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Abstract. In this article we prove a convergence S-arithmetic Khintchine-type
theorem for the product of non-degenerate ν-adic manifolds, where one of them is
the Archimedean place.

1 Introduction

Metric Diophantine approximation on Rn. Any real number can be ap-
proximated by rational numbers. Diophantine approximation concerns the precision
of the approximation. For instance, by Dirichlet’s theorem, one can see that for any
real number ξ, there are infinitely many integers p and q, such that |qξ − p| < 1/q.
This, in some sense, indicates that in order to get a “good” approximation you do
not need a “very large” denominator. On the other hand, it is well known that
any quadratic algebraic number cannot be “very well” approximated. One can ask
what happens for a “random” number, which is the subject of metric Diophantine
approximation. Let us be more precise. Let ψ be a decreasing function from R+

to R+, e.g. ψε(q) = 1/q1+ε. A real number ξ is called ψ-approximable if, for infinitely
many integers p and q, one has |qξ − p| < ψ(|q|). It is called very well approximable
if it is ψε-A for some positive ε. A. Khintchine [K] has shown that almost all (resp.
almost no) points, in terms of the Lebesgue measure, are ψ-A if

∑∞
q=1 ψ(q) diverges

(resp. converges) (see [Sc, Ch. IV, §5]). There are two ways to generalize the notion
of ψ-A to Rn:

(a) ‖qξ − p‖ < ψ(|q|)1/n for infinitely many q ∈ Z and p ∈ Zn;
(b) |q · ξ − p| < ψ(‖q‖n) for infinitely many q ∈ Zn and p ∈ Z.

A priori, there are two notions of VWA vectors, i.e. being ψε-A for some positive ε,
either in terms of (a) or (b). However, by means of the Khintchine transference prin-
ciple, these two give rise to the same notion (see [BeD, Ch. 1] or [C, Ch. 5]). Groshev
[G] proved the aforementioned theorem in setting (b) (see [G]), while in setting (a)
it was already known to Khintchine in 1926.

Keywords and phrases: Metric Diophantine approximation, S-arithmetic, Unipotent flow
2000 Mathematics Subject Classification: 11J83, 11K60
A. S-G. was partially supported by the NSF grant DMS-0635607. Part of the research conducted

while A. S-G. was a Liftoff fellow.

Geom. Funct. Anal. Vol. 19 (2009) 1147–1170 
DOI 10.1007/s00039-009-0029-z
Published online November 14, 2009 
© 2009 Birkhäuser Verlag Basel/Switzerland GAFA Geometric And Functional Analysis



1148 A. MOHAMMADI AND A. SALEHI GOLSEFIDY GAFA 

Metric Diophantine approximation on manifolds. One can restrict one-
self to a submanifold of Rn, and ask if a random point on this submanifold is ψ-A.
In fact one of the first questions in this direction was posed by K. Mahler [M]. He
conjectured that almost all points on the Veronese curve {(x, x2, . . . , xn) | x ∈ R}
are not VWA. Lots of works had been done to prove this conjecture by J. Kubil-
ius, B. Volkmann, W. LeVeque, F. Kash, and W.M. Schmidt. In particular, the
problem was solved for n = 2 by Kubilius [Ku] and for n = 3 by Volkmann [V].
Finally Mahler’s conjecture was settled affirmatively by Sprindžuk [Sp1,2], and his
proof led to the theory of Diophantine approximation on manifolds. According
to his terminology, a submanifold M ⊆ Rn is called extremal if almost all points
of M are not VWA. He conjectured [Sp3] that any “nondegenerate” submanifold
of Rn is extremal (ref. [BeD] for the definition of nondegeneracy). In fact, he
conjectured this in the analytic setting. It is worth mentioning that a manifold
M = {(f1(x), . . . , fn(x)) | x ∈ U} with analytic coordinates fi’s is non-degenerate if
and only if the functions 1, f1, . . . , fn are linearly independent over R. D. Kleinbock
and G. Margulis [KlM] proved a stronger version of this conjecture using dynam-
ics of special unipotent flows on the space of lattices. Later V. Bernik, D. Klein-
bock, and G. Margulis [BeKM] and V. Beresnevich [B1,2,3] independently proved
a convergence Khintchine-type theorem on manifolds. For instance, they showed
that if

∑
q∈Zn\0 ψ(‖q‖n) converges, almost no point of a non-degenerate submani-

fold is ψ-A. The divergence case has been also completely solved by Beresnevich,
Bernik, Kleinbock, and Margulis [BBKM].

S-arithmetic Diophantine approximation. There are relatively less known
results in the p-adic, and simultaneous approximation in different places. In a recent
work V. Beresnevich, V. Bernik, E. Kovalevskaya [BBK], proved both the conver-
gence and the divergence Khintchine-type theorem for the p-adic Veronese curve,
i.e. {(x, x2, . . . , xn) | x ∈ Qp}. It is worth mentioning that the convergence case
had been already proved by Kovalevskaya [Ko1]. There are a few other results of
convergence Khintchine-type for more general curves in the p-adic plane or space,
e.g. [BK], [Ko2]. We take on this case in [MoS] where we prove both the convergent
and the divergent Khintchine-type theorem for non-degenerate p-adic manifolds.

Situation in the simultaneous Diophantine approximation is even less clear. The
most general Khintchine-type theorem, in this case, is a recent work of Bernik and
Kovalevskaya [BeK]. They establish an inhomogeneous convergence Khintchine-type
theorem for the Veronese curve with components in product of several local fields,
more specifically

{
(x,x2, . . . ,xn) | x ∈ C × R × ∏p∈S Qp

}
. For the product of

non-degenerate manifolds, D. Kleinbock and G. Tomanov, in a recent paper [KlT],
came up with an S-arithmetic version of metric Diophantine approximation. They
carefully defined the notion of extremal manifolds and proved the analogous theorem.
Let us briefly recall some of the definitions and results from their work.

Fix a set S of cardinality κ consisting of distinct normalized valuations of Q. Let
QS =

∏
ν∈S Qν , Sf = S \ {ν∞}, and S̃ = S ∪ {ν∞}. Using a Dirichlet-principle-type

argument, one can show that for any ξ ∈ Qn
S with S-norm at most one, there are
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infinitely many (q, q0) ∈ Zn × Z, such that

|q · ξ + q0|κS ≤ ‖q‖−n∞ if ν∞ ∈ S ,
|q · ξ + q0|κS ≤

∥∥(q, q0)∥∥−n−1
∞ if ν∞ �∈ S .

Accordingly, they defined the notion of VWA for a vector in Qn
S; namely, ξ ∈ Qn

S is
called VWA if for some ε > 0, there are infinitely many (q, q0) ∈ Zn × Z, such that

|q · ξ + q0|κS ≤ ‖q‖−n−ε∞ if ν∞ ∈ S ,
|q · ξ + q0|κS ≤

∥∥(q, q0)∥∥−n−1−ε

∞ if ν∞ �∈ S .
Extremal submanifolds of Qn

S were defined similar to the real case and they proved

Theorem A. Let M ⊆ Qn
S be a non-degenerate Ck manifold, then M is extremal.

Some terminology and the statement of the main result. Here we in-
troduce the necessary notation to state the main results of the article, and refer the
reader to the second section for the definitions of the technical terms. Let S, Sf

and S̃ be as before. It is well known that ZS̃ = Q ∩ QS̃ ·
∏

ν �∈S̃ Zν is a co-compact
lattice in QS̃, and [0, 1) × ∏ν∈Sf

Zν is a fundamental domain of ZS̃ in QS̃ . As
we mentioned before any vector in Qn

S can be approximated with rational vectors.
However, this time, we view the field of rational numbers as the field of fractions of
R a subring of ZS̃. It is worth mentioning that any subring of ZS̃ is of the form ZS′

for a subset S′, which contains the infinite place, of S̃. Any such R is discrete, so it
has just finitely many elements ar in a ball of radius r in QS̃ . It is easy to see that
ar grows polynomially with the growth degree g(R) equal to |S′|. In particular one
has |Br ∩R| < 2rg(R).

Using a Dirichlet-principle-type argument one can see that for any ξ ∈ Qn
S with

S-norm at most one, there are infinitely many (q, q0) ∈ Rn ×R such that

|q · ξ + q0|κS ≤ ‖q‖−ng(R)
S if ν∞ ∈ S ,

|q · ξ + q0|κS ≤
∥∥(q, q0)∥∥−(n+1)g(R)

S̃
if ν∞ �∈ S .

Accordingly, one can define the notion of R-VWA; namely, ξ ∈ Qn
S is called R-VWA

if for some ε > 0, there are infinitely many (q, q0) ∈ Rn ×R such that

|q · ξ + q0|κS ≤ ‖q‖−ng(R)−ε
S if ν∞ ∈ S ,

|q · ξ + q0|κS ≤
∥∥(q, q0)∥∥−(n+1)g(R)−ε

S̃
if ν∞ �∈ S .

A manifold M ⊆ Qn
S is called R-extremal if almost no point of it is R-VWA.

One can rephrase the result of Kleinbock and Tomanov, Theorem A, and say
that any non-degenerate Ck manifold is Z-extremal. In fact, it is easy to adapt their
proof and show that any such manifold is R-extremal, for any subring R of ZS̃ .

Assume that S contains the Archimedean place. Let Ψ be a map from Rn to R+.
A vector ξ ∈ Qn

S is called (Ψ,R)-A if for infinitely many (q, q0) ∈ Rn × R one has
|q · ξ + q0|κS ≤ Ψ(q). In this article, we prove an S-arithmetic R-Khintchine-type
statement. Let us fix some notation before stating the precise statements.

