
SINGULARITIES, EXPANDERS AND TOPOLOGY OF MAPS.
PART 1: HOMOLOGY VERSUS VOLUME IN THE SPACES OF

CYCLES

Mikhail Gromov

Abstract. We find lower bounds on the topological complexity of the critical (values)
sets Σ(F ) ⊂ Y of generic smooth maps F : X → Y , as well as on the complexity
of the fibers F−1(y) ⊂ X in terms of the topology of X and Y , where the relevant
topological invariants of X are often encoded in the geometry of some Riemannian
metric supported by X .
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1 Corollaries and Background

The Morse theory tells you that the cardinality Ncrit = Ncrit(F ) of the critical value
set Σ = Σ(F ) ⊂ R of a generic smooth function on a closed n-dimensional manifold,
F : X → R, is bounded from below by the sum of the Betti numbers of X,

Ncrit ≥
∣∣H∗(X)

∣∣
F

=def
∑

i=0,1,...,n

rank
(
Hi(X; F)

)
,

where, recall, a point x ∈ X is called singular and the value (point) F (x) ∈ R is
called critical for F if the differential of F vanishes at x, and where the homology
groups Hi(X) = H i(X; F) may be taken with any coefficient field F.

If F ranges in Rm with m > 1, then the critical set (see 1.1) is a singular
subvariety Σ = Σ(F ) ⊂ Rm of codimension one and we introduce the following two
numerical invariants of Σ similar to Ncrit.

• The self-crossing number Nm = Nm(Σ) = Nm(F ) of the points in Σ of mul-
tiplicity m (see 1.1). For example, N1 = Ncrit for Morse functions; more generally,
if Σ equals the image of a smoothly immersed hypersurface Σ̂ this is the number of
the m-multiple self-intersection points of Σ̂;

•• The depth of Σ ⊂ Rm (see 1.2). This is the minimal number N such that
every point y ∈ Rm can be moved to infinity by a path which intersect Σ at most N
times. For example if Σ ⊂ R is a finite set (e.g. of critical values of a Morse function)
of cardinality 2N then dep(Σ) = N .

Below are examples of our “higher codimensional Morse inequalities”, where the
(mostly standard) definitions are detailed in 1.1 and 1.2 after the statements.

Let F : X → R2 be a generic (C∞-stable in the present case) smooth
map, such that the restriction of F to the (1-dimensional) singularity
Σ̂ ⊂ X of F is an immersion. Then the number N2 = N2(Σ) of the
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self-crossings (double points) of the critical set Σ = Σ(F ) = F (Σ̂) ⊂ R2,
satisfies,
(A) N2(Σ) ≥ 1

2

∣∣H∗(X)
∣∣
F
− Ncomp(Σ)

where Ncomp denotes the number of the connected components of Σ ⊂ R2.

This is derived in 2.1 from the classical Morse inequality by composing F with a
suitable function f : R2 → R, where f is constructed with the aid of the Poincaré–
Benedicson theorem.

If X is the Cartesian product of two connected manifolds, X = X1 ×X2,
and F : X → R2 is a generic smooth map, then the depth of the critical
set Σ ⊂ R2 of F satisfies
(B) dep(Σ) ≥ 1

6 min
(
|H∗(X1)|F, |H∗(X2)|F]

)
.

This is proved in 2.2 by applying a Lyusternik–Schnirelmann type lower bound
to the homologies of the levels (fibers) of continuous maps of X to certain (sub)trees
in R2.

Let X be a closed n-dimensional manifold with a metric of constant neg-
ative curvature. If n = 3, then there exists a sequence of integers s → ∞
and a sequence of s-sheeted coverings Xs → X such that the critical set
Σ of every generic smooth map of each Xs to the plane, F : Xs → R2,
satisfies
(C) dep(Σ) ≥ εs

and
(D) N2(Σ) ≥ εs2

for some ε = ε(X) > 0.

These inequalities are proved in 6.3 by studying certain families of surfaces G(y)
in expander coverings Xs of X, such that maxy area(G(y)) ≥ const ·s. Then these
surfaces are simultaneously minimized in some way which makes

max
y

genus(G(y)) ≥ max
y

genus
(
Gmin(y)

)
≥ const′ ·max

y
area

(
Gmin(y)

)
≥ max

y
area(G(y)) .

This, applied to levels of maps of Xs to graphs Y , yields (C), while the proof of
(D) also relies on the separator theorem for planar graphs (see 6.6).

Our argument also delivers
lower bounds on the (Heegard) genera of 3-manifolds in terms of the
volumes and the spectra of (the Laplacians on) their hyperbolic Thurston
components,

and similarly
lower bounds on the crossing numbers of (diagrams of) links and knots
in S3 (see 6.3, 6.4).
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If n > 3, we prove similar but much weaker inequalities for maps X → Rm,
m = n − 1,
(F) dep(Σ) ≥ εsα for 1 > α = α(n) > 0 and Nm(Σ) ≥ εs ,

where the first inequality is proved for coverings Xs with Inj Rad(Xs) ≥ const · log(s)
similarly to (C) while the second one is obtained in 3.3 with the bound ‖Xs‖∆ ≤
const ·Nm on the simplicial volume ‖Xs‖∆, where one knows that ‖Xs‖∆ = s‖X‖|∆.

In the course of the proof of (C)–(F), we shall introduce certain topological
invariants similar to the simplicial volume which allow, for instance, new examples
of closed hyperbolic n-manifolds, n = 3, 4, . . ., say Xn

0 and Xn
i , i = 1, 2, . . ., where

vol(Xn
i ) → ∞ for i → ∞ and where no Xn

i admits a map to Xn
0 of non-zero degree.

Acknowledgments. I want to thank Larry Guth who explained his results to me,
some of them contradicting (incorrect) statements in the first draft of this paper.
I am also thankful to the anonymous referees who pointed out many errors and
inconsistencies in the paper and suggested improvements of the exposition, and to
Miriam Hercberg for her help in proofreading the paper.

1.1 Genericity, singularities, critical sets, folds and their self-crossing
numbers Nm.

Definition of Σ̂ and Σ. The singularity Σ̂(F ) ⊂ X of a smooth map F : X → Y ,
for dimY ≤ dimX +1, is the set of the points in X where the rank of the differential
of F is < m dim Y , while the image of Σ̂, called the critical set, is denoted by
F (hatΣ(F )) = Σ(F ) ⊂ Y .

Self-crossing of Σ = Σ(F ). If F is generic, i.e. is a member of some open
dense subset in the space of smooth maps X → Y , then both Σ̂ and Σ have dimen-
sions equal to dim(Y ) − 1, where the map F sends Σ̂ onto Σ finite-to-one.

Both sets may be rather singular but Σ is more complicated than Σ̂ due to
(self-)crossing, also called self-intersection, of the singularity in Y where the map F ,
which is finite-to-one on but not necessarily one-to-one on Σ̂: the cardinality of the
pullback in Σ̂ of each y ∈ Σ can be anything between 1 and m dim(Y ) for generic
maps F .

The number Nm = Nm(F ) of points of the maximal multiplicity (of self-intersec-
tions of Σ̂ mapped by F to Y ) i.e. of the points with m pullbacks in Σ̂ is finite for
generic maps of compact manifolds X. If m = 1 this is just the number of critical
points of F .

Our basic problem is finding lower bounds on Nm in terms of suitable
topological invariants of X.

Also define the local multiplicity µ(Σ, y), y ∈ Σ as the multiplicity of a generic
smooth map Y → Rm−1 on Σ near y and observe that the m-multiple points of the
previous definition have local multiplicity m for generic maps F .

The local topology of F is constant on X away from Σ̂: it is equivalent to the
projection Rn = Rn−m × Rm → Rm for n dimX ≥ m dim Y (if m = n + 1 then
Σ = X) and, if X is a compact manifold without boundary (more generally, if F is
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a proper map), then the global topology of the fibers (levels) F−1(y) ⊂ X, y ∈ Y ,
can change only at the critical points y ∈ Σ ⊂ Y , where the rank of H∗(F−1(y))
changes by ±2 as you transversally cross Σ at a simple (i.e. multiplicity 1) point in
the image of the folding locus (stratum) Σ̂1 ⊂ Σ̂ (see below) of F .

The singularity Σ̂ of a generic map F , contains the principal stratum Σ̂1 ⊂ Σ̂,
such that the complement Σ̂ \ Σ̂1 ⊂ Σ̂ is a closed subset of codimension (at least)
1 in Σ̂ and such that F folds along Σ̂1 ⊂ X according to the following definitions.

Equidimensional folded maps. An equidimensional map X → Y is called
(purely) folded if it is locally diffeomorphic away from some smooth hypersurface
Σ̂1 ⊂ X, where the restriction of F to Σ̂1 is a smooth immersion (i.e. it has non-
vanishing differential) and where the map is locally two-to-one at the points in X
that are close to Σ̂1 but not lying in Σ̂1: every small ball in X centered in Σ̂1 is
folded by F along Σ̂1 to a small half-ball in Y . Finally, one adds an extra technical
condition (that ensures the smooth stability of foldings): the second differential of F
does not vanish on the kernel of the first differential. (This condition does not affect
the topology of the map; also it can always be achieved by a small perturbation.)

Every folded map between n-dimensional manifolds is locally equivalent (by local
diffeomorphisms of both manifolds) to (x1, x2, x3, . . . , xn) �→ (x2

1, x2, x3, . . . , xn).
The set of folded maps is open but not dense in the space of all smooth maps: a

small smooth perturbation of a purely folded map remains purely folded due to the
above technical condition; but there are other classes of generic smooth maps that
have more drastic singularities, such as the cuspidal submanifold Σ̂′

1 ⊂ Σ̂, where the
map of Σ̂ → Y fails to be a smooth immersion (but remains a topological immersion,
i.e. it is locally one-to-one on Σ̂).

Self-transversal foldings. Every folded map can be smoothly perturbed,
such that all self-intersections of it become transversal and the fold becomes a smooth
immersed hypersurface with transversal self-crossing in Y . The multiplicity of the
self-transversal fold intersection at y equals the local multiplicity µ(Σ, y).

Foldings with a drop in dimension. The notion of a folded map is defined
whenever dim(Y ) = m ≤ n = dim X as follows.

If Y = R, then “folding” is equivalent to “Morse”: the function (map) F is locally
equivalent, by a local diffeomorphism of X, to a non-singular quadratic function
on Rn; in general, a folded map is locally equivalent, by local diffeomorphisms of X
and Y , to the Cartesian sum of the identity map on Rm−1 and a Morse function on
Rn−m+1,

Rn = Rm−1 × Rn−m+1 → Rm−1 × R = Rm.

Thus the singularity Σ̂ = Σ̂1 ⊂ X of a purely folded map is a smooth submanifold
of dimension m − 1 dim(Y ) − 1, the restriction of F to Σ̂ is a smooth immersion
while the fold itself, i.e. the critical set of a folded map is an immersed hypersurface
in Y . Generically the fold has transversal self-crossing. For instance, if Y = R, then
self-transversal foldings are just Morse functions where the transversality amounts
to the simplicity of their critical values.
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Product Example: Folds associated to Morse functions. Let X0 ⊂ Y
be a smooth (co)oriented hypersurface and F ′ : X ′ → R a Morse function. Then the
obvious map F : X0×X ′ → X0×R = Y0 ⊂ Y , for some split neighborhood Y0 ⊃ X0,
folds along several smooth disjoint hypersurfaces Xi = X0 × ri ⊂ X0 × R = Y0 ⊂ Y
that correspond to the critical values ri ∈ R of F ′. Observe that the fold of this F
is embedded to Y , and thus, has no multiple points at all.

Maps to surfaces. Let dim(Y ) = 2, e.g. Y = R2, where X may have any
dimension n ≥ 2. One knows that Σ̂(F ) ⊂ X of a generic smooth map F is a
smooth curve in X, a union of several smooth circles, while its F -image Σ(F ) ⊂ Y
is a curve that is smooth away from finitely many transversal self-crossing points that
are the double points of the map F on Σ̂(F ); also this curve may have, for generic F
(generic as maps of X not of Σ̂) finitely many cuspidal points corresponding to the
vanishing points of the differential of the map F restricted to Σ̂(F ) ⊂ X. The part
of this curve away from the cusps is called the folding locus (folding line for m = 2)
of F .
Examples. (a) Take a connected 2-manifold X0 with the boundary consisting of
g+1 smooth circles. Then the double X of X0 is a closed surface of genus ≥ g which
is naturally two-to-one mapped to X0 with the fold made of the boundary circles.
Thus every surface of genus g, represented as the double of a plane domain, admits
a map to the plane (i.e. to Y = R2) where the critical set consists of g + 1 disjoint
(non-singular) folding circles in the plane.

(b) Represent the 2-torus minus a disc, denoted X0, as a narrow band around
the figure ∞ made of a meridian and a parallel in the torus. This X0 admits an
immersion F0 into the plane narrowly following that of the figure ∞ that is sent to
the plane with a single self-intersection point (where the meridian meets the parallel)
away from the native singular point. The boundary circle of this immersion has four
self-crossing points; thus the double of F0 gives us a map F of the surface X of genus
two to the plane with a single non-cuspidal folding line having four double points.

(c) The above folded map F of the closed surface X of genus 2 to R2 naturally
extends to a smooth regular map of the 3-ball with two handles (that is homeo-
morphic to X0 × [0, 1]), denoted X1, with the boundary identified with X, where
“regular” means the absence of the singular set. Finally the double X2 of X1, now
a closed 3-manifold – the 3-sphere with two handles, goes to the plane where it has
the same critical set as F that is the folding line with four self-crossings.

1.2 Depth of the critical set Σ(F ) and Leray bound on homology. As-
sume that Y is an open connected manifold, Σ ⊂ Y is compact and consider smooth
paths in Y which start at the points in the complement Y \ Σ and that cross Σ
transversally at non-singular points, i.e. at simple points of the folding part of Σ.
Denote by dep(Σ) the minimal number of crossings needed to go from every point
to infinity in Y by such a path. Clearly, this depth does not exceed the number of
bounded components in Y \ Σ, that, in turn, is bounded by rank(Hm−1(Σ)).



GAFA HOMOLOGY VERSUS VOLUME IN THE SPACES OF CYCLES 749 

This depth may serve as an alternative to Nm generalization of the number of
critical points of a Morse function F , since dep(Σ(F )) equals one half of the number
N of the critical points of F if this number is even and 1

2(N + 1) if N is odd.
The depth of Σ is easier to bound from below than Nm but rankH∗(X) is not

sufficient for this purpose as is seen from the
Product Example. Let F : X = X0 ×X ′ → X0 ×R = Y0 ⊂ Y , where Y0 is open
in Y , be associated to a Morse function X ′ → R (see above) with N critical points.
If Y is an open manifold connected at infinity and X0 is a closed hypersurface that
bounds in Y (e.g. Y = Rm for m ≥ 2), then dep(Σ(F )) = N (regardless of the
“topological size” of the X0-factor of X).

On the other hand, we obtain lower bounds on this depth with several kinds of
invariants that are “stronger” than rankH∗(X) and that provide lower bounds on
the maximum of rankH∗ of the fibers Xy = F−1(y) of F over y ∈ Y , see 2.2, 2.4.

Let us look at these more closely at more comprehensive invariants of Σ that
may serve better than Nm and/or dep(Σ) for bounding the topology of X.

Strata adjacency complex Υ(F ). The set of the connected components S
of the strata of Σ(F ) make a partially ordered set, where S1 ≺ S2 if S1 is con-
tained in the closure of S2 and its simplicial realization, called the (strata) adjacency
complex, Υ(F ) carries the essential combinatorics of the singularity. Observe that
dim(Υ(F )) ≤ dim Y and that there is a natural map Y → Υ(F ), that sends each S
to the star of the corresponding vertex in Υ(F ). This map is unique up to homotopy.

The above depth of Σ is, essentially, the diameter of the 1-skeleton of Υ(F ).
Example. If F is a purely folded map with a transversal self-crossing of the fold,
then dim(Υ(F )) equals the maximal multiplicity of the self-crossing.

Topology of the fibers. Let F : X → Y be a self-transversal folding of a
closed n-manifold and denote by Σk ⊂ Y , k = 0, . . . ,dim(Y ), the set of points
of multiplicity k, i.e. where Σ(F ) self-intersects with multiplicity k (agreeing that
Σ0 = F (X) \ Σ). Every Σk ⊂ Y is a smooth locally closed (m − k)-dimensional
submanifold for m dim(Y ) and the fiber F−1(y) over each point y ∈ Yk is a smooth
(n − m)-manifold away from k isolated singular points; F−1(y) looks exactly like a
singular level of a Morse function on an m-manifold over a critical point (value) of
multiplicity k.

The map F is a fibration over every Σk but the topology of a fiber changes as one
goes from one Σk to another. In fact, if a smooth path P of points y in the closure
of Σk transversally passes through Σk+1, the fiber over y undergoes a Morse surgery
where the relevant Morse function is the tautological map from F−1(P ) to P . Thus,
it follows from Morse theory that the sum of the Betti number of every non-singular
as well as every singular fiber is bounded by 2dep(Σ(F )).
Remark. The homology of singular fibers of more general smooth maps may
significantly exceed that of the smooth fibers. However, for generic smooth maps
F there is a universal bound on this excess: when a generic fiber degenerates to a
singular one, the Betti numbers may jump up by at most constn for n dim(X). In
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fact, each fiber of a generic map has at most m isolated singularities and by the
Thom stability theorem, the topology of a smooth map at each point in X is the
same as of its s-jet where s depends only on n. Such a jet is a certain polynomial map
of degree s and thus all its homological invariants are bounded in terms of s = sn.
(Probably, constn can be replaced by constm ∼ m, something like maxy∈Σ µ(Σ, y).)

Leray integration over Y . Consider all connected components of all Σk,
call them Sj , denote by X̂j their pullbacks and observe that the sum of the Betti
numbers of X is bounded by the sum of these of all X̂j , that is rank(H∗(X)) ≤∑

j rank(H∗(X̂j)) where the cohomology may be understood over an arbitrary coef-
ficient field. On the other hand, if an Sj is simply connected, then, by Leray spectral
sequence, rank(H∗(X̂j)) ≤ (rank(H∗(Sj)) · (rank(H∗(F−1(xj))), yj ∈ Sj , where, in
general, this product needs to be replaced by the rank of the cohomology of Sj in
the local system of the cohomology of the fibers varying over Sj. (The latter can be
bounded in terms of the cohomology of finite coverings of Sj). Thus

the sum NB of the Betti numbers of X is bounded by the “integral” of
those of the fibers over the (co)homology of Sj. In particular, NB is
bounded by the product of dep(Σ) by the sum of the Betti numbers of all
Σk (understood in the twisted sense if there are non-trivial local systems).

This Leray bound, however, applied to functions, is no match for the Morse
inequalities: it gives us 1

2N2
crit ≥

∑
rankHi(X) instead of Ncrit ≥

∑
rankHi(X).

Also the monodromy of the action of the fundamental groups of the strata on
the homologies of the fibers may significantly complicate the picture. For example,
take the double X0 of the complement of a knotted torus T in the 3-space naturally
folded at T . The homology of X0 is bounded by that of T via the Alexander duality,
but some finite covering X of X0, with mildly self-intersecting immersed torus as
the fold, may become homologically large.
Question. Denote by Nσ = Nσ(Σ) the minimal number of cells in the cell
decomposition of Y (or of the image F (X) ⊂ Y ) that are compatible with the
Σ(F )-stratification. What is the best bound on rankH∗(X) in term of Nσ? How
much do we gain (if at all) with the minimal number N∆ ≥ Nσ of simplices of the
triangulations of Y compatible with Σ?

We shall see in 2.1 that rank(H∗(X)) ≤ Nσ for generic maps X → R2 but it
remains unclear if, in general, rankH∗(X) ≤ const(n)N for maps to Rm≥3. (Appar-
ently, there is such a linear bound with the minimal number Nshell of simplices in
the shellable triangulations of Y compatible with Σ, where, observe, Nshell admits
a universal bound by some function Ωm(N∆); yet, Ωm cannot be bounded by a
recursive function for m ≥ 4.)

1.3 Inequalities with characteristic classes. The above indicates that one
cannot bound all of the topology of X in terms of Σ for dim(Y ) = m > 2 and our
purpose is to identify particular invariants of X properly reflected in Σ. One knows
in this respect that the singularity Σ̂(F ) ⊂ X, along with the differential of F on
the tangent bundle of X restricted to Σ̂(F ), carries an essential information on the
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characteristic classes of X. Here is the classical expression of the Euler class in terms
of singularities.

The second differential Q of F at a folding point x ∈ X, is a quadratic form on the
(n − m)-dimensional kernel of the first differential, for dimX = n ≥ m = dim(Y ),
where Q takes values, strictly speaking, not in R but in the coimage of the first
differential, where this coimage is conveniently identified with (co)normal bundle of
Σ ⊂ Y . Since the index ind(Q) = ∓1 of Q, defined by the parity of the number of
positive squares in Q, satisfies ind(Q) = (−1)m−n ind(−Q), this index behaves as a
locally constant function on the folding part of the singularity for odd m− n and it
gives a co-orientation to Σ ⊂ Y (i.e. orients the normal bundle) if m − n is even.

(A) Hopf formula for dim(Y ) odd. Let X be a closed manifold of even dimension
n and F : X → Y be a purely folded map. Denote by Σ̂+(F ) ⊂ X the union of those
components of Σ̂(F ) where ind(Q) = +1 and let Σ̂−(F ) be made of the components
where ind(Q) = −1. Then the Euler characteristics of Σ± satisfy,

χ(X) = χ
(
Σ̂+(F )

)
− χ

(
Σ̂−(F )

)
.

Proof. Take a generic non-vanishing covector field ϕ on Y (odd-dimensional mani-
folds carry non-vanishing fields); compare the sum of the indices of its zeros on Σ
with those of the lift of ϕ to X and equate these sums to the Euler characteristic
according to Poincaré formula.

(B) dim(Y ) is even. The same argument applies if Y admits a non-vanishing
field (more generally, if the Euler class of Y pulls back to zero in the cohomology
of X) but the right-hand side of Hopf formula needs to be modified as the Euler
characteristics of all components of the singularity vanish for dim(Σ̂(F )) odd. The
sum of the indices of the zeros of ϕ on Σ defines some kind of a tangential degree
δ(Σ) depending on the co-orientation of Σ̂; if Y = Rm this is twice the degree of the
tangential (Gauss) map of Σ̂ to the sphere Sm−1.

Corollary. The Euler characteristics of an even-dimensional manifold X folded
in Y = Rm along Σ, is bounded, by the k-weighted sum of the Betti numbers bk of
the subsets (strata) Σk, k = 1, 2, . . . , of k-multiple self-intersections of Σ,

|χ(X)| ≤
∑

k

kbk .

Proof. An immersed cooriented transversally self-intersecting hypersurface Σ in
an m-manifold Y decomposes into “simple cycles” represented by almost embedded
submanifolds in Y as follows. Take some k-multiple point y ∈ Σ and order the k
branches of Σ at y according to the order in which they meet a line Ly directed along
the sum of the co-orienting vectors. Thus Σ locally decomposes into k parts and
these local decompositions obviously fit together into certain cycles Cj . These Cj are
by no means smooth; yet they are all manifolds immersed into Rm since everywhere
each of them meets L at a single point. They are not necessarily embedded, but they
cannot cross each other, i.e. one can make them embedded by an arbitrarily small
perturbation. Furthermore these Cj they can be easily smoothed in Rm, such that
their tangential degrees add up to that of Σ. This yields the inequality since the
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tangential degree of an embedded Euclidean odd-dimensional hypersurface, equals
one half of the sum of its Betti numbers by another formula of Hopf.
Example. If dim(Y ) = 2, then the Cj ’s are (obviously) made of N = 2N2+2Ncmpt
embedded circles where N2 and Ncmpt denote the numbers of the self-crossings and
of connected components of Σ; thus, for Y = R2, the bound on χ improves to
|χ(X)| ≤ N . Moreover, if χ is non-positive, then −χ(X) + 2 ≤ N since one of
the circles must have positive degree. In particular, if X is a connected orientable
surface of genus g then N2 + Ncmpt ≥ g + 1.

Remarks. (a) According to 1(A) (also see 2.1), the full sum of the Betti numbers
of an X folded in the plane is bounded by N = 2N2 + 2Ncmpt.

(b) This inequality for surface folds in the plane was pointed out to me by Yasha
Eliashberg who later told me that Larry Guth had constructed folded surfaces in
the plane with the minimal numbers of the fold double points for all genera g.

(c) There is a (well-known, I guess) generalization of (A) to simplicial maps
between Eulerian manifolds (the Euler characteristics of the links are same as for
manifolds), where the index comparison is replaced by Dehn–Sommerfeld counting
argument.

(d) If one is allowed to use the geometry of Σ one is able, following Hopf, to
express χ(X) as the integral of the Gauss curvature of the folded part of Σ that is
valid for all (not only purely folded) generic maps F ; there are similar formulas for
the Pontryagin numbers as well (see [Gr15, 2.1.4]).

Formulas with “crossing” invariants” of singularities. Such invariants
of maps as the number Nm(F ) of maximal self-crossings of the fold, unlike those
coming from Σ̂, are rather global in nature; yet, the stratified cobordism theory
developed by A. Szücs [Sz] provides some relations between these and certain char-
acteristic classes of X.

For example, according to the Herbert formula [H] the number N of (maximal)
self-crossings of multiplicity 2k+1 counted with appropriate ± signs of an immersed
oriented 4k-dimensional manifold in R4k+2, equals (p⊥1 )k[X] for the first normal
Pontryagin class p⊥1 of X.

This provides, for an arbitrary large N , a closed (simply connected, if you wish)
manifolds X = X(N) of a given dimension n = 4k that admits an immersion to
Rn+2 and where

every generic immersion X → Rn+2 necessarily has at least N self-
intersection points of (maximal possible) multiplicity 2k + 1.

(See [Sz] and references therein for results on maps Xn → Y m with m > n.)
A result nearest to our paper (where m < n) is the signature formula by Saeki–

Yamamoto [SY] (based on a detailed analysis of modifications of singular fibers of
maps under cobordisms) that implies that
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the number N3 of the 3-multiple fold self-intersection points of a smooth
generic map of a closed orientable 4-manifold X into a 3-manifold is
bounded by |σ(X)|.

(I am indebted to András Szücs who explained this and the Herbert formula to me.)
We shall prove in 3.3 (compare with 1(F)) (generalizing the corresponding result

by Costantino–Thurston for n = 3 [CosT]) the inequality
Nm(F ) ≥ const(n)‖X‖∆

for the manifolds X of dimension n ≥ 3 , say with hyperbolic fundamental groups,
and generic maps F : X → Rm, where m = n − 1, and where ‖X‖∆ denotes the
simplicial volume (see section 3) of X (in place of a characteristic number).

This generalizes the corresponding result Costantino–Thurston for n = 3 [CosT])
and provides, for a given n ≥ 3, closed (stably parallelizable, if you wish) n-manifolds
Xn(N), N = 1, 2, 3, . . ., where

every generic maps Xn(N) → Rm for m = n − 1 has the number Nm of
m-multiple fold self-intersection points bounded from below by N .

Notice that the simplicial volume vanishes for simply connected manifolds and it
remains unclear if there are odd-dimensional simply connected manifolds X where
generic maps to Rm, m dim(X)− 1, necessarily have large Nm. (My bet is on “No”
with the simply connected surgery, compare below.)

On the other hand, ‖X‖∆ has an advantage over the characteristic numbers
of X : the lower bound on Nm passes from X to all X ′ that admit maps of non-zero
degree to X, since ‖X ′‖∆ ≥ ‖X‖∆ in this case (see 3.1).

Yet, it remains unclear if there are similar lower bounds on Nm for m = n and/or
for m < n − 1. For example, one has the following unresolved

Topological version of Bogomolov’s question. Does there exist, for every
closed oriented n-manifold X0, a closed oriented n-manifold X that admits a map
X → X0 of positive degree and, at the same time, can be smoothly fibered over some
Y with dim(Y ) = n − 2? (Bogomolov’s original question concerns parametrization
of complex algebraic manifolds X0 by algebraic manifolds fibred by surfaces.)

On maps Xn → Rn+1. If X0 is an arbitrary oriented pseudomanifold, then,
by Serre theorem, a multiple of the fundamental class of the suspension of X0 is
spherical. It follows, that

there exists a smooth closed hypersurface X ⊂ Rn+1 (with no self-intersection
at all) that admits a map of positive degree to X0.

On “simply connected” surgery (compare [Gr15, p. 52]). If X is a stably
parallelism simply connected manifold of dimension n ≥ 5 then it can be obtained
by adding handles of dimension k ≤ n/2 + 1 to some “special” manifolds Xn

j , j =
1, 2, . . . , s(n) = order(πn+N (SN )) < ∞, N > n + 1, and, if m > k, one, probably,
can (it is straightforward for m = n + 1) perform the corresponding surgery of some
purely folded maps Xn

j → Rm that transforms Xn
j to X and does not increase Nm;

thus, one would obtain an upper bound for Nm by a constant const(n) for the simply
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connected stably parallelism X and m > n/2 + 1, but the actual values of const(n)
(e.g. when are they > 0?) are unclear.

Something like this may work for all simply connected manifolds of dimension≥ 5
and all m. On the other hand, one may expect non-trivial lower bounds for Nm by
Donaldson’s (and similar) invariants of (possibly simply connected) 4-manifolds.

1.4 Construction of maps of low topological complexity. According to
the Eliashberg folding theorem [E] there is no significant constrains on the topology
of the singularity Σ̂(F ) up in M except for those coming from the characteristic
classes. For example, if X is stably parallelism (e.g. realizable by a hypersurface in
the Euclidean space or being an orientable 3-manifold), then (amazingly!) it admits
a purely folded map to each Rm, 2 ≤ m ≤ n dim(X) with Σ̂(F ) ⊂ M consisting of
≤ 2m small concentric (m − 1)-spheres in X. However, and this is the point of the
present paper,

there are non-trivial lower bounds on the topology of the critical set Σ(F )
downstairs in the manifold Y , e.g. on the number of the self-crossings of
folds of n-manifolds X in the plane.

Controlled genericity and upper bounds on the topological complexity
of maps. If X comes with some local geometric structure, one considers (spaces
of) functions distinguished by this structure, where the topological complexity of
these may be further controlled with Yomdin’s quantitative transversality theory
(see [YoG], and also in [Gr15, pp. 123,124] for a brief introduction).
Examples (compare [Ki]). (a) Let X be a simplicial polyhedron and the distin-
guished functions are those linear (or, rather, affine) on the simplices. Then the
obvious upper bounds on the topology of maps are provided by generic simplicial
maps. For example, if X contains Nm simplices of dimension m − 1, then a generic
simplex-wise linear map X → Rm has at most (Nm)m of the m-multiple intersection
points of these simplices in Rm, where these points play the role of the m-multiple
fold self-intersection points in the smooth category.

Such upper bounds provide us with guidelines for possible lower bounds, where
the latter depend on particular combinatorial classes of X and categories of maps
(simplicial, piecewise smooth, continuous, etc.) as we shall see in Part 2 of this
paper,

(b) If X carries a real algebraic structure then the distinguished functions are
(generic) polynomials of given degree and these are sometimes optimal for geomet-
ric/topological lower bounds (compare 5.1, 5.2).

(c) Let X be a closed Riemannian n-manifold with 1-bounded geometry: the
sectional curvatures and the injectivity radius are bounded by |curv(X)| ≤ 1
and Inj Rad(X) ≥ 1. Every such X admits a triangulation with at most N ≤
const(n) vol(X) simplices and also supports “many” “topologically simple” smooth
functions.
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Indeed, take a covering of X by balls Bi of radii 1/2, such that the multiplicity
of the covering is bounded by const(n) and let fij be some standard C∞-functions
supported in the concentric unit balls and equal local coordinates xj on the 2/3-balls.
Then, for example, m generic linear combinations of fij make a map F : X → Rm

such that
the number Nm of the m-multiple self-crossing points of the fold of F is
bounded by

Nm(F ) ≤ const′(n) vol(X)m,

while the Betti numbers of all fibers Xy of F and the depth of the critical
set are bounded by

rank
(
H∗(Xy)

)
≤ 2 dep(Σ(F )) ≤ const′′(n) vol(X) .

This shows that our inequalities 1(C) and 1(D) are qualitatively sharp but it
remains unclear if there are similar results for manifolds X of dimensions n > 3.

On the other hand, we shall see in Part 2 of the paper that
there exist, for every n ≥ 6, closed simply connected Riemannian n-
manifolds X with 1-bounded geometries and arbitrarily large volumes,
where the homologies of the fibers (levels) of all Morse functions F :
X → R satisfy

max
y∈R

rank
(
H∗(F−1(y))

)
≥ ε(n) vol(X)

for some positive constant ε(n) > 0.
Notice in this respect that every closed simply connected 5-manifold decomposes

into the connected sums of manifolds Xi with a uniform bound on the homology of
Xi by the Smale–Barden theorem. Thus,

every simply connected 5-manifold X admits a Morse function F : X → R,
where rank(H∗(F−1(y)) ≤ const < 100 for all y ∈ R.

(d) The collapsing theory for spaces with curvature bounds suggests that mani-
folds (and singular Alexandrov spaces), with, say non-negative, curvature also sup-
port large families of functions of low topological complexity and this may be true,
up to a limited extent, for spaces with a lower bound on the Ricci curvature, where
the volume of X should be replaced by the minimal number of unit balls needed to
cover X.

