
ON THE PERIODS OF AUTOMORPHIC FORMS ON SPECIAL
ORTHOGONAL GROUPS AND THE GROSS–PRASAD

CONJECTURE

Atsushi Ichino and Tamutsu Ikeda

Dedicated to Professor Hiroyuki Yoshida on the occasion of his sixtieth birthday

Abstract. In this paper, we would like to formulate a conjecture on a relation
between a certain period of automorphic forms on special orthogonal groups and
some L-value. Our conjecture can be considered as a refinement of the global Gross–
Prasad conjecture.

Introduction

In the early 90’s, Gross and Prasad [GrP1,2] gave a series of fascinating conjectures
on the restriction of an automorphic representation of a special orthogonal group
to a smaller special orthogonal subgroup. We now recall their global conjecture.
Let k be a global field with char(k) �= 2. Let (V0, Q0) ⊂ (V1, Q1) be quadratic
forms over k with rank n and n + 1, respectively. We assume that n ≥ 2 and
that (V0, Q0) is not isomorphic to the hyperbolic plane. We regard G0 = SOQ0

as a subgroup of G1 = SOQ1. Let π1 � ⊗vπ1,v and π0 � ⊗vπ0,v be irreducible
tempered cuspidal automorphic representations of G1(A) and G0(A), respectively.
Assume that HomG0(kv)(π1,v ⊗ π̄0,v, C) �= {0} for any place v of k. Then the global
Gross–Prasad conjecture [GrP1] asserts that

〈ϕ1|G0 , ϕ0〉 :=
∫

G0(k)\G0(A)
ϕ1(g0)ϕ0(g0) dg0 �= 0

for some ϕ1 ∈ π1 and ϕ0 ∈ π0 if and only if L(1/2, π1 � π0) �= 0. Here, L(s, π1 � π0)
is the “product” L-function of π1 and π0.

In this paper, we would like to formulate a conjecture, which expresses the period
〈ϕ1|G0 , ϕ0〉 in terms of L-values. Put

∆G1 =

{
ζ(2)ζ(4) · · · ζ(2l) if dimV1 = 2l + 1 ,
ζ(2)ζ(4) · · · ζ(2l − 2) · L(l, χQ1) if dimV1 = 2l ,

where χQ1 is the quadratic Hecke character associated with the discriminant of Q1.
Let π1 � ⊗vπ1,v and π0 � ⊗vπ0,v be irreducible cuspidal automorphic representa-
tions of G1(A) and G0(A), respectively. We assume, for simplicity, π1 and π0 are
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tempered. We put

Pπ1,π0(s) =
L(s, π1 � π0)

L(s + (1/2), π1,Ad)L(s + (1/2), π0,Ad)
,

where L(s, π1,Ad) and L(s, π0,Ad) are the adjoint L-function of π1 and that of
π0, respectively. We assume that the L-functions L(s, π1 � π0), L(s, π1,Ad), and
L(s, π0,Ad) have meromorphic continuation. For a sufficiently large finite set of bad
places S, we denote the partial Euler products for Pπ1,π0(s) and ∆G1 by PS

π1,π0
(s)

and ∆S
G1

, respectively.
Let ϕ1 = ⊗vϕ1,v ∈ π1 and ϕ0 = ⊗vϕ0,v ∈ π0 be cusp forms. We consider the

matrix coefficients
Φϕ1,v,ϕ1,v(g1) =

〈
π1,v(g1)ϕ1,v, ϕ1,v

〉
v
, g1 ∈ G1(kv) ,

Φϕ0,v,ϕ0,v(g0) =
〈
π0,v(g0)ϕ0,v, ϕ0,v

〉
v
, g0 ∈ G0(kv) .

Put
I(ϕ1,v , ϕ0,v) =

∫
G0(kv)

Φϕ1,v,ϕ1,v(g0,v)Φϕ0,v,ϕ0,v(g0,v) dg0,v .

It will be proved that this integral is convergent (Proposition 1.1).
Then we conjecture that there exists an integer β such that

|〈ϕ1|G0 , ϕ0〉|2
〈ϕ1, ϕ1〉〈ϕ0, ϕ0〉 = 2βC0∆S

G1
PS

π1,π0
(1/2)

∏
v∈S

I(ϕ1,v, ϕ0,v)
‖ϕ1,v‖2 · ‖ϕ0,v‖2 , (�)

where C0 is a constant determined by the choice of the local and global Haar mea-
sures of G0(A) (Conjecture 1.5). For more precise definitions, see section 1. When
n = 2, our conjecture reduces to the theorem of Waldspurger [W].

One can give a possible interpretation of the factor 2β in (�) in terms of the
Arthur conjecture [Ar]. Let Lk be the hypothetical Langlands group for k. Then,
if we admit the Arthur conjecture, for an irreducible cuspidal tempered automor-
phic representation πi of Gi(A) (i = 0, 1), one can attach an L-homomorphism
ψi : Lk → LGi = Ĝi � Wk, where Wk is the Weil group [T] of k. It is generally be-
lieved that the structure of the L-packet for πi is closely related to the finite group
Sψi

= CentĜi
(Im(ψi)). Then, we conjecture that

2β =
1

|Sψ1 | · |Sψ0 |
(cf. Conjecture 2.1).

This paper consists of three parts. In Part I (sections 1–3), we formulate our
conjecture in detail. We first formulate our conjecture in the tempered case. Then
we discuss the relation with the Arthur conjecture. In particular, a possible inter-
pretation of the factor 2β in terms of Arthur parameter will be given. In section 3,
we discuss the non-tempered case. In the non-tempered case, several difficulties will
arise. One is that the factor Pπ1,π0(s) may not be holomorphic at s = 1/2. Another
difficulty is that the integral I(ϕ1,v , ϕ0,v) may not be convergent. Nevertheless, sev-
eral examples suggest that an analogue of (�) holds in non-tempered case. We give
a somewhat optimistic conjecture in section 3 for non-tempered case.

In Part II (sections 4-5), we develop some local theory to show that our conjecture
(�) makes sense. In section 4, we prove that the local integral I(ϕ1,v , ϕ0,v) is
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convergent if both π1,v and π0,v are tempered. In section 5, we show that
I(ϕ1,v , ϕ0,v) = ∆G1,vPπ1,v,π0,v(1/2)

for unramified case (Theorem 1.2). In particular, the right-hand side of (�) is
independent of the choice of the set S of bad primes. In the course of the proof,
we make use of the results of Ginzburg, Piatetski-Shapiro, Rallis [GiPR] and those
of Kato, Murase, Sugano [KMS]. We emphasise the fact that the factor Pπ1,π0(s)
already appeared in [GiPR].

In Part III (sections 6–12), we give several examples over number fields. One can
also give several examples over function fields, but we do not discuss such cases in
this paper. In section 6, we show that our conjecture is compatible with the theorem
of Waldspurger [W]. In section 7, we prove our conjecture for n = 3 by using the
first named author’s result [I2]. Then we show that our conjecture is compatible
with the result of Watson [Wa] in some cases. We also discuss the relation with
the conjecture of Deligne [D] and the conjecture of Shimura [S2,3]. In section 8,
we consider the restriction of the Yoshida lift to the diagonal subgroup. We recall
the result of Gan and the first named author [GI], which is compatible with our
conjecture. In section 9, we consider the restriction of the Saito–Kurokawa lift to
the diagonal subset. We show that the first named author’s result [I1] is compatible
with our conjecture. Note that this example is non-tempered. In section 10, we
consider our result on the restriction of the hermitian Maass lift to the space of
Saito–Kurokawa lifts [II]. This example is also non-tempered, and is compatible
with our conjecture. In section 11, we consider the trivial representation. This
example reduces to the mass formula for the quadratic forms. In section 12, we
collect the calculation over the real place, which is necessary to get the result of
section 7, section 9, and section 10.

The authors would like to thank Kaoru Hiraga for helpful discussions.

Part I. Global Theory

1 Formulation of the Conjecture

In this paper, we would like to formulate a conjecture on a relation between a certain
period of automorphic forms on special orthogonal groups and some L-value. Our
conjecture can be considered as a refinement of the global Gross–Prasad conjecture
[GrP1].

Let k be a global field with char(k) �= 2. Let (V1, Q1) and (V0, Q0) be quadratic
forms over k with rank n + 1 and n, respectively. We assume n ≥ 2. When n = 2,
we also assume (V0, Q0) is not isomorphic to the hyperbolic plane over k. We denote
the special orthogonal group of (Vi, Qi) by Gi (i = 0, 1). From now on, the subscript
i will indicate either 0 or 1, except for some obvious situations. We assume there is
an embedding ι : V0 ↪→ V1 of quadratic spaces. Then we have an embedding of the
corresponding special orthogonal groups ι : G0 ↪→ G1. We regard G0 as a subgroup
of G1 by this embedding. The group Gi(kv) of kv-valued points of Gi is denoted
by Gi,v.
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For an even-dimensional quadratic form (V,Q), the discriminant field KQ is
defined by KQ = k(

√
(−1)dim V/2 detQ). We put K = KQ0 (resp. K = KQ1), if

dimV0 is even (resp. if dimV1 is even). We call K the discriminant field for the pair
(V1, V0). Let χ = χK/k be the Hecke character associated to K/k by the class field
theory.

Put

∆Gi,v =

{
ζv(2)ζv(4) · · · ζv(2l) if dimVi = 2l + 1 ,
ζv(2)ζv(4) · · · ζv(2l − 2) · Lv(l, χ) if dimVi = 2l ,

∆Gi =

{
ζ(2)ζ(4) · · · ζ(2l) if dimVi = 2l + 1 ,
ζ(2)ζ(4) · · · ζ(2l − 2) · L(l, χ) if dimVi = 2l .

Note that ∆Gi = L(M∨
i (1)), where M∨

i is the dual motive of the motive Mi associ-
ated to Gi by Gross [Gr].

Let πi � ⊗vπi,v be an irreducible square-integrable automorphic representation
of Gi(A). There is a canonical inner product 〈 , 〉 on forms on Gi(k)\Gi(A) defined
by

〈ϕi, ϕ
′
i〉 =

∫
Gi(k)\Gi(A)

ϕi(gi)ϕ′
i(gi) dgi ,

where dgi is the Tamagawa measure on Gi(A). We choose a Haar measure dgi,v

on Gi,v for each v. There exists a positive number Ci such that dgi = Ci
∏

v dgi,v,
when the right-hand side is well-defined. In this paper, we call Ci the Haar measure
constant. Since πi,v is a unitary representation, there is an inner product 〈 , 〉v on
πi,v for any place v of k. We put ‖ϕi,v‖ = 〈ϕi,v, ϕi,v〉1/2

v , as usual. There exists a
positive constant Cπi such that 〈ϕi, ϕ

′
i〉 = Cπi

∏
v〈ϕi,v, ϕ

′
i,v〉v for any decomposable

vectors ϕi = ⊗vϕi,v ∈ ⊗vπi,v and ϕ′
i = ⊗vϕ

′
i,v ∈ ⊗vπi,v.

We fix maximal compact subgroups K1 =
∏

v K1,v ⊂ G1(A) and K0 =
∏

v K0,v ⊂
G0(A) such that [K0 : K1 ∩ K0] < ∞. We choose a Ki-finite decomposable vector
ϕi = ⊗vϕi,v ∈ ⊗vπi,v. We are interested in the period 〈ϕ1|G0 , ϕ0〉 where ϕ1|G0 is the
restriction of ϕ1 to G0(A).

Let S be a finite set of bad places containing all archimedean places. We may
and do assume the following conditions hold for v /∈ S:

(U1) Gi is unramified over kv.
(U2) Ki,v is a hyperspecial maximal compact subgroup of Gi,v.
(U3) K0,v ⊂ K1,v.
(U4) πi,v is an unramified representation of Gi,v.
(U5) The vector ϕi,v is fixed by Ki,v and ‖ϕi,v‖ = 1.
(U6)

∫
Ki,v

dgi,v = 1.

When Gi is unramified over kv, we shall say that a Haar measure on Gi,v is the
standard Haar measure if the volume of a hyperspecial maximal compact subgroup
is 1. Thus the condition (U6) means that the measure dgi,v is the standard Haar
measure.
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The L-group LGi of Gi is a semi-direct product Ĝi � Wk. Here, Wk is the Weil
group of k and

Ĝi =

{
Spl(C) if dimVi = 2l + 1 ,
SO(2l, C) if dimVi = 2l .

We denote by st the standard representation of LGi. The completed standard L-
function for πi is denoted by L(s, πi, st) for an irreducible automorphic represen-
tation πi of Gi(A). For simplicity, we sometimes denote L(s, πi, st) by L(s, πi).
For v /∈ S, the Euler factor for L(s, πi) is given by det(1 − st(Aπi,v) · q−s

v )−1,
where Aπi,v is the Satake parameter of πi,v. We consider the tensor product L-
function L(s, π1 � π0). The Euler factor of L(s, π1 � π0) for v /∈ S is given by
det(1 − st(Aπ1,v ) ⊗ st(Aπ0,v ) · q−s

v )−1.
Consider the adjoint representation Ad : LGi → GL(Lie(Ĝi)). The associated L-

function L(s, πi,Ad) is called the adjoint L-function. We assume that L(s, π1 � π0)
and L(s, πi,Ad) can be analytically continued to the whole s-plane.

We put

Pπ1,π0(s) =
L(s, π1 � π0)

L(s + (1/2), π1,Ad)L(s + (1/2), π0,Ad)
.

Let πi,v be an irreducible admissible representation of Gi,v. We denote the com-
plex conjugate of πi,v by π̄i,v. It is believed that

dimC HomG0,v(π1,v ⊗ π̄0,v, C) ≤ 1 (MF)
for any place v of k. We do not assume (MF) in this paper. Note that an analogue
of (MF) for orthogonal groups has been proved by Aizenbud, Gourevitch, Rallis,
Schiffmann [AGRS] for the non-archimedean place and by Sun and Zhu [SunZ] for
irreducible Harish-Chandra smooth representations for the archimedean place.

We consider the matrix coefficient
Φϕi,v,ϕ′

i,v
(gi) =

〈
πi,v(gi)ϕi,v , ϕ

′
i,v

〉
v
, gi ∈ Gi,v ,

for K1,v-finite vectors ϕ1,v, ϕ
′
1,v ∈ π1,v and K0,v-finite vectors ϕ0,v , ϕ

′
0,v ∈ π0,v. Put

I(ϕ1,v , ϕ
′
1,v ;ϕ0,v, ϕ

′
0,v) =

∫
G0,v

Φϕ1,v,ϕ′
1,v

(g0,v)Φϕ0,v ,ϕ′
0,v

(g0,v) dg0,v ,

αv(ϕ1,v , ϕ
′
1,v ;ϕ0,v, ϕ

′
0,v) = ∆−1

G1,vPπ1,v,π0,v(1/2)
−1I(ϕ1,v, ϕ

′
1,v ;ϕ0,v , ϕ

′
0,v) .

When ϕ1,v = ϕ′
1,v and ϕ0,v = ϕ′

0,v, we simply denote these objects by I(ϕ1,v , ϕ0,v)
and αv(ϕ1,v , ϕ0,v), respectively.
Proposition 1.1. If both π1,v and π0,v are tempered, then the integral I(ϕ1,v , ϕ0,v)
is absolutely convergent and I(ϕ1,v , ϕ0,v) ≥ 0 for any Ki,v-finite vector ϕi,v ∈ πi,v.

Theorem 1.2. Let v be a non-archimedean place. Assume that the conditions
(U1), (U2), (U3), (U4), (U5), and (U6) hold. If the integral I(ϕ1,v , ϕ0,v) is absolutely
convergent, then we have αv(ϕ1,v , ϕ0,v) = 1.

The proofs of Proposition 1.1 and Theorem 1.2 will be given in Part II.
Conjecture 1.3. Assume that both π1,v and π0,v are tempered. Then
dimC HomG0,v(π1,v ⊗ π̄0,v, C) �= {0} if and only if αv(ϕ1,v , ϕ0,v) > 0 for some Ki,v-
finite vector ϕi,v ∈ πi,v.
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Now let πi � ⊗vπi,v be an irreducible cuspidal automorphic representation of
Gi(A). We shall say that πi is almost locally generic if πi satisfies the following
condition (ALG).
(ALG) For almost all v, the constituent πi,v is generic.
It is believed that πi is almost locally generic if and only if πi,v is generic for some v.
It is also believed that πi is almost locally generic if and only if πi is tempered (the
generalized Ramanujan conjecture).
Conjecture 1.4. Let πi � ⊗vπi,v be an irreducible cuspidal automorphic repre-
sentation of Gi(A). We assume both π1 and π0 are almost locally generic. Then

(1) The integral I(ϕ1,v, ϕ0,v) should be absolutely convergent and I(ϕ1,v , ϕ0,v) ≥ 0
for any Ki,v-finite vector ϕi,v ∈ πi,v.

(2) dimC HomG0,v (π1,v ⊗ π̄0,v, C) �= {0} if and only if αv(ϕ1,v, ϕ0,v) > 0 for some
Ki,v-finite vector ϕi,v ∈ πi,v.

Now we state our global conjecture.
Conjecture 1.5. Let π1 � ⊗vπ1,v and π0 � ⊗vπ0,v be irreducible cuspidal
automorphic representations of G1(A) and G0(A), respectively. We assume π1 and
π0 are almost locally generic. Then there should be an integer β such that

|〈ϕ1|G0 , ϕ0〉|2
〈ϕ1, ϕ1〉〈ϕ0, ϕ0〉 = 2βC0∆G1Pπ1,π0(1/2)

∏
v∈S

αv(ϕ1,v , ϕ0,v)
‖ϕ1,v‖2 · ‖ϕ0,v‖2

for any non-zero vectors ϕ1 = ⊗vϕ1,v ∈ π1 and ϕ0 = ⊗vϕ0,v ∈ π0.
We will discuss the nature of the integer β in the next section.