(a) Places: S: a finite set of places containing the Archimedean place.



1150 A. MOHAMMADI AND A. SALEHI GOLSEFIDY GAFA 

(b-1) Domain: U =
∏

ν∈S Uν where Uν ⊆ Qdν
ν is an open box.

(b-2) Coordinates: f(x) = (fν(xν))ν∈S , for any x = (xν) ∈ U, where

(i) fν =
(
f

(1)
ν , . . . , f

(n)
ν

)
: Uν → Qn

ν : analytic map for any ν ∈ S, and can be
analytically extended to the boundary of Uν .

(ii) Restrictions of 1, f (1)
ν , . . . , f

(n)
ν , to any open subset of Uν are linearly indepen-

dent over Qν .
(iii) ‖fν(xν)‖ ≤ 1, ‖∇fν(xν)‖ ≤ 1, and |Φ̄βfν(y1, y2, y3)| ≤ 1/2 for any ν ∈ S,

second difference quotient Φβ, and xν , y1, y2, y3 ∈ Uν (for the definition of Φβ,
we refer the reader to the second section).

(c) Ring: R is a subring of ZS, and so for some SR ⊆ S, we have R = ZSR . Let
SRc be the complement of SR in S.

(d) Level of approximation: Ψ : Rn \ {0} → (0,∞) satisfies
(i) Ψ(q1, . . . , qi, . . . , qn) ≥ Ψ(q1, . . . , q′i, . . . , qn) whenever |qi|S ≤ |q′i|S .
(ii)

∑
q∈Rn\{0} Ψ(q) <∞.

Theorem 1.1. Let S, U, f , Ψ, and R be as above; then

W f
R,Ψ =

{
x | f(x) is (Ψ,R)−A}

has measure zero.

Remark. (1) This theorem has been proved when S = {ν∞} by Bernik, Kleinbock
and Margulis [BeKM].

(2) As we mentioned earlier, for Ψ(q) = ‖q‖−ng(R)−ε
S , where ε is a positive

number, Kleinbock and Tomanov [KlT] essentially proved this theorem.
(3) Kleinbock and Tomanov [KlT] asked for such a theorem for R = Z.
(4) It is clear that the above theorem holds for product of any non-degenerate

ν-adic analytic manifolds. Indeed, the condition on the domain or the first two
conditions on the coordinate functions are consequences of analyticity and non-
degeneracy of the manifold. The last condition on the coordinate functions can be
achieved by replacing f with f/M for a suitable S-integer M .

(5) (With or without the Archimedean place) As we have seen in the intro-
duction, there is an intrinsic difference between the cases either with or without
Archimedean places even though the methods are somewhat similar. For instance
in the setting of this paper, namely when ν∞ ∈ S, we formulate and prove a simulta-
neous approximation with coordinates in any subring R. However when ν∞ �∈ S, we
can formulate and prove such a theorem only for R = Z, in [MoS], see the remarks
at the end of this paper for the precise statement.

(6) (Divergence) Following the above remark, we should also mention that in
[MoS] we also prove the divergence counter part as long as we deal with only one non-
Archimedean place. Our argument comes short of proving the divergence counter
part of simultaneous approximations. In particular, in the setting of this paper,
namely when S contains the Archimedean place and a non-Archimedean place, we
do not get the divergence part.
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Idea of the proof of Theorem 1.1. We essentially follow the same stream
line of the proof of [BeKM]. However we have to do careful analysis on families
of p-adic Ck functions. Spaces over p-adic fields are “easier” when one deals with
number-theoretic properties. However the analysis in some problems gets subtle as
we have neither the notion of angle nor connectedness! So almost all the steps need
a new approach or at least perspective.

For a fixed q ∈ Rn \ 0 we study the behavior of the function f(x) · q, and the
philosophy is that when the gradient of this function is “large”, the value of the
function cannot be close to R for a “long” time. This will take care of points with
“large” gradient. Hence we need to deal with the points with “small” gradient. To
do so, we use a quantitative version of recurrence of polynomial-like maps on the
space of S-arithmetic modules. What is roughly explained here is the process of
reducing the proof of Theorem 1.1 to the following theorems, modulo the Borel–
Cantelli lemma.
Theorem 1.2. Let U and f be as above and 0 < ε < 1

4n|S|(1+|SRc|) . Let A be⎧⎨⎩x ∈ U| ∃q ∈ Rn,
Ti

2
≤ |qi|S < Ti,

|〈f(x) · q〉||S|S < δ(
∏

i Ti)−g(R)

‖∇fν(xν)q‖ν > ‖q‖−ε
S , ν ∈ SRc

‖∇fν(xν)q‖ν > ‖q‖1−ε
S , ν ∈ SR

⎫⎬⎭ ;

then |A| < Cδ |U|, for large enough max(Ti) and a universal constant C.

For the convenience of the reader, let us recall that R = ZSR , and the growth of
the numbers of elements of R in a ball of radius T in QS is a polynomial on T of
degree g(R) = |SR|. Let us also add that whenever needed we view a vector as a
column or a row matrix.
Theorem 1.3. Let U and f be as before. If ‖f(x)‖ ≤ 1 and ‖∇f(x)‖ ≤ 1,
then for any x = (xν)ν∈S ∈ U, one can find a neighborhood V =

∏
ν∈S Vν ⊆ U

of x and α > 0 with the following property: For any ball B ⊆ V, there exists
E > 0 such that for any choice of 0 < δ ≤ 1, T1, . . . , Tn ≥ 1, and Kν > 0 with

δ|S|
(

T1...Tn
maxi Ti

)g(R)∏
ν∈S Kν ≤ 1 one has∣∣∣∣∣∣

⎧⎨⎩x ∈ B| ∃q ∈ Rn \ {0} :
|〈f(x) · q〉| < δ
‖∇fν(x)q‖ν < Kν , ν ∈ S
|qi|S < Ti

⎫⎬⎭
∣∣∣∣∣∣ ≤ E εα|B| , (1.3)

where ε = max
{
δ,
(
δ|S|
(

T1···Tn
maxi Ti

)g(R)∏
ν∈S Kν

)1/κ(n+1)}
.

Theorem 1.3 is proved using dynamics of special unipotent flows and S-arithmetic
version of Kleinbock–Margulis lemma, which was proved in [KlT].

Structure of the paper. In section 2, we start with some geometry and
analysis of p-adic spaces, and continue observing some of the properties of discrete
ZS-submodules of

∏
ν∈S Qmν

ν . Section 3 is devoted to the proof of Theorem 1.2. In
section 4, we recall the notion of good functions and establish the “goodness” of fam-
ilies of ν-adic analytic functions, which will be needed in the proof of Theorem 1.3.
This technical section, in some sense, is the core of the proof of Theorem 1.3 modulo
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Theorem 6.2. In section 5, we translate Theorem 1.3 in terms of recurrence of special
flows on the space of discrete ZS-submodules of

∏
ν∈S Qmν

ν . In section 6, we shall
recall a theorem of Kleinbock–Tomanov, and use it to establish Theorem 1.3 proving
its equivalence in the dynamical language. The proof of the main theorem will be
completed in section 7. We shall finish the paper by discussing a few remarks, and
open problems.

Acknowledgments. Authors would like to thank G.A. Margulis for introducing
this topic and suggesting this problem to them. We are also in debt to D. Kleinbock
for reading the first draft and useful discussions. We also thank the anonymous
referee(s) for their remarks and suggestions.

2 Notation and Preliminaries

Geometry of p-adic spaces. For any place ν of the field of rational num-
bers Q, Qν denotes the ν-completion of Q. In particular, when ν is the Archimedean
place of Q, Qν is the field of real numbers R. A non-Archimedean place (resp. the
Archimedean place) is also called a finite (resp. infinite) place. Let pν be the num-
ber of elements of the residue field of Qν if ν is a finite place. For a a positive real
number and ν a finite place of Q, let �a�ν (resp. �a�ν) denote a power of pν with
the smallest (resp. largest) ν-adic norm bigger (resp. smaller) than a. For any ring
R and two vectors x, y ∈ Rn, we set x · y =

∑n
i=1 x

(i)y(i). Let ν be a place of Q

and V a vector space over Qν . For any subset X of V, XQν (resp. XZν ) denotes
the Qν (resp. Zν) span of X . We recall the notion of distance and orthogonality on
V even if ν is a finite place. In the infinite place we take the Euclidean norm on V,
and in a finite place, for the notion of distance, we take a Qν basis B for V, and
define the maximum norm ‖ ·‖B with respect to B on V. For the space Qm

ν , one can
consider the norm with respect to the standard basis, and in this case we drop B

from the notation. Any basis for V gives rise to a basis for
∧V, so we can extend the

corresponding norm on V to a norm on
∧V, and we do so. The following definition

and/or lemma gives us the notion of orthogonality.
Definition 2.1. Let ν be a finite place of Q. A set of vectors x1, . . . , xn in Qm

ν , is
called orthonormal if ‖x1‖ = ‖x2‖ = · · · = ‖xn‖ = ‖x1∧· · ·∧xn‖ = 1, or equivalently
when it can be extended to a Zν-basis of Zm

ν .
Calculus of functions on p-adic spaces. Here we recall the definition of

p-adic Ck functions, and refer the reader to [S] for further reading. Let F be a
local field and f an F -valued function defined on U an open subset of F . The first
difference quotient Φ1f of f is a two variable function given by

Φ1f(x, y) :=
f(x)− f(y)

x− y ,

defined on ∇2U := {(x, y) ∈ U × U | x �= y}. We say, f is C1 at a ∈ U if

lim
(x,y)→(a,a)

Φ1f(x, y)
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exists, and f is said to be C1 on U, if it is C1 at every point of U . Now let

∇kU :=
{
(x1, . . . , xk) ∈ Uk | xi �= xj for i �= j

}
,

and define the kth order difference quotient Φkf : ∇k+1U → F of f inductively by
Φ0f = f and

Φkf(x1, x2, . . . , xk+1) :=
Φk−1f(x1, x3, . . . , xk+1)− Φk−1f(x2, x3, . . . , xk+1)

x1 − x2
.

