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Abstract. Let F be a holomorphic foliation of P
2 by Riemann surfaces. Assume

all the singular points of F are hyperbolic. If F has no algebraic leaf, then there
is a unique positive harmonic (1, 1) current T of mass one, directed by F . This
implies strong ergodic properties for the foliation F . We also study the harmonic
flow associated to the current T .

1 Introduction

Let F be a holomorphic foliation of the complex projective space P
2. Our purpose

is to study the ergodic properties of F , using the theory of harmonic currents as
developed by the authors in [FoS].

A holomorphic foliation can be seen as a rational vector field in C
2. Our goal is

to develop an ergodic theory for the dynamics of such vector fields. The two main
difficulties are: the presence of singularities (they always exist) and the absence
(generically) of algebraic leaves. And hence it is not clear where to start the analysis.
Our method is geometric but requires difficult estimates. To our knowledge, this
is the first paper where global dynamical results for rational vector fields (without
invariant algebraic leaves) are obtained. The subject is classical and related to
polynomial vector fields in R

2 [LP], [I2].
We first recall a few facts. Let π : C

3 \ {0} → P
2 denote the canonical

projection. The foliation π∗F can be defined in C
3 by a global 1-form ω0 =

a1(x)dx1 + a2(x)dx2 + a3(x)dx3 where the aj(x) are homogeneous polynomials of
the same degree δ ≥ 1, without common factors. Moreover since every line through
the origin is in the kernel of ω0, they satisfy the condition

∑
xiai(x) = 0

The degree of F is by definition degF = d := deg δ−1. It represents the number
of tangencies of a generic line L, with F . Let Fol(d) denote the space of foliations
of degree d. The space of coefficients of 1 forms of degree δ is a projective space.
The subspace given by

∑
xiai = 0 is a linear subspace, so also a projective space.

The subspace of 1 forms of degree δ of the form Hλ where H is a homogeneous
polynomial of degree 0 < δ′ < δ and λ is a 1-form of degree δ − δ′ is an algebraic
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subvariety. This gives that Fol(d) is the complement of an algebraic subvariety of
some P

N .
It follows from the Bézout theorem that the foliation F has a finite number of

singularities bounded uniformly by δ2+δ+1. If in a coordinate chart U , F is defined
by ω1 = α(z,w)dz + β(z,w)dw, then sing(F) ∩ U = {α = β = 0}. We can assume
that all the singular points are in the same C

2, {pj = (αj , βj)}j≤N .
Definition 1. Suppose there is a change of coordinates around pj sending pj to 0
and such that ω0(z,w) = zdw−λwdz +O(z,w)2 where λ = a+ ib and b is a nonzero
number. We say in this case that the singularity is hyperbolic and that we are in
the Poincaré domain.

The following is a classical fact due to Poincaré, see [Ch].
Theorem 1. Suppose that the singular point is hyperbolic. Then there is a local
biholomorphic change of coordinates so that the form ω0 in these coordinates can
be written ω0 = zdw − λwdz (with the same λ).

We remark that the form ω0 is invariant under scaling except for multiplication
by a constant which of course does not affect the zero set. Hence we can assume
that the linearization is valid in a fixed large ball, in particular in a neighborhood
of the unit bidisc.

The following result is due to LinsNeto–Soares [LiS] (we give only the two-
dimensional version, their result is also valid in P

k). The result uses Jouanolou’s
example of a foliation in P

2 without algebraic leaves, see also [LP].
Theorem 2. There exists a real Zariski dense open subset H(d) ⊂ Fol(d) such that
any F ⊂ H(d) satisfies

(1) F has only hyperbolic singularities and no other singular points.
(2) F has no invariant algebraic curve.

The global behavior of foliations is not well understood. It is unknown whether
every leaf of a given foliation, F , clusters at a singular point. This problem, known
as the problem of existence of a minimal exceptional set is discussed in [CLS] and
[BoLM] for example. It is conjectured in [I2] that a generic holomorphic foliation
by Riemann surfaces in P

k has dense leaves. Mjuller [M] has constructed non-empty
open sets of holomorphic foliations by Riemann surfaces in P

2 such that every leaf
is dense. Recently Loray–Rebelo [LoR] have constructed similar examples in P

k.
The dynamical properties of holomorphic foliations in P

2 with the line at infinity
invariant have been established by Hudai–Verenov, and Ilyashenko [I1] and [I2].

L. Garnett [G] has introduced the notion of harmonic measure for smooth folia-
tions (without singularities) of a compact Riemannian manifold. She studied their
ergodic properties. The article by Candel [Ca] contains a recent approach to that
theory. In [FoS] the authors have shown that a C1 laminated set in P

2, without
singularities carries a unique harmonic current of mass 1 directed by the lamina-
tion. Very recently Deroin and Kleptsyn [DK] developed the theory of diffusion on
transversally conformal foliations and they showed that there are only finitely many
harmonic measures. The uniqueness of harmonic measure for the Ricatti equation
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has been established by Bonatti–Gómez-Mont [BoG]; the ergodic study is continued
in Bonatti–Gómez-Mont and Viana [BoGV].

For holomorphic foliations (with singularities) of P
2 the following analogue was

proved in [BS]. It is valid for laminations by Riemann surfaces with a small set of
singularities, see [BS] and [FoS].
Theorem 3. Let F be a holomorphic foliation of P

2. There exists a positive current
T on P

2, of bidimension (1, 1) and mass 1 which is harmonic, i.e. i∂∂T = 0. Moreover
in any flow box B (without singular points), the current can be expressed as

T =
∫

hα[Vα]dµ(α) . (1.1)

The functions hα are positive harmonic on the local leaves Vα, and µ is a Borel mea-
sure on the transversal. The function H : B → R

+, H|Vα
= hα is Borel measurable.

Observe that if F is defined in B by a smooth form ω0, then T ∧ω0 = 0. We will
say that the current is directed by F .

A theory of intersection of positive harmonic currents of bidegree (1, 1) is devel-
oped in [FoS]. The main purpose of the present article is, using that intersection
theory, to prove
Theorem 4. Let F be a holomorphic foliation in P

2 without algebraic leaves.
Assume that all singular points of F are hyperbolic. Then there is a unique positive
harmonic current T of mass one, directed by F .

A consequence of Theorem 4 and of results from [FoS] is that the foliations F
with only hyperbolic singular points are uniquely ergodic in a very strong sense,
i.e. the current T can be obtained by an averaging process on the leaves, whose
limit is independent of the leaf. Recall that foliations with only hyperbolic singular
points and no invariant algebraic curve don’t admit a non-zero directed positive
closed current, see for example [FoS, p. 981]. It follows that the leaves are covered
by the unit disc ∆. Denote by ∆r the disc of radius r, centered at zero. We get the
following convergence result.
Corollary 1. Let F ∈ H(d). Let φ : ∆ → L be the universal covering of a leaf L.
Let τr := φ∗

[
log+ r

|z|∆r

]
/
∥∥φ∗

[
log+ r

|z|∆r

]∥∥. Then limr→1 τr = T , where T is the
unique harmonic current directed by F .

In section 26, Remark 2, we will show a similar uniqueness result for some classes
of foliations with non-hyperbolic singularities.

Observe that under the assumption of Theorem 4 there is no non-zero positive
closed current directed by F ; see [FoS] and Brunella [Br] for a general discussion of
closed cycles for foliations by Riemann surfaces.

A consequence of the above uniqueness result is that there is a unique minimal
set with singularities for foliations as in Theorem 4. On that minimal set every leaf
is dense. However this does not imply that leaves are dense in P

2. This also does
not solve the minimal set problem.

The intersection theory of positive ∂∂-closed currents of bidegree (1,1) in [FoS]
is valid on compact Kähler manifolds. We just recall a few facts restricting to P

2.
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Let T be a positive harmonic current of bidegree (1, 1) in P
2, i.e. i∂∂T = 0. Let

ω denote the standard Kähler form on P
2. Then T can be written as

T = cω + ∂S + ∂S + i∂∂u

with c ≥ 0 and S is a (0, 1) form such that S, ∂S, ∂S are in L2 and u ∈ L1. The
current ∂S depends only on T and is zero only if T is closed. So the quantity∫

∂S ∧ ∂S which we called energy, measures how far T is from being closed. The
expression ∫

T ∧ T :=
∫

(cω + ∂S + ∂S) ∧ (cω + ∂S + ∂S)

makes sense and is finite. It is independent of the choice of S. Moreover if T1 and
T2 are two positive harmonic currents such that

∫
T1 ∧ T2 = 0, then T1 and T2

are proportional mod(∂∂u). For currents directed by foliations and whose support
does carry a positive closed current, then

∫
T1 ∧ T2 = 0 implies that T1, T2 are

proportional, see [FoS, Lem. 3.10]. On the other hand the currents directed by
holomorphic foliations can be expressed in a flow box B as

T =
∫

hα[Vα]dµ(α)

as described in Theorem 3. It is hence possible to consider the geometric self-
intersection of such currents. More precisely consider suitable automorphisms Φε

of P
2 which are close to the identity. For a current T directed by a foliation F , it

is possible to define the geometric intersection T ∧g Φε∗(T ) as the measure on the
complement of the singular points given locally by the expression∫ [ ∑

p∈Jε
α,β

hα(p)hε
β(p)δp

]
dµ(α)dµ(β) . (1.2)

Here Jε
α,β denotes the points of intersection of the plaque Lα and the plaque (Φε)∗Lβ

and δp denotes the Dirac mass at p. It is shown in [FoS] that
∫

T1 ∧ T2 =
limε→0

∫
T1 ∧g T2,ε ([FoS, Lem. 19]). To show that

∫
T1 ∧ T2 = 0 it is enough to

count the number of points of intersection of a given plaque with perturbed plaques
and estimate the harmonic functions. This is done in [FoS, Th. 6.2] when we assume
that the currents T1, T2 are supported on a minimal laminated compact set, which
is transversally of class C1.

Indeed the minimality hypothesis is not used and the argument there gives the
following stronger result.
Theorem 5. Let F be a C1 lamination with singularities by Riemann surfaces
in P

2. Assume that there is a laminated compact set X without singularities. Then
there is a unique positive harmonic current T , of mass 1, directed by F .

Proof. We know that there is a harmonic current T1 of mass 1, supported on X. Let
T2 be another such current directed by F , but not necessarily supported by X. The
argument in [FoS, Th. 6.2] shows that limε→0

∫
T1 ∧g T2,ε = 0. Hence

∫
T1 ∧ T2 = 0.

Therefore T1 and T2 are proportional. �
We now deal with the case where the foliation is holomorphic and the current T

contains in its support singular points (which are all hyperbolic).
We will prove the following more general result than Theorem 4.
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Theorem 6 (Main Theorem). Let F be a holomorphic foliation of P
2 without

algebraic leaves. Let X be a closed invariant set for F . Assume that all singular
points of X are hyperbolic. Then there is a unique positive harmonic current T of
mass 1, directed by X.

The result is valid for a laminated set (X,L, E) where X \E is a C1 lamination by
Riemann surfaces. The set E = {p1, . . . , p�} is a finite set and in a neighborhood Uj

of every singular point pj we assume that X ∩Uj is holomorphically equivalent to a
lamination contained in z = Cwλj , λj = aj + ibj, bj �= 0. One of the consequences of
the main theorem is Corollary 3 (section 26) which says that appropriate weighted
averages of the leaves always converge to the current T. This is a strong ergodic
theorem. The uniqueness of T also permits to show that λ→ Tλ is continuous when
λ varies in a holomorphic family of foliations as considered in the main theorem.

It is easy to see that ∂T = τ ∧ T , τ is a (1, 0) form along leaves. We consider in
section 27 a metric gT := i

2τ ∧ τ and we show that the curvature κ of that metric
satisfies κ(gT ) = −1. We also define a finite measure µT := iτ ∧ τ ∧T . We have that
the measures vary continuously with the foliation. The metric gT and the measure
µT were introduced by S. Frankel [Fr] in the nonsingular case. Candel, Gómez-Mont
and Glutsyuk have given good criteria for the conformal type of leaves for singular
foliations see [CaG] and [Gl].

Acknowledgement. We thank several referees for their very helpful suggestions
and observations.

2 Sketch of Proof of the Main Theorem

Let T be a harmonic current of mass 1 supported on X and directed by F . In a flow
box

T =
∫

hα[Vα]dµ(α) .

We have to estimate the number of intersection points of a plaque with per-
turbed plaques near a singularity and also to study the behaviour of the harmonic
continuation h̃α of hα along a leaf near a hyperbolic singularity.

This will give us that the geometric intersection is zero and hence
∫

T ∧ T = 0.
Since T is arbitrary, the intersection theory of positive harmonic currents and the
nonexistence of a closed current imply that T is unique.

After a change of coordinates we do the analysis for the form ω0 = zdw− λwdz,
λ = a + ib, b �= 0, near (0, 0).

In order to study positive harmonic currents near 0, we cover a deleted neigh-
borhood of 0 by finitely many “flow boxes” (Bi)1≤i≤N , with 0 ∈ Bi for every i. Each
Bi = Si ×∆, where Si is a sector in C such that the map ζ → eζ is injective in a
strip in the ζ−plane γ1 < �ζ < γ2, with values in Si, ∆ is a disc in C, centered
at 0. So the leaves in Bi are graphs over all or part of Si. We will consider them
as the local plaques. For the sake of argument we will use the sector S given by
0 < u < 2π.
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The strategy for the proof is to choose a family of automorphisms (Φε) of P
2,

close to the identity and to estimate the integral (1.2) in the flow boxes (Bi)i≤N .
For that purpose we need to estimate the growth of the harmonic continuation of
hα along the leaves and also the number of intersection points of a plaque Lα, with
perturbed plaques Lε

β.
Away from singularities this is just the proof given in [FoS] for a lamination.

In the present case we have to divide the phase space into many regions where the
estimates are technically different. The estimates are different close to separatrices
and in other regions. This requires a precise subdivision of a polydisc near a singular
point. We will describe the subdivision in more detail after stating Theorem 7.

Consider again the foliation zdw − λwdz = 0, λ = a + ib, b �= 0. Notice that
if we flip z and w, we replace λ by 1/λ = λ/|λ|2 = a/(a2 + b2) − ib/(a2 + b2). We
will assume below that the axes are chosen so that b > 0. However, it is important
to note that the estimates are also valid if b < 0. The point is that it will be seen
that the case a = 1 is a degeneracy that complicates the estimates. However if we
flip coordinates, the constant a = 1 becomes a/(a2 + b2) = 1/(1 + b2) < 1. We now
describe a general leaf.

There are two separatrices, (w = 0), (z = 0). Other than that a leaf Lα can be
parametrized by (z,w) = ψα(ζ), z = ei(ζ+(log |α|)/b), ζ = u+iv, w = αeiλ(ζ+(log |α|)/b).
We have |z| = e−v, |w| = e−bu−av.

Notice that as we follow z once counterclockwise around the origin, u increases
by 2π, so the absolute value of |w| decreases by the multiplicative factor of e−2πb.
Hence we cover all leaves by restricting the values of α so that e−2πb ≤ |α| < 1. We
observe that with the above parametrization, the intersection with the unit bidisc
of the leaf is given by v > 0, u > −av/b independently of α. In the (u, v)-plane this
corresponds to a sector S = Sλ with corner at 0 and given by 0 < θ < arctan(−b/a)
where the arctan is chosen to have values in (0, π). Let γ := π

arctan(−b/a) . Then the
map φ : τ → τγ maps this sector to the upper half plane with coordinates (U, V ).
The fact that γ > 1 will be crucial, this is where the hyperbolicity of singularities is
used.