Remark 1.6. When π1 and π0 are tempered, it is believed that the local L-factors
L(s, π1,v,Ad), L(s, π0,v,Ad), and L(s, π1,v � π0,v) are holomorphic for Re(s) > 0.
Therefore in this case our conjecture is equivalent to

|〈ϕ1|G0 , ϕ0〉|2
〈ϕ1, ϕ1〉〈ϕ0, ϕ0〉 = 2βC0∆S

G1
PS

π1,π0
(1/2)

∏
v∈S

I(ϕ1,v, ϕ0,v)
‖ϕ1,v‖2 · ‖ϕ0,v‖2 ,

where ∆S
G1

and PS
π1,π0

(s) are the partial Euler products. In particular, the definition
of the L-factors for bad primes plays no role in this case. Note also that it is believed
that L(1, πi,Ad) �= 0 if πi is tempered.

Remark 1.7. One can formulate Conjecture 1.5 in a different way as follows.
Assume the local measure dgi,v and the local inner product 〈 , 〉v are normalised so
that Ci = Cπi = 1. Put

Hπ1,π0 = HomG0(A)×G0(A)
(
(π1 � π̃1) ⊗ (π̄0 � ˜̄π0), C

)
.

We define two elements Lglobal
π1,π0 , Llocal

π1,π0
∈ Hπ1,π0 by

Lglobal
π1,π0

(ϕ1, ϕ
′
1;ϕ0, ϕ

′
0) = 〈ϕ1|G0 , ϕ0〉〈ϕ′

1|G0 , ϕ
′
0〉 ,

Llocal
π1,π0

(ϕ1, ϕ
′
1;ϕ0, ϕ

′
0) =

∏
v

αv(ϕ1,v , ϕ
′
1,v;ϕ0,v , ϕ

′
0,v) .

Then Conjecture 1.5 can be reformulated as
Lglobal

π1,π0
= 2β∆G1Pπ1,π0(1/2)L

local
π1,π0

.
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2 Relation to the Arthur Conjecture

This section is devoted to a somewhat speculative argument based on the Arthur
conjecture [Ar]. We recall the Arthur conjecture for an automorphic representation
of reductive algebraic groups. We assume, for simplicity, G is a reductive algebraic
group defined over k with anisotropic center. The local Langlands group Lv is
defined by

Lv =

{
Wkv × SU(2) if v is non-archimedean ,
Wkv if v is archimedean ,

where Wkv is the Weil group of kv. A Langlands parameter is a homomorphism φv :
Lv → LG which satisfies certain additional conditions. Two Langlands parameters
are equivalent if they are conjugate by an element of Ĝ. Langlands conjectured
that for each equivalence class of Langlands parameter, one can associate a finite
set Πφv(G) of irreducible admissible representations of Gv. The finite set Πφv(G) is
called the L-packet for φv . The set Π(Gv) of all equivalence classes of irreducible
admissible representations of Gv should be decomposed into a disjoint union

Π(Gv) =
∐
φv

Πφv(G) ,

where φv extends over the equivalence classes of Langlands parameters. The L-
packet Πφv(G) should contain a tempered representation if and only if the Langlands
parameter φv has a bounded image, in which case φv is called tempered. If φv is
tempered, then all members of Πφv(G) should be tempered.

A homomorphism ψv : Lv×SL2(C) → LG whose restriction to SL2(C) is holomor-
phic is called a (local) Arthur parameter if ψv|Lv is a tempered Langlands parameter.
One can consider the equivalence of Arthur parameters as in the case of Langlands
parameters. Arthur conjectured that for each equivalence class of Arthur parame-
ters ψv, one can associate a finite set of unitary representations Πψv(G). The set
Πψv(G) is called the A-packet of ψv . A-packets are not necessarily disjoint.

For each representation ρv of Lv × SL2(C), we associate an L-factor as follows.
We may assume ρv is irreducible. Then there exists an irreducible representation φv

of Lv and an integer t ≥ 0 such that
ρv � φv � Symt,

where Symt is the unique irreducible representation of SL2(C) of degree t + 1. We
put

L(s, ρv) =
t∏

j=0

L
(
s − j + (t/2), φv

)
.

For each element πv ∈ Πψv (G) and a finite-dimensional representation r of LG, we
put L(s, πv, r) = L(s, r ◦ψv). Note that L(s, πv, r) depends not only on πv, but also
on ψv, since A-packets are not necessarily disjoint, although the symbol suggests it
does not.

Langlands conjectured that there exists a locally compact group Lk such that the
equivalence classes of irreducible n-dimensional representation of Lk is in one-to-one
correspondence with the set of irreducible cuspidal automorphic representations of
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GLn(A). There should be a homomorphism ιv : Lv → Lk for each v. A (global)
Arthur parameter is a certain equivalence class of homomorphisms

ψ : Lk × SL2(C) −→ LG

such that the image of Lk is bounded. Let Πψ(G) be the set of square-integrable
automorphic representations π � ⊗vπv of G(A) such that πv ∈ Πψ◦ιv (G) for each v.
The set Πψ(G) is called the A-packet of ψ. Arthur conjectured that the set of
square-integrable automorphic representations of G(A) is a union⋃

ψ

Πψ(G) .

If π ∈ Πψ(G), then ψ is called the Arthur parameter of π. In general, ψ is not
uniquely determined by the equivalence class of π, but for special orthogonal groups
or unitary groups, ψ should be determined by π.

It is believed that the Arthur parameter ψ : Lk × SL2(C) → LG associated
with a square-integrable automorphic representation should be elliptic in the sense
that Im(ψ) is not contained in any proper Levi subgroup of LG. This is the case
if and only if CentĜ(Im(ψ)) is finite. If ψ is an elliptic Arthur parameter such
that Πψ(G) is non-empty, the A-packet Πψ(G) consists of only irreducible tempered
cuspidal automorphic representations if and only if the restriction ψ|SL2(C) is trivial.
In this case, the Arthur parameter ψ said to be tempered. For an elliptic Arthur
parameter ψ, we put

Sψ = CentĜ(Im(ψ)) .

Now we go back to the situation that G1 = SO(n + 1) and G0 = SO(n). Let ψi

be an elliptic Arthur parameter for the group Gi. In this case, the group Sψi
can

be calculated as follows. Let st be the standard representation of LGi. Then st ◦ ψi

can be decomposed into a direct sum of irreducible representations of Lk × SL2(C):

st ◦ ψi =
r⊕

j=1

ψ
(j)
i .

Here, the representations ψ
(1)
i , . . . , ψ

(r)
i are mutually distinct orthogonal (resp. sym-

plectic) representations of Lk × SL2(C) if dimVi is even (resp. odd). Then

Sψi
�

{
(Z/2Z)r−1 if dimVi is even and rankψ

(j)
i is odd for some j ,

(Z/2Z)r otherwise .
In particular, Sψi

is an elementary 2-abelian group.
Now we admit the Arthur conjecture. Let πi be an irreducible cuspidal automor-

phic representation of Gi(A), which satisfies the condition (ALG). Then correspond-
ing Arthur parameter ψi must be tempered, since otherwise πi,v cannot be generic
for any v.
Conjecture 2.1. Assume that πi is an irreducible tempered cuspidal automor-
phic representation of Gi(A) with Arthur parameter ψi. Then the constant 2β in
Conjecture 1.5 should be equal to 1/(|Sψ1 | · |Sψ0 |). Equivalently, the equation

|〈ϕ1|G0 , ϕ0〉|2
〈ϕ1, ϕ1〉〈ϕ0, ϕ0〉 =

C0∆G1

|Sψ1 | · |Sψ0 |
Pπ1,π0(1/2)

∏
v∈S

αv(ϕ1,v , ϕ0,v)
‖ϕ1,v‖2 · ‖ϕ0,v‖2

holds.
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3 The Non-tempered Case

Let πi,v be an irreducible representation of Gi,v, which we do not assume to be
unitary for a moment. Note that if both π1,v and π0,v are tempered, then
αv(ϕ1,v, ϕ

′
1,v ;ϕ0,v , ϕ

′
0,v) gives an element of

HomG0,v×G0,v

(
(π1,v � π̃1,v) ⊗ (π̄0,v � ˜̄π0,v), C

)
,

where π̃i,v is the contragredient of πi,v.
Conjecture 3.1. The quantity αv(ϕ1,v, ϕ

′
1,v ;ϕ0,v , ϕ

′
0,v) should be somehow “ana-

lytically continued” for any π1,v and π0,v. If HomG0,v (π1,v ⊗ π̄0,v, C) �= {0}, then the
continuation αv(ϕ1,v, ϕ

′
1,v ;ϕ0,v , ϕ

′
0,v) is unique and gives an element of

HomG0,v×G0,v

(
(π1,v � π̃1,v) ⊗ (π̄0,v � ˜̄π0,v), C

)
.

Now we consider the global situation. Let πi be a square-integrable automorphic
representation of Gi(A), which may not be almost locally generic. We assume that
HomG0,v (π1,v⊗π̄0,v, C) �= {0} for any v. For v /∈ S, we may assume αv(ϕ1,v , ϕ0,v) = 1
by Theorem 1.2, as long as it is meaningful.
Conjecture 3.2. Let πi be as above. Then

(1) The integral 〈ϕ1|G0 , ϕ0〉 should be convergent for any ϕ1 ∈ π1 and ϕ0 ∈ π0.
(2) There should be an integer β such that

|〈ϕ1|G0 , ϕ0〉|2
〈ϕ1, ϕ1〉〈ϕ0, ϕ0〉 = 2β∆G1C0Pπ1,π0(1/2)

∏
v∈S

αv(ϕ1,v, ϕ0,v)
‖ϕ1,v‖2 · ‖ϕ0,v‖2

for any non-zero decomposable vectors ϕ1 = ⊗vϕ1,v ∈π1 and ϕ0 = ⊗vϕ0,v ∈π0.
Remark 3.3. Contrary to the almost locally generic case, the factor 2β is not
necessarily equal to 1/(|Sψ1 | · |Sψ0 |), and depends not only on global data, but also
on local data. See the examples in section 9, section 10, and section 11.

Part II. Local Theory

Until section 5, we consider only local objects and drop subscript v.

4 Convergence of the Integral: Proof of Proposition 1.1

In this section, we assume that k is a local field with char(k) �= 2. Let (V,Q) be a
non-degenerate quadratic space over k. We denote the anisotropic kernel of (V,Q)
by (V an, Qan). Then there is a decomposition V = X ⊕ V an ⊕ Y , where X and Y
are totally isotropic subspaces. The Witt rank r of (V,Q) is, by definition, equal
to the dimension of X or Y . We put d = dimV an. Choosing a basis of X, we
get a minimal parabolic subgroup Pmin = MminNmin of G. The Levi factor Mmin
is isomorphic to (k×)r × SOQan . The split component Amin of Mmin is isomorphic
to (k×)r, and the Weyl group W (G,Amin) is of type B or D according as d �= 0 or
d = 0. We will denote an element of Amin � (k×)r by x = (x1, . . . , xr). The simple
roots of (Pmin, Amin) are given by

α1(x) = x1x
−1
2 , . . . , αr−1(x) = xr−1x

−1
r ,
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αr(x) =

{
xr if d �= 0 ,

xr−1xr if d = 0 .

These roots are also regarded as a character of Mmin. Let δPmin
(x) be the modulus

character of Pmin. Then

δPmin
(x) =

r∏
i=1

|xi|d+2r−2i.

Fix a special maximal compact subgroup K of G. Then we have a Cartan decom-
position G = KM+

minK, where
M+

min =
{
m ∈ Mmin

∣∣ |αi(m)| ≤ 1 (i = 1, . . . , r)
}

.

Fix a suitable embedding η : G → GLm. Then the height function σ(g) (with
respect to the embedding η) is given by

σ(g) = max
1≤i≤m
1≤j≤m

(
log |η(g)ij |, log |η(g−1)ij |

)
.

When k is non-archimedean, the following integral formula holds∫
G

f(g) dg =
∫

M+
min

µ(m)
∫
K×K

f(k1mk2) dk1 dk2 dm , f ∈ L1(G) ,

where µ(m) = Vol(KmK)/Vol(K). Moreover, there exists a positive constant A
such that A−1δ−1

Pmin
(m) ≤ µ(m) ≤ Aδ−1

Pmin
(m) for any m ∈ M+

min. (See Silberger [Si,
p. 149].)

When k is archimedean, similar integral formula holds. (See, e.g. Helgason [Hel,
Th. 5.8].) In particular, there exists a non-negative function µ(m) on M+

min such
that ∫

G
f(g) dg =

∫
M+

min

µ(m)
∫
K×K

f(k1mk2) dk1 dk2 dm , f ∈ L1(G) .

Moreover, there exists a constant A > 0 such that µ(m) ≤ Aδ−1
Pmin

(m) for m ∈ M+
min.

Harish-Chandra’s spherical function Ξ(g) of G is given by

Ξ(g) =
∫
K

h0(kg) dk

where h0 ∈ IndG
Pmin

1 is a function whose restriction to K is identically equal to 1.
Note that Ξ is a matrix coefficient of a tempered representation IndG

Pmin
1. It is

known that there exists positive constants A, B such that

A−1δ
1/2
Pmin

(m) ≤ Ξ(m) ≤ Aδ
1/2
Pmin

(m)
(
1 + σ(m)

)B

for any m ∈ M+
min. (See Silberger [Si, p. 154, Th. 4.2.1] and Harish-Chandra [H,

p. 129, Lem. 1 in §10].)
Recall that a function f(g) on G satisfies the weak inequality if

|f(g)| ≤ AΞ(g)
(
1 + σ(g)

)B

for some positive constant A, B. A matrix coefficient of a tempered representation
satisfies the weak inequality.

Applying these results for G1 = SO(n + 1) and G0 = SO(n), we can now prove
Proposition 1.1. As before, we define Pi,min, Ai,min, ri, etc., for the group Gi.
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Proof of Proposition 1.1. Let π1 and π0 be irreducible tempered representations of
G1 and G0, respectively. We may assume A0,min ⊂ A1,min. Then we have estimates∣∣Φϕ1,ϕ′

1
(m)

∣∣ ≤ Aδ
1/2
P1,min

(m)
(
1 + σ(m)

)B
, (m ∈ M+

1,min) ,∣∣Φϕ0,ϕ′
0
(m)

∣∣ ≤ Aδ
1/2
P0,min

(m)
(
1 + σ(m)

)B
, (m ∈ M+

0,min) ,

for some positive constants A, B. When W (G0, A0,min) is of type B, it is enough to
show the following integral∫

A+
0,min

δ
−1/2
P0,min

(m)δ1/2
P1,min

(m)
(
1 + σ(m)

)2B
dm

is convergent. This is reduced to the convergence of∫
|x1|≤|x2|≤···≤|xr0 |≤1

|x1x2 · · · xr0|1/2
(

1 −
r0∑

j=1

log |xj |
)2B

d×x1 d×x2 · · · d×xr0 .

One can easily prove the convergence of this integral. Note that when W (G0, A0,min)
is of type D, A+

0,min is not contained in A+
1,min. In this case, one needs to consider

the integral∫
|x1|≤|x2|≤···≤|xr0 |≤1

|x1x2 · · · xr0 |1/2
(

1 −
r0∑

j=1

log |xj|
)2B

d×x1 d×x2 · · · d×xr0

+
∫
|x1|≤|x2|≤···≤|xr0−1|≤|xr0 |−1≤1

|x1x2 · · · xr0−1x
−1
r0

|1/2

×
(

1 −
r0−1∑
j=1

log |xj| + log |xr0 |
)2B

d×x1 d×x2 · · · d×xr0 .

One can show the convergence of this integral similarly.
To prove the latter part of the proposition, we make use of the result of He [He].

Let Ξ1 and Ξ0 be Harish-Chandra’s spherical functions for G1 and G0, respectively.
Then the function g0 �→ Ξ1(g0)Ξ0(g0) belongs to L1(G0) by the first part of the
proposition. Note that Harish-Chandra’s spherical function is a matrix coefficient
of a tempered representation.

Then the latter part of the proposition follows from Theorem 2.1 of He’s paper
[He]. Note that He [He] used the estimates of almost L2 matrix coefficients [CoHH],
which is valid for p-adic groups as well. �

5 Calculation of the Unramified Integral: Proof of Theorem 1.2

In this section, we prove Theorem 1.2. We assume the conditions (U1)–(U6) in
section 1 holds. In particular, both G1 and G0 are quasi-split. We should consider
the following two cases:

(Case A) G1 = SO(2l + 1) and G0 = SO(2l) ,
(Case B) G1 = SO(2l + 2) and G0 = SO(2l + 1) .

Let K be the discriminant field. Note that K is equal to either k or the unramified
quadratic extension of k. Let q be the number of elements of the residue field of k.
The local zeta function ζ(s) is defined by (1 − q−s)−1.
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Let Bi = TiNi be a Borel subgroup of Gi, where Ti and Ni are a maximal torus
of Gi and the unipotent radical of Bi, respectively. Let Ai ⊂ Ti be the maximal
split subtorus. Without loss of generality, we may assume N0 ⊂ N1 and A0 ⊂ A1.

Let π1 = I(Ξ) = IndG1
B1

(Ξ) and π0 = I(ξ) = IndG0
B0

(ξ) be unramified principal
series of G1 and G0, respectively. Here, Ξ and ξ are unramified quasi-characters of
T1 and T0, respectively. Let ΦΞ and Φξ be the class-one matrix coefficients of I(Ξ)
and I(ξ) such that ΦΞ(1) = Φξ(1) = 1, respectively. We consider the integral

I(g1; ΦΞ,Φξ) =
∫

G0

ΦΞ(g−1
1 g0)Φξ(g0)dg0 .

We assume that both Ξ and ξ are sufficiently close to the unitary axis. As shown in
section 4, this condition implies that the integral I(g1; ΦΞ,Φξ) is absolutely conver-
gent. In this section, we calculate the value of I(g1; ΦΞ,Φξ) at g1 = 1.

Let fΞ ∈ I(Ξ) and fξ ∈ I(ξ) be the class-one vectors such that fΞ(1) = fξ(1) = 1.
Then we have

ΦΞ(g1) =
∫
K1

fΞ(k1g1)dk1 , g1 ∈ G1 ,

Φξ(g0) =
∫
K0

fξ(k0g0)dk0 , g0 ∈ G0 .