One readily sees any other pair could be taken instead of (x1, x2), and so Φkf is a
symmetric function of its k + 1 variables. f is called Ck at a ∈ U if the following
limit exits

lim
(x1,...,xk+1)→(a,...,a)

Φkf(x1, . . . , xk+1) ,

and it is called Ck on U if it is Ck at every point a ∈ U . This is equivalent to Φkf
being continuously extendable to Φ̄kf : Uk+1 → F. Clearly the continuous extension
is unique. As one expects Ck functions are k times differentiable, and

f (k)(x) = k!Φ̄k(x, . . . , x) .

It is worth mentioning that, f ∈ Ck implies f (k) is continuous but the converse fails.
Also C∞(U) is defined to be the class of functions which are Ck on U , for any k.
Note that analytic functions are C∞.

Now it is straightforward to generalize this to several variables. Let f be an
F -valued function defined on U1 × · · · × Ud, where each Ui is an open subset of
F. Denote by Φk

i f the kth order difference quotient of f with respect to the ith

coordinate. Then for any multi-index β = (i1, . . . , id) let

Φβf := Φi1
1 ◦ . . . ◦ Φid

d f .

It is defined on∇i1+1U1×· · ·×∇id+1Ud, and as above the order is not important. The
function f is called Ck on U1 × · · · ×Ud if for any multi-index β with |β| =∑d

j=1 ij

at most k, Φβf is extendable to Φ̄βf on U i1+1
1 × · · · × U id+1

d . Similarly to the one
variable case the obvious relation between Φ̄βf and ∂βf holds.

For a C1 function f = (f1, . . . , fn) from Fm to Fn, let ∇f(x) be an m by n
matrix whose (i, j) entry is ∂jfi(x).

Discrete ZS-submodules of
∏

ν∈S Qmν
ν . For any finite set S of places of

Q which contains the infinite place ∞, set Sf = S \ {∞}, QS =
∏

ν∈S Qν , and
ZS = Q ∩ (QS ×

∏
ν �∈Sf

Zν) where Q is diagonally embedded in QS . For a non-
Archimedean (resp. Archimedean) place ν, let us normalize the Haar measure µν

of Qν such that µν(Zν) = 1 (resp. µ∞([0, 1]) = 1). On
∏

ν∈S Qmν
ν , we take the

maximum norm ‖·‖S , i.e. ‖x‖S = maxν∈S ‖xν‖ν . By the Chinese reminder theorem,
it is clear that ZS is a co-compact lattice in QS, and by the above normalization
and the product measure on QS, the covolume of ZS is one. For any x ∈ QS,
|〈x〉| denotes the distance from x to ZS , and we shall choose 〈x〉 ∈ ZS such that
‖x−〈x〉‖S = |〈x〉|. For any x ∈∏ν∈S Qmν

ν , let c(x) =
∏

ν∈S ‖xν‖ν . Here and for all
we set κ = |S|, clearly one has c(x) ≤ ‖x‖κS . By virtue of [KlT, Prop. 7.2] one can
see the following lemma which shows that any discrete ZS-submodule of

∏
ν∈S Qmν

ν

is essentially coming from ZS .
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Lemma 2.2. If ∆ is a discrete ZS-submodule of
∏

ν∈S Qmν
ν , then there are

x(1), . . . ,x(r) in
∏

ν∈S Qmν
ν so that ∆ = ZSx(1) ⊕ · · · ⊕ ZSx(r). Moreover, for any

ν ∈ S, x
(1)
ν , . . . , x

(r)
ν are linearly independent over Qν .

Definition 2.3. Let Γ be a discrete ZS-submodule of
∏

ν∈S Qmν
ν ; then a submodule

∆ of Γ is called a primitive submodule if ∆ = ∆QS
∩ Γ.

Remark 2.4. Let Γ and ∆ be as in Definition 2.3, then ∆ is a primitive sub-
module of Γ, if and only if there exists a complementary ZS-submodule ∆′ ⊆ Γ, i.e.
∆ ∩∆′ = 0 and ∆ + ∆′ = Γ.

3 Proof of Theorem 1.2

As in the introduction we have R = ZSR . Let |SR| = κR and |SRc| = κ̃R and so
|S| = κ = κR + κ̃R. Fix q = (q1, . . . , qn) ∈ Rn with Ti/2 ≤ |qi|S < Ti and define
T =

∏
i Ti and R = T 1/nκ. As in the theorem, let 0 < ε < 1/4nκ(1 + κ̃R) be fixed

through out the paper. Let g(x) = f(x) · q, for any x ∈ U, and set

Aq =
{
x ∈ A | the hypothesis of the theorem holds for q = (q1, . . . , qn)

}
.

This means that any x ∈ Aq satisfies the following properties:
(P1) For some q0 ∈ R, |g(x) + q0|κS < δT−κR .
(P2) For any ν ∈ SRc, ‖g(x)‖ν > ‖q‖−ε

S .
(P3) For any ν ∈ SR, ‖g(x)‖ν > ‖q‖1−ε

S .
It is worth mentioning that because of (b-2, iii) the third condition on the coor-

dinate maps, g also satisfies the following conditions at any point x:
(C1) For any ν ∈ S, ‖∇gν(xν)‖ν ≤ ‖q‖ν .
(C2) For any ν ∈ S, 1 ≤ i, j ≤ dν , xν , x

′
ν , x

′′
ν ∈ Uν , Φ̄ij(gν)(xν , x

′
ν , x

′′
ν) ≤ ‖q‖ν .

We will show that, |Aq| < Cδ T−g(R)|U|, which then, summing over all possible q’s,
will finish the proof.

Let B(x) be a neighborhood of x which is defined as follows:
(i) If κ̃R > 0, let

B(x) =
∏

ν∈SRc

B

(
xν ,

1
4R1/κ̃R‖∇gν(xν)‖ν

)
×
∏

ν∈SR

B

(
xν ,

R1/κR

4d∞‖∇gν(xν)‖ν

)
.

(ii) If κ̃R = 0, let

B(x) =
∏
ν∈S

B

(
xν ,

1
4d∞‖∇gν(xν)‖ν

)
.

For x ∈ Aq, let q0 be an element in R which satisfies (P1).
First step. For any y ∈ B(x), B(g(y), 1/4R)∩R ⊆ {q0}, i.e. q0 is the only possible
1/4R approximation of g(y) with an element of R.
Proof of the first step.. Let q′0 ∈ B(g(y), 1/4R)∩R. Assume that q0 �= q′0. In order
to get a contradiction we will use the Taylor expansion of g about x at each place,
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i.e.

q0+gν(yν) = q0+gν(xν)+∇gν(xν) ·(xν−yν)+
∑
i.j

Φ̄ij(gν)(•)(x(i)
ν −y(i)

ν

)(
x(j)

ν −y(j)
ν

)
,

where the arguments of Φ̄ij(gν) are some of the components of xν and yν . We divide
the proof into two parts:

(i) κ̃R = 0. In this case, |q0 + g(y)|S < 1/4 because of the Taylor expansion and
the following inequalities,
• |q0 + gν(xν)|ν ≤ 1/4d∞ because of (P1),
• |∇gν(xν) · (xν − yν)|ν ≤ 1/4d∞ because of the way we defined B(x),
• |∑i.j Φ̄ij(gν)(•)(x(i)

ν − y(i)
ν )(x(j)

ν − y(j)
ν )|ν ≤ 1/4d∞ because of (C2), (P2),

and the definition of B(x).
so |q0 − q′0|S < 1/2, which says q0 = q′0.

(ii) κ̃R > 0. Similar to the previous case, we will compare the maximum possible
values of each of the three above expressions at each place ν. The first one
is always small. It is enough to compare the last two. Because of the way
we defined B(x), the second term is less than 1/4R1/κ̃R (resp. R1/κR/2) for
ν ∈ SRc (resp. ν ∈ SR). Indeed the third term is also less than these values
because of (P2) (resp. (P3)), |qi|S ≤ Ti (resp. Ti/2 ≤ |qi|S), and ε being small.
So we have

∏
ν∈S |q′0−q0|ν < 1/4, which contradicts the product formula, since

we have q0, q′0 ∈ R ⊆ ZS.

Second step. For any ν ∈ S and y ∈ B(x), we have∥∥∇gν(yν)−∇gν(xν)
∥∥

ν
<
∥∥∇gν(xν)

∥∥
ν
/4 .

Proof of the second step. This time, we will use the Taylor expansion of ∂igν

about xν . So let z = (zν) where yν = xν + zν . In this setting, we have

∂igν(yν) = ∂igν(xν) +
∑

j

Φ̄j(∂igν)(•)zj
ν

= ∂igν(xν) +
∑

j

(
Φ̄ji(gν)(•) + Φ̄ji(gν)(•))zj

ν ,

where the arguments of Φ̄ij(gν) and Φ̄j(∂igν), as before, are some of the components
of xν and yν . Now similar to the first step, one can argue and get the following
inequalities, which complete the proof of the second step.