Let hα denote the harmonic function associated to the current T on the leaf Lα.
The local leaf clusters on both separatrices. To investigate the clustering on the
z-axis, we use a transversal Dz0 := {(z0, w); |w| < 1} for some |z0| = 1. We
can normalize so that hα(z0, w) = 1 where (z0, w) is the point on the local leaf
with e−2πb ≤ |w| < 1. So (z0, w) = ψα(ζ0) = ψα(u0 + iv0) with v0 = 0 and
0 < u0 ≤ 2π determined by the equations |z0| = e−v0 = 1 and e−2πb ≤ |w| =
e−bu0−av0 < 1. Let h̃α denote the harmonic continuation along Lα. Define Hα(ζ) :=
h̃α

(
ei(ζ+(log |α|)/b), αeiλ(ζ+(log |α|)/b)) on Sλ.

Proposition 1. The harmonic function H̃α := Hα ◦ φ−1 is the Poisson integral of
its boundary values. So in the upper half plane {U + iV ;V > 0},

H̃α(U + iV ) =
1
π

∫ ∞

−∞
H̃α(x)

V

V 2 + (x− U)2
dx (2.1)
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[for dµ a.e. α]. Moreover,∫
e−2πb≤|α|<1

∫ ∞

−∞
H̃α(x)|x| 1γ −1

dx dµ(α) < ∞ . (2.2)

Proof. Let An := {(z0, w); e−2πb(n+1) ≤ |w| < e−2πbn, n = 0, 1, . . . }. The holonomy
map around (z = 0) as described above gives a map

An → An+1 .

The transverse masses of these sets are
∫
A0

Hα(ζ0 + 2πn)dµ(α) = Bn(ζ0). The
functions Bn(ζ) are harmonic on {v > 0, u > −av/b − 2πn}. Since the transverse
mass is finite on (z = z0) and since the annuli An are disjoint we get,

∞∑
n=0

Bn(ζ0) < ∞ . (∗)

We get a similar estimate along the other separatrix. It follows that∫
A0

( ∫
∂Sλ

Hα

)
dµ(α) < ∞ . (2.3)

We show now that for almost every α, H̃α(x, y) is equal to the Poisson integral
of its restriction to y = 0. Every positive harmonic function on the upper half plane
can be written as a sum of a Poisson integral and cy, c ≥ 0. The problem is to show
that c = 0.

We consider the restriction L′
α of Lα to the bidisc ∆2(0, e−1). The leaf L′

α equals
ψα(S′

λ) where S′
λ := {v > 1, u > −av/b + 1/b}. The image of this sector under φ is

a domain of the form ∆′
λ,α = {x + iy; y > γα(x)} where γα is a continuous strictly

positive function so that γα → +∞ when |x| → ∞. The function B1 is bounded on
the edges of S′

λ. So B̃1 := B1 ◦ φ−1 is bounded on the graph of γα and hence there
is no term cy, c > 0, in the canonical representation of B̃1. The same argument is
valid for the functions H̃α at least for µ almost every α.

It follows that the representation as a Poisson integral is valid. On the other
hand, estimate (2.3) can be read as∫

e−2πb≤|α|<1

∫ ∞

0
Hα(u)du dµ(α) < ∞ and

∫
e−2πb≤|α|<1

∫ ∞

0
Hα

(
uei arctan(−b/a))du dµ(α) < ∞ ,

which, after a change of variables, gives the estimates (2.1) and (2.2) on the growth
of H̃α. �

Corollary 2. Let F be a foliation as in Theorem 6. Then for any positive harmonic
current T , directed by F , the transverse measure µ is diffuse.

Proof. Assume µ has an atomic part, i.e. a Dirac mass at p. Let L be the leaf
through p. The restriction T to L is a non-zero positive harmonic current. We can
normalize so that the transverse measure is one. Then we have a positive harmonic
function h defined on L.

If there is a flow box B, away from the singularities, such that L crosses B on
infinitely many plaques on which h is bounded below by a strictly positive constant,
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then we get a contradiction because the mass of T should be finite. In any flow box
the leaf must intersect in infinitely many plaques Pj and the harmonic functions
hj = h|Pj

must go uniformly to zero as j →∞.
Let f denote the lifting of the harmonic function to the unit disc, so f = h ◦ φ

where φ : ∆ → L is a universal covering map. Since f > 0 there is a set S ⊂ ∂∆ of
full measure on which f has nontangential limits f(eiθ).
Lemma 1. The function f(eiθ) = 0 a.e. on S.

Proof. Suppose that f(eiθ0) > 0, θ0 ∈ S. We consider the curve φ(reiθ0). By the
above argument, it follows that this curve can only intersect finitely many plaques in
any flow box away from the singular points. But if some plaque is visited infinitely
many times as r → 1, we see that h must be constant on this plaque, hence constant
on the leaf, a contradiction. It follows that the curve converges to a singular point.

Then it follows from [FoS, p. 991] that this only happens on a set of measure 0,
because almost every radius leaves some ball around the singularity. �

A consequence of the lemma is that the function f is given by the convolution
of the Poisson kernel with a singular measure. This implies that the function f
is unbounded. Outside any given neighborhood of the singular set the function
must be uniformly bounded. But then the Poisson integrals of Proposition 1 are
also uniformly bounded. Hence by Proposition 1 the function is uniformly bounded
everywhere, a contradiction. �

Remark 1. It is convenient in some later calculations to replace |x|1/γ−1 by
(|x|+ 1)1/γ−1 in the integral of Proposition 1. By Harnack, this doesn’t effect the
order of magnitude of the integral.

We decompose a leaf Lα into plaques Lα,n where 2nπ < u < 2(n + 1)π. Here
n is an integer. [Note that if a ≤ 0, these n must be positive to have a nonempty
intersection with the bidisc.] In this way Lα,n is a graph over some part of the z-axis.

We let (z,w) be a point in Lα parametrized by a point (u, v). We write in polar
coordinates, u + iv = ρeiθ with ρ =

√
u2 + v2, θ = arctan(v/u). Then in the (U, V )

plane this point corresponds to U + iV = φ(u + iv) = (u + iv)γ ,
U + iV = ργeiγθ = ργ cos(γθ) + iργ sin(γθ) .

We hence get the following formula for the function Hα(u + iv).
Lemma 2.

Hα(u + iv) =
1
π

∫
H̃α(x)

ργ sin(γθ)
(ργ sin(γθ))2 + (x− ργ cos(γθ))2

dx . (2.4)

Now we write the formula for the perturbed foliation Fε = (Φε)∗F where Φε is
a family of automorphisms of P

2. We will need as in [FoS] that all our estimates
stay valid when composing Φε with Ψ in a neighborhood of the identity in U(3)
(depending on ε). We will need that Φε moves the singular point in a direction away
from the separatrices near all the hyperbolic points. We also need the Φε to have
a common fixed point p in the support of T and that the tangent space of the leaf



1342 J.E. FORNÆSS AND N. SIBONY GAFA 

through p moves to first order with ε. So we write in C
2

Φε(z,w) =
(
α(ε), β(ε)

)
+ (z,w) + εO(z,w)

with α′(0), β′(0) �= 0. We will also need that λ �= β′(0)/α′(0).
Suppose that (z,w) is a point in the perturbed bidisc Φε(∆2), not on a separatrix

of Fε. Then Φ−1
ε (z,w) is on some plaque Lβ,m with parameters (u′, v′). We ignore

the problem that we need u′ �= 2π because we can also use other flow boxes. The
original point (z,w) is on a plaque Lε

β,m and we get
Lemma 3.

Hε
β(u′ + iv′) =

1
π

∫
H̃ε

β(y)
(r′)γ sin(γθ′)

((r′)γ sin(γθ′))2 + (y − (r′)γ cos(γθ′))2
dy . (2.5)

Next, for each (α, β,m, n, ε), let Iα,β,m,n,ε denote the set of points p in a slightly
smaller bidisc which belong to Lα,n∩Lε

β,m. Our main technical result is the following
Theorem,which says that the geometrical intersection is zero, so that the current T
is unique, see section 26.
Theorem 7.

lim
ε→0

∫ ∑
m,n

∑
p∈Iα,β,m,n,ε

h̃α,n(p)h̃ε
β,m(p)dµ(α)dµ(β) = 0 .

Proof. During the proof it will be convenient to divide up the region of integration
into several pieces. For constants 0 < c < C and δ > 0, we consider the regions
around one of the finitely many singular points.The regions are defined as follows:

D1 =
{
(z,w) ; |z| ≤ cε , |w| ≤ cε

}
D2 =

{
(z,w) ; |z| ≤ Cε , |w| ≤ Cε

} \D1

D3 =
{
(z,w) ; |z| ≤ δ , |w| ≤ δ

} \D1 ∪D2 .

By [FoS], for any given δ > 0, the contribution to the integral from outside
these regions goes to zero when ε → 0, this uses that the measure is diffuse. We
will subdivide the regions D1,D2,D3 further. For most of these new subregions the
contributions go to zero with ε. But for some of the subregions, we need δ to go to
zero for the contribution to go to zero. Hence in the following arguments, δ will be
an unspecified small number which will later go to zero. So the way the argument
works is, in order to show that the integral becomes smaller than some given τ > 0
when ε→ 0, we first fix a very small δ and then let ε→ 0. This is the case at the end
of sections 8, 9. We will constantly use the finiteness of the integral in Proposition 1,
in order to show that the limits are zero.

The constants c and C are determined by the geometry of the leaves near the
singularity. We choose c > 0 small enough that the region D1 does not contain the
singular point of the perturbed foliation. In fact we will make c > 0 so small that
the slopes of the leaves of the perturbed foliation are almost constant on D1. The
precise estimate is done in Lemma 4.

For the constant C we want to make sure that the singular point of the perturbed
foliation is inside ∆2(0, C|ε|/2). So for example the choice C = 3max{|α′(0)|, |β′(0)|}
will work.



GAFA ERGODICITY OF HARMONIC CURRENTS 1343 

3 Proof of Theorem 7 for the intersection points in D1 (close to
the singularity)

Lemma 4. Let δ > 0. Then for all small enough c, |ε|, the slopes of the leaves of Fε,
dw
dz ∈ ∆

(
λβ′(0)

α′(0) ; δ
)

at all points in D1.

Proof. Recall that
Φε(z,w) =

(
α(ε), β(ε)

)
+ (z,w) + εO(z,w) .

We estimate ωε, the form defining Fε in D1. We have
ωε := (Φε)∗(ω0)

= O(ε2) +
[
(z − α(ε))(1 + Aε) + Bε(w − β(ε))

]
dw

+
[
(z − β(ε))(−λ + Cε) + Dε(z − α(ε))

]
dz

= O(ε2) +
(
z − α(ε)

)
dw +

(
z − β(ε)

)
(−λ)dz

=
(
z − α′(0)ε +O(ε2)

)
dw − λ

(
w − β′(0)ε +O(ε2)

)
dz .

So,
dw

dz
=

λ(w − β′(0)ε +O(ε2))
z − α′(0)ε +O(ε2)

= λ
β′(0)
α′(0)

+ · · ·
The lemma follows immediately. �
The following lemma describes the lamination associated to ωε = (Φε)∗(ω0) near

D1 after possibly shrinking c further and is an immediate consequence of Lemma 4.
Lemma 5. The plaques of Fε near D1 are of the form w = fη(z) where fη(η) = 0
and f ′

η ∈ ∆
(
λβ′(0)

α′(0) ; δ
)
.

To estimate the geometric wedge product we will consider three types of points
in a plaque Lε

β,m, namely if they are close to where the plaque crosses the z-axis
(Case 1) or w-axis or otherwise (Case 2). The estimates for h̃ε

β are fairly independent
of which case we are in because of the choice of c, but hα is very sensitive to the
cases.

We estimate the function h̃ε
β on these plaques. First observe that the points in

B2 := ∆2((−α′(0)ε,−β′(0)ε); 2c|ε|) are mapped by Φε to a region covering D1.

Lemma 6. There is a constant C > 0 so that if some leaf Lε
β intersects D1 for a

parameter value u + iv then
1− a

b
log

(
1/|ε|) − C < u <

1− a

b
log

(
1/|ε|) + C , (2.6)

and
log

(
1/|ε|) − C < v < log

(
1/|ε|) + C . (2.7)

Proof. First recall that z = ei(u+iv+(log |β|/b)). Hence |z| = e−v. But (z,w) ∈ B2.
Hence (|α′(0)| − 2c

)|ε| < |z| = e−v <
(|α′(0)|+ 2c

)|ε| .
So

log |ε| − C < −v < log |ε|+ C

which gives the estimate on v.
The inequalities for u follow also by a straightforward manipulation. �



1344 J.E. FORNÆSS AND N. SIBONY GAFA 

In what follows we use the notation A ∼ B to mean that there is a constant L
so that 1

LA ≤ B ≤ LA and L is chosen independent of the other parameters. Also
A � B means similarly that there is a constant L so that A ≤ LB.

Next we estimate the value of h̃ε
β for a point (u, v) as in the previous lemma.

Let θ, tan θ = v/u be the argument. By Lemma 6, it follows that, for all small ε,
tan θ ∼ b/(1−a) �= b/(−a) so that the angle θ is uniformly inside the sector Sλ for all
small ε. It follows that γθ is strictly inside a sector 0 < s < γθ < π− s < π for some
fixed s > 0 which only depends on λ and is independent of all other choices, and for
all small enough ε. This implies that sin γθ > k > 0 uniformly. As in Lemma 2, for
a point in D1, this allows us to estimate the kernel for Hε

β(u + iv).
Lemma 7. Suppose (u + iv) is such that the corresponding point on the leaf Lε

β is
in D1, then if |y| < 2(log(1/|ε|))γ ,

(r)γ sin(γθ)
((r)γ sin(γθ))2 + (y − (r)γ cos(γθ))2

∼ 1
(log(1/|ε|))γ .

On the other hand if |y| ≥ 2(log(1/|ε|))γ then
(r)γ sin(γθ)

((r)γ sin(γθ))2 + (y − (r)γ cos(γθ))2
∼ (log(1/|ε|))γ

y2 .

Hence using Lemma 2 and Lemma 7 we get
Lemma 8. We have the following estimate of Hε

β for points in D1:

Hε
β ∼

1
(log(1/|ε|))γ

∫
|y|<2(log(1/|ε|))γ

H̃β(y)dy+
(
log(1/|ε|))γ

∫
|y|≥2(log(1/|ε|))γ

H̃β(y)
y2 dy .

(2.8)
Next, we fix α, β and plaques Lα,n, Lε

β,m and assume they intersect in D1. By
Lemma 6, there are conditions on m for this to happen, namely,

2mπ < u′ < 2(m + 1)π

and
1− a

b
log

(
1/|ε|) − C < u′ <

1− a

b
log

(
1/|ε|) + C .

So,
1− a

b
log

(
1/|ε|) − C − 2π < 2mπ <

1− a

b
log

(
1/|ε|) + C .