We recall the theory of Shintani functions [KMS]. We denote the Hecke algebra
H(Ki\Gi/Ki) by Hi. By the Satake isomorphism, there are algebra homomorphisms

ω1 : H1 −→ C and ω0 : H0 −→ C ,

corresponding to the unramified principal series π1 and π0, respectively. Recall that
a smooth function S on G1 is called a Shintani function for π1 and π0, if the following
conditions are satisfied:

• L(k0)R(k1)S = S for any k1 ∈ K1 and k0 ∈ K0.
• L(ϕ0)R(ϕ1)S = ω0(ϕ0)ω1(ϕ1)S for any ϕ0 ∈ H0 and ϕ1 ∈ H1.

Here, L and R are the left regular representation and the right regular represen-
tation, respectively. Note that I(g1; ΦΞ,Φξ) is a Shintani function for π̃1 and π̃0.
Kato, Murase, and Sugano [KMS] have proved that if both G1 and G0 are split,
then a Shintani function exists and is unique up to scalar. In this paper, we do not
use the uniqueness of Shintani functions.

Recall that the double coset B1\G1/B0 has a unique open orbit and the open
orbit has a representative η ∈ K1 (cf. [GiPR, §7]). Note that η−1B1η ∩ B0 = {1}.
Let YΞ,ξ be the function on G1 determined by the following conditions:

(1) YΞ,ξ(b1g1b0) = (Ξ−1δ
1/2
1 )(b1)(ξδ

−1/2
0 )(b0)YΞ,ξ(g1) for any b1 ∈ B1 and b0 ∈ B0.

(2) YΞ,ξ(η) = 1.
(3) YΞ,ξ(g1) = 0 if g1 /∈ B1ηB0.

Here, δi is the modulus character of Bi. Note that a function satisfying (1) and (3)
is unique up to scalar. We define lΞ,ξ ∈ HomG0(π1, π̃0) = HomG0(I(Ξ), I(ξ−1)) by

lΞ,ξ

(
pr1(f)

)
(g0) =

∫
G1

f(g1g0)YΞ,ξ(g1)dg1 , g0 ∈ G0 .
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Here, pr1 : C∞
c (G1) → π1 = I(Ξ) is given by

pr1(f)(g1) =
∫

B1

(Ξ−1δ
1/2
1 )(b1)f(b1g1)db1 .

Let 〈 , 〉 be the natural pairing on π0 × π̃0 defined by

〈ϕ0, ϕ
′
0〉 =

∫
K0

ϕ0(k0)ϕ′
0(k0) dk0

for ϕ0 ∈ π0 and ϕ′
0 ∈ π̃0. Put

SΞ,ξ(g1) =
〈
fξ, lΞ,ξ(π1(g1)fΞ)

〉
.

Then SΞ,ξ is a Shintani function, and we have

SΞ,ξ(g1) =
∫
K0

fξ(k0)
∫

G1

1K1(g
′
1k0g1)YΞ,ξ(g′1)dg′1 dk0

=
∫
K1×K0

YΞ,ξ(k1g
−1
1 k0)dk1 dk0 .

Here, 1K1 is the characteristic function of K1. Put

TΞ,ξ(g1) =

⎧⎨
⎩
∫

G0

fΞ(g1g0)fξ(g0) dg0 if g1 ∈ B1ηB0 ,

0 otherwise.
Then we have TΞ,ξ(g1) = TΞ,ξ(η) ·YΞ−1,ξ−1(g1), since TΞ,ξ satisfies the conditions (1)
and (3) for Ξ−1 and ξ−1. Therefore we have

I(g1; ΦΞ,Φξ) =
∫

G0

∫
K1

∫
K0

fΞ(k1g
−1
1 g0)fξ(k0g0) dk0 dk1 dg0

=
∫

G0

∫
K1

∫
K0

fΞ(k1g
−1
1 k0g0)fξ(g0) dk0 dk1 dg0

=
∫
K1×K0

TΞ,ξ(k1g
−1
1 k0) dk1 dk0

= TΞ,ξ(η)
∫
K1×K0

YΞ−1,ξ−1(k1g
−1
1 k0) dk1 dk0

= TΞ,ξ(η)SΞ−1,ξ−1(g1) .

In particular, TΞ,ξ(η) and SΞ−1,ξ−1(g1) are convergent if Ξ and ξ are sufficiently
close to the unitary axis. Indeed, since the first part of Proposition 1.1 holds for
I(|Ξ|) and I(|ξ|) if Ξ and ξ are sufficiently close to the unitary axis, I(g1; Φ|Ξ|,Φ|ξ|)
is convergent, and hence the above integral is absolutely convergent. It follows
that, for each g1 ∈ G1, TΞ,ξ(k1g

−1
1 k0) is convergent for almost all k1 ∈ K1 and

k0 ∈ K0 such that k1g
−1
1 k0 ∈ B1ηB0. By definition, TΞ,ξ(g1) is convergent for some

g1 ∈ B1ηB0 if and only if TΞ,ξ(g1) is convergent for all g1 ∈ B1ηB0. Therefore
TΞ,ξ(η) is convergent, and the convergence of the above integral also implies that
SΞ−1,ξ−1(g1) is convergent.

We first assume that the residual characteristic of k is not 2. We consider the
case when K = k. In this case, both TΞ,ξ(η) and SΞ−1,ξ−1(1) are already calculated.
Note that

T1 = A1 �
{

(k×)l if G1 = SO(2l + 1) ,
(k×)l+1 if G1 = SO(2l + 2) ,
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T0 = A0 � (k×)l if G0 = SO(2l) or G0 = SO(2l + 1) .
We write

Ξ =

{
(Ξ1, . . . ,Ξl) if G1 = SO(2l + 1) ,
(Ξ1, . . . ,Ξl+1) if G1 = SO(2l + 2) ,

ξ = (ξ1, . . . , ξl) if G0 = SO(2l) or G0 = SO(2l + 1) .

There exists a quadratic space (Ṽ1, Q̃1) ⊂ (V0, Q0) such that V1 is isomorphic to
the direct sum of Ṽ1 and the hyperbolic plane. Without loss of generality, we may
assume that (V0, Ṽ1) satisfies the conditions (U1)–(U6). Put

Ξ̃ =

{
(Ξ2, . . . ,Ξl) if G1 = SO(2l + 1) ,
(Ξ2, . . . ,Ξl+1) if G1 = SO(2l + 2) .

Since TΞ,ξ(η) is independent of the choice of η, we set ζ(Ξ, ξ) = TΞ,ξ(η). By Ginzburg,
Piatetski-Shapiro, and Rallis [GiPR, p. 22, Cor, to Lem. 1.1 & p. 179, Cor. to Lem. 7.2],
we have

ζ(Ξ, ξ) = ζ(ξ, Ξ̃)
L(1/2, I(ξ),Ξ1)
L(1, I(Ξ̃),Ξ1)

×
{

L(1,Ξ2
1)

−1 (Case A) ,

1 (Case B) .

Here, L(s, I(ξ),Ξ1) is the standard L-factor of I(ξ) twisted by the character Ξ1. By
induction, we have

ζ(Ξ, ξ) =
l∏

i=1

L(1,Ξ2
i )

−1
∏

1≤i<j≤l

L(1,ΞiΞj)−1L(1,ΞiΞ−1
j )−1

×
∏

1≤i<j≤l

L(1, ξiξj)−1L(1, ξiξ
−1
j )−1

×
∏

1≤i≤j≤l

L(1/2,Ξiξj)L(1/2,Ξiξ
−1
j )

×
∏

1≤j<i≤l

L(1/2,Ξiξj)L(1/2,Ξ−1
i ξj)

in Case A, and

ζ(Ξ, ξ) =
∏

1≤i<j≤l+1

L(1,ΞiΞj)−1L(1,ΞiΞ−1
j )−1

×
l∏

i=1

L(1, ξ2
i )−1

∏
1≤i<j≤l

L(1, ξiξj)−1L(1, ξiξ
−1
j )−1

×
∏

1≤i≤j≤l

L(1/2,Ξiξj)L(1/2,Ξiξ
−1
j )

×
∏

1≤j<i≤l+1

L(1/2,Ξiξj)L(1/2,Ξ−1
i ξj)
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in Case B. On the other hand, Theorem 10.8 of [KMS] implies

SΞ−1,ξ−1(1) = ∆G1ζ(1)−2l
l∏

i=1

L(1,Ξ−2
i )−1

∏
1≤i<j≤l

L(1,Ξ−1
i Ξ−1

j )−1L(1,Ξ−1
i Ξj)−1

×
∏

1≤i<j≤l

L(1, ξ−1
i ξ−1

j )−1L(1, ξ−1
i ξj)−1

×
∏

1≤i≤j≤l

L(1/2,Ξ−1
i ξ−1

j )L(1/2,Ξ−1
i ξj)

×
∏

1≤j<i≤l

L(1/2,Ξ−1
i ξ−1

j )L(1/2,Ξiξ
−1
j )

in Case A, and
SΞ−1,ξ−1(1) = ∆G1ζ(1)−2l−1

∏
1≤i<j≤l+1

L(1,Ξ−1
i Ξ−1

j )−1L(1,Ξ−1
i Ξj)−1

×
l∏

i=1

L(1, ξ−2
i )−1

∏
1≤i<j≤l

L(1, ξ−1
i ξ−1

j )−1L(1, ξ−1
i ξj)−1

×
∏

1≤i≤j≤l

L(1/2,Ξ−1
i ξ−1

j )L(1/2,Ξ−1
i ξj)

×
∏

1≤j<i≤l+1

L(1/2,Ξ−1
i ξ−1

j )L(1/2,Ξiξ
−1
j )

in Case B. Combining these results, we have
I(1;ΦΞ,Φξ) = ∆G1Pπ1,π0(1/2) ,

when both G1 and G0 are split. Thus we have proved Theorem 1.2 in the case 2 � q
and both G1 and G0 are split.

Now we consider the case when the discriminant field K is equal to the unramified
quadratic extension of k. Note that the character χ of k× associated to K/k by the
class field theory is equal to the unique unramified quasi-character of order 2. As in
the split case, we should consider the following two cases:

(Case A) G1 = SO(2l + 1) and G0 = SO(2l) .
(Case B) G1 = SO(2l + 2) and G0 = SO(2l + 1) .

Note that {
A1 � (k×)l, A0 � (k×)l−1 (Case A) ,

A1 � A0 � (k×)l (Case B) .

The unramified characters Ξ and ξ are determined by their restriction to A1 and A0,
respectively. We write

Ξ = (Ξ1, . . . ,Ξl) ,

ξ =

{
(ξ1, . . . , ξl−1) (Case A) ,

(ξ1, . . . , ξl) (Case B) .

Put Ξ̃ = (Ξ2, . . . ,Ξl). We set ζ(Ξ, ξ) = TΞ,ξ(η). As before, we have

ζ(Ξ, ξ) = ζ(ξ, Ξ̃)
L(1/2, I(ξ),Ξ1)
L(1, I(Ξ̃),Ξ1)

×
{

L(1,Ξ2
1)

−1 (Case A) ,

1 (Case B) ,
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by [GiPR, p. 22, Cor. to Lem. 1.1 & p. 179, Cor. to Lem. 7.2]. By induction, we have

ζ(Ξ, ξ) =
l∏

i=1

L(1,Ξ2
i )

−1
∏

1≤i<j≤l

L(1,ΞiΞj)−1L(1,ΞiΞ−1
j )−1

×
l−1∏
i=1

L(1, ξi)−1L(1, χξi)−1
∏

1≤i<j≤l−1

L(1, ξiξj)−1L(1, ξiξ
−1
j )−1

×
∏

1≤i≤j≤l−1

L(1/2,Ξiξj)L(1/2,Ξiξ
−1
j )

l∏
i=1

L(1/2,Ξi)L(1/2, χΞi)

×
∏

1≤j<i≤l

L(1/2,Ξiξj)L(1/2,Ξ−1
i ξj)

in Case A, and

ζ(Ξ, ξ) =
l∏

i=1

L(1,Ξi)−1L(1, χΞi)−1
∏

1≤i<j≤l

L(1,ΞiΞj)−1L(1,ΞiΞ−1
j )−1

×
l∏

i=1

L(1, ξ2
i )−1

∏
1≤i<j≤l

L(1, ξiξj)−1L(1, ξiξ
−1
j )−1

×
∏

1≤i≤j≤l

L(1/2,Ξiξj)L(1/2,Ξiξ
−1
j )

l∏
i=1

L(1/2, ξi)L(1/2, χξi)

×
∏

1≤j<i≤l

L(1/2,Ξiξj)L(1/2,Ξ−1
i ξj)

in Case B. As for SΞ,ξ(1), we can prove the following lemma.
Lemma 5.1. We have

SΞ,ξ(1) = ∆G1ζ(1)− dimA1−dimA0L(1, χ)−1ζ(Ξ, ξ) .

The proof of this lemma will be given in the appendix to this section. Note that
Pπ1,π0(1/2) = ζ(1)− dimA1−dim A0L(1, χ)−1ζ(Ξ, ξ)ζ(Ξ−1, ξ−1) .

We would like to emphasise that this relation has been already noted by Ginzburg,
Piatetski-Shapiro, and Rallis [GiPR]. Combining these results, we have I(1;ΦΞ,Φξ)
= ∆G1Pπ1,π0(1/2). Thus we have proved Theorem 1.2 in the case 2 � q.

Now we consider the case 2 | q. It is enough to prove that I(1;ΦΞ,Φξ) is an
element of Q(q1/2,Ξ, ξ). More precisely, we will show that there exists a rational
function I(t,X1, . . . , x1, . . .) ∈ Q(t,X1, . . . , x1, . . .), where t,X1, . . . , x1, . . . are inde-
terminates, such that if the order of residue field of k is q, then

I(1;ΦΞ,Φξ) = I(q1/2,Ξ1, . . . , ξ1, . . .) .

To prove this, we make use of Macdonald’s formula for the spherical function. Recall
that Macdonald’s formula [C, p. 403, Th. 4.2] says that the spherical functions ΦΞ
and Φξ are of the form

ΦΞ(m1) = Q−1
1

∑
w1∈W1

γ1(w1Ξ) · ((w1Ξ)δ−1/2
1

)
(m1) , m1 ∈ A+

1 ,
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Φξ(m0) = Q−1
0

∑
w0∈W0

γ0(w0ξ) ·
(
(w0ξ)δ

−1/2
0

)
(m0) , m0 ∈ A+

0 .

Here, Q1, Q0, γ1(Ξ), γ0(ξ) ∈ Q(q1/2,Ξ, ξ) and δi is the modulus function of the
Borel subgroup Bi. The integral I(1;ΦΞ,Φξ) is equal to∫

A+
0

ΦΞ(m0)Φξ(m0)Vol(K0m0K0)dm0 .

Note that Vol(K0m0K0) = [K0 : K0 ∩ m0K0m
−1
0 ]. One can show easily this integral

gives an element of Q(q1/2,Ξ, ξ). Therefore the proof of Theorem 1.2 is complete.

Appendix to Section 5: Proof of Lemma 5.1

In this appendix, we prove Lemma 5.1. The proof of Lemma 5.1 consists of three
steps.

Step 1. The Weyl invariance. The Weyl group W1 ×W0 acts on the character
group of A1 × A0 by (Ξ, ξ) �→ (w1Ξ, w0ξ).
Lemma 5.2. The quantity SΞ,ξ(g1)ζ(Ξ, ξ)−1 is W1 × W0-invariant as a function of
Ξ and ξ (cf. [KMS, Th. 10.8]).

Proof. Note that both ζ(Ξ, ξ)ζ(Ξ−1, ξ−1) and
I(g1; ΦΞ,Φξ) = ζ(Ξ, ξ)SΞ−1,ξ−1(g1)

are W1 × W0-invariant. It follows that
I(g1; ΦΞ,Φξ)

ζ(Ξ, ξ)ζ(Ξ−1, ξ−1)
=

SΞ−1,ξ−1(g1)
ζ(Ξ−1, ξ−1)

is also W1 × W0-invariant. Hence the lemma. �

Step 2. An explicit formula for SΞ,ξ(g1). Now we closely follow the argument
of [KMS]. Fix a hyperspecial maximal compact subgroup Ki ⊂ Gi and a maximal
split torus Ai ⊂ Gi. Then the centralizer Ti of Ai is a maximally split maximal torus
of Gi. We assume K0 ⊂ K1 and A0 ⊂ A1. Note that T0 need not be a subgroup of T1.
Choose a Borel subgroup Bi = TiNi ⊂ Gi. We also assume N0 ⊂ N1. The opposite
Borel subgroup of Bi = TiNi is denoted by B̄i = TiN̄i. We put T

(0)
i = Ti ∩ Ki,

N
(0)
i = Ni ∩ Ki, and N̄

(0)
i = N̄i ∩ Ki. Choose a longest element wi,long of the Weyl

group Wi = W (Gi, Ai). We assume wi,long ∈ Ki. There exists an Iwahori subgroup
Bi ⊂ Ki such that N

(0)
i ⊂ Bi. We put N̄

(1)
i = N̄i ∩ Bi and N

(1)
i = w−1

i,longN̄
(1)
i wi,long.

Then we have an Iwahori decomposition Bi = N̄
(1)
i T

(0)
i N

(0)
i .

Recall that the element η ∈ G1 is a representative of the unique open orbit of
B1\G1/B0 such that η ∈ K1. Let o and oK be the ring of integers of k and K,
respectively. The maximal ideal of o and oK are denoted by p and pK , respectively.
Lemma 5.3. One can choose the representative η of the open orbit of B1\G1/B0
such that the following conditions hold:

(1) ηN̄
(1)
0 ⊂ B1η,

(2) N̄
(1)
1 η ⊂ T

(0)
1 N

(0)
1 ηT

(0)
0 N

(0)
0 .
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Proof. We first consider Case B. Note that in this case N0 is a normal subgroup
of N1. By [GiPR, p. 171, Lem. 7.1] N1/N0 is isomorphic to kl−1 × (K/k) as a left
module of A0 = A1 � (k×)l. We fix an isomorphism N1/N0 � kl−1 × (K/k),
which induces an isomorphism N

(0)
1 /N

(0)
0 � ol−1× (oK/o). Since K/k is unramified,

oK/o is isomorphic to o, and so N
(0)
1 /N

(0)
0 � ol. There exists a cross section (i.e.