(i) If ν ∈ SRc then∣∣∂igν(yν)− ∂igν(xν)
∣∣
ν
< |zν |ν ≤ 1

4R1/κ̃R‖∇gν(xν)‖ν
≤ ‖∇gν(xν)‖ν

4
,

(ii) If ν ∈ SR then∣∣∂igν(yν)− ∂igν(xν)
∣∣
ν
< 2d∞|q|ν |zν |ν ≤ 2d∞|q|νρ ≤ ‖∇gν(xν)‖ν

4
,

where ρ = 1/4d∞‖∇gν(xν)‖ν if SR = S and ρ = R
1

κR /4d∞‖∇gν(xν)‖ν other-
wise.
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Third step. |πν(Aq ∩B(x))| ≤ C ′(δT−g(R))1/κ
rν |πν(B(x))|, where rν = 1/R1/κR

(resp. R1/κ̃R , 1) for ν ∈ SR (resp. ν ∈ Sc
R, ν ∈ SR = S) and πν is projection into

the Qdν
ν .

Proof of the third step. Without loss of generality, we may and will assume that
‖∇gν(xν)‖ν = |∂1gν(xν)|ν . In fact, we will show that the considered set is thin in
the e1 direction, and it gives us the factor saving. So let y,y′ ∈ Aq ∩ B(x), and
assume that πν(y′) = πν(y) + αe1. Note that by the first step and (P1), for some
q0 ∈ R, we have |q0 + g(y)|κS ≤ δT−g(R) and |q0 + g(y′)|κS ≤ δT−g(R), and so∣∣g(y′)− g(y)

∣∣κ
S
≤ 2κδT−g(R). (1)

As always set yν = πν(y) and y′ν = πν(y′).

(i) ν ∈ S\{∞}. Again we use the Taylor expansion to get a “mean value theorem”
at the norm level.

gν(yν + αe1)− gν(yν) = ∂1gν(yν)α+ Φ11g(•)α2,

as before a norm comparison, gives us∣∣gν(yν + αe1)− gν(yν)
∣∣
ν

=
∣∣∂1gν(yν)

∣∣
ν
|α|ν . (2)

(ii) ν = ∞. Here we have the mean value theorem and so for some z∞,

g∞(y∞ + αe1)− g∞(y∞) = ∂1g∞(z∞)α . (3)

Now by fixing the last dν − 1 entries, we slice our set, and equations 2 and 3
coupled with inequality 1 and the second step tell us that the measure of each slice
is at most C ′′(δT−g(R))1/κ/‖∇gν(xν)‖ν = C ′′(δT−g(R))1/κrν× radius of πν(B(x)).
Now direct use of Fubini’s theorem completes the proof of this step.
Final step. For any ν ∈ S, {πν(B(x))}x∈Aq is a covering of πν(Aq). Using Besi-
covitch covering lemma (see in [KlT] for details on this) and the third step, we can
conclude that ∣∣πν(Aq)

∣∣ ≤ C ′′′(δT−g(R))1/κ
rν |Uν | ,

for some universal constant C ′′′. the following inequalities complete the proof:

|Aq| ≤
∏
ν∈S

∣∣πν(Aq)
∣∣ ≤ C

∏
ν∈S

((
δT−g(R))1/κ

rν
)|U| = Cδ T−g(R)|U| .

4 Good Functions

In this section, first we recall the notion of a good function and a few known theorems,
then we establish the “goodness” of a family of ν-adic analytic functions, which will
be needed in the proof of Theorem 1.3.
Definition 4.1. [KlM] Let C and α be positive real numbers, a function f defined
on an open set V of X =

∏
ν∈S Qmν

ν is called (C,α)-good, if for any open ball B ⊂ V
and any ε > 0 one has∣∣∣{x ∈ B

∣∣∣ ∥∥f(x)
∥∥ < ε · sup

x∈B

∥∥f(x)
∥∥}∣∣∣ ≤ C εα|B| .

The following is tautological consequence of the above definition.
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Lemma 4.2. Let X =
∏

ν∈S Qmν
ν ,V and f be as above then

(i) f is (C,α)-good on V if and only if ‖f‖ is (C,α)-good.
(ii) If f is (C,α)-good on V, then so is λf for any λ ∈ QS .
(iii) Let I be a countable index set, if fi is (C,α)-good on V for any i ∈ I, then so

is supi∈I ‖f‖.
(iv) If f is (C,α)-good on V and c1 ≤ ‖f(x)‖S/‖g(x)‖S ≤ c2, for any x ∈ V, then

g is (C(c2/c1)α, α)-good on V.

Let us recall the following lemma from [KlT, Lem. 2.4].
Lemma 4.3. Let ν be any place of Q and p ∈ Qν [x1, . . . , xd] be a polynomial of
degree not greater than l. Then there exists C = Cd,l independent of p, such that
p is (C, 1/dl)-good on Qν .

Next we state a variation of [KlT, Th. 3.2] without proof.
Theorem 4.4. Let V1, . . . , Vd be nonempty open sets in Qν . Let k ∈ N,
A1, . . . , Ad, A

′
1, . . . , A

′
d positive real numbers and f ∈ Ck(V1 × · · · × Vd) be such

that
Ai ≤ |Φk

i f |ν ≤ A′
i on�k+1 Vi ×

∏
j �=i

Vj , i = 1, . . . , d .

Then f is (C,α)-good on V1 × · · · × Vd, where C and α depend only on k, d,Ai,
and A′

i.

Another useful fact which can be easily adapted to the ν-adic calculus is Propo-
sition 3.4 of [BeKM].
Theorem 4.5. Let U be an open neighborhood of x0 ∈ Qm

ν and let F ⊂ C l(U) be
a family of functions f : U → Qν such that

1. {∇f |f ∈ F} is compact in C l−1(U)
2. inff∈F sup|β|≤l |∂βf(x0)| > 0.

Then there exist a neighborhood V ⊆ U of x0 and positive numbers C = C(F) and
α = α(F) such that for any f ∈ F

(i) f is (C,α)-good on V .
(ii) ∇f is (C,α)-good on V .

Proof. The argument in [BeKM, Prop. 3.4] goes through using Theorem 4.4. �

Corollary 4.6. Let f1, f2, . . . , fn be analytic functions from a neighborhood
U of x0 in Qm

ν to Qν , such that 1, f1, f2, . . . , fn are linearly independent on any
neighborhood of x0, then

(i) There exist a neighborhood V of x0, C and α > 0 such that any linear combi-
nation of 1, f1, f2, . . . , fn is (C,α)-good on V .

(ii) There exist a neighborhood V ′ of x0, C
′ and α′ > 0 such that for any

d1, d2, . . . , dn ∈ Qν ,
∥∥∑n

k=1 di∇fi

∥∥ is (C ′, α′)-good.

Proof. Let F = {d+D·(f1, . . . , fn)| d ∈ Qν , D ∈ Qn
ν , ‖D‖ = 1}. By our assumptions

on f1, . . . , fn, the family F satisfies the conditions of Theorem 4.5 which gives the
corollary. �
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The following theorem is the main result of this section. This technical theorem
is crucial in the proof of Theorem 1.3. Let us first recall the notion of skew gradient
from [BeKM, §4]. For two C1 functions gi : Qd

ν → Qν, i = 1, 2, define ∇̃(g1, g2) :=
g1∇g2 − g2∇g1. This, as one expects from the definition, measures how far two
functions are from being linearly dependent; ref. loc. cit. for a discussion on this.
Theorem 4.7. Let U be a neighborhood of x0 ∈ Qm

ν , f1, f2, . . . , fn be analytic
functions from U to Qν , such that 1, f1, f2, . . . , fn are linearly independent on any
open subset of U . Let F = (f1, . . . , fn) and

F =
{
(D · F, D′ · F + a)

∣∣ ‖D‖ = ‖D′‖ = ‖D ∧D′‖ = 1 , D,D′ ∈ Qn
ν , a ∈ Qν

}
.

Then there exists a neighborhood V ⊆ U of x0 such that

(i) For any neighborhood B ⊆ V of x0, there exists ρ = ρ(F , B) such that
supx∈B ‖∇̃g(x)‖ ≥ ρ for any g ∈ F .

(ii) There exist C,α positive numbers such that ‖∇̃g‖ is (C,α)-good on V , for any
g ∈ F .

Proof. The case ν = ∞ is Proposition 4.1 of [BeKM], so we may assume ν is
a finite place. We start with part (i) proceeding by contradiction. If not, one
can find a neighborhood B of x0 such that for any n, there would exist gn ∈ F
with ‖∇̃gn(x)‖ ≤ 1/n for any x ∈ B. Let gn = (Dn · F, D′

n · F + an). If there
is a bounded subsequence of an, going to a subsequence, we may assume gn is
converging to g ∈ F . Therefore ‖∇̃g(x)‖ = 0 for any x ∈ B which contradicts
linearly independence of 1, f1, . . . , fn. Thus we may assume that, an →∞. However
inf‖D‖=1 supx∈B ‖D∇F (x)‖ = δ > 0, therefore supx∈B ‖∇̃gn(x)‖ → ∞ in contrary
to our assumption.

