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Abstract. In this paper, we would like to formulate a conjecture on a relation
between a certain period of automorphic forms on special orthogonal groups and
some L-value. Our conjecture can be considered as a refinement of the global Gross—
Prasad conjecture.

Introduction

In the early 90’s, Gross and Prasad [GrP1,2] gave a series of fascinating conjectures
on the restriction of an automorphic representation of a special orthogonal group
to a smaller special orthogonal subgroup. We now recall their global conjecture.
Let k be a global field with char(k) # 2. Let (Vo,Qo) C (V1,@Q1) be quadratic
forms over k£ with rank n and n + 1, respectively. We assume that n > 2 and
that (Vp, Qo) is not isomorphic to the hyperbolic plane. We regard Gy = SOq,
as a subgroup of Gi = SOq,. Let m ~ ®,m, and Ty ~ ®,mo, be irreducible
tempered cuspidal automorphic representations of G1(A) and Gy(A), respectively.
Assume that Homg, ) (71,0 ® 7o, C) # {0} for any place v of k. Then the global
Gross—Prasad conjecture [GrP1] asserts that

(e1lGo, o) == / ©1(g90)%0(g0) dgo # 0
Go(k)\Go(A)

for some 1 € m and @y € g if and only if L(1/2, 7 Kmy) # 0. Here, L(s,m K mp)
is the “product” L-function of m; and mg.

In this paper, we would like to formulate a conjecture, which expresses the period
(p1lGys o) in terms of L-values. Put

AL {g(2)g(4) (2D if dimVy =20+ 1,
b lC@)C@) ¢ -2) - Ll xg,) if dimVy =21,
where x(, is the quadratic Hecke character associated with the discriminant of Q1.
Let m1 ~ ®,m, and 7y >~ ®,mo, be irreducible cuspidal automorphic representa-
tions of G1(A) and Gp(A), respectively. We assume, for simplicity, m and 7y are
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tempered. We put
L(s,m X mp)

Pruaa($) = 1o 4 (1/2), 70, Ad)L(s + (1/2), 70, Ad)

where L(s,m,Ad) and L(s,m, Ad) are the adjoint L-function of m; and that of
mo, respectively. We assume that the L-functions L(s,m; X mg), L(s, 71, Ad), and
L(s,m, Ad) have meromorphic continuation. For a sufficiently large finite set of bad
places S, we denote the partial Euler products for Pr, ,(s) and Ag, by P2 o (8)
and A2 |+ respectively.

Let o1 = ®@up1,0 € T and g = Q0,0 € T be cusp forms. We consider the
matrix coefficients

Py o1 (91) = (T10(91) P10, 010), 5, 91 € Gr(ky),

D000 (90) = (70,0(90) P00, P0,0),» 90 € Golky).
Put

(g1, 900) = / B or s (90:0) @0 s o0 (G00) o -
Go(kv)

It will be proved that this integral is convergent (Proposition 1.1).
Then we conjecture that there exists an integer (8 such that

|<901‘G07900>|2 Jé] I(p1 va‘POv)
reon o) 2 ORGP Lo Do, 00
where Cj is a constant determined by the choice of the local and global Haar mea-
sures of Go(A) (Conjecture 1.5). For more precise definitions, see section 1. When
n = 2, our conjecture reduces to the theorem of Waldspurger [W].

One can give a possible interpretation of the factor 2% in (%) in terms of the
Arthur conjecture [Ar]. Let £ be the hypothetical Langlands group for k. Then,
if we admit the Arthur conjecture, for an irreducible cuspidal tempered automor-
phic representation 7; of G;(A) (¢ = 0,1), one can attach an L-homomorphism
Vit L, — LG = G; x Wy, where Wy, is the Weil group [T] of k. It is generally be-
lieved that the structure of the L-packet for m; is closely related to the finite group
Sy, = Cent, (Im(¢);)). Then, we conjecture that
1

20 =
’S¢1| ’ ‘S’l/)o‘
(cf. Conjecture 2.1).

This paper consists of three parts. In Part I (sections 1-3), we formulate our
conjecture in detail. We first formulate our conjecture in the tempered case. Then
we discuss the relation with the Arthur conjecture. In particular, a possible inter-
pretation of the factor 27 in terms of Arthur parameter will be given. In section 3,
we discuss the non-tempered case. In the non-tempered case, several difficulties will
arise. One is that the factor Py, ,(s) may not be holomorphic at s = 1/2. Another
difficulty is that the integral I(p1 4, ¢0,,) may not be convergent. Nevertheless, sev-
eral examples suggest that an analogue of (%) holds in non-tempered case. We give
a somewhat optimistic conjecture in section 3 for non-tempered case.

In Part IT (sections 4-5), we develop some local theory to show that our conjecture
(%) makes sense. In section 4, we prove that the local integral I(y1 ., 00) 1S
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convergent if both 7, and 7, are tempered. In section 5, we show that

I(Qpl,va 800,1)) = AGI,'UPTFLUJFO,U (1/2)
for unramified case (Theorem 1.2). In particular, the right-hand side of (%) is
independent of the choice of the set S of bad primes. In the course of the proof,
we make use of the results of Ginzburg, Piatetski-Shapiro, Rallis [GiPR] and those
of Kato, Murase, Sugano [KMS]. We emphasise the fact that the factor Py, x,(s)
already appeared in [GiPR].

In Part IIT (sections 6-12), we give several examples over number fields. One can
also give several examples over function fields, but we do not discuss such cases in
this paper. In section 6, we show that our conjecture is compatible with the theorem
of Waldspurger [W]. In section 7, we prove our conjecture for n = 3 by using the
first named author’s result [I2]. Then we show that our conjecture is compatible
with the result of Watson [Wa| in some cases. We also discuss the relation with
the conjecture of Deligne [D] and the conjecture of Shimura [S2,3]. In section 8,
we consider the restriction of the Yoshida lift to the diagonal subgroup. We recall
the result of Gan and the first named author [GI], which is compatible with our
conjecture. In section 9, we consider the restriction of the Saito—Kurokawa lift to
the diagonal subset. We show that the first named author’s result [I1] is compatible
with our conjecture. Note that this example is non-tempered. In section 10, we
consider our result on the restriction of the hermitian Maass lift to the space of
Saito-Kurokawa lifts [II]. This example is also non-tempered, and is compatible
with our conjecture. In section 11, we consider the trivial representation. This
example reduces to the mass formula for the quadratic forms. In section 12, we
collect the calculation over the real place, which is necessary to get the result of
section 7, section 9, and section 10.

The authors would like to thank Kaoru Hiraga for helpful discussions.

Part I. Global Theory

1 Formulation of the Conjecture

In this paper, we would like to formulate a conjecture on a relation between a certain
period of automorphic forms on special orthogonal groups and some L-value. Our
conjecture can be considered as a refinement of the global Gross—Prasad conjecture
[GrP1].

Let k be a global field with char(k) # 2. Let (V1,Q1) and (Vj, Qo) be quadratic
forms over k with rank n 4+ 1 and n, respectively. We assume n > 2. When n = 2,
we also assume (V(, Qo) is not isomorphic to the hyperbolic plane over k. We denote
the special orthogonal group of (V;, Q;) by G; (i = 0,1). From now on, the subscript
7 will indicate either 0 or 1, except for some obvious situations. We assume there is
an embedding ¢ : Vj <— V of quadratic spaces. Then we have an embedding of the
corresponding special orthogonal groups ¢ : Gg — G1. We regard Gy as a subgroup
of G by this embedding. The group G;(k,) of k,-valued points of G; is denoted
by Giﬂ).
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For an even-dimensional quadratic form (V,Q), the discriminant field Kq is
defined by Kq = k(y/(=1)dmV/2det Q). We put K = Kq, (resp. K = Kg,), if
dim V} is even (resp. if dim V; is even). We call K the discriminant field for the pair
(V1, Vo). Let x = xk/i be the Hecke character associated to K/k by the class field

theory.
Put
) G(2)Gu(4) - Gu(20) if dimV; =20+ 1,
o {@(2)@(4) G20 —2) - Ly(l,x) if dimV; = 21,
A { (2)¢(4)---¢(2]) it dimV; = 20+ 1,
@)@ -2 -2) - L(l,x) if dimV; = 21.
Note that Ag, = L(M,;'(1)), where M’ is the dual motive of the motive M; associ-

ated to G; by Gross [Gr].

Let m; ~ ®,m;, be an irreducible square-integrable automorphic representation
of G;(A). There is a canonical inner product ( , ) on forms on G;(k)\G;(A) defined
by

(i) = / wi(90)¢,(g1) doi
i(k)\Gi(A)

where dg; is the Tamagawa measure on G;(A). We choose a Haar measure dg; ,
on G, for each v. There exists a positive number C; such that dg; = C; [[, dgi v,
when the right-hand side is well-defined. In this paper, we call C; the Haar measure
constant. Since m;, is a unitary representation, there is an inner product ( , ), on

mip for any place v of k. We put ||¢;.|| = <g0“,,<p“,>1/2, as usual. There exists a
positive constant Cr, such that <<pl, i) = Cx, [1,{¢iw; ¥} ,)v for any decomposable
vectors ¢; = Qypiy € Qumi, and ¢ = ®U<,017v € Ry p-

We fix maximal compact subgroups K1 = [[, K1, C G1(A) and Ko = [[, Ko, C
Go(A) such that [Ko : K1 N Kp] < oo. We choose a K;-finite decomposable vector
©i = QuPiy € Ry We are interested in the period (¢1|a,, po) where ¢1]g, is the
restriction of ¢ to Go(A).

Let S be a finite set of bad places containing all archimedean places. We may
and do assume the following conditions hold for v ¢ S:

(Ul) G; is unramified over k.
(U2) K, is a hyperspecial maximal compact subgroup of G; .
(U3) ]Co v C K1 v
(U4) m;, is an unramified representation of Gj ,.
(U5) The vector gpz v 1s fixed by K;,, and [|¢;, v” =1.

(UG f}ci’v dgz,v =
When G; is unramified over k,, we shall say that a Haar measure on G, is the
standard Haar measure if the volume of a hyperspecial maximal compact subgroup
is 1. Thus the condition (U6) means that the measure dg;, is the standard Haar
measure.
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The L-group “G; of G; is a semi-direct product Gi x W. Here, W}, is the Weil
group of k and
~ ) Sp(C) ifdimV; =20+1,
SO(2(,C) ifdimV; = 2[.

;=
We denote by st the standard representation of “G;. The completed standard L-
function for 7; is denoted by L(s,m;,st) for an irreducible automorphic represen-
tation m; of G;(A). For simplicity, we sometimes denote L(s,m;,st) by L(s, ;).
For v ¢ S, the Euler factor for L(s,7;) is given by det(l — st(Ax,,) - ;)"
where Am,v is the Satake parameter of m;,. We consider the tensor product L-
function L(s,7m; X mp). The Euler factor of L(s,m X m) for v ¢ S is given by
det(l - St<A7T1,u) ® St(Am),v) ' Qv_s)_l'

Consider the adjoint representation Ad : “G; — GL(Lie(G;)). The associated L-
function L(s,m;, Ad) is called the adjoint L-function. We assume that L(s,m X mg)
and L(s,m;, Ad) can be analytically continued to the whole s-plane.

We put
» B L(s,m X m)

mimo(8) = L(s+ (1/2),7,Ad)L(s + (1/2), 70, Ad)

Let m; ,, be an irreducible admissible representation of G ,,. We denote the com-

plex conjugate of m; , by 7;,. It is believed that

dim¢ HOIHGOW (71'171, & Tow, (C) <1 (MF)
for any place v of k. We do not assume (MF) in this paper. Note that an analogue
of (MF) for orthogonal groups has been proved by Aizenbud, Gourevitch, Rallis,
Schiffmann [AGRS] for the non-archimedean place and by Sun and Zhu [SunZ] for
irreducible Harish-Chandra smooth representations for the archimedean place.

We consider the matrix coefficient

q)cpiw,go;w (9i) = <7ri,v(gi)90i,v790;,u>va gi € Gi,va
for ICy ,-finite vectors ¢ ,, ga’l’v € ., and Ko ,-finite vectors ¢, go{m € mo . Put
[(901,1;7 @371); SOO,Ua Qoé),'u) = / (I)@lmv‘/’ﬁ,v (govv)q)(po,v,golo,v (9071)) ng,v )
0,v
O‘v(gpl,va ‘pllm; 0,0, (IDE),U) = Ag’iv,})ﬂl,vﬂro,v (1/2)_11(901,% 80/1,1); $0,v5 90671)) .

When @1, = ¢}, and o, = ¥, we simply denote these objects by I(¢1.4,¢0.)
and oy, (91,0, Y0,0), respectively.

PRrROPOSITION 1.1. If both 7y ,, and 7 ,, are tempered, then the integral I(p1 4, ¢o.v)
is absolutely convergent and I(¢1 .4, ¢0.0) > 0 for any K, ,-finite vector @; , € m; 4.

Theorem 1.2. Let v be a non-archimedean place. Assume that the conditions
(U1), (U2), (U3), (U4), (Ub), and (U6) hold. If the integral (1 4, 0.,) is absolutely
convergent, then we have o, (1,0, o) = L.

The proofs of Proposition 1.1 and Theorem 1.2 will be given in Part II.

CONJECTURE 1.3. Assume that both m;, and m, are tempered. Then
dimc Homg, , (71,0 ® 70,0, C) # {0} if and only if a, (@1, 00.,) > 0 for some IC; .-
finite vector ¢; , € ;4.
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Now let m; ~ ®,m;, be an irreducible cuspidal automorphic representation of
Gi(A). We shall say that m; is almost locally generic if m; satisfies the following
condition (ALG).

(ALG) For almost all v, the constituent m;, is generic.

It is believed that m; is almost locally generic if and only if 7; ,, is generic for some v.
It is also believed that m; is almost locally generic if and only if 7; is tempered (the
generalized Ramanujan conjecture).