“épinglage”) ι of the map N
(0)
1 → N

(0)
1 /N

(0)
0 � ol. Let η′ be the image of the cross

section of (1, 1, . . . , 1) ∈ ol. We put η = w1,longη
′. Then η is a representative of

the open orbit of B1\G1/B0. Let U1 be the group generated by N
(1)
1 and N̄

(1)
1 .

Then U1 is a normal subgroup of K1. It follows that ηN̄
(1)
0 ⊂ ηU1 = U1η ⊂ B1η.

As for (2), N̄
(1)
1 η = w1,longN

(1)
1 η′ ⊂ w1,longι(pl)η′N (1)

0 . It suffices to prove that
ι(pl)η′ ⊂ T

(0)
1 η′T (0)

0 . This is easily seen by the facts 1 + p ⊂ o×.
Now we consider Case A. Let P1 be the standard parabolic subgroup of G1 with

Levi factor (k×)l−1 × SO(3) � (k×)l−1 × PGL2. Let NP1 be the unipotent radical
of P1. Then as in Case B, NP1/N0 is isomorphic to kl−1 as a left module of A0 �
(k×)l−1. We fix an isomorphism NP1/N0 � kl−1, which induces an isomorphism
(NP1 ∩ N

(0)
1 )/N (0)

0 � ol−1. Take a cross section ι of the map (NP1 ∩ N
(0)
1 ) →

(NP1 ∩N
(0)
1 )/N (0)

0 � ol−1. Put η = w1,longι((1, 1, . . . , 1)). Then η is a representative
of the open orbit of B1\G1/B0, since PGL2 = (PGL2∩N1) · (PGL2∩T0) (cf. [GiPR,
App. 1 to §7]). One can prove (1) in the same way as in Case B. As for (2), observe
that N̄

(1)
1 = (N̄ (1)

1 ∩ N̄P1) · (N̄ (1)
1 ∩PGL2), where N̄P1 is the unipotent radical of the

opposite parabolic subgroup of P1 with respect to the Levi subgroup (k×)l−1×PGL2.
One can prove that (N̄ (1)

1 ∩ N̄P1)η ⊂ T
(0)
1 ηT

(0)
0 N

(0)
0 in the same way as in Case B.

Now (2) follows from the fact (T (0)
1 N

(0)
1 ∩ PGL2) · (T (0)

0 ∩ PGL2) = K1 ∩ PGL2. �

Lemma 5.4. We have

B0η
−1B1 ⊂ T

(0)
0 N

(0)
0 η−1T

(0)
1 N

(0)
1 .

Proof. By Lemma 5.3, we have

B0η
−1B1 = T

(0)
0 N

(0)
0 N̄

(1)
0 η−1B1

⊂ T
(0)
0 N

(0)
0 η−1B1

= T
(0)
0 N

(0)
0 η−1N̄

(1)
1 T

(0)
1 N

(0)
1

⊂ T
(0)
0 N

(0)
0 η−1T

(0)
1 N

(0)
1 . �

Put
A+

1 =
{
t ∈ A1

∣∣ |α(t)| ≤ 1 for any positive root α of (G1, A1)
}

,

A+
0 =

{
t ∈ A0

∣∣ |α(t)| ≤ 1 for any positive root α of (G0, A0)
}

.

Then we have Cartan decompositions G1 = K1A
+
1 K1, G0 = K0A

+
0 K0.

For each positive root α of G1 (resp. G0), we denote Harish-Chandra’s c-function
(cf. e.g., Casselman [C]) by cα(Ξ) (resp. cα(ξ)). We put

c̄w1(Ξ) =
∏
α>0

w1α>0

cα(Ξ)
(

resp. c̄w0(ξ) =
∏
α>0

w0α>0

cα(ξ)
)

.
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When w1 (resp. w0) is the identity element, we set

c1(Ξ) =
∏
α>0

cα(Ξ)
(

resp. c0(ξ) =
∏
α>0

cα(ξ)
)

.

Lemma 5.5. There exists a basis {g1,w1}w1∈W1 of I(Ξ)B1 with the following prop-
erties:

(11) R(1B1t−1B1
)g1,w1 = Vol(B1tB1) · (w1Ξ)−1δ

1/2
1 (t) · g1,w1 for any t ∈ A+

1 ;
(21) The restriction of g1,1 to K1 is the characteristic function of B1;

(31) fΞ = [N (0)
1 : N

(1)
1 ]

∑
w1∈W1

c̄w1(Ξ) · g1,w1 .

Similarly, there exists a basis {g0,w0}w0∈W0 of I(ξ)B0 with the following properties.

(10) R(1B0t−1B0
)g0,w0 = Vol(B0tB0) · (w0ξ)−1δ

1/2
0 (t) · g0,w0 for any t ∈ A+

0 .
(20) The restriction of g0,1 to K0 is the characteristic function of B0.

(30) fξ = [N (0)
0 : N

(1)
0 ]

∑
w0∈W0

c̄w0(ξ) · g0,w0 .

Proof. See [KMS, p. 8, Prop. 1.10]. �

Lemma 5.6. We have

SΞ,ξ(t0η−1t−1
1 ) = Vol(B0t

−1
0 B0)−1Vol(B1t

−1
1 B1)−1

× (L(1B0t−1
0 B0

)R(1B1t−1
1 B1

)SΞ,ξ

)
(η−1)

for t0 ∈ A+
0 , t1 ∈ A+

1 .

Proof. It suffices to show that
(B0t0B0)η−1(B1t

−1
1 B1) ⊂ K0t0η

−1t−1
1 K1

for t0 ∈ A+
0 , t1 ∈ A+

1 . By Lemma 5.4, we have

B0t0B0η
−1B1t

−1
1 B1 ⊂ B0t0T

(0)
0 N

(0)
0 η−1T

(0)
1 N

(0)
1 t−1

1 B1 .

Since tiT
(0)
i N

(0)
i t−1

i ⊂ T
(0)
i N

(0)
i , the lemma follows. �

Recall that
SΞ,ξ(g1) =

〈
fξ, lΞ,ξ(π1(g1)fΞ)

〉
.

By (11), (31), (10), and (30) of Lemma 5.5, we have

SΞ,ξ(t0η−1t−1
1 ) = [N (0)

1 : N
(1)
1 ][N (0)

0 : N
(1)
0 ]

×
∑

w1∈W1
w0∈W0

c̄w1(Ξ)c̄w0(ξ)(w1Ξ)−1δ
1/2
1 (t1) · (w0ξ)−1δ

1/2
0 (t0)

×
∫
K0×K1

g0,w0(k0)g1,w1(k1)YΞ,ξ(k0ηk1)dk0 dk1 .

By (21) and (20) of Lemma 5.5, we have∫
K0×K1

g0,1(k0)g1,1(k1)YΞ,ξ(k0ηk1)dk0 dk1

= Vol(B1)Vol(B0)

= ∆G1∆G0ζ(1)− dimA1−dim A0L(1, χ)−1/([N (0)
1 : N

(1)
1 ][N (0)

0 : N
(1)
0 ]

)
.
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Put cWS(Ξ, ξ) = c1(Ξ)c0(ξ)ζ(Ξ, ξ)−1 = b(Ξ, ξ)d1(Ξ)−1d0(ξ)−1, where

b(Ξ, ξ)−1 =
∏

1≤i≤j≤l−1

L(1/2,Ξiξj)L(1/2,Ξiξ
−1
j )

l∏
i=1

L(1/2,Ξi)L(1/2, χΞi)

×
∏

1≤j<i≤l

L(1/2,Ξiξj)L(1/2,Ξ−1
i ξj)

d1(Ξ)−1 =
l∏

i=1

L(0,Ξ2
i )

∏
1≤i<j≤l

L(0,ΞiΞj)L(0,ΞiΞ−1
j )

d0(ξ)−1 =
l−1∏
i=1

L(0, ξi)L(0, χξi)
∏

1≤i<j≤l−1

L(0, ξiξj)L(0, ξiξ
−1
j )

in Case A, and

b(Ξ, ξ)−1 =
∏

1≤i≤j≤l

L(1/2,Ξiξj)L(1/2,Ξiξ
−1
j )

l∏
i=1

L(1/2, ξi)L(1/2, χξi)

×
∏

1≤j<i≤l

L(1/2,Ξiξj)L(1/2,Ξ−1
i ξj)

d1(Ξ)−1 =
l∏

i=1

L(0,Ξi)L(0, χΞi)
∏

1≤i<j≤l

L(0,ΞiΞj)L(0,ΞiΞ−1
j )

d0(ξ)−1 =
l∏

i=1

L(0, ξ2
i )

∏
1≤i<j≤l

L(0, ξiξj)L(0, ξiξ
−1
j )

in Case B. By the Weyl-invariance, we have

SΞ,ξ(t0η−1t−1
1 )

ζ(Ξ, ξ)
= ∆G1∆G0ζ(1)− dimA1−dimA0L(1, χ)−1

×
∑

w1∈W1
w0∈W0

cWS(w1Ξ, w0ξ) · (w1Ξ)−1δ
1/2
1 (t1) · (w0ξ)−1δ

1/2
0 (t0)

(cf. [KMS, Th. 10.7]). Note that
b(Ξ, ξ), d1(Ξ), d0(ξ) ∈ Z[q±1/2,Ξ1,Ξ2, . . . , ξ1, ξ2, . . .] .

Here and from now on, we identify an unramified quasi-character of k× with its
value at a prime element.

Step 3. Calculation of SΞ,ξ(1)/ζ(Ξ, ξ). Our next task is to prove the following
lemma.
Lemma 5.7. The sum

SΞ,ξ(1)
ζ(Ξ, ξ)

= ∆G1∆G0ζ(1)− dim A1−dim A0L(1, χ)−1
∑

w1∈W1
w0∈W0

cWS(w1Ξ, w0ξ)

is independent of Ξ and ξ.
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Proof. We shall prove the lemma only in Case B. One can handle Case A in a similar
way. Put

AΞ,ξ =
∑

w1∈W1
w0∈W0

cWS(w1Ξ, w0ξ) .

We are going to prove that AΞ,ξ is independent of Ξ and ξ. Put

D(Ξ) = Ξ−ρ1d1(Ξ) =
∑

w1∈W1

sgn(w1) · (w1Ξ)−ρ1 ,

D(ξ) = ξ−ρ0d0(ξ) =
∑

w0∈W0

sgn(w0) · (w0ξ)−ρ0 ,

where
ρ1 = ρ0 = (l, l − 1, . . . , 1) .

Then we have D(w1Ξ) = sgn(w1)D(Ξ) and D(w0ξ) = sgn(w0)D(ξ) for w1 ∈ W1 and
w0 ∈ W0. Note that ρ1 and ρ0 are half the sum of the positive roots of type C. It
follows that AΞ,ξ is equal to

(D(Ξ)D(ξ))−1
∑

w1∈W1
w0∈W0

sgn(w1)sgn(w0) · (w1Ξ)−ρ1(w0ξ)−ρ0b(w1Ξ, w0ξ) .

Put BΞ,ξ = Ξ−ρ1ξ−ρ0b(Ξ, ξ). Observe that BΞ,ξ is equal to∏
1≤j≤l

(ξ−1
j − q−1ξj)

∏
1≤i≤j≤l

(Ξ−1
i − q−1/2ξ−1

j )

×
∏

1≤j<i≤l

(ξ−1
j − q−1/2Ξ−1

i )
∏

1≤i≤l
1≤j≤l

(1 − q−1/2Ξiξj) .

We express BΞ,ξ as a sum of monomials

BΞ,ξ =
∑
λ,µ

cλ,µΞλξµ, λ, µ ∈ Zl , cλ,µ ∈ Z[q±1/2] .

We say that a monomial Ξλξµ is regular if Ξw1λξw0µ = Ξλξµ implies w1 = w0 = 1.
We also say that a monomial is singular if it is not regular. Here the action of the
Weyl group on Zl is given by (w1Ξ)w1λ = Ξλ, (w0ξ)w0µ = ξµ, as usual.

We would like to show that if a regular monomial Ξλξµ appears in BΞ,ξ, then it
is of the form Ξw1ρ1ξw0ρ0 with w1 ∈ W1, w0 ∈ W0. It is enough to show |λi|, |µj | ≤ l,
since such a monomial is either singular or Weyl-equivalent to Ξρ1ξρ0. Choose i0,
j0 ∈ {1, 2, . . . , l}. The positive contribution of Ξi0 comes from∏

1≤j≤l

(1 − q−1/2Ξi0ξj) ,

and the negative contribution of Ξi0 comes from∏
i0≤j≤l

(Ξ−1
i0

− q−1/2ξ−1
j )

∏
1≤j<i0

(ξ−1
j − q−1/2Ξ−1

i0
) .

Therefore |λi0 | ≤ l. Similarly, the positive contribution of ξj0 comes from

(ξ−1
j0

− q−1ξj0)
∏

1≤i≤l

(1 − q−1/2Ξiξj0)
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and the negative contribution of ξj0 comes from
(ξ−1

j0
− q−1ξj0)

∏
1≤i≤j0

(Ξ−1
i − q−1/2ξ−1

j0
)

∏
j0<i≤l

(ξ−1
j0

− q−1/2Ξ−1
i ) .

Therefore |µj0| ≤ l + 1. It follows that if a regular monomial Ξλξµ occurs in BΞ,ξ,
then l ≤ |µj0 | ≤ l + 1 for some j0. We will show that no regular monomial Ξλξµ

such that |µj0| > l occurs in BΞ,ξ. Assume that the monomial Ξλξµ occurs in BΞ,ξ

and |µj0| > l. We must show that such a monomial Ξλξµ is singular. Note that the
monomial Ξλξµ occurs in

q−1ξj0 ·
∏

i0≤j≤l

(Ξ−1
i0

− q−1/2ξ−1
j )

×
∏

1≤j<i0

(ξ−1
j − q−1/2Ξ−1

i0
) · q−1/2Ξi0ξj0

∏
1≤j≤l
j �=j0

(1 − q−1/2Ξi0ξj)

× (terms not containing Ξi0 or ξj0) .

In particular, we have λi0 �= −l. If λi0 = l, then the factor ξ−1
j0

must occur in the
factor ∏

i0≤j≤l

(Ξ−1
i0

− q−1/2ξ−1
j )

∏
1≤j<i0

(ξ−1
j − q−1/2Ξ−1

i0
) ,

which would contradict the condition µj0 > l. It follows that the condition µj0 > l
implies |λi0 | < l. Therefore no regular monomial such that µj0 > l occurs in BΞ,ξ.
Assume now µj0 < −l. Then the monomial Ξλξµ occurs in

ξ−1
j0

· (q−1/2ξ−1
j0

)j0
∏

i0≤j≤l
j �=j0

(Ξ−1
i0

− q−1/2ξ−1
j )

× ξ−l+j0
j0

∏
1≤j<i0

(ξ−1
j − q−1/2Ξ−1

i0
)

∏
1≤j≤l

(1 − q−1/2Ξi0ξj)

× (terms not containing Ξi0 or ξj0)
if i0 ≤ j0, and

ξ−1
j0

· (q−1/2ξ−1
j0

)j0
∏

i0≤j≤l

(Ξ−1
i0

− q−1/2ξ−1
j )

× ξ−l+j0
j0

∏
1≤j<i0
j �=j0

(ξ−1
j − q−1/2Ξ−1

i0
)

∏
1≤j≤l

(1 − q−1/2Ξi0ξj)

× (terms not containing Ξi0 or ξj0)
if i0 > j0. In particular, λi0 �= −l. If λi0 = l, then the factor ξj0 occurs, and so the
condition µj0 < −l fails. It follows that the condition µj0 < −l implies |λi0 | < l.
Therefore no regular monomial Ξλξµ such that µj0 < −l occurs in BΞ,ξ.

We have proved that the regular monomials Ξλξµ which occur in BΞ,ξ are of
the form (w1Ξ)−ρ1(w0ξ)−ρ0 , for some w1 ∈ W1 and w0 ∈ W0. Therefore, up to a
constant, AΞ,ξ is equal to(D(Ξ)D(ξ)

)−1 ∑
w1∈W1
w0∈W0

sgn(w1)sgn(w0) · (w1Ξ)−ρ1(w0ξ)−ρ0 = 1 .

Hence the lemma. �
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Recall that
AΞ,ξ =

∑
w1∈W1
w0∈W0

cWS(w1Ξ, w0ξ) .

Lemma 5.8. The constant AΞ,ξ is equal to ∆−1
G0

.

Proof. We shall prove the lemma only in Case B. One can handle Case A in a similar
way. We put

Ξ̃ = (q−l, q−l+1, . . . , q−1) ,

ξ̃ = (q−l+(1/2), q−l+(3/2), . . . , q−1/2) .

As in the proof of [KMS, Lem. 11.9], we shall prove that b(w1Ξ̃, w0ξ̃) �= 0 implies
w1 = w0 = 1. Note that b(Ξ, ξ) is equal to∏

1≤i≤j≤l

(1 − q−1/2Ξiξ
−1
j )

∏
1≤j<i≤l

(1 − q−1/2Ξ−1
i ξj)

∏
1≤i≤l
1≤j≤l

(1 − q−1/2Ξiξj)

×
∏

1≤j≤l

(1 − q−1ξ2
j ) .

Note that W1 � W0 � {±1}l � Sl, where Sl is the symmetric group. Therefore, for
every w1 ∈ W1, w0 ∈ W0, one can find σ, τ ∈ Sl and εi, ε

′
j ∈ {±1} such that

w1Ξ = (Ξε1

σ(1), . . . ,Ξ
εl

σ(l)) ,

w0ξ = (ξε′1
τ(1), . . . , ξ

ε′l
τ(l)) .

