is a nontrivial geodesic loop at p of length at most 2D(g). Here a geodesic
loop is a geodesic segment with identical endpoints. This conjecture is
easily seen to be true for non-simply connected manifolds, by exploiting
non-contractible loops, cf. [K]. In our examples, the shortest geodesic loop
at every p has length 2π, while the diameter is strictly smaller than π.

Sections 2 and 3 contain a proof of Theorem 1.4 modulo on the exis-
tence of amply negative functions. The existence of the latter is verified in
sections 4 and 5.

2 Amply Negative Odd Functions

Our goal is to find amply negative functions f ∈ C∞
odd(S2, R), such that

the corresponding Guillemin deformation gt of the standard round metric
g0 satisfies D(gt) < π for t small enough (while all geodesics remain closed
of length 2π). By the compactness of the unit tangent circle bundle US2,
we obtain the following lemma.

Lemma 2.1. For every amply negative function f there is a constant

ν(f) > 0 with the following property. For every (p, v) ∈ US2, there is

a great half-circle τ issuing from p ∈ S2, forming an acute angle with v,

and satisfying
∫

τ fds0 < −ν(f).

Denote by L0 the length functional with respect to the round metric g0.
Given a geodesic segment γ of length L0(γ) < π, we denote by Pγ the 1-
parameter family of piecewise geodesic paths with the following two prop-
erties:

• The path joins the endpoints of γ,
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• The path consists of a pair of imbedded geodesic segments of equal
length.

Elements of Pγ are parametrized by the non-smooth midpoint of the
piecewise geodesic path, which traces out the equidistant great circle of the
two endpoints. We let SPγ ⊂ Pγ be the closed subfamily consisting of the
shorter paths, namely

SPγ =
{

τ ∈ Pγ | L0(τ) ≤ π
}

.

If γ is a great semi-circle, define Pγ to be the circular family of great half-
circles joining the endpoints of γ, and the subfamily SPγ to be the family
of paths forming either an acute or a right angle with γ at the endpoints.
The following lemma is obvious but crucial.

Lemma 2.2. The family SPγ for a geodesic segment γ with L0(γ) = π is

the limit of the families SPγi
for subarcs γi of γ of length tending to π. In

fact, if γi is any sequence of minimizing geodesic segments converging to γ,

then SPγi
converges to SPγ .

Our main technical tool in the next section will be the following result.

Lemma 2.3. If f is amply negative then there is an ǫ > 0 so that for all

geodesic segments γ with π − ǫ ≤ L0(γ) ≤ π, there is a path τ ∈ SPγ with
∫

τ fds0 < −ν(f).

Proof. If no such ǫ exists, then there is a sequence {γi} with L0(γi) < π
and L0(γi) → π such that all τ ∈ SPγi

satisfy
∫

τ fds0 ≥ −ν(f). There
is a convergent subsequence such that γ′

i(0) → γ′(0) with L0(γ) = π. By
Lemma 2.2, the family SPγi

converges to SPγ . By the continuity of f , for
every τ ∈ SPγ we have

∫

τ fds0 ≥ −ν(f), contradicting the assumption that
the function f is amply negative. �

Remark 2.4. Given a piecewise geodesic τ over which the integral of f
is negative, we will show in the next section that the length of τ decreases
under the Guillemin deformation. If, in addition, the curve τ has length
at most π with respect to the metric g0, then the length with respect to
the metric gt will be shorter than π. That is why we need to work with
piecewise geodesics specifically in SPγ . In order to make the continuity
argument above work, one needs to find in each SPγ , a curve τ over which
f integrates negatively. This leads to the amply negative condition we
introduced.
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3 Diameter of Guillemin Deformation

Let Ψf be the conformal factor of the Guillemin deformation, as in The-
orem 1.1 above. Thus, the metric gt = Ψf

t g0 is Zoll, while Ψf
0 = 1 and

(dΨf
t /dt)|t=0 = f . Consider the arclength parametrisation τ(s) of a path

τ ⊂ S2 for the round metric g0.