CONJECTURE 1.4. Let m; ~ ®,m;, be an irreducible cuspidal automorphic repre-
sentation of G;(A). We assume both 7 and 7y are almost locally generic. Then

(1) The integral I(1,0, ¥0,») should be absolutely convergent and I (1 4, ¢0,v) > 0
for any KC; ,-finite vector ¢;, € m; .
(2) dim¢ Homg, , (71,0 ® 70,0, C) # {0} if and only if o, (1,0, 00) > 0 for some
KC; »-finite vector ¢; , € m; .
Now we state our global conjecture.

CONJECTURE 1.5. Let m ~ ®,m, and my ~ ®,7o, be irreducible cuspidal
automorphic representations of G1(A) and Gy(A), respectively. We assume 71 and

7o are almost locally generic. Then there should be an integer 0 such that
2
P1[Gos $0 (1,05 Po,
Krlon 0P _ pconc . (o pon)
(@1,801><Q007800> 'UES

for any non-zero vectors @1 = ®,p1, € m and ¢y = ®ngo,v € mp.

We will discuss the nature of the integer § in the next section.

REMARK 1.6. When 71 and 7 are tempered, it is believed that the local L-factors
L(s,m1,,Ad), L(s,m 4, Ad), and L(s,m, K m,) are holomorphic for Re(s) > 0.
Therefore in this case our conjecture is equivalent to

’<§01’G07§00>’2 3 901 vy 40, v)
= 20C,AZ, (1/2)
{1, 91){w0, vo) Prm H lle1,0l% - 0,0

2’
where AS and 77;?1 =, (8) are the partial Euler products. In particular, the definition
of the L—factors for bad primes plays no role in this case. Note also that it is believed

that L(1,m;, Ad) # 0 if 7; is tempered.

veS

REMARK 1.7. One can formulate Conjecture 1.5 in a different way as follows.
Assume the local measure dg; , and the local inner product (), are normalised so
that C; = Cﬂ—i =1. Put

H7T1,7r0 = HomGo(A)XGo(A) ((71'1 X 7~r1) & (77'0 X 711'0),(:) .

We define two elements L%llo, ?%1, Llecal e 0. . by

1,70

LEYA (1 05 00, 90) = (#1laes vo) (@] lco, €h) »

L (01,1500, 00) = [ [ (1,00 1,05 0,05 90,0 -
Then Conjecture 1.5 can be reformulated as
Lglobal Q/BAGH PTrl 7l_0(1/2)Llocal

1,70 1,70 °
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2 Relation to the Arthur Conjecture

This section is devoted to a somewhat speculative argument based on the Arthur
conjecture [Ar]. We recall the Arthur conjecture for an automorphic representation
of reductive algebraic groups. We assume, for simplicity, G is a reductive algebraic
group defined over k with anisotropic center. The local Langlands group L, is
defined by
r Wi, x SU(2) if v is non-archimedean ,
v Wk, if v is archimedean ,

where Wy, is the Weil group of k,. A Langlands parameter is a homomorphism ¢, :
L, — "G which satisfies certain additional conditions. Two Langlands parameters
are equivalent if they are conjugate by an element of G. Langlands conjectured
that for each equivalence class of Langlands parameter, one can associate a finite
set Iy, (G) of irreducible admissible representations of G,. The finite set II,, (G) is
called the L-packet for ¢,. The set II(G,) of all equivalence classes of irreducible
admissible representations of G, should be decomposed into a disjoint union

=[], (@
¢

where ¢, extends over the equivalence classes of Langlands parameters. The L-
packet Iy, (G) should contain a tempered representation if and only if the Langlands
parameter ¢, has a bounded image, in which case ¢, is called tempered. If ¢, is
tempered, then all members of Il (G) should be tempered.

A homomorphism 1, : £, xSLa(C) — “G whose restriction to SLy(C) is holomor-
phic is called a (local) Arthur parameter if ¢, |~ is a tempered Langlands parameter.
One can consider the equivalence of Arthur parameters as in the case of Langlands
parameters. Arthur conjectured that for each equivalence class of Arthur parame-
ters 1), one can associate a finite set of unitary representations Il (G). The set
I1y, (G) is called the A-packet of v,. A-packets are not necessarily disjoint.

For each representation p, of £, x SLy(C), we associate an L-factor as follows.
We may assume p,, is irreducible. Then there exists an irreducible representation ¢,
of £, and an integer ¢ > 0 such that

pv == Oy X Symtu
where Sym’ is the unique irreducible representation of SLy(C) of degree ¢t + 1. We

ut
P t

L(s, py) H (s—Jj+(t/2),0) .

For each element m, € Il (G) and a finite-dimensional representation r of 1G, we
put L(s, 7y, ) = L(s,701,). Note that L(s,m,,r) depends not only on 7,, but also
on 1, since A-packets are not necessarily disjoint, although the symbol suggests it
does not.

Langlands conjectured that there exists a locally compact group L such that the
equivalence classes of irreducible n-dimensional representation of £ is in one-to-one
correspondence with the set of irreducible cuspidal automorphic representations of
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GL,,(A). There should be a homomorphism ¢, : £, — L} for each v. A (global)
Arthur parameter is a certain equivalence class of homomorphisms

¥ : Ly, x SLy(C) — L@
such that the image of £, is bounded. Let IL,(G) be the set of square-integrable
automorphic representations ™ ~ ®,m, of G(A) such that 7, € Iy, (G) for each v.
The set II;(G) is called the A-packet of 1. Arthur conjectured that the set of
square-integrable automorphic representations of G(A) is a union

UTu(@).
v

If 7 € II,(G), then ® is called the Arthur parameter of 7. In general, v is not
uniquely determined by the equivalence class of 7, but for special orthogonal groups
or unitary groups, 1 should be determined by .

It is believed that the Arthur parameter 1 : £; x SLo(C) — G associated
with a square-integrable automorphic representation should be elliptic in the sense
that Im(z)) is not contained in any proper Levi subgroup of “G. This is the case
if and only if Centy(Im(v)) is finite. If 1) is an elliptic Arthur parameter such
that IL,(G) is non-empty, the A-packet II,(G) consists of only irreducible tempered
cuspidal automorphic representations if and only if the restriction t|gp,,(c) is trivial.
In this case, the Arthur parameter ¢ said to be tempered. For an elliptic Arthur
parameter ¢, we put

Sy = Centé(lm(w)) )

Now we go back to the situation that G; = SO(n + 1) and Gy = SO(n). Let 9,
be an elliptic Arthur parameter for the group G;. In this case, the group &y, can
be calculated as follows. Let st be the standard representation of “G;. Then st o 1);
can be decomposed into a direct sum of irreducible representations of L x SLa(C):

st o = EB%Q)~
j=1

Here, the representations %(1)’ e ,wlm are mutually distinct orthogonal (resp. sym-
plectic) representations of Ly x SLy(C) if dim V; is even (resp. odd). Then
N (z/2Z)"=* if dimV; is even and rank 1/)2(3) is odd for some j,
| (z/)2z)" otherwise .
In particular, Sy, is an elementary 2-abelian group.

Now we admit the Arthur conjecture. Let 7; be an irreducible cuspidal automor-
phic representation of G;(A), which satisfies the condition (ALG). Then correspond-
ing Arthur parameter 1); must be tempered, since otherwise 7; , cannot be generic
for any v.

i

CONJECTURE 2.1. Assume that ; is an irreducible tempered cuspidal automor-
phic representation of G;(A) with Arthur parameter ;. Then the constant 27 in
Conjecture 1.5 should be equal to 1/(|Sy, | - [Sy,|). Equivalently, the equation

‘(@1 ‘GO7 900) ’2 _ COAGl 7) (1/2) H av(@l,w 90071))
= 1,7
(e 01)(p0,00) IS ]+ Syl " s leroll® - llvo

| 2

holds.
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3 The Non-tempered Case

Let m;, be an irreducible representation of G;,, which we do not assume to be
unitary for a moment. Note that if both m, and m, are tempered, then

ay (P10, <P/1,v; $0,v; 906,1,) gives an element of
HomGoﬂ,XGo,v ((771,1) X 7?1,1)) & (ﬁO,v X 7:70,1))7 (C) y
where 7; ,, is the contragredient of m; .

CoNJECTURE 3.1.  The quantity oy (91,0, %] ,; 0.0 #0,,) should be somehow “ana-

lytically continued” for any 1, and 7o ,. If Homg, , (71, ® 7o, C) # {0}, then the

continuation oy, (¢1,4, 80/1,1); ¥Y0,u, (’06»1;) is unique and gives an element of
HomGo,uXGo,u ((7‘(1’1, X 7~T17v) ® (7_1'0’1, X %O,U)a C) .

Now we consider the global situation. Let m; be a square-integrable automorphic
representation of G;(A), which may not be almost locally generic. We assume that
Homg, , (71,0 ®7T0,0, C) # {0} for any v. For v ¢ S, we may assume o, (1,0, 90,0) = 1
by Theorem 1.2, as long as it is meaningful.

CONJECTURE 3.2. Let m; be as above. Then

(1) The integral (p1]a,, o) should be convergent for any ¢; € m; and ¢y € .
(2) There should be an integer [ such that

{#1lGo, o)l 3 (1,0, P0,0)
= 2Aq,CoP 1/2 ’ ’
(o1.01) 0, 0) P L o012 e

for any non-zero decomposable vectors ¢1 = ®,p1,, € 1 and Yo = Xy0.» € 7.

REMARK 3.3. Contrary to the almost locally generic case, the factor 2% is not
necessarily equal to 1/(|Sy, | - |Sy,|), and depends not only on global data, but also
on local data. See the examples in section 9, section 10, and section 11.

Part 1I. Local Theory

Until section 5, we consider only local objects and drop subscript v.

4 Convergence of the Integral: Proof of Proposition 1.1

In this section, we assume that k is a local field with char(k) # 2. Let (V,Q) be a
non-degenerate quadratic space over k. We denote the anisotropic kernel of (V, Q)
by (V2 Q*"). Then there is a decomposition V = X @& V** @Y, where X and YV
are totally isotropic subspaces. The Witt rank r of (V,Q) is, by definition, equal
to the dimension of X or Y. We put d = dim V®'. Choosing a basis of X, we
get a minimal parabolic subgroup Py = MminNVmin of G. The Levi factor My,
is isomorphic to (k*)" x SOgan. The split component Api, of My, is isomorphic
to (k*)", and the Weyl group W (G, Apnin) is of type B or D according as d # 0 or
d = 0. We will denote an element of A, ~ (k*)" by © = (z1,...,z,). The simple
roots of (Ppin, Amin) are given by

ay(z) = wlxz_l, e (z) = xr_lwr_l,
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Ty if d ,
(»u>={ 70

Tr_1xy ifd=0.
These roots are also regarded as a character of My,. Let dp_ . (z) be the modulus
character of Pyi,. Then
H ‘x |d+2r 21
mln 7

Fix a special maximal compact subgroup IC of G. Then we have a Cartan decom-
position G = KM K, where

min
M;Em = {m € My ! lai(m)| <1 (i = 1,...,1")}.
Fix a suitable embedding n : G — GL,,. Then the height function o(g) (with
respect to the embedding 7) is given by
o(g) = max (log[n(9)isl.log n(g™")il) -
1<<m
When £ is non-archimedean, the following integral formula holds

/f dg—/ ,u(m)/,c Kf(kzlka)dk:ldkgdm, felYq)),

where p(m) = Vol(KmK)/Vol(K). Moreover, there exists a positive constant A
such that A7165" (m) < pu(m) < Asp' (m) for any m € M. . (See Silberger [Si,
p. 149].) e o

When £k is archimedean, similar integral formula holds. (See, e.g. Helgason [Hel,
Th.5.8].) In particular, there exists a non-negative function u(m) on M. such
that

/ f(g)dg —/ w(m) f(kymks) dky dky dm,  f € LYG).
Mt KxK

min

Moreover, there exists a constant A > 0 such that u(m) < Asp" (m) for m € M

tnln min*

Harish-Chandra’s spherical function Z(g) of G is given by
E(g) = /’C ho(kg) dk

where hg € Indgmin 1 is a function whose restriction to K is identically equal to 1.
Note that E is a matrix coefficient of a tempered representation IndIGpmin 1. It is
known that there exists positive constants A, B such that

AT (m) < B(m) < A6y (m) (1 +o(m))”

for any m € M. . (See Silberger [Si, p.154, Th.4.2.1] and Harish-Chandra [H,

min”

p. 129, Lem. 1in §10].)
Recall that a function f(g) on G satisfies the weak inequality if

1£(9)] < AZ(9)(1+ a(g))”

for some positive constant A, B. A matrix coefficient of a tempered representation
satisfies the weak inequality.

Applying these results for G; = SO(n + 1) and Gy = SO(n), we can now prove
Proposition 1.1. As before, we define P min, Aimin, 7i, etc., for the group G;.
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Proof of Proposition 1.1. Let m and mg be irreducible tempered representations of
G1 and Gy, respectively. We may assume A min C A1 min. Then we have estimates

@y, (m)] < AT (m)(L+a(m)”, (m € M),
(@ (m)] < AT (m)(1+ o(m))”, (m € M),

PO min
for some positive constants A, B. When W (Gy, Ag min) is of type B, it is enough to
show the following integral
512 (m)51/2 (m)(1+ a(m))2Bdm

A+ PO,min Pl,min

0,min

is convergent. This is reduced to the convergence of

70 2B
1/2 X X X
/ |z122 - Ty | / <1— E log|mj|> d*zyd”xy - d™ Ty, .
[z1|< 22| < <wrg [<1 j=1

One can easily prove the convergence of this integral. Note that when W (G, Ao min)
is of type D, AO min 18 not contained in A;rmm In this case, one needs to consider
the integral

70 2B
1/2 X X X
/ |x1x2-~~xm|/ <1— g 10g|mj|> d*zyd”zy- - d”zy,
[z1| <o | << <1 i—1

—11/2
+/ |T120 - Xy — 1%, |/
[z1|<|z2| < <Jwrg—1]<larg | 71T

ro—1 2B
X (1 — Z log |z ;] + log |zm|> d*xyd*xy - d*xy, .
j=1
One can show the convergence of this integral similarly.