For instance, “topologically simple” maps of hyperbolic 3-manifolds (of curvature
−1 and, possibly, with small injectivity radii at some points) into the plane were
constructed in [CosT] where the reader also finds references to the earlier results.

On the other hand, even (almost flat) infra-nil manifolds are not fully understood
in this respect.

(e) Possibly, some non-Riemannian locally homogeneous spaces (e.g. affine flat
manifolds X) are also amenable to a similar treatment.



756 M. GROMOV GAFA 

2 Homological Lower Bounds on Σ(F ) and the Fibers of Maps F

2.1 Planar Morse inequality for cusps and fold crossings.
Let X be a closed manifold and F : X → R2 be a smooth map, where
the critical set Σ = Σ(F ) ⊂ R2 has N2 transversal self-crossings (double
points), Ncs cusps and Ncmpt connected components. Then X admits
a Morse function with N = 2N2+Ncs+2Ncmpt critical points. Conse-
quently, the sum of the Betti numbers of X is bounded by

rank
(
H∗(X)

)
≤ N = 2N2 + Ncs + 2Ncmpt .

Proof. Orient (the closed possibly disconnected curve) Σ̂ ⊂ X, let Σ̂cs ⊂ Σ̂ be the
(finite) set of cusps of F and let τ̂ : Σ̂ → S1 ⊂ R2 be the tangential (Gauss) map
(or, rather, the composition of F with the tangential map of Σ ⊂ R2). Notice that

• the map τ̂ sends each cusp σ ∈ Σ̂cs to a pair of ±-symmetric points in the
circle S1;

•• τ̂(σ̂) = ±τ(σ̂′) for every pair of double points σ̂, σ̂ ⊂ Σ̂ (i.e. for F (σ̂) = F (σ̂′)).
Denote by T̂ = T̂ (Σ) = T (F (Σ̂)) the space of maps Σ̂ → S1 which satisfy •

and ••, which are continuous away from Σ̂cs and which lie in the connected compo-
nents of τ̂ (i.e. homotopic to τ̂). Let N◦ = N◦(Σ) = N◦(F ) be the minimal number
such that some map τ̂◦ ∈ T has at most N◦ preimages of a point s0 ∈ S1.

The existence τ̂◦ with some N◦ is equivalent to the existence of a smooth generic
non-vanishing 1-form ϕ◦ on the plane R2 with (y1, y2) coordinates, such that ϕ◦
equals dy1 at infinity and such that its lift to Σ̂ ⊂ X by the differential of F , has
N◦ zeros.

Then, by the Poincaré–Benedicson theorem, there is a non-vanishing function ρ
that equals one at infinity and such that ρϕ is exact, say ρϕ = dψ. The lift of ψ
to X is a Morse function, say f = ψ ◦ F : X → R, where the critical points of f
coincide with the zeros of the lift of ϕ◦ to Σ̂. Thus rank(H∗(X)) ≤ N◦.

It remains to show that N◦ ≤ N = 2N2 + Ncs + 2Ncmpt. To do this temporarily
assume that the critical set Σ ⊂ R2 contains no cusps, i.e. F : Σ̂ → R2 is an
immersion. Decompose a slightly perturbed Σ into smooth cycles Cj that are tangent
to each other at the double points of Σ and have equal orientations at the tangency
points as in the proof of the corollary in 1.3. Denote the so modified Σ by Σ′ ⊂ R2

(the subset Σ′ ⊂ R2 is obtained from Σ by a homeomorphism of R2 which is a
diffeomorphism away from the double points of Σ) and let τ ′ : Σ′ → S1 be the
tangential map. All we need to show is that τ ′ is homotopic to map τ ′

◦ which covers
the circle with the average multiplicity strictly less than 2N2 + 2Ncmpt + 1.

Observe that the general case trivially reduces to that where the graph Σ′ (or,
equivalently, Σ) is connected (i.e. Ncmpt = 0) and contains no loops.

Denote by c the real 1-cocycle on Σ′ induced from the fundamental cocycle on
the circle. Clearly, the value of c on each simple 1-cycle in Σ′ is at most one, and
since there are no loops, the value of c on a cycle made of k edges is at most k/2.

It follows, by the Hahn–Banach theorem, that there is cocycle c◦ cohomologous
to c, such that the value of c◦ at every edge in Σ′ is ≤ 1/2; thus, the map τ ′

◦ : Σ′ → S1

implementing c◦ has the required property.
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This (together with Poincaré–Benedicson theorem) delivers the desired function
ψ for maps F without cusps; then the (standard) cusps can be arranged at given
points in Σ̂, with every cusp contributing one critical point. QED
Remarks. (a) I failed to find any reference to this result and I apologize to the
author who was the first to observe it.

(b) Instead of the Poincaré–Benedicson theorem one may use Steinitz’ theorem on
realization of spherical triangulations by convex polytopes but this gives a non-sharp
inequality.

2.2 A lower bound on the homologies of the fibers and on dep(Σ) by
�m-rank of H∗(X).

Cup-rank of graded algebras. Let H∗ be a graded algebra and let ∩Ir ⊂ H∗

denote the intersection of the two-sided graded ideals I ⊂ H with rank(H∗/I) < r
(that are the kernels of homomorphisms of H∗ of ranks < r to other graded algebras).

Define rank�
k (H∗), as the maximal number r, such that the k-multiple product

map (H∗)⊗k → H∗ is not identically zero on (∩Ir)⊗k ⊂ (H∗)⊗k.
Observe that �k-rank is monotone decreasing in k and increasing under exten-

sion of algebras.
Examples. (a) Let hi ∈ H∗, i = 1, 2, . . . , k and let Li ⊂ H∗ be linear subspaces
of ranks ri, such that, for every i, all non-zero l ∈ Li divide hi. Then hi ∈ ∩Ir. It
follows that if the product of hi does not vanish, then rank�

k (H∗) ≥ mini ri.
(b) If H∗ is isomorphic to the cohomology algebra of the product X of k closed

connected manifolds Xi (orientable, unless we work with Z2 coefficients) then, by the
Poincaré duality, the fundamental classes hi of Xi are divisible by all 0 = l ∈ Li =
H∗(Xi); therefore,

rank�
k

(
H∗(X)

)
≥ min

i
rank

(
H∗(Xi)

)
.

�m+1-Inequality.

Let X be a compact topological space and F : X → Y be a continuous
map. Then there exists a point y ∈ Y , such that the (Cech) cohomology
(with arbitrary coefficients) restriction map to the y-fiber, denoted ρ∗y :
H∗(X) → H∗(F−1(y)), has

rank(ρ∗y) ≥ rank�
m+1

(
H∗(X)

)
�m+1

for m dim(Y ).
Proof. If X is covered by k open subsets Ui, then the k-multiple cup-product map
vanishes on the tensor product ⊗iIi ⊂ (H∗(X))⊗k of the kernels Ii = ker ρ∗i of the
restriction homomorphisms ρ∗i : H∗(X) → H∗(Ui) by the Lyusternik–Schnirelmann
theorem.

Denote by Uij the connected components of Ui and observe that the kernels
Iij = ker ρ∗ij ⊂ H∗(X) of the restriction homomorphisms ρ∗ij : H∗(X) → H∗(Uij)
satisfy,

∩jIij = Ii
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for each i = 1, 2, . . . , k. Therefore, if rank(ρ∗ij) < r for all i = 1, 2, . . . , k and
j = 1, 2, . . . , then rank�

k (H∗(X)) < r.
Since F (X) is compact, we assume that Y is compact and consider the coverings

{Ui(ε) = ∪jUij(ε)} of X, i = 1, 2, . . . ,m + 1dim(Y ) + 1, which are the pullbacks of
the ε-covers {U ij(ε)} of Y with disjoint U ij(ε) and U ij′(ε) for all i = 1, 2, . . . ,m + 1
and all pairs j = j′. The above shows that

max
i,j

rank
(
ρ∗ij(ε)

)
≥ rank�

m+1
(
H∗(X)

)
,

and, since the subsets Uij(ε) ⊂ X “shrink” to the fibers F−1(y) ⊂ X, y ∈ Y , of F
for ε → 0, the inequality �m+1 follows by the continuity of the Cech cohomology.
Torus Example. Let X be the n-torus. If n ≥ p(m + 1), then every continuous
map X → Rm has a fiber, say Xy ⊂ X, such that rank(ρ∗y) ≥ 2p.

On the other hand, if n <
∑

0≤i≤m pi, then every n-dimensional polyhedron
can be covered by open subsets Ui where each Ui homotopy retracts to a (pi − 1)-
dimensional subpolyhedron. It follows that if p > n/(m+1), then the n-torus admits
a map to Rm, such that the restriction homomorphisms ρ∗y : H≥p(X) → H≥p(Xy)
vanish for all y ∈ Rm; thus rank(ρ∗y) ≤ n(p−1).

It remains unclear what the sharp �-inequality is except for the case m = 1 (see
section 4 in Part 2 for related results).

Related Questions. (a) When a graded linear space H∗ is acted upon by an
amenable group Γ exhausted by Følner sets Λi one denotes Λi(A) =def spanγ∈Λi

{γ(A)},
A ⊂ H∗ and defines, for all β ≥ 0, the β-rates of growth

GRβ(Hk) = sup
A

lim sup
i→∞

|Λi|−1(rankΛi(A)
)β

where |Λi| denotes the cardinality of Λi and where “sup” is taken over all finite-
dimensional linear subspaces A ⊂ Hk.

Consider a Γ-equivariant continuous map F : XΓ → [0, 1]Γ for the natural action
of Γ on the Cartesian Γ-powers. What is the maximum of the rates of growth of
the cohomologies of the fibers of F? (This question makes sense for equivariant
maps between arbitrary compact Γ-spaces, F : X → Y, where the expected lower
bound should depend on the upper bound, on the mean dimension of Y, and the log-
multiplicative growth rate of the cohomology of X , where instead of the linear span
of Λi-orbits of A one takes the logarithms of the ranks of the subalgebras generated
by these orbits, compare [B], [Gr12].)

(b) Given a map F : X → Y , denote by Xd/Y the d-th Cartesian power of X
over Y that is mapped to Y by F d/Y with the fibers (F d/Y )−1(y) = (F−1(y))×d

and observe that the Betti numbers of Xd/Y , and/or the Poincaré polynomials
pd(t) =

∑
i Bit

i for Bi = rank(H i(Xd/Y )) carry most of the information contained
in the cohomologies of the fibers of F .

If F is a Morse function then the topology of Xd/Y is transparent: k-handles
that are the cones over the (k−1)-spheres become the cones over the d-th Cartesian
powers of these spheres. Thus one sees, in particular, that the generating function
P (t, s) =

∑
d sdpd(t) is rational. (This may be true and known for all, say simplicial,
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maps F , but even the picture of the invariant subspaces of the d-th tensorial powers,
of the two monodromy operators in the cohomologies of the fibers in fibrations over
the figure ∞ is not clear to me for d → ∞.)

On the other hand, the �m+1-inequality implies that rank(H∗(Xd/Y )) ≥
(rank�

m+1(H
∗(X))d. (Probably, rank(H∗(Xd/Y )) ≥ 2d for all maps of closed n-

dimensional manifolds X to Rm with m ≤ n ≥ 1. See 4.11 in Part 2 of this paper
for a continuation of this discussion.)

Depth inequalities.

Let F : X → Y be a generic smooth map, where X is a closed n-
dimensional manifold and Y is an open m-dimensional manifold Y (e.g.
Y = Rm). Then the depth of the critical set Σ = Σ(F ) ⊂ Y satisfies,

dep(Σ) ≥ const(n) rank�
m+1

(
H∗(X)

)
for the cohomology with arbitrary coefficients, where, moreover, constn ≥
1/2 for purely folded maps F .
Furthermore,

dep(Σ) ≥ const(n)µ(Σ)(m + 1) rank�
m

(
H∗(X)

)
,

where µ(Σ) = maxy∈Σ µ(Σ, y) for the local multiplicities µ(Σ, y) defined
in 1.1 and where const(n) ≥ 1/2 for purely folded (all generic?) maps F .

Proof. Since the Betti numbers of all fibers of F (including the singular ones) are
bounded by 2 constn dep(Σ) (see 1.2) the proof of the first inequality follows from
the above �m+1-inequality.

Next we need the following

Retraction Lemma. There exists a homotopy retraction R : Y → Y• ⊂ Y , such
that the image Y• = R(Y ) ⊂ Y (that is kept fixed by R) is a (piecewise) smooth
subpolyhedron in Y of dimension m−1 and the pullback Yy = R−1(y) ⊂ Y , for every
y ∈ Y• consists of at most m + 1 rays R+(y) ∈ Y in Y issuing from y and disjoint
away from y, such that each ray (i.e. [0,∞) smoothly embedded to Y ) crosses Σ at
most µ(Σ) dep(Σ) times.

(I had a helpful conversation with Fedya Bogomolov at this point.)
Proof of the lemma. Take a sufficiently fine triangulation of Y in general position
with respect to Σ and consider the dual cell subdivision of Y where the m-cells are
denoted Ci. Observe, that no m + 2 cells Ci come together at any point in Y .

Each Ci admits a radial projection to its boundary, from an interior point
yi ∈ Ci \ Σ, say Pi : Ci \ {yi} → ∂Ci such that Pi is at most µi-to-1, on Σ ∩ C
for µi = maxy∈Ci∩Σ µ(Σ, y).

Thus we obtain a homotopy retraction P of Y ′ = Y \ ∪i{yi} to the (m − 1)-
skeleton Y ′′ ⊂ Y of our cell partition and we extend it to all of Y as follows. Take
disjoint rays [0,∞)i ⊂ Y starting from yi and going to infinity, where every ray meets
Σ only transversally at the pure folding locus and at most d times for d = depth(Σ).
Let Qi be the obvious homotopy retractions from small tubular neighborhoods Ui

of these rays to the boundaries of Ui. The resulting map Q : ∪iUi → ∂(Y \ ∪iUi)
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is, clearly, at most d-to-1 and the composed map R = P ◦ Q, that is a homotopy
retraction on its image Y• ⊂ Y ′, does the job.

The proof of the second depth inequality is concluded by applying the �m-
inequality to the map R ◦ F : X → Y•, where the cohomologies of the fibers of
this map, that are the F -pullbacks Xy ⊂ X of the R-pullbacks Yy, are bounded
by µ(Σ)(m + 1) rank�

m (H∗(X)) for generic points y ∈ Y• by the Morse inequalities
applied to the (at most) (m+1) “branches” of the maps Xy → Yy with the branches
corresponding to the R+(y)-components constituting Yy.
Cartesian Power Examples. Every closed surface X0 of any genus g admits
a Morse function where all levels (i.e. fibers) have their Betti numbers ≤ 4: circles,
pairs of circles or figures ∞. But the �2-inequality shows that every generic F :
X×k = X0 × X0 × . . . × X0 → Rm necessarily has a fiber Xy = F−1(y), y ∈ Rm,
with

rank
(
H1(Xy)

)
≥ 2g if k ≥ m + 1 ,

and every generic map X×m → Rm+1 has
dep(Σ) ≥ const(m)g if k ≥ m .

This X is no match for the upper bound from 1.4 since any metric � with 1-
bounded geometry on this X has

vol(X, �) ≥ const(m) rank
(
H∗(X)

)
= const(m)(2g + 2)m+1.

On the other hand, these inequalities are qualitatively optimal for Cartesian powers.
Indeed, given a function F0 on X0 with N critical points, its m-th Cartesian

power F×m
0 : X = X0 ×X0 × . . .×X0R

m has dep(Σ(F×m
0 )) about 1

2N . This is close
to our lower bound dep(Σ(F )) ≥ const(m,n0) rank(H∗(X0)), n0 dimX0.

If the ranks of the homologies of the fibers of F0 are bounded by N0, then those
of F×m

0 are bounded by Nm
0 . For instance, if X0 is a surface (of an arbitrarily large

genus g) all fibers Xy of some F = F×m
0 have rank(H∗(Xy)) ≤ 4m.

Power maps are non-generic. But the depth inequality remains valid for maps
with “products of generic” singularities by an obvious generalization of our “generic”
argument. Alternatively, such maps can be perturbed to generic ones, (sometimes to
purely folded maps) with roughly the same depth of Σ and complexity of the fibers.
Thus, our lower bounds on the fibers and critical sets are sharp for the Cartesian
powers up to constants depending on dimension. (The asymptotic behavior of these
constants for dim(X) → ∞ remains unclear.)
Question. Given numbers n, k and m, does every closed n-dimensional k-
connected manifolds X admit a generic smooth map X → Rm where every fiber
has the sum of the Betti numbers bounded by a constant const(n, k,m) indepen-
dent of X? (This may happen when n is not very large compared to k and/or m
and, probably, can be proved in some cases by surgery in the category of k-connected
manifolds.)

2.3 Slice inequalities. The depth of a Σ can seen by how Σ intersects with
1-dimensional subsets (the above rays) in Y , with the subsequent topological appli-
cations depending on the Morse inequalities.
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One can proceed similarly by intersecting Σ with families of submanifolds of
dimension > 1 in Y . Here is a particular such invariant adjusted to the planar
Morse inequality in 2.1 .

Given three subsets Σ,Σ2,Σ11 ⊂ Y and a map α0 : S0 → Y denote by N,N2
and N11 the numbers of the connected components in the α0-pullbacks of these sets
and let M(α0) = 2N(α0) + 2N2(α0) + N11(α0).

If Σ = Σ(F ) is a critical set of a generic map F , then we take the set of the
double points of the fold for Σ2 and the cuspidal locus for Σ11. Observe that these
have codimensions 2 in Y .

Given a family α of surfaces mapped to Y , say αt : St → Y and set M(α) =
supt M(αt).

Finally, we define M(Σ(F )) = infα M(α) where the infimum is taken over all
substantial planar surface families α defined below.

Let P be a smooth manifold, T a polyhedron, and f : P → T a continuous
map, where the fibers are planer surfaces St = f−1(t) ⊂ P , t ∈ T , which smoothly
foliate P , e.g. T is a smooth manifold with dim(T ) dim(P )−2 and f is a submersion.

A substantial family for an F : X → Y is a smooth generic equidimensional map
α : P → Y which sends P onto some open subset U ⊂ Y containing the image of F
(and, hence, Σ), such that the map α : P → U is proper and has non-zero degree
(over the coefficient field F for the cohomology in question).
Example. Let F : X = X4 → R3 be a purely folded map with no triple points on
the fold. The fold self-intersection Σ2 is a smooth closed (for X is assumed a closed
manifold) curve, i.e. a link in R3, and the contribution of Σ2 to M(Σ(F )) with the
maps α : P → Y which are proper onto Y is something like the minimal number of
braids needed to represent this link.

2D-slice inequality.

Let F be a smooth generic map of a closed n-dimensional manifold X to
an m-dimensional manifold Y . Then

M(Σ(F )) ≥ const(n) rank�
(m−1)

(
H∗(X)

)
.

Proof. The fiber product X×Y P of X and P over Y , mapped to Y by F and by α cor-
respondingly, is a smooth manifold with rank�

(m−1)(H
∗(X×Y P ))≥ rank�

(m−1)(H
∗(X))

for substantial maps (families) α.
On the other hand, the ranks of the cohomologies of the generic fibers of the

obvious map X ×Y P → T , say Qt ⊂ X ×Y P , are bounded by M(α) according to
the planar Morse inequality from 2.1 applied to the tautological maps Qt → St.

Thus the �m−1-inequality from 2.2 applied to the map X ×Y P → T furnishes
the proof.

2.4 A lower bound on dep(Σ) for hyperbolic manifolds. Let Γ be a
countable group and Z = K(Γ, 1) an aspherical (Eilenberg–MacLane) space with
a base point z0 ∈ Z, that is the classifying space for for Γ, i.e. π1(Z, z0) = Γ
and πi(Z, z0) = 0) for i ≥ 2. Recall, that for every connected cellular space X
with a base point x0 ∈ X, the space M0(h) of based (i.e. x0 �→ z0) continuous
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maps (X,x0) → (Z, z0) with a given homomorphism h : π1(X,x0) → (Z, z0) is
contractible. Furthermore,

the space M(h) ⊃ M0(h) of the non-based maps X → Z that are (freely)
homotopic to those in M0(h) is homotopy equivalent to the classifying
space K(cnth, 1) for the centralizer cnth ⊂ Γ of the image of h.

This implies, by a standard argument, that the universality (classifying property)
of K(Γ, 1) extends from individual spaces to families as follows.

A. Let X → Y be a fibration with connected fibers Xy, where Y and Xy

are cellular spaces. Then there exists a (unique up to fiberwise homotopy
equivalence) fibration Z → Y with aspherical fibers Zy and a continuous
(classifying) map X → Z, where Xy → Zy for all y ∈ Y and where the
induced homomorphisms π1(Xy) → π1(Zy) are isomorphisms.

More generally, let F : X → Y be “glued” of fibrations according to the following
Definition of stratified singular (quasi)fibrations over Y = ∪iY

i. Let
{Y i} be a filtration of Y by closed cellular subsets Y 0 ⊂ Y 1 ⊂ Y 2 ⊂ · · · ⊂ Y (e.g.
by the skeleta of some triangulation of Y ) with ∪iY

i = Y , where F is a fibration
with connected fibers over Y0 and all open strata Y i \ Y i−1 (the fibers may be
different over different connected components of Y i \ Y i−1) and where, moreover,
there are homotopies of the identity maps, hi(t) : Yi → Yi, such that hi(1) send
some neighborhoods of Yi−1 ⊂ Yi to Yi−1 and such that these homotopies lift to
homotopies of the identity maps of F−1(Yi).

B. Let α : X → Z = K(Γ, 1) be a continuous map ant let Γy, y ∈ Y ,
denote the images (defined up to conjugation in Γ) of the fundamental
groups of the fibers F−1(y) ⊂ X in Γ = π1(Z). Then there exist a
stratified fibration Φ : ZY → Y with aspherical fibers Φ−1(y) = K(Γy, 1)
and continuous maps αY : X → ZY and β : ZY → Z, such that the
composed map β ◦ αY is homotopic to α.

Remark. If we are free to choose of the topology of Zy, which are, a priori, defined
only up to a (weak) homotopy equivalence, then ZY can be taken in agreement with
the original stratification (Yi, hi(t)) of Y . But if the topologies of the fibers of Φ over
the connected components of the open strata Y i \ Yi−1 are prescribed beforehand,
one may need to refine the original stratification in order to have the fibrations
trivial over the connected components of the open strata of such refinement.

Corollary. If the cohomology of the subgroups Γy ⊂ Γ with the coefficients in
some Γ-module F (e.g. with constant coefficients in some F) vanish for dimensions
> k, then the induced homomorphisms α∗ : Hj(Z,F) → Hj(X,α∗F) vanish for
j > k + m, m = dim(Y ). Furthermore, if each K(Γy, 1) is homotopy equivalent to
a k-dimensional cellular space, then the map α is homotopic to a map of X to the
(k + m)-skeleton of Z = K(Γ, 1).
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In order to use this we need a bound on the cohomology dimensions of the images
Γy ⊂ Γ of the fundamental groups π1(Xy) in terms of these groups themselves, e.g.
by the cardinalities of minimal generating subsets in π1(Xy).

For instance, let Nfr(Γ) be the maximal number N , such that every subgroup
with N generators in Γ is free.
Basic Example.

Let a group Γ act on a geodesic δ-hyperbolic metric space Z and let
Rad = Rad(Z/Γ) denote the minimum displacements by the non-trivial
γ ∈ Γ,

Rad =def inf
id�=γ∈Γ

inf
z∈Z

dist
(
z, γ(z)

)
.

Then
Nfr(Γ) ≥ N(Rad /δ)

for some universal function N(r) → ∞ for r → ∞.
This property of hyperbolic groups is stated in [Gr3] with N(r) ≥ (1 + ε)r but

I realize now that the argument suggested in [Gr3] only gives the bound N(r) ≥
εr/ log(r), with some ε > 10−6 (see below). Two other proofs appear in [Ar], [KaW]
(where the authors establish something stronger than the freedom of the subgroups
with N < N(r) generators). The bound N(r) ≥ (1 + ε)r remain conjectural even
for the 3-dimensional hyperbolic manifolds of constant curvature and for the small
cancellation group.
Proof of N(r) ≥ εr/ log(r). Normalize to δ = 1, assume R > 10000 and consider a
connected graph G (1-dimensional cell complex) with at most N independent cycles
mapped to Z/Γ, such that the image of the fundamental group of G generates Γ and
then deform this map to the one with the minimal length of the image Gmin ⊂ Z/Γ,
such that the image of the fundamental group of Gmin ⊂ Z/Γ also generates Γ and
Gmin has no more than N cycles. (Strictly speaking, this Gmin is immersed rather
than imbedded to Z/Γ but we treat it as if it were embedded to save notation.)

Then, for N ≤ εR/ log(R), R = Rad, every simple infinite path P in the universal
cover of Gmin quasi-isometrically embeds into Z. Otherwise, P would contain a
segment S = [p1, p2] ⊂ P of length in the interval [R/100, R/2] with the distance
between its ends in Z, or equivalently, in Z/Γ, bounded by 300 log(R) (see 7.1.B
and 7.2 in [Gr3]). Join these ends by a shortest geodesic segment L in Z/Γ and
observe that the loop Λ = L ∪ S in Z/Γ represents id ∈ Γ, since length(Λ) =
300 log(R) + R/2 < R for R > 10000.

On the other hand, the loop Λ, which consists of at most 3N + 1 geodesic
segments, has length ≥ R/100; therefore, for our small ε, it contains a segment L′

of length > 300 log(R). Then the graph G′ = (Gmin \L′) ∪L would be shorter than
Gmin.

Thus we see that the (free!) fundamental group of Gmin injects into Γ and is,
moreover is quasi-convex. QED
Clarifying remarks suggested by a referee. One may assume that every
vertex in Gmin has degree ≥ 3; therefore the number E of edges is ≤ 3N − 1.
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The shortest cycle in Gmin has length≥ R; therefore, the loop Λ consists of at
most E + 1 ≤ 3N geodesic segments.

Combining this example with the above corollary, we conclude to the following

Lower bound on π1(Xy).

Let F : X → Y be a stratified map between connected cellular spaces, such
that the fundamental group Γy of each connected component of every fiber
Xy = F−1(y) ⊂ X can be generated by N elements and let α : X → Z =
K(Γ, 1) be a continuous map for a group Γ which admits an action on δ-
hyperbolic space Z ′ with Rad /δ ≥ 106N log(Rad /δ) (where Z ′ = Z is an
essential example). Then the map α is m+1-contractible, i.e. homotopic
to a map to the m + 1-dimensional skeleton of Z for m dim(Y ).

For example, if X = Z is a closed n-dimensional manifold of sectional curvature
≤ −1, then the identity map X → Z is not contractible to the n − 1-skeleton;
therefore, if the radius of injectivity of X at all points bounded from below by R,
then

every stratified (e.g. smooth generic or piecewise linear) map of X to an
(n−2)-dimensional space Y necessarily has a fiber, where the fundamen-
tal group cannot be generated by less than εR/log(R) elements. If Y is
an open manifold of dimension m ≤ n − 1, then every smooth generic
map F : X → Y satisfies

dep(Σ(F )) ≥ const(n)R/ log(R) .

Generalization. The above argument allows some γ with small displacements,
provided the regions with small displacement are far apart. Namely,

Let Γi ⊂ Γ be elementary subgroups and Zi ⊂ Z be Γi-invariants subsets
that satisfy the following two conditions:

dist
(
z, γ(z)

)
≥ R for all γ = id and all z ∈

⋃
i

⋃
γ∈Γ

γ(Zi) ,

and Zi/Γi inject into Z/Γ for all i and their images are pairwise R-far
apart.
Then, if Γ is generated by ≤ εR/ log(R) elements, then it is isomorphic
to the free product of Γi and some cyclic groups.

It follows, that if the inequality Rad /δ ≥ 106N log(Rad /δ) is replaced by the
above two conditions where, moreover, the groups Γi are virtually free (that is
automatic if the action has no parabolic and no infinite isotropy subgroups) then

the induced homomorphism α∗ : H∗(Z; Q) → H∗(X; Q) vanishes above
dimension m + 1.

Convexity and virtual malnormality. Given a subgroup in a word hyper-
bolic group, say Γ0 ⊂ Γ, denote by Γ+

0 ⊃ Γ0 the maximal subgroup in Γ with the
same limit set as that of Γ0. If Γ0 is quasi-convex, then so is Γ+

0 and Γ0 has finite in-
dex in Γ+

0 . Furthermore, Γ+
0 is malnormal in Γ: if two elements of Γ+

0 are conjugate
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in Γ than they are conjugate in Γ+
0 itself. Moreover, if Γ0 is free and Γ is torsion

free, then Γ+
0 is free.

Also one knows that if Γ is torsion free word hyperbolic, then the centralizer of
every non-Abelian subgroup Γ0 is trivial and if Γ0 is a non-trivial Abelian subgroup
then its centralizer is free cyclic and equals Γ+

0 . (The centralizer of the trivial
subgroup {id} ⊂ Γ equals Γ.)

Then we easily see that
If Γ in the above lower bound on π1(Xy) is a torsionless word hyper-
bolic group and the subgroups Γy ⊂ Γ are non-trivial free quasiconvex
subgroups, then the classifying map α : X → Z = K(Γ, 1) is (d + 1)-
contractible for ddim Υ(F ): it factors, up to homotopy, through a map
to a stratified fibration over the adjacency complex Υ(F ), where the fibers
are the classifying spaces for the groups Γ+

y . (If we admit torsion in Γ,
then the d + 1-contractibility conclusion is relaxed to the vanishing of
the induced homology homomorphism α∗ : H>d+1(X ; Q)→H>d+1(Z; Q).)

This becomes more useful if we allow some Γy = {id}:
if dim(Υ(F )) < m dim(Y ), then the map α is m-contractible.

This can be applied, for instance, to smooth purely folded maps X → Y with
m dim(Y ) = dim(X) − 1, provided the fold has no self-crossings of multiplicity m.
(We shall evaluate he contribution of the m-crossings to the topology of X in the
next section.)
Remarks. (a) One can replace in some cases the above homotopy argument with
ZY by a geometric consideration based on the fact that the intersection of every
metric sphere S in a geodesic hyperbolic space with a ∆-neighborhood U of an orbit
of a co-convex subgroup with the zero-dimensional limit set decomposes into the
union of disjoint subset with diameters ≤ D, where D depends on ∆ but not on S.

In fact, let Γ be an isometry group acting on a complete contractible hyperbolic
space X̃ and let Û be an open invariant subset contained in the orbit of a bounded
subset in X̃ by a subgroup of Γ. Observe that the limit set of Û in the ideal boundary
of X̃ equals (almost by definition) the limit set L = L(Γ) ⊂ ∂∞(X̃) of Γ. If X̃ is
homeomorphic to Rn and Γ is co-compact, one needs at least n such U (associated to
several subgroups where there may be several U ’s for the same subgroups) to cover
sufficiently large S. Thus we arrive at the same lower bound on the fundamental
groups of the fibers of maps of X → Y as earlier. However, it is unclear if this
remains true in general for X = X̃/Γ, where Γ is convex co-compact with the
topological dimension of the limit set equal n − 1. Here are related

Questions. Let X̃ be a contractible δ-hyperbolic space with n-dimensional ideal
boundary. Can one ever contract X̃ to a (n−1)-dimensional subset in X by a bounded
homotopy? Can one contract the boundary S of bounded domain containing a ball
of radius R to something (n − 2)-dimensional in X̃ by a homotopy bounded by εR
for large R and small ε > 0?

(b) One can sometimes reverse the arrow Geometry ⇒ Topology, e.g. for the
cyclic coverings Xk of an X associated to a non-contractible map X → S1 , where
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all admit maps Xk → S1 with a uniform bound on the topology of the fibers; thus,
every metric with curvature ≤ −1 on every Xk must have infx Inj .Rad(Xk, x ∈ Xk)
≤ const(X). (In fact, supx Inj .Rad(Xk, x ∈ Xk) ≤ const(X), see 5.9, 5.11.)

(c) The �m+1-inequality can be expressed in terms similar to those in this section
with the (classifying) map of X to the product of K(Π, i) spaces that represents
the cohomology of X. Thus, one, probably, can take into account the (Steenrod)
cohomology operations and/or (by going up on the rational Postnikov tower) the
multiplicative structure of the minimal model of X.

3 Lower Bounds on the Fold Maximal Self-Crossing Number Nm

by the Simplicial Volume

Let F : X → Y be a stratified (or stratum-wise) fibration, e.g. a generic smooth
maps F : X → Y . We are concerned with lower bounds on the number N of the
“most singular” isolated points of F in Y such as the number of the m-multiple
self-intersection points of the fold of a purely folded map X → Y , dim(Y ) = m.

Notice, that a generic smooth F may have “most singular“ points that are quite
different from the transversal m-crossing points of the fold. For example, some may
come from the isolated “most singular” points of the singularity Σ̂(F ) ⊂ X, where
the number of these is bounded from below by the characteristic numbers of X, and
where such a bound is (essentially) sharp by Eliashberg’s h-principle for maps with
prescribed singularities.

In general, points y ∈ Σ0(F ) of F are isolated transversal crossings in Y of some
(canonical) strata of Σ̂(F ) ⊂ X mapped by F to Y , for example, the intersections of
the folding surfaces with the cuspidal curves of maps of manifolds of dimension≥ 3
to R3.