Lemma 3.1. The energy Et(τ) of a path τ ⊂ S2 for the metric gt satisfies

dEt

dt

∣

∣

∣

∣

t=0

=

∫

τ
f ◦ τ ds0 .

Proof. We have

d

dt
Et(τ) =

d

dt

∫ L0(τ)

0
gt

(

τ ′(s), τ ′(s)
)

ds

=
d

dt

∫

τ
Ψf

t ◦ τ ds0

=

∫

τ

(

d

dt
Ψf

t

)

◦ τ ds0

=

∫

τ
f ◦ τ ds0

at t = 0. �

Proposition 3.2. If f is amply negative, then the associated Guillemin

deformation gt = Ψf
t g0 as in Theorem 1.1 satisfies D(gt) < π for all suffi-

ciently small t > 0.

Proof. Denote by Lt and dt the length and the distance with respect to the
metric gt. Let ǫ > 0 be chosen as in Lemma 2.3, and let Aǫ ⊂ S2 × S2 be
the set of nearly antipodal pairs, defined by setting

Aǫ =
{

(p, q) ∈ S2 × S2 | d0(p, q) ≥ π − ǫ
}

.

By continuity, there is a δ > 0 such that whenever 0 < t < δ, we have

dt(p, q) < π for all (p, q) 6∈ Aǫ . (3.1)

Now let (p, q) ∈ Aǫ, and γ a minimizing geodesic joining them. Let

N(γ) =

{

τ ∈ SPγ

∣

∣

∣

∫

τ
fds0 ≤ −ν(f)

}

,

and let N = {τ ∈ N(γ) | π − ǫ ≤ L0(γ) ≤ π}. By Lemma 2.3, whenever

π − ǫ ≤ L0(γ) ≤ π ,
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the set N(γ) is non-empty. Furthermore, the sets N and N(γ) are compact.
Now for small t > 0, define a continuous function F : N × R → R by
setting F (τ, t) = dEt(τ)/dt. By Lemma 3.1 and the definition of N , we
have F (τ, 0) ≤ −ν(f). Hence by the compactness of N and the continuity
of F there is a real δ′ > 0 so that for all 0 ≤ t ≤ δ′ and all τ ∈ N , we have
F (τ, t) < −1

2ν(f). Therefore the energy given by the expression
∫ L0(τ)

0
gt

(

τ ′(s), τ ′(s)
)

ds0

is strictly decreasing in t. Hence for 0 < t ≤ δ′, it is strictly smaller than
the quantity

∫ L0(τ)

0
g0

(

τ ′(s), τ ′(s)
)

ds0 = L0(τ) .

In particular, we obtain for 0 < t ≤ δ′,

Lt(τ) =

∫ L0(τ)

0

√

gt

(

τ ′(s), τ ′(s)
)

ds0

≤ L0(τ)
1

2

(
∫ L0(τ)

0
gt

(

τ ′(s), τ ′(s)
)

ds0

)1/2

< L0(τ) .

Thus for each pair (p, q) ∈ Aǫ and every 0 < t ≤ δ′, there is a path τ from p
to q with Lt(τ) < L0(τ) ≤ π. Hence distt(p, q) < π. Combined with (3.1),
this yields the diameter bound D(gt) < π whenever 0 < t < min{δ, δ′},
proving the proposition as well as Theorem 1.4. �

4 Fine Sets and Their Properties

Recall that an open hemisphere is an open ball of radius π/2 centered at
any point of the unit sphere. The construction of amply negative functions
in section 5 exploits fine sets, in the following sense.

Definition 4.1. A spherical pointset X is called fine if the following three
conditions are satisfied:

1. No triple of X is collinear;
2. No triple of great circles pp′, where p, p′ ∈ X, is concurrent other than

at points of X (as well as their antipodal points);
3. Every open hemisphere contains at least 3 of the points of X.