To prove the latter part of the proposition, we make use of the result of He [He|.
Let 21 and E( be Harish-Chandra’s spherical functions for G; and Gy, respectively.
Then the function go — =1(g0)Z0(go) belongs to L'(Gp) by the first part of the
proposition. Note that Harish-Chandra’s spherical function is a matrix coefficient
of a tempered representation.

Then the latter part of the proposition follows from Theorem 2.1 of He’s paper
[He]. Note that He [He] used the estimates of almost L? matrix coefficients [CoHH],
which is valid for p-adic groups as well. O

5 Calculation of the Unramified Integral: Proof of Theorem 1.2

In this section, we prove Theorem 1.2. We assume the conditions (U1)—(U6) in
section 1 holds. In particular, both G; and Gy are quasi-split. We should consider
the following two cases:

(Case A)  G1 =S0(2l+1) and Go=S0(2]),

(Case B)  G1 =85S0(20+2) and Gp=S0O(20+1).
Let K be the discriminant field. Note that K is equal to either k£ or the unramified
quadratic extension of k. Let ¢ be the number of elements of the residue field of k.
The local zeta function ((s) is defined by (1 —¢=%)71.
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Let B; = T;N; be a Borel subgroup of G;, where T; and N; are a maximal torus
of G; and the unipotent radical of B;, respectively. Let A; C T; be the maximal
split subtorus. Without loss of generality, we may assume Ng C Ny and Ay C A;.

Let m = I(ZE) = Indgi(E) and my = [(§) = Indgg (&) be unramified principal
series of G and Gy, respectively. Here, = and £ are unramified quasi-characters of
Ty and Ty, respectively. Let &= and ®¢ be the class-one matrix coefficients of I(Z)
and 7(&) such that ®=(1) = ®¢(1) = 1, respectively. We consider the integral

I(g1; Pz, P¢) = /G D=(g; " 90) e (90)dgo -
0
We assume that both = and £ are sufficiently close to the unitary axis. As shown in
section 4, this condition implies that the integral I(g;; ®=, ®¢) is absolutely conver-
gent. In this section, we calculate the value of I(g1; =, ®¢) at g1 = 1.
Let f= € I(Z) and f¢ € 1(£) be the class-one vectors such that f=(1) = f¢(1) = 1.
Then we have

O=(g1) = ; f=(kigr)dkr, g1 € Gy,
1

Pe(g0) Z/K fe(kogo)dko, go € Go .
0

We recall the theory of Shintani functions [KMS]. We denote the Hecke algebra
H(K\G;/K;) by H;. By the Satake isomorphism, there are algebra homomorphisms
W12H1—>(C and wOZHO—>(C,
corresponding to the unramified principal series 7w and g, respectively. Recall that
a smooth function S on (3 is called a Shintani function for m; and g, if the following

conditions are satisfied:

° [,(ko)R(le)S = S for any k1 € K1 and kg € Ky.

e L(po)R(¢1)S = wo(po)wi(p1)S for any ¢o € Ho and o1 € Hi.
Here, £ and R are the left regular representation and the right regular represen-
tation, respectively. Note that I(gi; ®=, ®¢) is a Shintani function for ; and 7.
Kato, Murase, and Sugano [KMS] have proved that if both G; and Gq are split,
then a Shintani function exists and is unique up to scalar. In this paper, we do not
use the uniqueness of Shintani functions.

Recall that the double coset B;\G1/By has a unique open orbit and the open
orbit has a representative n € Ky (cf. [GiPR, §7]). Note that n~1Binn By = {1}.
Let Yz ¢ be the function on G determined by the following conditions:

(1) Yze(brgibo) = (2710,%)(b1) (605 %) (bo) Yz£(91) for any by € By and by € By,
(2) Yze(n) =1.
(3) Yzelg1) =01if g1 & BinBo.

Here, §; is the modulus character of B;. Note that a function satisfying (1) and (3)

—_

is unique up to scalar. We define Iz ¢ € Homg, (71, 79) = Homg, (I(E),1(£71)) by
Iz (pr1(f))(90) :/G f(9190)Yze(91)dg1, g0 € Go.
1
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Here, pry : C°(G1) — m = I(E) is given by
pr(Pon) = [ (7180 g

B1

Let (, ) be the natural pairing on 7y X T defined by
{p0, 0) = //c o (ko) (ko) dko
0

for g € my and ¢f, € 7. Put

Sze(g1) = (fe.lze(m(q) f=)) -

Then Sz ¢ is a Shintani function, and we have

Sze(gn) = /K Felko) /G L, (g kogn) Y= (¢})dg) dko
0 1

= / Yz ¢ (krgy ko) dk: dkg .
IC1></C()

Here, 1x, is the characteristic function of ;. Put

f=(9190) fe(90) dgo  if g1 € BinBo,
T=(91) = 4 /6o
0 otherwise.
Then we have Tz ¢(g1) = Tz¢(n) - Yz-1¢-1(g1), since T= ¢ satisfies the conditions (1)
and (3) for 2! and £~!. Therefore we have

I(g1; =, ®¢) —/ / f=(k1g7 " 90) fe (Kogo) dko dky dgo
a0 Jx1 Jxo
_/ / f=(k1gy "kogo) f (g0) dko dky dgo
co Jx1 Jxo
= / T= ¢ (k1gy “ko) diy dko
K1><IC0

= TE, (77) / YE—I’g—l(klgflkO) dky dkg
/C1 X’Co

=Tz¢(n)Sz-1¢-1(91) -

In particular, T=¢(n) and Sz-1¢-1(g1) are convergent if = and ¢ are sufficiently
close to the unitary axis. Indeed, since the first part of Proposition 1.1 holds for
I(|=]) and I(|¢]) if = and & are sufficiently close to the unitary axis, I(g1; @z, ®i¢|)
is convergent, and hence the above integral is absolutely convergent. It follows
that, for each g; € Gy, Tg’g(lﬁgl_lko) is convergent for almost all k; € Ky and
ko € Ko such that klgflko € BinBy. By definition, Tz ¢(g1) is convergent for some
g1 € BinBy if and only if Tz ¢(g1) is convergent for all g1 € BinBy. Therefore
T=¢(n) is convergent, and the convergence of the above integral also implies that
Sz-1¢-1(g1) is convergent.

We first assume that the residual characteristic of £ is not 2. We consider the
case when K = k. In this case, both T=¢(n) and Sz-1 ¢-1(1) are already calculated.
Note that

() if Gy =S0(21 + 1),
T1 = A1 ~
{(k;X)lH if G; = SO(20 +2),
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Ty = Ag ~ ()} if Gy = SO(21) or Gy = SO(20 +1).
We write
(&, B it Gy =S0(20+1),
B {(51,...,3“) if Gy =S0(20 +2),
E=(&1,...,&) if Go =SO(2l) or Go =SO(20 +1).
There exists a quadratic space (V1,Q1) C (Vb,Qo) such that Vj is isomorphic to

the direct sum of f/l and the hyperbolic plane. Without loss of generality, we may
assume that (Vp, V7) satisfies the conditions (U1)—(U6). Put

. (Z2,...,5) if Gy =S0O(20 + 1),
(EQ,...,El+1) if Gy :SO(2Z+2)
Since Tz ¢(n) is independent of the choice of 7, we set ((=,&) = Tz ¢(n). By Ginzburg,

Piatetski-Shapiro, and Rallis [GiPR, p. 22, Cor, to Lem. 1.1 & p. 179, Cor. to Lem. 7.2],
we have

[1]

[1]:

C(Eag) = C(ga ) L(l I( ),ul) 1 (Case B) .

Here, L(s,1(§),Z1) is the standard L-factor of I(§) twisted by the character Z;. By
induction, we have

L(1/2,1(§).E1) {L(LE%)—l (Case A)

(Eo=1[raz)" I ca,zz) 'L,z
i=1 1<i<j<l
I r( &)o@ agh™
1<i<j<l
I r(/2,2:¢)L01/2,2¢
1<i<y<l
T r(/2,2¢)L1/2,57'¢)
1<j<i<l

in Case A, and
9= I rezEE)'LaEs""

1<i<j<l+1

XHL152 [T roag)oa,&gh™

1<i<j<l

I r(/2,2:¢)L01/2,5¢

1<i<j<l

< I ra/2E4)L0/25")

1<j<i<i+1
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in Case B. On the other hand Theorem 10.8 of [KMS] implies

Sz1e1(1) = Ag, ¢ 2lHL E70 I caE'E ) L E E) !

1<i<y<l

< [ LLg g )L g )

1<i<j<l

< TI ca/2zEghra/2zte)

1<i<j<l

< TI La/2='ghe0/2Ee"

1<j<i<l
in Case A, and

Seren(l) =Ag, ¢ [ LoLE'E; ) L0, E E) !

1<i<j<l+1
l
< [T [ o) 'L,
i=1 1<i<j<l
H L(1/2,E7%¢ ) (1/2,=7¢))
1<i<j<l
X H L(1/2,27'¢ N 0(1/2, 26
1<j<i<l+1

in Case B. Combining these results, we have

I(l; Pz, (I)f) = AG1’P7T1,7r0(1/2) >
when both G; and Gy are split. Thus we have proved Theorem 1.2 in the case 21 ¢
and both G and Gy are split.

Now we consider the case when the discriminant field K is equal to the unramified
quadratic extension of k. Note that the character x of k* associated to K/k by the
class field theory is equal to the unique unramified quasi-character of order 2. As in
the split case, we should consider the following two cases:

(Case A)  G; =S0(21+1) and Gy =S0(2]).
(Case B)  G1=S0(20+2) and Go=S0(20+1).
Note that

Ay ~ Ay ~ (BX)! (Case B).
The unramified characters = and & are determined by their restriction to A; and Ag,
respectively. We write

{A1 ~ () Ag ~ (k*)=1  (Case A),

y L(1,Z2)"1 (Case A),
1 (Case B),
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by [GiPR, p.22, Cor.toLem. 1.1 & p. 179, Cor. to Lem. 7.2]. By induction, we have

l
=[Jr@e)" [] LO.EE5) 'LL,EE")!
i=1 1<i<j<l

-1

<[lraecaxe)™ [ a6y 'La.agh™

i=1 1<i<j<i—1

l
< I La/2.z2:6)L0/2,55 ) [[L0/2,5)L(1/2,xE:)
=1

1<i<j<i-1
I La/2.2:¢)L1/2,5'¢)
1<j<i<l
in Case A, and

l
(g, HL V20TV, xE) T H L(1 SLLEE
i=1 1<i<j<l
l

< [Tee)™ T L&) 'L, h) ™

i=1 1<i<j<l

l
I ra/zsg)na/2zh [[La/2,6)L1/2,x%)
=1

1<i<j<i
[T £a/2,2:4)001/2,57¢)
1<) <i<l
in Case B. As for Sz ¢(1), we can prove the following lemma.
LEMMA 5.1. We have
Sz(1) = Ag, (1)~ ImAmdm AL (1, 3)TI¢(E,€) -
The proof of this lemma will be given in the appendix to this section. Note that
Pry g (1/2) = (1)~ A dim Ao L1, 3)TI¢(E,)C(E7H 7).

We would like to emphasise that this relation has been already noted by Ginzburg,
Piatetski-Shapiro, and Rallis [GiPR]. Combining these results, we have I(1; ®=, ®¢)
= Ag, Pry,x(1/2). Thus we have proved Theorem 1.2 in the case 2 1 q.

Now we consider the case 2|qg. It is enough to prove that I(1;®z,®¢) is an
element of Q(ql/ 2 =,¢). More precisely, we will show that there exists a rational
function Z(t, X4,...,21,...) € Q(t, X1,...,21,...), where t, Xy, ...
terminates, such that if the order of residue field of k is ¢, then

I(]-v q)57 (I)E) = I(q1/27 E17 o )517 .. ) .
To prove this, we make use of Macdonald’s formula for the spherical function. Recall

that Macdonald’s formula [C, p.403, Th.4.2] says that the spherical functions ®=
and ®¢ are of the form

Pz(m) = Q' > mwiD) - (wiD)o; ) (m1), my € A

w1 €W

,x1,...are inde-
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De(mo) = Qp' D v0(wos) - ((wo€)dy /) (ma) . mo € A .

woEWp
Here, Q1, Qo, 71(Z), 10(¢) € Q(¢'/2,2,¢) and §; is the modulus function of the
Borel subgroup B;. The integral I(1; ®z, ®¢) is equal to

/A+ P=(mo) Pe(mo) Vol (Komoko)dmy -
0

Note that Vol(IComoKy) = [Ko : Ko N mongmal]. One can show easily this integral

gives an element of Q(ql/ 2 =,¢). Therefore the proof of Theorem 1.2 is complete.

Appendix to Section 5: Proof of Lemma 5.1
In this appendix, we prove Lemma 5.1. The proof of Lemma 5.1 consists of three
steps.

Step 1. The Weyl invariance. The Weyl group W7 x W acts on the character
group of Ay x Ag by (Z,€) — (1=, wef).

LEMMA 5.2. The quantity S=z¢(g1)¢(E,£)~" is Wi x Wy-invariant as a function of
= and £ (cf. [KMS, Th. 10.8)).

Proof. Note that both ((Z,&)¢((E71, ¢71) and

I(g1; @=, P¢) = ((E,£)Sz-1¢-1(g1)
are Wy x Wy-invariant. It follows that

1(g1;®=,®) Sz-1¢-1(g1)
CEOCETET)  CELE
is also Wy x Wy-invariant. Hence the lemma. O

Step 2. An explicit formula for Sz ¢(g1). Now we closely follow the argument
of [KMS]. Fix a hyperspecial maximal compact subgroup K; C G; and a maximal
split torus A; C G;. Then the centralizer T; of A; is a maximally split maximal torus
of G;. We assume Ky C K1 and Ag C A;. Note that T need not be a subgroup of 17 .
Choose a Borel subgroup B; = T;N; C G;. We also assume Ny C N;. The opposite
Borel subgroup of B; = T;N; is denoted by B; = T;N;. We put Ti(o) =T, NK,,
Ni(o) = N; N K;, and ]\72-(0) = N; N K;. Choose a longest element Wj 1ong Of the Weyl
group W; = W(G;, A;). We assume w; jong € K;. There exists an Iwahori subgroup

B; C IC; such that NZ-(O) C B;. We put ]\_fi(l) = N; N B; and N — 1 N-(l)wi710ng.