Now we prove part (ii). The proof will be divided into two parts. First we shall
deal with the“compact” part of F , i.e. when we have an upper bounded on |a|, later
we will prove the unbounded part.
Lemma 4.8. Let U and F be as in the Theorem 4.7 and FM be{
(D ·F,D′ ·F +a)

∣∣ ‖D‖ = ‖D′‖ = ‖D∧D′‖ = 1 , D,D′ ∈ Qn
ν , a ∈ Qν , |a|ν ≤M

}
.

Then there exist a neighborhood V = VM of x0, C = CM and α = αM > 0 such
that ‖∇̃g‖ is (C,α)-good on V for any g ∈ FM .

Proof. Replacing F (x) by F (x+x0) we may assume that x0 = 0. Then rescaling x by
rx we may and will assume all the Taylor coefficients of fi’s are in Zν, and U ⊆ pνZν.
Now for any g ∈ FM there is hg ∈ GLm(Zν) such that all of the components of
∇̃(g ◦ hg) are non-zero functions. By the compactness assumption on FM , we may
find h1, . . . , hk ∈ GLm(Zν) such that

sup
1�j�k
x∈U

∣∣(∇̃(g ◦ hj))i(x)
∣∣ ≥ δ for 1 ≤ i ≤ m.

Hence we can find b = bδ with the following property: for any g ∈ FM there exists
1 ≤ j ≤ k, such that for any 1 ≤ i ≤ m one can find a multi-index β with |β| ≤ b,
and |∂β(∇̃(g ◦ hj))i(0)| ≥ δ. Using Theorem 4.5, there exist a neighborhood V ′ of
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the origin, C and α > 0 such that for any g ∈ FM one can find 1 ≤ j ≤ k so
that ‖∇̃(g ◦ hj)‖ is (C,α)-good on V ′, which says ‖∇̃g‖ is good on some V ′ for any
g ∈ FM . �

To prove the unbounded part, we need the following lemma.
Lemma 4.9. Set H = (p1, p2, . . . , pn) where pi ∈ Zν [x1, . . . , xm] are linearly
independent polynomials of degree ≤ l. For any positive real number r let Hr(x) =
H(�r�νx)/�r�lν . Then there exist γ and 0 < s < 1 such that for any D,D′ ∈ Qn

ν

with ‖D‖ = ‖D′‖ = ‖D ∧D′‖ = 1, any a ∈ Qν with |a| ≥ pl
ν and r < s one has∥∥∇̃Pr(x)

∥∥
B1
≥ γ

(
1 + ‖Pr‖B1

)
,

where Pr =
(
D ·Hr, D

′ ·Hr + a
�r	l

ν

)
.

Proof. First claim. For any p(x) =
∑d

i=0 cix
i ∈ Qν [x] and 0 < δ < 1, there

exists s, such that for any r < s, one has

sup
x∈Br

|p(x)| ≥ |ck|rk

kk
, where |ck| ≥ δmax

i

{|ci|} .
With the understanding that 00 = 1.
Proof of the first claim. We will see s = δ works. If k = 0 then |p(x)| = |c0|
for |x| < δ and there is nothing to prove. Otherwise, there exists k > 0 such that
|Φk(p)(x1, . . . , xk+1)| = |ck| for |xi| < δ. Take x1, . . . , xk+1 such that |xi− xj| ≥ r/k
for 1 ≤ i �= j ≤ k + 1, where r < s = δ, Let

q(x) =
k+1∑
i=1

p(xi)

∏
j �=i(x− xj)∏
j �=i(xi − xj)

,

be the degree k, Lagrange polynomial of p with respect to x1, . . . , xk+1. Then we
get

|ck| =
∣∣Φk(p)(x1, . . . , xk+1)

∣∣ = ∣∣Φk(q)(x1, . . . , xk+1)
∣∣

=
∣∣∣∣ k+1∑

i=1

p(xi)∏
j �=i(xi − xj)

∣∣∣∣ ≤ ‖p‖Br

(r/k)k
.

Therefore ‖p‖Br ≥ |ck|rk/kk as we wanted to show.
Second claim. There exist a0, C

′, s > 0 such that for any Q in

G̃a0 =
{∇̃(D ·H,D′ ·H + a) | D,D′ orthonormal vectors , |a| ≥ a0

}
,

and r < s, one has
‖Q‖Br ≥ C ′|a|rl−1. (4)

Proof of the second claim. As the family G = {D · H | ‖D‖ = 1} is a compact
family of functions, and pi’s are linearly independent, there exists δ′ > 0 such that
‖D · H‖ ≥ δ′, for any ‖D‖ = 1. Thus for any polynomial p ∈ G, there exists a
multi-index β with |β| = k ≤ l such that Φβ(p)(0) ≥ δ′. Hence for any such p, one
may find hp ∈ GLm(Zν), δp, and sp, such that |Φk

1(p ◦ hp)(x0, . . . , xk)| ≥ δp for any
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xj’s with norm at most sp. Now by the compactness of GLm(Zν) and G, there are
h1, . . . , ht ∈ GLm(Zν), and positive numbers δ′′, s′ such that for any p ∈ G,∣∣Φk

1(p ◦ hi)(x0, . . . , xk)
∣∣ ≥ δ′′ (∗)

for some 1 ≤ i ≤ t, and any xj with norm at most s′.

Now let D and D′ be two orthonormal vectors and g(x) = ∇̃(D ·H,D′ ·H + a).
As ‖g‖Br = ‖g ◦ h‖Br for any h ∈ GLm(Zν), we may and will replace g by g ◦ hi,
where i has been chosen such that (∗) holds for p = D · H. Hence if a0 = pl

ν , the
coefficient of xk−1

1 in the first component of ∇̃(D ·H ◦ hi,D
′ ·H ◦ hi + a) has norm

at least δ′′|a|/pl
ν , and moreover all the coefficients have norm at most |a|. Now let

x2 = · · · = xn = 0. We would get a one-variable polynomial whose coefficient of
term xk−1

1 has norm at least δ′′/pl
ν times the maximum norm of all the coefficients.

Thus the first claim completes the proof of the second claim.
Final step. Let P (x) = (D · H, D′ · H + a). Note that ‖Pr‖B1 = |a|/rl,

‖∇̃Pr‖ = ‖∇̃P‖/r2l−1. Using these and (4), one sees that γ = C ′/2 works. �

Before proving the unbounded part, let us recall and give the needed modification
of Lemma 3.7 of [BeKM].
Lemma 4.10. Let B ⊆ Qd

ν be an open ball of radius r, and B̃ be the ball with the
same center as B and of radius (pν + 1) · r. Let f be a continuous function on B̃.
Suppose C,α, and δ are positive real numbers such that∣∣∣{x ∈ B′ ∣∣ |f(x)| < ε · sup

x∈B′
|f(x)|

}∣∣∣ ≤ Cεα|B′| ,

for any ball B′ ⊆ B̃ and ε ≥ δ. Then f is (C,α′)-good on B whenever 0 < α′ < α
and Cpνδ

α−α′ ≤ 1.

Proof. The same argument as in [BeKM] works in the non-Archimedean setting,
too. However we have to replace supx∈B(y) |f(x)| = ε · supx∈B |f(x)|, with

sup
x∈B(y)

|f(x)| ≤ ε · sup
x∈B

|f(x)| ≤ sup
x∈B′(y)

|f(x)| ,

where B′(y) is a ball centered at y whose radius is pν times the radius of B(y). Then
use the covering of B′(y)’s instead of B(y)’s and note that∣∣B′(y)

∣∣ = pν |B(y)| . �

Lemma 4.11. Let x0, U and F be as in Theorem 4.7, and

F ′
M =

{
(D · F, D′ · F + a) | D,D′ orthonormal , a ∈ Qν , |a| ≥M

}
.

Then for sufficiently large M there exist neighborhood V of x0 and positive numbers
C and α, such that for any g ∈ F ′

M , ‖∇̃g‖ is (C,α)-good function on V for any
g ∈ F ′

M .

Proof. Without loss of generality we assume x0 = 0 and fi(x) =
∑

β∈Zm a
(i)
β xβ,

1 ≤ i ≤ n, where a(i)
β ∈ Zν and ‖x‖ < 1. Let p(i)

l be the lth degree Taylor polynomial
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of fi then |fi(x)− p(i)
l (x)| ≤ ‖x‖l+1. Let l be large enough such that 1, p(1)

l , . . . , p
(n)
l

are linearly independent also let r0 < s be small enough such that

2pν Cm,2l−2

(
8r0
γ

)1/m(2l−1)(2l−2)

≤ 1 ,

where s, γ are given as in Lemma 4.9 and Cm,2l−2 is as in Lemma 4.3. Now take
M ≥ pl

ν and consider g(x) = (C · F (x), D · F (x) + a) from F ′
M furthermore set

p(x) =
(
C · (p(1)

l , . . . , p
(n)
l ),D · (p(1)

l , . . . , p
(n)
l

)
+ a
)
. By Lemma 4.10, it is enough to

prove the following:

For 8r0/γ ≤ ε ≤ 1, any ball B = Br(x1) ⊆ Br0(0) and any g ∈ F ′
M , one has∣∣∣{x ∈ Br(x1)

∣∣∣ ∥∥∇̃g(x)∥∥ < ε · sup
x∈B

∥∥∇̃g(x)∥∥}∣∣∣ ≤ 2Cm,2l−2ε
1/m(2l−2)|B| . (∗)

Let gr(x) = g(�r�νx+ x1)/�r�lν and pr(x) = p(�r�νx+ x1)/�r�lν , it is clear that (∗)
holds if and only if∣∣∣{x ∈ B1(0)

∣∣∣ ∥∥∇̃gr(x)
∥∥ < ε · sup

x∈B1

∥∥∇̃gr(x)
∥∥}∣∣∣ ≤ 2Cm,2l−2ε

1/m(2l−2)|B1| , (†)

where B1 is the ball of radius 1 about the origin. However, for any x ∈ B1,
‖gr(x)− pr(x)‖ < r, ‖∇gr(x)−∇pr(x)‖ < r. Therefore∥∥∇̃gr(x)− ∇̃pr(x)

∥∥ ≤ r(r + 2)
(
1 + ‖pr(x)‖

)
≤ 3r

(
1 + ‖pr(x)‖

) ≤ 3r
γ sup

x∈B1

∥∥∇̃pr(x)
∥∥ .