Yet, all these kinds of points are “less singular” than the transversal fold m-
crossing points of the fold and they will not enter the ∆-inequality in 3.3.

3.1 Recollection on ‖X‖∆. Given an n-dimensional real homology class h in
a topological space X, consider all singular cycles c =

∑
i riσi representing this

h ∈ Hn(X; R), where ri ∈ R and σi are singular simplices in X that a continuous
maps of the standard n-simplex ∆ to X. Let ‖c‖l1 =

∑
i |ri| and define the simplicial

(semi)norm of h as the infimum
‖h‖∆ = inf

c
‖c‖l1 .

This (semi)-norm on Hn is, obviously, functorial: it is monotone decreasing under
continuous maps f : X1 → X2.

Moreover, [Gr13],
if f induces an isomorphism on the fundamental groups, then the induced
homomorphism Hn(X1; R) → Hn(X2; R) is an isometry with respect to
this simplicial (semi)norm. Thus,

‖h‖∆ = ‖h∗‖∆ ,

where h∗ denotes the image of h in Hn(π1(X)) =def Hn(K(π1(X), 1); R)
under the classifying map X → K(π1(X), 1).
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If X is closed oriented n-manifold (or pseudo-manifold), then the simplicial vol-
ume ‖X‖∆ is defined as the simplicial norm of the fundamental class of X and if
X is non-orientable then ‖X‖∆ is defined as 1/2 of the simplicial norm of the ori-
ented double cover of X. Thus, ‖X‖∆ is bounded by the minimal number N of the
n-simplices of any triangulation of X. Furthermore, if X receives a map of degree
d from a pseudo-manifold P triangulated into N simplices of dimension n, then,
obviously, ‖X‖∆ ≤ N/|d|. In fact, one can define essentially equivalent ‖X‖∆ as the
infimum of N/d over all such P → X. (It is unclear by how much the norm would
increase if one dropped “pseudo” in such definition).

One knows [Gr13] that the simplicial volume is additive under connected sums of
n-dimensional (pseudo)manifolds for n ≥ 3 and almost multiplicative under Carte-
sian products,

‖X1#X2‖∆ = ‖X1‖∆ + ‖X2‖∆ , (#∆)

C−1
n ‖X1‖∆ · ‖X2‖∆ ≤ ‖X1 × X2‖∆ ≤ Cn‖X1‖∆ · ‖X2‖∆ , (×∆)

for some constant Cn ≤ nn, n = n1 + n2 dim(X1) + dim(X2) dim(X).
Remarks and Questions. (a) It is unclear if ‖X1×X2‖∆ = Cn1n2‖X1‖∆ ·‖X2‖∆.

(b) One can modify the definition of the norm by using cubical (rather than
simplicial) singular chains; then, the resulting cubical norm, is obviously, equivalent
to ‖X‖∆,

n−n ≤ ‖X‖�/‖X‖∆ ≤ nn,

and it satisfies
‖X1 × X2‖� ≤ ‖X1‖� · ‖X2‖� .

But it is unclear if it is multiplicative, i.e. if
‖X1 × X2‖� = ‖X1‖� · ‖X2‖� .

In fact, one does not know if there is any other norm equivalent to ‖X‖∆ (or, at
least, is not identically zero) that is multiplicative.

(c) One can define norm on homology of every topological spaces with a use of a
functor from the homotopy category of connected spaces X to the category of metric
spaces M and 1-Lipschitz maps, where one needs some geometrically defined norms
on the homologies of metric spaces M .

For example, take the semi-simplicial complex M = M∆(X) constructed along
with a homotopy equivalence M → X as follows (compare [Gr13]). Let ∆∞ be the
simplex with the integers N as the vertex set; the faces of ∆∞ correspond to finite
subsets of integers. Take N for the 0-skeleton (the vertex set) M0 of M and let
N � v �→ x = x(v) ∈ X be an arbitrary map.

Take representatives in all homotopy classes of paths in X between the points
x = x(v) ∈ X (recall, X is assumed connected) and attach edges to the pairs (v1, v2),
v1 > v2, corresponding to the paths from x(v1) to x(v2); thus we get the 1-skeleton
M1 ⊃ M0 mapped to X (and also mapped to the 1-skeleton of ∆∞ injectively on
every edge.) Next make the 2-skeleton M2 ⊃ M1 out of 2-simplices mapped to X
and filling the triangles of edges in M1 → X in all homotopy classes. (Such a set of
fillings is empty for each non-contractible edge triangle; if a triangle is contractible,
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then the set of the homotopy classes of such fillings is a principal homogeneous
space of the second homotopy group of X.) Then make M3 out of the 3D-filling of
the boundaries of 3-simplices in M2 mapped to X, etc. Thus one obtains a space
homotopy equivalent to X that maps to ∆∞ injectively on all faces.

Alternatively, one can start with the cube �∞ and construct a (semi-cubical)
space M = M�(X) homotopy equivalent to X that maps to �∞ injectively on the
faces.

Granted such M = ∪kM
k, take some length metric dist∆ on the underlying ∆∞

(or dist� on �∞) (preferably, invariant under affine automorphisms of the simplex
or the cube) and endow M with the length metric dist induced by the map M → ∆∞

from dist∆ (or from dist�).
Then every geometric invariant of (M,dist) serves as a homotopy invariant of X.

For example, every choice of n-mass (e.g. n-dimensional Hausdorff measure) on the
n-cycles in M leads to a (R-mass) norm on Hn(M ; R) and, hence, on Hn(X; R) =
Hn(M ; R).

In fact, in order to have a norm on the n-dimensional homology, one does
not need a length structure on M itself, but rather a volume (measure) struc-
ture on the n-dimensional chains in M , e.g. given by a norm on the n-th exte-
rior power Λn of the tangent bundle of the space ∆∞ (or �∞) underlying the
above M = M∆ (or M = M�). In particular, one recaptures the simplicial norm
on Hn(X) = Hn(M∆(M)) with the l1-norm on the space Λn(T (∆∞)), that is the
maximal norm, such that its value on every n-frame of vectors (parallel to) edges of
∆∞ at every vertex equals 1.

This applies, in particular to K(Γ, 1) spaces Z = Z̃/Γ, where Γ acts discretely and
freely on the contractible universal cover Z̃. Here there are alternative constructions
of metric Γ-spaces M̃ , where M̃/Γ may serve as metric models of Z, whenever M̃ is
contractible and the action is free discrete as well as isometric.

For instance, the action of Γ on the space of measures on Γ or on Γ × B for the
standard Borel space B (isomorphic to [0, 1] ), leads again to the simplicial norm.

Also one may use some (canonical) actions of Γ on infinite-dimensional symmetric
spaces M̃ , where the spaces of positive as well as of negative curvature lead to
interesting possibilities (see [BeCG] for sharp inequalities associated to such norms)
and where the case of a flat M̃ (locally Hilbertian) is pertinent for Haagarup (a-T-
menable) groups.

Yet another possibility is the action of Γ on the (contractible!) unitary group
M̃ = U(∞) corresponding to some infinite-dimensional unitary representations of Γ,
e.g. a regular representation for an infinite Γ.

Then the metric Γ-invariants of such a metric model serve as algebraic (topolog-
ical) invariants of Γ.

Questions. When does the norm on homologies of spaces X associated to such
a model M (e.g. M = M̃?Γ) not equal zero for at least one space X (or group Γ)?
What are relations between these norms?

(d) There is another norm on H∗(Γ; Q) (apparently of a different nature) de-
fined via the assembly homomorphism from H∗ to the (rational) Wall–Grothendieck
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surgery group L∗(Γ), roughly, as follows (compare 81
2 in [Gr6]). Every λ ∈ L∗ is

represented by a finite diagram δ of free Q(Γ)-moduli, where we denote by rank(δ)
the sum of the ranks of these moduli and by rank(λ) the minimum of rank(δ) for all
δ representing λ. Then we define the (semi)norm ‖λ‖ as limd→∞ d−1 rank(dλ) and
pass this norm to H∗ via the assembly homomorphism.

Geometrically speaking, one represents d-multiples of h ∈ Hn(X) by maps of
closed oriented manifolds, σ : M → X (where, in some version of the definition,
one restricts oneself to stably parallelizable M , or, in the opposite direction, allows
rational homology manifolds for M) and set

‖h‖Mor =def inf
M,σ,d

1
d |M |Mor ,

where |M |Mor denotes the minimal number of the critical points a Morse function
may have on M .

Instead of |M |Mor, one can use the minimal number of cells in all cell decompo-
sitions of M , or of some space M ′ homotopy equivalent to M , or else the minimal
number of simplices needed to triangulate M .

The latter norm (with triangulations) obviously majorizes the simplicial vol-
ume but ‖h‖Mor vanishes, for example, for the fundamental classes of hyperbolic
3-manifolds X where ‖X‖∆ = 0. It is unclear if, in general, ‖h‖Mor ≤ costn ‖h‖∆.

(e) There is yet another quantity, denoted rankl2(h), the von Neumann rank
of the cup-pairing of the l2-cohomology of Γ on h ∈ H∗(Γ); this, conjecturally, is
majorized, up to a constant, by the simplicial norm.

3.2 Averaging singular chains over amenable subgroups. Let c =
∑

i riσi

be a singular n-cycle in X, denote by Vi ⊂ X the image of the vertices of the the
standard simplex ∆ mapped by σi to X and let V = V (c) = ∪iVi ⊂ X.

Let α : X → Z = K(Γ, 1) be a continuous map α : X → Z = K(Γ, 1) that sends
all vertices v ∈ V of c to a point z0 ∈ Z

Let Pl : [0, 1] → X, l = 1, 2, . . ., be sets of edge paths of σi between some of these
vertices, where an edge path of a σ : ∆ → X is the restriction of σ to an oriented
edge of ∆ identified with the unit segment [0, 1]. (Every σ defines n(n + 1) edge
paths where some among them may be equal.)

Denote by I � i the set of (the indices of) the singular simplices σ = σi composing
c and let E ⊂ I be the set of (the indices of ) the essential simplices σ : ∆ → X
among σi, which means that none of the edge paths of this σ equals some p ∈ Pl for
any l.

Amenable Reduction Lemma. If the groups Γl are amenable, then the simplicial
norm of the α-image of the homology class h = [c] ∈ Hn(X; R) represented by the
cycle c =

∑
i∈I riσi satisfies ∥∥α∗(h)

∥∥
∆ ≤

∑
i∈E

|ri| [ess]

for an arbitrary choice of the sets of edge paths Pl.

Proof. We average away all non-essential simplices as follows (compare [Gr13,
47-48]).
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Assume without loss of generality that zl1 = zl2 for l1 = l2, and realize every
singular simplex in Z with the vertices in the set {zj} ⊂ α(V ) ⊂ Z by the homotopy
classes of its edges.

Each group Γj acts on the resulting complex, say C∗ complex in the obvious
way: a loop at zj is represented by a self-homotopy of Z moving zj around this loop,
where the time one map of this homotopy sends the complex C∗ into itself.

Thus the Cartesian product ΓJ of Γj, j ∈ J , and the product AJ ⊂ ΓJ of Aj act
on C∗.

Since the groups Aj are amenable, each of them supports an ε-invariant proba-
bility measure, say µj,ε and we denote by µε the product of these measures on AJ .
Then, for every singular simplex α ◦ σi in C∗, we consider the singular chains
µε ∗ σi =def µε ∗ (α ◦ σi) in Z that are the µε-weighted convex combinations of
the singular simplices γ ∗ (α ◦ σi), for γ ∈ AJ , and set

µε ∗ c =
∑
i∈I

riµε ∗ σi .

Clearly, the singular chain µε ∗ c is a cycle representing the same homology class
in Z as α∗(c) =

∑
i riα ◦ σi.

On the other hand,
‖µε ∗ c‖l1 ≤ |Σ|ess + |Σ|ε ,

where
|Σess| =

def

∥∥∥∑
i∈E

riµε ∗ σi

∥∥∥
l1

and
|Σε| =

def

∥∥∥ ∑
i∈I\E

riµε ∗ σi

∥∥∥
l1

.

It is obvious, that |Σess| ≤
∑

i∈E |ri|, while

|Σε| ≤ ε
∑

i∈I\E
|ri| ,

due to the ε-invariance of the measure µε.
Then the lemma follows with ε → 0.

Remark. One can slightly improve the [ess]-inequality by counting only those
essential simplices, that contain no edge with both end vertices in V and such that
the corresponding loop in Z is contractible: the simplices with the “α-contractible”
edges average away if we use ε-invariant measures on Aj that are symmetric for
γ ↔ γ−1.

Stratification and pre-stratifications. Consider a partition S of a locally
compact topological space X into locally closed subsets S ⊂ X, called strata of S.
The boundary ∂S of a stratum S is defined as closure(S) \ S.

A stratum S1 ⊂ X is called adjacent to another stratum S2 ⊂ X if S1 has non-
empty intersection with the boundary ∂S0; this relation is denoted by S1 ≺ S2,
albeit it is not always a partial order relation.

A partition S is called a (topological) stratification if the boundary ∂S of each
stratum S equals the union of the strata S′ adjacent to S. In this case the adjacency
is a strict partial order relation.
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S is called a pre-stratification if the adjacency extends to a strict partial order
relation. In other words, there is no chain S1 ≺ S2 ≺ · · · ≺ Sn = S1.

Define the corank of a stratum S0 as the maximal length k of the chains of strata
S0 ≺ S1 ≺ S2 ≺ · · · ≺ Sk.

Define the covering number Ncov(S0) as the minimal number l, such that there
exit neighborhoods Ui = U(Si) ⊂ X of S0 and all strata Si � S0, i = 0, such that
no point in X is contained in more then l + 1 subsets Ui.

Thin covering property. Let X be a compact pre-stratified space and Si,
i = 0, 1, 2, . . . , a set of strata, where S0 ≺ Si for all i = 1, 2, . . . ,m. Then there exist
open subsets Ui ⊃ Si in X, i = 0, 1, 2, . . . ,m, such that no point x ∈ X is contained
in more than corank(S0) + 1 of these Ui.

Indeed, if arbitrarily small neighborhoods of two non-intersecting locally closed
subsets, say S and S′ = S in X intersect, then either S ≺ S′ or S′ ≺ S. Therefore,
if arbitrarily small neighborhoods of l + 1 pairwise non-intersecting locally closed
subsets in X have a common point, then there is an ordering of these subsets, say
by i = 0, 1, . . . , l, such that Si ≺ Sj for all 0 ≤ i < j ≤ l.

In what follows, we assume that X is a locally compact space and the (pre)stra-
tifications are locally finite: every compact subset in X meets only finitely many
strata.
Examples. (a) Start with some non-intersecting open subsets S0i ⊂ U , called the
principal strata and let X−1 ⊂ X be the complement to their union. Then take
non-intersecting subsets S1i ⊂ X−1 that are open in X−1, let X−2 = X−1 \ ∪iS1i,
etc. If this process (locally) terminates we obtain a (locally) finite pre-stratification
of X, where corank(Sji) ≤ j for all i and j.

(b) F -Pre-stratification of the Base. This is canonically constructed with a con-
tinuous map, F : X → Y , where S0i ⊂ Y are maximal connected open subsets such
that F is a locally trivial fibration over S0i, then S1i ⊂ Y −1 are similarly defined for
F : F−1(Y −1) → Y −1, etc.

If F is a generic smooth map and X is a compact manifold, then codim(Sji) ≤ j
and thus all strata have coranks ≤ dim Y .

(c) F̂ -pre-stratification of the critical set. Let F : X → Y be a generic smooth
map, and let us take the above F -stratification of the critical set Σ = Σ(F ) ⊂ Y ,
for the map F̂ that equals F restricted to the singularity Σ̂ = Σ̂(F ) ⊂ X of F , that
is F̂ : Σ̂ → Σ.

Since the map F̂ is finite-to-one, “fibration” amounts to “finite covering map”
and since F̂ is one-to one over the simple pure folding points as well as over the pure
cuspidal locus C (that has codimension one in Σ), the principal strata S0i cover all
these points. Observe that C has corank 2 for the F -stratification of Y ⊃ Σ, where
codimY (Σ) = 1 (we assume here as ever that n dim(X) ≥ m + 1 for m dim(Y )) but,
yet, C is contained in the principal strata of F̂ of corank 0 in Σ that is strictly less
than codimΣ(C) = 1.

It follows that Σ−1 ⊂ Σ equals the union of the set Σ× ⊂ Σ−1 of the multiple
points in the pure folding locus that has codimΣ(Σ×) = 1 unless it is empty, and
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of a subset Σ2 ⊂ Σ−1 that has codimΣ(Σ2) ≥ 2. Thus, Σ−(m−1) ∩ Σ2 = ∅ for
m dim(Y ) dim(Σ)+1, while Σ−(m−1)∩Σ× consists of the m-multiple self-intersections
of the pure folding locus in Σ.

m-Crossing Corollary. The only strata of corank m−1 in the F̂ -pre-stratification
of Σ(F ) are the m-multiple self-crossing points of the pure folding locus.

This simple property, along with the localization of the simplicial volume (see
below), underlies the bound on the simplicial volume of Xm+1 generically mapped
to Y m by the number of the m-multiple fold self-crossing points of the map. (See
∆-inequality in the next section.)

Call a stratum S ⊂ X (or any subset in X for that matter) α-amenable for a
given map α : X → Z if the α-image of the fundamental group of each connected
component of S in π1(Z) is amenable. (Here and below we deal with (sub)spaces
that have no set theoretic pathologies, e.g. being locally contractible and thus having
well defined fundamental groups.)

Define the stratified simplicial norm on the real singular homology classes h ∈
Hn(X) of a stratified X by taking the infimum of the l1-norms of the singular
cycles c =

∑
i riσi representing h, where all σi satisfy the following ord(er) and the

int(ernality) conditions on the constituent singular simplices σi.
(ord) The image σi(∆) ⊂ X of each σi is contained in an interval of strata,

denoted [S1, S2] ⊂ X and signifying the union of all strata S, such that S1 � S � S2,
(where “� ” signifies “≺ or =”).

(int). If a σi sends the boundary of some face ∆′ of ∆ to a stratum S then all
of ∆′ goes to S by this σi.

Clearly, the resulting norm, denoted ‖h‖S∆, is ≥ ‖h‖∆.
Example. Let X be a triangulated n-dimensional (pseudo)manifold stratified
into the open simplices of the triangulation. Then the stratified simplicial volume
‖[X]‖S∆ of X equals n!N , where N denotes the number of the n-simplices in the
triangulation. On the other hand, the stratification with a single stratum = X,
gives the stratified norm equal the ordinary one.

Define the stratified simplicial norm on the relative homology classes
h ∈ Hn(U, ∂U ; R) for open subsets U ⊂ X by taking the infimum of the l1-norms of
the relative cycles representing h and satisfying the (ord) and (int) conditions.

Localization Lemma. Let X be a pre-stratified space and α : X → Z = K(Γ, 1)
a continuous map, such that the strata of corank < n in X are α-amenable. Denote
by X−n ⊂ X the union of the strata with corank ≥ n, take a neighborhood U ⊂ X
of X−n an assume that the restriction of the pre-stratification of X to U (obtained
by intersecting the starts with U) is a stratification. Then the α-image of every
homology class h ∈ Hn(X; R) to U , satisfies∥∥α∗(h)

∥∥
∆ ≤ ‖hU‖S∆ ,

where hU ∈ Hn(U, ∂U ; R) denotes the restriction of h to U (obtained from h by com-
posing the homomorphism Hn(X) → Hn(X,X \ U) with the excision isomorphism
Hn(X,X \ U) → Hn(U, ∂U)).
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Proof. It suffices to extend a given relative cocycle cU representing h0 to a c rep-
resenting h with no new essential simplices with respect to some map α′ : X → Z
homotopic to α.

Assume without loss of generality that X is a compact metric space and take a
sequence of small fast decreasing positive numbers,

ε−n = ε−n(S, cU ) > ε−n+1 = ε−n+1(ε−n) > . . . > ε−1(ε−2) > ε0 = 0 .

Consider paths issuing from a point x ∈ X, i = 0, 1, . . . , n, having diameters
≤ ε−i−1 and terminating in strata S ⊂ X−i−1. Take such a path, say px : [0, 1] → X,
with the maximal possible i and denote by Sx the strata, where this path terminates,
i.e. Sx � px(1). Choose a point xS ∈ S in each strata S and continue px by a path
p′x terminating in xS = xSx .

Take an h-extension c of cU , such that c − cU = c1 + cδ, where
• c1 equals a subdivided cylinder ∂cU × [0, 1] mapped to X via the projection

∂cU × [0, 1] → ∂cU = ∂cU × 0;
•• all singular simplices in cδ have diameters (of their images in X) ≤ δ < 2−nε−1.
Take the paths p′v for the vertices v ∈ X of the singular simplices in c − cU and

homotope α in two steps as follows. First we take a homotopy of the identity map
X → X by extending the homotopies v � xSv ∈ Sv ⊂ X, compose this with α and
then continue with a homotopy of maps X → Z bringing all points xSv to the same
z0 ∈ Z. Then one sees (with the Lebesgue covering lemma as in the text books
construction of the simplicial approximation of continuous maps by simplicial ones)
that c has no new essential simplices with respect to the resulting map α′ : X → Z,
provided ε−i are sufficiently small and fast decreasing; thus the reduction lemma
applies and the proof follows.

3.3 Amenable stratifications of maps with drop one in dimension and
∆-inequality. Consider as a generic smooth map F : X → Y where dim(X) =
n = m+1 = dim(Y )+1. If X is a manifold, assumed closed unless stated otherwise,
then each non-empty connected component of the fiber Xy = F−1(y) ⊂ X is either
a single point or a 1-dimensional space, a graph, obtained from a circle by gluing
some pairs of points in it.

In particular, if F is purely folded with self-transversal fold, then all singular
points of such graph have valency 4 and the number of these in Xy is at most k,
where k = 0, 1, . . . ,m is the multiplicity of the self-crossing of the fold at y ∈ Y . For
example, the pullback of a generic y ∈ Y (i.e. away from the fold Σ(F ) ⊂ Y ) consists
of several copies of S1, the fiber over a simple folding point may have the figure ∞,
i.e. once pinched S1, denoted G1, or a single point component, the pullback of a
double-crossing point y of Σ may have a twice pinched S1 as a component, that
is a graph G2 with two 4-valent vertices, which either has four edges between the
vertices or it is the necklace of three circles (two edges between the vertices and and
a loop at each of the two) etc.

Consider, besides F : X → Y , a continuous map α : X → Z = K(Γ, 1) and,
assuming X is oriented, let us estimate the simplicial norm of the α-image of the
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fundamental class [X] ∈ Hn(X; R) in terms of a suitable (pre)stratifications of X
and Y associated with F as follows.

Factor F via F̃ : X → Ỹ → Y , where the points ỹ ∈ Ỹ represent the connected
components of the fibers of F . Thus, all fibers Xỹ = F̃−1(ỹ) ∈ X are identified with
the connected components of the fibers over y ∈ Y , for y that lie under ỹ.

Denote by Ỹam ⊂ Ỹ the set of points where the fibers Xỹ are α-amenable which
means the α-images of the fundamental groups of these fibers in Γ = π1(Z) are
amenable. Then let

Xam = F̃−1(Ỹam) .

Observe that Ỹam ⊂ Ỹ and Xam ⊂ X are open subsets, where Xam contains the
fibers of F that do not meet the singularity Σ̂ = Σ̂(F ) ⊂ X. The complements of
these two subsets are denoted by Ỹnam ⊂ Ỹ and Xnam ⊂ X.

Consider the intersection Σ̂nam of the singularity Σ̂ with Xnam and pre-stratify
it into the maximal connected subsets S such that the restrictions of F to these sets,
F |S;S → F (S), are covering maps.

Call the resulting (canonical) pre-stratification S(Σ̂nam) and its strata S =
S(Σ̂)nam. Then pre-stratify Xnam by adding to these strata the maximal connected
subsets S ⊂ Xnam \ Σ̂, such that every fiber F̃−1(ỹ), ỹ ∈ Ỹnam, passing through
s ∈ S meets Σ̂ over the same strata S(Σ̂)nam. (Although the maps F̃ |S → F̃ (S)
are not always fibrations for generic maps F , the images of the fundamental groups
of their fibers in X behave as if they were fibrations.) The resulting (canonical)
pre-stratification is called S(Xnam).

Finally, extend S(Xnam) to all of X by (this time non-canonically) stratify-
ing Xam into strata Sam, such that they are either of the form Sam = F̃−1(S̃)
for contractible subsets S̃ ⊂ Ỹam (amenability of π1(S̃) will do), where the maps
F |Sam : Sam → S̃ are Serre fibrations, or such that the inclusion maps Sam → X
are homotopic to maps sending Sam to some (possibly non-amenable) strata of the
stratification S(Xnam).

This is done with the (canonical) pre-stratification S(Σ̃nam) of Σ̃nam = Ynam∩ Σ̃
for Σ̃ = F̃ (Σ̂) ⊂ Ỹ as follows.

Extend (non-canonically) the pre-stratification S(Σ̃nam) to a pre-stratification
of Ỹ by stratifying Ỹam, where each stratum S̃am ⊂ Ỹam is either small and, thus,
contractible in Ỹ (π1(S̃) amenable suffices), or S̃am can be moved by a (small)
homotopy into some stratum of S(Σ̃nam) (where the former implies the latter but
it is convenient to distinguish the two cases). Then stratify Xam by the pullbacks
F̃−1(S̃am).

If F is a generic map, than all strata of this (non-canonical) pre-stratification S
of X have corank ≤ n and those of corank = n are isolated points say v ∈ X, all
contained in Σ̂nam ⊂ X and having corank n − 1 with respect to the (canonical)
pre-stratification S(Σ̂nam) of Σ̂nam.
Important Remark. The extension of the canonical pre-stratification S(Xnam)
to the above S can be (obviously) made canonical near Σ̂, and, in particular, at
the points of corank m. Thus the relative S-stratified simplicial volumes of small
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neighborhoods of these points are bounded by a universal constant const(n) for all
generic maps F . (In fact, const(n) ≤ n2n)

The case dim(X) = 3. The critical set Σ ⊂ Y of the generic map F : X3 →
Y 2 is a curve whose singular points (if any) are double points and cusps and the
bound on ‖X‖∆, due to Costantino–Thurston in a sharper form [CosT], can be seen
as follows.

The connected components of the pullbacks of the regular points, y ∈ Y \ Σ, as
well as of the cusps on Σ are topological circles and have amenable (= Z) funda-
mental groups. The non-circular components of the pullbacks of the non-singular
points y ∈ Σ are figures ∞, called G1-fibers, and the pullback of a double points
Y ∈ Σ may contain one connected component that is a graph, call it a G2-fiber,
with two vertices of valency 4 on F−1(y). Such a graph is either made of four edges
between the two vertices, or there are two edges between the vertices and a loop at
each vertex.

The images of the fundamental groups of the G1- and G2-fibers in π1(X) may be
non-amenable. (Those adjacent to the cusps are always amenable). Yet, all strata
of the above pre-stratification S of X (obviously) generate amenable (even cyclic)
subgroups in π1(X) and, by the localization lemma,

The simplicial volume of X is bounded by the number of the G2-fibers
and, thus, by the number of the double points of the fold,

‖X‖∆ ≤ const ·NG2 ≤ const ·N2

for some universal constant const = const(3) ≤ 24.
(In fact, const ≤ 10 according to [CosT].)
Example. Let X be a hyperbolic manifold that fibers over S1. Then the N -
sheeted cyclic coverings XN of X, induced by the N -sheeted self-coverings of S1, have
‖XN‖∆ = N‖X‖∆ > N ; thus every generic map XN → R2 must have > 00.1N fold
double points. On the other hand, there obviously exist generic maps FN : XN →
S1 × [0, 1] ⊂ R2, that are the “suspensions” of the fibrations XN → S1 induced by
the N -sheeted self-covering of S1 with the pullbacks to XN of some Morse function
X → [0, 1], which have N2(FN ) ≤ const ·N for some const = const(X).

∆-inequality for generic maps F : Xn → Y m for m = n − 1 ≥ 2. The
pullback F−1(y) ⊂ X of a k-multiple fold intersection point y ∈ Σ ⊂ Y may have
(at most) one connected component with k vertices of valencies four, that is called a
Gk-fiber of F . Thus, there are finitely many Gm-fibers, each lying over a transversal
m-multiple intersection point y ∈ Σ ⊂ Y of the fold of F in Y .

Let X be a closed oriented n-manifold, F : X → Y , dim(Y ) = m = n−1,
a generic smooth map and α : X → Z = K(Γ, 1) a continuous map.
Then the simplicial norm of the α-image of the fundamental class of X
is bounded by the number of the Gm-fibers and, thus, by the number of
the m-multiple self-intersection points of the folding locus of F ,∥∥α∗[X]

∥∥
∆ ≤ const(n)NGm ≤ const(n)Nm ,



776 M. GROMOV GAFA 

provided the fundamental group of Z (i.e. the group Γ) contains no pair
of commuting non-amenable subgroups.

Proof. Observe that if a connected component G of a fiber of F has a non-amenable
fundamental group, then G is a connected graph with at least one vertex of degree
> 2. Since the group of homeomorphisms of such G is homotopy equivalent to a
finite group, the monodromy group of such fiber over every subset S ⊂ Y where the
map F is fibration is finite. Therefore, if the fundamental group of some of S ⊂ X
injects into that of S then this group almost commutes with the fundamental group
of G, i.e. some subgroups of finite indices in the two groups commute.

This applies to the above “semi-canonical” pre-stratification S of X =
Xam ∪ Xnam: the image in π1(X) of the fundamental group of each stratum S
of S(Xnam) almost commutes with the images of the fundamental groups of the con-
nected components of the fibers of the map F which meet S . Therefore, all strata
S of S(Xnam), and, hence, of S are α-amenable and the localization lemma applies.
Remark. The absence of commuting non-amenable subgroups in Γ is essential:
every product manifold X1 × X2, where X2 is a surface, admits a purely folded
map X → X1 × [0, 1], which is the identity map on X1 times a Morse function
X2 → [0, 1], where the fold has no self-crossing at all. Furthermore, there exists an
X that admits a map of positive degree to X1 × X2, as well as a purely folded map
F to Rm, m = n − 1 = dim(x) − 1, where the fold has no self-crossing.

Examples. The word hyperbolic groups have no pairs of commuting non-amenable
(and just, infinite) subgroups and the same is true for many other (non-cocompact)
isometry groups of hyperbolic spaces.

Every virtually non-split cocompact lattice Γ in the product L = ×iLi of semi-
simple Lie groups Li with rankR Li = 1 (where the corresponding symmetric spaces
have strictly negative curvatures) also contains no pair of commuting non-amenable
(just virtually unsolvable) subgroups and the ∆-inequality applies. (It is unclear
what happens here to the ∆-inequality for rankR Li ≥ 2.)

In particular, the ∆-inequality applies to compact Hilbert complex modular sur-
faces (where L = SL2(R) × SL2(R)) that have the same universal covers as the
product of (real) surfaces, where the inequality does not apply.

Questions. (a) What happens if we only assume that the class α∗[X] ∈ Hn(Z; R)
is not a linear combinations of homology classes h = h1

⊗
h2 ∈ Hn(Z; R) coming

from Hn(Γ1 × Γ2; R) for all pairs of infinite commuting subgroups Γ1 and Γ2 in
Γ = π1(Z)?

(b) Are there instances of a non-trivial lower bounds on Nm where the lower
bound on the simplicial norm ‖α∗[X]‖∆ in Γ is unavailable?

For example, if Γ is “anti-Abelian”, i.e. the centralizers of all γ = id are free
cyclic, then every purely folded map F : X → Y , dim(Y ) = m = dim(X) − 1
necessarily has an m-multiple self-crossing point of the fold in Y . In fact, we shall
see in 5.7 that some fiber of such a map has at least m singular points.
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But it is unclear if there is a lower bound on the number of such points even if
one assumes that F is a purely folded map, such that the singularity Σ̂ ⊂ X is the
union of 2n disjoint concentric spheres Sm−1 ⊂ Rm ⊂ Rn ⊂ X. (Such maps are
abundant for stably parallelizable manifolds by the Eliashberg h-principle.) Also it
is unclear if “purely folded” can be replaced by “smooth generic”.

(c) On symplectization and stabilization. Is there a symplectic version of the
∆-inequality?

For example, let Π : X = Xn → P = Pn−2 be a smooth fibration with con-
nected fibers, and consider maps F = Π × f : X → P × R for a Morse function
f : X → R. This defines a family of Lagrangian manifolds in the cotangent bundles
of the (surface) fibers, Lp ⊂ T ∗(Xp = Π−1(p)), p ∈ P , and the appearance of a
crossing point of the fold of F over a point p ∈ P corresponds to the presence of
some integer relation between the relative homology classes in H2(T ∗(Xp), Lp∪Xp),
where Xp ⊂ T ∗(Xp) is embedded by the zero section.

Does the counterpart of the ∆ inequality hold true for families of exact La-
grangian submanifolds Lp ⊂ T ∗(Xp)?

It is unclear how to formulate a symplectic conjecture generalizing the ∆-in-
equality for general X and F but the above question can be generalized in another
direction.