% i,long” "¢
Then we have an Iwahori decomposition B; = ]\_fi(l) Ti(O)NZ.(O).
Recall that the element n € (1 is a representative of the unique open orbit of
B1\G1/By such that n € K;. Let o and ox be the ring of integers of k and K,

respectively. The maximal ideal of 0 and 0x are denoted by p and pg, respectively.
LEMMA 5.3.  One can choose the representative n of the open orbit of B1\G1 /By
such that the following conditions hold:

(1) N € Bin,

(2) NVn c 1O N1 N,
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Proof. We first consider Case B. Note that in this case Ny is a normal subgroup
of N1. By [GiPR, p.171,Lem.7.1] N1/Nj is isomorphic to k'~! x (K/k) as a left
module of Ay = A; ~ (k*)!. We fix an isomorphism Ny/Ny ~ k=1 x (K/k),
which induces an isomorphism Nfo) /Néo) ~ o'~1 x (0x/0). Since K/k is unramified,

0x /0 is isomorphic to o, and so Nl(o)/NéO) ~ ol

There exists a cross section (i.e.
“épinglage”) ¢ of the map Nl(o) — Nl(o) /Néo) ~ o!. Let 1/ be the image of the cross
section of (1,1,...,1) € ol. We put n = w1, long?’ - Then 7 is a representative of
the open orbit of B1\G1/By. Let U; be the group generated by Nl(l) and Nl(l).
Then U; is a normal subgroup of K. It follows that UNSI) C nUy = Uin C Bin.
As for (2), N{Vn = wiiong NV € wiiongt (01 NG
t(pHn' C Tl(o)n’ TO(O). This is easily seen by the facts 1 +p C 0*.

Now we consider Case A. Let P, be the standard parabolic subgroup of G with
Levi factor (k*)'=! x SO(3) ~ (kX)"~! x PGLy. Let Np, be the unipotent radical
of P;. Then as in Case B, Np, /Ny is isomorphic to =1 as a left module of Ay ~
(BX)=1, We fix an isomorphism Np, /Ny ~ k', which induces an isomorphism
(Np, N N )/N () ~ o/=1 Take a cross section ¢ of the map (Np, N Nl(o)) —
(Np, ﬂN )/N 0~ ol=1, Put 7 = Wilongt((1,1,...,1)). Then 7 is a representative
of the open orbit of Bl\Gl/Bg, since PGLy = (PGLQ NNp)-(PGLaNTp) (cf. [GIPR,
App.1t0§7]). One can prove (1) in the same way as in Case B. As for (2), observe
that N( ) = (N(l) NNp,) - (Nl(l) NPGLy), where Np, is the unipotent radical of the
opposite parabolic subgroup of P; with respect to the Levi subgroup (kX )'~! x PGLs.
One can prove that (Nl(l) N Np,)n C T(O)T]T(O)N(O) in the same way as in Case B.

Now (2) follows from the fact (T’ N " PGL,) - (T\”) N PGL,) = Ky N PGL,. O

LEMMA 5.4. We have
Bon "By c TNy O N

It suffices to prove that

Proof. By Lemma 5.3, we have
Bon By = Ty NV N ™18y
c T(O) éO)U_IB
_ T( ) (0) le(l) ( )N(O)

c T( ) (0) —1T( )N(U) 0
Put
AT ={te A | la(t)| < 1 for any positive root o of (G1,41)},
Ay = {t € A | |a(t)] <1 for any positive root o of (G, Ag)} .

Then we have Cartan decompositions G7 = lClAl K1, Go = ICOAO Ko.
For each positive root a of Gy (resp. Gy), we denote Harish-Chandra’s ¢-function
(cf. e.g., Casselman [C]) by ¢4 (E) (resp. cq(§)). We put

i@ = ] @ (v = T[ «l©):

a>0
wia>0 woa>0
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When w; (resp. wp) is the identity element, we set

1E) =[] cal® <resp. co<£)=Hca<£)>-

a>0 a>0
LEMMA 5.5. There exists a basis {g1.w, }usew, of I(2)P! with the following prop-
erties:

(11) R(1g,¢-18,)91,01 = Vol(BitB1) - (le)_léi/Q (t) - g1, for any t € AT;
(21) The restriction of g1 1 to ICy is the characteristic function of By;

0) 1 -
(3) f== N s N S ews 00 (5) - g1
Similarly, there exists a basis {0 wo fwoew, of 1( )Bo with the following properties.

(10) R(Lpyi-15)90.00 = VOl(BotBo) - (wo€) '8y (2) - go.w, for any t € A
(20) The restriction of go 1 to Ky is the characteristic function of By.

(30) fe = INS” : NUTS wocrwi Cuwo(€) - Go.uwo-
Proof. See [KMS, p. 8, Prop. 1.10]. O

LEMMA 5.6. We have

Sz ¢(ton 1t7) = Vol(Boty 'Bo) Vol (Bt *By) ™

X (‘C(lBoto_lBo)R(lBltl_lBl)5575)(77_1)
fortg € Af, t1 € AT.
Proof. 1t suffices to show that
(BotoBo)n ' (Bit; ' B1) € Koton 't 1Ky
for tg € Aar, t € Af. By Lemma 5.4, we have
BotoBon ' Bity ' By C BotoTéo)Néo)ﬁ_leo)Nfo)tl_lBl :

Since tZ'Ti(O) Ni(o)ti_1 C Ti(o) Ni(o), the lemma follows. O

Recall that
Sze(g1) = (fe, lze(mi(g1)fz)) -
By (11), (31), (1g), and (3p) of Lemma 5.5, we have
Szelton 1) = [N s N{VJING” < NGV
X3y (B)ew (6) (w1 2) 710 (1) - (wo€) 718y (ko)

w1 €Wy
woeW)y

X / 90,w0 (k0) g1, (k1)Y= ¢ (konk1 )dko dky .
]C()X/Cl
By (21) and (2) of Lemma 5.5, we have
/ 90,1(k0)g1,1 (k1) Yz ¢ (konky)dko dky
IC()X/Cl

= Vol(B1)Vol(By)
= 86, Ay (1) A AL )7 /(N NEIINGY < NGYY)
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Put ews(Z,€) = c1(E)ea(€)¢(E,€) ! = b(E,£)d1(E)'do(¢) ", where
l

bE &)= ] L/2,E)L1/2,2:& ) [[ L(1/2,E)L(1/2,xE))

1<i<j<i-1 i=1
x ] L(1/2,2:&)L(1/2,E7"¢)
1<j<i<l

l
a@ " =J[r0) ] ro.zs)i0ss"
im1 1<i<j<i

-1
do(§) ' =T L0,&)L0,x&)  J]  L(0,&&)L(0,&¢)
i=1 1<i<j<i-1
in Case A, and

l
b6 = [[ LO/22:¢)L0/256 [[L0/2.6)001/2,x&)
i=1

1<i<j<l

x I Z(/2,2:4)L01/2,57'¢)

1<j<i<l

l
di(8) ' =] LO0,E)L0,xE) [] L0.ZE)L0,5E;")
i=1 1<i<j<l

l
do(§) ' =] L0,&) [ I(0,&6)L0, 8¢
i=1 1<i<j<l

in Case B. By the Weyl-invariance, we have
SE tonilt_l —dim A; —dim —
’éé(: é‘) ! ) = AGIAGOC(]‘) dim A1 =d AOL(LX) !

x 3 ews(wiE wof) - (wi) 710 (1) - (wo€) 18y (ko)

w1 €Wy
woEWo

(cf. [KMS, Th.10.7]). Note that

b(Ev E)? dl(E)7 dU(g) € Z[qi1/27 Ela 527 B 7517527 e ] :
Here and from now on, we identify an unramified quasi-character of k* with its
value at a prime element.
Step 3. Calculation of Sz ¢(1)/¢(E,£). Our next task is to prove the following
lemma.

LEMMA 5.7. The sum
Sz ¢(1)

C(} 6 = NG, Agy¢(1)~ I A am AL )™ Y ews(wiZ, wof)
= w1 €W,
woEWo

is independent of Z and &.
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Proof. We shall prove the lemma only in Case B. One can handle Case A in a similar
way. Put
Aze= Y cws(wiE wl).

w1 €Wy
woeWy

We are going to prove that Az ¢ is independent of Z and £. Put
D(E)=Z"di(E) = ) sgn(wi) - (wiZ) ",
w1 €W,
D(¢) =& 7do(§) = D sen(wo) - (wo) 7,
wo€Wo
where
P1 = pPo = (l,l—l,...,l).
Then we have D(w1E) = sgn(wq)D(Z) and D(wp) = sgn(wg)D(€) for wy € Wy and
wo € Wp. Note that p; and pg are half the sum of the positive roots of type C. It
follows that Az ¢ is equal to
(DE)DE)™" D sgn(wr)sgn(wo) - (wiE) " (weé) b (wi E, wef) .

w1 €Wy
woEWy

Put Bz ¢ = 2771 7b(E,£). Observe that Bz ¢ is equal to
I —a's) JI &' -a?5h

1<l 1<i<j<l
—1 —-1/2=-1 —1/2=
< I == I 0 —a22).
1<j<i<l 1<i<l
1<55<l

ININA
IAIN

We express Bz ¢ as a sum of monomials

Bze =Y 2", A\pell, o, €Zlg™].
Aot

We say that a monomial ZMH is regular if ZWIAEWOr = ZAEH implies w; = wo = 1.
We also say that a monomial is singular if it is not regular. Here the action of the
Weyl group on Z! is given by (w1 Z)¥1* = 2, (wpé)WoF = €4, as usual.

We would like to show that if a regular monomial ZX# appears in Bz ¢, then it
is of the form Z"1P1£"W0P0 with wy € Wy, wo € Wy. It is enough to show |A;|, |p;] <1,
since such a monomial is either singular or Weyl-equivalent to Z°1£P0. Choose i,

Jo € {1,2,...,1}. The positive contribution of Z;, comes from
IT a-a"?28).
1<5<d

and the negative contribution of Z;, comes from
=1 —1/24—1 -1 —1/2=—1
H(:io —q /gj ) H (fj —q /:ig)'
10<j<l 1<j<1g
Therefore |\;,| < [. Similarly, the positive contribution of £;, comes from

( j_ol - qiléjo) H (1- qil/zzi jo)

1<i<l
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and the negative contribution of £, comes from
& -0 I G -2 T &) -z
1<i<jo Jo<i<l

Therefore |p;,| < 1+ 1. It follows that if a regular monomial ZAé# occurs in Bz,
then | < |uj,| < 1+ 1 for some jo. We will show that no regular monomial ZA¢H
such that |uj,| > [ occurs in Bz¢. Assume that the monomial EAEH occurs in Bz
and |p;,| > I. We must show that such a monomial Z*¢# is singular. Note that the
monomial ZM# oceurs in

i9<j<l
1 1201y —1/2= 12—
X H(% —q /:io)'q /:iojo H(l_q /:ioj)
1<j<io 1<5<l

J#jo
X (terms not containing =;, or &j,) .

In particular, we have \;, # —[. If A\;; = [, then the factor fj_ol must occur in the

factor =—1_ —1/2¢-1 -1 —1/2=-1
H(:ig —q & ) H (fj —q Eio )
i0<j<l 1<j<io
which would contradict the condition pj, > [. It follows that the condition p;, > [
implies |A;,| < I. Therefore no regular monomial such that uj;, > I occurs in Bgz.
Assume now ji;, < —I. Then the monomial EAEH oceurs in

o @ g T G -a g

i0<j<l
J#Jo
—l4jo -1 —1/2—=-1 “1/2=
X o H (fj —a /“io)H(l_q /“i(’j)
1<) <o 1<5<l

X (terms not containing =;, or &j,)
if ig < jo, and

L@ g 1] G —a g

i0<j<l
—l+j0 —1 —1 2':'—1 —1 2':'
X o H (fj —a /“io)H(l_q /“i(’j)
1< <o 1<5<i
J#Jo

X (terms not containing =;, or ;)
if ig > jo. In particular, A\;; # —I. If \;; = [, then the factor {;, occurs, and so the
condition pj, < —I fails. It follows that the condition pj, < —I implies ;)| < I.
Therefore no regular monomial ZX# such that j, < —l occurs in Bz .
We have proved that the regular monomials Z)# which occur in Bz ¢ are of
the form (wi=)7P (wp§) 7, for some wy € Wy and wy € Wy. Therefore, up to a

constant, A= ¢ is equal to

(DEDE) ™ D sen(wi)sgn(wo) - (wrZ) ™ (w€) " =1.

w1 €W,
woEeWp

Hence the lemma. O
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Recall that
Az = Z cws(w1E, wof) .

w1 €W,
woEWp

LEMMA 5.8. The constant Az is equal to Aa(l)

Proof. We shall prove the lemma only in Case B. One can handle Case A in a similar
way. We put

= (¢ g g,

= (q_l+(1/2)7 q_l+(3/2)7 s 7q_1/2) .

Iy [1]:

As in the proof of [KMS, Lem.11.9], we shall prove that b(w;Z, wof) # 0 implies
wy; = wp = 1. Note that b(E,¢) is equal to

[T a-a'?zgh I a-a'?57") [ 0 -a2)

1<i<j<l 1<j<i<l 1<i<l
1<5<l

x ] 1—q7'¢).
1<5<i
Note that Wy ~ Wy ~ {£1}} x &;, where &; is the symmetric group. Therefore, for
every wy € Wi, wo € Wy, one can find 0,7 € &; and ¢;,¢; € {1} such that

U}1E = (E&‘l(l), . ’Efrl(l)> s

w0€:(£ 1)a"'a£ )
Putis=0t(l+1-3s), =7 11+1—1). Thenwe have

(’wl )15 = *—41641:1 s — 4 TEisS

S

<w05)]f §l+1 ;= =q J,(tf(l/Q)).