We pick a plaque Lε
β,m with an intersection point in D1. Then this plaque is of the

form w = f(z) = fη(z) where fη(η) = 0 and f ′ is as in Lemma 5, i.e. close to λβ′(0)
α′(0) .

Next consider a plaque Lα,n. Then z = ei(u+(log |α|/b))−v and w = αeiλ(ζ+(log |α|)/b).
Hence 2nπ < u < 2(n + 1)π and |w| = e−bu−av .

We estimate the location of the intersection points.
Case 1 : |z− η| < d|η|, 0 < d� 1. The constant d will be chosen small enough,

in order to satisfy an inequality at the end of the proof of Lemma 9.
We estimate the parameter values (u, v) for Lα,n.
Since |η|(1 − d) < |z| = e−v < |η|(1 + d), log(1/|η|) − 2d < v < log(1/|η|) + 2d.

Note that also, for the point (z,w) to be on Lε
β,m with |z − η| < d|η| we must have

that |w| < 2|λ| |β′(0)||α′(0)|d|η|.
Lemma 9. For (z,w) to be an intersection point between Lα,n and Lε

β in D1 with
|z − η| < d|η|, we must have
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(i) 2nπ < u < 2(n + 1)π;
(ii) 2nπ > 1−a

b log(1/|η|) − C;
(iii) log(1/|η|) − 2d < v < log(1/|η|) + 2d.

Moreover there is at most one such intersection point.

Proof. We have already proved (iii) and (i) is given. To prove (ii):
|w| = e−bu−av

< 2|λ| |β
′(0)|

|α′(0)|d|η| .
So,

bu− av < log |η|+ C .

Using the estimate on v we get u > ((1 − a)/b) log(1/|η|) − C ′ where C ′ is an
absolute constant.

To prove the last part, notice that the slope of Lε
β is about λ while the slope

of Lα is λw/z so is at most |λ|(2|λ| |β′(0)||α′(0)|d||η|)/(|η|(1 − d)) � |λ| if we just make d
small enough. �

Lemma 10. We estimate the value of Hα at intersection points between Lα,n and
Lε

β in D1 with |z − η| < d|η|. We have two cases: (i) 1−a
b log(1/|η|) − C < 2πn <

C log(1/|η|). Then we have

Hα(u + iv) ∼
∫
|x|<2(log(1/|η|))γ

H̃α(x)
(log(1/|η|))γ +

∫
|x|>2(log(1/|η|))γ

H̃α(x)
(log(1/|η|))γ

x2 .

In the next case, (ii) 2πn ≥ C log(1/|η|), we then have U+iV ∼ nγ+inγ−1 log
( 1
|η|

)
and

Hα(u + iv) ∼
∫
|x−U |<nγ−1 log(1/|η|)

H̃α(x)
nγ−1 log(1/|η|)dx

+
∫
|x−U |>nγ−1 log(1/|η|)

H̃α(x)nγ−1 log(1/|η|)
(x− U)2

dx .

Proof. Case (i): We use that sin(γθ) is bounded below by a strictly positive constant.
Case (ii) is clear. �

Case 2: Our next step is to discuss intersection points of Lα,n and Lε
β,m in D1

for which |z − η| > d|η|. Note that Lε
β,m intersects the w-axis close to

(
0,−λβ′(0)

α′(0)η
)

and the above argument applies as well to the region
∣∣w + λβ′(0)

α′(0)η
∣∣ < d|η|. Hence

we only need to consider intersections of Lα,n and Lε
β,m when

∣∣w + λβ′(0)
α′(0)η

∣∣ > d|η|
and also |z − η| > d|η|, call this set S′.

Note: This is the place in the argument where we will assume that a �= 1.
Since we are excluding the points near where Lε

β,m crosses the two axes, we have
the following estimate on points in Lε

β,m: For some fixed constant R > 1 we have
that

1
R |w| < |z| < R|w|

for points in S′.
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Hence 1
Re−av−bu < e−v < Re−av−bu. So bu − log R < (1 − a)v < bu + log R.

Therefore 2nbπ/(1− a)− C ′ < v < 2nbπ/(1 − a) + C ′. �

Lemma 11 (Intersection lemma). There is a constant N > 1 so that if we cover the
rectangle 2nπ < u < (2n + 1)π, 2nbπ/(1− a)−C ′ < v < 2nbπ/(1− a) + C ′ with N
equal squares, then there are at most two intersection points in each square.

Proof. We choose N so that, in each square, the slope of Lα,n is almost constant
and will produce at most one intersection point. The exception is when the slope is
close to λβ′(0)

α′(0 . Then there might be a tangency between Lα,n and Lβ. Hence there
might be two or more intersection points counted with multiplicity. We will show
there are at most 2. Note that the slope S of Lα,n is given by the quotient λw/z.

dw/dz = λw/z

= λ
αeiλ(ζ+(log |α|/b))

ei(u+(log |α|/b))−v

=
λαe((log |α|)/b)(−b+ia)

ei(log |α|)/b

eiλζ

eiζ
.

So, S = Cei(λ−1)ζ and ∂S
∂ζ = i(λ− 1)S ∼ i(λ− 1)λβ′(0)

α′(0) ∼ 1.
This says that the slope of Lα,n near intersection points vary very rapidly, while

we also see from Lemma 5 that the slope of Lε
β,m varies slowly. This implies that

near tangential intersection points there are at most two of them. �
We estimate the value of Hα at points p where Lα,n and Lε

β,m intersect in D1

away from the axes
(|z − η| > d|η|, ∣∣w + λβ′(0)

α′(0)η
∣∣ > d|η|).

Lemma 12. For the intersection point to be in D1 we need |n| > |1−a| log(1/|ε|)
2πb −C1.

Then

Hα(p) ∼
∫
|x|<C2|n|γ

H̃α(x)dx

|n|γ +
∫
|x|>C2|n|γ

H̃α(x)|n|γ
x2 dx .

Proof. For the first estimate, recall that |z| = e−v < c|ε| and that 2nbπ/(1−a)−C ′ <
v < 2nbπ/(1 − a) + C ′. For the integral estimate we see that (u + iv)γ = U + iV
with V ∼ |n|γ and |U | <∼ |n|γ . Then the estimate is immediate from the Poisson
kernel. �

We complete the estimate in Theorem 7 for D1.
Theorem 8. The contribution to the geometric wedge product of T and Tε from
intersection points in D1 goes to zero when ε→ 0.

Proof. Let I = Iε consist of all intersection points p in D1. They are labeled p =
pα,β,n,m,� if they belong to the plaques Lα,n, Lε

β,m and � lists them (with multiplicity)
if there are more than one. By Lemma 6,

(1 − a) log(1/|ε|)
2πb

−C < m <
(1− a) log(1/|ε|)

2πb
+ C

so in particular there are at most finitely many values of m and there is a uniform
upper bound on the number of them. We can hence restrict to one fixed value of m.
Next recall that from Lemma 8 we have the estimate (2.8) on the value of Hε

β at
each intersection point.
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By Lemmas 9 and 11 there is at most a uniformly bounded number of intersection
points with Lα,n and Lε

β,m in D1. Hence when we estimate the geometric wedge
product we can factor out the contribution from β and we get, using (2.8), an upper
bound of∫ (∑

p

Hε
β

)
dµ(β) � 1

(log(1/|ε|))γ
∫
|y|<2(log(1/|ε|))γ

H̃β(y)dydµ(β)

+
(
log(1/|ε|))γ

∫
|y|>2(log(1/|ε|))γ

H̃β(y)
y2 dydµ(β) .

We collect a few estimates that will be used repeatedly in the Lebesgue dominated
convergence theorem.
Lemma 13. We have the following integral estimates.

(I)
1

(log(1/|ε|))γ
∫
|y|<2(log(1/|ε|))γ

H̃β(y)dy

∼
∫
|y|<2(log(1/|ε|))γ

H̃β(y)|y|1/γ−1 |y|
(log(1/|ε|))γ

1
(|y|+ 1)1/γ

dy

and
(II) If U ∼ nγ , then∫

|x−U |<nγ−1 log(1/|η|)

H̃α(x)
nγ−1 log(1/|η|)dx

∼
∫
|x−U |<nγ−1 log(1/|η|)

H̃α(x)|x|1/γ−1 dx

log(1/|η|) . �

We want to show that ∫ ∑
p

Hε
βdµ(β) → 0 .

We use the a priori bound that we found and estimate (I) in the previous lemma.
The Lebesgue dominated convergence theorem and Proposition 1 gives the result.
End of the proof of Theorem 8. After integrating with respect to µ and using (I) of
Lemma 13 we can use the dominated convergence theorem. We estimate the value
of Hα at one of the intersection points p ∈ D1. From Lemma 2 we have

Hα(p) =
1
π

∫
H̃α(x)

ργ sin(γθ)
(ργ sin(γθ))2 + (x− ργ cos(γθ))2

dx .

Case (i): |z − η| < d|η|, |n| < C log(1/|η|). By Lemma 9 it follows that
V = ργ sin(γθ) ∼ (log(1/|η|))γ and |U | <∼ (log(1/|η|))γ . So we get

Hα(p) ∼
∫
|x|<C(log(1/|η|))γ

H̃α(x)dx

(log(1/|η|))γ +
∫
|x|>C(log(1/|η|))γ

H̃α(x)
(log(1/|η|))γ

x2 dx .

Adding up we get
∑

|n|<log(1/|η|)
hα,n(pn) ∼

∫
|x|<C(log(1/|η|))γ

H̃α(x)|x|1/γ−1
( |x|

(log(1/|η|))γ
)1−1/γ

dx

+
∫
|x|>C(log(1/|η|))γ

H̃α(x)|x|1/γ−1
(

(log(1/|η|))γ
|x|

)1+1/γ

dx .
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Integrating with respect to µ we get that
∑

|n|<log(1/|η|) hα,n(pn) → 0 as ε → 0
since |η| < ε. We use again the estimates in Lemma 13 and Proposition 1.

Case (ii): |z− η| < d|η|, |n| > C log(1/|η|). Then by Lemma 9, n > 0 and we
have Un ∼ nγ , V ∼ nγ−1 log(1/|η|). From Lemma 10 we have

Hα(p) ∼
∫
|x−U |<nγ−1 log(1/|η|)

H̃α(x)
log(1/|η|)x1/γ−1dx

+
∫
|x−U |>nγ−1 log(1/|η|)

H̃α(x)
nγ−1 log(1/|η|)
|x− U |2 dx .

Therefore,∑
n>C log(1/|η|)

Hα,n(p) ∼
∑

n>C log(1/|η|)

∫
|x−Un|<nγ−1 log(1/|η|)

H̃α(x)
log(1/|η|)x1/γ−1dx

+
∑

n>C log(1/|η|)

∫
|x−Un|>nγ−1 log(1/|η|)

H̃α(x)
nγ−1 log(1/|η|)
|x− Un|2 dx

= I + II .

We are going to estimate I and II separately. Note that for a given x, the number
of integers n for which Un − nγ−1 log(1/|η|) < x < Un + nγ−1 log(1/|η|) is bounded
above by a multiple of log(1/|η|). It follows that I <∼ ∫ ∞

(log(1/|η|))γ/C H̃α(x)x1/γ−1dx.
This contribution goes to zero as |ε| → 0 since |η| < |ε|.

To study II we estimate Un more precisely. We have 2nπ < un < 2(n + 1)π
and log(1/|η|) − 2d < vn < log(1/|η|) + 2d, and (un + ivn)γ = uγ

n(1 + ivn/un)γ =
uγ

n + γuγ−1
n ivn + En, with |En| � uγ

n(vn/un)2 ∼ nγ−2(log(1/|η|))2 .
Hence |Un− (2nπ)γ | � nγ−1 log(1/|η|). We can hence replace Un by (2nπ)γ in II

without changing the order of magnitude of the expression. We divide II into pieces
IIA,IIB,IIC . In IIA and in IIC , x is such that n > C log(1/|η|).

In IIB, n has a range of the form n > x1/γ + r(x) log(1/|η|), r(x) ∼ 1 and in
C log(1/|η|) < n < x1/γ − s(x) log(1/|η|), s(x) ∼ 1. So

II = IIA + IIB + IIC .

For IIA we have

IIA =
∫ C1(log(1/|η|))γ

x=−∞

∑
n>C log(1/|η|)

H̃α(x)
nγ−1 log(1/|η|)
|x− nγ |2 dx

∼
∫
|x|<C1(log(1/|η|))γ

H̃α(x)
log(1/|η|)

[10 log(1/|η)|]γ − x
dx

+
∫ −C1(log(1/|η|))γ

x=−∞
H̃α(x)

log(1/|η|)
[10 log(1/|η)|]γ − x

dx

∼
∫
|x|<C1(log(1/|η|))γ

H̃α(x)|x|1/γ−1
( |x|

[log(1/|η|)]γ
)1−1/γ

dx

+
∫ −C1(log(1/|η|))γ

x=−∞
H̃α(x)|x|1/γ−1

(
(log(1/|η|))γ

|x|
)1/γ

dx .
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For

IIB ∼
∫ ∞

x=C1(log(1/|η|))γ

∑
n>x1/γ+r(x) log(1/|η|)

H̃α(x)
nγ−1 log(1/|η|)
|x− nγ |2 dx

∼
∫ ∞

x=C1(log(1/|η|))γ

H̃α(x)|x|1/γ−1dx ,

and

IIC ∼
∫ ∞

x=C2(log(1/|η|))γ

∑
C log(1/|η|)<n<x1/γ−s(x) log(1/|η|)

H̃α(x)
nγ−1 log(1/|η|)
|x− nγ |2 dx

IIC ∼
∫ ∞

x=C2(log(1/|η|))γ

H̃α(x)x1/γ−1dx .

Integrating with respect to µ we get∫
II dµ(α) ∼

∫
α

IIAdµ(α) +
∫

α
IIBdµ(α) +

∫
α

IICdµ(α)

�
∫

α

∫
|x|>(log(1/|η|))γ

H̃α(x)|x|1/γ−1dxdµ(α)

+
∫

α

∫
|x|<C1(log(1/|η|))γ

H̃α(x)|x|1/γ−1
( |x|

(log(1/|η|))γ
)1−1/γ

dxdµ(α) ,

which tends to 0 as η → 0. (Recall that |η| < ε.)

Case (iii): |w + λη| < d|η|. This case is symmetric to cases (i) and (ii), so
done.

Case (iv): |z|, |w| < c|ε|; |z − η|, |w + λη| > d|η|. We recall the estimate of
Hα,n(p) at intersection points from Lemma 12. The contribution W to the geometric
wedge product is∫

α

[ ∑
|n|>[|1−a| log(1/|ε|)]/[2πb]−C

∫
|x|<2|n|γ

H̃α(x)dx

|n|γ +
∫
|x|>2|n|γ

H̃α(x)|n|γ
x2 dx

]
dµ(α) .

We divide the first integral into two pieces, so W = WA + WB + WC . We get

WA ∼
∫

α

[ ∫
|x|<2|[|1−a| log(1/|ε|)]/[2πb]−C|γ

∑
|n|>[|1−a| log(1/|ε|)]/[2πb]−C

H̃α(x)dx

|n|γ
]
dµ(α)

∼
∫

α

[ ∫
|x|<2|[|1−a| log(1/|ε|)]/[2πb]−C|γ

H̃α(x)|x|1/γ−1
( |x|

(log(1/|ε|))γ
)1−1/γ

dx

]
dµ(α)

→ 0 as ε→ 0 .