Let (Tp, ωp, Lp) be a family of compact symplectic manifolds parametrized by
a space P � p, where Lp ⊂ Xp are Lagrangian submanifolds (possibly empty).
When can one bound from below the number of points p ∈ P , such that the relative
cohomology class [ωp] ∈ H2(Xp, Lp; R) = H2(Xp, Lp; Z)

⊗
R is contained in a Q-

affine subspace (defined by linear equations with rational coefficients) of codimension
≥ m? (In order to encompass the previous example one needs Lagrangian manifolds
with self-intersections, and to go beyond fibrations one may try singular symplectic
manifolds.)

This can be approached with the known techniques when the symplectic fam-
ily (Tp, ωp, Lp) is obtained by a deformation from another family, where linear
Z-relations are associated to degenerations (e.g. bubbling) of pseudo-holomorphic
curves.

On the other hand, looking from the perspective of generating functions makes
a symplectic version of the ∆-inequality rather improbable, since this inequality is
unstable: The Cartesian product X×X1, where X is arbitrary and where X1 can be
realized by a co-oriented hypersurface in Y (e.g. X1 is the sphere Sm−1 and Y = Rm)
admits a purely folded map X × X1 → Y , such that the fold has no self-crossing at
all.

(d) On universal singular fibrations. One can regard smooth maps F : X → Y
as fibrations over Y with variable fibers Xy = F−1(y), where, observe, every map
f : Y1 → Y induces such a fibration over Y1, denoted f∗(F ) : f∗(X) → Y1 with the
fibers Xf(y1). If f is transversal (relative) to F , i.e. the map F ×f : X×Y1 → Y ×Y
is transversal to the diagonal in Y × Y , then F ∗(X) is a manifold of dimension
dim(X) + dim(Y1) − dim(Y ) and the map f∗(F ) is smooth and “as generic” as F .
In particular, if F is purely folded, then so is f∗(F ).
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This suggests the existence of a universal such fibration with fibers in a given
class G of (singular) spaces G. (Beware: singularities of generic smooth maps can
make non-trivial C∞-moduli, i.e. continuous families, albeit this does not happen
for purely folded maps.)

Alternatively, one may start with a small category G of topological spaces G and
certain admissible (continuous) maps between them. and construct the universal
fibration with fibers G over the classifying space YG of the category G (compare 5.6).

For example, the space YG classifying purely folded maps Xm+k → Y m is as-
sociated to the category of k-dimensional spaces with isolated quadratic (Morse)
singularities, where the admissible maps correspond to the limit maps of one pa-
rameter families of fibers.

The classifying spaces YG have particular geometric models for n−m = dim(G) =
0, 1, 2, and, possibly, for dim(G) = 3, where one may(?) use the Hamilton–Perelman
flow in the “space” of singular Riemannian 3-manifolds.

The ∆-inequality provides a necessary condition on X to appear as a global space
of such a fibration, with G consisting of the graphs G with all connected components
having at most m − 1 vertices of valency ≥ 4. Can this be seen in the light of the
classifying spaces YG?

4 p.l.-Families of Point/Edge Singular Surfaces and Minimal
Maps

We study here manifolds (and more general spaces) X represented as singular fibra-
tions with 2-dimensional fibers Gy ⊂ X parametrized by a space (e.g. a manifold)
Y � y, and establish lower bounds on the topologies of Yy in terms of some geometric
invariants (called “waists” in [Gr5]) of metric spaces Z receiving X via continuous
maps α : X → Z.

The main example is where X comes with a metric of negative curvature and α
is the identity map X → Z = X; this is used for lower bounds on the numbers of
the crossing (double) points of the folding curves of 3-manifolds mapped to surfaces,
such as

N2 ≥ ε(X)s2

for generic smooth maps F : Xs → R2 of certain infinite sequences of s-sheeted
coverings Xs of hyperbolic 3-manifolds X.

4.1 Length and area minimization. Let Z be a (geodesic) length space, i.e.
a metric space where every two points within distance d can be joint by a (minimal
geodesic) path of length d. Consider a continuous map α0 : G → Z and the induced
length “metric” �0 on G by first assigning to each curve in G the length of the
corresponding curve in Z and then defining the distance between each pair of points
in G as the infimum of the length of the path in G joining them.

This �0 may be degenerated in two ways: it may be infinite for some pairs of
points, or it may be zero. The former does not happen if α0 is Lipschitz with
respect to some background length metric in G; the latter is unavoidable for maps
that shrink rectifiable curves to points but we still treat �0 as a metric.
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The n-dimensional Hausdorff measure of (G, �0) is called the n-volume of α0. (If
dim(Z) > dim(G), then in most cases voln(α0) equals the n-volume of the image
α0(G) ⊂ Z and we use the two notations interchangeably. Also we often use “length”
for vol1 and “area” for vol2.)

For example, if G and Z are Riemannian manifolds G and α is smooth (Lipschitz
is enough), then this volume equals the integral of the Jacobian, i.e. the norm of the
top exterior power of the differential, of α,

voln(α0) =
∫

G

∥∥ΛnD(α0)
∥∥ .

A map α0 : G → Z is called length extremal if it admits no shortening homotopy
that, by definition, strictly decreases (i.e. such that �t � �0 for t > 0) the induced
length structure. A map α0 is called length extremal at a point g ∈ G if there is
a neighborhood U ⊂ G of g, such that α0 admits no shortening homotopy that is
fixed outside U .

If G is a graph, then every locally extremal map at an interior point g of an edge
is geodesic on this edge near g if, moreover, Z is a Riemannian manifold, then α0 is
extremal at a vertex g then the tangent vectors to the geodesic edges at the points
z = α0(g) ∈ Z are not contained in open half-spaces of the tangent spaces Tz(Z) for
all vertices g ∈ G.

These maps will be used later on with the following definition.

G1-extremality. Let G1 be a subgraph in a space G, e.g. the 1-skeleton of some
triangulation of G. A map from G to Z is called edge extremal (locally edge extremal)
on G1 if its restriction to G1 ⊂ G is length extremal (locally length extremal at all
points in G1).

In what follows, plain “edge extremal” means “edge extremal on the 1-skeleton
some (sometimes specified) triangulation of G”.
Further examples of extremal maps. (a) Every (piecewise) ruled map is
locally length extremal, where “ruled” signifies each point g ∈ G is contained in a
simple open ark, A ⊂ G, i.e. the open interval (0, 1) topologically embedded to G,
such that A is isometrically sent by α0 to a minimal geodesic segment in Z. (Such
an A is necessarily geodesic in G.)

(b) Every map between Riemannian manifolds locally (in the space of maps)
minimizing some energy

∫
G σ(D(α)) for a continuous positive (i.e. σ(D) > 0 for

D = 0) function of D, e.g. for the p-energy
∫
‖D(α)‖p (that is a convex as well as

positive functional for p > 1) is length extremal.
(c) A volume minimizing map is locally length extremal at the points g ∈ G

where rankDg(α0) = dim(G). (Notice that the volume of a map is a non-convex
functional, but the rank constrain is due to its non-positivity rather than to non-
convexity.)

It is obvious that every Lipschitz map α0 between compact spaces, where the
receiving space Z is locally contractible, can be shortened by some homotopy to a
length extremal map αmin. This length shortening is most transparent for maps
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of graphs into CAT(κ ≤ 0) spaces Z that is used below for the area shortening of
surfaces in such Z.

4.2 Recollection on CAT(0)-spaces. A length (e.g. Riemannian) space Z is
called Alexandrov of curvature ≤ κ or (local) CAT(κ)-space for κ ≤ 0, if the geodesic
triangles in Z are “smaller” than those in the spaces of constant curvature κ in the
following sense.

Let ∆2
κ be a triangle in the (Euclidean or hyperbolic) plane of curvature κ and

α0 : ∆2
κ → Z a continuous map that is locally isometric on each edge ei of ∆2

κ,
i = 1, 2, 3 (i.e. every ei goes to a geodesic between the images of the corresponding
vertices of ∆2

κ). Then there is a homotopy αt, t ∈ [0, 1], of α0 = αt=0 that is fixed
on the boundary of ∆2

κ (that is on the three edges) and such that α1 = αt=1 is
1-Lipschitz, i.e. distance (non-strictly) decreasing map. (If κ > 0 this is required
only of the triangles ∆2

κ in the hemisphere of curvature κ.)
Remark. This definition is usually stated in terms of the universal covering Z̃
of Z, by saying that every geodesic triangle in Z̃, i.e. the union of three geodesic
edges between three points in Z̃, denoted, ∂ = ∪i=1,2,3ei ⊂ Z̃, can be filled-in by
1-Lipschitz map α̃ : ∆2

κ → Z̃ isometric on the edges.
In fact, one can take this α̃ in a (rather) canonical way. For example

the geodesic cone map over ∂ from any given point z0 ∈ ∂ is 1-Lipschitz.
Moreover, one can use a filling by any ruled surface spanning ∂, since, according

to Alexandrov,
the induced length metrics on ruled (and hence, length extremal) surfaces
in CAT(κ) spaces are CAT(κ).

Geodesic interpolation. If Z̃ is a simply connected CAT(κ ≤ 0) space, then
every two points z0, z1 ∈ Z̃ are joint by a unique minimizing geodesic segment of
length d = dist(z0, z1), denoted [z0, z1] ⊂ Z̃, where (1−t)z0+tz1 ⊂ [z0, z1], 0 ≤ t ≤ 1,
denotes the point dividing this segment in the proportion (1 − t) : t. Moreover,

dist
(
((1 − t)z0 + tz1), ((1 − t)z′0 + tz′1)

)
≤ (1 − t) dist(z0, z

′
0) + t dist(z1, z

′
1)

for all quadruples of points in Z̃. (This trivially follows from the above definition of
CAT(κ ≤ 0).) Therefore,

the geodesic interpolation ((1− t)z0(p) + tz1(p)) between two λ-Lipschitz
maps z0(p), z1(p) of some metric space P to Z̃ is λ-Lipschitz.

In particular, the space of the above 1-Lipschitz fillings of a geodesic triangle in
Z̃ by ∆2

κ is contractible.
It follows that if Z is not simply connected, then every path in a homotopy zt(p)

between two maps z0(p), z1(p) can be homotoped to a unique geodesic segment with
the same end points and

the geodesic interpolation ((1−t)z0(p)+tz1(p)) is defined in the universal
covering of every connected component of the space of maps of any P to
Z and it preserves the class of “λ-Lipschitz” maps. In particular, the
space of 1-Lipschitz ∆2

κ-fillings of geodesic triangles in Z is either empty
or contractible.
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Two CAT(κ) Examples. (a) Every complete Riemannian manifold with sectional
curvatures ≤ κ is CAT(κ).

(b) Let G be a triangulated surface with a length metric �, where every 2-simplex
of the triangulation is isometric to a triangle in the plane of constant curvature κ.
Then G is CAT(κ) if and only if the sum of the angles of the triangles at every
vertex is ≥ 2π.

Remark. These kind of examples, where the singular metrics can be approximated
by regular ones, apparently, were the major motivation for A.D. Alexandrov. One
knows now-a-days, since the work by Bruhat–Tits, that the class of singular CAT(κ)-
spaces is much wider than that of non-singular (i.e. Riemannian) spaces even on the
homotopy level.

Here are some relevant properties of CAT(κ) spaces going back, I guess, to
Alexandrov:

1. Gauss–Bonnet area inequality. Every compact connected surface G with
CAT(κ ≤ 0)-metric � where the boundary ∂(G) is geodesic (i.e. locally distance
minimizing) has non-positive Euler characteristic and

area(G) ≤ 2π|κ|−1χ(G) ;
moreover, there exists a metric �κ on S of constant curvature κ with geodesic bound-
ary and a 1-Lipschitz homeomorphism ϕ : (G, �κ) → (S, �). (This 1-Lipschitz
map ϕ, for a suitable �κ, can be chosen conformal.)

Let G = (G, �) be a surface as in Example (b) triangulated into ∆2
κ-triangles

and let G1 be the 1-skeleton of the triangulation. Let α0 : G → Z be a continuous
locally edge extremal map that is locally isometric on each edge of G1. Then

2. The above sums of the angles are all ≥ 2π and the metric � has curvature
≤ κ.

Consequently,
3. There is a shortening homotopy αt of α0, that is fixed on the graph G1 and

such that the map αt=1 : G → Z is 1-Lipschitz and, therefore, has area(αt=1) ≤
2πκ−1χ(G) if κ ≤ 0.

4. Every map α0 of a closed surface G into a compact CAT(κ < 0)-space can be
homotoped (by a family of distance decreasing maps αt) to a map α1 with area(α1) ≤
2πκ−1χ(G) for χ(G) < 0 and to a map of zero area if χ(G) ≥ 0.

The same conclusion (the existence of a homotopic map of small area) can also be
achieved with a homotopy of α0 to edge extremal α′

1 for the 1-skeleton G1 of some
triangulation of G with the consecutive filling-in all triangles by the ∆2

κ-triangles
with the edge lengths equal to the corresponding length of the edges in Z. We shall
apply this below for shortening of families of such maps αy : Gy → Z, where the
topology of Gy may change at certain values of y ∈ Y . and we shall be using the
following.

5. Petrunin Theorem [Pe]. The metrics on surfaces G induced by locally
length extremal maps into CAT(κ)-spaces are CAT(κ).
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This is reduced to the above by showing that such metrics � can be approximated
by those induced by edge extremal maps for subgraphs G1 in G incorporating “suf-
ficiently many” �-minimal paths in G. (This approximation property is valid for all
locally compact locally contractible spaces G.)

6. Reparametrization Corollary. Let α : ∆2
κ → Z be a Lipschitz map

that is locally isometric on the three edges of ∆2
κ and is locally length extremal

at all points except the three vertices of ∆2
κ. Then α can be reparametrized to a

1-Lipschitz map α1 : ∆2
κ → Z, where “reparametrization” means that α1 = α ◦ β

for some map β : ∆2 → ∆2
κ that is the identity on the boundary of ∆2

κ (where one
uses β that is 1-Lipschitz for the length metric induced by α.)

Remark. This is useful for controlling the areas of families of length extremal
maps of surfaces by the (more manageable) Lipschitz constants of reparametrized
maps. In fact, we shall work for most part with edge extremal maps for the 1-skeleta
G1 of triangulations of G = ∆2

κ, where the Petrunin theorem reduces to the above
property 2.

4.3 Area shortening by harmonic flow. Given a continuous maps of a 2-
dimensional space into a metric space, α : G → Z, let

sup
y

area(α) = sup
y∈Y

area(F |Gy)

and define the min-area of the homotopy class of α, denoted as the infimum of the
supy-areas of all maps X → Z homotopic to α

min-area[α] = inf
α′ sup

y
area(α′)

over all maps α′ : X → Z in the homotopy class of α.
The simplest way to bound min-area for smooth spaces is to use the harmonic

flow (see below) but we shall later adopt a combinatorial approach that avoid tech-
nicalities of harmonic maps between singular spaces.

min-area inequality for surface fibrations. Let F : X → Y be a locally
trivial fibration where the fiber G is a smooth closed connected surface and and
the structure group is Diff(G) and let Z be a compact manifold with sectional
curvatures≤ κ < 0.

If G has non-negative Euler characteristics then every homotopy class of
continuous maps α : X → Z has min-area[α] = 0; if χ(G) < 0, then

min-area[α] ≤ 2πκ−1χ(G) .

Proof. Assign a smooth Riemannian metric �y to each fiber G = Gy = F−1(y)
continuously depending on y and follow the (Eels–Samson) harmonic flows αy,t

starting from the restricted maps αy,0 = α|Gy : (Gy, �y) → Z. (The harmonic
flow on the space of maps α(G, �) → Z is the minus gradient flow for the energy
E2(α) =

∫
G ‖D(α)‖2.) This converges to a continuous map α∞ : X → Z that is

harmonic (i.e. E2-minimizing) and, hence, length extremal, on every Gy. Since the
induced length metric on the fibers are CAT(κ) by Petrunin’s theorem (classically
known in this case), the Gauss–Bonnet inequality applies.
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Remark. If the map α is a smooth immersion on each fiber Gy, then one can take
the induced metrics in the fibers for �y. Then

the harmonic flow decreases the areas of the maps, since it decreases
their energies.

In general, the Riemannian “metric” � induced by a smooth map αy : Gy → Z is
singular, i.e. only semidefinite, but it can be ε-regularized and, thus, made definite
with an arbitrarily small perturbation �′y = �y +ε; then the harmonic flow applies to
this perturbed metric and and almost (i.e. up to an arbitrarily small ε > 0) decreases
the area of αy.

Corollary. Let M denote the space of continuous maps α : G → Z, where G is a
closed connected surface and Z is a compact Riemannian CAT(κ) manifold and let
Ma ⊂ M , a ≥ 0, consist of the smooth maps with areas ≤ a.

If κ < 0 and a ≥ 2πκ−1χ(G), then the inclusion Ma ⊂ M is a homotopy
equivalence.

It is easy to see that this remains true for complete (not necessarily compact) Z
and, with a little work generalizes to singular (i.e. non-Riemannian) CAT(κ ≤ 0)-
spaces Z. However, this is harder to implement for singular 2-polyhedra G and we
shall be using below edge-extremal rather than harmonic maps (albeit we could use
harmonic maps as well).
Remark. If one successively applies the operation

εi+1-regularization of αi + harmonic flow � αi+1

to an initial smooth map α0 : G → Z, one obtains in the limit a locally (in the space
of maps) area minimizing map α = limi→∞ αi.

If α0 : G → Z is incompressible, i.e. the α0-image of no simple closed non-
contractible curve in G is contractible in Z, then, at least for compact (complete
with an extra stability assumptions on α0) space Z, this minimal map is smooth;
otherwise the image of α may decompose into several smooth components joined by
some graphs of geodesics in Z.

Questions. (a) The above min-area inequality is rarely sharp. In fact,
min-area[α] ≤ 2πκ−1χ(G) − C ,

where C > 0, unless α is homotopic to an immersion that is locally isometric
(geodesic) with respect to some metric of constant curvature κ on G.

If, for example, Z is a compact manifold of constant curvature −1 then, by
an easy limit argument, C ≥ 00.1min(1, (Inj Rad(Z)2)), unless α induces an iso-
morphism of the fundamental group of G onto a convex cocompact subgroup in
Γ = π1(Z).

Can a presence of short closed geodesics γ ∈ Z make C uncontrollably small?
Are there minimal surfaces G in Z that are for the most part almost flat (geodesic) in
Z and the lifts of which to the universal covering Z̃ are almost helical (i.e. invariant
under one-parameter loxodromic subgroups of isometries) around lifts of some short
geodesics γ to Z̃?
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What condition can ensure min-area[α] ≤ (1 − C)2πκ−1χ(G)?
(b) What happens for k = dim(G) ≥ 3? For example, let G be a compact

connected k-dimensional manifold (the case of singular 2-polyhedra is also not fully
trivial, compare 4.6, 4.7, 5.11) and consider the space M of smooth maps α : G → Z
in a fixed homotopy class of maps. What is a possible Morse profile of the function
α �→ volk(α), α ∈ M , for CAT(−1) spaces Z, i.e. (the behavior of) the relative
homology H(Mb,Ma), b ≥ a, of the family of subspaces Ma ⊂ M of maps with
k-volumes ≤ a. For instance, when, for given numbers 0 ≤ a ≤ b ≤ c < ∞, every
map α ∈ Mb can be homotoped within Mc to Ma? (If k = 2 then the relative
homotopy groups πi(Mb,Ma), i = 0, 1, 2, . . . , vanish for all a ≤ b > 2πκ−1χ(G) by
the harmonic flow argument.)

What is the asymptotic, for i → ∞, behavior of the above αi taken to be k-
harmonic maps that minimize

∫
G ‖D(α)‖kdg, where the norm of the differential and

the measure dg are taken with some εi-regularization of the metric induced by αi−1?

Harmonic flow with singular fibers. If F : X → Y is a generic smooth
maps F : X → Y with 2-dimensional fibers Gy, then the harmonic flow applies to
the non-singular fibers Gy, but the resulting fiber-wise harmonic map α∞ becomes
discontinuous as one goes across the critical set Σ(F ) ⊂ Y . However, one can
recapture the continuity with an interpolation with harmonic maps with respect to
intermediate induced metrics.
Examples. (a) Let some fiber G1 be obtained by attaching a 1-handle to G0 and
let α0 : G0 → Z be a length extremal (e.g. harmonic for some metric) map. Then
this handle can be implemented by a narrow tube mapped to Z, so that the area
of the resulting map α0,1 : G2 → Z does not exceed area(α0) + ε for an arbitrarily
small ε > 0 and the harmonic flow for the (regularized by an arbitrarily small
perturbation) metric �0,1 induced by α0,1 provides the needed (1=parameter in this
example) family of maps across the critical set.

(b) Let α0 : G × [0, 1] → Z, t ∈ [0, 1], be a Heegard decomposition of a closed
3-manifold Z, i.e. the map α0 is one-to-one on G × (0, 1) and it sends G × 0 and
G × 1 onto two disjoint subgraphs in Z. Then the harmonic flows for the metrics
induced on G × t for 0 < t < 1 deliver a family of harmonic maps interpolating
between two maps that collapse G to graphs (different from the original ones and
not even necessarily disjoint) in Z.

4.4 Area shortening with κ-maps. We work here with compact finite di-
mensional p(iecewise) l(inear) spaces G, where a p.l. structure is defined with a
triangulation of G, and where two triangulation define the same p.l. structure if
they admit a common subdivision.

A p.l. family Gy parametrized by a locally compact stratified space Y � y, i.e.
represented by the fibers Gy = F−1(y) of a map F : X = ∪yGy → Y , where X is
called the total space of the family, is given by the following data:
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• a triangulation of each Gy,
•• p.l.-maps Py1,y2 : Gy1 → Gy2 for all pairs of points y1 � y2, where this par-

tial order signifies that the stratum containing y2 lies in the boundary of the
stratum of y1.

These must satisfy the following conditions:
0. Py,y = id for all y ∈ Y .
1. Py1,y3 = Py1,y2 ◦ Py2,y3 whenever y1 � y2 � y3.
2. If y1 and y2 belong to the same stratum S ⊂ Y , then the maps Py1,y2 : Gy1→Gy2

are simplicial isomorphisms continuously depending on y1, y2. Thus, the spaces
Gy make a flat fibration over each stratum S ⊂ Y .

3. If y1 � y2, then the map Py1,y2 : Gy1 → Gy2 is simplicial with respect to the
triangulation in Yy1 and some refinement of the triangulation of Yy2 , where
this refinement depends only on the S1 � y1 and S2 � y2 and where the map
Py1,y2 is continuous in (y1, y2) ∈ S1 × S2.

4. X is given a topology (often associated to a metric), that makes X locally
compact and that is compatible with the maps P as follows.

The map Py1,y2 : Gy1 → X ⊃ Gy2 for y1 belonging to a stratum S ⊂ Y and y2 to
the closure Cl(S) ⊂ Y , continuously depends on (y1, y2) for the ordinary (compact
open) topology in the space of maps. Furthermore, we require the map F : X → Y
to be continuous.

κ-maps and their areas. Let G be a triangulated 2-dimensional space, Z
metric length space and α : G → Z a continuous map that is geodesic (i.e. locally
isometric) on every edge of the graph G and is length minimizing in its homotopy
class (with given end points). Identify each 2-simplex in G with the ∆2

κ-triangle (of
constant curvature κ) the with edge lengths equal to the lengths of the corresponding
geodesic segments in Z, denote by �α

κ the resulting length metric in G and call such α
a (triangulated) κ-map tacitly assuming the presence of the underlying triangulation
and of the metric �α

κ .
The κ-area of a κ-map is, by definition, the area of G with respect to the

metric �α
κ .

If Z is CAT(κ) then every κ-map can be homotoped, keeping it fixed on the
1-skeleton of G, to a 1-Lipschitz map α. Such 1-Lipschitz maps, that are locally
isometric on the edges of some triangulation of G are called triangulated κ-short
maps. Clearly, every such map satisfies

area(α) ≤ κ- area(α) .

Length shortening of κ-maps. Every continuous map α of a finite graph
G1 to Z can be first canonically deformed to a geodesic (i.e. locally isometric) map
on the edges of G1 without changing α at the vertices. If Z is CAT(κ ≤ 0), such
geodesic map αgeo is unique on every connected component of G1 containing at least
one vertex but if G equals the circle S1 with no (marked) vertex this αgeo is non-
unique, but a canonical choice is (obviously) possible. Then, we deform αgeo in the
class of geodesic maps but moving the vertices one by one and thus obtain

a length extremal map, that continuously depends on the initial α.
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In fact, local non-extremality of a geodesic map at a vertex is an open condition
in the space of geodesic maps that implies the continuity. Thus,

every continuous map X → Z, where X = ∪y∈Y Gy is the total space of
a p.l.-family Gy, is homotopic to a continuous map αmin that is triangu-
lated κ-minimal on every Gy with respect to some of the triangulations
implied by the p.l.-structure on this Gy.

Proof. Every Gy comes with a (coarsest) triangulation Ty and several subdivisions
of it, say T ′

y, T ′′
y , etc. We use maps α : X → Z that are geodesic on the edges of Ty

for all y ∈ Y and such that every α is geodesic on the edges of some T ′
y and also is

G1
y-extremal at the vertices of T ′

y that lie in the interiors of the 2-simplices of Ty.
The short (i.e. 1-Lipschitz) ∆2

κ- fillings of an edge triangle ∆ in Ty depends on
the subdivision and, due to this ambiguity, such an α may be discontinuous. But
since the space of short ∆2

κ-fillings of every geodesic triangle (with the edges coming
from T 1

y ) is contractible (by the geodesic interpolation, see 4.2), every such α can
be deformed, to the required continuous αmin.

4.5 Evaluation of min-areaκ via |χ|hyp of p.l. families. Define min-areaκ,
for κ ≤ 0, of a p.l.-family X = ∪yGy with 2-dimensional fibers Gy as the infimum
of the numbers a > 0, such that every continuous map of X to a complete CAT(κ)
space Z is homotopic to a continuous map α that is a triangulated κ-map on each
Gy with respect to some subdivision of the original p.l structure on this Gy with
κ-area(α|Gy) ≤ a.

Define |χ|hyp(G) for (possibly non-compact and disconnected) surface G as the
absolute value of sum of the Euler characteristics of all its hyperbolic connected
components, i.e. those with negative Euler characteristic. (This equals one half of
the simplicial volume for closed surfaces G.)
Example. If X → Y is a surface fibration, i.e. all fibers Gy are homeomorphic
to a closed surface G and all maps Py1,y2 : Gy1 → Gy2 homeomorphisms then, the
above shortening with the Gauss–Bonnet inequality imply that

min-areaκ(X) ≤ 2π|κ|−1|χ|hyp(G) .

(If Z is complete non-compact, then our shortening process may diverge, but it
makes κ-area ≤ 2π|κ|−1|χ|hyp(G) + ε for every ε > 0.)

For our applications, we need a similar inequality for point-singular surface fi-
brations, e.g. generic smooth maps F : X → Y , defined as follows.

A locally compact polyhedral (possibly disconnected) space G is called a point-
singular surface if it is locally homeomorphic to R2 away from a discrete subset
Gsing ⊂ G (thus allowing point components in G). Every such G admits a (unique
up to a reparametrization) regularization by a (non-singular!) surface Ĝ, that is
a locally homeomorphic map H : Ĝ → G which is a homeomorphism over the
non-singular locus G \ Gsing.

A p.l-family of such G, say X = ∪yGy, is called (at most) point-singular (surface
(quasi)fibration) if every map Py1,y2 : Gy1 → Gy2 is proper and one-to-one over Gy1

minus a discrete subset S ⊂ G. (If X → Y is a generic smooth map, then S ⊂ Gsing
y1 .)
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areaκ-inequality with point singularities.

Every point-singular surface fibration X = ∪yGy with compact fibers Gy

satisfies,
min-areaκ(X) ≤ 2π|κ|−1 max

y
|χ|hyp(Ĝy)

for the regularizing surfaces Ĝy of Gy.
Proof. Let us replace each Gy by a space Ĝ+

y ⊃ Ĝ as follows. Consider the singular
points g ∈ Gsing

y ⊂ Gy, that are not point components of Gy, i.e. those g that have
≥ 2 preimages ĝi ∈ Ĝy. Attach the unit segment [0, 1] by the 0-end to each pre-image
point ĝi ∈ Ĝ, i = 1, 2, . . . , j = j(g) ≥ 2, and identify the 1-ends of the segments
whenever the corresponding points from Ĝ go to the same singular point g ∈ Gy.

There is a natural extension of Hy to a continuous map H+
y : Ĝ+ → Gy, where

the pullback of every singular g, denoted J+
g ⊂ G̃+, is the union of j(g)-copies of the

[0, 1]-segment identified at the 1-ends. This map is a homotopy equivalence where
the homotopically inverse map H−

y : Gy → Ĝ+
y can be taken homeomorphic away

from a union of small balls Bg ⊂ Gy around the singular points g ∈ Gy and such
that each ball Bg is smashed in the obvious way onto J+

g .
Given a continuous map Gy → Z, we slightly deform it to another map that

factors through H−
y and thus we replace each Gy by Ĝ+

y mapped to Z. We shorten
this map on (the 1-skeleton of some triangulation of) the (non-singular!) surface Ĝy,
and, after this map has been made edge extremal, we shorten it (which is not truly
necessary) on the remaining 1-dimensional (hence, not contributing to the area) J+-
parts. Then the Gauss–Bonnet inequality applies to the induced metrics on Ĝ+ that
have the same areas as all of Gy. QED.

areaκ-inequality with point/edge singularities. Let the link L(g) of every
point g be the disjoint union of copies of the graphs Lk, where each Lk has two
vertices with k edges between them.

Every such G admits a (unique up to a reparametrization) regularization by a
surface Ĝ with boundary where the regularizing map H : Ĝ → G sends the boundary
of Ĝ onto the set E(G) ⊂ G of the edge points g ∈ G, where the link has some Lk

with k = 2 and where the map is one-to-one on each connected component of Ĝ
away from the pullback of the points g of G where the link L(g) is disconnected.

A p.l.-family X = ∪yGy of the above surfaces is called (at most) point/edge
singular if every map Py1,y2 : Gy1 → Gy2 is proper, it sends the edge points of Gy1

to the edge points of Gy2 and it is one-to-one over G2 minus a discrete subset in G.
(A relevant example is the map R ◦ F delivered by the Retraction Lemma in 2.2.)

Every point/edge singular family X = ∪yGy with compact fibers Gy sat-
isfies,

min-areaκ(X) ≤ 2π|κ|−1 max
y

|χ|hyp(Ĝy) ,

where |χ|hyp is defined as earlier by discounting the components of the
regularizing surfaces Ĝy that have positive Euler characteristics.
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Proof. We proceed as earlier by disengaging branches of each fiber Gy at the points g
where the link L(g) is disconnected and thus passing to (“normalization”) Gy → G
where all links in G are connected. Then, as the only novelty, we insist on maps
α that are locally isometric (geodesic) along the edge singularities of Gy and thus
locally edge extremal at these points. Since this property of each Gy2 passes to the
nearby fibers Gy1 via the maps Py1,y2 , an arbitrary continuous family deforms to an
edge-extremal one; then the Gauss–Bonnet inequality applies.

4.6 Further bounds on the κ-area. The above cover most of our applications;
to have a better perspective we present below several more general but less precise
area inequalities.

Simplicial area and the inequality areaκ ≤ π|κ|−1 area∆. Given a p.l.
family X = ∪yGy, consider the triangulations T = {Ty} of the fibers Gy for which
the maps Py1,y2 : Gy1 → Gy2 are simplicial, let area∆(T ) denote the supremum over
y of the numbers of the 2-simplices in the triangulations Ty and set

area∆(X) = inf
T

area∆(T ) .

Observe that if dim(Gy) = 2 and κ ≤ 0, then
areaκ(X) ≤ π|κ|−1 area∆(X) .

Proof. Geodesically straighten in Z the edges of triangulations Ty in Gy (mapped
to Z) and recall that the triangles ∆2

κ (in the hyperbolic plane of curvature κ) have
areas ≤ |κ|−1π.

The usefulness of this depends upon bounds on area∆(X = ∪yGy) in terms of
supy area∆(Gy).
Example. Let F : X → Y be a fibration where all fibers Gy = F−1(y) are
homeomorphic to a connected surface G of genus ≥ 2. Then

there exists another family F ′ : X ′ → Y , where all G′
y = (F ′)−1(y) are

also homeomorphic to G and that is (not being a fibration) fiber-wise
homotopy equivalent to X → Y and such that

area∆(X ′) ≤ C1+dim(Y )|χ(G)| ,
for some constant C ≤ 100; furthermore, there always exits such X ′ (for
every Y ) with

area∆(X ′) ≤ C1+3|χ(G)||χ(G)| .
Proof. Let F : X → Y be a smooth fibration with closed k-dimensional manifold
fibers Gy and let ρy be a continuous family of Riemannian metrics on the fibers
with 1-bounded geometry, i.e. with | curv | ≤ 1 and Inj Rad ≥ 1. Then, by the
standard triangulation argument, there is a p.l. structure on the family X = ∪y{Gy}
associated to some stratification (actually, a triangulation) of Y with all Py1,y2 :
Gy1 → Gy2 being homeomorphisms, where the numbers Ny of the simplices in the
implied triangulations of the fibers Gy are bounded by

Ny ≤ C
1+dim(Y )
k vol(Gy, ρy)

for some constant Ck ≈ kk. (Probably, there is a p.l. structure with Ny ≤
Ck dim(Y ) · vol(Gy , ρy) and possibly with Ck(dim(Y ) + vol(Gy, ρy)).)
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If k = 2 and χ = χ(Gy) < 0, then, by the uniformization theorem, the fibers
Gy of an arbitrary fibration carry metrics of constant curvature −1 and these can
be “thickened” around short geodesics to a family of metrics ρy with bounded ge-
ometries and areas about |χ|. Then we take the above p.l. structure and pass to X ′

by approximating the (homeomorphic) maps Py1,y2 : Gy1 → Gy2 by simplicial (not
necessarily homeomorphic) maps P ′

y1,y2
: Gy1 → Gy2 .