Assume b(w;Z, woé) # 0. Firstly, 1 — q_l(wof)j1 # 0 implies €’ = 1. Secondly,
1— ¢ V(w1 B)i, (wof);, # 0 and 1 — ¢~ 2(w1E)y,.,, (wo);, # 0 imply
5;1 =& —8j2 =&, :"':52'1 =g, =1.
Now, if jg < is, then the second factor would contain the factor
1-— q_l/Q(wl ) (woﬁ) = 0, therefore we have js > i,. Similarly, if is < jsi1,
the first factor would contain the factor 1 — ¢~ '/2(w2);, (wgf)J ., = 0, therefore we
have ig > js11. It follows that
J1 201> o Z>in > > g > g,

and so wy = wy = 1. Tt follows that Az = b(Z,£)d1(Z)"'do(€)~". By direct
calculation, one can easily show that it is Aéi O

Now Lemma 5.1 follows from Lemma 5.7 and Lemma 5.8.

Part III. Examples

In sections 6-12, k is an algebraic number field. The Dedekind zeta function of k
is denoted by (j(s). The I'-factors of L-functions are normalized as in Tate [T]. In
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particular, Tg(s) = 7~%/2I'(s/2) and I'c(s) = 2(27)*I'(s). The completed Dedekind
zeta function of k is denoted by &x(s). When k = Q, the subscript k& is dropped.
The symbol L(s,n,r) is the Euler product [] L(s,my,r) and the completed L-
function for L(s,7,r) is denoted by A(s,m,r).

v<o0

6 Waldspurger’s Theorem

The following example is due to Waldspurger [W]. Let D be a quaternion algebra
over an algebraic number field k. Then G; = D* /k* can be considered as a special
orthogonal group associated to a 3-dimensional quadratic space over k. Note that
Ag, = &k(2). Let Go =T be an anisotropic torus of Gj. Then T can be considered
as a special orthogonal group associated to a 2-dimensional quadratic space over k.
Let K be a splitting field of T" over k. Then there exists an exact sequence

1 — Kk — K —T—1.

By means of this exact sequence, a character w of T'(A)/T(k) can be regarded as
a character of Ay /K> whose restriction to A} /k* is trivial. As in [W], we choose
a Haar measure of T'(k,) as follows. Fix a non-trivial additive character i) of A/k.
Then we give the Haar measure (,(1)"![t|,* dt, on kX, where dt, is the self-dual
Haar measure of k, with respect to v,. We give a Haar measure on K in a similar
way. Then the Haar measure on T'(k,) is defined by the exact sequence
1—k — K — T(k,) — 1.

Let Cy be the Haar measure constant. It is easily seen that Cy = A(1, XK/k)_l for
this choice of measure. Note that in [W], Waldspurger considered the measure on
T'(A) such that Vol(T'(A)/T'(k)) = 2A(1, Xk /k)-

An irreducible cuspidal automorphic representation 7 of G1(A) can be considered
as a representation of D*(A) with trivial central character. We assume 7 is almost
locally generic. The base change of m to GLa(Ag) is denoted by II. Choose a
non-zero cusp form ¢ = Ry, € T 2 Ry Ty.

Then among other things, Waldspurger ([W, Prop.7]) proved that the integral
I(py,wy) is convergent and that

(elao,w)* 1 A1/2,T@w™) (Pu, Wy)
A, Co []
T4

(2 0) (0 0) AL m ADAL xig0) L, 2
1 iy @vvwv)
AG CoPry mo(1/2 )
CoPrumo (12 1o

veS
where m = m, mg = w. Thus Conjecture 1.5 is true for n = 2. Note that we have
ISy, | = |Syo| = 2, if we admit the Arthur conjecture. Thus Waldspurger’s result is
compatible with Conjecture 2.1.

7 The Case n = 3

In this section, we prove Conjecture 1.5 for n = 3. Let D be an quaternion algebra
over an algebraic number field k. Let k' be either k x k or a quadratic extension
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of k. We put
Gy = (D& k)" k>,
Gi={ge (Dek) |v(g) €k} k",
Go=D*/k*.
Here v is the reduced norm of D. Then G; (resp. Gg) can be considered as a special

orthogonal group associated to a 4-dimensional (resp. 3-dimensional) quadratic space
over k. We regard Gy as a subgroup of G;. Note that

J&(2? UK =kxk,
"~ & (2)  otherwise.

1

Let Zg, be the identity component of the center of G1.

Let m; be an irreducible cuspidal automorphic representation of G;(A) on the
space Vr,. We assume 7; is almost locally generic. By the result of Hiraga and Saito
[HiS, Th.4.13], there exists an irreducible unitary cuspidal automorphic representa-
tion 7 of G1(A) on the space V; such that V,, C VG, (a)- Here, V} is the subspace
of V; on which the group

X, = {w € Homeont (Zg, (A)G1(A)G1(k)\G1(A),C*) | T@w ~ T}
acts trivially, and V}|g, () is the restriction of V} to G1(A) as functions. Note that
X, is an elementary 2-abelian group.

Let ( , ) be the canonical inner product on V; and ( , ), an inner product on 7,
for any place v of k. Then Ichino’s result [I2, Th. 1.1] says

|<95|G07900>|2 8 & (Pus o)
S =2"A¢,CoPr 7 (1/2) o ’
(@, @) (0, %0) L 1;[3 (@vs Bo)y - 0,0l
for any non-zero vectors ¢ = ®,p, € T and @y = Q0. € mo. Here,
dv(@va (PO,U) = Aé},val,vmo,v(l/?)_l

X /G <Tv (gO,v)QEU y Pu >v <7TO,fu (gO,U ) ®0,v5 PO >v ng,v
0,v

and

3=

~ -3 ifk =kxk,
—2 otherwise.

Choose a non-zero cusp form ¢1 = ®,¢1,, € Vr,. We choose ¢ = ®,¢, € VTl
such that @[, a) = w1. Then @ belongs to the ®,m ,-isotypic subspace of V! and

we have S
Oév(‘/)va SOO,U) . 041;(901,1» (PO,U)

<95v7§5v>v B H‘Pl,v”2
By Remark 4.20 of [HiS], we have
(3. 5) = 1< ) x 2 itk =kxk,
P | X, LR 1 otherwise.

Therefore we obtain the following theorem.
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Theorem 7.1. We have

|<901|G07‘,00>|2 Ay ‘101 vy L0, v)
= AG COPW ST ]-/2
{1, ¢1) (%0, o) 4|35| ' o Ul;[SH‘Plsz o, 1?

for any non-zero vectors @1 = @1, € T and Yo = Qo € M.

Thus Conjecture 1.5 is true for n = 3. Note that we have |Sy,| = 2|X;| and
|Syo| = 2, if we admit the Arthur conjecture.

We show that Theorem 7.1 is compatible with the result of Watson [Wa] in some
cases. Put G; = SO(2,2) and Gy = SO(2,1) = PGLg, defined over k = Q.
definition, we have Ag, = £(2)2. When v is non-archimedean, the local measure
dgo.» of Go,y is the standard measure. In particular, the volume of the hyperspecial
maximal compact subgroup K, = Ko, = PGLy(Z,) is 1. For the real place, we
choose a Haar measure as follows. The topological identity component of Gy(R)
is denoted by Go(R)". Let Koo = Kooo = S(O(2) x O(1)) be a maximal compact
subgroup of Go(R). We put K% = Go(R)? N K. Then Go(R)?/KY% can be identi-
fied with the upper-half plane ;. Let dk be the Haar measure on K2 with total
volume 1. Then the Haar measure dgo oo on Go(R)? is such that dgo o /dk induces
the measure y 2 dz dy on Go(R)?/K% ~ ;. The Haar measure dgo ~ can be nat-
urally extended to Go(R). Let Go(R)? = ANKY be an Iwasawa decomposition,
which induces a bijection $; ~ AN. Let X C AN be an image of a fundamental
domain for SLy(Z)\$1. Then there is a bijection

X x K3 x [ Ko~ Go(Q\Go(A) .

V<0

It follows that

dgo,, = Vol (SLa(Z - ‘
/G'O(Q)\Go( ) H go, ( 2( )\ﬁl) 2¢(2)

v<00

Therefore we have Cy = £(2)~! = 67!, where Cj is the Haar measure constant.

Let f; € Sk;(SL2(Z)) (j = 1,2,3) be normalized Hecke eigenforms. We assume
k1 + ko = k3. We denote the automorphic form on GLy(A) corresponding to f;
by f;. Let 7; be the irreducible automorphic representation of PGL2(A) generated
by f;. Note that o1 = f; x f3 induces a cusp form on SO(2,2)(A) and its restriction
to SO(2,1) is fifs. Put m; = 7 X1, mp = 73 and ¢ = f3. By the result of Watson
[Wa] (see also Harris-Kudla [HaK]), we have

A(1/2,T1 X Tg X 7'3) = 22H3+2<f1f2,f3>2.

It is well-known that A(1,7;,Ad) = 2% (f;, f;). Here (, ) is the usual Petersson
inner product.

As both the Tamagawa number of SO(2,2) and that of SO(2,1) are equal to 2,

we have
(e1lao, wo)* [(f1 2, [3)]?
{1, 91) {0, ¥o) H§:1<fj, I
_1 9 A(l/2,7’1 XTQXTg)

[T AL, 75, Ad)
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By easy calculation,

A(S,Tl X T9 X 7'3)
Pri o ()

[T A(s+(1/2),7;,Ad)
P ~ Te(MIe(s)le(k2)lTe(ks —1) 27
o (1/2) = S0 _

R(2) Fc(ﬁl)Fc(KQ)Fc(ﬂg) K3 — 1
PROPOSITION 7.2. Let Tjo (j = 1,2,3) be the holomorphic discrete series
of SO(2,1) ~ PGLy(R) with lowest weight +k;j. Put T o = Ti00 X 7o and
T0,00 = T3,00- L€t V1,00 € T1,00 be the vector with weight (k1,k2). Let @o o0 € 70,00
be the vector with weight k3. We assume ||¢1 | = ||¢0,00|| = 1. Then we have
11,00, 0,00) = 4 (kg — 1),
(0759 ((101,007 SOO,OO) =2.

The proof of this proposition will be given in section 12. Putting together, we
recover Theorem 7.1 in this case. Note that we have |X,| = 1.

In fact, Watson [Wa] obtained a more general result. Let B be an indefinite
quaternion algebra over Q. The reduced discriminant dp of B is, by definition, the
product of primes which ramify in B. Let N be a square-free integer such that
(N,dg) = 1. Put St be the set of primes which divide dgN. Let 7; = ®,7j, (j =
1,2,3) be an irreducible cuspidal automorphic representation of A*\B*(A) with
new vector f; = ®, f;., which satisfies the following conditions:

(1) When v < oo and v ¢ St, the local components 7, (j = 1,2,3) are unramified
representations and f;, are unramified vectors.

(2) When v | dp, the local component 7;, (j = 1,2,3) are one-dimensional repre-
sentations of the form x; o vp,, where x; are unramified quadratic characters
and vp, is the reduced norm. We also assume x;x2x3 = 1.

(3) When v | N, the local component 7;, (j = 1,2,3) are representations of
the form y; ® (Steinberg), where x; are unramified quadratic characters. We
assume that yixoxs is the unique unramified character of order 2 and that
fj» are Iwahori fixed vectors.

(4) When v = oo, we assume that 7;, (j = 1,2,3) are discrete series representa-
tions with minimal weight £x;. We assume x3 = k1 + k2 and f;, have weight
Kj > 0.

Then Watson’s result [Wa, Th. 3| says

|fX fl(z)fg(z)fg(z)lm(z)”3_2 alz:|2 B 25112 A(1/2,71 X 19 X T3)
[T Sy i) PIm(2)=2d= - (dN)® [T5_, A(L, 75, Ad)
Here, X = OW(dg, N)\$1, where O (dp, N) is the arithmetic subgroup defined
in Watson [Wa, Ch.1]. Watson proved that
Vol(X) =2¢2) [T - D ][e+D)-
plds pIN

Watson also considered the cases when 7, are not discrete series, but we do not
discuss such cases.
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Let Vi be the vector space B equipped with the reduced norm form vp. The
subspace V) C V; is defined by the space of elements of reduced trace 0. Then we
have

G1 = {(91,92) € B* x B* | vp(g1) = vB(g2) } /Q*,

Go = B*/Q~*.
As in the case of SO(2,2), we regard m = 71 X 79 as a representation of G1(A), and
Ty = T3 as a representation of Go(A). We put ¢ = f1 X fo, and g = f3. We may
assume |1 .| =

(ka0 wo)l? _Vol(X)\fol () fa()m(2)"2 dof?

{1, 1) {0, ¥0) 1 fX | £5(2)|2Im(z)"% 2 dz
=277¢(2) mo(l/2>
< [T @ 'a-p ") [[@"a+p).

pldp p|N
We describe local calculations below. Since Gy is an inner form of PGLs, we
can transfer the local measure of PGL2(Q,) to Gy, = B*(Q,)/Qy. Note that
Ag,, = ((2)? and Cp = 67! are unchanged. When p | dp, we have
VO](GO p) = I(@l 1y 22 SOO p) = 2p71(1 - pil)ila

Pry o (1/2) = Gp(1)2¢p(2) 72
It follows that a,(¢1,, pop) = 201 (1 —p~ 1) for p | dg. When p | N, let &, be the
unique unramified character of Q. of order 2. Then we have

Pry o (1/2) = L(1,6p)° L(2, ) Gp(2) 7
= +p )M +p )T A= p )
The integral I(¢1,,90,) can be calculated as follows (cf. Godement and Jacquet
[GoJ, §7]). The image of (2%) in PGLy(Q)) is denoted by [ b]. Let

a b
I= {[C d} € PGL2(Qp) | a, b, d € Zy, c € pr}
be an Iwahori subgroup of Gy, = PGL2(Q,). Let W, be the affine Weyl group

generated by w; = [(1) (1)] and wy = [g po_ ' } The extended affine Weyl group W is

defined by W = W, x Q, where Q is the group of order 2 generated by w = [ g (1)]
Then we have a Bruhat decomposition Gy, = Hwew ITwl. The extended Weyl
group W has a length function I(w) such that I(w;) = I(wg) = 1, l(w) = 0. The

Poincaré series ),y t1®) is equal to (1 4 t)(1 —t)~'. Then the function
S(bwwhy) = (=1) (=p ™)™, biba €1, jE{0,1}, weW,,

is a bi-I-invariant matrix coefficient of the Steinberg representation of Gy. From

this, we have

1

I(¢1.p, ¢0,p) Z Z Vol(ijwI)q)(ij)3

:0 UJGWH.