For WB replacing similarly the sum by an integral, we have

WB ∼
∫

α

[ ∫
|x|>2|[|1−a| log(1/|ε|)]/[2πb]−C|γ

∞∑
(|x|/2)1/γ

H̃α(x)dx

|n|γ
]
dµ(α)

WB ∼
∫

α

[ ∫
|x|>2|[|1−a| log(1/|ε|)]/[2πb]−C|γ

H̃α(x)|x|1/γ−1dx

]
dµ(α)

→ 0 ,
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again by Proposition 1. Finally, for WC we get

WC ∼
∫

α

[ ∫
|x|>2| |1−a| log(1/|ε|)

2πb
−C|γ

(|x|/2)1/γ∑
|n|=[|1−a| log(1/|ε|)]/[2πb]−C

H̃α(x)|n|γdx

x2

]
dµ(α)

∼
∫

α

[ ∫
|x|>2|[|1−a| log(1/|ε|)]/[2πb]−C|γ

H̃α(x)|x|1/γ−1dx

]
dµ(α) ,

and hence WC → 0.
Now we have finished the part of the proof of Theorem 8 where we consider

intersection points in D1 = {|z|, |w| < c|ε|}.

4 Proof of Theorem 7 for Intersection Points in D2 ⊂ ∆2(0, C|ε|)
close to the separatrices

We split D2 into regions A′ and B where A′ denotes points close to the separatrices
and B denotes the rest. Then A′ has 2 pieces. It suffices to consider one, A =
{(z,w); c|ε| < |z| < C|ε|, |w| < r|ε|} where 0 < r < c depends on the choice of C.

We consider intersection points of Lα,n and Lε
β,m in A. We parametrize Lα with

(u+iv) and Lε
β with u′+iv′. In A we have for Lα,n: log(1/|ε|)−C < v < log(1/|ε)+C

and |w| = e−bu−av < r|ε|. So u > 1−a
b log(1/|ε|) − C and n > 1−a

2πb log(1/|ε|) − C.
For Lε

β,m we have in A, since |z′| < C|ε| that v′ > log(1/|ε|) − C. Therefore,
1
b

log
(

1
|ε|

)
− 2c

b
− av′

b
< u′ <

1
b

log
(

1
|ε|

)
− av′

b
+

2c
b

.

The m’s are estimated later and they depend on which case we are in, a = 0 or
not.
Lemma 14. If a �= 0, there is an integer N so that for small r, there are at most N
intersection points between any pair Lα,n and Lε

β,m.

Proof. This follows from considering the slopes of the plaques, given by the forms
ω, ωε. Namely the slope of the Lα,n is very small and the slope of Lε

β,m has close to
constant larger modulus and close to constant argument on each of N small squares
where there might be an intersection. �

Next we estimate hα,n at an intersection point.

Case (i): n < log(1/|ε|) : In U, V coordinates we have V ∼ (log(1/|ε|))γ ,
|U | � (log(1/|ε|))γ . Using the expression as a Poisson integral we get

hα,n(p) ∼
∫
|x|<C(log(1/|ε|))γ

Hα(x)|x|1/γ−1 |x|
(log(1/|ε|))γ |x|

−1/γdx

+
∫
|x|>C(log(1/|ε|))γ

Hα(x)|x|1/γ−1 (log(1/|ε|))γ
|x| |x|−1/γdx .

Case (ii): n > log(1/|ε|). Then U ∼ nγ , V ∼ nγ−1 log(1/|ε|). Hence

hα,n(p) ∼
∫

Hα(x)
nγ−1 log(1/|ε|)

(nγ−1 log(1/|ε|))2 + |x− nγ |2 dx .



GAFA ERGODICITY OF HARMONIC CURRENTS 1351 

We observe that this integral has already been estimated above. Namely see
Case (ii), integrals I + II.

So we get∑
n>10 log(1/|ε|)

hα,n(p) �
∫
|x|>(log(1/|ε|)γ

Hα(x)|x|1/γ−1dx

+
∫
|x|<C(log(1/|ε|))γ

Hα(x)|x|1/γ−1
( |x|

log(1/|ε|)
)γ

dx .

We estimate next hε
β,m(p). From the above estimates for u′, v′ we see that

|u′| <∼ v′ and hence V ′ ∼ (v′)γ , |U ′| � (v′)γ . We then have

hε
β,m(p) ∼

∫
|y|<C(v′)γ

Hβ(y)|y|1/γ−1
( |y|

(v′)γ

)1−1/γ 1
v′

dy

+
∫
|y|>C(v′)γ

Hβ(y)|y|1/γ−1
(

(v′)γ

|y|
)1+1/γ 1

v′
dy .

Note that for a �= 0, we have that
log

(
1/|ε|)/a− bu′/a− 2c/|a| < v′ < log

(
1/|ε|)/a− bu′/a + 2c/|b|

and log
(
1/|ε|)/a− 2mπb/a− C < v′ < log

(
1/|ε|)/a− 2mπb/a + C .

So v′ > log(1/|ε|) and m/a < 1
2πb log(1/|ε|)(1/a − 1) + C.

Define
Σ :=

∑
m/a< 1

2πb
log(1/|ε|)(1/a−1)+C

hε
β,m .

Then using the above estimates,

Σ �
∑
m

∫
|y|<C(log(1/|ε|)/a−b2mπ/a)γ

Hβ(y)|y|1/γ−1

∗
( |y|

(log(1/|ε|)/a − b2mπ/a)γ

)1−1/γ

∗ 1
| log(1/|ε|)/a − b2mπ/a|dy

+
∑
m

∫
|y|>C(log(1/|ε|)/a−b2mπ/a)γ

Hβ(y)|y|1/γ−1

∗
(

(log(1/|ε|)/a − b2mπ/a)γ

|y|
)1+1/γ

∗ 1
log(1/|ε|)/a − b2mπ/a

dy = I + II .

We study I and II separately. We split I into two parts:
I = IA + IB .

For IA we have

IA =
∫
|y|<C(log(1/|ε|))γ

∑
m/a< 1

2πb
log(1/|ε|)(1/a−1)+C

Hβ(y)|y|1/γ−1

∗
( |y|

(log(1/|ε|)/a − b2mπ/a)γ

)1−1/γ

∗ 1
| log(1/|ε|)/a − b2mπ/a|dy

∼
∫
|y|<C(log(1/|ε|))γ

Hβ(y)|y|1/γ−1
( |y|

(log(1/|ε|))γ
)1−1/γ

dy .
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We estimate

IB =
∫ ∞

|y|=C(log(1/|ε|))γ

∑
m/a<

log(1/|ε|)
2πab

−(|y|/C)1/γ

Hβ(y)|y|1/γ−1

∗
( |y|

(log(1/|ε|)/a − b2mπ/a)γ

)1−1/γ

∗ 1
| log(1/|ε|)/a − b2mπ/a|dy

∼
∫ ∞

|y|=C(log(1/|ε|))γ

Hβ(y)|y|1/γ−1dy .

For II we have

II ∼
∑

1
2πb

log(1/|ε|)(1/a−1)>m/a> log(1/|ε|)
2πab

−(|y|/C)1/γ

∫ ∞

|y|=C(log(1/|ε|))γ

Hβ(y)|y|1/γ−1

∗
(

(log(1/|ε|)/a − b2mπ/a)γ

|y|
)1+1/γ

∗ 1
log(1/|ε|)/a − b2mπ/a

dy

�
∫ ∞

|y|=C(log(1/|ε|))γ

Hβ(y)|y|1/γ−1dy .

With these estimates it follows that Theorem 7 is proved for the region A close
to the separatrices, in the ball D2 provided that a �= 0.

For brevity we skip the case a = 0 which can be handled adapting the estimates.
We next consider the set B of points in ∆2(0, C|ε|) defined above as consisting

of points which are at distance at least r|ε| from all separatrices.

5 Proof of Theorem 7 for Points in B, i.e. Points in D2 which are
at Distance at Least r|ε| from the Separatrices

We estimate Hα on Lα,n ∩ B. We can assume a �= 1, otherwise flip the axes. So
r|ε| < |z| < C|ε|, hence log(1/|ε|) − C ′ < v < log(1/|ε|) + C ′.

Similarly it follows that r|ε| < |w| < C|ε|, therefore 1−a
b log(1/|ε|) − C < u <

1−a
b log(1/|ε|) + C.

Using these estimates on (u, v) and similarly for (u′, v′), Lemma 11 shows that
there is an integer N independent of ε so that if we take any two plaques of two
leaves Lα, Lε

β, then they intersect in B in at most N points. In U, V coordinates,
(u + iv)γ = U + iV , hence V ∼ (log(1/|ε|)γ and |U | <∼ (log(1/|ε|))γ .

This gives

hα,n ∼
∫

Hα(x)
(log(1/|ε|))γ

(log(1/|ε|))2γ + (x− U)2
dx

∼
∫
|x|<C(log(1/|ε|))γ

Hα(x)
(|x|+ 1

)1/γ−1 |x|+ 1
(log(1/|ε|))γ

(|x|+ 1
)−1/γ

dx

+
∫
|x|>(log(1/|ε|)γ

Hα(x)
(|x|+ 1

)1/γ−1 (log(1/|ε|))γ
|x|+ 1

(|x|+ 1
)−1/γ

dx .

It follows from these estimates applied to Hβ as well that Theorem 7 is valid for
intersection points in B.
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6 Theorem 7 for D3 = ∆2(0, δ) \ ∆2(0, C|ε|)
There are 3 regions to consider:

D3 = R1 ∪R2 ∪R3 ,

R1 =
{
C|ε| < |z| < δ , C|ε| < |w| < δ

}
,

R2 =
{
C|ε| < |z| < δ , |w| < C|ε|} ,

R3 =
{|z| < C|ε| , C|ε| < |w| < δ

}
.

Note that since we have assumed a �= 1, the cases of R2 and R3 are not completely
symmetric. We will leave it to the reader to verify that the estimates we do later
for R2 nevertheless hold for R3.

7 Theorem 7 for R1, the Diagonal Part of D3

We first outline our approach. Fix parameters α, β and corresponding plaques
Lα,n, Lε

β,m. Next we divide R1 into dyadic components, rings, {R(p)} in the z-
direction, e−p−1 < |z| < e−p, C|ε| < |w| < δ. Then we estimate hα and hβ on
Lα,n ∩R(p) and Lε

β,m ∩R(p) respectively. Next, for fixed α, β, n,m we estimate the
values of p where the leaves Lα,n, Lε

β,m might intersect, and the number of intersec-
tion points for each such p. Putting this information together we can estimate the
contribution from R1 to the geometric wedge product.

Pick a plaque Lα,n and a point (z,w) in Lα,n ∩ R(p) parametrized by (u, v).
Then e−p−1 < |z| = e−v < e−p, so log(1/δ) < v < log(1/|ε|)−C and log(1/δ) < p <
log(1/|ε|) − C, so 2nπ < u < 2(n + 1)π.

For w we have C|ε| < |w| < δ. So log(1/δ)
b − av

b < u < log(1/|ε|)−log C
b − av

b . We
divide into cases depending on whether a �= 0 or a = 0.

First, assume a �= 0. We choose a constant 0 < s < 1 so that 1
2 < 1 + 2sbπ

a < 3
2 .

Case (i): a �= 0, n < sp, then (u + iv)γ = U + iV ∼ U + ipγ , |U | <∼ pγ . So we
have

Hα,n ∼
∫
|x|<Cpγ

H̃α(x)|x|1/γ−1
( |x|

pγ

)1−1/γ 1
p
dx

+
∫
|x|>Cpγ

H̃α(x)|x|1/γ−1
(

pγ

|x|
)1+1/γ 1

p
dx .

Case (ii): a �= 0, n > sp, so (u + iv)γ = U + iV ∼ nγ + ipnγ−1.
Then

Hα,n ∼
∫
|x−nγ |≤pnγ−1

H̃α(x)
1

pnγ−1 dx +
∫

nγ/2>|x−nγ |>pnγ−1

H̃α(x)
pnγ−1

|x− nγ |2 dx

+
∫

nγ/2<|x−nγ |<2nγ

H̃α(x)
pnγ−1

n2γ
dx +

∫
|x−nγ |>2nγ

H̃α(x)
pnγ−1

x2 dx

= I + II + III + IV
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We will leave the case a = 0 to the reader.
Our next step is to locate for which R(p) there is an intersection between Lα,n

and Lε
β,m.

Fix Lα,n and Lε
β,m and assume (z,w) ∈ Lα,n ∩ Lε

β,m. We can write

z = ei(ζ+(log |α|)/b ,

ζ = u + iv ,

2nπ < u < 2(n + 1)π ,

|z| = e−v .

Also (z,w) = Φε(z′, w′), (z′, w′) ∈ Lβ,m. We have z′ = ei(ζ′+(log |α|)/b, ζ ′ = u′+iv′.
Hence 2mπ < u′ < 2(m + 1)π, |z′| = e−v′ .

So
z = α(ε) + ei(ζ′+(log |β|)/b) + εO(z′, w′) ,

w = β(ε) + βeiλ(ζ′+(log |β|)/b) + εO(z′, w′) .

Our goal is to locate for which R(p) the point (z,w) can belong to. So we need
to find p so that e−p−1 < |z| = e−v < e−p, i.e. we need to get a good estimate for v
in terms of α, β, n,m.

There are 4 unknowns, u, v, u′, v′. However, u ∼ 2nπ, u′ ∼ 2mπ, so we only have
v, v′ left. Also we have two equations for the z and w coordinates respectively. (In
fact, since these are complex equations, we have 4 real equations for the two real
unknowns v, v′.)

Before we proceed we show at first that for there to be an intersection, we actually
must require that n and m are very close.
Lemma 15. If Lα,n and Lε

β,m intersect in R1, it follows that |m− n| ≤ 1.

Proof. Recall that
Φε(z,w) =

(
α(ε), β(ε)

)
+ (z,w) + εO(z,w) .

If δ is chosen small enough, this implies that |εO(z,w)| ≤ σ|ε| for any given 0 <
σ � 1.

We pick two plaques, Lα,n, Lε
β,m and consider intersection points in R1. Let S > 0

be such that |ε|/S < |α(ε)| − σ|ε|, |β(ε)| − σ|ε| < |α(ε)| + σ|ε|, |β(ε)| + σ|ε| < S.
Note that if we increase the constant C used in the definition of D4, we can still
use the same S. When the point is in Lα,n we have |z| = ∣∣ei(ζ+(log |α|)/b

∣∣ = e−v. So
log(1/|δ|) < v < log(1/|ε|) − C, and |w| = ∣∣αeiλ(ζ+(log |α|)/b)

∣∣ = e−bu−av .
If it is also in Lβ,m, then |z′| = ∣∣ei(ζ′+(log |β|)/b)

∣∣ = e−v′ , hence log(1/|δ|) < v′ <

log(1/|ε|) − C. Also |w′| = ∣∣βeiλ(ζ′+(log |β|)/b)
∣∣ = e−bu′−av′ .

Since Lε
β,n = Φε(Lβ,m), the image point can be written

Z = α(ε) + ei(ζ′+(log |β|)/b) + εO(z′, w′) ,

W = β(ε) + βeiλ(ζ′+(log |β|)/b) + εO(z′, w′) .