Note that the non-collinearity implies, in particular, that X contains
no pair of antipodal points. Meanwhile, condition (3) implies that at every
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point of the sphere, there is a Y -like set of tangent directions leading to
points of X.

To see that fine sets exist, start with the set of 4 vertices of the regular
inscribed tetrahedron. This gives a set with at least one point in every
open hemisphere. We replace each point of the tetrahedron by a generic
triple of nearby points. The non-collinearity and non-concurrency follow
from genericity, and property (3) follows by construction.

Definition 4.2. Given a fine pointset X, choose ǫ(X) > 0 such that

1. The closed ǫ(X) balls centered at the points of X ∪−X are disjoint;

2. There are at least 3 points of X in B(p, π/2− ǫ(X)) for every p ∈ S2.

We note that property (3) of fineness along with standard compactness
arguments shows that such a positive ǫ(X) exists.

Lemma 4.3. Let X be a fine set and choose ǫ(X) as above. Let Σ the set

of unit vectors in US2 tangent to geodesic segments τ of length π satisfying

the following two conditions:

• τ(0, π) ∩−X = ∅;

• τ(ǫ(X), π − ǫ(X)) ∩ X 6= ∅.

Then Σ is Y -like.

Proof. Fix a unit vector v at p ∈ S2 and let γ be the corresponding geodesic
segment of length π. We need to find a w ∈ Σ at p making an acute angle
with v. Let H be the (closed) hemisphere obtained as the union of the
τ ∈ SPγ . Then by assumption there are at least three points of X (call
them p1, p2, and p3) in the interior of H and at a distance greater than ǫ(X)
from the boundary of H hence the endpoints of γ. Hence there are at least
3 geodesic segment τ1, τ2, and τ3 in the interior of SPγ passing through the
points pi, i = 1, 2, 3. If two of these paths coincide (say τ1 = τ2) then τ1

passes through p1 and p2 so the initial point p of γ is not in X and τ1 avoids
−X (by condition 1 of being fine). If all of these paths are pairwise distinct
and also pass through points of −X (say −p4,−p5, and −p6 respectively)
then the initial point p of γ would lie on the 3 great circles p1p4, p2p5,
p3p6 which contradicts either condition 2 (if p /∈ X ∪−X) or condition 1 (if
p ∈ X∪−X). Thus we see that there is a τ in the interior of SPγ containing
an element of X at least ǫ(X) from the endpoints, and no element of −X
in its interior. The tangent vector of τ is the w we seek. �
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5 Existence of Amply Negative Functions

The goal of this section is to prove the following proposition.

Proposition 5.1. There exist amply negative functions.

We will construct such functions by defining odd functions that approx-
imate the sum of ±δ (Dirac delta) functions centered at points of −X and
X for a fine set X. For our approximate δ functions we take for each p ∈ S2

the smooth function δǫ
p with support included in the ball B(p, ǫ) with

δǫ
p(q) = exp(1/ǫ) · exp

(

1

d(p, q) − ǫ

)

for q ∈ B(p, ǫ).

We will use the following (nearly obvious) lemma.

Lemma 5.2. If γ is a diameter of B(p, ǫ) (i.e. geodesic through the center

of length 2ǫ) and τ is any geodesic segment in B(p, ǫ) then
∫

τ δǫ
p ≤

∫

γ δǫ
p

with equality holding if and only if τ is also a diameter.

Proof. To see this (since δǫ
p ≥ 0) we can assume (by extending τ if needed)

that τ runs from a boundary point to a boundary point and has length
2l < 2ǫ. Since for t ≤ l we have d(p, τ(t)) ≥ ǫ − t = d(p, γ(t)) we have

∫

τ
δǫ
p = 2

∫ l

0
δǫ
p(τ(t))dt ≤ 2

∫ l

0
δǫ
p(γ(t)) < 2

∫ ǫ

0
δǫ
p(γ(t)) =

∫

γ
δǫ
p. �

We are now ready to define our functions.