=2p+ 1)t Y (—p ™

weW,
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=2p ' (L—p (L +pA)7h
Note that
Vol(Iwl) = (1+p) 1p'™), weW.

It follows that ay, (1, 0p) =20 (1 +p~t) for p| N.

Putting together, we recover Theorem 7.1 in this case. Note that we have
|X;| = 1, since the Steinberg representation does not come from a quadratic field.

We remark that Theorem 7.1 is compatible with algebraicity results for the triple
product L-functions. For j = 1,2,3, let f; be a primitive cusp form with weight
kj, level Nj, and character €;. We assume that e1e0e3 = 1 and k1 < kg < k3. We
denote by 7; the automorphic representation of GLa(A) generated by f;.

We use the symbol a ~ b for a, b € C, which means that b # 0 and a/b € Q. It
is well-known that A(1,7;,Ad) ~ (f;, f;). Then Harris-Kudla [HaK] proved that

A(1/2,71 X 12 X 73) ~ p(f1, f2, f3) ,

where

<f1af1><f2af2><f3af3> if/{3<’{1+’i2,
(f3, f3)? if k3 > K1+ Ko
We assume A(1/2, 7 X 19 x 73) # 0. They also proved the Jacquet conjecture which

states that there exist a unique quaternion algebra D and some automorphic forms
FjD € TiD such that

p(f1, f2, f3) —{

/ FP(9)Fy (9)F (9)dg # 0.
AX DX (Q\D* (A)

Here TjD is the Jacquet-Langlands-Shimizu correspondence of 7;. Assume that
€169 = €3 = 1 and FjD € TjD. Then ¢y = F3D can be regarded as an automorphic
form on Go = D*/Q* and @1 = FP x FP can be regarded as an automorphic form
on
Gy = {(dl,dg) € D* x D* | I/(dl) = I/(dg)}/QX

Here v is the reduced norm of D. As before, we transfer the Haar measure dg, on
GL2(Qy) to Go(Qy). In particular, Cy = 6/7.

For each finite prime p, the component 7, has a Q-structure. Note that for
Q-rational vectors 1, and ¢ p, the quantity oy, (¢1.p, po,p) € Q.

In the balanced case k3 < k1 + Ko, the quaternion algebra D is definite. We

choose arithmetic automorphic forms FjD € T]D . Then we have

<S017Q01>7<9007S00> e@xv <901‘G07()00> e@
Note that in this case we have
Qoo (P1,001 P0,00) ~ AGt _Prisemome(1/2) 71+ VoI (Go(R)) ~ 77"
Note that Vol(Go(R)) = Vol(U(2)/(U(1) x U(1))) ~ m. Therefore in this case
Theorem 7.1 is compatible with the known result

A(1/2, 11 X 12 X 13) ~ (f1, f1)(f2, f2)([f3, f3) -

Now we consider the unbalanced case k3 > k1 + k2. We choose arithmetic holo-
morphic automorphic form F3D € 7'3D of weight k3 and arithmetic nearly anti-
holomorphic forms FlD € TlD and FQD € 7'2D with some weight. Then we have
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(see Shimura [S1])
(0, o) ~ &(2)7(f3, f3)
(1, 01) ~ E2)7(fr, f1)(f2: fa)
(e1]Go, o) ~ E2) 7 (fs, f3) -

Note that in this case, we have qoo(¢1,00,%0,00) ~ 1. Therefore in this case Theo-
rem 7.1 is compatible with the known result

A(1/2,T1 X 19 X 7’3) ~ <f3,f3>2.
REMARK 7.3. More generally, Theorem 7.1 is compatible with Shimura’s conjecture
[S2,3] for Hilbert modular forms, which was proved by Harris [Hal,2,3] and Yoshida
[Y2] in most cases.

8 Restriction of the Yoshida Lift to the Diagonal Subgroup

In this section, we recall the result of Gan and Ichino [GI], in which a formula for the
restriction of the Yoshida lift [Y1] to the diagonal subgroup by Bocherer, Furusawa,
Schulze-Pillot [BFS] has been generalized. They have proved Conjecture 1.5 for
n = 4 in some cases and given strong evidence for Conjecture 2.1.

Let k be a totally real algebraic number field. Let &k’ be either k£ x k or a totally
real quadratic extension of k. We put

G1 = PGSp,,
Go = GLy(K) /K™,
Go = {g € GLo(K') | det g € k*} Jk*.
Then G (resp. Gp) can be considered as a special orthogonal group associated to
a b-dimensional (resp. 4-dimensional) quadratic space over k. We regard Gy as a
subgroup of G;. Note that Ag, = £,(2)&x(4).
Let (V,Q) be another 4-dimensional quadratic space over k with discriminant
field Kg. We put H = GOg and
. {kxk if Ko =k,
Kg if[KQ:k]:Q.
Then there exists a quaternion algebra D over k such that
1—>k/,X—><D®kk,/>XXkX—>HO—>1
(cf. e.g. Roberts [Ro, §2]). Here, H is the identity component of H.

Let ¢ be an irreducible unitary cuspidal automorphic representation of H(A)
with trivial central character. We assume the following conditions:

e The Jacquet-Langlands lift of o[px(4,,,) to GL2(Agr) is cuspidal.
e 0, ®sgn ~ g, for some v.
o If 0, ® sgn % oy, then o, % oy, for any distinguished representation o, of
HY (cf. [GI, Def.5.4]).
Let 71 be the theta lift of o to G1(A). Note that 7 is a non-zero irreducible cuspidal
automorphic representation of G1(A). This theta lift was first considered by Yoshida
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[Y1] in a certain case. Later, it was considered by Howe and Piatetski-Shapiro [HoP],
Bécherer and Schulze-Pillot [BS], Harris, Soudry, and Taylor [HaST], Roberts [Ro]
more generally. For this reason, we call 7m; the Yoshida lift of o.

Let mg be an irreducible cuspidal automorphic representation of Go(A). As in
section 7, we choose an irreducible unitary cuspidal automorphic representation 7
of Go(A) = GLy(Ay)/A* such that Vy, C V}aon)- We assume the following
conditions:

e The base change BC(7) of T to Go(Agr) = GLa(Ape, k) /AL is cuspidal.
e The Jacquet-Langlands lift of BC(7) to D* (Apg,k)/AL, exists.
Then Theorem 1.1 of [GI] says
|<901‘G07300>|2 Qy 901 va‘POv)
/ AG COPﬂ' ST
{1, 01) (w0, 0) 28 |3€ e of

for any non-zero vectors ¢1 = ®,p1, € m and g = ®vg00ﬂ, € my. Here,

5,2{3 if Ko =k,

2 if [Kg: k] =2,

and X, is the elementary 2-group as in section 7. Thus Conjecture 1.5 is true in this

case. Note that we have
4 it Kg=kF,
|S¢1| = .
2 if [Kg: k] =2,
and [Sy,| = 2|X,|, if we admit the Arthur conjecture.

9 Restriction of the Saito—-Kurokawa Lift to the Diagonal Subset

1 X H
Let £ > 0 be an odd integer. Let f € S5.(SL2(Z)) and g € S.+1(SLa(Z)) be
normalized Hecke eigenforms. We denote the Kohnen plus subspace by

Sn+(1/2)(ro( )) C Setq1/2)(To(4)) (cf. Kohnen [Ko]). Let h € S:Jr(l/Z)( 0(4)) be a
Hecke eigenform associated to f by Shimura correspondence. Let F € S;11(Sps(Z))
be the Saito-Kurokawa lift of h. Let 7 and o be the automorphic representations of
GL2(Ag) generated by f and g, respectively. Then it is shown in Ichino [I1] that

A(l/Q,Ad(J) )_2n+1 <f f> ‘(f‘iﬁxﬁngg)‘Q )
(h, h) (9,9)*
Here, ( , ) is the usual Petersson inner product on $);. We interpret this result in
terms of automorphic representations. Let ¢ be the automorphic form on G (Ag) =
SO(3,2)(Ag) corresponding to F. Similarly, let ¢o be the automorphic form on
Go(Ag) = SO(2,2)(Ag) corresponding to g x g. As in section 7, let dgo, be the
standard Haar measure of Go(Q,) for v < co. Let Go(R)? be the topological identity
component of Go(R). The maximal compact subgroup K% of Go(R)? is defined by
K% = S0(2) x SO(2). Let dgo oo be the Haar measure of Go(R)? such that dgo o0 /dk
is equal to the measure (y1y2) =2 dz1 dxs dy; dyz on Go(R)?/K% ~ $1 x H;. Here,
dk is the Haar measure on ICgO with total measure 1. The Haar measure dgp ~ can
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be naturally extended to Gp(R). We calculate the Haar measure constant Cy. Let
Go(R)? = ANKY, be an Iwasawa decomposition, and X C AN be a set bijective to
a fundamental domain for (SLy(Z)\$1)?. Then each element of Go(Q)\Go(A) has

exactly two representatives in X x K% x [1,<o0 Kou- It follows that

/ [T dgo. = LVol(SLa(Z)\$1)” = 2¢(2)*.
Q\Go(A) v<o0o
Therefore, we have Cp = £(2)72 = 367 2. Note that Ag, = £(2)€(4). Note also

that the volume of Spy(Z)\92 is 2£(2)€(4), where $2 is the Siegel upper-half space
of genus 2. It follows that

(g0.0) = é%

[{e1lee, w0)?_ €(4) [ Flsuxs9 % 9)I?

{p1,01)(p0,00)  26(2)  (F,F)(g,9)°
As noticed in section 7, it is well-known that (f, f) = 272¢A(1, Ad(7)). By Kohnen-

Skoruppa [KoS], we have

<<]; 1]7? =282 1E(2)A(3/2, 7).

(Note that there is a minor error in the unfolding argument of [KoS, p.547]. Since
the action of the center of Spy(Z) on $, is trivial, the right-hand side of the equation
of [KoS, p.547,1. 23] must be multiplied by 2.) It follows that

[{e1lao, o) €(4)  A(1/2,Ad(0)R7)

(oo (po.00) | £2) E@AB/2, 1AL AA(r))
It is easy to check that

(s,m0) = A(s,Ad(J )f
(s,m1) = A(s, 7)€ (s + ( ) (s = (1/2)),
A(s, mo, Ad) = A(s,Ad(0) )2,
A(s,m,Ad) = A(s,Ad(7))A(s + (1/2), 7)A(s — (1/2),7)

A
A

»

X &(s+1)E(s)€(s — 1)
From this, one can show that Pr, x,(s) is equal to
A(s — (1/2),Ad(0))A(s, Ad(c) X 7)

(s + (3/2))A(s + 1,7)A(s + (1/2),Ad(0))A(s + (1/2), Ad(7)) -
It follows that
A(0,Ad(0))A(1/2,Ad(0) K 7)

E(2)A(3/2,7)A(1,Ad(0))A(1,Ad(T))

A(1/2,Ad(o) ¥ 1)
E(2)A(3/2,7)A(1,Ad(T))

Ir(1)T'c(x) - Te(k)Te(26)Te(1)

FR( ) Fc(ﬁ + 1) . FR(Q)Fc(/{ + 1) . FR(Q)F((J(QH)

= 4727t

Pﬂ1,770(1/2) =

Observe that
Pri soimoee (1/2) =
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PROPOSITION 9.1. Let 7 o be the irreducible holomorphic discrete series repre-
sentation of SO(3,2) with lowest K-type (det)* 1. Let m o, be the irreducible
discrete series representation of SO(2,2) with lowest K-type £(k+1,k+1). Choose
lowest weight vectors ¢1 00 € 1,00 ald Y0 0o € M0 0o Such that |1 ool = [|¢0,00|| = 1.
Then we have
I(91,00, P0,00) = 1657,
Qoo (91,005 P0,00) = 4T .

The proof of Proposition 9.1 will be given in section 12. Using Proposition 9.1,

we have
[{1lcos o) ? oo (01,005 0,00)
{1, 1) {¥0, ¥0) l1,0011% -+ ll0,00]1

Therefore in this case, it seems Conjecture 3.2 holds with 2° = 1/4. Note that we
have |Sy,| = 4 and [Sy,| = 2, and hence 2° % 1/(|Sy,| - [Sy,|), if we admit the
Arthur conjecture.

1
= 4AG100PW1,W0(1/2) :

REMARK 9.2. Now choose another normalized Hecke eigenform ¢’ € Sy11(SL2(Z))
such that g # ¢’. Let ¢’ be the irreducible cuspidal automorphic representation of
GL2(A) generated by ¢'. Let ¢1 be as before and ¢q the lifting of g x ¢’ to Go(A).
Then we have (¢1|ay, ¢o) = 0. Note that Homg, , (71, ® o, C) = {0} for some v
(see, e.g. [Ik1, Prop.3.1]). After a little calculation, one can show the numerator of
Py xo(8) is equal to
A(s,7 x o x 0" )A(s+(1/2),0 x o')A(s — (1/2),0 x o’)
and the denominator is
A(s + (1/2), Ad(T))A(s +1,7)A(s, 7)

x &(s+(3/2))&(s + (1/2))&(s — (1/2))
x A(s+(1/2), Ad(0))A(s + (1/2), Ad(d")) .

Note that as far as we know, any relation between ord,_; /QA(S,T X o x ¢') and
ords_1/5A(s,7) is not known, and so Pr, x,(s) might have a pole at s = 1/2. It
seems this example suggests that there is no relation between the period (¢1]|a,, ¢o)
and the L-value Py, r,(1/2), when 7 or mp is non-tempered and the condition
Homg, , (71,0 ® 7,0, C) # {0} fails. Note that when both 71 and 7y are tempered,
Conjecture 1.5 still makes sense even if the condition Homg, , (71,4, ® 7o, C) # {0}
fails, since it is believed that Py, r,(s) is holomorphic at s =1/2.