Consider an intersection point in R1 and set ζ ′ = ζ + c + id. Then
z = Z ,
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e−v−d − S|ε| < e−v < e−v−d + S|ε| ,
e−d − Sev |ε| < 1 < e−d + Sev|ε| .

So Sev|ε| < S(1/(C|ε|)|ε| = S/C � 1, and |d| < 2Sev |ε| < 2S/C.
For the other coordinate,

w = W ,

e−bu−bc−av−ad − S|ε| < e−bu−av < e−bu−bc−av−ad + S|ε| ,
hence Sebu+av |ε| < S/C � 1. We then get easily |bc| < 2Sebu+av |ε|+ |a|2Sev |ε|.

Also, |c + id| < 2S
C

(
1 + 1+|a|

|b|
) � 1. �

It is also convenient to show that α and β must be very close if there is an inter-
section. We estimate first the modulus and next the angle and finally we combine
them.
Lemma 16. Suppose Lα,n intersects Lε

β,m in R1. Then∣∣ log(|β|/|α|)∣∣ ≤ 2S|ε|[ev (b + |a|) + ebu+av
]
.

Proof. We have z = Z, so ei(ζ+(log |α|)/b) = α(ε) + ei(ζ+c+id+(log |β|)/b) + εO(z′, w′).
Hence, ei(ζ+(log |α|)/b)

[
1− eic−d+i(log(|β|/|α|)/b)

]
= α(ε) + εO(z′, w′). Taking the

modulus,
∣∣1− eic−d+i(log |β|/|α|)/b)

∣∣ ≤ Sev|ε| � 1. This gives |log(|β|/|α|)/b| ≤
2Sev|ε|+ 2Sebu+av |ε|/b + 2S(|a|/b)ev |ε|. The lemma follows. �

We remark that the lemma as stated is slightly inaccurate. We only can con-
clude the estimate modulo 2π. However, the parameters e−2πb ≤ |α|, |β| < 1 so this
problem arises when say |α| is close to 1 and |β| is close to e−2πb. We ignore this
technicality which just means that |α| and |β| get close after we follow the leaf Lα

once around 0 counterclockwise. We show that |θ| is small.
Lemma 17. Write β/α = |β/α|eiθ . If there are intersection points in R1, θ is close
to 0 mod 2π. More precisely,

|θ| ≤ 2Sebu+av |ε|[|a|/b + |a|/b + 1
]
+ 2S|ε|ev

[|a|2/b + b + (|a|+ |a|2/b)] .

Proof. We again use the parametrization, w = W , i.e. αeiλ(ζ+(log |α|/b)) =
β(ε) + βeiλ(ζ+c+id+(log |β|/b)) + εO(z′, w′).

So β(ε) + εO(z′, w′) = αeiλ(ζ+(log |α|/b))
[
1 − β

αeiλ(c+id+(log |β|/b))
]
, hence∣∣1− β

αeiλ(c+id+(log |β|/b))
∣∣ ≤ Sebu+av |ε|.

Therefore, Sebu+av |ε| ≥ ∣∣1 − β
αe[−bc−ad−(log |α|/b)]+i[ac−bd+a(log(|β|/|α|))/b]

∣∣, then
1 � Sebu+av |ε| ≥ ∣∣1− e[−bc−ad]+i[θ+ac−bd+a(log(|β|/|α|))/b]

∣∣ and 2Sebu+av |ε| ≥
|θ + ac− bd + a(log(|β|/|α|))/b|.

Therefore,
|θ| ≤ |ac|+ |bd|+ |a|∣∣ log(|β|/|α|)∣∣/b + 2Sebu+av |ε|
≤ Sebu+av |ε|[2|a|/b + 2|a|/b + 2

]
+ S|ε|ev

[
2|a|2/b + 2b + 2(|a| + |a|2/b)] .

This gives the estimate. �
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Lemma 18. Suppose that Lα,n ∩ Lε
β,m ∩R1 �= ∅. Then,

− 1
iλ

log
(

β

α

)
= ie−iζ−i(log |α|)/b

[
α(ε) + εO]

+
1
iλ

e−iλζ e−iλ(log |α|)/b)

α

[
β(ε) + εO]

+O(εe−iζ)2 +O(e−iλζε)2.

Proof. Next we locate more precisely the intersections of Lα,n and Lε
β,m in R1. Let

z = Z.
Then eiζ+i(log |α|)/b = α(ε) + eiζ′+i(log |β|)/b + εO(z′, w′).
We define ∆ by ζ ′ = ζ + ∆. Then

eiζ+i(log |α|)/b − eiζ+i∆+i(log |β|)/b = α(ε) + εO ,

eiζ+i(log |α|)/b
[
1− ei∆+i(log(|β|/|α|)/b

]
= α(ε) + εO ,

hence

1− ei∆+i(log(|β|/|α|)/b = e−iζ−i(log |α|)/b
[
α(ε) + εO]

.

This gives, since ∆ is close to zero,
∆ +

(
log(|β|/|α|))/b = ie−iζ−i(log |α|)/b

[
α(ε) + εO]

+O(εe−iζ)2.
Using w = W , we have

αeiλ(ζ+(log |α|)/b) = β(ε) + βeiλ(ζ+∆+(log |β|)/b) + εO
eiλζ

[
αeiλ(log |α|)/b

)
− βeiλ(∆+(log |β|)/b)] = β(ε) + εO

= eiλζeiλ(log |α|)/b)

∗ [
α− βeiλ(ie−iζ−i(log |α|)/b[α(ε)+εO])] .

So

1− β

α
eiλ(∆+(log |β|/|α|)/b) = e−iλζ e−iλ(log |α|)/b)

α

[
β(ε) + εO]

− log
(

β

α

)
+ iλ

(
∆ + (log |β|/|α|)/b) ∼ e−iλζ e−iλ(log |α|)/b)

α

[
β(ε) + εO]

.

We get for a suitable branch of log,

∆ + log
(|β|/|α|)/b− 1

iλ
log

(
β

α

)
=

1
iλ

e−iλζ e−iλ(log |α|)/b)

α

[
β(ε) + εO]

+O(e−iλζε)2.
Adding the two expressions with ∆, using Lemma 16 and that ∆ is close to zero

gives the lemma. �

To continue the search for intersection points of Lα,n, Lε
β,m in R1, we divide R1

into 3 pieces. We let C1 > 1 be a large constant.
R1A =

{
C|ε| < |z| , |w| < δ , C1|w| ≤ |z|

}
,

R1B =
{
C|ε| < |z| , |w| < δ , C1|z| ≤ |w|

}
,

R1C =
{
C|ε| < |z| , |w| < δ , |z| ≤ C1|w| ≤ C2

1 |z|
}

.

Here the constant C1 is chosen to work in the slope estimates before Lemma 19.
Observe that R1A and R1B are similar. We will leave it up to the reader to verify

the estimates for R1B .
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8 Theorem 7 for R1A, the Part of R1 Close to the z-Axis

We will assume that a �= 0 and leave the verification of the case a = 0 to the reader.
If |w| � |z|, then the second term in the expression for log(β/α) in Lemma 18 on
the right dominates and we get eav+bu|ε| ∼ |(β/α)− 1|, hence 2nπ < u < 2(n + 1)π
and av ∼ log |(β/α) − 1|+ log(1/|ε|) − 2nbπ.

So
∣∣v − log |(β/α)−1|+log(1/|ε|)−2nbπ

a

∣∣ < C and C|ε| < e−v < δ, log 1/δ < v <
log 1/|ε| − C, p < v < p + 1, see the beginning of section 7.
Lemma 19. For intersection points in R1A, There is a constant C ′ such that

C ′|ε|
δ

< |β − α| < 1
C ′ .

Proof. Since eav+bu|ε| ∼ ∣∣β
α − 1

∣∣ ∼ |β − α| and eav+bu = 1
|w| we have |β − α| ∼ |ε|

|w| .
But C|ε| < |w| < |z|/C < δ/C. The lemma follows. �

With R(p) as in the beginning of section 7 we get
Lemma 20. Suppose that Lα,n intersects Lε

β,m in R1A. Then the intersection points
must be in R(p) for some p, such that∣∣∣∣p− log |(β/α) − 1|+ log(1/|ε|) − 2nbπ

a

∣∣∣∣ < C .

For the plaque to enter R1 we further need n to satisfy

log |(β/α) − 1|+ log(1/|ε|) − 2nbπ ∈ I

where I is the interval with endpoints a log 1/δ, a log(1/|ε|) − aC

Our next step is to verify that there is a uniform bound on the number of
intersection points of Lα,n, Lε

β,m in R1A.
In order to study the number of intersections between plaques, we compare their

slopes.
Suppose (z,w) = (Z,W ) := Φε(z′, w′) is an intersection point of Lα,n and Lε

β,m

in R1. The slope S1 of Lα,n is λw/z. The slope of the perturbed leaf is S2. We choose
the constant C1 used in the definition of R1A, R1B , R1C in the following estimates.

We have
Φ′

ε(z
′, w′)(z′, λw′) =

(
z′ + εO(z′, w′), λw′ + εO(z′, w′)

)
.

The slope

S2 =
λw′ + εO(z′, w′)
z′ + εO(z′, w′)

=
λW − λβ(ε) + εO(Z,W )

Z − α(ε) + εO(Z,W )
.

So

S2 =
λw − λβ(ε) + εO(z,w)

z − α(ε) + εO(z,w)
and

S2 − S1 =
λw − λβ(ε) + εO(z,w)

z − α(ε) + εO(z,w)
− λw/z
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=
−λβ(ε)z + λwα(ε) + εO(z2, zw,w2)

z(z − α(ε) + εO(z,w))
.

If 1
C1
|z| ≤ |w| ≤ C1|z| then S2 − S1 ∼ λ

z2 (wα(ε) − zβ(ε)) ,if |w| > C1|z| then
S2 − S1 ∼ εw

z2 and if |w| < 1
C1
|z| then S2 − S1 ∼ ε

z .

Lemma 21. There is at most a uniformly bounded number of intersection points
in R1A.

Proof. The case of R1A, R1B follows from slope estimates. For the case R1C , note
that leaves might be tangent when (w/z) is close to β(ε)/α(ε). They both have
slope about λ. But since we assume that λ �= β′(0)/α′(0), this tangency is at most
of order 2. �

We estimate the contribution to T ∧g T ε from R1A. We assume again that a �= 0.
By Lemma 18, the parameters α, β are restricted to the values: e−2πb < |α|, |β| < 1,
1/C > |β − α| > C|ε|/δ. So fix α, β. Next, by Lemma 15, we can set n = m to
be some integer in the interval given by Lemma 20. The case n = m± 1 is similar.
Because of the finiteness of the number of intersection points, see Lemma 21, we can
set

p = p(n) =
log |(β/α) − 1|+ log(1/|ε|) − 2nbπ

a
and consider only one intersection point. Then we multiply the values of Hα,n and
Hβ,n using the formulas in case (i) or (ii) depending on whether n < sp or n > sp.
We then add these products over n and integrate the result over dµ(α)dµ(β).

Case (i), n < sp. Since 1
2 < 1 + 2sbπ

a < 3
2 , we get easily n < n(α, β, ε) :=

s
1+ 2sbπ

a

log |(β/α−1|+log 1/|ε|
a .

In this case we have the following estimates at intersection points:

hα,n ∼
∫
|x|<Cvγ

Hα(x)|x|1/γ−1
( |x|

vγ

)1−1/γ 1
v
dx

+
∫
|x|>Cvγ

Hα(x)|x|1/γ−1
(

vγ

|x|
)1+1/γ 1

v
dx ,

hβ,m ∼
∫
|y|<C(v′)γ

Hβ(y)|y|1/γ−1
( |y|

(v′)γ

)1−1/γ 1
v′

dy

+
∫
|y|>C(v′)γ

Hβ(y)|y|1/γ−1
(

(v′)γ

|y|
)1+1/γ 1

v′
dy .

Here we have used that v and ρ are comparable. In fact from the estimate in the
beginning of the section, we see that u ∼ n, n < sp so u <∼ v, hence ρ ∼ v.

Here v, v′ ∼ log |(β/α)−1|+log 1/|ε|−2nbπ
a . This allows us to sum over v instead of

over n, log 1/δ < v < log 1/|ε| −C.
We need to estimate

∑
n hα,nhε

β,n and then integrate the answer over the measure
µ(α)µ(β).
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Note that we will majorize the sum by the product
∑

n hα,n
∑

m hε
β,m. Then we

use the dominated convergence theorem. We finally have

∼
log 1/|ε|−C∑
v=log 1/δ

[ ∫
|x|<Cvγ

H̃α(x)
dx

vγ
+

∫
|x|>Cvγ

H̃α(x)
|v|γ
|x|2 dx

]

We split the integral
∑
n

hα,n ∼
∫
|x|<(log 1/δ)γ

H̃α(x)
log 1/|ε|−C∑
v=log 1/δ

dx

vγ

+
∫

(log 1/δ)γ<|x|<(log 1/|ε|)γ

H̃α(x)
log 1/|ε∑

v=|x|1/γ

dx

vγ

+
∫

(log 1/δ)γ<|x|<(log 1/|ε|)γ

H̃α(x)
1
x2

|x|1/γ∑
v=log 1/δ

vγdx

+
∫
|x|>(log 1/|ε|)γ

H̃α(x)
1
x2

log 1/|ε∑
v=log 1/δ

vγdx .

We estimate the quantities under Σ in the right-hand side and we get∑
n

hα,n ∼
∫
|x|<(log 1/δ)γ

H̃α(x)
1

(log 1/δ)γ−1

+
∫

(log 1/δ)γ<|x|<(log 1/|ε|)γ

H̃α(x)
1

|x|1−1/γ
dx

+
∫

(log 1/δ)γ<|x|<(log 1/|ε|)γ

H̃α(x)
1
x2

1
|x|1−1/γ

dx

+
∫
|x|>(log 1/|ε|)γ

H̃α(x)
1
x2

(
log 1/|ε|)γ+1

dx .

Using Lemma 13 this gives∑
n

hα,n ∼
∫
|x|<(log 1/δ)γ

H̃α(x)|x|1/γ−1
( |x|

(log 1/δ)γ

)1−1/γ

+
∫

(log 1/δ)γ<|x|<(log 1/|ε|)γ

H̃α(x)|x|1/γ−1dx

+
∫
|x|>(log 1/|ε|)γ

H̃α(x)|x|1/γ−1
(

(log 1/|ε|)γ
|x|

)1+1/γ

dx

→ 0 , as δ → 0 .

Observe that we had to take δ small.
This finishes the case (i), n < sp. So we have proved

Lemma 22. The contribution to the geometric wedge product from R1A in case (i),
a �= 0, n < sp goes to zero when δ → 0.

We next deal with the case n > sp. Recall that case (ii) is a �= 0, n > sp. We
then have (u + iv)γ = U + iV ∼ nγ + ip(n)nγ−1.
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Then

Hα,n ∼
∫
|x−nγ |≤p(n)nγ−1

H̃α(x)
1

p(n)nγ−1 dx

+
∫

nγ/2>|x−nγ |>p(n)nγ−1

H̃α(x)
p(n)nγ−1

|x− nγ |2 dx

+
∫

nγ/2<|x−nγ |<2nγ

H̃α(x)
p(n)nγ−1

n2γ
dx+

∫
|x−nγ |>2nγ

H̃α(x)
p(n)nγ−1

x2 dx

= In + IIn + IIIn + IVn .