Definition 5.3. For ǫ(X) > ǫ > 0 set

f ǫ
X =

∑

pi∈X

(δǫ
−pi

− δǫ
pi

) .

Note that f ǫ
X is a smooth odd function. We will now prove that for

sufficiently small ǫ > 0 the function f ǫ
X is amply negative.

Lemma 5.4. For every v ∈ US2 there is an ǫ(v) with ǫ(X) > ǫ(v) > 0
and an open neighborhood U(v) of v in US2 (note that the base point also

varies) such that for all w ∈ U(v) there is a geodesic segment τ of length π
whose initial tangent vector makes an acute angle with w (hence it starts

at the base point of w) and
∫

τ
f ǫ

X < 0

for all ǫ(v) > ǫ > 0.
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Note that the ǫ(v) > 0 we find in the proof below will tend to 0 as the
base point of v tends to X (while not being in X). This turns out not to
be a problem since by the compactness of US2 a finite number U(vi) cover
US2 and hence we can take any ǫ less than the smallest of the ǫ(vi) and
have that f ǫ

X is amply negative. This therefore proves Proposition 5.1.

Proof of Lemma 5.4. To prove the lemma, we consider two cases. First
assume that the base point of v is not in X ∪ −X. Let τ (whose existence
is promised in Lemma 4.3) be a geodesic segment of length π making an
acute angle with v that misses −X and passes through at least one p ∈ X
that has distance greater than ǫ(X) from its endpoints. Thus we can choose
ǫ(v) so small that τ misses B(q, 2ǫ(v)) for all q ∈ −X. Now for w in a small
enough neighborhood U of v, let τ̄ be the geodesic segment of length π
through the base point of w and p. For small enough U , τ̄ will still miss all
the B(q, ǫ(v)) for q ∈ −X while τ̄ will make an acute angle with w. Thus,
for ǫ(v) ≥ ǫ > 0, we have f ǫ

X ≤ 0 along τ̄ and is negative near p so we see
∫

τ̄ f ǫ
X < 0.

In the second case the basepoint p0 of v is in X ∪−X. We will assume
p0 ∈ −X since the other case is the same (by reversing orientation of all
geodesics). Note that any τ making an acute angle with v which intersects
X in its interior cannot also intersect −X in its interior by property 1 of
a fine set. So there are two (in fact three) geodesic segments τ1 and τ2 in
the interior of SPγ that pass through a p1 and a p2 respectively and no
element of −X in its interior and such that p1 and p2 have distance greater
than ǫ(X) from p0 and −p0. Now we choose ǫ(v) > 0 so small that for all
q ∈ −X and q 6= p0, B(q, 2ǫ(v)) miss both τ1 and τ2. Again for w in a small
neighborhood U of v let τ̄1 (resp. τ̄2) be the geodesic segment of length π
starting at the basepoint of w and passing through p1 (resp. p2).

If U is small enough we can assume both that τi make acute angles with
w and that for all q ∈ −X with q 6= p0, τ̄1 and τ̄2 miss B(q, ǫ(v)). Along τ̄1

(resp. τ̄2) we have, for ǫ(v) ≥ ǫ > 0, f ǫ
X ≤ 0 except on

τ̄1 ∩ B(p0, ǫ)

(respectively, on τ̄2 ∩B(p0, ǫ)). Both τ̄1 ∩B(p0, ǫ) and τ̄2 ∩B(p0, ǫ) cannot
be diameters since that would put p0, p1 and p2 on the same great circle
(namely the one through p0 and the base point of w). So assume τ̄1∩B(p0, ǫ)
is not a diameter. Then since we know on the other hand that τ̄1 ∩B(p1, ǫ)
is a diameter, Lemma 5.4 tells us that

∫

τ̄1
f ǫ

X < 0. �
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