Put is = σ−1(l + 1 − s), jt = τ−1(l + 1 − t). Then we have
(w1Ξ̃)is = Ξ̃εis

l+1−s = q−εis ·s ,

(w0ξ̃)jt = ξ̃
ε′jt
l+1−t = q−ε′jt

(t−(1/2)).

Assume b(w1Ξ̃, w0ξ̃) �= 0. Firstly, 1 − q−1(w0ξ̃)2j1 �= 0 implies ε′j1 = 1. Secondly,
1 − q−1/2(w1Ξ̃)is(w0ξ̃)js �= 0 and 1 − q−1/2(w1Ξ̃)it+1(w0ξ̃)jt �= 0 imply

ε′j1 = εi1 = ε′j2 = εi2 = · · · = ε′jl
= εil = 1 .

Now, if js < is, then the second factor would contain the factor
1 − q−1/2(w1Ξ̃)−1

is
(w0ξ̃)js = 0, therefore we have js ≥ is. Similarly, if is ≤ js+1,

the first factor would contain the factor 1− q−1/2(w1Ξ̃)is(w0ξ̃)−1
js+1

= 0, therefore we
have is > js+1. It follows that

j1 ≥ i1 > j2 ≥ i2 > · · · > jl ≥ il ,

and so w1 = w0 = 1. It follows that AΞ,ξ = b(Ξ̃, ξ̃)d1(Ξ̃)−1d0(ξ̃)−1. By direct
calculation, one can easily show that it is ∆−1

G0
. �

Now Lemma 5.1 follows from Lemma 5.7 and Lemma 5.8.

Part III. Examples

In sections 6–12, k is an algebraic number field. The Dedekind zeta function of k
is denoted by ζk(s). The Γ-factors of L-functions are normalized as in Tate [T]. In
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particular, ΓR(s) = π−s/2Γ(s/2) and ΓC(s) = 2(2π)−sΓ(s). The completed Dedekind
zeta function of k is denoted by ξk(s). When k = Q, the subscript k is dropped.
The symbol L(s, π, r) is the Euler product

∏
v<∞ L(s, πv, r) and the completed L-

function for L(s, π, r) is denoted by Λ(s, π, r).

6 Waldspurger’s Theorem

The following example is due to Waldspurger [W]. Let D be a quaternion algebra
over an algebraic number field k. Then G1 = D×/k× can be considered as a special
orthogonal group associated to a 3-dimensional quadratic space over k. Note that
∆G1 = ξk(2). Let G0 = T be an anisotropic torus of G1. Then T can be considered
as a special orthogonal group associated to a 2-dimensional quadratic space over k.
Let K be a splitting field of T over k. Then there exists an exact sequence

1 −→ k× −→ K× −→ T −→ 1 .

By means of this exact sequence, a character ω of T (A)/T (k) can be regarded as
a character of A×

K/K× whose restriction to A×
k /k× is trivial. As in [W], we choose

a Haar measure of T (kv) as follows. Fix a non-trivial additive character ψ of A/k.
Then we give the Haar measure ζv(1)−1|t|−1

v dtv on k×
v , where dtv is the self-dual

Haar measure of kv with respect to ψv. We give a Haar measure on K×
v in a similar

way. Then the Haar measure on T (kv) is defined by the exact sequence
1 −→ k×

v −→ K×
v −→ T (kv) −→ 1 .

Let C0 be the Haar measure constant. It is easily seen that C0 = Λ(1, χK/k)−1 for
this choice of measure. Note that in [W], Waldspurger considered the measure on
T (A) such that Vol(T (A)/T (k)) = 2Λ(1, χK/k).

An irreducible cuspidal automorphic representation π of G1(A) can be considered
as a representation of D×(A) with trivial central character. We assume π is almost
locally generic. The base change of π to GL2(AK) is denoted by Π. Choose a
non-zero cusp form ϕ = ⊗vϕv ∈ π � ⊗vπv.

Then among other things, Waldspurger ([W, Prop. 7]) proved that the integral
I(ϕv, ωv) is convergent and that

|〈ϕ|G0 , ω〉|2
〈ϕ,ϕ〉〈ω, ω〉 =

1
4
∆G1C0

Λ(1/2,Π ⊗ ω−1)
Λ(1, π,Ad)Λ(1, χK/k)

∏
v∈S

αv(ϕv , ωv)
‖ϕv‖2

=
1
4
∆G1C0Pπ1,π0(1/2)

∏
v∈S

αv(ϕv , ωv)
‖ϕv‖2 · ‖ωv‖2 ,

where π1 = π, π0 = ω. Thus Conjecture 1.5 is true for n = 2. Note that we have
|Sψ1 | = |Sψ0 | = 2, if we admit the Arthur conjecture. Thus Waldspurger’s result is
compatible with Conjecture 2.1.

7 The Case n = 3

In this section, we prove Conjecture 1.5 for n = 3. Let D be an quaternion algebra
over an algebraic number field k. Let k′ be either k × k or a quadratic extension
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of k. We put
G̃1 = (D ⊗k k′)×/k×,

G1 =
{
g ∈ (D ⊗k k′)× | ν(g) ∈ k×}/k×,

G0 = D×/k×.

Here ν is the reduced norm of D. Then G1 (resp. G0) can be considered as a special
orthogonal group associated to a 4-dimensional (resp. 3-dimensional) quadratic space
over k. We regard G0 as a subgroup of G1. Note that

∆G1 =

{
ξk(2)2 if k′ = k × k ,
ξk′(2) otherwise .

Let ZG̃1
be the identity component of the center of G̃1.

Let πi be an irreducible cuspidal automorphic representation of Gi(A) on the
space Vπi . We assume πi is almost locally generic. By the result of Hiraga and Saito
[HiS, Th. 4.13], there exists an irreducible unitary cuspidal automorphic representa-
tion τ of G̃1(A) on the space Vτ such that Vπ1 ⊂ V1

τ |G1(A). Here, V1
τ is the subspace

of Vτ on which the group
Xτ =

{
ω ∈ Homcont(ZG̃1

(A)G1(A)G̃1(k)\G̃1(A), C×) | τ ⊗ ω � τ
}

acts trivially, and V1
τ |G1(A) is the restriction of V1

τ to G1(A) as functions. Note that
Xτ is an elementary 2-abelian group.

Let 〈 , 〉 be the canonical inner product on Vτ and 〈 , 〉v an inner product on τv

for any place v of k. Then Ichino’s result [I2, Th. 1.1] says
|〈ϕ̃|G0 , ϕ0〉|2

〈ϕ̃, ϕ̃〉〈ϕ0, ϕ0〉 = 2β̃∆G1C0Pπ1,π0(1/2)
∏
v∈S

α̃v(ϕ̃v , ϕ0,v)
〈ϕ̃v, ϕ̃v〉v · ‖ϕ0,v‖2

for any non-zero vectors ϕ̃ = ⊗vϕ̃v ∈ τ and ϕ0 = ⊗vϕ0,v ∈ π0. Here,
α̃v(ϕ̃v, ϕ0,v) = ∆−1

G1,vPπ1,v ,π0,v(1/2)
−1

×
∫

G0,v

〈
τv(g0,v)ϕ̃v, ϕ̃v

〉
v

〈
π0,v(g0,v)ϕ0,v , ϕ0,v

〉
v
dg0,v

and

β̃ =

{
−3 if k′ = k × k ,
−2 otherwise .

Choose a non-zero cusp form ϕ1 = ⊗vϕ1,v ∈ Vπ1. We choose ϕ̃ = ⊗vϕ̃v ∈ V1
τ

such that ϕ̃|G1(A) = ϕ1. Then ϕ̃ belongs to the ⊗vπ1,v-isotypic subspace of V1
τ and

we have
α̃v(ϕ̃v , ϕ0,v)
〈ϕ̃v, ϕ̃v〉v

=
αv(ϕ1,v , ϕ0,v)

‖ϕ1,v‖2 .

By Remark 4.20 of [HiS], we have

〈ϕ̃, ϕ̃〉 =
1

|Xτ | 〈ϕ1, ϕ1〉 ×
{

2 if k′ = k × k ,
1 otherwise .

Therefore we obtain the following theorem.
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Theorem 7.1. We have
|〈ϕ1|G0 , ϕ0〉|2

〈ϕ1, ϕ1〉〈ϕ0, ϕ0〉 =
1

4|Xτ |∆G1C0Pπ1,π0(1/2)
∏
v∈S

αv(ϕ1,v , ϕ0,v)
‖ϕ1,v‖2 · ‖ϕ0,v‖2

for any non-zero vectors ϕ1 = ⊗vϕ1,v ∈ π1 and ϕ0 = ⊗vϕ0,v ∈ π0.

Thus Conjecture 1.5 is true for n = 3. Note that we have |Sψ1 | = 2|Xτ | and
|Sψ0 | = 2, if we admit the Arthur conjecture.

We show that Theorem 7.1 is compatible with the result of Watson [Wa] in some
cases. Put G1 = SO(2, 2) and G0 = SO(2, 1) = PGL2, defined over k = Q. By
definition, we have ∆G1 = ξ(2)2. When v is non-archimedean, the local measure
dg0,v of G0,v is the standard measure. In particular, the volume of the hyperspecial
maximal compact subgroup Kv = K0,v = PGL2(Zv) is 1. For the real place, we
choose a Haar measure as follows. The topological identity component of G0(R)
is denoted by G0(R)0. Let K∞ = K0,∞ = S(O(2) × O(1)) be a maximal compact
subgroup of G0(R). We put K0∞ = G0(R)0 ∩ K∞. Then G0(R)0/K0∞ can be identi-
fied with the upper-half plane H1. Let dk be the Haar measure on K0∞ with total
volume 1. Then the Haar measure dg0,∞ on G0(R)0 is such that dg0,∞/dk induces
the measure y−2 dx dy on G0(R)0/K0∞ � H1. The Haar measure dg0,∞ can be nat-
urally extended to G0(R). Let G0(R)0 = ANK0∞ be an Iwasawa decomposition,
which induces a bijection H1 � AN . Let X ⊂ AN be an image of a fundamental
domain for SL2(Z)\H1. Then there is a bijection

X ×K0
∞ ×

∏
v<∞

Kv � G0(Q)\G0(A) .

It follows that ∫
G0(Q)\G0(A)

∏
v≤∞

dg0,v = Vol
(
SL2(Z)\H1

)
= 2ξ(2) .

Therefore we have C0 = ξ(2)−1 = 6π−1, where C0 is the Haar measure constant.
Let fj ∈ Sκj(SL2(Z)) (j = 1, 2, 3) be normalized Hecke eigenforms. We assume

κ1 + κ2 = κ3. We denote the automorphic form on GL2(A) corresponding to fj

by fj. Let τj be the irreducible automorphic representation of PGL2(A) generated
by fj. Note that ϕ1 = f1 × f2 induces a cusp form on SO(2, 2)(A) and its restriction
to SO(2, 1) is f1f2. Put π1 = τ1 � τ2, π0 = τ3 and ϕ0 = f3. By the result of Watson
[Wa] (see also Harris–Kudla [HaK]), we have

Λ(1/2, τ1 × τ2 × τ3) = 22κ3+2〈f1f2, f3〉2.
It is well-known that Λ(1, τj ,Ad) = 2κj 〈fj, fj〉. Here 〈 , 〉 is the usual Petersson
inner product.

As both the Tamagawa number of SO(2, 2) and that of SO(2, 1) are equal to 2,
we have

|〈ϕ1|G0 , ϕ0〉|2
〈ϕ1, ϕ1〉〈ϕ0, ϕ0〉 = 2ξ(2)

|〈f1f2, f3〉|2∏3
j=1〈fj, fj〉

=
1
2
ξ(2)

Λ(1/2, τ1 × τ2 × τ3)∏3
j=1 Λ(1, τj ,Ad)

.



1404 A. ICHINO AND T. IKEDA GAFA 

By easy calculation,

Pπ1,π0(s) =
Λ(s, τ1 × τ2 × τ3)∏3

j=1 Λ(s + (1/2), τj ,Ad)
,

Pπ1,∞,π0,∞(1/2) =
ΓC(1)ΓC(κ1)ΓC(κ2)ΓC(κ3 − 1)
ΓR(2)3ΓC(κ1)ΓC(κ2)ΓC(κ3)

=
2π3

κ3 − 1
.

Proposition 7.2. Let τj,∞ (j = 1, 2, 3) be the holomorphic discrete series
of SO(2, 1) � PGL2(R) with lowest weight ±κj . Put π1,∞ = τ1,∞ � τ2,∞ and
π0,∞ = τ3,∞. Let ϕ1,∞ ∈ π1,∞ be the vector with weight (κ1, κ2). Let ϕ0,∞ ∈ π0,∞
be the vector with weight κ3. We assume ‖ϕ1,∞‖ = ‖ϕ0,∞‖ = 1. Then we have

I(ϕ1,∞, ϕ0,∞) = 4π(κ3 − 1) ,

α∞(ϕ1,∞, ϕ0,∞) = 2 .

The proof of this proposition will be given in section 12. Putting together, we
recover Theorem 7.1 in this case. Note that we have |Xτ | = 1.

In fact, Watson [Wa] obtained a more general result. Let B be an indefinite
quaternion algebra over Q. The reduced discriminant dB of B is, by definition, the
product of primes which ramify in B. Let N be a square-free integer such that
(N, dB) = 1. Put Sf be the set of primes which divide dBN . Let τj = ⊗vτj,v (j =
1, 2, 3) be an irreducible cuspidal automorphic representation of A×\B×(A) with
new vector fj = ⊗vfj,v which satisfies the following conditions:

(1) When v < ∞ and v /∈ Sf , the local components τj,v (j = 1, 2, 3) are unramified
representations and fj,v are unramified vectors.

(2) When v | dB , the local component τj,v (j = 1, 2, 3) are one-dimensional repre-
sentations of the form χj ◦ νBv , where χj are unramified quadratic characters
and νBv is the reduced norm. We also assume χ1χ2χ3 = 1.

(3) When v | N , the local component τj,v (j = 1, 2, 3) are representations of
the form χj ⊗ (Steinberg), where χj are unramified quadratic characters. We
assume that χ1χ2χ3 is the unique unramified character of order 2 and that
fj,v are Iwahori fixed vectors.

(4) When v = ∞, we assume that τj,v (j = 1, 2, 3) are discrete series representa-
tions with minimal weight ±κj. We assume κ3 = κ1 + κ2 and fj,v have weight
κj > 0.

Then Watson’s result [Wa, Th. 3] says

| ∫X f1(z)f2(z)f3(z)Im(z)κ3−2 dz|2∏3
j=1

∫
X |fj(z)|2Im(z)κj−2 dz

=
2|Sf |−2

(dBN)2
Λ(1/2, τ1 × τ2 × τ3)∏3

j=1 Λ(1, τj ,Ad)
.

Here, X = O(1)(dB , N)\H1, where O(1)(dB , N) is the arithmetic subgroup defined
in Watson [Wa, Ch. 1]. Watson proved that

Vol(X) = 2ξ(2)
∏
p|dB

(p − 1)
∏
p|N

(p + 1) .

Watson also considered the cases when τj,∞ are not discrete series, but we do not
discuss such cases.
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Let V1 be the vector space B equipped with the reduced norm form νB. The
subspace V0 ⊂ V1 is defined by the space of elements of reduced trace 0. Then we
have

G1 =
{
(g1, g2) ∈ B× × B× | νB(g1) = νB(g2)

}/
Q×,

G0 = B×/Q×.

As in the case of SO(2, 2), we regard π1 = τ1 � τ2 as a representation of G1(A), and
π0 = τ3 as a representation of G0(A). We put ϕ1 = f1 × f2, and ϕ0 = f3. We may
assume ‖ϕ1,v‖ = ‖ϕ0,v‖ = 1 for any v. Note that Watson’s result implies

|〈ϕ1|G0 , ϕ0〉|2
〈ϕ1, ϕ1〉〈ϕ0, ϕ0〉 = Vol(X)

| ∫X f1(z)f2(z)f3(z)Im(z)κ3−2 dz|2∏3
j=1

∫
X |fj(z)|2Im(z)κj−2 dz

= 2−1ξ(2)Pπ1,π0(1/2)

×
∏
p|dB

(
2p−1(1 − p−1)

)∏
p|N

(
2p−1(1 + p−1)

)
.

We describe local calculations below. Since G0 is an inner form of PGL2, we
can transfer the local measure of PGL2(Qv) to G0,v = B×(Qv)/Q×

v . Note that
∆G1,v = ζv(2)2 and C0 = 6π−1 are unchanged. When p | dB , we have

Vol(G0,p) = I(ϕ1,p, ϕ0,p) = 2p−1(1 − p−1)−1,

Pπ1,p,π0,p(1/2) = ζp(1)2ζp(2)−2.

It follows that αp(ϕ1,p, ϕ0,p) = 2p−1(1 − p−1) for p | dB . When p | N , let εp be the
unique unramified character of Q×

p of order 2. Then we have
Pπ1,p,π0,p(1/2) = L(1, εp)2L(2, εp)ζp(2)−3

= (1 + p−1)−2(1 + p−2)−1(1 − p−2)3.
The integral I(ϕ1,p, ϕ0,p) can be calculated as follows (cf. Godement and Jacquet
[GoJ, §7]). The image of

(
a b
c d

)
in PGL2(Qp) is denoted by

[
a b
c d

]
. Let

I =
{[

a b
c d

]
∈ PGL2(Qp)

∣∣∣∣ a, b, d ∈ Zp, c ∈ pZp

}
be an Iwahori subgroup of G0,p = PGL2(Qp). Let Wa be the affine Weyl group

generated by w1 =
[

0 1
1 0

]
and w2 =

[
0 p−1

p 0

]
. The extended affine Weyl group W̃ is

defined by W̃ = Wa � Ω, where Ω is the group of order 2 generated by ω =
[ 0 1

p 0
]
.