Hence {x ∈ B1(0)| ‖∇̃gr(x)‖ < ε supx∈B1
‖∇̃gr(x)‖} is a subset of{

x ∈ B1(0)
∣∣∣ ∥∥∇̃pr(x)

∥∥ − 3r
γ sup

x∈B1

∥∥∇̃pr(x)
∥∥ < ε

(
1 + 3r

γ

)
sup
x∈B1

∥∥∇̃pr(x)
∥∥}

=
{
x ∈ B1(0)

∣∣∣ ∥∥∇̃pr(x)
∥∥ < (ε(1 + 3r

γ

)
+ 3r

γ

)
sup
x∈B1

∥∥∇̃pr(x)
∥∥}

⊆
{
x ∈ B1

∣∣ ∥∥∇̃pr(x)
∥∥ < 2ε sup

x∈B1

∥∥∇̃pr(x)
∥∥}.

Since each of the components of ∇̃pr(x) is a polynomial of degree at most 2l − 2,
and ∇̃pr is not zero, (†) holds, which finishes the proof. �

Lemmas 4.8 and 4.11 complete the proof of part(ii) of Theorem 4.7. �

5 Theorem 1.3 and Lattices

In this chapter, following [KlM], [BeKM], and [KlT] we are going to convert the
problem into a quantitative question about “special” unipotent flows on the space
of discrete ZS-submodules. In the remaining part of this article, we let mν =
n+dν +1, and we are going to work with discrete ZS-submodules of the QS-module
X =

∏
ν∈S Qmν

ν . We shall denote the standard basis of the ν-factor Qmν
ν of X by

{e0ν , e∗1ν , . . . , e
∗dν
ν , e1ν , . . . , e

n
ν}, let W ∗

ν = {e∗1ν , . . . , e
∗dν
ν }Qν , Wν = {e1ν , . . . , en−1

ν }Qν ,
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and Λ be the ZS-module generated by e0, . . . , en, where ei = (eiν)ν∈S for any 0 ≤
i ≤ n. Take δ, Kν ’s, Ti’s, and the function f as in Theorem 1.3, and let

Ux =

⎛⎝⎛⎝ 1 0 fν(xν)
0 Idν ∇fν(xν)
0 0 In

⎞⎠⎞⎠
ν∈S

.

One has

Ux

⎛⎝⎛⎝ p
0
�q

⎞⎠⎞⎠
ν∈S

=

⎛⎝⎛⎝ p+ fν(xν) · �q
∇fν(xν)�q

�q

⎞⎠⎞⎠
ν∈S

.

So if λ =
(( p

0
	q

))
ν∈S

has been chosen such that �q satisfies the conditions on the set

given in (1.3), and |(p+ fν(xν) · �q)ν∈S | = |〈(fν(xν) · �q)ν∈S〉|, we get an upper bound
on each of the coordinates of Uxλ. Now we shall rescale the space to put Uxλ into
a “small” cube by multiplying it with a diagonal element

D =
(
Dν = diag

((
a(0)

ν

)−1
, (a∗ν)−1, . . . , (a∗ν)−1,

(
a(1)

ν

)−1
, . . . , (a(n)

ν )−1)
ν∈S

,

where a(0)
ν = �δ/ε�ν , a∗ν = �Kν/ε�ν , and a(i)

ν =

{
�Ti/ε�ν ν ∈ SR
�1/ε�ν ν ∈ SRc

for any 1≤ i≤n.

Having this setting in mind, we state the next theorem which proves Theorem 1.3.
Theorem 5.1. Let U and f be as in Theorem 1.3; then for any x = (xν)ν∈S ,
there exists a neighborhood V =

∏
ν∈S Vν ⊆ U of x, and a positive number α

with the following property: for any B ⊆ V there exists E > 0 such that for any

D =
(
diag

((
a

(0)
ν

)−1
, (a∗ν)−1, . . . , (a∗ν)−1,

(
a

(1)
ν

)−1
, . . . , (a(n)

ν )−1
))

ν∈S
with

(i) 0 <
∣∣a(0)

ν

∣∣
ν
≤ 1 ≤ ∣∣a(1)

ν

∣∣
ν
≤ · · · ≤ ∣∣a(n)

ν

∣∣
ν
, and

(ii) 0 <
∏

ν∈S |a∗ν |ν ≤
∏

ν∈S
1

|a(0)
ν a

(1)
ν ···a(n−1)

ν |ν
,

and for any positive number ε, one has∣∣{y ∈ B | c(DUyλ) < ε for some λ ∈ Λ \ {0}}∣∣ ≤ E εα|B| .
Proof of Theorem 1.3 modulo Theorem 5.1. Using a permutation without loss of
generality, one can assume that T1 ≤ T2 ≤ · · · ≤ Tn. Now let ε as in Theorem 1.3.
It is easy to verify that if one defines a(i)

ν ’s and a∗ν as in the setting of beginning of
this section, they satisfy conditions of Theorem 5.1. Hence Theorem 5.1 provides
us with a neighborhood V and a positive number α. Using the discussion at the
beginning of this section and the fact that c(x) ≤ ‖x‖κS , one sees that α/κ and V
satisfy the conditions of Theorem 1.3. �

6 Proof of Theorem 5.1

In this section, using the following generalization of [KlM, §4] proved in [KlT, §5],
we will prove Theorem 5.1. Before stating the theorem, let us recall the notion of
norm-like map (see [KlT, §6]).
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Definition 6.1. Let Ω be the set of all discrete ZS-submodules of
∏

ν∈S Qmν
ν .

A function θ from Ω to the positive real numbers is called a norm-like map if the
following three properties hold:

(i) For any ∆,∆′ with ∆′ ⊆ ∆ and the same ZS-rank, one has θ(∆) ≤ θ(∆′).
(ii) For any ∆ and γ �∈ ∆QS

, one has θ(∆ + ZSγ) ≤ θ(∆)θ(ZSγ).
(iii) For any ∆, the function g �→ θ(g∆) is a continuous function of g ∈

GL
(∏

ν∈S Qmν
ν

)
.

Theorem 6.2. Let B = B(x0, r0) ⊂
∏

ν∈S Qdν
ν and B̂ = B(x0, 3mr0) for m =

minν (mν). Assume that H : B̂ → GL(
∏

ν∈S Qmν
ν ) is a continuous map. Also let θ

be a norm-like map defined on the set Ω of discrete ZS-submodules of
∏

ν∈S Qmν
ν ,

and P be a subposet of Ω. For any Γ ∈ P denote by ψΓ the function x �→ θ(H(x)Γ)
on B̂. Now suppose for some C,α > 0 and ρ > 0 one has

(i) for every Γ ∈ P, the function ψΓ is (C,α)-good on B̂;
(ii) for every Γ ∈ P, supx∈B ‖ψΓ(x)‖S ≥ ρ;

(iii) for every x ∈ B̂, #{Γ ∈ P | ‖ψΓ(x)‖S ≤ ρ} <∞.

Then for any positive ε ≤ ρ one has∣∣{x ∈ B | θ(H(x)λ) < ε for some λ ∈ Λ � {0}}∣∣ ≤ mC
(
N((dν ),S)D

2)m( ε
ρ

)α|B| ,
where D may be taken to be 3d∞∏

ν∈Sf
(3pν)dν , and N((dν ),S) is the Besicovitch

constant for the space
∏

ν∈S Qdν
ν .

To this end, we need to define a poset P, a norm-liked map θ, a family H of func-
tions, and verify the conditions of Theorem 6.2 for our choices of P, θ, and any func-
tion H in H. We shall start with introducing a norm-like map θ from

∏
ν∈S

∧
Qmν

ν

to R+, and then “restrict” it to the poset of discrete ZS-submodules of
∏

ν∈S Qmν
ν .

For each ν ∈ S let I∗ν be the ideal generated by e∗iν ∧ e∗jν , for 1 ≤ i, j ≤ dν , and πν be
the natural map from

∧
Qmν

ν to
∧

Qmν
ν /I∗ν . Define θν(xν) = ‖πν(xν)‖πν(Bν), where

Bν is the standard basis of
∧

Qmν
ν , and let θ(x) =

∏
ν∈S θν(xν). For any discrete ZS-

submodule ∆ of
∏

ν∈S Qmν
ν , let θ(∆) = θ

(
x(1)∧· · ·∧x(r)

)
, where

{
x(1), . . . ,x(r)

}
is a

ZS-base of ∆. Using the product formula, it is easy to see that θ(∆) is well-defined,
and it is a norm-like map. Now let P be the poset of primitive ZS-submodules of Λ,
where Λ is defined in setion 4. Let H be the family of functions

H : U =
∏
ν∈S

Uν → GL
(∏

ν∈S

Qmν
ν

)
where H(x) = DUx ,

for any D satisfying conditions of Theorem 5.1. Since the restriction of θ to
∏

ν∈SQmν
ν

is the same as the function c, to prove Theorem 5.1, it suffices to find a neighborhood
V of x and establish the following statements for such V.