For simplicity of notation we assume a > 0. Then we have the following range
for n from Lemma 20. The number n satisfies

a log 1/δ < log
∣∣(β/α) − 1

∣∣ + log
(
1/|ε|) − 2nbπ < a log 1/|ε| − aC .

This gives

log
∣∣(β/α) − 1

∣∣ + log
(
1/|ε|) − a log 1/|ε| − aC < 2nbπ

< −a log 1/δ + log
∣∣(β/α) − 1

∣∣ + log
(
1/|ε|) .

Hence
log |(β/α) − 1|+ (1− a) log(1/|ε|) − aC

2bπ
< n

<
−a log 1/δ + log |(β/α) − 1|+ log(1/|ε|)

2bπ
.

However, n is further restricted because n > sp and p > log 1/δ. If we then
estimate IVn and sum over n, we get

∑
n

IVn <∼
∫
|x|>(log 1/δ)γ

H̃α(x)
1
x2

|x|1/γ∑
n=log 1/δ

nγ

<∼
∫
|x|>(log 1/δ)γ

H̃α(x)|x|1/γ−1dx

→ 0 .

Similarly for
∑

n IIIn we get to estimate
∑

1/nγ <∼ |x|1/γ−1 which again is fine.
Next we handle the terms IIn. For a given x, the range of n is on the order of

2/3|x|1/γ < n < |x|1/γ − p(x1/γ) and similarly for n > |x|1/γ . Also note that the
terms p(n) � |x|1/γ since n ∼ |x|1/γ and p � n. So we sum the expressions nγ−1

(x−nγ)2

which integrates to 1
|x−nγ | , so inserting the limits of the summation, we get a bound

of the same form as for IIIn.
Finally we sum over the In. Here we make the rough estimate that log 1/δ <

p(n) < sn. So we integrate over |x−nγ | < snγ but in the integrand we replace p(n)
by log 1/δ. With this estimate we get the integral H̃α(x) 1

log(1/δ)|x| � H̃α(x)|x|1/γ−1.
Hence this also goes to zero with δ.

Finally, we have shown the following:
Lemma 23. The contribution to the geometric wedge product in the case of R1A,
case (ii), a �= 0, n > sp goes to zero when δ → 0.
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9 Theorem 7 for R1C, the Diagonal Part of R1

We are in the set {C|ε| < |z|, |w| < δ, |z| ∼ |w|}. On Lα,n, we have the following
estimate for u, v:

2nπ < u < 2(n + 1)π ,

∣∣∣∣v − 2n
1− a

∣∣∣∣ < C ′′, log
1
δ

< v < log
(

1
|ε|

)
− C .

In the U, V coordinates, (u + iv)γ = U + iV , V ∼ |n|γ , |U | <∼ |n|γ .
So at intersection points

hα,n ∼
∫

H̃α(x)
nγ

n2γ + (x− U)2
dx

∼
∫
|x|<2nγ

H̃α(x)
dx

nγ
+

∫
|x|>2nγ

H̃α(x)
nγdx

x2 .

Adding up the contributions∑
n

hα,n ∼
∫
|x|<(log(1/|δ))γ

H̃α(x)
( ∞∑

n=log 1/δ

1
nγ

)
dx

+
∫
|x|>(log(1/|δ))γ

H̃α(x)
( ∑

n=x1/γ

1
nγ

)
dx

+
∫
|x|>(log(1/|δ))γ

H̃α(x)
( x1/γ∑

n=log 1/δ

nγ

x2

)
dx .

After estimating the sums we get∑
n

hα,n ∼
∫
|x|<(log(1/|δ))γ

H̃α(x)
1

(log(1/δ))γ
dx +

∫
|x|>(log(1/|δ))γ

H̃α(x)
1

(x1/γ)γ−1 dx

+
∫
|x|>(log(1/|δ))γ

H̃α(x)
(x1/γ)γ+1

x2 dx .

So, ∑
n

hα,n ∼
∫
|x|>(log(1/δ))γ

H̃α(x)|x|1/γ−1dx

+
∫
|x|<(log(1/δ))γ

H̃α(x)|x|1/γ−1
( |x|

(log(1/δ))γ

)1−1/γ

dx .

This is arbitrarily small as long as δ is chosen small enough.

10 Theorem 7 for R2, the Part of D3 Close to the z-Axis

This case is divided in two subcases depending on whether one is close to one of the
separatrices (R2A) or not (R2B).

11 Theorem 7 for R2A Close to a Separatrix

Again we assume that a �= 0. There are two separatrices, w = 0 and w close to β(ε).
By symmetry it suffices to do one of them. We choose to estimate close to the
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separatrix w = 0. So we set R2A = {C|ε| < |z| < δ, |w| < s|ε|} for some small
constant s > 0. Let Lε

β,m and Lα,n be plaques intersecting at (z,w) in R2A for
parameters (u′, v′), (u, v).

Since the point (z,w) is about distance |β′(0)||ε| away from the separatrix for the
perturbed lamination, we get (w′ = β(ε) + βeiλ(u′+(log |β|/b)+iv′) + · · · ). This gives

2mπ < u′ < 2(m + 1)π and C1 < av′ + 2mbπ + log |ε| < C2 .

We also have
C|ε| < |z| = e−v = |z′| = ∣∣α(ε) + ei(u′+log |β|/b)−v′ + · · · ∣∣ ,

hence C3 < v − v′ < C4, C4 < av + 2mbπ + log |ε| < C5 and 2nπ < u < 2(n + 1)π.
Using |w| < s|ε|, we get log(1/s) < av + 2nbπ + log |ε|, 2(n − m)bπ =

(av + 2nbπ + log |ε|)− (av + 2mπb + log |ε|) > log(1/s) − C1.
These calculations show that for the given plaques, the pairs (u, v), (u′, v′) belong

to rectangles of uniformly bounded size. Hence the number of intersection points
can easily be estimated by using slope estimates for the plaques. We get a uniformly
bounded number of intersection points.

We divide this into cases I, II, III.
For I we have 1/C log(1/|ε|) < 2mbπ + log |ε| < C log(1/|ε|).
For II we have 2mbπ + log |ε| < 1/C log(1/|ε|).
For III we have 2mbπ + log |ε| > C log(1/|ε|). We note however, that in case III,

v′ must be very large in comparison with log 1/|ε|. This implies that |z′| � |ε|
hence there are no intersection points in this case. So we are left with the two cases
R2AI , R2AII .

12 Theorem 7 for R2AI Close to a Separatrix

It follows in this case that v, v′ ∼ log(1/|ε|). Hence
u′ + iv′ ∼ 2mπ + i log

(
1/|ε|) and U ′ + iV ′ ∼ U ′ + i

(
log(1/|ε|))γ

.

In particular |U ′| <∼ (log(1/|ε|))γ . Using the Poisson integral we estimate

hε
β,m ∼

∫
|y|<2(log(1/|ε|))γ

H̃β(y)
1

(log(1/|ε|))γ dy+
∫
|y|>2(log(1/|ε|))γ

H̃β(y)
(log(1/|ε|))γ

y2 dy .

Adding up
∑
m∈I

hε
β,m ∼

∫
|y|<2(log(1/|ε|))γ

H̃β(y)|y|1/γ−1
( |y|

(log(1/|ε|))γ
)1−1/γ

dy

+
∫
|y|>2(log(1/|ε|))γ

H̃β(y)|y|1/γ−1
(

(log(1/|ε|))γ
|y|

)1/γ+1

dy .

Next we estimate hα,n. There are two cases to consider,
(a) n < C log(1/|ε|);
(b) n > C log(1/|ε|).

The contribution for case (a) is
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Case R2AIa: Recall that we have n > m − C6. Hence we have that |n| <
C log(1/|ε|). This means that we can write u + iv ∼ 2nπ + i(log(1/|ε|)). Hence the
estimates work as for hε

β,m. We get
∑

|n|<C log(1/|ε|)
hα,n ∼

∫
|x|<2(log(1/|ε|))γ

H̃α(x)|x|1/γ−1
( |x|

(log(1/|ε|))γ
)1−1/γ

dx

+
∫
|x|>2(log(1/|ε|))γ

H̃α(x)|x|1/γ−1
(

(log(1/|ε|))γ
|x|

)1/γ+1

dx .

Case R2AIb: We have u + iv ∼ n + i log(1/|ε|), U + iV ∼ nγ + inγ−1 log(1/|ε|),
and hα,n ∼

∫
H̃α(x) nγ−1 log(1/|ε|)

(nγ−1 log(1/|ε|))2+(x−nγ)2 dx.
This integral has already been estimated. See the calculations for the set D1 in

the region where |z − η| < d|η|, case (ii) where n > 10 log(1/|η|). It follows that the
contributions from that region goes to zero with ε.

13 Theorem 7 for R2AII close to a separatrix

We restrict for simplicity to the case a > 0. We can divide into three cases:
(a) n > m > v, v′;
(b) n > v, v′ > m;
(c) v, v′ > n > m.

14 Theorem 7 for R2AIIa Close to a Separatrix

We have (u+iv)γ = U+iV ∼ nγ+ivnγ−1 and (u′+iv′)γ = U ′+iV ′ ∼ mγ+iv′mγ−1 ∼
(log 1/|ε|)γ + iv′(log(1/|ε|))γ−1 with log 1/δ < v′ < log 1/|ε|.

We now estimate

Hβ ∼
∫

H̃β(y)
v′(log(1/|ε|))γ−1

[v′(log(1/|ε|))γ−1]2 + (y −mγ)2
dy .

We divide the integral and estimate each term. We have

Hβ ∼
∫
|y−mγ |<cv′(log 1/|ε|)γ−1

H̃β(y)
1

v′(log(1/|ε|))γ−1 dy

+
∫

(log 1/|ε|)γ/2>|y−(log 1/|ε|)γ |>cv′(log 1/|ε|)γ−1

H̃β(y)
v′(log(1/|ε|))γ−1

(y − (log 1/|ε|)γ)2
dy

+
∫
|y−(log 1/|ε|)γ |>(log 1/|ε|)γ/2

H̃β(y)
v′(log(1/|ε|))γ−1

(y − (log 1/|ε|)γ)2
dy .

So

Hβ ∼
∫
|y−mγ |<cv′(log 1/|ε|)γ−1

H̃β(y)
y1/γ−1

v′
dy

+
∫
|y−(log 1/|ε|)γ |>cv′(log 1/|ε|)γ−1

H̃β(y)
v′(log(1/|ε|))γ−1

(y − (log 1/|ε|)γ)2
dy

= Hβ1,v′ + Hβ2,v′ .
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For Hα we have

Hα ∼
∫
|x−nγ |<cvnγ−1

H̃α(x)
1

vnγ−1 dx +
∫
|x−nγ |>cvnγ−1

H̃α(x)
vnγ−1

(x− nγ)2
dx .

To sum up over the intersection points, we note at first that for a given plaque
Lβ,m there is a finite range of v′ and v− v′ is bounded, so we can assume that there
is one intersection point with Lα,n for each n > m. Hence we sum first over the
plaques Lα,n, m < n <∞. We obtain∑

n

∫
|x−nγ |<cvnγ−1

H̃α(x)
1

vnγ−1 dx ∼
∫

x>mγ

H̃α(x)|x|1/γ−1dx .

The other contribution is∑
n

∫
|x−nγ |>cvnγ−1

H̃α(x)
vnγ−1

(x− nγ)2
dx ∼

∫
x>mγ−cvmγ−1

H̃α(x)|x|1/γ−1

+
∫

x<mγ−cvmγ−1

H̃α(x)
v

|x−mγ |dx ,

so, we conclude∑
n>m

Hα ∼
∫

x>mγ

H̃(x)|x|1/γ−1 +
∫

x<mγ−cvmγ−1

H̃α(x)
v

|x−mγ |dx

<∼
∫
|x|>mγ/2

H̃α|x|1/γ−1 +
∫
|x|<mγ/2

H̃α(x)|x|1/γ−1
( |x|

mγ

)1−1/γ

dx .

In this case m will have approximately the range (log 1/|ε|)/2 < m < log 1/|ε|,
hence we have∑

n>m

Hα <∼
∫
|x|>(log 1/|ε|)γ

H̃α|x|1/γ−1

+
∫
|x|<(log 1/|ε|)γ

H̃α(x)|x|1/γ−1
( |x|

(log 1/|ε|)γ
)1−1/γ

dx .

Next we sum Hβ over m or equivalently over v′, log 1/δ < v′ < (log 1/|ε|)/2.
We integrate first over Hβ1,v′ . For a given y, the range of v′ is in the interval with

endpoints (1± c)y−(log 1/|ε|)γ

(log 1/|ε|)γ−1 . This part is bounded by∫
|y−(log 1/|ε|)γ |<(log 1/|ε|)γ/2

H̃β(y)|y|1/γ−1dy → 0 .

The second part is bounded by∫
|y|<2(log 1/|ε|)γ

H̃β(y)|y|1/γ−1
( |y|

(log 1/|ε|)γ
)1−1/γ

dy

+
∫
|y|>2(log 1/|ε|)γ

H̃β(y)|y|1/γ−1
(

(log 1/|ε|)γ
|y|

)1+1/γ

dy .

Again the contribution goes to zero by Proposition 1 and Lemma 13.

15 Theorem 7 for R2AIIb Close to a Separatrix

In this case n > v, v′ > m. First we recall the estimates for Hα which are the
same as in the case R2AIIa. We have (u + iv)γ = U + iV ∼ nγ + ivnγ−1 with



GAFA ERGODICITY OF HARMONIC CURRENTS 1365 

log 1/δ < v, v′ < log 1/|ε|. So

Hα ∼
∫
|x−nγ |<cvnγ−1

H̃α(x)
1

vnγ−1 dx +
∫
|x−nγ |>cvnγ−1

H̃α(x)
vnγ−1

(x− nγ)2
dx .

Next we estimate Hβ. We have (u′ + iv′)γ = U ′ + iV ′ with (log 1/|ε|)/2 < v′ <
log 1/|ε| and m + v′ = log 1/|ε|. Hence V ′ ∼ (log 1/|ε|)γ and |U ′| <∼ (log 1/|ε|)γ .

We get Hβ ∼
∫
|y|<2(log 1/|ε|)γ H̃β

1
(log 1/|ε|)γ dy +

∫
|y|>2(log 1/|ε|)γ H̃β

(log 1/|ε|)γ

y2 dy.
Next we estimate the contribution to the geometric wedge product. So fix α, β.

Next fix a plaque Lβ,m, v, v′ ∼ log 1/|ε| − m. Then we consider the contribution
from Hα for all n > v. This is the same estimate as in the previous section, so goes
to zero when ε → 0. To sum up over m, notice that we have about log 1/|ε| terms of
the same order of magnitude. From this we get that the contribution goes to zero
when ε→ 0.

To estimate the geometric wedge product, we sum independently over n,m
throwing out the condition that n > m. We get as in the previous section that
the contribution goes to zero.