Then we have a Bruhat decomposition G0,p =
∐

w∈W̃ IwI. The extended Weyl
group W̃ has a length function l(w) such that l(w1) = l(w2) = 1, l(ω) = 0. The
Poincaré series

∑
w∈Wa

tl(w) is equal to (1 + t)(1 − t)−1. Then the function

Φ(b1ω
jwb2) = (−1)j(−p−1)l(w), b1, b2 ∈ I , j ∈ {0, 1} , w ∈ Wa ,

is a bi-I-invariant matrix coefficient of the Steinberg representation of G0. From
this, we have

I(ϕ1,p, ϕ0,p) =
1∑

j=0

(−1)j
∑

w∈Wa

Vol(IωjwI)Φ(ωjw)3

= 2(p + 1)−1
∑

w∈Wa

(−p−2)l(w)
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= 2p−1(1 − p−1)(1 + p−2)−1.

Note that
Vol(IwI) = (1 + p)−1pl(w), w ∈ W̃ .

It follows that αp(ϕ1,p, ϕ0,p) = 2p−1(1 + p−1) for p | N .
Putting together, we recover Theorem 7.1 in this case. Note that we have

|Xτ | = 1, since the Steinberg representation does not come from a quadratic field.
We remark that Theorem 7.1 is compatible with algebraicity results for the triple

product L-functions. For j = 1, 2, 3, let fj be a primitive cusp form with weight
κj, level Nj , and character εj. We assume that ε1ε2ε3 = 1 and κ1 ≤ κ2 ≤ κ3. We
denote by τj the automorphic representation of GL2(A) generated by fj.

We use the symbol a ∼ b for a, b ∈ C, which means that b �= 0 and a/b ∈ Q̄. It
is well-known that Λ(1, τj ,Ad) ∼ 〈fj , fj〉. Then Harris–Kudla [HaK] proved that

Λ(1/2, τ1 × τ2 × τ3) ∼ p(f1, f2, f3) ,

where

p(f1, f2, f3) =

{
〈f1, f1〉〈f2, f2〉〈f3, f3〉 if κ3 < κ1 + κ2 ,

〈f3, f3〉2 if κ3 ≥ κ1 + κ2 .

We assume Λ(1/2, τ1 × τ2 × τ3) �= 0. They also proved the Jacquet conjecture which
states that there exist a unique quaternion algebra D and some automorphic forms
FD

j ∈ τD
i such that ∫

A×D×(Q)\D×(A)
FD

1 (g)FD
2 (g)FD

3 (g) dg �= 0 .

Here τD
j is the Jacquet–Langlands–Shimizu correspondence of τj. Assume that

ε1ε2 = ε3 = 1 and FD
j ∈ τD

j . Then ϕ0 = FD
3 can be regarded as an automorphic

form on G0 = D×/Q× and ϕ1 = FD
1 ×FD

2 can be regarded as an automorphic form
on

G1 =
{
(d1, d2) ∈ D× × D× | ν(d1) = ν(d2)

}/
Q×.

Here ν is the reduced norm of D. As before, we transfer the Haar measure dgv on
GL2(Qv) to G0(Qv). In particular, C0 = 6/π.

For each finite prime p, the component πp has a Q̄-structure. Note that for
Q̄-rational vectors ϕ1,p and ϕ0,p, the quantity αp(ϕ1,p, ϕ0,p) ∈ Q̄.

In the balanced case κ3 < κ1 + κ2, the quaternion algebra D is definite. We
choose arithmetic automorphic forms FD

j ∈ τD
j . Then we have

〈ϕ1, ϕ1〉, 〈ϕ0, ϕ0〉 ∈ Q̄×, 〈ϕ1|G0 , ϕ0〉 ∈ Q̄ .

Note that in this case we have
α∞(ϕ1,∞, ϕ0,∞) ∼ ∆−1

G1,∞Pπ1,∞,π0,∞(1/2)−1 · Vol
(
G0(R)

) ∼ π−1.

Note that Vol(G0(R)) = Vol(U(2)/(U(1) × U(1))) ∼ π. Therefore in this case
Theorem 7.1 is compatible with the known result

Λ(1/2, τ1 × τ2 × τ3) ∼ 〈f1, f1〉〈f2, f2〉〈f3, f3〉 .

Now we consider the unbalanced case κ3 ≥ κ1 + κ2. We choose arithmetic holo-
morphic automorphic form FD

3 ∈ τD
3 of weight κ3 and arithmetic nearly anti-

holomorphic forms FD
1 ∈ τD

1 and FD
2 ∈ τD

2 with some weight. Then we have



GAFA PERIODS AND GROSS–PRASAD’S CONJECTURE 1407 

(see Shimura [S1])
〈ϕ0, ϕ0〉 ∼ ξ(2)−1〈f3, f3〉 ,

〈ϕ1, ϕ1〉 ∼ ξ(2)−2〈f1, f1〉〈f2, f2〉 ,

〈ϕ1|G0 , ϕ0〉 ∼ ξ(2)−1〈f3, f3〉 .

Note that in this case, we have α∞(ϕ1,∞, ϕ0,∞) ∼ 1. Therefore in this case Theo-
rem 7.1 is compatible with the known result

Λ(1/2, τ1 × τ2 × τ3) ∼ 〈f3, f3〉2.
Remark 7.3. More generally, Theorem 7.1 is compatible with Shimura’s conjecture
[S2,3] for Hilbert modular forms, which was proved by Harris [Ha1,2,3] and Yoshida
[Y2] in most cases.

8 Restriction of the Yoshida Lift to the Diagonal Subgroup

In this section, we recall the result of Gan and Ichino [GI], in which a formula for the
restriction of the Yoshida lift [Y1] to the diagonal subgroup by Böcherer, Furusawa,
Schulze-Pillot [BFS] has been generalized. They have proved Conjecture 1.5 for
n = 4 in some cases and given strong evidence for Conjecture 2.1.

Let k be a totally real algebraic number field. Let k′ be either k × k or a totally
real quadratic extension of k. We put

G1 = PGSp2 ,

G̃0 = GL2(k′)/k×,

G0 =
{
g ∈ GL2(k′) | det g ∈ k×}/k×.

Then G1 (resp. G0) can be considered as a special orthogonal group associated to
a 5-dimensional (resp. 4-dimensional) quadratic space over k. We regard G0 as a
subgroup of G1. Note that ∆G1 = ξk(2)ξk(4).

Let (V,Q) be another 4-dimensional quadratic space over k with discriminant
field KQ. We put H = GOQ and

k′′ =

{
k × k if KQ = k ,
KQ if [KQ : k] = 2 .

Then there exists a quaternion algebra D over k such that
1 −→ k′′× −→ (D ⊗k k′′)× × k× −→ H0 −→ 1

(cf. e.g. Roberts [Ro, §2]). Here, H0 is the identity component of H.
Let σ be an irreducible unitary cuspidal automorphic representation of H(A)

with trivial central character. We assume the following conditions:
• The Jacquet–Langlands lift of σ|D×(Ak′′ ) to GL2(Ak′′) is cuspidal.
• σv ⊗ sgn � σv for some v.
• If σv ⊗ sgn �� σv, then σv �� σ−

0,v for any distinguished representation σ0,v of
H0

v (cf. [GI, Def. 5.4]).
Let π1 be the theta lift of σ to G1(A). Note that π1 is a non-zero irreducible cuspidal
automorphic representation of G1(A). This theta lift was first considered by Yoshida
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[Y1] in a certain case. Later, it was considered by Howe and Piatetski-Shapiro [HoP],
Böcherer and Schulze-Pillot [BS], Harris, Soudry, and Taylor [HaST], Roberts [Ro]
more generally. For this reason, we call π1 the Yoshida lift of σ.

Let π0 be an irreducible cuspidal automorphic representation of G0(A). As in
section 7, we choose an irreducible unitary cuspidal automorphic representation τ
of G̃0(A) = GL2(Ak′)/A× such that Vπ0 ⊂ V1

τ |G0(A). We assume the following
conditions:

• The base change BC(τ) of τ to G̃0(Ak′′) = GL2(Ak′⊗kk′′)/A×
k′′ is cuspidal.

• The Jacquet–Langlands lift of BC(τ) to D×(Ak′⊗kk′′)/A×
k′′ exists.

Then Theorem 1.1 of [GI] says
|〈ϕ1|G0 , ϕ0〉|2

〈ϕ1, ϕ1〉〈ϕ0, ϕ0〉 =
1

2β′ |Xτ |∆G1C0Pπ1,π0(1/2)
∏
v∈S

αv(ϕ1,v, ϕ0,v)
‖ϕ1,v‖2 · ‖ϕ0,v‖2

for any non-zero vectors ϕ1 = ⊗vϕ1,v ∈ π1 and ϕ0 = ⊗vϕ0,v ∈ π0. Here,

β′ =

{
3 if KQ = k ,
2 if [KQ : k] = 2 ,

and Xτ is the elementary 2-group as in section 7. Thus Conjecture 1.5 is true in this
case. Note that we have

|Sψ1 | =

{
4 if KQ = k ,
2 if [KQ : k] = 2 ,

and |Sψ0 | = 2|Xτ |, if we admit the Arthur conjecture.

9 Restriction of the Saito–Kurokawa Lift to the Diagonal Subset
H1 × H1

Let κ > 0 be an odd integer. Let f ∈ S2κ(SL2(Z)) and g ∈ Sκ+1(SL2(Z)) be
normalized Hecke eigenforms. We denote the Kohnen plus subspace by
S+

κ+(1/2)(Γ0(4)) ⊂ Sκ+(1/2)(Γ0(4)) (cf. Kohnen [Ko]). Let h ∈ S+
κ+(1/2)(Γ0(4)) be a

Hecke eigenform associated to f by Shimura correspondence. Let F ∈ Sκ+1(Sp2(Z))
be the Saito–Kurokawa lift of h. Let τ and σ be the automorphic representations of
GL2(AQ) generated by f and g, respectively. Then it is shown in Ichino [I1] that

Λ(1/2,Ad(σ) � τ) = 2κ+1 〈f, f〉
〈h, h〉

|〈F|H1×H1, g × g〉|2
〈g, g〉2 .

Here, 〈 , 〉 is the usual Petersson inner product on H1. We interpret this result in
terms of automorphic representations. Let ϕ1 be the automorphic form on G1(AQ) =
SO(3, 2)(AQ) corresponding to F . Similarly, let ϕ0 be the automorphic form on
G0(AQ) = SO(2, 2)(AQ) corresponding to g × g. As in section 7, let dg0,v be the
standard Haar measure of G0(Qv) for v < ∞. Let G0(R)0 be the topological identity
component of G0(R). The maximal compact subgroup K0∞ of G0(R)0 is defined by
K0∞ = SO(2)×SO(2). Let dg0,∞ be the Haar measure of G0(R)0 such that dg0,∞/dk
is equal to the measure (y1y2)−2 dx1 dx2 dy1 dy2 on G0(R)0/K0∞ � H1 × H1. Here,
dk is the Haar measure on K0∞ with total measure 1. The Haar measure dg0,∞ can
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be naturally extended to G0(R). We calculate the Haar measure constant C0. Let
G0(R)0 = ANK0∞ be an Iwasawa decomposition, and X ⊂ AN be a set bijective to
a fundamental domain for (SL2(Z)\H1)2. Then each element of G0(Q)\G0(A) has
exactly two representatives in X ×K0∞ ×∏

v<∞ K0,v. It follows that∫
G0(Q)\G0(A)

∏
v≤∞

dg0,v = 1
2Vol

(
SL2(Z)\H1

)2 = 2ξ(2)2.

Therefore, we have C0 = ξ(2)−2 = 36π−2. Note that ∆G1 = ξ(2)ξ(4). Note also
that the volume of Sp2(Z)\H2 is 2ξ(2)ξ(4), where H2 is the Siegel upper-half space
of genus 2. It follows that

〈ϕ1, ϕ1〉 =
〈F ,F〉

ξ(2)ξ(4)
,

〈ϕ0, ϕ0〉 =
〈g, g〉2
2ξ(2)2

,

|〈ϕ1|G0 , ϕ0〉|2
〈ϕ1, ϕ1〉〈ϕ0, ϕ0〉 =

ξ(4)
2ξ(2)

|〈F|H1×H1 , g × g〉|2
〈F ,F〉〈g, g〉2 .

As noticed in section 7, it is well-known that 〈f, f〉 = 2−2κΛ(1,Ad(τ)). By Kohnen–
Skoruppa [KoS], we have

〈F ,F〉
〈h, h〉 = 2κ−2π−1ξ(2)Λ(3/2, τ) .

(Note that there is a minor error in the unfolding argument of [KoS, p. 547]. Since
the action of the center of Sp2(Z) on H2 is trivial, the right-hand side of the equation
of [KoS, p. 547, l. 23] must be multiplied by 2.) It follows that

|〈ϕ1|G0 , ϕ0〉|2
〈ϕ1, ϕ1〉〈ϕ0, ϕ0〉 = π · ξ(4)

ξ(2)
· Λ(1/2,Ad(σ) � τ)
ξ(2)Λ(3/2, τ)Λ(1,Ad(τ))

.

It is easy to check that
Λ(s, π0) = Λ

(
s,Ad(σ)

)
ξ(s) ,

Λ(s, π1) = Λ(s, τ)ξ
(
s + (1/2)

)
ξ(s − (1/2)) ,

Λ(s, π0,Ad) = Λ
(
s,Ad(σ)

)2
,

Λ(s, π1,Ad) = Λ
(
s,Ad(τ)

)
Λ
(
s + (1/2), τ

)
Λ
(
s − (1/2), τ

)
× ξ(s + 1)ξ(s)ξ(s − 1) .

From this, one can show that Pπ1,π0(s) is equal to
Λ(s − (1/2),Ad(σ))Λ(s,Ad(σ) � τ)

ξ(s + (3/2))Λ(s + 1, τ)Λ(s + (1/2),Ad(σ))Λ(s + (1/2),Ad(τ))
.

It follows that

Pπ1,π0(1/2) =
Λ(0,Ad(σ))Λ(1/2,Ad(σ) � τ)

ξ(2)Λ(3/2, τ)Λ(1,Ad(σ))Λ(1,Ad(τ))

=
Λ(1/2,Ad(σ) � τ)

ξ(2)Λ(3/2, τ)Λ(1,Ad(τ))
.

Observe that

Pπ1,∞,π0,∞(1/2) =
ΓR(1)ΓC(κ) · ΓC(κ)ΓC(2κ)ΓC(1)

ΓR(2) · ΓC(κ + 1) · ΓR(2)ΓC(κ + 1) · ΓR(2)ΓC(2κ)
= 4κ−2π4.
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Proposition 9.1. Let π1,∞ be the irreducible holomorphic discrete series repre-
sentation of SO(3, 2) with lowest K-type (det)±(κ+1). Let π0,∞ be the irreducible
discrete series representation of SO(2, 2) with lowest K-type ±(κ+1, κ+1). Choose
lowest weight vectors ϕ1,∞ ∈ π1,∞ and ϕ0,∞ ∈ π0,∞ such that ‖ϕ1,∞‖ = ‖ϕ0,∞‖ = 1.
Then we have

I(ϕ1,∞, ϕ0,∞) = 16κ−2π2,

α∞(ϕ1,∞, ϕ0,∞) = 4π .

The proof of Proposition 9.1 will be given in section 12. Using Proposition 9.1,
we have

|〈ϕ1|G0 , ϕ0〉|2
〈ϕ1, ϕ1〉〈ϕ0, ϕ0〉 =

1
4
∆G1C0Pπ1,π0(1/2) ·

α∞(ϕ1,∞, ϕ0,∞)
‖ϕ1,∞‖2 · ‖ϕ0,∞‖2 .

Therefore in this case, it seems Conjecture 3.2 holds with 2β = 1/4. Note that we
have |Sψ1 | = 4 and |Sψ0 | = 2, and hence 2β �= 1/(|Sψ1 | · |Sψ0 |), if we admit the
Arthur conjecture.
Remark 9.2. Now choose another normalized Hecke eigenform g′ ∈ Sκ+1(SL2(Z))
such that g �= g′. Let σ′ be the irreducible cuspidal automorphic representation of
GL2(A) generated by g′. Let ϕ1 be as before and ϕ0 the lifting of g × g′ to G0(A).
Then we have 〈ϕ1|G0 , ϕ0〉 = 0. Note that HomG0,v (π1,v ⊗ π̄0,v, C) = {0} for some v
(see, e.g. [Ik1, Prop. 3.1]). After a little calculation, one can show the numerator of
Pπ1,π0(s) is equal to

Λ(s, τ × σ × σ′)Λ
(
s + (1/2), σ × σ′)Λ(

s − (1/2), σ × σ′) ,

and the denominator is

Λ
(
s + (1/2),Ad(τ)

)
Λ(s + 1, τ)Λ(s, τ)
× ξ

(
s + (3/2)

)
ξ
(
s + (1/2)

)
ξ
(
s − (1/2)

)
× Λ

(
s + (1/2),Ad(σ)

)
Λ
(
s + (1/2),Ad(σ′)

)
.

Note that as far as we know, any relation between ords=1/2Λ(s, τ × σ × σ′) and
ords=1/2Λ(s, τ) is not known, and so Pπ1,π0(s) might have a pole at s = 1/2. It
seems this example suggests that there is no relation between the period 〈ϕ1|G0 , ϕ0〉
and the L-value Pπ1,π0(1/2), when π1 or π0 is non-tempered and the condition
HomG0,v (π1,v ⊗ π̄0,v, C) �= {0} fails. Note that when both π1 and π0 are tempered,
Conjecture 1.5 still makes sense even if the condition HomG0,v(π1,v ⊗ π̄0,v, C) �= {0}
fails, since it is believed that Pπ1,π0(s) is holomorphic at s = 1/2.