Thus we obtain the first bound on area∆, while the second one follows by a
reduction to the universal family Gu of surfaces over the Riemann modular space U
that has dimension dim(U) = 3|χ|.
Remarks and Questions. (a) The above generalizes to the point and point/edge
singular surface fibrations, where the bound on the numbers Ny of the 2-simplices
depends, besides the Euler characteristics of the “normalizations” Ĝy, also on the
numbers of the singular points and of the edges in Gy.

(b) The area∆-approach extends from CAT(κ < 0) to all aspherical finite dimen-
sional simplicial polyhedra Z with word hyperbolic fundamental group Γ:

every continuous map α : X → Z is homotopic to a continuous map
α′, such that area(α′) ≤ const(Z) area∆(X), for the piecewise Euclidean
metric associated to the triangulation of Z.

In fact, there exists Γ-equivariant Lipschitz maps
Gk : (Z̃)k+1 × ∆k → Z̃ ,

for all k = 1, 2, . . . , where (Z̃)k+1 is the (k+1)th Cartesian power of the universal cov-
ering Z̃ of Z and ∆k is the k-simplex, that is invariant under the (k+1)-permutation
group diagonally acting on (Z̃)k+1 × ∆k and that has the following properties:

• The k-volume of Gk restricted to every k-simplex z0 × z1 × . . . × zk × ∆k is
bounded by a constant const = const(Z, k) for all k = 2, 3, . . ..

•• The restriction of Gk to the l-face of each simplex z0×z1×. . .×zk×∆k is equal,
up to a reparametrization, to Gl on this face, where “reparametrization” is a
self-homeomorphism of this face (that is ∆l) that preserves all subfaces (the
faces of ∆l).

Such Gk are constructed starting with G1, where one uses parametrized geodesic
lines in Z̃ and where • depends on the hyperbolicity of a suitable parametrization
(see [Gr3][MMS]).

Combinatorial harmonic maps. The combinatorial (quadratic) energy E of
a continuous and geodesic on the edges map of a graph G1 to a length space Z is
the sum of the squares of the lengths of the edges mapped to Z. If Z is (locally)
CAT(κ ≤ 0), then every continuous map is homotopic to a unique harmonic map
that minimizes the energy.

The area of every κ-triangle is bounded by 1/2
√

3 times the sum of the squares
of the three edges, and this bound is sharp for the regular flat triangles and it is
almost sharp for the small almost regular triangles for all κ. Thus, if we start with
a κ-map α of a two-polyhedron G into Z, where all triangles are small and where
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the ε regular ones cover all area of G up-to ε, then the corresponding edge harmonic
κ-map αharm, i.e. harmonic on the 1-skeleton G1 ⊂ G, has

areaκ(αharm) ≤ areaκ(α) + a(ε) ,

where a(ε) → 0 for ε → 0.
Then we observe that every ∆2

κ-triangulation of G can be subdivided into arbi-
trarily small ∆2

κ-triangles, where almost all the area is covered by almost regular
ones. Thus, as in the smooth case, we obtain, for every a > 0,

a deformation αt of an arbitrary κ-map α0 and every a > 0 to an ex-
tremal map α1 (edge harmonic on some subdivision), where areaκ(αt) ≤
areaκ(α0) + a. for all 0 ≤ t ≤ 0, where one may use the geodesic inter-
polation αt = (1 − t)α0 + tα1. (The energy, unlike the area, is convex in
t for the geodesic interpolation in CAT(κ ≤ 0)-spaces).

It follows, for example, that
if all maps Py1,y2 : Gy1 → Gy2 in some p.l. family X = ∪yGy are one-to-
one over the interiors of the 2-simplices in Gy2 , then every continuous
map α0 : X → Z can be homotoped to α1, such that the κ-area of α1 on
each Gy does not exceed, up to an arbitrarily small a > 0, the κ-area of
an edge extremal map Gy′ → Z for some y′ = y′(y) ∈ Y .

Bounds on the κ-area in regular spaces Z. Let G be 2-dimensional space
which is, at each point g ∈ G, is topologically the cone from g over a finite graph,
called the link Lg. We assume that all Lg are connected (otherwise, disengage them
as earlier) and non-contractible (otherwise, G contracts to its proper subspace). A
point g ∈ G is called regular if Lg is the circle, it is an edge point if Lg consists of
k ≥ 3 edges between two points and g is called a vertex for the other topologies of
the link Lg.

Let G be endowed with a length metric that has curvature ≤ κ at the regular
points and where the edges are geodesics. The graphs Lg carry natural angular
metrics (corresponding to the tangent cones metrics of G at g) where the length of
an edge l ⊂ Lg is denoted ∠(l).

Then the Gauss–Bonnet inequality bounds the area of G in terms of these angles
and the Euler characteristic of the set reg(G) ⊂ G of the regular points in G,

κ · area(Si) +
∑
g∈G0

∑
l∈L1

g

(
π − ∠(l)

)
≥ 2πχ(reg(G)) ,

where G0 denotes the set of vertices of G and L1
g the set of edges in the link Lg.

For example, if κ ≤ 0 and all connected components of reg(G) are triangles, each
bounded by three geodesic edges and where we allow vertices of such triangle merge
to a single vertex point in G, then

area(G) ≤ |κ|−1
∑
g∈G0

∑
l∈L1

g

(
π/3 − ∠(l)

)
.

In particular, these angles should be ≤ π/3 on the average.
If the metric on G is induced by an extremal map α of G to a CAT(κ) space Z,

which, moreover, minimizes the total length (i.e. l1-energy) of the edges, then, de-
pending on the combinatorics of the graphs Lg, g ∈ G0, and the singularity types
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of Z at the points α(g) ∈ Z, one can bound from below the sums
∑

l∈L1
g
∠(l) and,

thus, bound area(α).
Since the extremal map that minimizes the total length of the edges may collapse

some edges to points, it is convenient to make such a collapse beforehand and arrive
at the case where G has a single vertex g. Such G gives the triangular presentation
of the group Π = π1(G); it is obtained by attaching triangles to G1 that is a joint
of circles, where each edge of a triangle goes around a single loop in G1 and where
no loop in Z corresponding to an edge-loop in G is contractible in Z (otherwise, we
just remove such loops from G).

Given a graph L and a metric space S with the distance denoted by ∠, (e.g.
the base Sz of the tangent cone of Z at z = α(g)), consider the centered maps
τ : L0 → S, such that the cone cone(τ) of this map, sending the unit cone cone(L)
to the unit metric cone cone(S), minimizes the total length of cone(L) → cone(S)
with the fixed ends in S.

For example, if S equals the sphere SN−1 ⊂ Rn, then cone(SN−1) equals the unit
N -ball and the centered maps τ : L0 → SN−1 ⊂ RN are those having

∑
l∈L0 τ(l) = 0.

Define
∠min(L,S) =

1
card(L1)

inf
τ

∑
l∈L1

∠
(
τ(∂+l), τ(∂−l)

)
where L1 denotes the set of the edges l of the graph L, with the ends called ∂+l and
∂−l and where the infimum is taken over all centered τ . (For example, if S equals
the sphere SN−1 ⊂ RN , then cone(SN−1) equals the unit N -ball and the centered
maps τ : L0 → SN−1 ⊂ RN are those having

∑
l∈L0 τ(l) = 0.)

In particular, if S equals the two point set {−1,+1} regarded as the unit sphere
in R1 ⊃ [−1,+1] = cone{−1,+1}, then the extremal maps τ : L0 → {−1,+1} for
L = Lg are those where τ(v) = τ(v′) for the vertices v and v′ in Lg representing the
pairs of the ends of the edge-loops in G, and

∠
(
τ(∂+l), τ(∂+l)

)
= 1

2π
∣∣τ(∂+l) − τ(∂−l)

∣∣ .
Thus,

∠min
(
L, {−1,+1}

)
= π

1
card(L1)

inf
τ

card(L1
τ ) ,

where L1
τ is the set of the edges in L going from the subset τ−1(−1) ⊂ L0 to

τ−1(−1) ⊂ L0.
Summing up, we conclude:
Let G be a triangular presentation of Π = π1(G), i.e. G has a single vertex g ∈ G

and all connected components of reg(G) are triangles, and let Z be a complete
CAT(κ ≤ 0) space. Then

every continuous map α : G → Z, where the α-image of no edge-loop in
G1 is contractible in Z, is homotopic to a continuous map αmin : G → Z,
such that

area(αmin) ≤ 3 card(G2)
(
π/3 − inf

z∈Z
∠min(Lg, Sz)

)
+ ε ,

where card(G2) denotes the number of triangles in G (that are connected
components of reg(G)), where Lg is the link at the vertex of G and Sz
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denote the bases of the tangent cones of Z at the points z ∈ Z and where
ε is a given positive number. (If Z is compact one may take ε = 0.)

Remark. If S is the Hilbert sphere, S = S∞ ⊂ R∞, then ∠(L,S) is of the same
order of magnitude as the first eigenvalue of the combinatorial Laplacian on L and
the above inequality is similar to the Garland–Borel criterion for the vanishing of the
cohomology of groups Π with coefficients in Hilbert moduli. (Here one allows not
necessarily free actions of Π on Hilbert spaces, and, in general, on simply connected
CAT(κ ≤ 0) spaces Z̃.)

Possibly, ∠(L,S∞) ≥ π/2 − ε > π/3 for most (expander) graphs L (this would
yield the Kazhdan T -property of the corresponding groups Π, for example); but even
if ∠(Lg, S) < π/3 the above area inequality is useful in conjunction with a lower
bound on the area of minimal 2-subvarieties in Z (see 6.3, 6.4).

4.7 Volume bounds for simplicial families. A p.l. family Gy is called sim-
plicial if the adjacency maps Py1,y2 : Gy1 → Gy2 are simplicial with respect to the
triangulations in Gy.
Example. Start with a simplicial map F0 : X0 → Y where, observe, the fibers
Gy = F−1(y) are naturally partitioned into convex cells contained in the simplices of
the triangulation of X0. If one subdivides these cells into simplices and approximate
the adjacency maps between the fibers by simplicial maps, one obtains a simplicial
family, say F : X → Y that is fiberwise homotopy equivalent to F . In fact, there
exists a p.l.-map h : X0 → X, such that h ◦ F = F0 where h−1(x) is a cell in X for
all x ∈ X.

Observe that, unlike the p.l. case, one cannot in general achieve this with a
homeomorphism h. For example, if all G are finite simplicial complexes and the
adjacency maps Py1,y2 : Gy1 → Gy2 are simplicial and bijective, then F is a fibration
with a finite structure group.

If Z is CAT(κ < 0) space, then the Thurston straightening argument (see 5.43
in [Gr9]) shows that

every continuous map of a simplicial family α0 : X = ∪yGy → Z is
homotopic to an α, such that the k-volume of each αy : Gy → Z for
k dim Gy is bounded by

volk(Gy) ≤ δκ,k vol∆(Gy) ,

where vol∆(Gy) denotes the number of the k-simplices in Gy and δk is
the volume of the ideal regular simplex of constant curvature −1.

Remarks and Questions. (a) The above generalizes to δ-hyperbolic spaces Z
with the discussion in 4.6.

(b) It is unclear what happens to p.l.-families X = ∪yGy for k ≥ 3, where
the corresponding geometric problem concerns smooth fibration X → Y where one
looks for continuous families ρ of Riemannian metrics ρy (instead of triangulations)
on the fibers Gy with some bounds on the geometries of (Gy, ρy). For example,
one is concerned with infρ supy vol(Gy), where inf may be taken over the following
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families of metrics (on the fibered spaces over Y that are fiber-wise diffeomorphic
to X → Y , or, alternatively, fiber-wise homotopy equivalent to X → Y ).

(1) The families ρ with fiber-wise bounded geometries,
(2) ρ with | curv(ρy)| ≤ 1,
(3) ρ with curv(ρy) ≥ −1.

These and similar curvature/size bounds (see 5.10 for a fuller list) have been
studied for individual manifolds G (see 5.41 in [Gr9] and 55

7 in [Gr6]); one wonders
if something essentially new happens to the families.

One expects conclusive results for families of 3-manifold (with the 2-dimensional
uniformization replaced by the Hamilton–Perelman flow) but there is little hope
for something comparable in higher dimension (except, possibly, k = 4) due to the
absence of canonical Riemannian metrics on smooth high-dimensional manifolds.

5 Morse Spectra in the Spaces of Cycles and the Lower Bounds
on min-area

Given a topological space Z, denote by chk = chk(Z, Zp) the set of the singular
k-chains in Z with (Zp = Z/pZ)-coefficients and let clk = clk(Z, Zp) ⊂ chk(Z, Z2)
be the set of the cycles.

A path between two k-cycles c0, c1 ∈ clk is, by definition, a chain ∆1
01 ∈ chk+1

such that ∂(∆01) = c1−c0. Given three k-cycles c0, c1, c2, define the triangle of paths
∂1

012 by ∂1
012 = c01 +c12 +c20 that is, clearly, a (k+1)-cycle. A filling triangle for this

cycle is a (k + 2)-chain ∆2
012 ∈ chk+2 with ∂(∆2

012) = ∂1
012. Similarly, quadruples of

filling triangles for a quadruple of cycles make (k+2)-cycles ∂2
0123 that are “potential

boundaries” of filling 3-simplices (that may not exit in Z) ∆3
0123 ∈ CHk+3 that are

defined by the condition ∂(∆3
0123) = ∂3

0123, etc.
Thus the set clk is endowed with a structure of a (semi)simplicial space where

a potential boundary ∂i
0123... can actually be filled in if and only if the (k + i)-cycle

∂i
0123... ∈ clk+i is homologous to zero. Therefore, this space is (almost canonically)

isomorphic to the (semi)simplicial representative of the product of the Eilenberg–
MacLane spaces associated to the homology of the space Z. This implies

Dold–Thom–Almgren Theorem. The space of cycles is homotopy equivalent to
the product of the Eilenberg–MacLane spaces,

clk(Z; Zp) � ×jK
(
Hj(Z; Zp), j − k

)
.

Therefore, the Zp-cohomology of clk(Z; Zp) equals the tensor product of N =∑
j≥k rank(Hj(Z; Zp)) standard (Cartan–Serre) moduli over the p-Steenrod algebra.

If Z is a connected (oriented for p > 2) manifold (or a Zp-pseudo-manifold),
then [Z]−k ∈ H(N−k)(clk(Z); Zp) denotes the fundamental class of K(Zp, N − k)
corresponding to the fundamental class of Z.
Remarks. (a) The above definition and the Dold–Thom–Almgren theorem obvi-
ously extend to the spaces of relative cycles as well as to cycles with coefficients in
arbitrary local systems over Z. We shall mostly deal with Z2-cycles.
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(b) The functor Z � cl∗(Z) is equivalent to the homology functor. In particular
it commutes with suspensions and “twisted suspensions” that are Thom spaces of
vector bundles over Z. If Z is an N -dimensional manifold, there is an intersection
pairing clk×cll → clk+l−N . Also there is a pairing clk(S)×cll(ZS) → clk+l(Z), where
S is an arbitrary space and SZ denotes the space of continuous maps S → Z. If Z
and S are manifolds, there is the dual (Gysin intersection) pairing clk(Z)×cll(ZS) →
clM−N+k+l(S) for M dim(S).

If Z → Z0 is a fibration, then, probably, the Serre filtration on the singular
chains and/or the spectral sequence can be adequately represented by some spaces
of “filtered cycles”.

On the other hand, the topology and/or geometry of cycles in Z gives an ad-
ditional structure to clk that cannot be accounted for by the homology of Z as we
shall see below.

Smooth representation of Z2-cycles. A D-dimensional cycle C in clk(Z; Zp)
representing a D-dimensional class h = [C] ∈ HD((clk; Zp); Zp) can be thought of
as a (D + k)-dimensional Zp-pseudomanifold mapped to Z, say α : X → Z, where
X is simplicially mapped to (“fibered” over) a D-dimensional Zp-pseudomanifold,
F : X → Y = Y D, where the fibers of F called the fibers Gy ⊂ X, when mapped by
α to Z, make the Y -family of k-dimensional Zp-cycles that constitute C. The cycle
C is homologous to zero in clk(Z; Zp) if and only if the image of C under the map
α × F is homologous to zero in Z × Y .

If p = 2, then, by Thom’s theorem, the fundamental class of Y can be represented
by a smooth manifold mapped to Y , say ã : Ỹ → Y . Then we take the fibered
product X ′ = X ×Y Ỹ , that is, for a generic ã, a Z2-pseudomanifold and represent
its fundamental class by a manifold, b̃′ : X̃ ′ → X ′. Thus, we could use smooth
manifolds for X and Y to start with

every homology class h ∈ HD((clk; Z2); Z2) can be represented by a smooth
(D + k)-dimensional manifold α : X → Z, where X is smoothly generi-
cally mapped to a D-dimensional manifold by F : X → Y . In particular,
every h can be represented by a Y -family of k-cycles αy : Gy → Z, where
each Gy is a smooth manifold apart form a finite subset in Gy. (If k = 2,
these Gy are just point-singular non-oriented surfaces.)

Fiber complexity and Σ-complexity of an h ∈ H∗(cl1(Z)). The topology
of possible parameter spaces, manifolds or pseudomanifolds Y representing h, is
essentially independent of Z, since the homotopy type of the space clk(Z; Z2) is the
same for all Z with a given homology H∗(Z; Z2). On the other hand, the minimal
possible “topological complexity” of the critical set Σ(F ) ⊂ Y , called Σ-complexity
of h, and/or of the topology of the “maximally complicated” fiber Gy expressing the
fiber complexity, provide additional homotopy invariants of Z that are not captured
by H∗(Z).

Algebraic representation of cycles. Recall that every m-dimensional smooth
manifold X carries a Nash algebraic structure given by a smooth embedding X ⊂ RM ,
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such that X is contained in the real locus of an m-dimensional algebraic variety
CX ⊂ CM = CRM ⊃ RM defined over R.

Given Nash structures on the above manifolds X and Y , the map F can be
approximated by a real algebraic map Falg. Thus

every class h ∈ HD((clk; Z2); Z2) is represented by a D-dimensional alge-
braic family of k-dimensional algebraic varieties Gy = F−1

alg (y) ⊂ X ⊂ RM

mapped by α to Z.
Furthermore, if Z is a smooth manifold, we give it a Nash structure and take an

algebraic map for α. Thus,
every homology class h ∈ HD(clk(Z; Z2); Z2) can be implemented by a
D-dimensional real algebraic family of real algebraic subvarieties Gy =
α(Gy) of dimensions k in Z.

Questions. (a) What are the relations between the singularities of the map F
and the action of the Steenrod algebra on the cohomologies of Z and clk(Z)? For
example, which classes h admit a smooth representation with a purely folded map
F : X → Y ? When does there exit a representation where F is a fibration with a
finite structure group? (This must be known to homotopy theorists.)

(b) The minimal possible algebraic degree d = d(h) of the above algebraic
varieties Gy = F−1

alg ⊂ Z ⊂ RM(h) in a family representing a given class h ∈
H∗(clk(Z; Z2); Z2) is an amusing homotopy invariant of Z. Can one evaluate it
in terms of traditional invariants of Z and h?

For example, the function d(h) is bounded for Z equal the N -sphere SN and
k = N − 1. In fact, d(h) = 2 for all 0 = h ∈ HD(clN−1(SN ; Z2); Z2) = Z2,
D ≥ N − 1. But it seems that d(h) is unbounded in many (most?) cases.

A similar problem concerns the minimal possible degree d = d(h,Z) of Gy ⊂ Z for
a given algebraic structure in Z, (e.g. for the standard N -sphere SN for Z). Here one
has an easy bound d(h)≥ const(Z)D

1
k+1 for all 0 = h∈HD(clN−1(SN ; Z2); Z2)= Z2,

since the dimension of the space of k-dimensional real algebraic subvarieties of degree
d in RPN is bounded (roughly) by N2dk+1 by an elementary argument. (Larry Guth
conjectured that such an estimate remains valid with volk(Gy) instead of deg(Gy)
and he proved this up to a subexponential error term, see 5.1 below.

(c) Can every Z-cycle of 2-dimensional Z-cycles be represented by a family Gy

of oriented point-singular surfaces? (One cannot, in general, have the parameter
space Y smooth, but one needs here a Y with orbifold-like singularities, induced
from those of the compactified moduli spaces of Riemann surfaces.)

There is another view on the space of cycles, where Z is a smooth manifold (or
a piecewise smooth space) and geometric cycles are defined as a piecewise-Lipschitz
Zp-sub-pseudo-manifold in Z with an additional cycle structure. We shall deal with
particular families of such Z2-cycles coming from the following
Geometric Examples. (a) Let Z be be a smooth closed connected N -dimensional
manifold (or a piecewise smooth pseudo-manifold) generically mapped to the Eu-
clidean space RD and consider the intersections of Z with the affine subspaces of



796 M. GROMOV GAFA 

codimension N − k. This gives a family of k-cycles Gt in Z parametrized by the
Thom space TN−k

D of the canonical (N − k)-vector bundle over the Grassmannian
GrN−k

D , i.e. a map τ : TN−k
D → clk(Z; Z2).

Almost all Gt are non-singular, i.e. they are smooth submanifolds in Z; every
singular Gt is a pseudo-manifold that is smooth apart from finitely many singular
points (where some of these points can be isolated points in Gt).

The map τ sends the the fundamental cohomology class
[Z]−k ∈ HN−k

(
K(Z2, N − k)

)
⊂ H∗(clk(Z); Z2

)
to the Thom class [T ] ∈ HN−k(TN−k

D ;Z2) and the (D − N + k + 1)th �-power
[Z]D−N+k+1

−k goes to the fundamental cohomology class

[TN−k
D ]• ∈ H(D−N+k+1)(N−k)(TN−k

D ;Z2) .

Thus,
τ∗[TN−k

D ] = 0 ,

i.e. the fundamental homology class of the Thom space,
[TN−k

D ] ∈ H(D−N+k+1)(N−k)(T
N−k
D ; Z2) ,

goes to a non-trivial class in H(D−N+k+1)(N−k)(clk(Z)).
The entire homomorphism

τ∗ : H∗(TN−k
D ; Z2) → H∗

(
K(Z2, N − k); Z2

)
is far from being onto for N −k ≥ 2, since H∗(TN−k

D ) � H∗−N+k(GrN−k
D ), where the

cohomology algebra ⊕iH
i(GrN−k

D ; Z2), that is generated by N−k (Stiefel–Whitney)
classes, has polynomial growth, i.e. rank(H i(GrN−k

D ; Z2)) ≤ const(N, k)iN−k, while
the cohomology of K(Z2, N −k) – a polynomial algebra in infinitely many (Cartan–
Serre) generators for N − k ≥ 2 – grows super-polynomially.

(b) Let Z ⊂ RD be an irreducible (over R) real algebraic subvariety of dimension
N that is not contained in a hyperplane. Then almost all intersections Gt of Z with
the affine (D − N + k)-planes are k-dimensional real algebraic subvarieties making
a family of Z2-cycles in Z. There may exist some exceptional Gt with dim(Gt) > k
but these are “homologically insignificant”.

It follows that if we start with an algebraic (sub)variety Z ⊂ R2N+1 of degree
D0 and consider complete intersection subvarieties in Z of dimension k and degree
(D0d)N−k that are viewed as intersections of Z with affine (D − N + k)-planes in
the linear space of dimension D(≈ Nd) of polynomial maps Z → RN−k of degree d,
we obtain

a homology class h of dimension ≈Nd in H∗(K(Z2, N−k);Z2)⊂H∗(clk; Z2)
that is represented by a family Gt ⊂ Z, t ∈ TN−k

D , of algebraic subvari-
eties in Z of degrees (D0d)N−k, such that

[Z]d−k(τ∗(h)) = 0. “ = 0”
Examples, Remarks, Questions. The classes coming from the maps
K(Z2, 1)N−k → K(Z2, N − k) classifying HN−k(K(Z2, 1)N−k; Z2) can be obtained
by intersecting hypersurfaces in Z of degrees di, i = 1, 2, . . . , N −k. Their images in
H∗(K(Z2), N −k) are computed in [Gu] where the author also indicates the problem
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concerning such representation of the homology of integer cycles (i.e. for Zp=∞ = Z)
by intersections of complex and real algebraic subvarieties.

Are there some classes of cycles in Z representing all (much) of the homology of
cl∗(Z; Zp) with the efficiency comparable to that of the algebraic cycles?

5.1 Evaluation of Morse–Steenrod spectra of cl∗(Z). Let Z be a metric
space, e.g. a Riemannian manifold and let Lcl∗ = Lcl∗(Z; Zp) stand for the space of
the Lipschitz cycles, where all singular simplices are represented by Lipschitz maps
σ : ∆k → Z. We assume that the inclusion Lcl∗ ⊂ cl∗ is a homotopy equivalence
and observe that this assumption is satisfied in many cases, e.g. for Riemannian
manifolds Z. (A notable exception is presented by the Carnot–Carathéodory spaces,
where one needs a finer control on the metric properties of the maps ∆ → Z.)

From this point on, we do not distinguish between Lcl∗ and cl∗ assuming that
the cycles are Lipschitz whenever this property is needed.

The volume vol(c) of a Lipschitz cycle (or chain) c =
∑

j rjσj is the sum∑
j |rj | volk(σj). We regard this volume as a (Morse) function vol = volk : clk → R+

and define the corresponding homological volume spectrum as the function also called
the min-max (Morse-Steenrod) volume spectral function on homology, vol◦(h) on
H∗(clk), that is the infimum of numbers λ ≥ 0 such that h is representable by a
Lipschitz family of Lipschitz cycles of volumes ≤ λ.

In other words, the inequality vol◦(h) < v for h ∈ Hi(clk) says that h lies in
the image of the inclusion homology homomorphism for vol−1[0, λ) ⊂ clk; moreover,
this h must be representable by a Lipschitz (k + i)-cycle in Z. (The latter condition
is purely technical, it is not always needed and it is usually satisfied achieved in our
examples.)

Then the min-max volume spectrum on cohomology, vol◦(h′), h′ ∈ H∗(clk) is the
dual to vol◦, that is vol◦(h′) < λ if and only if there exists a Lipschitz family of
k-cycles of volumes < λ such that h′ does not vanish on this family.

The vol◦ and vol◦ spectra carry the same information and we use them inter-
changeably.

If f : Z1 → Z2 is a λ-Lipschitz map, then, obviously, vol◦(f∗(h)) ≤ λk vol◦(h) for
all h ∈ Hk(clk(Z1)). Thus the asymptotic, up to a multiplicative constant, growth
rate of the function vol◦(h) (for sequences hi ∈ H∗(cl∗) with deg(hi) → ∞) is a
homotopy invariant in the category of compact (piecewise) Riemannian manifolds Z,
while the constant(s) is a metric invariant.

If Z is a connected pseudomanifold, then the asymptotic growth rate (up to a
multiplicative constant depending on the metric) of vol◦ on H∗(Zp, N−k) ⊂ H∗(clk(Z))
is independent of Z and is the same as for Z = SN , since the fundamental cohomol-
ogy class of Z is spherical. (This growth rate is evaluated in [Gu] for p = 2 in terms
of the Cartan–Serre basis in H∗(K(Z2, N − k); Z2), compare below.)
Question. Let the homology homomorphism f∗ : Hi(Z1, Zp) → Hi(Z2; Zp) be
injective for some i > k. Is then vol◦(f∗(h)) ≥ const(Z1, Z2, f) vol◦(h) for all
h ∈ H∗(K(Hi(Z1; Zp), Zp); Zp) ⊂ H∗(clk; Zp)? (Here and below all constants “const”
are strictly positive.)
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Remarks. (a) Our “spectral terminology” follows the variational/homological
definition of the spectra of selfadjoint operators (compare [Gr10]), where the corre-
sponding Morse (energy) functions are defined on projective spaces P∞ (of functions)
and where the spectrum is determined by a sequence of numbers λi at which the
ranks of the sublevel (linear) spaces (that are vol−1

◦ [0, λ] ⊂ H∗(clk) in the present
case) on the homology H∗(P∞) strictly increase (jump up by 1 or more).

(b) The Steenrod algebra action on H∗(clk), expressed, for example, via the
Cartan–Serre basis in H∗(clk), significantly enriches the linear algebraic (grading by
dimension) structure on the cohomology and thus enlarges the information content of
the spectrum as was demonstrated by the evaluation of the Morse–Steenrod spectra
of the volume functions on the spaces of Z2-cycles by Larry Guth (see [Gu] and 5.2
below).

(c) We are mainly concerned in this paper with lower bounds on the area (that is
vol2) of families of 2-cycles and, eventually, of families of point/edge singular surfaces
that are not cycles, see 5.11, but since there there is nothing special to dim = 2 at
this stage, we tell the story for all k with the peculiarities of dim = 1 and dim = 2
indicated in 5.5–5.9.

5.2 Geometric lower bounds on the volume spectrum. Let Z be a closed
N -dimensional Riemannian (pseudo)manifold, Zi, i = 1, 2, . . . ,D, open subsets and
fi : Zi → SN

+ (vi) be volk-contracting Lipschitz maps of odd degrees,
where SN

+ (vi) ⊂ SN (vi) ⊂ RN+1 are half spheres in the spheres, with the radii
normalized to have the k-equators of volumes vi,

where the boundary of each Zi is sent by fi to the boundary of SN
+ (vi) plus,

possibly, a subset of dimensions ≤ k − 1, so that the degrees are defined,
and where “volk-contracting” means that volk(f(V )) ≤ volk(V ) for all k-dimen-

sional submanifolds V ⊂ Z.
Let Gt, t ∈ T be a family of Lipschitz Z2-cycles of dimension k, such that the

cohomology class [Z]D−k ∈ HD(N−k)(K(Z2, N − k) ⊂ clk(Z; Z2)) goes to a non-
vanishing class in HD(N−k)(T ; Z2). Then this family abides

Almgren’s D-inequality.

There exists t0 ∈ T such that the intersections of Gt0 with Zi satisfy
volk(Zi ∩ Gt0) ≥ vi .

Therefore, if Zi are mutually disjoint, then
vol◦[Z]D−k ≥

∑
i

vi .

See [Gr5], [Gu] for the proof and the related discussion.

D
N−k

N -Corollary.
vol◦[Z]D−k ≥ const(Z)D

N−k
N

for all compact Riemannian manifolds Z, where, moreover, const(Z) ≥
(const(N, k) − D−1/N const(Z)) · volN (Z)k/N .
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This lower bound is asymptotically sharp:

vol◦[Z]D−k ≤ const′(Z)D
N−k

N .

Indeed, algebraic k-cycles of degree dk, for some real algebraic structure in Z,
have their volumes bounded by const ·dk by Crofton’s formula and some D′-dimen-
sional families of the (complete intersection) cycles, where D′ = (N − k)D ≈ dN ,
detect non-zero �-powers in HD′

(cl∗(Z; Z2); Z2) according to “= 0” from the pre-
vious section (compare [Gr5], [Gu]).

�-Superadditivity. Let a connected manifold Z (possibly with boundary) be
subdivided by a hypersurface into two connected subdomains, Z = Z1 ∪Z2, and let
h = h1 � h2, for

h1, h2 ∈ H∗(K(Zp, N − k); Zp

)
⊂ H∗(clk(Z; Zp); Zp

)
.

Denote by hii ∈ H∗(clk(Zi; Zp); Zp), i = 1, 2, the corresponding “restriction”
classes of hi to Zi and observe that the above (or rather just the Lyusternik–
Schnirelmann theorem, compare [Gr5], [Gu]) implies that

vol◦(h) ≥ vol◦(h11) + vol◦(h22) .

It follows that for every h ∈ H∗(K(Zp, N −k); Zp) ⊂ H∗(clk(Z; Zp); Zp) the limit

lim
D→∞

D−N−k
N vol◦(hD)

exists and can be written as Ωk
N (h) volN (Z)k/N .

Thus, for every prime p a pair (N, k < N), one gets a universal (not depending
on the geometry of Z) function on the Steenrod algebra,

Ωk
N : Sp → [0,∞] by s �→ Ωk

N

(
s([Z]−k)

)
for the Steenrod action of s ∈ Sp on the fundamental class

[Z]−k ∈ H∗(K(Zp, N − k); Zp

)
⊂ H∗(clk(Z; Zp); Zp

)
.

In fact, Ωk
N (s) < ∞ for all s, provided p ≤ ∞. (If p = ∞, then Sn

∞ equals
H∗((Z, n); Z) by definition).