16 Theorem 7 for R2AIIc Close to a Separatrix

Here we deal with the case when v, v′ > n > m. In this case the same formula as in
the last section applies to both Hα and Hβ. We have

Hα ∼
∫
|x|<2(log 1/|ε|)γ

H̃α
1

(log 1/|ε|)γ dx +
∫
|x|>2(log 1/|ε|)γ

H̃α
(log 1/|ε|)γ

x2 dx ,

and

Hβ ∼
∫
|y|<2(log 1/|ε|)γ

H̃β
1

(log 1/|ε|)γ dy +
∫
|y|>2(log 1/|ε|)γ

H̃β
(log 1/|ε|)γ

y2 dy .

So again the contribution goes to zero.

17 Theorem 7 for R2B away from the Separatrices

At an intersection point p = (z,w) of Lα,n, Lε
β,m we have s|ε| < |w| < C|ε| and

s|ε| < |w − β(ε)| < C|ε|. So log |ε| − C < −av − bu < log |ε| + C and log |ε| − C <
−av′ − bu′ < log |ε| + C. This gives −C < v − v′ < C, −C < n − m < C and
log(1/δ) < v, v′ < log(1/|ε|) − C, −C log(1/|ε|) < u, u′, n,m < C log(1/|ε|).

Given (α, β, n,m) we need to estimate the values of v, v′ corresponding to an
intersection, as well as the number of intersections. The following is immediate.
There is no dependence on α, β.
Lemma 24. At intersection points of Lα,n, Lε

β,m in R2B away from the separatrices,
we have

−2nbπ/a + 1/a log
(
1/|ε|) − C < v, v′ < −2nbπ/a + 1/a log

(
1/|ε|) + C .

It follows that intersection points are localized in bounded rectangles. To show
finiteness of number of intersection points for given plaques, we use slope estimates.

We divide the estimates in two cases, (i) if v, v′ ∼ log(1/|ε|) and (ii) if log(1/δ) <
v, v′ < 1/C log(1/|ε|).
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18 Theorem 7 for R2Bi when v ∼ log(1/|ε|)
Recall that this means that for a large constant A, 1

A log 1
|ε| < v < A log 1

|ε| . The esti-
mates for hα,n and hε

β,m are similar. We have U+iV = (u+iv)γ ∼ U + i(log(1/|ε|))γ .
So |U | � (log(1/|ε|))γ .

At intersection points

hα,n ∼
∫

H̃α(x)
(log(1/|ε|))γ

(log(1/|ε|))2γ + (x− U)2
dx

∼
∫
|x|<C(log(1/|ε|))γ

H̃α|x|1/γ−1
( |x|

(log(1/|ε|))γ
)1−1/γ 1

log(1/|ε|)dx

+
∫
|x|>C(log(1/|ε|))γ

H̃α|x|1/γ−1
(

(log(1/|ε|))γ
|x|

)1+1/γ 1
log(1/|ε|)dx .

We estimate the total contribution,
∑
n

hα,n ∼
∫
|x|<C(log(1/|ε|))γ

H̃α|x|1/γ−1
( |x|

(log(1/|ε|))γ
)1−1/γ

dx

+
∫
|x|>C(log(1/|ε|))γ

H̃α|x|1/γ−1
(

(log(1/|ε|))γ
|x|

)1+1/γ

dx ,

which will converge to 0 by Proposition 1.

19 Theorem 7 for R2Bii when v < 1
A

log(1/|ε|)
In this case we have u, u′, n,m ∼ log(1/|ε|). The estimates for hα,n, hε

β,m are similar.
In the following 0 < d � 1. More precisely, d will be close to |a|A, see the 4th
inequality below. Expressing that we are in R2Bii we get the following inequalities:

(1− d) log
(
1/|ε|) < 2nbπ < (1 + d) log

(
1/|ε|) ,

log |ε| − C < −av − bu < log |ε|+ C .

Hence

log |ε|+ 2nbπ − C < −av < log |ε|+ 2bnπ + C ,

−d log
(
1/|ε|) − C < −av < d log

(
1/|ε|) + C .

In U, V coordinates, U + iV = (u + iv)γ ∼ (log(1/|ε|))γ + i(log(1/|ε|))γ−1v.
This gives hα,n ∼

∫
H̃α(x) (log(1/|ε|))γ−1v

((log(1/|ε|))γ−1v)2+(x−U)2 dx.
When we sum up over hα,n, hε

β,m we can take for simplicity n = m and v = v′

since |n −m|, |v − v′| are uniformly bounded in R2B as stated above. The product
of contributions is estimated by

hα,nhε
β,m ∼

∫
H̃α(x)

(log(1/|ε|))γ−1v

((log(1/|ε|))γ−1v)2 + (x− U)2
dx

∗
∫

H̃β(y)
(log(1/|ε|))γ−1v

((log(1/|ε|))γ−1v)2 + (y − U)2
dy .
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So

hα,nhε
β,m ∼

[ ∫
|x−U |<(log(1/|ε|))γ−1|v|

H̃α(x)
1

(log(1/|ε|))γ−1v
dx

+
∫
|x−U |>(log(1/|ε|))γ−1|v|

H̃α(x)
(log(1/|ε|))γ−1v

(x− U)2
dx

]

∗
[ ∫

|y−U |<(log(1/|ε|))γ−1|v|
H̃β(y)

1
(log(1/|ε|))γ−1v

dy

+
∫
|y−U |>(log(1/|ε|))γ−1|v|

H̃β(y)
(log(1/|ε|))γ−1v

(y − U)2
dy

]

= [I + II][III + IV] .
There are 4 cases to sum over: (I, III), (II, III), (II, IV) and (I, IV). The case

(I, IV) is similar to (II, III) so we can skip it without any loss.

20 Theorem 7 for R2Bii(I,III)

We have

hα,nhε
β,m ∼

1
v2

∫
|x−U |<1/C(log(1/|ε|))γ

H̃α(x)|x|1/γ−1dx

∗
∫
|y−U |<1/C(log(1/|ε|))γ

H̃β(y)|y|1/γ−1dy .

Since log(1/δ) < v < 1/A log(1/|ε|) we get∑
hα,nhε

β,m � 1
log(1/δ)

∫
|x−U |<1/C(log(1/|ε|))γ

H̃α(x)|x|1/γ−1dx

∗
∫
|y−U |<1/C(log(1/|ε|))γ

H̃β(y)|y|1/γ−1dy .

Finally,∑
hα,nhε

β,m � 1
log(1/δ)

∫
|x−(log(1/|ε|))γ |<1/C(log(1/|ε|))γ

H̃α(x)|x|1/γ−1dx

∗
∫
|y−(log(1/|ε|))γ |<1/C(log(1/|ε|))γ

H̃β(y)|y|1/γ−1dy .

This contribution goes to zero when ε→ 0.

21 Theorem 7 for R2Bii(II,III)

We estimate

hα,nhε
β,m ∼

∫
|x−U |>(log(1/|ε|))γ−1|v|

H̃α(x)
(log(1/|ε|))γ−1v

(x− U)2
dx

∗
∫
|y−U |<(log(1/|ε|))γ−1|v|

H̃β(y)
1

(log(1/|ε|))γ−1v
dy .

Here log(1/δ) < v < d log(1/|ε|), 0 < d � 1 and −av = log |ε|+2bnπ+O(1). Also
we can take n = m. When we sum over n, v runs through log(1/δ) < v < d log(1/|ε|).
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Hence the contribution to the geometric wedge product is
∑
n,m

hα,nhε
β,m ∼

d log(1/|ε|)∑
v=log(1/δ)

∫
|x−(log(1/|ε|))γ |>(log(1/|ε|))γ−1|v|

H̃α(x)
1

(x− (log(1/|ε|)γ)2
dx

∗
∫
|y−(log(1/|ε|))γ |<(log(1/|ε|))γ−1|v|

H̃β(y)dy .

We introduce a counting function, N(x, y), which tells us for a given (x, y) for
how many terms of the sum (x, y) is in the domain of integration for the above
integrals: ∣∣x− (log(1/|ε|))γ ∣∣ >

(
log(1/|ε|))γ−1|v|

|y − (log(1/|ε|))γ ∣∣ <
(
log(1/|ε|))γ−1|v| .

We divide the above domain in three parts:

P1 =
{|x− (log(1/|ε|))γ | > d(log(1/|ε|))γ ,∣∣y − (log(1/|ε|))γ ∣∣ < log(1/δ)(log(1/|ε|))γ−1}

in which case N1(x, y) ∼ d log(1/|ε|),
P2 =

{|x− (log(1/|ε|))γ | > d(log(1/|ε|))γ ,

log(1/δ)(log(1/|ε|))γ−1 < |y − (log(1/|ε|))γ | < d(log(1/|ε|))γ}
,

for the P2 case N2(x, y) ∼ d(log(1/|ε|))γ−|y−(log(1/|ε|))γ |
(log(1/|ε|))γ−1 . Finally,

P3 =
{

log(1/δ)(log(1/|ε|))γ−1 < |x− (log(1/|ε|))γ | < d(log(1/|ε|))γ ,

log(1/δ)(log(1/|ε|))γ−1 < |y − (log(1/|ε|))γ | < d(log(1/|ε|))γ}
.

For P3,

N3(x, y) ∼ |x− (log(1/|ε|))γ | − |y − (log(1/|ε|))γ |
(log(1/|ε|))γ−1

when the right-hand side is positive. Hence,

N3(x, y) ∼ |x− y|
(log(1/|ε|))γ−1 .

22 Theorem 7 for R2Bii(II,III)P1

This gives the estimate for the product∑
n,m

hα,nhε
β,m ∼ d log

(
1/|ε|)

∫
P1

H̃α(x)H̃β(y)
(x− (log(1/|ε|))γ)2

dxdy

∼
∫

P1

H̃α(x)|x|1/γ−1|x|1−1/γH̃β(y)|y|1/γ−1

|x− (log(1/|ε|))γ |1−1/γ((log(1/|ε|)γ)2/γ
log(1/|ε|)

�
∫

P1

H̃α(x)|x|1/γ−1H̃β(y)|y|1/γ−1 1
log(1/|ε|)

→ 0 ,

when ε→ 0.
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23 Theorem 7 for R2Bii(II,III)P2

We get the estimate∑
n,m

hα,nhε
β,m ∼

∫
P2

H̃α(x)|x|1/γ−1H̃β(y)|y|1/γ−1

(x− (log(1/|ε|))γ)2
|x|1−1/γ |y|1−1/γ

∗ d(log(1/|ε|))γ − |y − (log(1/|ε|))γ |
(log(1/|ε|))γ−1 dxdy .

Using the definition of P2,∑
n,m

hα,nhε
β,m ∼

∫
P2

H̃α(x)|x|1/γ−1H̃β(y)|y|1/γ−1 |x|
|x− (log(1/|ε|))γ | |x|

−1/γ

∗ (d(log(1/|ε|))γ − |y − (log(1/|ε|))γ |)
|x− (log(1/|ε|))γ | dxdy

<∼
∫

P2

H̃α(x)|x|1/γ−1H̃β(y)|y|1/γ−1 1
log(1/|ε|)dxdy

→ 0 ,

as ε→ 0.

24 Theorem 7 for R2Bii(II,III)P3

We estimate, using the definition of P3, the sum,∑
n,m

hα,nhε
β,m ∼

∫
P3

H̃α(x)H̃β(y)
(x− (log(1/|ε|))γ )2

|x− y|
(log(1/|ε|))γ−1 dxdy

∼
∫

P3

H̃α(x)|x|1/γ−1H̃β(y)|y|1/γ−1

∗ |x− y|
(x− (log(1/|ε|))γ)2(log(1/|ε|))1−γ

dxdy .

Hence, ∑
n,m

hα,nhε
β,m <∼

∫
P3

H̃α(x)|x|1/γ−1H̃β(y)|y|1/γ−1

∗ 1
|x− (log(1/|ε|))γ |(log(1/|ε|))1−γ

dxdy

<∼
∫

P3

H̃α(x)|x|1/γ−1H̃β(y)|y|1/γ−1

∗ 1
log(1/δ)(log(1/|ε|))γ−1(log(1/|ε|))1−γ

dxdy

∼ 1
log(1/δ)

∫
R3

H̃α(x)|x|1/γ−1H̃β(y)|y|1/γ−1dxdy → 0 ,

because we can choose δ small enough.
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25 Theorem 7 for R2Bii(II,IV)

Recall from Lemma 24 that
−2nbπ/a + 1/a log

(
1/|ε|) − C < v, v′ < −2nbπ/a + 1/a log

(
1/|ε|) + C .

We estimate the contribution

hα,nhε
β,m ∼

∫
|x−(log(1/|ε|))γ |>(log(1/|ε|))γ−1|v|

H̃α(x)
(log(1/|ε|))γ−1v

(x − (log(1/|ε|))γ )2
dx

∗
∫
|y−(log(1/|ε|))γ |>(log(1/|ε|))γ−1|v|

H̃β(y)
(log(1/|ε|))γ−1v

(y − (log(1/|ε|))γ )2
dy .

Note that when we sum over n, v depends linearly on n and as seen above, ranges
from log 1/δ to d log(1/|ε|), 0 < d � 1.

Hence we need to estimate the expression I(α, β)for given (α, β):

I(α, β) :=
d log(1/|ε|)∑
k=log 1/δ

∫
|x−(log(1/|ε|))γ |>(log(1/|ε|))γ−1k

H̃α(x)
(log(1/|ε|))γ−1k

(x − (log(1/|ε|))γ )2
dx

∗
∫
|y−(log(1/|ε|))γ |>(log(1/|ε|))γ−1k

H̃β(y)
(log(1/|ε|))γ−1k

(y − (log(1/|ε|))γ )2
dy .

We introduce the integrals

Ij,α :=
∫

(log(1/|ε|))γ−1j<|x−(log(1/|ε|))γ |<(log(1/|ε|))γ−1(j+1)
H̃α(x)

(log(1/|ε|))γ−1

(x − (log(1/|ε|))γ )2
dx

∼ 1
j2

∫
(log(1/|ε|))γ−1j<|x−(log(1/|ε|))γ |<(log(1/|ε|))γ−1(j+1)

H̃α(x)|x|1/γ−1dx =
1
j2 Îj,α ,

and

I∞,α :=
∫
|x−(log(1/|ε|))γ |>d(log(1/|ε|))γ

H̃α(x)
(log(1/|ε|))γ−1

(x− (log(1/|ε|))γ )2
dx

<∼ 1
(log(1/|ε|))2

∫
H̃α(x)|x|1/γ−1dx = I1

∞,α ,

and similarly for β. We get

I(α, β) =
d log(1/|ε|)∑
k=log 1/δ

[
k

(( d log(1/|ε|)∑
j=k

Ij,α

)
+ I∞,α

)][
k

(( d log(1/|ε|)∑
i=k

Ii,β

)
+ I∞,β

)]

∼
d log(1/|ε|)∑
k=log 1/δ

k2
[(( d log(1/|ε|)∑

j=k

Îj,α

j2

)
+ I∞,α

)][(( d log(1/|ε|)∑
i=k

Îi,β

i2

)
+ I∞,β

)]

=
d log(1/|ε|)∑
k=log 1/δ

k2
[ d log(1/|ε|)∑

j=k

Îj,α
j2

][ d log(1/|ε|)∑
i=k

Îi,β
i2

]

+
d log(1/|ε|)∑
k=log 1/δ

k2I∞,α

[ d log(1/|ε|)∑
i=k

Îi,β

i2

]
+

d log(1/|ε|)∑
k=log 1/δ

k2
[ d log(1/|ε|)∑

j=k

Îj,α

j2

]
I∞,β

+
d log(1/|ε|)∑
k=log 1/δ

k2I∞,αI∞,β

= I + II + II + IV .
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Here II and III are symmetric. It suffices to estimate II.
We estimate IV first. Since

∑
k2 ∼ (log(1/|ε|))3, this is immediately small when

multiplied with I∞,α, I∞,β. For II, we get

II =
d log(1/|ε|)∑
k=log 1/δ

k2I∞,α

[ d log(1/|ε|)∑
i=k

Îi,β
i2

]

< I∞,α

d log(1/|ε|)∑
k=log 1/δ

[ d log(1/|ε|)∑
i=k

Îi,β

]

<
1

(log(1/|ε|))
∫

H̃α(x)|x|1/γ−1dx

∫
H̃β(y)|y|1/γ−1dy → 0 .