10 Restriction of the Hermitian Maass Lift to H2

Now we discuss the case n = 5 and k = Q. We put G0 = SO(3, 2) � PGSp2. Let
κ > 0 be an odd integer and f ∈S2κ(SL2(Z)), h∈S+

κ+(1/2)(Γ0(4)), F ∈Sκ+1(Sp2(Z)),
and τ be as in section 9. Let

h(τ) =
∑
n>0

−n≡0,1 (4)

c(n)qn

be the Fourier expansion of h(τ).
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Let K be an imaginary quadratic field with discriminant −D. We assume
that c(D) �= 0. We denote by χ and wK the associated Dirichlet character for
K/Q and the number of units in K, respectively. We put G1 = SO(4, 2)K/Q �
SU(2, 2)K/Q/{±1}.

Now let ΓK = SU(2, 2)(Q) ∩ GL4(OK) be the special hermitian modular group,
where OK is the integer ring of K.

By using the fact that the Tamagawa number of SU(2, 2) is 1, one can show that
the volume of the fundamental domain for ΓK is equal to

Vol(ΓK\H2) = 2−3D5/2(4, wK)ξ(2)Λ(3, χ)ξ(4) ,

where H2 is the hermitian upper-half space of degree 2. Here, we have given an
invariant measure on H2 as follows. Put X = (Z + tZ̄)/2, Y = (Z − tZ̄)/(2

√−1)
for Z ∈ H2. The measure dX on the space of hermitian matrices is defined by
dX =

∏
i≤j dX

(r)
ij

∏
i<j dX

(i)
ij , where X = X(r) +

√−1X(i), X
(r)
ij ,X

(i)
ij ∈ R. Then the

invariant measure is given by (det Z)−4 dX dY . This calculation will be carried out
in the appendix to this section.

Let g ∈ Sκ(Γ0(D), χ) be a primitive form and G ∈ Sκ+1(ΓK) the hermitian Maass
lift of g (cf. Kojima [Koj], Krieg [Kr], Ikeda [Ik2]). We assume that G �= 0. Let ρ be
the irreducible cuspidal automorphic representation of GL2(A) generated by g. By
using Sugano [Su, Cor. 8.3] and Ikeda [Ik2, Prop. 17.4], we have

〈G,G〉 = 2−2κ−7Dκ+2π−2(4, wK)ξ(2)Λ
(
2,Sym2(ρ)

)
Λ
(
1,Ad(ρ)

)
.

One can prove this formula using Raghavan–Sengupta [RS]. The main theorem of
Ichino and Ikeda [II] says

|c(D)|2 |〈G|H2 ,F〉|2
〈F ,F〉2 = 2−4κ−2D2κ−1 Λ(1/2, ρ × ρ × τ)

〈f, f〉2 .

Combining these results and the Kohnen–Zagier formula [KoZ]

|c(D)|2 〈f, f〉
〈h, h〉 = 2κ−1Dκ−(1/2)Λ(1/2, τ ⊗ χ) ,

we have
|〈G|H2 ,F〉|2
〈G,G〉〈F ,F〉 = 2π · Vol(ΓK\H2)−1ξ(2)Λ(3, χ)ξ(4)

× Λ(1/2,Sym2(ρ) � τ)Λ(3/2, τ)
Λ(2,Sym2(ρ))Λ(1,Ad(ρ))Λ(1,Ad(τ))

.

We translate these results to adelic language. Let ϕ1 (resp. ϕ0) be the au-
tomorphic form on G1(A) (resp. G0(A)) corresponding to G (resp. F). We put
S = Sf ∪ {∞}, where Sf is the set of primes which divide D. When v < ∞,
let dg0,v be the standard Haar measure of G0(Qv). The topological identity com-
ponent of G0(R) is denoted by G0(R)0. Let K0∞ = SO(3) × SO(2) be a max-
imal compact subgroup of G0(R)0. Let dk be the Haar measure of K0∞ with
the total measure 1, and dg0,∞ the Haar measure of G0(R)0 such that dg0,∞/dk
is equal to the measure (detY )−3 dX dY on H2 � G0(R)0/K0∞. Then we have
Vol(PGSp2(Z)\G0(R)) = Vol(Sp2(Z)\H2) = 2ξ(2)ξ(4). Let C0 be the Haar mea-
sure constant. It follows that C0 = ξ(2)−1ξ(4)−1 = 540π−3, since there is a
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bijection G0(Q)\G0(A) � (PGSp2(Z)\G0(R)) ×∏
p<∞K0,p. Note also that ∆G1 =

ξ(2)Λ(3, χ)ξ(4).
Let π1 (resp. π0) be the irreducible cuspidal automorphic representation of G1(AQ)

(resp. G0(AQ)) generated by ϕ1 (resp. ϕ0). Note that both π1 and π0 are non-
tempered. It is easy to check that

Λ(s, π1) = Λ
(
s,Sym2(ρ)

)
ξ(s + 1)ξ(s)ξ(s − 1) ,

Λ(s, π0) = Λ(s, τ)ξ
(
s + (1/2)

)
ξ
(
s − (1/2)

)
,

Λ(s, π1,Ad) = Λ
(
s + 1,Sym2(ρ)

)
Λ
(
s,Sym2(ρ)

)
Λ
(
s − 1,Sym2(ρ)

)
× Λ

(
s,Ad(ρ)

)
ξ(s + 1)ξ(s)ξ(s − 1) ,

Λ(s, π0,Ad) = Λ
(
s,Ad(τ)

)
Λ
(
s + (1/2), τ

)
Λ
(
s − (1/2), τ

)
× ξ(s + 1)ξ(s)ξ(s − 1) .

It follows that Pπ1,π0(s) = R(s)/Q(s), where
R(s) = Λ

(
s,Sym2(ρ) � τ

)
Λ(s − 1, τ)ξ

(
s − (3/2)

)
,

Q(s) = Λ
(
s + (3/2),Sym2(ρ)

)
Λ
(
s + (1/2),Ad(ρ)

)
× Λ

(
s + (1/2),Ad(τ)

)
ξ
(
s + (3/2)

)
.

Observe that

Pπ1,π0(1/2) =
Λ(1/2,Sym2(ρ) � τ)Λ(−1/2, τ)ξ(−1)

Λ(2,Sym2(ρ))Λ(1,Ad(ρ))Λ(1,Ad(τ))ξ(2)

= − Λ(1/2,Sym2(ρ) � τ)Λ(3/2, τ)
Λ(2,Sym2(ρ))Λ(1,Ad(ρ))Λ(1,Ad(τ))

by the functional equations Λ(1 − s, τ) = −Λ(s, τ), ξ(1 − s) = ξ(s).
We consider the local factor αv(ϕ1,v , ϕ0,v). For v /∈ S, we may consider

αv(ϕ1,v, ϕ0,v) = 1. For v ∈ Sf , the conditions (U1) and (U2) in section 1 fail.
Instead of (U1) and (U2), we consider the following conditions:

(U1′) Gi,v is quasi-split.
(U2′) Ki,v is a special maximal compact subgroup of Gi,v.

Lemma 10.1. Assume n = 5. Let v be a non-archimedean place such that
the conditions (U1′), (U2′), (U3), (U4), (U5), and (U6) hold. Then we have
I(ϕ1,v, ϕ0,v) = ∆G1,vPπ1,v,π0,v(1/2), if it is convergent.

The authors have verified this lemma by using computer calculation. By this
lemma we may consider αv(ϕ1,v, ϕ0,v) = 1 by “analytic continuation”.

For v = ∞, one can easily see that Pπ1,∞,π0,∞(1/2) is equal to

ΓC(1)ΓC(κ)ΓC(2κ − 1) · ΓC(κ − 1) · ΓR(−1)
ΓR(2)ΓC(κ + 1) · ΓR(2)ΓC(κ) · ΓR(2)ΓC(2κ) · ΓR(2)

= − 16π7

κ(κ − 1)(2κ − 1)
.

Note that π1,∞ is a discrete series representation of SO(4, 2), and the K-type of ϕ1,∞
is the lowest K-type. Similarly, π0,∞ is a discrete series representation of SO(3, 2),
and ϕ0,∞ is a lowest K-type vector. We may assume ‖ϕ1,∞‖ = ‖ϕ0,∞‖ = 1.
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Proposition 10.2. We have

I(ϕ1,∞, ϕ0,∞) =
64π3

κ(κ − 1)(2κ − 1)
,

α∞(ϕ1,∞, ϕ0,∞) = −4π .

A proof of Proposition 10.2 will be given in section 12.
By Proposition 10.2, we have

|〈ϕ1|G0 , ϕ0〉|2
〈ϕ1, ϕ1〉〈ϕ0, ϕ0〉 =

1
4
∆G1C0Pπ1,π0(1/2) ·

α∞(ϕ1,∞, ϕ0,∞)
‖ϕ1,∞‖2 · ‖ϕ0,∞‖2

=
1
4
∆G1C0Pπ1,π0(1/2)

∏
v∈S

αv(ϕ1,v , ϕ0,v)
‖ϕ1,v‖2 · ‖ϕ0,v‖2

under the assumption c(D) �= 0. Therefore in this case, Conjecture 3.2 seems to
hold with 2β = 1/4. Note that we have |Sψ1 | = 2 and |Sψ0 | = 4, and hence
2β �= 1/(|Sψ1 | · |Sψ0 |), if we admit the Arthur conjecture.

Appendix to Section 10: Calculation of the Volume of the
Fundamental Domain for ΓK\H2

In this appendix, we calculate the volume of the fundamental domain for the her-
mitian modular group. Let K = Q(

√−D) be an imaginary quadratic field with
discriminant −D. We put Kp = K ⊗ Qp and Op = OK ⊗ Zp, where OK is the
integer ring of K.

Let Γ(n)
K = SU(n, n)(Q) ∩ GL2n(OK) be the special hermitian modular group.

By using the fact that the Tamagawa number of SU(n, n) is 1, we shall show that

Vol(Γ(n)
K \Hn) = 2−n2+1D(2n2−n−1)/2(2n,wK)

2n∏
i=2

Λ(i, χi) ,

where Hn is the hermitian upper half space of degree n.
Put G = SU(n, n). Then

Lie(G) =
{
X ∈ M2n(K) | XJ + J tX̄ = 0 , tr(X) = 0

}
,

where J =
( 0 −1n

1n 0
)
. We choose a basis of the Lie(G) as follows. Let E[i, j] ∈ Mn(Z)

be the (i, j)-elementary matrix of size n. Set

S[i, j] =

{
E[i, i] (i = j) ,

E[i, j] + E[j, i] (i �= j) ,

A[i, j] = E[i, j] − E[j, i] .
Put

Xij =
(

E[i, j] 0
0 −E[j, i]

)
,

Yij =
(

0 S[i, j]
0 0

)
,

Y ′
ij =

(
0 0

S[i, j] 0

)
,
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Vij =
√−D

(
0 A[i, j]
0 0

)
,

V ′
ij = −√−D

(
0 0

A[i, j] 0

)
,

Wij =
√−D

(
E[i, j] 0

0 E[j, i]

)
,

W ′
i =

√−D

(
E[i, i] − E[i + 1, i + 1] 0

0 E[i, i] − E[i + 1, i + 1]

)
.

The following vectors make up a basis of Lie(G).
Xij (1 ≤ i, j ≤ n) ,

Yij (1 ≤ i ≤ j ≤ n) ,

Y ′
ij (1 ≤ i ≤ j ≤ n) ,

Vij (1 ≤ i < j ≤ n) ,

V ′
ij (1 ≤ i < j ≤ n) ,

Wij (1 ≤ i, j ≤ n, i �= j) ,

W ′
i (1 ≤ i < n) .

Let L ⊂ Lie(G) be the lattice generated by this basis. This basis determines a
Haar measure dgv on G(Qv) for each place v, and the product measure

∏
v dgv is

the Tamagawa measure on G(A). For each prime p, we define a maximal compact
subgroup KGp of G(Qp) by KGp = G(Qp) ∩ GL2n(Op). Since [Op : Zp +

√−DZp] =
(2, p), we have [

Lie(G)(Qp) ∩ M2n(Op) : L ⊗ Zp

]
= (2, p)2n2−n−1.

It follows that the volume of KGp is equal to (2, p)2n2−n−1 ∏2n
i=2 L(i, χi

p)−1.
For the real place, the vectors

Xij − Xji (1 ≤ i < j ≤ n) ,
Yij − Y ′

ij (1 ≤ i ≤ j ≤ n) ,

Vij + V ′
ij (1 ≤ i < j ≤ n) ,

Wij + Wji (1 ≤ i < j ≤ n) ,
W ′

i (1 ≤ i < n) ,

generate the Lie algebra of a maximal compact subgroup KG∞ of G(R). The maximal
compact subgroup KG∞ is isomorphic to{

(u1, u2) ∈ U(n) × U(n) | det u1 · detu2 = 1
}

.

This isomorphism is explicitly given by Ad(A) : κ �→ AκA−1, where

A =
1√
2

(
1n −√−1 · 1n

1n

√−1 · 1n

)
.

Note that

Ad(A)(Xij − Xji) =
(

A[i, j] 0
0 A[i, j]

)
,

Ad(A)(Yij − Y ′
ij) =

√−1
(

S[i, j] 0
0 −S[i, j]

)
,
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Ad(A)(Vij + V ′
ij) =

√
D

(−A[i, j] 0
0 A[i, j]

)
,

Ad(A)(Wij + Wji) =
√−D

(
S[i, j] 0

0 S[i, j]

)
,

Ad(A)(W ′
i ) = W ′

i .

Let dk∞ be the Haar measure on KG∞ determined by these vectors. By Macdonald
[M], the volume of U(n) is equal to (2π)n(n+1)/2 ∏n

i=1 Γ(i)−1, if the Haar measure is
normalized by a Chevalley basis of Lie(U(n)) ⊗ C. Using this, we have

Vol(KG∞ ; dk∞) = D(−n2+1)/22−n2+2nπn2+n−1
n∏

i=1

Γ(i)−2.

We now consider the invariant measure on the hermitian upper half space Hn.
We define an invariant measure on Hn as follows. Let Hern(C/R) be the space of
hermitian matrices of size n. Then the Haar measures dX and dY on Hern(C/R)
are such that the covolume of the lattice Hern(C/R) ∩ Mn(Z[

√−1]) is 1. Then the
measure (det Y )−2n dX dY is invariant under the action of G(R) = SU(n, n)(R).

Note that G(R)/KG∞ � Hn. We claim that dg∞/dk∞ is equal to
2−nD−(n2−n)/2(det Y )−2n dX dY . To prove this, we consider the Iwasawa decom-
position G(R) = AG∞NG∞KG∞ , where AG∞ and NG∞ are Lie subgroup of G(R)
corresponding to the Lie algebras generated by

{Xii | 1 ≤ i ≤ n}
and

{Xij , Vij ,Wij | 1 ≤ i < j ≤ n} ∪ {Yij | 1 ≤ i ≤ j ≤ n} ,

respectively. Then it is easy to check the left-invariant Haar measure determined
by these basis induces 2−nD−(n2−n)/2(det Y )−2n dX dY on Hn, which implies the
claim.

Now we consider the adele space G(A). Let X be a fundamental domain for
Γ(n)

K \Hn. We regard X as a subset of AG∞NG∞ by the bijection AG∞NG∞ �
G(R)/KG∞ � Hn. Then each fibre of the map(∏

p

KGp

)
× X ×KG∞ → G(Q)\G(A)

has exactly
∣∣Z(

Γ(n)
K

)∣∣ elements, where Z
(
Γ(n)

K

)
is the center of Γ(n)

K . Note that∣∣Z(
Γ(n)

K

)∣∣ = (2n,wK). It follows that

(2n,wK)−1 · 22n2−n−1
2n∏
i=2

L(i, χi)−1 · D(−n2+1)/22−n2+2nπn2+n−1
n∏

i=1

Γ(i)−2

× 2−nD−(n2−n)/2Vol(X) = 1 .

It follows that

Vol
(
Γ(n)

K \Hn

)
= 2−n2+1D(2n2−n−1)/2(2n,wK)

2n∏
i=2

Λ(i, χi) ,

as desired.



1416 A. ICHINO AND T. IKEDA GAFA 

11 The Trivial Representation

Let k be a totally real algebraic number field and S the set of archimedean places
of k. The discriminant of k is denoted by Dk. Recall that the completed Dedekind
zeta function ξk(s) satisfies the functional equation ξk(1 − s) = D

s−(1/2)
k ξk(s). Put

d = [k : Q]. We assume the following conditions:
(a) Both G1 and G0 are unramified over kv for each v /∈ S.
(b) G0,v is compact for each v ∈ S.

Note that such a pair G0 ⊂ G1 exists if and only if the following (i), (ii), and (iii)
hold:

(i) The discriminant field K is unramified over k.
(ii) K is totally real if n ≡ 0 mod 4, and totally imaginary if n ≡ 2 mod 4.
(iii) d is even if n ≡ 3, 4, 5, 6 mod 8.

Let K0 =
∏

v K0,v be a maximal compact subgroup of G0(A). We assume K0,v is a
hyperspecial maximal compact subgroup for v /∈ S. For v /∈ S, we give the standard
Haar measure dg0,v on G0,v. For v ∈ S, we give the Haar measure dg0,v with
total volume 1 on K0,v = G0,v. The Haar measure constant C0 can be calculated
directly, but here we make use of the mass formula. There exists a finite subset
B ⊂ G0(A) such that G0(A) =

∐
x∈BG0(k)xK0. For each x ∈ B, the group

Γx = x−1G0(k)x ∩ K0 is a finite group. The left coset G0(k)\G0(A) is decomposed
into a disjoint union

G0(k)\G0(A) =
∐
x∈B

x · (Γx\K0) .

Let ex be the order of the group Γx. The mass M is defined by M =
∑

x∈Be−1
x .

Then Shimura’s exact mass formula (Shimura [S4, p. 27, Th. 5.8]) says that

M = 2Dm2−(m/2)
k

[
(2π)−mΓ(m)

]d
L(m,χ)

m−1∏
j=1

{
[(2π)−2jΓ(2j)]dζk(2j)

}
if n = 2m is even, and that

M = 21−mdD
m2+(m/2)
k

m∏
j=1

{
[(2π)−2jΓ(2j)]dζk(2j)

}
if n = 2m + 1 is odd.