This is shown (in a sharper form) in [Gu] for p = 2 by a “bending” argument
that, in fact, applies to all p = 2, . . . ,∞ and allows the following:

Localization of deformations. Let Z be subdivided into D cubes of edge
size ≤ ε(≈ D−1/N ) and be given the piecewise linear metric corresponding to this
subdivision. Then

every class h′ ∈ H∗(clk(Z)) can be represented by a family of Gy, y ∈Y
of k-cycles in Z, such that every Gy decomposes into the sum of chains,
Gy = Gε

y + G′
y, where the support of G′

y lies in the k-skeleton of Z while
volk(Gy) ≤ const ·εk, where the constant depends on h (and, thus, on the
topology of Z) but not on the geometry of Z (i.e. the combinatorics of
the subdivision).

Then, it follows by “cancellation” as in [Gu], that if a cohomology class h does
not vanish on h′ then hD is detected by the D-th power family Gt, t ∈ Y D, where
all Gt that are like cycles are the sums Gt =

∑
i Gyi for t = (y1, . . . , yi, . . . , yD), and

have volumes ≤ D · volk(Gε
y) + NNpDεk.
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Questions. Can one compute the function Ωk
N (s) explicitly? Is this function still

finite for p = ∞? Are there further terms in the asymptotic expansion of vol◦(hD),
D → ∞, expressible with the (covariant derivatives of the) curvature of Z?

If N and k are even, then the function Ωk
N is finite on the fundamental class

[Z]−k ∈ H∗(K(Z, N − k); Z) as is seen by looking at the complex algebraic subva-
rieties. (See [Gu], where it is also pointed out that there is no known non-trivial
upper bound on the volumes vol◦[Z]D−k for odd N , starting from N = 3 and k = 1.)

Følner spectra. Let Z̃ be a Galois covering of compact Riemannian manifold
with amenable Galois (deck transformation) group Γ, consider an exhaustion of Z̃
by open connected Følner sets Ui ⊂ Z̃ with volumes Di, take a cohomology class
h ∈ H∗(K(Zp, N − k); Zp) ⊂ H∗(clk(Ui); Zp) and let

Ω̃(h;β) = Ω̃k
N (h;β) = lim

i→∞
1

Di
vol◦k

(
h[βDi]

)
,

where vol◦k is taken with the geometry of Ui and where [βDi] denotes the integer
part of βDi. (Plugging in β amounts to rescaling the metric in Ui by Ui �→ β

N−k
N Ui.)

The asymptotics of Ω̃ for β → ∞, does not depend on the geometry of Z̃,

Ω̃k
N (h;β) ∼ β

N−k
N Ωk

N (h) ,

and we get nothing new. But the asymptotics of Ω̃(h;β) for β → 0 reflects the
behavior of Z̃ at infinity that would be interesting to evaluate for particular groups Γ.
Questions, Remarks, Examples. (a) If Γ is homeomorphic to the N -torus,
then

Ω̃k
N (h;β) ∼ const(Z, h)β

N−k
N for β → 0 .

Are the flat Riemannian manifolds uniquely characterized by the equality const(Z) =
limβ→0 β−N−k

k Ω̃k
N (h) = Ωk

N (h)?
(b) How is Ω̃(h;β) related to the mean dimension of minimal subvarieties in Z̃

defined in [Gr12]?
(c) The counterpart of Ω̃ can be associated with every (linear or non-linear)

geometric spectrum on Z (see [Gr10]) abiding by the �-superadditivity, e.g. for the
Laplace operator spectrum, where one considers the projective spaces RP∞(Ui) of
not identically zero function ϕ on Ui instead of clk(Ui; Zp) and the normalized energy

E(ϕ) =
∫

Ui

‖dϕ‖2
/∫

Ui

|ϕ|2,

where the role of vol◦[Ui]m−k is played by the m-th non-zero eigenvalue λm of the
Laplace operator on Ui with the Neumann boundary condition.

The behavior of Ω̃ associated to this E is similar to that of Ω̃N−1
N : both invariants

encode to the asymptotic isoperimetry of (Følner domains in) Z̃ and, possibly, they
can be expressed in terms of the Følner function of the group Γ. In fact the proof
of the inequality (λm) in 6.1 adapted to manifolds with boundary (that are Ui

in the present case that may need a mild regularization, e.g. by taking their 1-
neighborhoods) shows that

λm(Ui) ≤ const(Z) 1
Di

min
(
Di, vol◦N−1[Ui]m−(N−1)

)
.
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(d) The Ω̃ for the Laplacian on differential forms on the universal covering Z̃
recaptures, for β → 0, the von Neumann Betti numbers of Z as well as the Novikov–
Shubin invariants.

(e) Let Z̃ be a simply connected nilpotent Lie group. Then the Pansu–Varopoulos
isoperimetric inequality implies, for Følner domains Ui ⊂ Z̃ of volumes Di, that

vol◦N−1
(
[Ũi]

[βDi]
−(N−1)

)
∼ const(Z̃)β

M−1
M Di for Di → ∞ and β → 0 ,

where M ≥ N denotes the Hausdorff dimension of the limit space εZ̃ for ε → 0.
(f) Let Z̃ be the (2n + 1)-dimensional Heisenberg group. Then

Ω̃k
N (β) ≈ β

M−k
M

for M = 2N + 2, k ≤ n and β → 0.
This follows from to the finiteness of the function vol◦k on bounded domains

U ⊂ Z̃ where volk is taken with respect to the Carnot–Carathéodory metric on Z̃
(see [Gr8] and references therein)

(g) The definition of Ω̃ extends to the (sofic) LEF groups of Vershik–Gordon also
called sofic groups. Also it makes sense for all homogeneous Riemannian manifolds.
Can one evaluate the asymptotics of Ω̃(β), β → 0, for symmetric spaces of non-
compact type, for instance?

Guth’s ε-inequality. The function vol◦ was evaluated for p = 2 in [Gu] on
the (Cartan–Serre) monomials in the iterated Steenrod squares of [Z]−k, where it is
shown, in particular, that

Every non-zero class h ∈ Hd(clk(Z); Z2) for the unit Euclidean N -ball Z
satisfies,

vol◦(h) ≥ const(N, ε)d
1

k+1
−ε for all ε > 0 .

Moreover, there exists a sequence of classes hi ∈ Hdi(cl1(Z); Z2) with
di → ∞ (where hi are certain composed Steenrod squares of [Z]−k ∈
HN−k(cl1(Z); Z2)), such that

const(N, ε)d
1

k+1
−ε

i ≤ vol◦(hi) ≤ const(N)d
1

k+1

i .

Remarks. (a) It is conjectured (in a sharper and more general form) in [Gu] that
the ε-inequality holds true with ε = 0.

(b) The Guth ε-inequality for balls trivially implies such an inequality for the
“spherical part” of the cohomology H∗(clk(Z); Z2) of all manifolds Z, i.e. for the
images of the cohomology H∗(clk(Sn)) induced by the maps clk(Z) → clk(Sn) that
are associated to continuous maps of Z to the spheres Sn, n = 1, 2, . . . .

It seems that Guth’s “moving balls” argument from [Gu] extends to non-spherical
classes. We indicate below the proof of such generalization of the D-Corollary for
the product classes h ∈ H∗(clk(Z); Z2) without the “sphericity” condition,

�-Inequality.
Let h = 0 decompose into the cup-product of some classes h =�ij hij

for
hji ∈ Hmi>0(K(Hi(Z; Z2), i − k); Z2) ⊂ H∗(clk; Z2) ,
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where i = k + 1, k + 2, . . . , N dimZ, and ji = 1, 2, . . . , di (i.e. di denote
the numbers of the classes in the cup-product corresponding to Hi(Z)).
Then

vol◦(h) ≥ const◦(Z)
∑

i

d
i−k

i
i .

The idea is to replace disjoint ε-balls in Z (this is not Guth’s ε, just a small
positive number) in the proof of the D-inequality by ε-neighborhoods of some cycles
in Z with the following
Semi-local Lemma. Let Z be a Riemannian manifold, P ⊂ Z be a compact
piecewise smooth polyhedron and Uε ⊃ P be the ε-neighborhood of P in Z and
U ′

ε ⊃ Uε be a larger regular neighborhood, where “regular” signifies that P is a
homotopy retract of U ′

ε ⊃ P . Then
the subspace clk(λ) ⊂ clk(Z; Zp) of relative k-cycles in U ′

ε (“relative”
= “relative to the boundary ∂U ′

ε”) of volumes ≤ λ is contractible in
clk(Z; Zp) for λ ≤ const(Z,P )εk.

This can be seen either with the Federer–Fleming filling (see [Gr2], [Gu]) or with
Almgren’s variational arguments, where the latter shows, at least for the smooth
(“piecewise smooth” may be enough) P , that const(Z,P ) ≥ (vk − const(Z,P )ε1/N )
for vk denoting the volume of the unit ball in Rk. (The partition argument from
[Gr5] may also apply to smooth submanifolds P ⊂ Z).

Since every Z can be embedded as neighborhood (homotopy) retract to a Eu-
clidean space and, thus, with the induced inclusion homology homomorphism from
Z to some Euclidean neighborhood injective, one may assume that Z itself is a
compact smooth domain in RN . Then one can move the skeleta P i ⊂ RN of a
triangulation of Z (or, rather of a slightly larger domain) by parallel translations
with the following

Obvious Lemma. Let P ⊂ RN be a compact m-dimensional simplicial (i.e. made
of finitely many affine simplices in RN ) polyhedron and let L ⊂ RN be a linear
subspace of dimension N − m that is transversal to all m-faces of P . Then there
exists a constant C = C(P,L), such that if some points xj ∈ L are δ-separated in L,
then the translates Uε + xj ⊂ RN of the ε-neighborhood Uε ⊃ P with ε ≤ C−1δ
cover no point in RN with the multiplicity ≥ C.

Now the proof of the �-inequality follows as in [Gr5], [Gu] from the following
fact:

Let Uji ⊂ Z ⊂ RN be domains, where each Uij contains the (N − i)-
skeleton of some triangulation of Z, and let Gt, t ∈ T , be a family
of k-cycles, such that the �-product class h =�ji hji does not vanish
on T . Then none of the intersections families Gt ∩Uji is contractible in
the space clk(Uji) of (relative) cycles in the domain Uji .

Questions. (a) Does there exist a direct proof (not using the Steenrod algebra as
in [Gu] of the above stated (special case of) Guth ε-inequality? Do such inequalities
hold true for clk(Z; Zp) for p ≥ 3?



GAFA HOMOLOGY VERSUS VOLUME IN THE SPACES OF CYCLES 803 

(b) Can one evaluate const◦(Z) for
∑

i di → ∞ in terms of some “i-dimensional
(co)volumes” of Z (or, rather, on spaces of cocycles on Z in the spirit of the comass
norms on H i(Z; R))?

(c) Let P ⊂ Z be a piecewise smooth subpolyhedron, e.g. a smooth submanifold
(algebraic-like P , more singular than “piecewise smooth”, are also of interest) and
consider the ε neighborhoods Uε ⊂ Z of P for. Does there exist an asymptotic limit
of the vol◦-spectra on the spaces of (absolute and relative) cycles in Uε for ε → ∞?

Similarly, let Z → Z0 be a Riemannian fibration (submersion) and let Zε be
obtained by shrinking the fibers by ε. (If one renormalizes to ε−1Zε, one speaks of
the “adiabatic limit”). What is the asymptotics of the vol◦-spectra on the spaces of
cycles in Zε? Are the extremal families of cycles detecting a given cohomology class
in H∗(cl∗) asymptotic to families of geometrically filtered cycles with the filtration
reflecting that in the Serre spectral sequence?

For example, do the cycles in the families coming from the homology of a fiber,
call it F ⊂ Z, asymptotically localize at the fibers? Does the part of the vol◦-
spectrum in Zε coming from F converges to the (ε-scaled) vol◦-spectrum of F , pro-
vided the homology homomorphism H∗(F ) → Z is injective? (This is so for the “bot-
tom of the spectrum” for the (round) sphere bundles SM ⊂ Z → Z0, i.e. for the fam-
ilies representing the fundamental classes in the homology HM−k(K(Zp,M − k)) →
HM−k(clk(Zε; Zp)) as we mentioned earlier.)

(d) The vol◦-spectrum does not, a priori, account for the full information on the
homologies of the sublevels vol−1

k [0, v] ⊂ clk of the function volk on clk but only the
the images of this in the whole space clk. Is there something else there or, on the con-
trary, the function volk : clk(Z) → R+ is quasi-perfect? The latter means that there
exists a constant C = C(Z), such that the kernels ker(v1, v2) ⊂ H∗(vol−1

k [0, v1]) of
the homology inclusion homomorphisms H∗(vol−1

k [0, v1]) → H∗(vol−1
k [0, v2]), v1 ≤ v2,

do not depend on v2 for v2 ≥ Cv1.

5.3 Lower bounds on vol◦ in CAT(κ ≤ 0) manifolds. Let Z be a complete
N -dimensional CAT(κ) space and B = Bz(v, k, κ) ⊂ Z a simply connected ball
centered at z ∈ Z of radius R = R(v, k, κ) such that the R-balls in the k-dimensional
simply connected space of constant curvature κ have volumes = v. Assume that the
base Sz(Z) of tangent cone Tz(Z) is volk−1-greater than the unit sphere SN−1 in the
following sense:

there exists a volk−1-contracting map Sz(Z) → SN−1 such that the funda-
mental cohomology class of SN−1 goes to a non-zero class in HN−1(Sz(Z); Z2).

Example. Smooth CAT-spaces Z, where Sz(Z) = SN−1, trivially, have this
property. Also, this is true for the cubical CAT(0)-spaces. Possibly (but not very
likely), this is true for all Z2-pseudo-manifolds Z.

A simple argument (used for smooth spaces in [Gr5]) shows that such a large ball
B admits a volk-contracting map f of B to the hemisphere SN

+ (v) of non-vanishing
Z2-degree (i.e. f∗ does not vanish on the fundamental relative cohomology class of
SN

+ (v)). Thus one obtains
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the lower bound
vol◦[Z]d−k ≥

∑
i

vi

for an Z containing disjoint simply connected balls Bzi(vi, k, κ), i =
1, 2, . . . , d, provided the tangent “spheres” Szi(Z) at the points zi ∈ Z
are volk−1-greater than SN−1.

Remarks. (a) There is a better bound for the CAT(0) locally symmetric spaces
Z of rankR(Z) < k, where the simply connected R-balls B ⊂ Z are as “volk-large”
as the R-balls in CAT(κ < 0) manifolds for (an easily computable) κ = κ(Z).

(b) Guth’s bounds on the vol◦k spectrum for Euclidean balls imply similar bounds
for our Z. In particular, if Z contains a ball Bz0(v0, k, κ), then, for each ε > 0, every
non-zero class h in HD(K(Z2, N − k); Z2) ⊂ HD(clk(Z; Z2); Z2) satisfies

vol◦k(h) ≥ const(N, ε)D
1

k+1
−εv0 .

5.4 Higher-order volumes. The geometry of families of real algebraic cycles
(that serve as a major source of upper spectral bounds for our functions on the
spaces of Z2-cycles) suggests the following finer invariants incorporating the smooth
structure of Z.

Let a chain from chk(Z; Z2) be represented by an almost everywhere smooth (e.g.
algebraic or semialgebraic) subset G ∈ Z and consider the set of all tangent k-planes
to G at the regular points. This is a subset in the Grassmann manifold of the tangent
k-planes in Z, called the tangential lift of G and denoted G′

reg ⊂ Z ′ = Grk(Z). Let
G′ ⊂ Z ′ be the closure of the lift G′

reg. We call our chain C1-regular, if G′ is almost
everywhere regular in Z ′ with the Z2-boundary ∂(G′) = (∂(G))′. Then we go to
G′′ ⊂ Z ′′, define C2-regularity etc.

One similarly defines regular D-parametric families of k-chains for D < N + k
as regular k + D-chains in Z and asks, what is the homotopy type of the resulting
spaces of Cr-regular cycles in Z ×RM for M → ∞? (Alternatively, one may use the
flat topology in the space of the regular cycles.)
Example. The fibers of a generic smooth map Z = ZN → RD, D = N − k, make
such a regular family of k-cycles Gt ∈ Z, t ∈ RD. Observe that if Z is oriented, then
this family makes a D-dimensional Z-cycle of k-dimensional Z-cycles, but after the
“blow-up”, the “differential” G′

t ⊂ Z ′ is not a Z-cycle of Z-cycles anymore; yet, it is
a Z2-cycle of Z2-cycles.

If Z comes with a smooth Riemannian metric µZ , then the fibration Z ′ → Z
inherits the Levi-Civita connection from µZ , while the fiber, that is the Grassmann
manifold Grk

N , N dim(Z), carries the standard metric denoted µGr. One takes the
convex combinations of this metric with the Levi-Civita lift µ′

Z of µZ to Z ′, that
is (1 − �1)µ′

Z + �1µGr, and abbreviates (Z ′, (1 − �1)µ′
Z + �1µGr) to Z ′(�1). Then

one defines Z ′′(�1, �2), . . . , and denotes by vol(r)k (G) = vol(r)k (G; �1, �2, . . . , �r) the
k-volume of G(r) = G′′... in Z(r)(�1, �2, . . . , �r).

The most significant of these is vol(1)k (G, �1) that represents some combination of
the ordinary k-volume with the integral curvature of G; it reduces to volk for �1 → 0
and becomes the pure Gaussian curvature for �1 → 1.
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Observe that every “r-th order volume functions” satisfies vol(r)k (G) = volk(G
(r)
reg);

thus, it extends to all cycles with possibly infinite values at some G and the (joint)
spectrum evaluation problem for vol(r)k makes sense in the space clk(Z; Z2) of all
(not only regular) cycles.

Remarks and Questions. (a) The Betti numbers of a smooth submanifold G

in a compact Z are bounded by const(Z) vol(1)k (G), as can be seen, for example, by
embedding Z into some Euclidean space where the total curvature of G is bounded
by vol(1)k (G), but it is unclear what else of the topology of G (besides the Pontryagin
numbers) can be bounded by (some function of) vol(1)k (G).

(b) Can one approximate a submanifold G ⊂ RN by a component of an algebraic
submanifold of degree d, with d bounded in terns of vol(N)

k (G)?

5.5 Diagram spectra. Represent cycles by pseudomanifolds mapped to Z, say,
α : G → Z, and let λ(G,α) be some measure of the topological complexity of the
pseudomanifold G and of the map α, e.g. the sum of the Betti numbers of G or the
rank of the homology homomorphism α∗.

If p = 2 and every h ∈ Hd(clk(Z; Z2); Z2) is detectable by a continuous map
α : X → Z, where X is an (irreducible component of a) (d+k)-dimensional algebraic
variety X ⊂ RM , “fibered” by a regular map F over a d-dimensional variety Y , then
an attractive measure of complexity of h is offered by the minimum of the algebraic
degrees of such X,Y and F and/or the minimum of the degrees of the fibers of F
(compare section 5).

An instance of a finer topological (rather than just homotopical) invariant is
provided by the pattern of m-multiple points of G mapped by α to Z. (If d ≥
(m − 1)N − mk, then the cycles G in d-dimensional families, may have stable m-
multiple points.)

Given such λ, regard it as a function on the space cl∗(Z), define the associated
λ◦ and λ◦ spectra on the homology and cohomology of the space cl∗(Z) and try to
bound these from below in terms of the topology of Z.
Example. The inequality �m+1 from 2.2 provides a lower bound on the bottom
of the spectrum of λ◦ = (rank(α∗))◦ (with X in the place of Z) and the other
inequalities in section 2 also have the spectral interpretation.

Let us look more closely at 1-cycles in Z with Z2-coefficients. Every such cycle is
represented by a diagram that is a finite even graph G, i.e. with all vertices g ∈ G of
even degrees (valencies) and a continuous map G → Z. Thus each cycle ∈ cl1(Z; Z2)
is tagged with an (isomorphism class of a) graph G and we denote by clG ⊂ cl1, the
set of the cycles with the tag G.

The partition of cl1(Z) into the “strata” clG(Z) (albeit far from being a stratifi-
cation) is functorial for continuous maps Z1 → Z2 and it is invariant, up to partitions
preserving homotopies, under the homotopy equivalences Z1 � Z2. Thus, the space
cl1(Z; Z2) � ×jK(Hj(Z; Z2), j − k) acquires more structure depending on the ho-
motopy type of Z, than provided by the plain homology ⊕jHj(Z; Z2).
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Question. Given a class G0 of graphs G, when does a given homology class
h ∈ Hd(cl1(Z; Z2); Z2) contain a cycle C represented by a d-parametric family of
graphs Gc mapped to Z with all Gc ∈ G?

Put it another way, let λ(G) be some function measuring the “complexity” of
G and set λ(C) = λ(G(C)) C ∈ cl1. What can one say about the corresponding
spectrum λ◦ on the homology of cl1?

Spherical Example. Let Z = SN and observe that every �-power of the
fundamental class [Z]−1 can be represented by a cycle in the stratum clS1 , i.e. made
of maps S1 → Z = SN .

On the other hand, if N ≥ 3, then the space cl1(Z; Z) has Betti numbers BD =
rank(HD(cl1; Z)) ∼ Dlog(D), while every “stratum” clG ⊂ cl1, that is roughly the
Cartesian product of several copies of the loop space of SN , has polynomial growth
of the Betti numbers.

Question. Denote by r(D, l) the rank of the subgroup in HD(cl1(Z); Z2) generated
by the classes h that admit smooth representations α : XD+1 → Z, with smooth
generic maps F : XD+1 → Y D, such that all fibers Gy = F−1(y) are graphs with
λ(Gy) ≤ l, where λ(G) is one of the following (measures of topological complexity)
of G

• λ(G) = rank(H∗(G));
• λ(G) = rank(H1(G));
• λ(G) equals the maximum of the ranks of H1 of the connected components

of G.
Does r(D, l) for Z = SN grow at most polynomially in D for each l? What is

the minimal l = l(D) for which r(D, l) = rank(HD(cl1(Z); Z2))?
Additional structure in cl1(Z) is associated with the fundamental group Γ of Z

that is most informative for aspherical spaces Z. Namely, every map α : G → Z
define a subset conj(α) in the set conj(Γ) of the conjugacy classes of subgroups of Γ
that are the images of the fundamental groups of the connected components of G;
thus every set C ⊂ conj(Γ) define a subset clC ⊂ cl1(Z) of the cycles representable
by maps α with conj(α) ⊂ C.

For instance, if C equals (the class of) the identity element in Γ, then the corre-
sponding set of cycles, i.e. the space of 1-cycles represented by contractible maps of
graphs to Z is contractible.

If C consists of the conjugacy class of some infinite cyclic subgroup A = A(α) ⊂ Γ
that equals its own centralizer, then clA is homotopy equivalent to cl1(S1; Z2) and,
thus, consists of the two contractible components corresponding to the two elements
in H1(S1; Z2).

Denote by clA ⊂ cl1 the space the cycles corresponding to C equal to the set
of conjugacy classes of Abelian subgroups in Γ. If Γ is anti-Abelian, i.e. every
id = γ ∈ Γ has infinite cyclic centralizer, then the space clA is homotopy equivalent
to a disjoint union of contractible spaces corresponding to the conjugacy classes of
the maximal Abelian subgroups in Γ and a component corresponding to id ∈ Γ.
(The space clA for more general Γ can probably be used as 6.6 in [Gr2] for lower
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bounds on the injectivity radii and/or volumes of Riemannian manifolds, in the
spirit of the Kazhdan–Margulis theorem.)

5.6 Semi-stable spaces Gsst of 1-cycles G and |χ|01-spectra. The partition
of cl1 into subsets clG needs a significant refinement to make it a (pre)stratification.
For example, if Y is a family of the real algebraic curves Gy ⊂ RP 3, y ∈ Y , the
adjacency relation between subsets YG ⊂ Y made of the curves Gy homeomorphic
G may have “cycles” and thus does not extend to a partial order relation, not even
for algebraic families.

We describe below a “subspace” Gsst(Z) in cl1(Z; Z2) consisting of “semi-stable”
cycles, where the partition into subsets clG is a stratification.

Start with the following standard construction. Given a small subcategory C
of the category of topological spaces and continuous maps, every string S of maps
G0 → G1 → . . . → Gn defines a S-simplex, denoted ∆S , that is defined by induction
as follows:

the (n+1)-simplex ∆G′ for S′ = (G0 → G1 → . . . → Gn → Gn+1) equals
the cylinder of the map ∆S → Gn+1 composed of the tautological map
∆S → Gn (for the cylinder at the previous step) and Gn → Gn+1.

For example if all Gi are one point spaces, this is the ordinary (ordered) n-simplex
obtained by the iterated cone construction.

Given a topological space Z define C(Z) as the (semi)simplicial space where the
simplices are continuous maps α : ∆G → Z for all strings G with the obvious face
relations between the G-simplices mapped to Z.
Examples. (a) If C consists of a single point with the identity map, then C(Z)
is the standard semi-simplicial model of Z and, thus, is homotopy equivalent to Z.
Similarly, if C consists of a single space G with the identity map, then C(Z) is
homotopy equivalent to the space ZG of continuous maps G → Z.

(b) If C is the category of finite sets and all maps or the category of finite sets
and injective maps, then C(Z) is contractible for all Z. In fact this is, obviously,
true for every category C closed under “disjoint unions” of spaces and maps.

(c) If C consists of a single object G and a group Γ of homeomorphisms of G left
translation of a discrete group Γ, then C(Z) is (canonically) homotopy equivalent to
the homotopy quotient ZΓ//Γ for the natural action of Γ in the space of maps Γ → Z.
(The homotopy quotient of a Γ-space X is the total space of the X-fibration (i.e.
with the fiber X) associated to the principal Γ-fibration over the classifying space
of Γ.)

If Z and G have all components of positive dimension and Γ is compact, then
the action of Γ on ZG is free on an open subset U ⊂ Z (of generic maps G → Z)
and the inclusion U//Γ ⊂ ZG//Γ is a homotopy equivalence. Thus ZG is homotopy
equivalent to U/Γ, since the obvious map U//Γ → U/Γ is a homotopy equivalence
for free actions.

(d) Let the objects of C be finite k-dimensional simplicial polyhedra P , each
endowed with a distinguished simplicial k-dimensional Zp-cycle, and the morphisms
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are simplicial maps sending distinguished cycles to distinguished cycles. Then the
natural map C(Z) → clk(Z; Zp) is a homotopy equivalence. (This is, probably,
true for the smaller category, where all P are unions of finite sets and oriented Zp-
pseudomanifolds carrying their fundamental cycles and the morphisms P1 → P2 are
one-to-one over all of P2 minus finitely many points.)

(e) G-Representation of cl1(Z; Z2). Let G be the category, where the objects are
finite even graphs (diagrams), i.e. each vertex has even degree (valency), and where
morphisms are maps G1 → G2 that are one-to-one and onto over G2 minus a finite
subset. In other words, G2 is obtained from G1 by shrinking some even subgraphs
(e.g. pairs of points) to points and adding isolated points. (Instances of these are
limit maps between fibers of a generic smooth map F : XD+1 → Y D.)

It is not hard to show that G(Z) is (canonically) homotopy equivalent to cl1(Z; Z2).
(For instance, every smooth representation of a D-dimensional homology class of
cl1(Z; Z2) by α : XD+1 → Z with a generic F : XD+1 → Y D gives us a D-
cycle in C(Z); which shows, by Thom’s theorem, that the tautological map G(Z) →
cl1(Z; Z2) is surjective on homology.)

Gst and Gsst-spaces. Let Gst be the (stable) subcategory of G, where the
objects are graphs with all vertices of degree 2 and 4 and where the morphisms
G1 → G2 are those maps G1 → G2, where the pullbacks of non-isolated points are
finite and the pullback of every isolated point is a circle, a point, or the empty set.
(The limit maps between fibers of a purely folded smooth map F : XD+1 → Y D are
stable in this sense.)

There is a slightly bigger space with equally nice properties where “stability”
is relaxed to “semistability” by admitting all finite even graphs for the objects of
Gsst (i.e. with all vertices of even degrees) and keeping the same restriction on the
morphisms.
Questions. Is the tautological embedding of Gsst(Z) → G(Z) a homotopy equiva-
lence? In other words, does (every diagram of morphisms in) G admit a semistable
refinement/resolution? (This is similar to the Deligne–Mumford compactification
of the moduli spaces of curves, and is possibly known.) When does a smooth
generic (say, algebraic) map α : XD+1 → Y D admit a resolution to an α̂ : X̂ → Ŷ
that is homotopic to a purely folded map X → Y ? Does every homology class
h ∈ HD(Gsst(Z); Z2) admit a smooth representation α : XD+1 → Z with a purely
folded map F : XD+1 → Y D?

S[G]-stratification. The isomorphisms classes of graphs are partially ordered
by the morphisms in Gsst, since the “absolute Euler characteristics” (“total curva-
ture”),

|χ|01(G) =
∑

i

∣∣χ(Gi)
∣∣ ,

where Gi are the connected components of G, is strictly monotone increasing under
non-isomorphism morphisms G1 → G2. (If all vertices in G have valency 4, then
|χ|01(G) equals the number of the vertices.)
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It follows that the partition of the space Gsst(Z) into the subsets S[G] ⊂ Gsst(Z)
corresponding to the isomorphism classes [G] of (even) graphs G is a pre-stratification,
where the adjacency relation S[G2] ≺ S[G1] (i.e. S[G2] ⊂ ∂S[G1]) signifies that that
there exists a non-isomorphism morphism G1 → G2.

In fact, the subsets S[G] stratify Gsst(Z), where each stratum S[G] is (homotopy
equivalent to) the space of continuous maps of the graph G to Z homotopy divided
(i.e. //ΓG) by the automorphism group ΓG of G. (This group is finite unless G
contains an S1 connected component.) The “normal space” S⊥

G to the stratum SG at
a generic point s ∈ SG, where the action of ΓG is free (we assume that dim(Z) > 0),
called a G-handle, equals the simplicial complex associated to the partially ordered
set of the graphs G′ � G and, thus, has dim(S⊥

G ) = |χ|01(G).
For example, if G consists of a single point, then the G-handle equals the segment

[0.1] “stemming” from 0 serving as the center of the handle. If G is a figure ∞, then
the handle is the tripod T , three [0, 1]-segments stemming from the (common) central
0-point.

If all vertices in G are either isolated points p or vertices v of valency 4, then the
handle is the Cartesian product of the copies of [0, 1] and T3 that is ×p[0, 1]p ×v Tv.

Every monotone increasing (for the partial order “�”) function λ(G) ∈ R+
(expressing a measure of the combinatorial complexity of G), regarded as a func-
tion λ : Gsst → R+ that is equal λ(G) on the stratum SG, defines the functions
λ◦ and λ◦ on the homology and the cohomology of the space Gsst. Thus, λ◦(h),
h ∈ H∗(Gsst; Z2), equals, by definition, the minimal number µ ∈ [0,∞) such that
the restriction cohomology homomorphism from (the cohomology of) Gsst to (the
cohomology of) the sublevel λ−1[0, µ] ⊂ Gsst does not vanish on h and λ◦ is the dual
of λ◦.

The basic examples are λ(G) = |χ|01(G) and

|χ|1(G) =
∑

i

∣∣χ(Gi)
∣∣ ,

where Gi are the connected components of G of dimension 1 (i.e. isolated points are
discarded.)
Remarks. The subsets S[G] are also defined in the space G(Z) ⊃ Gsst(Z) but the
partition of G(Z) into these subsets is not a pre-stratification (nor is the function
|χ|1 semicontinuous on G(Z)).

Apparently, every d-cycle in cl1 can be implemented by diagrams (graphs) G
with |χ1|(G) ≤ d (but it is unclear if such an implementation is possible in clsst1 ).

5.7 Evaluation of the homotopy dimension of Gd(Z) for aspherical
spaces Z. The homotopy dimension of a continuous map between topological
spaces, say f : S0 → S, is the minimal dimension of a polyhedron P such that
f is homotopic to a map that factors via S0 → P → S.

The relative homotopy dimension of a subspace S0 ⊂ S, denoted dimhom(S0 ⊂ S),
is the homotopy dimension of the inclusion map of S0 to S. The (absolute) homotopy
dimension of S0 is defined as dimhom(S0) dimhom(S0 ⊂ S0).
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Let Z be an aspherical space and denote by Gd = Gd(Z) ⊂ Gsst(Z) the union of
the strata S[G] with |χ|1(G) ≤ d.

If the fundamental group Γ of Z is “anti-Abelian”, i.e. the centralizer of
every γ = id is free Abelian, then

dimhom
(
Gd ⊂ Gsst(Z)

)
≤ d . (dim ≤ |χ|1)

Consequently,
dimhom

(
Gd ⊂ cl1(Z; Z2)

)
≤ d ;

thus, if α : Xd+1 → Z, F : Xd+1 → Y is a smooth representation of a
non-zero homology class in Hd(cl1; Z2) where F is a purely folded map,
then F has a d-multiple fold self-intersection point y ∈ Y .

Proof. If Z is contractible, then Gsst(Z) is also contractible, since every diagram
of morphisms in Gsst can be included into a larger diagram with a unique terminal
object.

Next, the space of maps of an arbitrary graph G to the circle satisfies
dimhom

(
(S1)G ⊂ Gsst(S1)

)
= 1 .

Indeed, it is suffices to show that the “circle of maps” s �→ αs = s · α : G → S1

for all s ∈ S1 and the obvious action s· on maps, is contractible in Gsst(S1) for every
α : G → S1.

If G = S1 this follows from the extendability of every smooth fibration S1×S1 →
S1 to a purely folded map to the disc, S1 × S1 → D2 ⊃ S1, which exists by
Eliashberg’s h-principle for folded maps.