10 Restriction of the Hermitian Maass Lift to ),

Now we discuss the case n = 5 and k = Q. We put Gy = SO(3,2) ~ PGSp,. Let
# > 0 be an odd integer and f € So,(SL2(Z)), he ST (To(4)), F € Sx+1(Sp2(Z)),

Kk+(1/2)
and 7 be as in section 9. Let
hr)= Y. cn)"
n>0
—n=0,1(4)

be the Fourier expansion of h(7).
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Let K be an imaginary quadratic field with discriminant —D. We assume
that ¢(D) # 0. We denote by x and wg the associated Dirichlet character for
K/Q and the number of units in K, respectively. We put Gq = SO(4,2)g/g =~
SU(2,2)k/q/{£1}-

Now let ' = SU(2,2)(Q) N GL4(Ok) be the special hermitian modular group,
where Ok is the integer ring of K.

By using the fact that the Tamagawa number of SU(2,2) is 1, one can show that
the volume of the fundamental domain for I'k is equal to

Vol(I'i \Hz) = 272 D72 (4, wi)€(2)A(3, X)€(4) ,
where Hs is the hermitian upper-half space of degree 2. Here, we have given an
invariant measure on Hy as follows. Put X = (Z +12)/2, Y = (Z —Z)/(2v/-1)
for Z € Hy. The measure dX on the space of hermitian matrices is defined by
dX = [];<; dX\) TT,o; dX), where X = X 4 /—1x®, X7 X[ € R. Then the
invariant measure is given by (det Z)~*dX dY. This calculation will be carried out
in the appendix to this section.

Let g € S.(T'o(D), x) be a primitive form and G € S, 11(I'k) the hermitian Maass
lift of ¢ (cf. Kojima [Koj], Krieg [Kr], Ikeda [Ik2]). We assume that G # 0. Let p be
the irreducible cuspidal automorphic representation of GLg(A) generated by g. By
using Sugano [Su, Cor. 8.3] and Ikeda [Ik2, Prop. 17.4], we have

(G,G9) = 2_2”_7D”+27T_2(4,wK)ﬁ(Q)A(Z Sme(p))A(l,Ad(p)) .

One can prove this formula using Raghavan—-Sengupta [RS]. The main theorem of
Ichino and Ikeda [II] says

2 (G150 F)I? —an—2 21 M1/2,p X p X T)
ON e Z200 (.1

Combining these results and the Kohnen—Zagier formula [KoZ]

DR ) =2 DA 2 ).
we have ,
oL = 2 Vol E2IAG 06

A(1/2,Sym?(p) X 7)A(3/2,7)
A2, Sym(p)A(L Ad(p)A(1, Ad(7)

We translate these results to adelic language. Let 1 (resp. ¢g) be the au-
tomorphic form on Gy(A) (resp. Go(A)) corresponding to G (resp. F). We put
S = Sf U {oc}, where St is the set of primes which divide D. When v < oo,
let dgo,., be the standard Haar measure of G¢(Q,). The topological identity com-
ponent of Go(R) is denoted by Go(R)?. Let K% = SO(3) x SO(2) be a max-
imal compact subgroup of Go(R)". Let dk be the Haar measure of K% with
the total measure 1, and dgp . the Haar measure of Go(R)° such that dgg o /dk
is equal to the measure (detY) 3dX dY on £ ~ Go(R)?/KY%. Then we have
Vol(PGSpy(Z)\Go(R)) = Vol(Spy(Z)\$H2) = 2£(2)€(4). Let Cy be the Haar mea-
sure constant. It follows that Cy = £(2)71€(4)"! = 540773, since there is a
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bijection Go(Q)\Go(A) =~ (PGSpy(Z)\Go(R)) X [],<o0 Kop- Note also that Ag, =
E(2)AG3, EW).

Let 7y (resp. mp) be the irreducible cuspidal automorphic representation of G1(Ag)
(resp. Go(Aqg)) generated by @1 (resp. o). Note that both 7 and mp are non-
tempered. It is easy to check that

A(s,m1) :A(s Sym ){(s (s — 1),
As,mo) = A(s, 7)E(s + (1/2))€ (8 - (1/2)) )
A(s,m1,Ad) = A(s+1 ,Sym?(p)) A (s, Sym (p))A(s — 1,Sym?(p))
x A(s,Ad(p))&(s + 1)E(s)E(s — 1),
A(s,mo, Ad) = A(s,Ad(7))A(s + (1/2),7)A(s — (1/2),7)
X €(s + DEEs — 1).
It follows that Pr, x,(s) = R(s)/Q(s), where

R(s) = A(s, Sym?(p) K 7)A(s — 1 ,T)E(s = (3/2)) ,
Q(s) = A(s + (3/2), Sym®(p))A(s + (1/2), Ad(p))
x A(s+ (1/2),Ad(7))&(s + (3/2)) .
Observe that
Py MO/28ym) A2 6D

A(2,Sym?(p))A(1, Ad(p))A(1, Ad(7))€(2)

(12, Sym(p) B T)A/2,7)
A(2,Sym?(p))A(1, Ad(p))A(1, Ad(7))

by the functional equations A(1 —s,7) = —A(s,7), (1 — s) = &(s).

We consider the local factor o, (¢14,90,). For v ¢ S, we may consider
ay(P10,000) = 1. For v € S, the conditions (Ul) and (U2) in section 1 fail.
Instead of (Ul) and (U2), we consider the following conditions:

(U1") G;, is quasi-split.

(U2') K, is a special maximal compact subgroup of Gj .

LEmMmA 10.1. Assume n = 5. Let v be a non-archimedean place such that
the conditions (U1’), (U2'), (U3), (U4), (U5), and (U6) hold. Then we have
I(¢1,0,P00) = AGl,vPﬂl,vﬂTO,v(l/2)7 if it is convergent.

The authors have verified this lemma by using computer calculation. By this
lemma we may consider o, (¢1,, ¢o,s) = 1 by “analytic continuation”.

For v = o0, one can easily see that Pr, . (1/2) is equal to

Pe(1)Te(s)lc(26 —1) - Te(k—1) - Tr(=1) 1677
Mr(2)Tc(k+ 1) - Tr(2)Tc(k) - Tr(2)Tc(2k) - T'r(2) k(k—1)(2k —1)°
Note that 7 o is a discrete series representation of SO(4,2), and the K-type of 1
is the lowest K-type. Similarly, mp  is a discrete series representation of SO(3,2),

and (g« is a lowest K-type vector. We may assume ||¢1.0| = ||©0,00] = 1.
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PRroOPOSITION 10.2. We have
6473

k(k—=1)(2k — 1)’
aoo(Sol,om 900,00) = —4r.

A proof of Proposition 10.2 will be given in section 12.
By Proposition 10.2, we have

I{(¢1,005 P0,00) =

|<901|G07900>’2 1 O‘oo((pl 00790000)
86, CoPa o (1/2) - 2 P
(o1, 01) (w0, 00) 4 1T 61,0011 - [|00,00|2

1 « ((/71 v7§00v)
= A, CoPry o (1/2) A ’
4T E||sm,vu2-||soo,v||2

under the assumption ¢(D) # 0. Therefore in this case, Conjecture 3.2 seems to
hold with 29 = 1/4. Note that we have |Sy,| = 2 and |Sy,| = 4, and hence
28 £ 1/(|Sy, |+ |Syo)s if we admit the Arthur conjecture.

Appendix to Section 10: Calculation of the Volume of the
Fundamental Domain for T'rx\H>

In this appendix, we calculate the volume of the fundamental domain for the her-
mitian modular group. Let K = Q(v/—D) be an imaginary quadratic field with
discriminant —D. We put K, = K ® Q, and O, = Ok ® Z,, where Ok is the
integer ring of K.

Let Fg?) = SU(n,n)(Q) N GL2,(Ok) be the special hermitian modular group.
By using the fact that the Tamagawa number of SU(n,n) is 1, we shall show that

2n
Vol(DY\H,) = 271D =072 (9 e TT A GG X)

=2

where H,, is the hermitian upper half space of degree n.

Put & = SU(n,n). Then
Lie(®) = {X € My, (K) | XJ + J'X =0, tr(X) =0},
where J = (1(21 “0m). We choose a basis of the Lie(®) as follows. Let E[i, j] € M, (Z)
be the (i, j)-elementary matrix of size n. Set

Siij] = {E[iw’] (i=13),
’ E[i, 5] + Elj,i] (i #7),
A[Z7J] = E[Z7J] - E[]? 7’] .
Put



1414 A. ICHINO AND T. IKEDA GAFA

Vij=V-D (g A[g’j]> ,

=-V-D (A[?,j] 8) ’

wa=v=p ("7 gig)

B E[i,i] — Eli +1,i + 1] 0
_\/_D< 0 Eli,i]| —Eli+1,i+1])
The following vectors make up a basis of Lie(®).

Yy (1<i<j<n),
v, (1<i<j<n),
Vij (1<i<j<n),
Vi (1<i<j<n),
Wij (1<id,5 <nji#j),
W! (1<i<n).

Let £ C Lie(®) be the lattice generated by this basis. This basis determines a
Haar measure dg, on &(Q,) for each place v, and the product measure [[, dg, is
the Tamagawa measure on &(A). For each prime p, we define a maximal compact
subgroup Kg, of (Q,) by Ke, = 6(Q,) N GL2,(0p). Since [0y : Zy, + /= DZy) =
(2,p), we have

[Lie(®)(Q,) N M2, (0,) : £®Z,] = (2,p)?" L,

It follows that the volume of K, is equal to (2,p)2n*—n-1 H?Zz L(i, x5) 7
For the real place, the vectors

Xij—Xji (1<i<j<n),
Yij =V, (1<i<j<n),
VitV (=i<jzn),
Wij +Wji (1<i<j<n),
w! (1<i<n),

generate the Lie algebra of a maximal compact subgroup KLg_ of &(R). The maximal
compact subgroup Kg_ is isomorphic to

{(u1,u2) € U(n) x U(n) | detuy - detug =1} .
This isomorphism is explicitly given by Ad(A) : k +— AxA~!, where
1 /1, —v/-1-1,
A= .
Note that

Ad(A)(Xi; — Xji) = (A[gj] A[i]’]) 7

Ad(A)(Yy = ¥) = V-1 (S[g ! —S?@j]) |
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ad v+ vy = vo (A0 D)

ey - yp (S 0

Ada) Wy + W) =v-p (S0 D)

Let dk be the Haar measure on Kg_ determined by these vectors. By Macdonald
[M], the volume of U(n) is equal to (2m)"™+1D/2 " T'(i)~", if the Haar measure is
normalized by a Chevalley basis of Lie(U(n)) ® C. Using this, we have

n
VO](quoo;dkoo) — D(—n2+1)/22—n2+2nﬂ_n2+n—1 HF(’i)_Q.
i=1

We now consider the invariant measure on the hermitian upper half space H,,.
We define an invariant measure on H,, as follows. Let Her,(C/R) be the space of
hermitian matrices of size n. Then the Haar measures dX and dY on Her,(C/R)
are such that the covolume of the lattice Her, (C/R) N M, (Z[y/—1]) is 1. Then the
measure (det Y)™2"dX dY is invariant under the action of &(R) = SU(n, n)(R).

Note that B(R)/Kes., =~ H,. We claim that dg~/dks is equal to
2 nD~("*=n)/2(det Y) 2" dX dY. To prove this, we consider the Iwasawa decom-
position B(R) = Ag__Ng_Kg, , where Ag__ and Ng_ are Lie subgroup of &(R)
corresponding to the Lie algebras generated by
and

{Xij, Vig, Wi [ 1 <i < <njU{Yy [ 1 <i < j < nj,

respectively. Then it is easy to check the left-invariant Haar measure determined
by these basis induces 2*"D*("2*")/2(det Y)™2"dX dY on ‘H,, which implies the
claim.

Now we consider the adele space (A). Let X be a fundamental domain for
Fg?)\Hn. We regard X as a subset of Ag_Ng. by the bijection Ag, Ne, =~
&(R)/Ke,, ~ H,. Then each fibre of the map

([TKe,) x x x Ke.. — S@\&(A)

has exactly ‘Z(F%))’ elements, where Z(F%)) is the center of Fg?). Note that
‘Z(Fg?))‘ = (2n,wg). It follows that

2n n
(2n,wK)_1 . 22n2—n—1 HL(i,Xi)—l . D(—n2+1)/22—n2+2nﬂ_n2+n—1 HF(i)_Q
=2 1=1
x 27D~/ 2\p) (%) = 1.
It follows that

2n
VOI(F%)\Hn) _ 2_"2+1D(2"2_n_1)/2(2n, wK) H A(i, Xi) 7
=2

as desired.
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11 The Trivial Representation

Let k be a totally real algebraic number field and S the set of archimedean places
of k. The discriminant of k is denoted by Dj. Recall that the completed Dedekind
zeta function & (s) satisfies the functional equation & (1 — s) = D,‘z*(l/z)fk(s). Put
d = [k : Q]. We assume the following conditions:

(a) Both G; and G are unramified over k, for each v ¢ S.
(b) Gy, is compact for each v € S.

Note that such a pair Gg C G; exists if and only if the following (i), (ii), and (iii)
hold:

(i) The discriminant field K is unramified over k.

(ii) K is totally real if » = 0 mod 4, and totally imaginary if n = 2 mod 4.