Finally we estimate I:

I =
d log(1/|ε|)∑
k=log 1/δ

k2
[ d log(1/|ε|)∑

j=k

Îj,α

j2

][ d log(1/|ε|)∑
i=k

Îi,β

i2

]

<

d log(1/|ε|)∑
k=log 1/δ

1
k2

[ d log(1/|ε|)∑
j=k

Îj,α

][ d log(1/|ε|)∑
i=k

Îi,β

]
.

We can make this as small as we wish by choosing δ small.

26 Proof of Theorem 4

Proof. We use the approach in [FoS].
Let T be a positive harmonic current directed by F . We want to show that∫

T ∧T = 0. Let Tε = (Φε)∗T and define T δ
ε as the average of Tε using a small neigh-

borhood of identity in U(3). Then since Tε ⇀ T , we have
∫

T ∧ T = limε→0
∫

T ∧ Tε.
On the other hand T δ

ε = ω + ∂Sδ
ε + ∂S

δ
ε + i∂∂uδ

ε and Sδ
ε → Sε in L2. So

∫
T ∧ Tε =

lim|δ|,|δ′|→0,|δ|,|δ′|�ε

∫
T δ

ε ∧ T δ′ . Hence as in [FoS] it is enough to show that

lim
δ,δ′,ε→0,|δ|,|δ′|�|ε|

∫
T δ

ε ∧ T δ′ = 0 .

We can compute the geometric intersection T δ
ε ∧T δ′ and it is enough to estimate

Tε ∧g T . Recall that if φ is a test function supported in B, then we define

〈Tε ∧g T, φ〉 =
∫ ∑

Jε
α,β

φ(p)Hα(p)Hε
β(p)dµ(α)dµ(β) .

where Jε
α,β consists of intersection points of ∆α and ∆ε

β. The following lemma is
proved in [FoS].
Lemma 25. We have that

∫
T ∧ Tε =

∫
T ∧g Tε. The same holds for T δ, T δ′

ε

〈Tε ∧g T, φ〉 ≤ C‖φ‖∞
∫ ∑

Jε
α,β

Hα(p)Hε
β(p)dµ(α)dµ(β) ,

We know that the number of points in Jε
α,β is bounded by a fixed constant

independent of ε. For p out of a fixed neighborhood of the singularities the integral
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converges to zero. This is the case considered in [FoS]. So it is enough to show that
for δ > 0 small enough

Jε(δ) :=
∫ ∑

Jε
α,β

Hα(p)Hε
β(p)dµ(α)dµ(β)

is arbitrarily small. This is precisely the content of Theorem 7, since all estimates
are valid after composition by automorphisms in a small neighborhood of U(3).

Consequently if T1, T2 are two such currents then
∫

T1+T2
2 ∧ T1+T2

2 = 0. Hence∫
T1 ∧ T2 = 0, therefore T1, T2 are proportional. �

We give a dynamical consequence of the uniqueness of the harmonic current for
F ∈ H(d), here H(d) is the Zariski open set of foliations of degree d, introduced in
Theorem 2. Recall from the introduction:
Corollary 3. Let F ∈ H(d). Let φ : ∆ → L be the universal covering of a leaf L.

Let τr :=
φ∗[log+ r

|z|∆r]

‖φ∗[log+ r
|z|∆r]‖ . Then limr→1 τr = T , where T is the unique harmonic

current directed by F .

Here ∆r denotes the disc of center 0 and radius r. The corollary which is a
consequence of paragraph 5 in [FoS] says that the normalized images of

[
log+ r

|z|∆r

]
converge to T . This is similar to the pointwise ergodic theorem, since we are aver-
aging on an orbit.

Recall that the limit set of a leaf L is defined as lim(L) = ∩nL \Kn, where
Kn ⊂ Kn+1 is an exhaustion of L by compact sets. One of the main questions in
foliation theory is to describe the limit set of a foliation F : lim(F) := ∪L∈F lim(L).
Corollary 3 implies in particular that for F ∈ H(d), for every leaf L ∈ F , lim(L)
contains supp(T ). Indeed as shown in [FoS],∥∥∥∥Φ∗

[
log+ r

|z|∆r

]∥∥∥∥ →∞
as r → 1. Hence supp(T ) ⊂ L \Kn for every n.
Corollary 4. The map λ → Tλ is continuous fromH(d) with values in the positive
harmonic currents of mass one. Let Fλ be a holomorphic family of foliations in H(d).
Let (Tλ) be the associated currents. If a hyperbolic point p0 ∈ Supp(Tλ0), then the
perturbed hyperbolic point pλ belongs to Supp(Tλ).

Proof. Assume Fλn → Fλ0 in H(d). Let (Tλn) be the normalized positive harmonic
currents associated to Fλn . Since ‖Tλn‖ = 1, the sequence (Tλn) has cluster points.
It is clear that any cluster point S is positive harmonic and directed by Fλ0 . So
S = Tλ0 by uniqueness. Assume the support of Tλ0 intersects a ball B(p0, r) where
p0 is a hyperbolic singular point of Fλ0 and the ball is contained in the common
domain of linearization of pλ ∈ Sing(Fλ), pλ → p0, pλ hyperbolic.

From our local study of positive harmonic currents near a hyperbolic singular
point p0 ∈ Supp(Tλ0). Since Tλ → Tλ0 , Tλ gives mass to B(p0, r), applying again
the local study for Tλ we get that pλ ∈ Supp(Tλ). �

Remark 2. Let f be a holomorphic endomorphism of P
2. Let F be a foliation

with only hyperbolic singularities. Then f∗F is a foliation and its singularities are
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not necessarily hyperbolic. However there is only one positive harmonic current of
mass 1, directed by f∗F . Indeed let T be any such current. We will show that∫

T ∧ T = 0 which implies the uniqueness. Observe that f∗T is a current directed
by F . Hence

∫
f∗T ∧ f∗T = 0. Since f∗ is a finite covering of degree d2 we have∫

T ∧ T ≤
∫

f∗[f∗T ∧ f∗T ] = d2
∫

f∗T ∧ f∗T = 0 .

27 Measure Associated to a Harmonic Current

Let F ∈ H(d) be a holomorphic foliation as in Theorem 2. We know that there is a
unique positive harmonic current T of mass one directed by F .

We are going to associate to T a conformal, measurable metric along leaves that
we will denote by gT and also a positive finite measure µT which is related to the
harmonic flow associated also to T. The metric gT and the measure µT where first
considered by S. Frankel, in the non-singular case [Fr] he proved in that case a
version of Proposition 2 and Proposition 3.

On a flow box B disjoint from E = Sing(F), the current T can be written

T =
∫

hα[Vα]dµ(α)

where hα are positive harmonic functions and µ is a positive measure on a transver-
sal A. The [Vα] are the currents of integration on plaques. On B, ∂T = τ ∧ T with
τ = ∂hα/hα, µ almost everywhere. Observe that τ is independent of the choice of
hα : if we replace hα by cαhα, cα ∈ R

+ then τ is unchanged.
We define the metric gT on leaves by gT = i

2τ ⊗ τ . Along the plaque Vα with a
choice of coordinate (zα) we have

gT =
i

2

∣∣∣∣∂hα

∂zα

∣∣∣∣
2 1

h2
α

dzα ⊗ dzα (1)

Define CT = {(α, z); ∂hα
∂z (α, z) = 0} it’s the critical set of the “metric” gT . We

also define the current of bidegree (2, 2), µT , which we identify with a measure
µT := iτ ∧ τ ∧ T .

In local coordinates in a flow box B, we have

µT =
∫

dν(α)
∫

[Vα]

∣∣∣∣∂hα

∂zα

∣∣∣∣
2 1

hα
(idzα ∧ dzα) . (2)

Proposition 2. Let F ∈ H(d). The metric gT has constant negative curvature out
of the set CT where the metric vanishes.

Proof. Since the current T is unique, every measurable set of leaves A has zero or full
measure with respect to ‖T‖. DefineNg := {leaves on which gT vanishes identically}.
Since hα is measurable, then Ng is measurable. So Ng is of zero or full measure.
But if Ng is of full measure, ∂T = 0 and by conjugation ∂T = 0, hence T is closed.
A foliation F in H(d) admits no positive closed current directed by F since all
singularities are hyperbolic. So Ng is of zero ‖T‖ measure.
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From (1) it is clear that the metric is conformal. On a flow box B, the curvature
κ(g) has the following expression out of CT . The curvature is given by

κ(g) = −1
4

∆ log g

g
=

1
2

∆ log hα∣∣∂hα
∂zα

∣∣2 1
h2

α

.

So
κ(gT ) =

h2
α

|hα,z |2
(

∂

∂z

(
hα,z

hα

))
.

Since hα is harmonic we get κ(gT ) = −1. �
Because of the nature of the singularities, the leaves are uniformized by the unit

disc ∆. Let g denote the Poincaré metric on leaves. We choose a normalization so
that the curvature κ(g) of g on leaves is −1.
Proposition 3. Let T be the harmonic current associated to F ∈ H(d). If gT is
the associated metric on leaves, then gT ≤ g.

Proof. We have normalized the metric gT so that on each leaf Lα, gT has curvature
−1 on Lα \ C(T ). Ahlfors’ Schwarz lemma, applied to the abstract Riemann surface
Lα \ CT , implies that gT ≤ g. �

We will denote by Φα : ∆ → Lα, the uniformizing map from ∆ to Lα. When
we fix a transversal A in a flow box we can choose for each α ∈ A a uniformizing
map Φα(0) = α, then Φα vary measurably. We will denote by Γα the group of deck
transformations for the map Φα.

We want to define a vector field χ on F associated to the current T . The vector
field will be defined as the metric gT only ‖T‖ a.e. On Lα, χα is collinear with the
gradient field of hα. We define χα on a flow box with local coordinates zα = xα+iyα

by
χα := c

hα

|hz |2 (hxα , hyα) .

We choose the constant c so that gT (χα, χα) = 1. The vector field χα is inde-
pendent of the choice of h. It blows up at every point of CT . Which means that the
integral curves of χα approach these points at infinite speed. So we have to take
out these trajectories in order to have a well-defined flow. Observe that the set of
these trajectories is of µT measure zero. It is clear that the integral curves of χα

are along the level sets of the harmonic conjugates of hα such that fα = hα + ivα is
holomorphic.
Theorem 9. Let T be the positive harmonic current associated to F ∈ H(d). Then
the measure µT is finite. Moreover, if Fλ is a holomorphic family of foliations in
H(d), λ ∈ ∆(λ0, r), then the mass of µTλ

near hyperbolic singularities is uniformly
small in a fixed neighborhood of the singularities.

Proof. For a flow box B away from the singularities, it is clear that µT has finite
mass. Indeed the functions hα are positive harmonic, and by Harnack hα/|∂hα| ≤ c,
hence µT has finite mass in B. It is enough to show that µT has finite mass in a
flow box Bi near a hyperbolic singularity given by ω0 = zdw − λwdz, λ = a + ib,
b �= 0. We use the parametrization

ψα(ζ) =
(
ei(ζ+(log |α|)/b), αeiλ(ζ+(log |α|)/b))
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by a sector near the hyperbolic singularity. Since ψ∗
αhα = Hα is a positive harmonic

function and µ a.e., Hα(ζ) → 0 when �ζ → +∞, then again by Harnack ψ∗
α(τ) is

bounded. The total mass of µT in Bi satisfies∫
Bi

µT ≤
∫

D(w0,r)×Sλ

iψ∗
α(τ) ∧ ψ∗

α(τ ) ∧ ψ∗
α[Vα]Hαdµ(α) ;

ψ∗
α[Vα] is a graph in the flow box. It is of bounded area and

∫
D(w0,r) Hαdµ(α) defines

a bounded harmonic function. So the mass µT is bounded near the origin.
Basically the slicing of µT along the leaves gives the area measure on leaves

associated to the metric gT . Let Tλ be the current associated to Fλ, and let µλ

denote the corresponding measure on a transversal. The linearizations associated
to a holomorphically varying hyperbolic singularity vary holomorphically. Then∫

Hλ
αdµλ(α) → 0 when �ζ → +∞, uniformly when λ is near λ0. (We don’t say

that Hλ
α vary holomorphically.) So the mass of µTλ

is uniformly small in a fixed
neighborhood of the singularities if λ is close enough to λ0. �

Theorem 10. Let λ → Fλ be a holomorphic family of foliations in H(d), paramet-
rized by a disc ∆. Then λ→ µλ is a continuous family of measures.

Proof. Let (Tλ) be the family of the positive harmonic currents directed by Fλ.
Recall that µTλ

= iτλ ∧ τλ ∧ Tλ.
Fix a flow box B for Fλ0 away from the singularities. We can consider (φλ) local

biholomorphisms straightening Fλ in B, when λ → λ0. We know that the currents
Sλ := (φλ)∗Tλ depend continuously on λ. We can write in B,

Sλ =
∫

[w = α]hλ
α(z)dµλ(α)

where µλ is the measure on a fixed transversal (z = z0). We can assume that
hλ

α(z0) = 1 for all α, λ.
Since Sλ → Sλ0 then for every z we have hλ

α(z)µλ(α) → hλ0
α µλ0(α) weakly when

λ→ λ0.
The (hλ

α)2 also vary slowly, by Harnack, so we also get that λ → (hλ
α(z))2µλ(α)

is continuous for every z. Define

Uλ :=
∫

[w = α](hλ
α)2(z)dµλ(α) .

The family of positive currents Uλ is also continuous because (hλ
α)2 is uniformly

bounded. It follows that λ→ i∂∂Uλ is continuous, i.e.

λ→
∫
|hλ

α,z |2[w = α]dµλ(α) .

Using again Harnack inequalities for 1/hλ2

α , we find that λ → µTλ
is continuous

in B.
We have seen in Theorem 9 that µTλ

has uniformly small mass near the singu-
larities. Hence λ→ µTλ

is continuous. �
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[BoG] C. Bonatti, X. Gómez-Mont, Sur le comportement statistique des feuilles de
certains feuilletages holomorphes, Monographie Ens. Math. 38 (2001), 15–41.

[BoLM] C. Bonatti, R. Langevin, R. Moussu, Feuilletages de P
n : de l’holonomie

hyperbolique pour les minimaux exceptionnels, Publ. Math. IHES 75 (1992), 123–
134.
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