Since every connected graph G with the vertices of even degrees admits a mor-
phism S1 → G (by Euler’s 7 bridges in Konigsberg’s theorem), the space of maps
ZG ⊂ Gsst(Z) can be homotoped to ZS1 ⊂ Gsst(Z).

Thus we see that all connected components in the strata S[G] are contractible
in Gsst(Z), and attaching S[G] to the union of the strata S � S[G] has the same
homotopy effect in Gsst as attaching the corresponding G-handle.

Since the dimension of the handle equals |χ|01(G) this implies the required in-
equality with |χ|01(G) instead of |χ|1(G). But since adding the products of ×p[0, 1]p-
handles centered at (0, 0, . . . , 0) has no effect on the homotopy type, these can be
discarded and (dim ≤ |χ|1) follows.

About examples. There are many stably parallelizable manifolds X = Xd+1,
where the fundamental group Γ = π1(X) is anti-Abelian and where the Z2-funda-
mental class does not vanish in Hd(K(Γ, d + 1); Z2). These X admit purely folded
maps F : X → Rd by the Eliashberg h-principle and the above inequality says that
the folding locus must have a d-multiple point.

Some Γ in these examples are non-word hyperbolic (e.g. in amalgamated products
Γ = Γ1∗ΛΓ2, where Γ1 and Γ2 are word hyperbolic and Λ is distorted in both Γi) and
deliver groups Γ, where (dim ≤ |χ|1) does not obviously follow from the ∆-inequality
in 3.3 But even if Λ is quasiconvex (at least in one of the two Γi that is sufficient
for the hyperbolicity of Γ, say, in the malnormal case) the group Hd+1(Γ; R) may be
zero while Hd+1(Γ; Z2) = 0.
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For instance, if a (d + 1)-dimensional manifold Z0 of negative curvature has two
connected totally geodesic boundary components ∂1 and ∂2, where ∂1 is isometric
to a p-sheeted cover of ∂2 with p > 1 odd, then the space Z obtained from Z0 by
attaching ∂1 to ∂2 by the covering map is CAT(κ < 0) with Hd+1(Z; R) = 0 and
Hd+1(Z; Z2) = Z2.

(The non-zero class h ∈ Hd+1(Z; Z2) can be realized only by a non-orientable
manifold X and the Eliashberg theorem needs to be applied to maps to non-
orientable Y . Also the vanishing of Hd+1(Z; R) does not exclude an indirect ap-
plicability of the ∆-inequality since the R-homology may become non-zero in some
hyperbolic subquotient of Γ, but I guess, one can arrange examples where this does
not happen.)

Most (all?) apparent examples of anti-Abelian groups have some “residual hy-
perbolicity” and one does not know, for instance, if there are finitely generated
(finitely presented) non-cyclic amenable anti-Abelian groups Γ.
Remarks and Questions. (a) There is a version of the (dim ≤ |χ|1)-inequality
for the groups Γ with a given bound on the homotopy dimensions of the central-
izer of its subgroups. For example if X = Xd+1 is an aspherical manifold and all
id = γ ∈ Γ = π1(X) have centralizers of the homotopy dimension of their classify-
ing spaces ≤ δ, then every purely folded map X → Y d has an m-multiple fold
self-intersection point for m ≥ d/δ.

(b) What is the counterpart of the (dim ≤ |χ|1)-inequality for the space G(Z)?
Which of the above lower fold multiplicity bounds generalizes (modifies) to generic
smooth maps Xd+1 → Y d that are not purely folded?

(c) If Z is a CAT(κ ≤ 0)-space, then the ∆-inequality from 3.3 gives a lower
bound on the “geometric intersection number” of the cycles representing the funda-
mental homology class [Z]−1 in cl(Z; Z2) with Gd. Is there a similar bound for other
homology classes?

For instance, can one bound from below the number of the affine planes A that
intersect a generic Z → Rm+1 along the graphs G with |χ|1(G) = m(l + 1)? Can
one say something more about the combinatorics of these G besides the estimates
on |χ|1(G)?

The (dim ≤ |χ|1)-inequality bounds not only the sum |χ|1(G) =
∑

i |χ(Gi)| over
the 1-dimensional components Gi of G of the “maximally singular” 1-cycle G = Gy,
but also maxi |χ(Gi)|. Are there lower bounds on this maxi |χ(Gi)| for some classes
in the (co)-homology of cl1(Z) apart from the fundamental class?

(d) Are there other (monotone) invariants besides |χ|1 that can be controlled by
the topology of Z, e.g. those incorporating the genera of graphs G? Does planarity
of G have any effect on the homotopy role of the strata S[G]?

(e) If Z is a manifold then the 1-cycles can be represented by graphs topolog-
ically (or piecewise smoothly) embedded into Z. The spaces clemb

1 (Z) and Gemb
sst of

embedded graphs are homotopy equivalent to their “continuously mapped” counter-
parts but their partitions into strata Semb

[G] , that take into account self-intersections
in families of “moving subgraphs” and the pattern of transformation of subgraphs
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at the self-intersection points, are not homotopy invariants of Z any more, but
rather topological invariants (and p.l.-invariants for piecewise smoothly embedded
subgraphs).

For example, if Z is the sphere SN , then every �-power of the fundamental
class in HN−1(cl1(SN ; Z)) is detectable by a family Y of circles mapped to cl1(SN ),
where Y is the Cartesian product of d-copies of the sphere S(N−1). (This, contrary
to the statement made in the original version of this paper, is unlikely to be true for
cl1(SN ; Z2) as was pointed out to me by Larry Guth.)

But such circles, as they move in an N -dimensional manifold Z along a non-
trivial high-dimensional (dim � N) cycle (parametrized by) Y in the space cl1(Z),
necessarily acquire many intersection points in Z. For example, if generic smooth
maps, F : X = XD+1 → Y = Y D for D = d(N − 1) and α : X → Z, represent
a D-dimensional cycle, that is [Y ], in cl1(Z; Z), such that the d-th �-power of the
fundamental cohomology class [Z]−1 ∈ HN−1((cl1; Z1); Z2) does not vanish on [Y ],
then some fiber Gy = F−1(y) must acquire a d-multiple self-intersection point in Z
under the map α.

(f) The homological study of the “self-intersections stratifications” in the spaces
of curves was initiated (unless I missed an earlier paper) by Alexander Vinogradov
[V] who was motivated by knot theory. Recently, an astoundingly rich algebraic
structure in these spaces was revealed in [CS] where one can find references to many
other papers.

(g) How much (all?) of the topology of a space (a manifold) Z can be recon-
structed from Gemb

sst (Z) stratified into Semb
[G] ? For instance, can one express the Pon-

tryagin classes of a manifold Z in terms of (Gemb
sst (Z), {Semb

[G] })?
Geometric examples. Let Hy, y ∈ Y , be a smooth D-dimensional family of
smooth submanifolds of codimension (N − k) in a manifold M , e.g. of the (N − k)-
codimensional affine subspaces in the Euclidean space M = RP , and let f : Z → M
be a smooth generic map. Then the pullbacks Gy = f−1(Hy) ⊂ Z make a D-
dimensional cycle in clk(Z; Z2) parametrized by Y and representing the homology
class denoted by f ![Y ] ∈ HD((clk; Z2); Z2).

Problem 1. Given M and Y , find lower bounds, applicable to all smooth generic f ,
on the “topological complexity” of the “maximally complicated” fiber Gy in terms
of (M,Y, f ![Y ]).

Next, denote by X the set of the pairs (y, g) for all y ∈ Y and g ∈ f−1(Hy) ∈ Z,
and observe that it is a smooth manifold for generic maps f that is tautologically
mapped to Y , say F = Ff : X → Y , with the fibers Gy = F−1(y) = f−1(Hy).

Problem 2. Find lower bounds on the topological complexity of the critical set
Σ(F ) ⊂ Y .

Problem 3. Describe “convex” (Z, f), i.e. those with the minimal topological
complexity in the sense of 1 and 2. In particular, let M be a compact homogeneous
(e.g. Riemannian symmetric) space under an action of a Lie group L and Hy ⊂ M
make the L-orbit of some submanifold H0 ⊂ M . What are submanifolds (and
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general closed/open subsets for this matter) Z ⊂ M , such that the topology of the
intersection Hy ∩ Z is constant in y, i.e. the map F : X → Y is a locally trivial
fibration?

For instance let M be the Grassmannian Gr2
n of 2-planes in Rn acted upon by

the linear group L = GLn and H0 = Gr2
n−1 ⊂ Gr2

n be the Grassmannian of 2-
planes in a hyperplane in Rn . Suppose that the intersections of Hy with some
Z ⊂ Gr2

n have the topology constant in y ∈ Y for Y = Grn−1
n being the space of

the hyperplanes in Rn. Can the restriction of the Euler class e ∈ H2(Gr2
n) to Z be

zero? Does it help to assume that not only the topology but also the GLn-geometry
of Z ∩ Hy is constant in y? (If n is even, then Z0 = CP

n
2
−1, the space of C-lines

in Rn = C
n
2 , is transversal to all Hy. Equisingular (i.e. preserving transversality,

e.g small) deformations of Z0 and unions of their GLn-translates are the apparent
examples of Z’s with the topology of Z ∩ Hy constant in y ∈ Y .

Returning to Problem 1, observe that if dim(Y ) = D is much greater than
N dim(Z), then the major contribution to the complexity of the fibers Gy is local:
if a submanifold Hy is tangent to, say embedded, Z ⊂ M at some point z0 ∈ Z with
high order, then the intersection Gy = Hy ∩ Z must be locally complicated at z0.

For example, let Y be the family of affine hyperplanes H ⊂ M = RP , where
P equals the dimension of the space of polynomials in N variables of degree d + 1.
Then among the fibers Gy passing through a (generic) point z0 ∈ Z ⊂ RP we find
levels of generic functions on Z that vanish with order d at z0 and (some of) such
levels are as complicated as real algebraic hypersurfaces of degree d + 1 may be.

On the other hand, a generic Z ⊂ RP always has a supporting hyperplane
H ⊂ RP that is tangent to Z at m-points for m ≥ P

N+1 , since the boundary of the
convex hull of Z has dimension P − 1 while what you can get with m points is at
most mN + m − 1. It follows that the map F = Ff : X → Y necessarily has an
m-multiple fold self-intersection point.

Can one ever do better than that? For instance, let Z be a closed N -dimensional
Riemannian manifold of negative curvature generically mapped (e.g. embedded)
to RP . Then, does some linear projection of Z to a linear subspace of dimension
N − 1 have an m-multiple fold self-intersection point for m = N − 1 + D, for D
=dim(GrN−1

P ) = (N − 1)(P − N + 1)?
The natural candidates for “convex” f : Z → RP are Yk-equisingular deforma-

tions of the Veronese maps fd : SN → RPd (these are embeddings for odd d) where
Pd is the dimension of the linear space of homogeneous polynomials of degree d
on RN+1 ⊃ SN , where Yk denotes the space of (N − k)-codimensional affine sub-
spaces in RPd and where “equisingularity” means that the topology of the critical
set Σ(F ) ⊂ Yk for the above F = Ff does not change under the deformation.

What is the closure of the space of “convex” Z in some weak (e.g. Hausdorff)
topology? Is there some version of the Blaschke compactness theorem for (the space
of) “convex” Z ⊂ RP ?

Global invariants of families of 1-cycles. We were primarily concerned so
far with the lower bounds on the fiber complexity of homology classes h ∈ H∗(cl1(Z))
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(more specifically, the complexity expressed by maxy |χ|01(Gy) for D-dimensional Y -
families of 1-cycles, X = ∪y∈Y Gy → Z, that represent h). Some lower bounds on
the Σ-complexity, i.e. on the topology of the critical sets Σ(F ) ⊂ Y for smooth
representations of h with generic F : X → Y , will be derived in section 6 from
bounds on the fiber complexity of auxiliary (D−1)-dimensional families of 2-cycles,
similar to what was done in 2.2 with the Retraction Lemma.

5.8 Length spectra in cl1 and clsst
1 . The Almgren D-inequality from 5.1

provides the lower bound on the maximal length (1-volume) of 1-cycles in the families
detecting the �-powers of the fundamental class h = [Z]−1 ∈ H∗(cl1(Z; Z2); Z2) for
Riemannian manifolds Z. In particular, if dim(Z) = 2, this implies that

lim inf
D→∞

1√
D

length◦(hD) ≥
√

2
4
√

3
(area(Z))

1
2 ,

as seen with the hexagonal tessellation of the plane.
On the other hand, by looking at moving edges of the square tessellation, one

sees that
lim sup
D→∞

1√
D

length◦(hD) ≤ 2(area(Z))
1
2 .

Besides the total length of graphs G mapped to Z, one can encode the lengths of
individual edges of G by considering the subsets SLip

[G] (Z) ⊂ cl1(Z), where G denote

here metric graphs, i.e. graphs with the length structures and SLip
[G] (Z) denotes the

space of 1-Lipschitz maps G → Z.
If we restrict to Gsst(Z) ⊂ cl1(Z; Z2), this amounts to the partial order on Gsst(Z)

corresponding to the partial order G1 �Lip G2 on metric graphs signifying the exis-
tence of a semi-stable morphism represented by a 1-Lipschitz map G1 → G2. The
partially ordered space (Gsst(Z),�Lip) makes a comprehensive metric invariant of Z:
it fully recaptures (by an easy argument) the topology and the Riemannian metric
of Z.

Every monotone increasing function λ : GLip
sst → R+ defines the corresponding

function, also denoted λ, on Gsst(Z) (compare 5.1) and then the associated spectral
functions λ◦ and λ◦ on the homology and the cohomology of Gsst as well as of cl1(Z).
In particular, for each 0 < p ≤ 1, one has the p-energy of G, the sum of the p-th
powers of the lengths of the edges of G. (If p > 1 the p-energy is not monotone,
albeit a convex function.)
Question. Can one reconstruct Z by the spectral functions p-energy◦ (on the
cohomology of Gsst(Z) and/or of cl1(Z)) for all 0 < p ≤ 1?

A lower spectral bound for λ(G) = |χ|1(G) + p-energy(G). There is
semblance of Morse theory for this (discontinuous) function λ on the space Gsst(Z)
for 1 < p < 1 + ε, for small (depending on the total length of G) positive ε, where
the critical points are graphs G that are edge geodesically mapped to Z.

If G is an N -dimensional CAT(κ ≤ 0)-space, then the Morse index ind(G), i.e.
the dimension of the “handle” that is the normal section of the G-stratum in Gsst(Z),
implemented in the space of cycles by the down-stream gradient orbits, is bounded
by (N − 1)|χ|1(G), as was mentioned earlier.
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If κ > 0, then the conjugate points along the geodesic edges of G also contribute
to the index, where this contribution is bounded by Nκπ−1 length(G).

It follows that the function λ◦ on the homology of Gsst(Z) for λ(G) = |χ|1(G) +
Nκπ−1 length(G) satisfies

λ◦(h) ≥ deg(h)
for all 0 = h ∈ Hd(Gsst(Z); Z2), d = deg(h).
Question. Let Z be a closed surface of constant curvature κ and cl1(Z) is
implemented by embedded cycles (subgraphs) in Z. Every connected component of
this cl1 is homotopy equivalent to the real projective space P∞, and one wants to
understand the Morse structure of the length function on these P∞. For example,
how does this structure behave under deformations of the metric in Z for κ ≤ 0?
What are the critical graphs of minimal length ld for each of index d, that detect
0 = h ∈ Hd(P∞)? (“Detect” means that h is contained in the image of the homology
inclusion homomorphism for length−1[0, ld] ⊂ P∞ = cl1(Z; Z2).)

Questions concerning higher-order length spectra. The appearance of
large curvature in non-singular deformations of singular algebraic curves near the
singularities indicates a close relation between vol(1)1 and vol1 +|χ|01. Is there a
general spectral inequality implementing such a relation?

Does the spectrum of vol(1)1 (which is a geometric invariant) majorizes (in some
way, at least asymptotically, for D-dimensional families of cycles for D → ∞) the
(purely topological) |χ|01-spectrum?

For example, let Z be a closed N -dimensional manifold of negative curvature
and Z → RN−1 be a generic smooth map. It is obvious that some nonsingular
(contractible) fiber has total curvature > 2π but it is unclear if there a lower bound
on the supremum of the integral geodesic curvatures of the non-singular fibers Gt of
such map by const ·N for a universal or, even depending on Z) constant > 0. And it
seems equally plausible that the opposite is true: given an ε > 0, every Z2-homology
class in Gsst(Z) can be represented by a cycle Y of graphs Gy ⊂ Z, where the total
curvature of the edges of Gy is ≤ ε for all y ∈ Y .

5.9 |χ|hyp-spectra in spaces of 2-cycles. Consider the category G2, where
the objects are, possibly disconnected, point-singular surfaces G (which are allowed
to have isolated points among their connected components) and the morphisms are
p.l.-maps G1 → G2 that are one-to-one over G2 minus finitely many points g ∈ G2
(i.e. the pullback of almost every g ∈ G2 is a one point set) and where the pullback
of each exceptional point is a (possibly empty) union of a point-singular surface and
an even graph that meet (at most) across a finite set.

Maps Y → G2(Z) can be regarded as p.l.-families X = ∪yGy, y ⊂ Y , of point-
singular surfaces. In particular a smooth representation [Y ] of a D-cycle in the space
cl2(Z; Z2) by α : XD+2 → Y D with F : X → Y a generic smooth map defines a
map Y → G2(Z).

It does not seem hard to show that the natural map G2(Z) → cl2(Z; Z2) is a
homotopy equivalence. In any case, the induce homology homomorphism

H∗
(
G2(Z); Z2

)
→ H∗

(
cl2(Z; Z2); Z2

)
is surjective by the Thom theorem, and this is all we shall be using below.
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The space G2(Z) is naturally partitioned into subsets S[G] according to topolog-
ical types [G] of surfaces G and this partition carries non-trivial (i.e. not reducible
to H∗(Z)) information on the homotopy type of Z similar to the diagram partition
of the space of 1-cycles. This partition, however is not a pre-stratification due to
the possible appearance and disappearance of “spherical bubbles” in families of Gy,
where a bubble, by definition, is topological 2-sphere that is not a connected compo-
nent of G (and, thus contains a singular point of G.

The information encoded by the topology of a singular surface G is determined
by the bipartite graph H where the vertices are the singular points g ∈ G and
the connected non-singular surfaces S ⊂ G and where the edges correspond to the
inclusions g ∈ S. Besides, each S carries a weight, the Euler characteristic χ(S),
and the graph H with the function χ on the set of the S-vertices fully determines
the topology of G.

There are (at least) two ways of turning S[G] into a (pre)-stratification.
Firstly, as in the case of 1-cycles, one passes to the subspace G2

sst(Z) ⊂ G2(Z),
(that mimics smooth representations with purely folded maps F : X → Y ) which
is associated to the smaller category G2

sst with the same objects as G2 and where
the morphisms are the p.l.-maps G1 → G2 that are 1-dimensional over non-isolated
exceptional points g ∈ G2 (these are either circles or pairs of points for purely folded
maps) and are either single points or 2-spheres over the isolated points g ∈ G2.
The partition of G2

sst(Z) into S[G] is a pre-stratification, since the bubbles carrying
singular points cannot disappear.

Another possibility is to remove the bubbles from the point-singular surfaces G
and divide the resulting bubble free surfaces into classes according to their topolog-
ical types, denoted [G]. Then the partition of G2(Z) into the subsets S[G]� is a
pre-stratification of G2(Z).

Then, given a positive function λ on the set of the classes [G], which is monotone
increasing for the order [G1] � [G2] signifying the existence of a morphism G1 → G2
in G2

sst, one raises the question of evaluation of the corresponding spectra on the
homology and the cohomology of the space G2

sst(Z) defined as in 5.1. Furthermore,
given such λ on the set of the [G]-classes, one asks this question for both spaces,
G2(Z) and G2

sst(Z).
Here is our basic example.

|χ|hyp-spectrum on the space of 2-Cycles in Z. Let λ[G] = |χ|hyp(G).
Then we know that if Z comes along with a complete CAT(κ ≤ −1)-metric, then the
corresponding λ◦-spectrum on H∗(G2(Z); Z2) (where the restriction homomorphism
from the Z2-cohomology of cl2(Z; Z2) ⊃ G2(Z) to that of G2(Z) is injective by
Thom’s theorem) is bounded by below by areaκ and, hence, by the vol2-spectrum:

|χ|◦hyp ≥ 1
2π vol◦2 .

Important Remark. According to 4.4 families of surfaces G in Z can be deformed
to other families of surfaces, say G′ ⊂ Z, with negative ambient curvatures and thus
having their intrinsic curvatures ≤ −1. If Z is only CAT(κ ≤ 0) but yet contains an
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open subset B ⊂ Z where κ ≤ −1, then these G′ satisfy
|χ|◦hyp(G) = |χ|◦hyp(G′) ≥ 1

2π vol2(G′ ∩ B) ,

by the Gauss–Bonnet theorem.
It follows that the |χ|◦hyp of the � powers of the fundamental class in the space

of 2-cycles are bounded in terms of vol◦2 in Z0,
|χ|◦hyp[Z]d−2 ≥ 1

2π vol◦2[Z0]d−2 .

This, combined with 5.2, 5.3, yields, for example, the following lower bound on
|χ|◦hyp[Z]d−2.

Let Z be a complete Riemannian CAT(κ ≤ 0) manifold . Then the
d-th �-power h = [Z]d−2 of the fundamental class [Z]−2 ∈
HN−2(K(Z2, N − 2); Z2) ⊂ HN−2(cl2(Z; Z2); Z2), N dim(Z), satisfies,

|χ|◦hyp(h) ≥
∑

i

vi ,

provided Z contains disjoint simply connected balls Bzi(vi), i = 1, 2, . . . , d,
or radii r(vi), such that the curvature of the metric on these balls is ≤ −1
and where r(v) denotes the radius of the hyperbolic disc of constant cur-
vature −1 with area v. In particular,

|χ|◦hyp(h) ≥ const(Z)d
N−2

N ,

where const(Z) >) for all connected CAT(0)-manifolds where the sec-
tional curvatures are strictly negative at some point.

Furthermore,
every non-zero class h in HD(K(Z2, N − 2); Z2) ⊂ HD(cl2(Z; Z2); Z2)
satisfies

|χ|◦hyp(h) ≥ const(N, ε)D
1
3
−εv0 ,

provided Z contains a simply connected ball of radius r(v0) on which
κ ≤ −1.

This applies, in particular, to smooth Y -parametric representation X = ∪yGy

→ Z, y ∈ Y , of homology classes in cl2(Z; Z2) and yields the bounds

max
y

|χ|hyp(Gy) ≥
∑

i

vi and max
y

|χ|hyp(Gy) ≥ const(N, ε)D
1
3
−εv0 ,

whenever h([Y ]) = 0.
Here is another

Important Example. Let Zi be complete N -dimensional manifolds of constant
curvature −1 and finite volume. Chop away the cusps, let Z ′

i ⊂ Zi denote the
remaining compact submanifolds with Riemannian flat (e.g. toric) boundaries and
let Z be obtained by gluing Zi by linear isomorphisms between (some of) these tori.
Then

|χ|◦hyp[Z]d−2 ≥ 1
2π max

i
vol◦2[Zi]d−2 . (ΣiZ

′
i)

Indeed, Z carries a family ρt of CAT(0)-metrics which converge for t → ∞ to
the disjoint union of Zi.
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Remarks and Questions. (a) The upper bound on maxy |χ|hyp(Gy), say, for
h = [Z]d−2, that is delivered by algebraic families Gy, comes with a greater power
of d. For example, if N = 4, the complex algebraic curves of degree ≈ d1/2 provide
the bound

|χ|◦hyp[Z]d−2 ≤ const(Z)d .

The gap between this and our lower bound, |χ|◦hyp[Z]d−2 ≥ const(Z)d1/2 is due to
the fact that the inequalities in 4.5 do not take into account the relative curvature
(second fundamental form) of surfaces G in Z.

Can one improve the lower bounds on |χ|hyp(G) with a use of the tangential lift
of G from Z to the Grassmann bundle Z ′ = Gr2(Z)? (The area of the lifted G in
Z ′ encodes the curvature of G in Z as well as the area, see 5.4.)

(b) The geometric assumptions of our inequalities have purely topological con-
sequences. For example, if Z is a compact locally symmetric manifold of negative
(e.g. constant) curvature then it admits a sequence of finite si-sheeted coverings,
si → ∞, such that the injectivity radius of Zi is about logε(si). It follows that these
Zi contains simply connected r(vi)-balls with vi ∼ sε

i for some ε = ε(N) > 0.

Topological Corollary: Maps ZN → RN−2. There exist, for each N ≥ 3,
a positive ε = ε(N) > 0, and a closed N -dimensional manifold Z that admits a
sequence of finite si-sheeted coverings Zi, si → ∞, such that every generic smooth
map F : Zi → RN−2 has a smooth fiber G = Gy = F−1(y), y ∈ RN−2, with

|χ|hyp(G) ≥ const(N)sε
i .

(The hyperbolic characteristic |χ|hyp(G) of a closed surface G is the sum of the
absolute values of the Euler characteristics of the hyperbolic connected components
of G.)

We shall see in 6.3 that the maximal ε(3) = 1, i.e. if N dim(Z) = 3, then there
exits a sequence of coverings, where the above inequality is satisfied with ε = 1 (see
6.3). The maximal ε(N) are unknown for N ≥ 4, where the possibility of ε(N) = 1
for all N ≥ 3 is not excluded. (It is obvious that ε(N) ≤ 1 for all N .)

(c) Let Z be a closed aspherical manifold with the fundamental group Γ. How
much of Γ can be seen in the partitions of the spaces cl2(Z), G2(Z) and G2

sst(Z) into
the strata S[G]? For example, can one reconstruct Γ from the |χ|◦hyp-spectrum for a
hyperbolic group Γ?

(d) The above question also makes sense for cl1(Z) and the corresponding G-
spaces. Is there a good way to integrate the information coming from the spaces of
1- and 2-cycles?

For example, consider simultaneous representations of homologies in l different
spaces of cycles (of equal or of different dimensions), with a single α : X → Z,
where X is sliced into fibers G (pullbacks of points) by several maps, Fk : X → Yk,
k = 1, 2, . . . , l, with the condition (connecting them) that the Fk1-fibers are contained
in Fk2-fibers for k1 < k2. However, the geometric/topological information encoded
by such joint families seems to bring little new compared to these representations
looked at separately.
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(e) Besides the total area, and the areas of the (regular) components G1, G2 . . .
(of the regularization Ĝy of Gy, compare section 4), a surface G in a Riemannian
manifolds Z is characterized by the conformal structures of the induced metrics in
G1, G2, . . .

To take these into account, consider a family X = ∩yGy → Y of point-singular
surfaces with conformal structures, and look at families X induced by continuous
maps β : Y → Y. Then every Y -family of surfaces in Z, α = {αy} : X = ∪yGy → Z
a map E : Y → Y × R+ × R+ × . . ., for y �→ (β(y), E1(αy), E2(αy), . . .), where
E1(αy), E2(αy), . . . denote the (conformally invariant Dirichlet quadratic) energies
of αy restricted to the regular components Gy1, Gy2 . . . of Gy for their conformal
structures (and where we ignore a minor ambiguity due to the possible presence of
isomorphic/indistinguishable regular components of Gy ).

These maps E can be used to define geometric invariants of Z similarly to the
space of metric graphs in Z (see 5.5–5.8), where, observe, every graph can be seen
as a limit of point-singular surfaces and so the conformal surface invariants contain
the full metric information about Z. Here is a more illuminating
Heegard Decomposition Example. Let Z be a 3-manifold and α : X = G×[0.1]
→ Z a Heegard decomposition with a surface G of the Euler characteristic c. Our
E defines defines a path [0, 1] → Y(c) × R+ where Y(c) is a compactified moduli
space of G’s. The set H of the paths of all such decompositions with a given c is an
instance of the metric invariant of Z defined via conformal surface families in Z.

Similarly, given a homology class h ∈ cl2(Z), we consider the set H of Y ’s along
with the maps Y → Y × R+ × R+ × . . . that appear as the maps E associated
to smooth representations of h, where Y is the “universal moduli space” of point-
singular surfaces with conformal structures.

Problem. Organize suitable “reductions” of these H’s into a category of “nicely
structured” objects.

(f) If we want to capture the differential topology (rather than the homotopy
type) of Z, we need to consider families of point-singular surfaces that are smoothly
embedded (rather than just mapped) to Z (as in the case of graphs, see 5.7). The
most attractive case is that of 4 manifolds Z, where the (properly structured) space
of such surfaces, probably, carries the the information similar to (greater than?)
that contained in the Donaldson and/or Seiberg–Witten invariants.

5.10 Simplicial spectra. Every homology class in Hk(clk(Z; Zp)) can be rep-
resented by a simplicial family (see 4.7) F : X → Y , with α : X → Z, where
the fibers Gy = F−1(y) are k-dimensional Zp-pseudomanifolds. Let vol∆(α) =
maxy vol∆(Gy), where vol∆(Gy) is the number of the k-simplices in Gy and let
vol◦∆(h), h ∈ Hk((clk(Z; Zp)); Zp) be the minimal number v such that h does not
vanish on some homology class represented by a simplicial family α with vol∆(α) ≤ v.
Observe that the function h �→ vol∆(h) is a homotopy invariant of Z

if Z is CAT(κ < 0) then the k-volume of every cohomology class of clk(Z)
is bounded by

vol◦(h) ≤ δκ,k vol◦∆(h) . (vol∆)
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This follows by Thurston’s straightening argument (see 4.7) and a similar in-
equality holds for all aspherical hyperbolic polyhedra.
Remarks and Questions. (a) This inequality generalizes to those CAT(κ = 0)-
spaces where there is a “sufficient pool” of k-simplices of bounded volume. These
include Z that are locally isometric to the Riemannian product of CAT(κ < 0)
spaces Zi of dimensions Ni, where

(vol∆) holds as it stands for all k > 1 +
∑

i Ni − mini Ni.
(Probably, the sufficient condition, say for compact Z, is nonexistence of k-

dimensional cylindrical geodesic subspaces, Z0 × R, in the universal covering of Z,
compare [LS], [Bu].)

For example, (vol∆) applies to families of 5-cycles in the products of two 3-
dimensional manifolds of negative curvature but not to families Gy of 3-cycles in
product of surfaces, where, however, a non-trivial lower bound on maxy vol∆(Gy)
does exist by the �-inequality in 2.2. The true shape and the range of the applica-
bility of (vol∆) remain unclear.

(b) The inequality (vol∆) when combined with Almgren and Guth inequalities
(see 5.1) delivers a lower bound on the vol◦∆-spectrum of CAT(κ < 0)-spaces and
the above CAT(0)-spaces, and, as in the case with simplicial volume, provides, for
example, obstructions for the existence of maps Z1 → Z2 of non-zero degree. But
the lower bound obtained via volk, unlike the corresponding bound for the simplicial
volume, seems far from being sharp, not even asymptotically for deg(h) → ∞. For
example, such lower bound on the �-powers of the fundamental class of an N -
dimensional manifold Z of negative curvature,

vol◦∆[Z]d−k ≥ const(Z)d
N−k

N

does not match the obvious upper bound vol◦∆[Z]d−k ≤ const′(Z)d.
It remains unclear (even for k = 2 as we mentioned earlier) what the true asymp-

totics of vol◦∆-spectrum is in this case as well as for most other classes of (say as-
pherical) spaces Z.

(c) Is there an upper bound on vol∆(h) by higher-order volumes, e.g. by vol(1)k (h)?
(It seems clear that vol◦∆ ≤ const(Z)(vol(1)2 )◦ for k = 2, where vol∆(G)≈ rank(H∗(G))
for surfaces G.)

(d) The number of simplices does not strike one as the right measure of topo-
logical complexity of Gy in the present context. Some algebraic degree of a family
(e.g. where F maps simplices to simplices by algebraic maps of degrees ≤ d) looks a
better invariant but it is unclear how to bound it from below in specific examples.
Another possibility is to use the k-volume in some canonical geometric model of Z
as it goes with the simplicial volume (see 3.1).

Alternatively, one may use Riemannian representation F : X → Y , α : X → Z,
where X is endowed with a Riemannian metric with some bound on the local ge-
ometry, such that (compare 4.7, 5 5

7 in [Gr6] and 5.41 in [Gr9])
(A) The Ricci curvature of X is bounded from below by −1.
(B) The sectional curvatures are bounded from below, by −1.
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(C) The sectional curvatures are bounded from above and below, −1 ≤ K(X) ≤ −1.
(C+) The above bound plus Inj Rad ≥ 1.

Next, one introduces some measures of the sizes of the fibers Gy = F−1(y) in
(X, ρ), e.g.

V1(Gy) = Diam(Gy);
V2(Gy) = volk(Gy) ≤ v;
V3(Gy) = vol(1)k (Gy) ≤ v;
V4(Gy), that is the N -Volume of the ε-neighborhoods of Gy in X, say for ε = 1.
Then one uses Riemannian representations with some of the above four conditions

(A)–(C+), and take the minimal value of Vi needed to represent a homology class
h ∈ H∗(clk(Z)) (probably, only few of the 16 possibilities would lead to something
interesting).

What are the spectra of the resulting functions V ◦
i on H∗(clk(Z))?