(iii) d is even if n = 3,4,5,6 mod 8.
Let Ko =[], Ko,» be a maximal compact subgroup of Gy(A). We assume Ky, is a
hyperspecial maximal compact subgroup for v ¢ S. For v ¢ S, we give the standard
Haar measure dgop, on Go,. For v € S, we give the Haar measure dgo, with
total volume 1 on Ky, = Go,. The Haar measure constant Cy can be calculated
directly, but here we make use of the mass formula. There exists a finite subset
B C Go(A) such that Go(A) = [],cq3 Go(k)zKy. For each z € B, the group
I'* = 27 1Go(k)z N Ky is a finite group. The left coset Go(k)\Go(A) is decomposed

into a disjoint union
Go(k)\Go(A) = [ = @"\Ko).
z€B
Let e, be the order of the group I'*. The mass M is defined by M = )
Then Shimura’s exact mass formula (Shimura [S4, p.27, Th. 5.8]) says that

ace%:v‘

M = 207" [(2m) 0 (m)] Lm0 [ {12m) 2 T(20))%.(24)}

if n = 2m is even, and that
m

M = 21l D TT {[(2m) =2 (29)1 G (2)}
7=1

/ H ng v = =M.
Go(k)\Go(A)

Since the Tamagawa number of Gy is 2, we have Cy = 2M 1.
By definition, we have

Ao — T2 & (29) if n = 2m is even,
G\ A+ LTI &(2) i n=2m + Lis odd.

We now put ¢ = 1 and ¢9 = 1. Then 7; is the trivial representation of G;(A).
Obviously, we have

if n=2m+1 is odd.
Then we have

|<§01|G07300>|2

{e1,1) {00, 00) h
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The L-function of the trivial representation of G is given by
As,m0) = {A(s,x)H2m Y& (s—m+j) if n=2mis even,
H?Zlfk(s—m—i—j—(l/Q) ifn=2m+1is odd.
Similarly, we have
Als,m) = {HQ-T 1&e(s —m+j—(1/2)) if n =2m is even,
A(s X)H2m+1§k(sfm+jfl) if n=2m +1is odd.
When n = 2m is even, we have

A(s,m R mp) = HA(S —m+1— (1/2),x)

2m 2m—1
<IT II &(s—2m+i+j-(1/2)
=1 j=1
2m—1 ’
A(s,mo,Ad) = [] Als —m+1i,x)

=1

x I &ls—2m+i+y)
1<i<j<2m—1
As,m,Ad) = [ &(s—2m+itji-1).
1<i<j<2m
It follows that

/P7T1,7TO(S) - A(S - + (1{2)73<) H_

(s =25+ (1/2))
E(s +2m — (1/2)) ( (

&k
Er(s +25 —(1/2))°
A1 —m,x) T (=25 + 1)
7)7r1,7r0(1/2) - fk(Qm) Jl;[l §k(2])
2_(m/2) AM(m, x)
§k(2m) ’

if n = 2m is even. A similar calculation shows that

:DZL

23+1)

(27)

=D}’ +("‘/2)A(m +1,070,
if n =2m +1is odd. When v € S, the integral I(¢1,,,®0,) is clearly equal to 1. It
follows that

Olv(SOl,v; ()00,’0) - Aéivpﬂ—l,vaﬂ—o,v(l/2)_1
Pr(l—m)  []" ' Tr(—2j+ 1)~ ifn=2m=0mod4,
7j=1
= TR —m) " [[75' Tr(-2j + 1)~ if n=2m=2mod 4,
[[/L Tr(=27 + 1)~ if n=2m+1is odd.

P mo(1/2) = A(m + 1, %) 1H5’“ .
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Therefore we have

2
<<|P<1¢1P|30<7<;00><’P0> = 2786, CoPri o (1/2) [ ] 01,0 900)

vES
where
5= —md if n=2m is even,
) —2md ifn=2m+1is odd.

Note that the integer § depends on the number of bad places.

12 Calculation for the Real Place

In this section, we carry out the calculation of the archimedean local integrals which
appeared in sections 7, 9, and 10. Every algebraic group is defined over R in this
section.

We first consider the case Gy = SO(2,1) ~ PGLy(R). The (topological) identity
component of Gg is denoted by Go(R)?. Note that Go(R)? ~ SLy(R)/{£1}. The
image of (‘é g) in PGLy(R) is denoted by [a b]. The maximal compact subgroup
0(2)/{£1} C PGLy(R) is denoted by K. Put K° = SO(2)/{#+1} C K. The Haar
measure dk on K is such that the total measure is 1. By Iwasawa decomposition,
an element g € Go(R)° can be uniquely written as

_et()lnk
9= 10 et{lo 1|™

t,n € R, k € K% We choose a Haar measure dg on Go(R)" such that dg/dk
induces the measure y~2 dx dy on the upper half plane $; ~ Go(R)"/K°. Note that
dg = 2dt dn dk. The Haar measure dg can be naturally extended to Go(R). We put

t
w={fy M=o}
K% x AT x K° — Go(R)°

t t
<k, [f) e(_]t] ,k’) — k ﬁ) e(_]t] K.

By Cartan decomposition, this map is bijective outside the boundary of A™. It is
well-known (e.g. [Hel, Th.5.8]) that

dg = C - sinh(2t) dk dt dk’
for some constant C' > 0. Let A(T) be the area of the small disc with radius 7" and
center v/—1 € §1. Then we have A(T) ~ C f r/2 sinh(2t) dt when T' — 0, and so we
have C' = 4~.

Let 7; be the (limit of) discrete series representation of PGLy(R) with minimal

weight +r;. Let ®; be the matrix coefficient of 7; ., with respect to the lowest
weight vector with norm 1. Then the support of ®; is contained in Gy (R)? and

B, (ﬁ; eOtD — cosh(t) ™",

(See Knapp [Kn, p.89].)

We consider the map
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Proof of Proposition 7.2. Let @1 and ¢g~ be as in Proposition 7.2. Then we
have

(e.¢]
I(¢1,00, P0,00) = 477/ cosh(t) 7273 sinh(2t) dt
0

= 47T(/-€3 — 1)_1.
For the latter part of the proposition,
a00(901,007 (:00,00) = Aaioopﬂ'l,ooyﬂ'O,oo (1/2)71](@17007 (:00700) =2. O

Next, we consider the case Gp = SO(2,2). Put
GLSY = {(h1,hs) € GLy x GLy | det hy = det hy} .

Then, we have SO(2,2) ~ GLgQ) (R)/R*. We denote the image of (hy, he) € GLg) (R)
in SO(2,2) by [h1, hs). Put

= {[65)- (5 ][}
V{0 1) (6 ) er).

K= {[kl,kg] ’ ki,ko € 0(2), det k1 = det kg} .
For each (t1,t2) € R?, we put

=[5 1) (5 0]

The connected component SO(2,2)" is equal to the image of SLy(R) x SLa(R).
Put K = £ N SO(2,2)°. Then we have an Iwasawa decomposition SO(2,2)? =
ANK". Then SO(2,2)°/K° can be identified with §; x ;. The Haar measure dk
on K" is the Haar measure such that the total volume is 1. We choose a Haar
measure dg on SO(2,2)? such that the induced measure dg/dk on $; x 91 is equal
to yfzyQQ dxy dxo dyy dys. Then dg = 4dty dts dny dno dk. The Haar measure dg
can be naturally extended to Go(R) = SO(2,2). Put AT = {m(t1,t2) | t1, t2 > 0}.
Consider the map
A KV x AT x KY — S0(2,2)°
(k,m(tl,tg), k/) — k- m(tl,tg) . k/.

Let A" be the boundary of AT. If g € Go(R)? is not in the image of AT, then
A~!(g) consists of two elements. In terms of the map )\, we have

o
Go(R)O
= 167° / FO(k,m(ty,t3), k")) sinh(2t,) sinh(2t5) dk dt, dty dk’
KOx A+ xKO

for any integrable function f on Go(R)°.

Proof of Proposition 9.1. We need to calculate the matrix coefficient of 1 o € 71 c0-
In fact, it is enough to consider the pullback of the matrix coefficient by the map
SL2(R) x SLe(R) — SO(2,2) C SO(3,2), since AT is contained in the image of
this map. Note that the image of SLy(R) x SLo(R) is contained in the identity
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component SO(3,2)" = Spy(R)/{£1}. The restriction of 71 is a direct sum
of a holomorphic discrete series and an anti-holomorphic discrete series. Since
the holomorphic discrete series is a lowest-weight representation, its pullback to
SLa(R) x SLy(R) is a direct sum of lowest-weight representations. We denote 7 the
holomorphic discrete series of SLa(R) with lowest weight A. Since the lowest weight
(k+1, k+1) occurs with multiplicity one, the summand contains 7,41 X 7,41 exactly
once, and the other summands are of the form 7, X 7y,, where A;, Ay > k + 1 and
(A, A2) # (k+ 1,k +1). (In fact, the precise decomposition of the restriction is
known in this case.) Therefore the value of the matrix coefficient at m(t1,t2) € AT
is equal to cosh(t;) " ! cosh(ty)~~ L.
It follow that

[e's) 2
(91,00, P0,00) = 167 </ cosh(t) "2 sinh(2t) dt)
0
= 1672 /K2,
O‘oo((pl,om 900,00) = AaioolpﬂLoo,wo’oo (1/2)_11(901,007 800,00)
=4r. O

Now, we consider the case Gy = SO(3,2) = GSp,(R)/R*. We denote the image
of (4 B) € GSpy(R) in Go(R) by [4 B]. Put

etr 0
0 e 0
A= ot 0 t;,to €eRH
0 0 etz
1 nf 0
N = 01 L0 n€R},
0
\ L _nll 1
B n// 7,L//
1, nllll n}lz
N" = 12722 1, iy, ngy €R B
0 15
\ L
A B
/Coz{[_B AHA+¢—1BGU(2)}.

Then the topological identity component Go(R)? = SO(3,2)? has an Iwasawa de-
composition Go(R)? = ANK?, where N = N'N”. Note that Go(R)°/K° can be
identified with $2. We take the Haar measures dk on K° with the total volume 1.
We choose the Haar measure dg of Go(R)" such that the induced measure dg/dk is
equal to (detY)™3dX dY. Then we have

dg = 4dty dty dn’y dn'ly dn’ly dnby dk .
The Haar measure dg can be naturally extended to Gop(R). Put a = Lie(A). Then
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a can be identified with R? and we put
e 0

m(tl,tg) =

0 e

for each (ti,t2) € R? ~ a. The positive chamber A% is defined by At =
{m(ti,t2) € A |ty >ty > 0}. Then the map

A KV x AT x KY — S0(3,2)°

(k,m(ty, t2), k') — k-m(t1,t2) - K
is a double covering outside the boundary of AT. In terms of this map, we have (cf.
[Hel, Th.5.8])
dg = C'sinh(2t;) sinh(2t5) sinh(¢; — t5) sinh(ty + t2) dk dt; dto dk’

for some positive constant C' > 0.

The constant C' can be calculated as follows. We recall the argument of [Hel,

Ch.I, Th.5.8]. We shall calculate the Jacobian of the induced map
A KY x AT — Go(R)/K° ~ AN
at (k,m(t1,t2)) € K% x AT. Let g = p + £ be the Cartan decomposition of g =
Lie(SO(3,2)?). Then the tangent space of K x AT at (k,m(t1,t2)) can be identified
with € + a by left translation. Let ¥ be the set of positive roots for (Go(R)?, A).
Then for each o € X7, we put
to = {T € t]ad((z1,22))°T = a((21,22))*T for all (z1,72) € a}.

Then dim a, = 1 for any o € X *. Choose a non-zero vector T, € &, for each o € ¥T.
For example, we can choose

0 1 1 0
T _ -1 0 0 T - 0 0 0
£1—€2 0 1 ) 2e1 10 )
0 -1 0 0 0 0
0 1 0 0
T _ 0 1 0 T 0 0 1
s1te2 0o -1 | 2 00
-1 0 0 —1
For each o € ¥,
Ua = a((t1,t2)) " "ad ((t1, t2)) (Th)
belongs to p, and does not depend on (¢1,t3) € a. Note that
01 1 0
1 0 0 0 0 0
Uermea = 01 |’ N I
0 0
1 0 0 0
0 1 0 0
g 10 _— O 01
sate T g ’ 22 0 0
1 0 0 01 0
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Then
To(we¥¥), (1,0),(0,1) €,

make up a basis of £+ a, and
Us(aeX™), (1,0), (0,1) € a,
make up a basis of p. By the proof of [Hel, Ch.I, Th.5.8],
|det(dXgm(tr 1)) = [ sinh(e(ts,t2))
aeXt
with respect to these basis.

Let w, (o € 1) be the basis of the space of left-invariant 1-forms on K dual
to T, (o € ¥T). Then it is easy to check that

Jol A=

aeXt
On the other hand, the dual basis of

(1,0),(0,1) €a, Uy(aeX™)

= 273,

induces
116 dt1 dto dny dn'{y dn')y dn'y,
on AN ~ Go(R)?/K°. Tt follows that C' = 6473.

Proof of Proposition 10.2. As in the proof of Proposition 9.1, the value of the matrix
coefficient (71 50(90)¢1,00, P1,00) at go=m(t1,t2) is equal to cosh(t1) ™" 1 cosh(ty) " 1.
It follows that

I(p1,00, 0,00) = 647° / cosh(t1) 2" 2 cosh(ty) 22
t1>t2>0

X Sinh(2t1) Sinh(2t2) Sinh(tl + tg) Sinh(t1 — tg)dtl dto

oo oo
= 6473 / / cosh(z + y) 22 cosh(y) 22
o Jo

x sinh(2z + 2y) sinh(2y) sinh(z + 2y) sinh(z)dz dy .
By using the formulas
sinh(2a) = 2sinh(a) cosh(a),
sinh(a + b) sinh(a — b) = cosh?(a) — cosh?(b),

one can show that the integral (1 o0, ¥0,00) is equal to

256#3/ cosh(y) ! sinh(y)
0

X / cosh(z + y) " sinh(zx + y)[cosh?(z + y) — cosh?(y)] dz dy
0

oo
= 2567?3/ cosh(y) 2" ! sinh(y)
0

—2Kk+27 —2K 7 O©
X { [—Z ] — coshQ(y) [_u ] }dy
K—2 2K )

u=cosh(y) u=cosh
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12873 [o° _ .
= i — 1) /0 cosh(y) ™ sinh(y) dy
_ 647
Ck(k—-1)2k-1)"
Since Ag, 00 = FR(Q)FR(4)2 = 77, we have Qoo (1,005 P0,00) = —4. O
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