(I) There exist C,α > 0, such that all the functions y �→ θ(H(y)∆), where H ∈ H
and ∆ ∈ P are (C,α)-good on V.

(II) For all y ∈ V and H ∈ H, one has #{∆ ∈ P| θ(H(y)∆) ≤ 1} <∞.
(III) For every ball B ⊆ V, there exists ρ > 0 such that supy∈B θ(H(y)∆) ≥ ρ for

all H ∈ H and ∆ ∈ P.
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We now verify (I)–(III) which will finish the proof of the Theorem 1.3.
Proof of (I). Let rankZS

∆ = k ≤ n + 1, and let (D∆)ν be the Qν-span of the
projection of D∆ to the ν place; then by Lemma 2.2 dimQν (D∆)ν = k, for any
ν ∈ S. We choose an orthonormal set x(1)

ν , . . . , x
(k−1)
ν ∈ (D∆)ν ∩Wν ⊕ Qνe

n
ν . By

adding e0ν and possibly another vector x(0)
ν from (D∆)ν ⊕ Qνe

0
ν to the set of x(i)

ν ’s,
we can get an orthonormal base of (D∆)ν ⊕Qνe

0
ν . Let

{
y(1), . . . ,y(k)

}
be a ZS-base

of ∆. Therefore θ(D∆) = θ(DY), where Y = y(1) ∧· · ·∧y(k). Take aν , bν ∈ Qν such
that

(DY)ν = aνe
0
ν ∧ x(1)

ν ∧ · · · ∧ x(k−1)
ν + bνx

(0)
ν ∧ · · · ∧ x(k−1)

ν .

Let ∇∗ḡ(xν) =
∑dν

i=1 ∂iḡ(xν)e∗iν , for any function ḡ from an open subset of Qdν
ν

to Qν , and define ∇̃∗(g)(x) = g1(x)∇∗g2(x) − g2(x)∇∗g1(x), where g1 and g2 are
two functions from an open subset of Qdν

ν to Qν , and g(x) = (g1(x), g2(x)). Let us
also define f̂(x) = (f̂ν(xν))ν∈S , where

f̂ν(xν) =
(

1, 0dν ,
a

(1)
ν

a
(0)
ν

f (1)
ν (xν), . . . ,

a
(n)
ν

a
(0)
ν

f (n)
ν (xν)

)
.

In this setting it is easy to see that

(DUxD−1)νw = w +
(
f̂ν(xν) · w

)
e0ν +

a
(0)
ν

a∗ν
∇∗(f̂ν(xν)w

)
,

whenever w is in Wν ⊕Qνe
n
ν . Therefore, we have

πν

(
(H(x)Y)ν

)
=
(
aν + bν f̂ν(xν)x(0)

ν

)
e0ν ∧ x(1)

ν ∧ · · · ∧ x(k−1)
ν + bνx

(0)
ν ∧ · · · ∧ x(k−1)

ν

+ bν

k−1∑
i=1

±(f̂ν(xν)x(i)
ν

)
e0ν ∧

∧
s �=i

x(s)
ν + bν

a
(0)
ν

a∗ν

k−1∑
i=0

±∇∗(f̂ν(xν)x(i)
ν

) ∧∧
s �=i

x(s)
ν

+
a

(0)
ν

a∗ν

k−1∑
i=1

±∇̃∗(f̂ν(xν)x(i)
ν , aν + bν f̂ν(xν)x(0)

ν

) ∧ e0ν ∧ ∧
s �=0,i

x(s)
ν

+ bν
a

(0)
ν

a∗ν

k−1∑
i,j=1, j>i

±∇̃∗(f̂ν(xν)x(i)
ν , f̂ν(xν)x(j)

ν

) ∧ e0ν ∧ ∧
s �=i,j

x(s)
ν . (5)

By the choice of x(i)
ν ’s, norm of the above vector would be the maximum of norms

of each of its summands. Using the fact that maximum of a family of (Cν , αν)-
good functions is again a (Cν , αν)-good function, it suffices to show that the norm
of each of these summands is a (Cν , αν)-good function for a fixed Cν and αν . By
Theorem 4.6, we find a neighborhood V 1

ν of xν , C1
ν and α1

ν > 0 such that the first
two lines would be (C1

ν , α
1
ν)-good functions on V 1

ν . Also, Theorem 4.7 provides us
a neighborhood V 2

ν of xν , C2
ν , and α2

ν > 0 so that the rest would be (C2
ν , α

2
ν)-good

functions. Hence Corollary 2.3 of [KlT] gives us the claim.
Proof of (II). By looking at the first line of the equation (5), one can see that
θ(DUx∆) ≥∏ν∈S max

{|aν + bν f̂ν(xν) ·x(0)
ν |, |bν |

}
. Thus θ(DUx∆) ≤ 1 implies that∏

ν∈S max{|aν |, |bν |} has an upper bound. Therefore using Corollary 7.9 of [KlT],
we would get the finiteness of such ∆’s, as we claimed.
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Proof of (III). Let V be the neighborhood of x given by Theorem 4.7, B ⊆ V be a
ball containing x,M, ρ1, ρ2, and ρ3 be as follows:

ρ1 = inf
{|fν(xν) · Zν + z0

ν |ν | x ∈ B , ν ∈ S , Zν ∈ Qn
ν , ‖Zν‖ = 1 , z0

ν ∈ Qν

}
,

ρ2 = inf
{

sup
x∈B

∥∥∇fν(xν)Zν

∥∥ | ν ∈ S , Zν ∈ Qn
ν , ‖Zν‖ = 1

}
,

and ρ3 is given by Theorem 4.7(a), and M = supx∈B max{‖f(x)‖S , ‖∇f(x)‖S}.
If rankZS

∆ = 1, then ∆ can be represented by a vector w = (wν)ν∈S , with
wi

ν ∈ ZS for all i’s and for any ν ∈ S. The first coordinate of DUxw is then equal to(
1

a
(0)
ν

(
w(0)

ν +
n∑

i=1

f (i)
ν (xν)w(i)

ν

))
ν∈S

.

Therefore c(DUxw) ≥ ρκ
1 since

∣∣a(0)
ν

∣∣ ≤ 1.
Now assume rankZS

∆ = k > 1. As in part (I), let us denote the Qν span of
the projection to ν place of ∆ by ∆ν. Let x(1)

ν , . . . , x
(k−2)
ν be an orthonormal set

in Wν ∩∆ν . We extend this to an orthonormal set in (Wν ⊕Qνe
n
ν ) ∩∆ν by adding

x
(k−1)
ν . Now if necessary choose a vector x(0)

ν to complete
{
e0ν , x

(1)
ν , . . . , x

(k−1)
ν

}
to

an orthonormal basis of ∆ν + Qνe
0
ν .

Let
{
y(1), . . . ,y(k)

}
be a ZS-base of ∆, and define Y = y(1) ∧ · · · ∧ y(k). Since

Dν leaves Wν ,W
∗
ν ,Qνe

0
ν , and Qνe

n
ν invariant, one has

θ(DUx∆) = θ(DUxY) =
∏
ν∈S

θν(DνUν
xYν) =

∏
ν∈S

∥∥Dνπν(Uν
xYν)

∥∥
ν
.

On the other hand, similar to the discussion in (I), there are aν , bν ∈ Qν so that

Yν = aνe
0
ν ∧ x(1)

ν ∧ · · · ∧ x(k−1)
ν + bνx

(0)
ν ∧ · · · ∧ x(k−1)

ν .

Note also that
∏

ν∈S{|aν |ν , |bν |ν} ≥ 1. Similar to the argument of [BeKM, §7], let
f̌(x) = (f̌ν(xν))ν∈S , where

f̌ν(xν) =
(
1, 0dν , f

(1)
ν (xν), · · · , f (n)

ν (xν)
)
,

we would have

πν(Uν
xYν) =

(
aν + bν f̌ν(xν)x(0)

ν

)
e0ν ∧ x(1)

ν ∧ · · · ∧ x(k−1)
ν + bνx

(0)
ν ∧ · · · ∧ x(k−1)

ν

+ bν

k−1∑
i=1

±(f̌ν(xν)x(i)
ν

)
e0ν ∧

∧
s �=i

x(s)
ν + bν

k−1∑
i=0

±∇∗(f̌ν(xν)x(i)
ν ) ∧

∧
s �=i

x(s)
ν

+ e0ν ∧ Y̌ν(xν) ,

where

Y̌ν(xν) =
k−1∑
i=1

±∇̃∗(f̌ν(xν)x(i)
ν , aν + bν f̌ν(xν)x(0)

ν

) ∧ ∧
s �=0,i

x(s)
ν

+ bν

k−1∑
i,j=1, j>i

±∇̃∗(f̌ν(xν)x(i)
ν , f̌ν(xν)x(j)

ν

) ∧ ∧
s �=i,j

x(s)
ν .
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In order to find a lower bound ρ for supx∈B θ(DUxY), it suffices to show that
sup

∏
ν∈S ‖Dν Y̌ν(xν)‖ν is not less that ρ

∏
ν∈S |a(0)

ν |ν . Now consider the product
en ∧ Y̌(x). Our next task is to show

sup
∏
ν∈S

∥∥enν ∧ Y̌ν(xν)
∥∥

ν
≥ ρ . (∗)