Then we have ∫
G0(k)\G0(A)

∏
v

dg0,v = M .

Since the Tamagawa number of G0 is 2, we have C0 = 2M−1.
By definition, we have

∆G1 =

{∏m
j=1 ξk(2j) if n = 2m is even ,

Λ(m + 1, χ)
∏m

j=1 ξk(2j) if n = 2m + 1 is odd .
We now put ϕ1 = 1 and ϕ0 = 1. Then πi is the trivial representation of Gi(A).
Obviously, we have

|〈ϕ1|G0 , ϕ0〉|2
〈ϕ1, ϕ1〉〈ϕ0, ϕ0〉 = 1 .
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The L-function of the trivial representation of G0 is given by

Λ(s, π0) =

{
Λ(s, χ)

∏2m−1
j=1 ξk(s − m + j) if n = 2m is even ,∏2m

j=1 ξk(s − m + j − (1/2)) if n = 2m + 1 is odd .
Similarly, we have

Λ(s, π1) =

{∏2m
j=1 ξk(s − m + j − (1/2)) if n = 2m is even ,

Λ(s, χ)
∏2m+1

j=1 ξk(s − m + j − 1) if n = 2m + 1 is odd .
When n = 2m is even, we have

Λ(s, π1 � π0) =
2m∏
i=1

Λ
(
s − m + i − (1/2), χ

)

×
2m∏
i=1

2m−1∏
j=1

ξk

(
s − 2m + i + j − (1/2)

)

Λ(s, π0,Ad) =
2m−1∏
i=1

Λ(s − m + i, χ)

×
∏

1≤i<j≤2m−1

ξk(s − 2m + i + j)

Λ(s, π1,Ad) =
∏

1≤i≤j≤2m

ξk(s − 2m + i + j − 1) .

It follows that

Pπ1,π0(s) =
Λ(s − m + (1/2), χ)
ξk(s + 2m − (1/2))

m−1∏
j=1

ξk(s − 2j + (1/2))
ξk(s + 2j − (1/2))

,

Pπ1,π0(1/2) =
Λ(1 − m,χ)

ξk(2m)

m−1∏
j=1

ξk(−2j + 1)
ξk(2j)

= D
m2−(m/2)
k

Λ(m,χ)
ξk(2m)

,

if n = 2m is even. A similar calculation shows that

Pπ1,π0(s) = Λ(s + m + (1/2), χ)−1
m∏

j=1

ξk(s − 2j + (1/2))
ξk(s + 2j − (1/2))

,

Pπ1,π0(1/2) = Λ(m + 1, χ)−1
m∏

j=1

ξk(−2j + 1)
ξk(2j)

= D
m2+(m/2)
k Λ(m + 1, χ)−1 ,

if n = 2m + 1 is odd. When v ∈ S, the integral I(ϕ1,v , ϕ0,v) is clearly equal to 1. It
follows that

αv(ϕ1,v , ϕ0,v) = ∆−1
G1,v

Pπ1,v ,π0,v(1/2)
−1

=

⎧⎪⎨
⎪⎩

ΓR(1 − m)−1 ∏m−1
j=1 ΓR(−2j + 1)−1 if n = 2m ≡ 0 mod 4 ,

ΓR(2 − m)−1 ∏m−1
j=1 ΓR(−2j + 1)−1 if n = 2m ≡ 2 mod 4 ,∏m

j=1 ΓR(−2j + 1)−1 if n = 2m + 1 is odd .
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Therefore we have
|〈ϕ1|G0 , ϕ0〉|2

〈ϕ1, ϕ1〉〈ϕ0, ϕ0〉 = 2β∆G1C0Pπ1,π0(1/2)
∏
v∈S

αv(ϕ1,v, ϕ0,v) ,

where

β =

{
−md if n = 2m is even ,
−2md if n = 2m + 1 is odd .

Note that the integer β depends on the number of bad places.

12 Calculation for the Real Place

In this section, we carry out the calculation of the archimedean local integrals which
appeared in sections 7, 9, and 10. Every algebraic group is defined over R in this
section.

We first consider the case G0 = SO(2, 1) � PGL2(R). The (topological) identity
component of G0 is denoted by G0(R)0. Note that G0(R)0 � SL2(R)/{±1}. The
image of

(
a b
c d

)
in PGL2(R) is denoted by

[
a b
c d

]
. The maximal compact subgroup

O(2)/{±1} ⊂ PGL2(R) is denoted by K. Put K0 = SO(2)/{±1} ⊂ K. The Haar
measure dk on K0 is such that the total measure is 1. By Iwasawa decomposition,
an element g ∈ G0(R)0 can be uniquely written as

g =
[
et 0
0 e−t

] [
1 n
0 1

]
k ,

t, n ∈ R, k ∈ K0. We choose a Haar measure dg on G0(R)0 such that dg/dk
induces the measure y−2 dx dy on the upper half plane H1 � G0(R)0/K0. Note that
dg = 2 dt dn dk. The Haar measure dg can be naturally extended to G0(R). We put

A+ =
{[

et 0
0 e−t

] ∣∣∣∣ t ≥ 0
}

.

We consider the map
K0 × A+ ×K0 −→ G0(R)0(

k,

[
et 0
0 e−t

]
, k′

)
�−→ k

[
et 0
0 e−t

]
k′.

By Cartan decomposition, this map is bijective outside the boundary of A+. It is
well-known (e.g. [Hel, Th. 5.8]) that

dg = C · sinh(2t) dk dt dk′

for some constant C > 0. Let A(T ) be the area of the small disc with radius T and
center

√−1 ∈ H1. Then we have A(T ) ∼ C
∫ T/2
0 sinh(2t) dt when T → 0, and so we

have C = 4π.
Let τj be the (limit of) discrete series representation of PGL2(R) with minimal

weight ±κj . Let Φj be the matrix coefficient of τj,∞ with respect to the lowest
weight vector with norm 1. Then the support of Φj is contained in G0(R)0 and

Φj

([
et 0
0 e−t

])
= cosh(t)−κj .

(See Knapp [Kn, p. 89].)
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Proof of Proposition 7.2. Let ϕ1,∞ and ϕ0,∞ be as in Proposition 7.2. Then we
have

I(ϕ1,∞, ϕ0,∞) = 4π
∫ ∞

0
cosh(t)−2κ3 sinh(2t) dt

= 4π(κ3 − 1)−1.

For the latter part of the proposition,
α∞(ϕ1,∞, ϕ0,∞) = ∆−1

G1,∞Pπ1,∞,π0,∞(1/2)−1I(ϕ1,∞, ϕ0,∞) = 2 . �
Next, we consider the case G0 = SO(2, 2). Put

GL(2)
2 =

{
(h1, h2) ∈ GL2 × GL2 | deth1 = det h2

}
.

Then, we have SO(2, 2) � GL(2)
2 (R)/R×. We denote the image of (h1, h2) ∈ GL(2)

2 (R)
in SO(2, 2) by [h1, h2]. Put

A =
{[(

et1 0
0 e−t1

)
,

(
et2 0
0 e−t2

)] ∣∣∣∣ t1, t2 ∈ R

}
,

N =
{[(

1 n1
0 1

)
,

(
1 n2
0 1

)] ∣∣∣∣ n1, n2 ∈ R

}
,

K =
{
[k1, k2] | k1, k2 ∈ O(2) , det k1 = det k2

}
.

For each (t1, t2) ∈ R2, we put

m(t1, t2) =
[(

et1 0
0 e−t1

)
,

(
et2 0
0 e−t2

)]
.

The connected component SO(2, 2)0 is equal to the image of SL2(R) × SL2(R).
Put K0 = K ∩ SO(2, 2)0. Then we have an Iwasawa decomposition SO(2, 2)0 =
ANK0. Then SO(2, 2)0/K0 can be identified with H1 × H1. The Haar measure dk
on K0 is the Haar measure such that the total volume is 1. We choose a Haar
measure dg on SO(2, 2)0 such that the induced measure dg/dk on H1 × H1 is equal
to y−2

1 y−2
2 dx1 dx2 dy1 dy2. Then dg = 4 dt1 dt2 dn1 dn2 dk. The Haar measure dg

can be naturally extended to G0(R) = SO(2, 2). Put A+ = {m(t1, t2) | t1, t2 ≥ 0}.
Consider the map

λ : K0 × A+ ×K0 −→ SO(2, 2)0

(k,m(t1, t2), k′) �−→ k · m(t1, t2) · k′.
Let ∂A+ be the boundary of A+. If g ∈ G0(R)0 is not in the image of ∂A+, then
λ−1(g) consists of two elements. In terms of the map λ, we have∫

G0(R)0
f(g) dg

= 16π2
∫
K0×A+×K0

f(λ(k,m(t1, t2), k′)) sinh(2t1) sinh(2t2) dk dt1 dt2 dk′

for any integrable function f on G0(R)0.
Proof of Proposition 9.1. We need to calculate the matrix coefficient of ϕ1,∞ ∈ π1,∞.
In fact, it is enough to consider the pullback of the matrix coefficient by the map
SL2(R) × SL2(R) → SO(2, 2) ⊂ SO(3, 2), since A+ is contained in the image of
this map. Note that the image of SL2(R) × SL2(R) is contained in the identity
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component SO(3, 2)0 = Sp2(R)/{±1}. The restriction of π1,∞ is a direct sum
of a holomorphic discrete series and an anti-holomorphic discrete series. Since
the holomorphic discrete series is a lowest-weight representation, its pullback to
SL2(R)× SL2(R) is a direct sum of lowest-weight representations. We denote τλ the
holomorphic discrete series of SL2(R) with lowest weight λ. Since the lowest weight
(κ+1, κ+1) occurs with multiplicity one, the summand contains τκ+1�τκ+1 exactly
once, and the other summands are of the form τλ1 � τλ2 , where λ1, λ2 ≥ κ + 1 and
(λ1, λ2) �= (κ + 1, κ + 1). (In fact, the precise decomposition of the restriction is
known in this case.) Therefore the value of the matrix coefficient at m(t1, t2) ∈ A+

is equal to cosh(t1)−κ−1 cosh(t2)−κ−1.
It follow that

I(ϕ1,∞, ϕ0,∞) = 16π2
(∫ ∞

0
cosh(t)−2κ−2 sinh(2t) dt

)2

= 16π2/κ2,

α∞(ϕ1,∞, ϕ0,∞) = ∆−1
G1,∞Pπ1,∞,π0,∞(1/2)−1I(ϕ1,∞, ϕ0,∞)

= 4π . �
Now, we consider the case G0 = SO(3, 2) = GSp2(R)/R×. We denote the image

of
(

A B
C D

) ∈ GSp2(R) in G0(R) by
[

A B
C D

]
. Put

A =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

et1 0
0 et2 0

0
e−t1 0
0 e−t2

⎤
⎥⎥⎦
∣∣∣∣∣∣∣∣

t1, t2 ∈ R

⎫⎪⎪⎬
⎪⎪⎭ ,

N ′ =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1 n′
1

0 1
0

0
1 0

−n′
1 1

⎤
⎥⎥⎦
∣∣∣∣∣∣∣∣

n′
1 ∈ R

⎫⎪⎪⎬
⎪⎪⎭ ,

N ′′ =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

12
n′′

11 n′′
12

n′′
12 n′′

22

0 12

⎤
⎥⎥⎦
∣∣∣∣∣∣∣∣

n′′
11, n′′

12, n′′
22 ∈ R

⎫⎪⎪⎬
⎪⎪⎭ ,

K0 =
{[

A B
−B A

] ∣∣∣∣ A +
√−1B ∈ U(2)

}
.

Then the topological identity component G0(R)0 = SO(3, 2)0 has an Iwasawa de-
composition G0(R)0 = ANK0, where N = N ′N ′′. Note that G0(R)0/K0 can be
identified with H2. We take the Haar measures dk on K0 with the total volume 1.
We choose the Haar measure dg of G0(R)0 such that the induced measure dg/dk is
equal to (detY )−3 dX dY . Then we have

dg = 4 dt1 dt2 dn′
1 dn′′

11 dn′′
12 dn′′

22 dk .

The Haar measure dg can be naturally extended to G0(R). Put a = Lie(A). Then
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a can be identified with R2 and we put

m(t1, t2) =

⎡
⎢⎢⎣

et1 0
0 et2 0

0
e−t1 0
0 e−t2

⎤
⎥⎥⎦

for each (t1, t2) ∈ R2 � a. The positive chamber A+ is defined by A+ =
{m(t1, t2) ∈ A | t1 ≥ t2 ≥ 0}. Then the map

λ : K0 × A+ ×K0 −→ SO(3, 2)0(
k,m(t1, t2), k′) �−→ k · m(t1, t2) · k′

is a double covering outside the boundary of A+. In terms of this map, we have (cf.
[Hel, Th. 5.8])

dg = C sinh(2t1) sinh(2t2) sinh(t1 − t2) sinh(t1 + t2) dk dt1 dt2 dk′

for some positive constant C > 0.
The constant C can be calculated as follows. We recall the argument of [Hel,

Ch. I, Th. 5.8]. We shall calculate the Jacobian of the induced map
λ̄ : K0 × A+ −→ G0(R)0/K0 � AN

at (k,m(t1, t2)) ∈ K0 × A+. Let g = p + k be the Cartan decomposition of g =
Lie(SO(3, 2)0). Then the tangent space of K0×A+ at (k,m(t1, t2)) can be identified
with k + a by left translation. Let Σ+ be the set of positive roots for (G0(R)0, A).
Then for each α ∈ Σ+, we put

kα =
{
T ∈ k | ad((x1, x2))2T = α((x1, x2))2T for all (x1, x2) ∈ a

}
.

Then dim aα = 1 for any α ∈ Σ+. Choose a non-zero vector Tα ∈ kα for each α ∈ Σ+.
For example, we can choose

Tε1−ε2 =

⎛
⎜⎜⎝

0 1
−1 0

0

0
0 1
−1 0

⎞
⎟⎟⎠ , T2ε1 =

⎛
⎜⎜⎝

0
1 0
0 0

−1 0
0 0

0

⎞
⎟⎟⎠ ,

Tε1+ε2 =

⎛
⎜⎜⎝

0
0 1
1 0

0 −1
−1 0

0

⎞
⎟⎟⎠ , T2ε2 =

⎛
⎜⎜⎝

0
0 0
0 1

0 0
0 −1

0

⎞
⎟⎟⎠ .

For each α ∈ Σ+,
Uα = α

(
(t1, t2)

)−1ad
(
(t1, t2)

)
(Tα)

belongs to p, and does not depend on (t1, t2) ∈ a. Note that

Uε1−ε2 =

⎛
⎜⎜⎝

0 1
1 0

0

0
0 1
1 0

⎞
⎟⎟⎠ , U2ε1 =

⎛
⎜⎜⎝

0
1 0
0 0

1 0
0 0

0

⎞
⎟⎟⎠ ,

Uε1+ε2 =

⎛
⎜⎜⎝

0
0 1
1 0

0 1
1 0

0

⎞
⎟⎟⎠ , U2ε2 =

⎛
⎜⎜⎝

0
0 0
0 1

0 0
0 1

0

⎞
⎟⎟⎠ .
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Then
Tα(α ∈ Σ+) , (1, 0), (0, 1) ∈ a ,

make up a basis of k + a, and
Uα(α ∈ Σ+) , (1, 0), (0, 1) ∈ a ,

make up a basis of p. By the proof of [Hel, Ch. I, Th. 5.8],∣∣det(dλ̄(k,m(t1,t2)))
∣∣ =

∏
α∈Σ+

sinh(α(t1, t2))

with respect to these basis.
Let ωα (α ∈ Σ+) be the basis of the space of left-invariant 1-forms on K0 dual

to Tα (α ∈ Σ+). Then it is easy to check that∫
K0

∣∣∣ ∧
α∈Σ+

ωα

∣∣∣ = 2π3.

On the other hand, the dual basis of
(1, 0), (0, 1) ∈ a , Uα(α ∈ Σ+)

induces
1
16 dt1 dt2 dn′

1 dn′′
11 dn′′

12 dn′′
22

on AN � G0(R)0/K0. It follows that C = 64π3.
Proof of Proposition 10.2. As in the proof of Proposition 9.1, the value of the matrix
coefficient 〈π1,∞(g0)ϕ1,∞, ϕ1,∞〉 at g0=m(t1, t2) is equal to cosh(t1)−κ−1 cosh(t2)−κ−1.
It follows that

I(ϕ1,∞, ϕ0,∞) = 64π3
∫

t1≥t2≥0
cosh(t1)−2κ−2 cosh(t2)−2κ−2

× sinh(2t1) sinh(2t2) sinh(t1 + t2) sinh(t1 − t2)dt1 dt2

= 64π3
∫ ∞

0

∫ ∞

0
cosh(x + y)−2κ−2 cosh(y)−2κ−2

× sinh(2x + 2y) sinh(2y) sinh(x + 2y) sinh(x)dx dy .

By using the formulas
sinh(2a) = 2 sinh(a) cosh(a) ,

sinh(a + b) sinh(a − b) = cosh2(a) − cosh2(b) ,

one can show that the integral I(ϕ1,∞, ϕ0,∞) is equal to

256π3
∫ ∞

0
cosh(y)−2κ−1 sinh(y)

×
∫ ∞

0
cosh(x + y)−2κ−1 sinh(x + y)[cosh2(x + y) − cosh2(y)] dx dy

= 256π3
∫ ∞

0
cosh(y)−2κ−1 sinh(y)

×
{[

−u−2κ+2

2κ − 2

]∞
u=cosh(y)

− cosh2(y)
[
−u−2κ

2κ

]∞
u=cosh(y)

}
dy
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=
128π3

κ(κ − 1)

∫ ∞

0
cosh(y)−4κ+1 sinh(y) dy

=
64π3

κ(κ − 1)(2κ − 1)
.

Since ∆G1,∞ = ΓR(2)ΓR(4)2 = π−5, we have α∞(ϕ1,∞, ϕ0,∞) = −4π. �
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