Assume that (∗) holds and let us finish the proof. Since the eigenvalue with the small-

est norm ofDν onW ∗
ν∧
(∧k−1(Qνe

0
ν⊕Wν⊕Qνe

n
ν )
)

is equal to (a(∗)
ν a

(n−k+2)
ν · · · a(n)

ν )
−1
,

using ‖Dν(enν ∧ Y̌ν(xν))‖ν ≤ ‖Dν Y̌ν(xν)‖ν/|a(n)
ν |ν , one has∏

ν∈S

∥∥DνY̌ν(xν)
∥∥

ν
≥
∏
ν∈S

∣∣a(n)
ν

∣∣
ν

∥∥Dν(enν ∧ Y̌ν(xν))
∥∥

ν

≥
∏
ν∈S

∣∣a(n)
ν

∣∣
ν∣∣a(∗)

ν a
(n−k+3)
ν · · · a(n)

ν

∣∣
ν

∥∥enν ∧ Y̌ν(xν)
∥∥

ν

≥ ρ
∏
ν∈S

∣∣a(0)
ν

∣∣
ν∣∣a(0)

ν a
(∗)
ν a

(n−k+3)
ν · · · a(n−1)

ν

∣∣
ν

≥ ρ
∏
ν∈S

∣∣a(0)
ν

∣∣
ν
,

as we wanted. Thus it suffices to show (∗). To that end for any place ν ∈ S select
the term containing x(1)

ν ∧ x(2)
ν · · · ∧ x(k−2)

ν , then one has

enν ∧ Y̌ν(xν) = ±z(∗)
ν (xν) ∧ enν ∧ x(1)

ν ∧ x(2)
ν · · · ∧ x(k−2)

ν +
other terms where one
or two x(i)

ν are missing,

where

z(∗)
ν (xν) = ∇̃∗(f̌ν(xν)xk−1

ν , aν + bν f̌ν(xν)x(0)
ν

)
= bν∇̃∗(f̌ν(xν)xk−1

ν , f̌ν(xν)x(0)
ν )− aν∇∗(f̌ν(xν)x(k−1)

ν

)
.

Using the first expression it follows that supxν∈Bν

∥∥z(∗)
ν (xν)

∥∥
ν
≥ ρ3|bν |ν , where the

second expression gives, supxν∈Bν

∥∥z(∗)
ν (xν)

∥∥
ν
≥ ρ2|aν |ν −2M2|bν |ν . It is easy to see

that there exists ρ0 such that

max
{
ρ2|aν |ν − 2M2|bν |ν , ρ3|bν |ν

} ≥ ρ0 ·max
{|aν |ν , |bν |ν

}
.

Therefore ρ = ρκ
0 satisfies the conditions of the theorem.

7 Proof of the Main Theorem

Take x0 ∈ U. Choose a neighborhood V ⊆ U of x0 and a positive number α, as
in Theorem 1.3, and pick a ball B =

∏
ν∈S Bν ⊆ V containing x0 such that the

ball with the same center and triple the radius is contained in U. We prove that
B ∩W f

R,Ψ has measure zero. For any q ∈ Rn, let

Aq =
{
(xν)ν∈S ∈ B

∣∣ |〈(fν(xν))ν∈S · q〉| < Ψ(q)
}
.
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We shall proceed by induction on n. For n = 1 set Q = R\{0} and for n ≥ 2, by the
induction hypothesis, it would be enough to deal with the set Q = {(qν)ν∈S ∈ Rn |
q
(i)
ν �= 0 for any ν and i}, i.e. the set of vectors with non-zero coordinates, namely

we have to prove that the set of points x in B which belong to infinitely many Aq

for q ∈ Q has measure zero. Now let

A≥q =
{
x ∈ Aq

∣∣∣ ∥∥q∇f(x)
∥∥

ν
> ‖q‖−ε

S ν ∈ SRc∥∥q∇f(x)
∥∥

ν
> ‖q‖1−ε

S ν ∈ SR

}
and

A<q = Aq \A≥q .

For any t = (t1, . . . , tn) ∈ Nn, let

Ā≥t =
⋃

q∈Q,2ti≤|q(i)|<2ti+1

A≥q and Ā<t =
⋃

q∈Q,2ti≤|q(i)|<2ti+1

A<q .

It is clear that the union of Aq’s where q varies in Q is the same as the union of the
Ā≥t’s and Ā<t’s where t varies in Nn.

By the conditions posed on Ψ, we have
(i) If for any i one has 2ti ≤ ∣∣q(i)∣∣

S
< 2ti+1 , then Ψ(q) ≤ Ψ(2t1 , . . . , 2tn).

(ii) For large enough ‖q‖, we have Ψ(q) ≤ (∏i |q(i)|S
)−g(R).

These show Ā≥t is a subset of the set defined in Theorem 1.2 with Ti = 2ti+1 and
δ = 2g(R)

∑n
i=1(ti+1)Ψ(2t1 , . . . , 2tn). Now one notes that the convergence of the sum∑

Ψ(q) gives that of
∑

2g(R)
∑n

i=1(ti+1)Ψ(2t1 , . . . , 2tn). So Borel–Cantelli lemma
gives us that almost all points of U are in at most finitely many Ā≥t, as we desired.

As we said Ψ(q) ≤ (∏i |q(i)|S
)−g(R) for large enough ‖q‖S . So if for any i one

has 2ti ≤ ∣∣q(i)∣∣
S
< 2ti+1 , then Ψ(q) ≤ 2−g(R)

∑n
i=1 ti , for large enough ‖t‖. Now for

such t we may write Ā<t = ∪ν∈SĀ<t,ν where each Ā<t,ν is contained in set defined

in 1.3, with δ = 2
−g(R)

∑n
i=1 ti

κ , Ti = 2ti+1 and

Kν = 2(1−ε)(‖t‖+1) if ν ∈ SR , Kν = 2−ε‖t‖ if ν ∈ SRc ,

Kω = 2‖t‖+1 if ω ∈ SR \ {ν} , Kω = 1 if ω ∈ SRc \ {ν} .
It is not hard to verify the inequalities in the hypothesis of Theorem 1.3. Moreover,
one has

εκ(n+1) = max
{
δκ(n+1), δκ

(
T1 · · ·Tn

max Ti

)g(R) ∏
ν∈S

Kν

}
= δκ

(
T1 · · ·Tn

maxTi

)g(R) ∏
ν∈S

Kν ,

So we have ε ≤ C ′2
−ε‖t‖

κ(n+1) for some constant C ′ depending on f . So by Theorem 1.3,
and the choice of V and B, measure of Āt is at most

C2
− αε‖t‖

(n+1)κ2 |B| .
Therefore the sum of measures of Ā<t’s is finite, thus another use of Borel–Cantelli
lemma completes the proof.
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8 A Few Remarks and Open Problems

1. In this article, we worked with product of non-degenerate p-adic analytic
manifolds. Historically this is the case which has drawn most attention. However
most of the argument is valid for the product of non-degenerate Ck manifolds. The
only part in which we use analyticity extensively is in the proof of Lemma 4.8.

2. In this paper, we studied analytic manifolds containing a real analytic compo-
nent. In [MoS], we prove a convergence Khintchine-type theorem for simultaneous
approximation in non-Archimedean places. There we also prove the divergent part
in the p-adic case. The following is an important corollary of the main results of
loc. cit.
Theorem 8.1. Let M ⊆ Qn

p be a p-adic non-degenerate analytic manifold. Suppose
Ψ : Zn \ {0} → (0,∞) is a function of norm and decreasing in terms of norm. Then
almost every (resp. almost no) point of M is Ψ-Approximable if

∑
q∈Zn Ψ(q) = ∞

(resp.
∑

q∈Zn Ψ(q) <∞).
3. Both here and in [MoS], we consider homogeneous diophantine approximation,

namely we are approximating zero. One can consider the inhomogeneous problem.
As we mentioned in the introduction, Bernik and Kovalevskaya [BeK] proved the
inhomogeneous problem for the Veronese curve in product of local fields, i.e. C ×
R×∏p∈S Qp. It would be interesting if the inhomogeneous problem could be proved
for non-degenerate manifolds.

4. As we recalled in the introduction, historically there are two kinds of Dio-
phantine approximations. One of them is coming from the dot product which is the
question that we considered, and the other one is simultaneous approximation of
each of the components.
Problem 8.2. Let �f = (f1, . . . , fn), where fi’s are analytic functions from an open
subset U of Rd to R and 1, f1, . . . , fn are linearly independent. Let ψ be a decreasing
map from Z to R+. Define

Wf,ψ =
{
x ∈ U

∣∣ ‖q �f(x) + �p‖ < ψ(q) for infinitely many q ∈ Z and �p ∈ Zn
}
.

Then Wf,ψ is null (resp. co-null) if
∑

q∈Z ψ(q)n is convergent (resp. divergent).
For a general ψ very little is known. However there are partial results in this

direction, e.g. Dodson, Rynne, Vickers [DRV] proved the convergence Khintchine-
type theorem for a non-degenerate manifold M which is 2-convex at almost every
point, i.e. at almost every point ξ for any unit vector v ∈ TξM , at least two of the
principal curvatures τi(ξ, v), are non-zero and have the same sign. Much more is
known for the case of planar curves ref. [BDVV], where they settled the divergence
case for C3-planner curves and the convergence case for rational quadratic curves.
However even the case of the curve (x, x2, x3) is still open.
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