Example. If X satisfies (C+) than, the family F : X → Y can be modified to a
simplicial family with vol∆ ≤ constN min(V2, V4) and the bound on vol◦∆-spectrum
yields similar bounds on the V ◦

2 and V ◦
4 spectra.

5.11 Homotopy min max-volumes. Families of cycles Gy are not sufficient
for our topological application, where we need to deal, for example, with families
of point/edge singular surfaces and where, we need a lower bound on the volumes
Gy → Z under the homotopy rather than homology constrains on the family. Here
is the general
Problem. Let Z be a metric space, G denote the space of compact k-dimensional
subsets G ⊂ Z and Y be a class of spaces Y along with maps Y → G with the
notation y �→ Gy. Evaluate

inf
Y ∈Y

sup
y∈Y

volk(Gy)

in terms of the homotopy theoretic properties of the class Y (e.g. the homotopy
dimension of some associated map,)

Another way to put it, let F : X → Y be a continuous map with compact k-
dimensional fibers Gy = F−1(y), and α0 : X → Z a continuous map, such that the
Hausdorff (alternatively Minkowski) measures of the α0-images of all these fibers
satisfy

volk
(
α0(Gy)

)
< v

for some v > 0. Find a homotopy βt of β0 = α0 × F : X → Z × Y to a “topolog-
ically minimal” map β1 : X → Z and and evaluate the maximal v for which such
minimization is possible (where this evaluation may depend on a particular notion
of “size” of the “minimal map” we look for).

If we are concerned with the variational problem we may restrict ourselves to
homotopies βt, that, when projected to αt : X → Z, do not much enlarge the volumes
of Gy → Z, e.g. keeps volk(αt(Gy)) = 0 for the fibers with volk(α0(Gy)) = 0. Also
we may allow such “minimization” to take place within a larger space Y+ ⊃ Y that
is, in some sense, homotopically close to Y (such as an Eilenberg–MacLane space
⊃ Y in the homological setting of the previous section).



822 M. GROMOV GAFA 

The “topological size” we want to minimize is, typically, either the dimension
of a map that is the dimension of its image or such dimension of some associated
map(s). (In the homological setting this is the maximal dimension where a related
(co)-homology homomorphism is non-zero.)

If n dim(X) ≤ N dim(Z) then the question make sense for α0 itself, while looking
at homotopies of β0 is essential for n > N . Observe, that the projection of βt to Z
makes a homotopy αt of α0 with the same fibers Gy ⊂ X for all t. Alternatively,
one can change the fibers along with the homotopy βt by defining Gy,t ⊂ X being
the pullbacks of y ∈ Y under the map PY · βt for the coordinate projection PY :
Z × Y → Y . Then the minimax volk-problem for families of Gy → Z modifies to
evaluating minβ1 maxy volk(PZ ◦ β1(Gy,1)).

If n � N it is worthwhile considering (homotopies of) higher (absolute and,
especially, relative) Cartesian products of maps α0 and F . For example, let F d

/Y :
Xd

/Y → Y denote the d-th Cartesian power of X over Y (with the fibers being the
Cartesian powers (Gy)×d of Gy) and αd

0 be the obvious map Xd
/Y → Zd. Then the

�-Inequality in 2.2 suggests the following:
Problem. Evaluate the maximal v, such that, for every α0 with maxy volk(α0(Gy))
< v, the map

αd
0 × F : Xd

/Y → Zd × Y

is homotopic to a map of dimension < dim(Xd
/Y ) = m + dk for m dim(Y ) and

k dim(Gy).
The simplest minimization results are as follows.

Equidimensional Example. Let Z be a connected manifold of dimension k
and Gy,0 ⊂ Z be a compact family of proper (i.e. = Z) compact subsets that is
(semi-)continuous in y in the Hausdorff topology. Then there is a homotopy Gy,t of
this family to Gy,1 ⊂ Z, where dim(Gy,t) < k for all y.

1-Dimensional Example. Let F : X → Y be a p.l.-family with k dim(Gy) = 1
and α0 : X → Z be a Lipschitz map such that length(α0(Gy)) < v, Gy = F−1(y),
for all y ∈ Y . If the convexity radius of Z is everywhere ≥ v (e.g. Z is the round
sphere of radius ≥ 2v/π), then α0 is homotopic to a map that is 0-dimensional
on each fiber Gy. (This conclusion holds for all k ≥ 1 whenever diam(α0(Gy)) ≤
Conv Rad(Z), while for k = 1 the condition length(α0(Gy)) ≤ 2Conv Rad and,
probably, length(α0(Gy)) ≤ 4Conv Rad suffices.)

However, it is unclear if every family can be homotoped to α1, where each image
α1(Gy) is a graph with at most d edges for d being a (reasonable) function on v =
maxy length(α0(Gy)) (where the first choice for d, motivated by Guth’s inequality
stated in 5.1, would be d = const(Z)v2 or, at least, d = const(Z, δ)v2+δ .)

Questions. (a) Does there exist a positive v = v(Z) > 0, such that the bound
maxy volk(α0(Gy)) < v = v(Z) (possibly under some extra conditions, e.g. continuity
of Gy → Z in the flat topology, that is satisfied with Lipschitz α0 if F is p.l.-map, a
piecewise real analytic or generic C∞-map) implies that α0 is homotopic to α1, with
dim(α1(Gy)) < k dim(Gy)? (One may insist on dim(α1(Gy)) < l for some l < k
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if X is a Carnot–Carathéodory space, for example, where all smooth l-dimensional
submanifolds G ⊂ X have volk(G) > 0 and where one may use the argument from
[You].

An answer to a version of this question is available for integral (and/or Zp)
currents Gy ⊂ Z that are continuous in y with respect to the flat topology by a
result of Almgren (see [Gu] and references therein), where Almgren’s inequality for
v is sharp for Euclidean spheres SN : Almgren’s v equals (to nobody’s surprise) the
volume of Sk.

(b) Does there exist a (reasonable) d = d(Z, v) for all v > 0, such that ev-
ery α0 satisfying maxy volk(α0(Gy)) ≤ v is homotopic to α1, such that the image
α1(Gy) ⊂ Z of every Gy admits a triangulation, “continuously depending” on y with
at most d simplices of dimension k? (The “continuity” means that the triangulations
can be organized into a simplicial family over Y .)

Here, similarly to (a), some information is available in the homological setting
by the results of Guth cited in 5.1.

Codimension-1 Example. Let Z be a closed connected N -dimensional Rieman-
nian manifold for N = k + 1 and let v be the supremum of the numbers such that
every domain U ⊂ Z with volN (U) ≤ vol(Z)/2 and connected boundary satisfying
volk(∂U) < v can be homotoped within itself to the N − 2-skeleton of some (and,
hence, any) triangulation. This v is, clearly, > 0 and it can be pretty well eval-
uated with the isoperimetric profile of Z (see section 6). Probably, every α0 with
volk(α0(Gy)) < v, can be homotoped with Almgren’s technique to a map rendering
(the images of) all Gy-fibers (k − 1)-dimensional.

Despite the failure of flat continuity, there is a version of Almgren’s theorem for
arbitrary continuous maps F from X to Z2-homology manifolds Y , where one can
bound from below another (a priori larger) waist defined with the Minkowski (rather
than Hausdorff measure ) volume volk, where such bound is sharp for Sn (see [Gr5]).

On the other hand, if the fibers Gy are not k-cycles in any sense, e.g. they are
fibers of a map of Sn to a general (n − k)-polyhedron, one does not know if some
Gy has volk(Gy) ≥ volk(Sk), even under the strongest regularity assumption on the
map, that is to be p.l. in this case. Yet, the following Federer–Fleming “pushing”
construction provides “simplifying” homotopies in some cases.

Let Z be either a compact Riemannian N -manifold without boundary or with a
locally convex boundary, such that every geodesic ray eventually reaches the bound-
ary. Take two points z, z′ ∈ Z that are joined by a unique minimizing geodesic
segment [z, z′] ⊂ Z and

if Z has no boundary, extend this segment to the maximal minimizing segment
[z, z′′] ⊃ [z, z′];

if Z has a boundary extend it till the point z′′ ∈ ∂Z.
Thus we obtain a map Rz : Z \ {z} → Z for z′ �→ z′′ that sends Z \ {z} either to

the cut locus of Z with respect to z or to the boundary ∂Z.
Given a map α0 : G → Z let Rz • α0 : G × [0, 1] → Z be the obvious geodesic

homotopy between α0 and α1 = Rz ◦ α0.
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Since the integral
∫
|z|kdz converges in RNat 0 for k < N one has, following

Federer–Fleming, the following

Minimal volume inequality.
The volumes of Rz • α0 and α1 satisfy

volN (Z)−1
∫

Z
volk+1

(
Rz • α(G × [0, 1])

)
dz ≤ const•(Z) volk

(
α0(G)

)
,

and, in the case with locally convex boundary,

volN (Z)−1
∫

Z
volk

(
α1(G)

)
dz ≤ const′(Z) volk

(
α0(G)

)
.

Consequently, there is, in both cases, a point z, for which
volk+1

(
Rz • α(G × [0, 1])

)
≤ const•(Z) volk

(
α0(G)

)
.

Let G be embedded to Z (with α0 = id and, thus, dropped from the notation),
and apply Rz• to a k-plane τ ∈ Grk(Z) tangent to G ⊂ Z at a point g ∈ G and
regarded as an infinitesimal element of G. Define

|Rz|(τ) =def volk+1
(
Rz • (τ × [0, 1])

)/
volk(τ)

and
|R•|(τ) = volN (Z)−1

∫
Z
|Rz|(τ) .

Then
volN (Z)−1

∫
Z

volk
(
Rz • (G × [0, 1])

)
dz =

∫
G
|R•|

(
τg(G)

)
dg

for all rectifiable k-dimensional G ⊂ Z.

Equality for Z = SN and inequality for SN
+ . If Z equals the sphere

SN (R) ⊂ RN+1 of radius R, then the function |R•|(τ) is constant on Grk(SN ), since
it is invariant under the isometry group of SN that is transitive on the Grassmannian
Grk(SN ). It follows that

volN (Z)−1
∫

Z
volk+1

(
Rz • α0(G × [0, 1])

)
dz = σR · volk

(
α0(G)

)
,

where, by looking on great k-spheres in Z for G, one sees that
σ = σ(k) = 1

2 volk+1
(
Sk+1(1)

)/
volk

(
Sk(1)

)
.

(Similar equalities hold for all two-point homogeneous spaces Z and k = 1, N −1.
Also there are such equalities for complex analytic and for Lagrangian submanifolds
G in the complex projective spaces.)

If τ belongs to a hemisphere SN
+ ⊂ SN (i.e. τ ∈ GrN (SN

+ ) ⊂ GrN (SN )), then∫
SN

+

|Rz|(τ)dz ≥
∫

SN−
|Rz|(τ)dz

for SN
− = SN \ SN

+ , as is seen with the reflection of the sphere SN in the equator
∂SN

+ . It follows that the averaged volume of the R•-cylinder pushing α0(G) to the
boundary ∂SN

+ satisfies

volN
(
SN

+ (R)
)−1

∫
SN

+ (R)
volk+1

(
Rz • α0(G × [0, 1])

)
dz ≤ σ(k)R · volk

(
α0(G)

)
for the above σ(k). Consequently

inf
z∈SN

+ (R)
volk+1

(
Rz • α0(G × [0, 1])

)
≤ σ(k)R · volk

(
α0(G)

)
for all Lipschitz maps α0 of piecewise smooth k-dimensional spaces G to Z.
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Homotopy Corollary. Let Z be as in the above case with locally convex
boundary, F : X → Y be a p.l. map between polyhedra with k-dimensional fibers
Gy = F−1(y), where n dim(X) = k+m ≤ N dim(Z), m dim(Y ), and let α0 : X → Z
be a Lipschitz map. Then, for every ε > 0, there exists a (roughly, ε-fine) subdivi-
sion of Y and a Lipschitz homotopy of α0 restricted to the F -pullback Xn−1

ε of the
(m − 1)-skeleton Y m−1

ε of this subdivision of Y , say

α : Xn−1
ε × [0, 1] → Z ,

such that

1. α is trivial (i.e. constant in t) over the boundary ∂Z,

αt

∣∣(Xn−1
ε ∩ α−1

0 (∂Z))
∣∣ = α0

∣∣(Xn
ε ∩ α−1

0 (∂Z))
∣∣ ,

2. α1 sends Xn−1
ε into the boundary ∂Z.

3. The maps α1 and α satisfy the following inequalities on the F -pullback of
every (ε-small) l- simplex of the subdivided Y ,

voll+k

(
α1(F−1(∆l

ε))
)
≤ const1(Z)max

y∈Y
volk

(
α0(Gy)

)
+ ε ,

voll+k+1
(
α(F−1(∆l

ε) × [0, 1])
)
≤ const2(Z) voll+k

(
α1(F−1(∆l

ε))
)
;

hence,

voll+k+1
(
α(F−1(∆l

ε) × [0, 1])
)
≤ const3(Z)max

y∈Y
volk

(
α0(Gy)

)
+ ε .

Consequently, if
max
y∈Y

volk α0(Gy) ≤ δRk

for a small positive δ = δ(Z) � const−1
3 , then the homotopy αt extends to

a homotopy on all of X that is trivial over ∂∆ and with α1(X) ⊂ ∂∆. In
particular, if X = Z and α0 is the identity map, then

max
y∈Y

volk F−1(y) ≥ δ(Z) .

Proof. Proceed by inductions on the l-skeleta of finely the subdivided Y , by first
moving the F -fibers Gyi over the vertices yi to to ∂Z by geodesic radial projections
with homotopies, say αyi

t of small volk+1 that are provided by the minimal volume
inequality. Then extend this to the F -pullback over the 1-skeleton of the subdivided
Y with the inequality applied to the “unions” of pairs maps αyi

t for adjacent vertices
with α0 over the edges between these vertices, etc.
Remarks. (a) The induction by skeletons applies to a class of (non-simplicial) k-
coregular maps F : X → Y where voli+k(F−1(∆i

ε)) → 0 for i-dimensional simplices
in Y of diameters ε → 0.

(b) Let Z be a complete Riemannian manifold with 1-bounded geometry: the
sectional curvatures of Z are pinched between −1 and 1 and the injectivity radius
of Z is everywhere ≥ 1. Then the original Federer–Fleming argument (projecting
a (N − n − 1)-skeleton to the dual n-skeleton with the following contraction to the
(n − 1)-skeleton) applies to maps α0 : X → Y for all n dim(X) ≤ N dim(Z) that
have maxy(α0(Gy)) ≤ const(N) for some universal const(N) > 0, and provides
a homotopy of α0 where α1 sends X to a (n − 1)-dimensional skeleton of some
triangulation of Z. (Probably, one can replace const(N) by const(n) with a suitable
filling technique.)
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The above (hemi)spherical example allows the following more precise version of
the above lemma.

Contraction and retraction inequalities for round spheres and hemi-
spheres.

If Z = SN (R) and
max
y∈Y

volk α0(Gy) < δ · volk
(
Sk(R)

)
for some

δ = δ(m) dim(Y ) ≥ 2m/m! ,
then the map α0 is contractible. If Z = SN

+ (R) and
max
y∈Y

volk α0(Gy) < δ volk
(
Sk

+(R)
)

with δ ≥ 2m/m!, then there is a homotopy retraction (i.e. a homotopy
that is trivial over the boundary of the hemisphere) of α0 to (a map with
the image in) the boundary of the hemisphere.

Remarks. (a) This inequality is sharp for m dim(Y ) = 1 but the sharp inequalities
on δ for spheres and hemispheres remain problematic for m ≥ 2. (Sharp inequalities
with δ = 1 are known in the homological setting as was mentioned earlier.)

(b) Similar inequalities hold for all manifold Z with a low bound on the Uryson
width (see B′

2 on p. 139 in [Gr2], where we use different terminology) but the above
provides a better bound on δ for (hemi)spheres.

Retraction to the boundary of hyperbolic balls.

Let X,Y, F be as above, Z be a Riemannian R-ball with a metric of
curvature ≤ κ ≤ 0 and with convex boundary ∂B and let a Lipschitz
map α0 : X → Z satisfy

max
y∈Y

volk
(
α0(Gy)

)
≤ δ · vk(R,κ)

for some
δ = δ

(
m dim(Y )

)
≥ 2m/m!

and vk(R,κ) denoting the k-volume of the R-ball of constant curvature κ.
Then there exists a homotopy αt of α0, constant over ∂B, such that α1
maps X into ∂B.

Proof. Use a volk contracting diffeomorphism B → SN
+ (Rκ), where volk(SN

+ (Rκ)) =
volk(κ) and apply the above.
Questions. (a) One (naively?) expects that the inequality maxy∈Y volk(α0(Gy)) <
vk(R,κ), i.e. δ < 1 is sufficient for the existence of the retraction and, possibly, even
a smaller δ will do.

This would follow if one could deform α0 by volk-decreasing homotopy to an
extremal map α, that had a differential Dg(α0) with rank(Dg) = k at some point
g ∈ G, then the volume of such α within every R-ball B = BN (z,R) at z = α(g)
would be ≥ vk(R), roughly, as large by the standard comparison argument of α with
the conical maps over α−1(∂B). Possibly, a suitably modified Almgren’s theory of
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varifolds and/or some multi-parametric version of the filling argument from [Gr2]
can help in some cases.

(b) Let Z be a complete manifold of non-positive curvature with the injectivity
radius of Z being everywhere ≥ R and let vk(R, Z̃) be the infimum of the filling
k-volumes of (k− 1)-cycles C ⊂ Z̃ (i.e. the infimum of the k-volumes of the k-chains
with the boundaries C) that are not homologous to zero in their R-neighborhoods
in Z̃. Let α0 : X → Z be as above, but with no restriction on m dim(Y ), such that

max
y

volk
(
α0(Gy)

)
< δ · vk(R, Z̃) .

Is there a bound δ ≤ δ(k,m) for k dim(Gy and m dim(Y ) that guarantees that the
map β0 = α0 ×F is homotopic to an (n− 1)-dimensional map? Is it true with δ = 1
(this is not apparent even in the homology setting) or, at least with δ = δ(k)? (A
stronger but a less realistic request would be for a homotopy of α0 to a map that is
(k − 1)-dimensional on each Gy.)

Hyperbolic (N − 1)-contraction of surfaces.

Let X = ∪yGy be a point/edge singular family with compact fibers Gy,
Z be a closed connected manifold of negative curvature ≤ κ < 0, and
α0 : X → Z be a continuous map. Let Z contain a simply connected ball
B = B(R) of radius R, such that

v2(R,κ) ≥ 2δ(m)π|κ|−1 max
y

|χ|hyp(Ĝy)

for m = dim(X) − 2 dim(Y ) the above δ(m) and v2(R,κ) and |χ|hyp
being the sum of the absolute values of the Euler characteristics of the
hyperbolic (i.e. with χ < 0) components of the regularized surface Ĝy

(see section 4). Then, if n dim(X) = N dim(Z), the map α0 is N − 1-
contractible i.e. homotopic to a map into the (N − 1)-skeleton of some
(and, hence, any) triangulation of Z. In particular, if X = Z and α0 is
the identity map then some fiber Gy has

|χ|hyp(Ĝy) ≥
2m−1|κ|

m!π
v2(R,κ)

(where, observe, v2(R,κ) ∼ exp R|κ|1/2).
Question. Let the injectivity radius of Z be everywhere ≥ R and
maxy |χ|hyp(Ĝy) < constm v2(R,κ) but allow n = N . What degree of “homotopical
degeneracy” continuous maps α0 : X → Z must have under these assumptions?
May Almgren’s varifolds be of some help here?

Lower bound on depth(Σ) for maps of codimension −1 of CAT(κ)-
manifolds.

Let X be a closed n-dimensional manifold of curvature ≤ κ < 0 and
F : X → Y be a smooth generic map where Y is an open manifold of
dimension m = n−1. If X contains a simply connected ball of radius R,
then the depth of the critical set of F satisfies

depth(Σ(F )) ≥ constm v2(R,κ)
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for some universal constant constm > 0, where

constm ≥ 2m−2|κ|
(m + 1)!π

for all purely folded (all generic?) maps F .
Proof. Use the Retraction Lemma from 2.2 and thus construct a map F ′ of X to an
(n−2)-dimensional polyhedron Y ′ with point/edge singular surface fibers Gy. Then
apply the above to this F ′ in place of F in the above hyperbolic (N −1)-contraction
proposition.

By applying this to congruence covering of locally symmetric spaces (compare 6.3)
we conclude that

there exists a closed manifold X0 (of constant negative curvature) of a
given dimension n ≥ 3 that admits a sequence of si-sheeted coverings Xi

for si → ∞, such that every generic smooth map F : Xi → Rn−1 has
depth(Σ(F )) ≥ constn sγ

i sγ

for γ ≥ 1/n2.
Remarks. (a) We shall prove this in 6.3 with γ = 1 for n = 3, but the optimal
γ = γ(n) is unknown for n ≥ 4. Also it is unclear what happens to maps into Rm

with m < n − 1.
(b) There is no true generalization of the above properties of families of

(point/edge singular) surfaces, where k = 2, to the case k > 2; yet the definition
of the homological simplicial spectra from 5.10 can be rendered homotopical in the
same way as that for volk, where the corresponding inequality holds in CAT(κ < 0)
spaces.

6 Isoperimetry and the Spectrum

The results of the previous section can be improved for cycles G of codimension 1
in connected manifolds Z, where there is an additional information on the spectrum
of the Laplace operator on Z, and thus on the isoperimetric profile of Z.

6.1 Inverse Maz’ya–Cheeger inequality for families of hypersurfaces.
Let Z be a closed N -dimensional Riemannian manifold with the Ricci curvature
bounded from below by Ricci(Z) ≥ −(N−1), e.g. sectional curvature κ ≥ −1, and let
Z+ ⊂ Z a domain with boundary G = ∂Z+, where v+ =def volN (Z+) ≤ 1

2 volN (Z).
Then, as is well known,

the first non-zero eigenvalue λ1 of the Laplace operator on Z satisfies

λ−1
1 ≥ v+

C · volN−1(G)
− 1

for some constant C = C(N).
In fact, take a domain Z+ with volume v+ that minimizes volN−1(∂Z+) , assume

without loss of generality that the (constant) mean curvature vector on G = ∂Z+
points outward. Let

ϕ(z) = min
(
2,dist(z, ∂(Z+))

)
for z ∈ Z+
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and
ϕ(z) = 0 for z outside Z+ .

The volume of the (internal) 2-neighborhood of the boundary G of Z+ in Z+ is
bounded by C ·volN−1(G) for C = C(N) equal the volume of the cylinder made of the
geodesics of length 2 normal to a domain G1 with volN−1(G1) = 1 in a hyperplane
in the hyperbolic N -space, since the mean curvature of G in Z+ is negative (the
possible singularities of G do not matter, compare App. C in [Gr9]); thus,∫ ∥∥ grad(ϕ(z))

∥∥2
dz ≤ C · volN−1(G)

and

λ−1
1 ≥ inf

a∈R

∫ ∣∣ϕ(z) − a
∣∣2dz

/∫ ∥∥ grad(ϕ(z))
∥∥2

dz ≥ v+

C · volN−1(G)
− 1 .

Remark. The first draft of the paper contained a more general inequality between
(all of) the codimension-one volume spectrum (not only for the first eigenvalue) for
codimension-one Z2-cycles and the Laplace spectrum; however, a referee pointed
out that the proof was (to put it mildly) incorrect. It is already unclear what the
relation(s) is between the second eigenvalues of these spectra.

Let us combine the above with the following.

Closel–Selberg Theorem [Cl]. Let Z be a compact locally symmetric space
and let the fundamental group Γ of Z be represented in the group GLM (℘) of
matrices of some (finite) order M with the entries in the ring R of S-integers in an
algebraic number field, for S being a finite set of prime ideals (finite places). Let
Γ℘ be the intersection of Γ ⊂ GS with the kernels of the natural homomorphism
GLM (℘) → GLM (R/℘) for the prime ideals ℘ away from S.

Then the first eigenvalues of the Laplace operators on the corresponding congru-
ence coverings Z℘ of Z satisfy

λ1(Z℘) ≥ const = const(Z) > 0 .

Main Corollary. Let Z be a compact locally symmetric space that locally splits
into irreducible symmetric spaces of dimensions ≥ 3. Then there exists an infinite
sequence of si-sheeted coverings Zi of Z, si → ∞, such that

vol◦∆[Zi]−(N−1) ≥ ε(Z)si

and, if N = 3, then
|χ|◦hyp[Zi]−2 ≥ ε(Z)si .

Since the simplicial and the |χ|hyp spectra are monotone decreasing under the
maps of odd degree between manifolds, the above inequalities provide obstruc-
tions for existence of such maps. Here is the simplest example of a sequence of
manifolds Z ′

d, d = 1, 2, . . ., with an upper bound on these spectra which admit no
maps of odd degree into the above Zi with large i.

The cyclic d-sheeted coverings Z ′
d of any given Z ′ with the fundamental

groups π1(Z ′
d) = h−1(dZ)⊂π1(Z ′) for a homomorphism π1(Z ′) → Z⊃ dZ

all have vol◦∆[Z ′
d] ≤ const(Z ′).
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Remarks. (a) The vol◦N−1-spectrum of Z with Ricci ≥ −(N − 1) is related to the
covering profile covρ(Z) that is the minimal number m = m(ρ) of ρ-balls needed to
cover Z,

vol◦[Z]m−(N−1) ≥ const(N) exp(−Nρ)ρ−1 volN (Z)
(see App. C in [Gr9], where this is used for the lower bound on λm).

(b) The covering profile is especially informative for manifolds (and Alexandrov
spaces) with non-negative sectional curvature. For example, if Z equals the rectan-
gular solid, Z = [0, l1]× [0, l2]× . . . .× [0, lN ], then the edge lengths li and the ratios
li/lj can be reconstructed with a fair precision from covρ(Z). In general, covρ(Z)
reflects the extend of collapse of Z and carries essentially the same information as
the Uryson’s widths of Z [Per]. Furthermore,

if the sectional curvature of Z is bounded from below, say by curv(Z) ≥ −1,
then

vol◦k[Z]m−k ≥ const(N) exp(−Nρ)ρ−(N−k) volN (Z)
for m equal the minimal number of ρ-balls needed to cover Z.

This is shown along the lines of the proof of the corresponding inequality with
Ricci ≥ −(N−1) in App. C of [Gr9] by first estimating vol◦k[B]−(N−k) for balls B ⊂ Z
(or, rather, for pairs B(ρ) ⊂ B(2ρ)) by means of the Almgren–Morse theory and the
(Buyalo–Hentze–Karcher comparison) bound on the volumes of ρ-neighborhoods
of minimal k-dimensional subvarieties in Z, and then using the �-subadditivity
(see 5.1). (This const(N), as well as the one above, is put for safety, probably, it is
significantly greater than 1.)

(c) The first version of this paper contained the “proof” of the following:
The simplicial spectrum of (N−1)-dimensional Z2-cycles in an N -dimen-
sional Riemannian manifold Z that is a local (e.g. global) Riemannian
product of manifolds of dimension ≥ 3 with negative sectional curvatures
pinched in the interval [κ, κ−1] with κ < 0, satisfies

vol◦∆[Z]m−(N−1) ≥ ε(N,κ) volN (Z)λ1/2
m (Z) (vol◦∆)

(where ε(N,κ) ≈ exp−Nκ) and, if N = 3,
|χ|◦hyp[Z]m−2 ≥ ε(κ) volN (Z)λ1/2

m (Z) . (|χ|◦hyp)
A referee pointed out, however, that there was no proof, except for the above

cases m = 1 and m � cov1(Z). These inequalities remain conjectural. (In order to
generalize the argument used for m = 1 one needs, at the very least, a developed
Morse–Franks–Witten theory for the volume function. on the space of cycles.)

Further Questions. What is the rough asymptotics of vol◦∆[Z]m−(N−1) and
|χ|◦hyp[Z]m−2 for m → ∞? The upper bounds coming from obvious construction does
not seem to match the above lower bounds.

Is there a refinement of Guth’s (volume spectrum) inequality (see 5.1) taking
into account the curvature of the underlying manifold?

Are there versions of Guth’s inequality for vol◦∆ and |χ|◦hyp for the above Z?
What are relations between the Lp, q spectra (i.e. the spectra of f �→

‖ grad(f)‖Lp/‖f‖Lq on the projective space of functions f : Z → R, see [Gr10])
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for manifolds Z with Ricci(Z) ≥ −(N − 1)? (A suitable inequality between L1, 1-
and L2.2- spectra would prove (c).)

6.2 Mappings to trees. Let Y be a finite tree and µ a probability measure
on Y . It is obvious, that

if all leaves (ends) y ∈ Y have µ(y) ≤ 1
2µ(Y ) (e.g. µ has no atoms

> 1
2µ(Y )), then the exists a point ymean ∈ Y such that all connected

components of the complements Y \ ymean have measures ≤ 1
2µ(Y ).

Let Z be a connected Riemannian manifold (possibly with a boundary) of finite
volume, where all domains Z+ ⊂ Z with volN (Z+) ≤ 1

2 volN (Z) satisfy the following
isoperimetric inequality:

volN (Z+) ≤ f
(
volN−1(∂Z+)

)
for a monotone increasing sublinear function f(v), i.e. f(v1 + v+2) ≤ f(v1) + f(v2).
Then

an arbitrary continuous map F : Z → Y has a fiber Gy = F−1(y) ⊂ Z,
such that

f(volN−1(Gy)) ≥ 1
2 volN (Z) .

Indeed, take Gy for y = ymean with respect to the normalized pushforward mea-
sure µ = F∗(νZ) of the Riemannian measure νZ on Z.

More generally, let X be a connected N -dimensional manifold, F : X → Y a
continuous map and α : X → Z a continuous proper (boundary → boundary, infinity
→ infinity) map of non-zero degree. (If Z is non-orientable, the degree is understood
mod 2). Then

there exists an F -fiber Gy = F−1(y) ⊂ X such that all connected com-
ponents of the complement Z \ α(Gy) have volumes ≤ 1

2 volN (Z); hence,
f
(
volN−1(α(Gy))

)
≥ 1

2 volN (Z) .

Proof. Given y ∈ Y , let B ⊂ Y be a branch of Y , i.e. a connected component B =
Bi(y) of the complement of some point y ∈ Y , denote by d(B, z) for z ∈ Z \ α(Gy),
the local topological degree of α|F−1(B) over z, and observe that d(B, z) is constant
on the connected component C ⊂ Z of z in Z \ α(Gy) and the function d(B, z) is
additive on the branches at y ∈ Y , with

∑
i d(Bi(y), z) = deg(α) = 0 for every

y ∈ Y and z ∈ Z \ α(Gy) and d is locally constant in B = B(y) as y moves along
an edge of the graph in-so-far as d is defined, i.e. z /∈ α(F−1(y)). Furthermore, if
y′ ∈ B = Bi0(y) approaches y, then the branch B′ = B′(y′) ⊃ B satisfies

lim
y′→y

d
(
B′(y′, z)

)
=

∑
i�=i0

d
(
B(y, z)

)
.

Thus, if d(B′(y′, z)) = 0 and y is not a leaf (end point) of the graph, then there
exists a branch Bi1(y) = Bi0(y), such that d(Bi1(y, z)) = 0. Consequently,

there is no “continuous” assignment y �→ C(y) ⊂ Z of a connected
component of Z \ α(Gy), for all y ∈ Y ,

where “continuous” means that every y ∈ Y has a neighborhood U(y) ∈ Y , such
that the intersection C(y′) ∩ C(y) is non-empty for y′ ∈ U(y).
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Indeed, given y �→ C(y), consider the “z-essential” branches B = B(y) issuing
from the points y ∈ Y , where “ z-essential” means d(Bi1(y, z)) = 0 for z ∈ C(y).
Move in Y , starting from a leaf y0 ∈ Y in Y , following the essential branches. The
above properties of d show that thus we eventually arrive at an empty branch at
another leaf y1 ∈ Y but no empty branch is “essential”.

It follows, there exists a y, where there is no component C(y) of Z \ α(Gy) with
νZ(C(y)) > νZ(Z)/2. QED

Families of hypersurfaces parametrized by graphs.

Let X be an N -dimensional pseudomanifold, possibly with a boundary,
let F : X → Y be a simplicial map, where Y is a finite graph and let
α : X → Z be a proper continuous map of non-zero degree, where Z is an
N -dimensional Riemannian manifold with Ricci(Z) ≥ −(N − 1). Then
some fiber Gy = F−1(y) ⊂ X satisfies

volN−1
(
α(Gy)

)
≥ constN

(
1 + b1(Y )

)−1
λ1(Z) volN (Z) ,

where b1 denotes the number of independent cycles in Y .
Consequently, if X is a 3-manifold and the fibers Gy make (at most)
point/edge singular surface family, then some Gy has

|χ|hyp(Gy) ≥ const ·
(
1 + b1(Y )

)−1
λ1(Z) vol3(Z) . (χ)

Proof. If Y is a tree, i.e. b1(Y ) = 0, the proof directly follows from above, and in
general, we compose F with an obvious (b1 + 1)-to-1 map of Y to a tree.

6.3 Maps of 3-manifolds into surfaces. If Z is a complete hyperbolic 3-
manifold with a metric of curvature −1 and finite volume, let

µ1(Z) = λ1(Z)(vol(Z))2,
where λ1 is the first non-zero eigenvalue of Z.

Then define µ1(Z) for the 3-manifolds Z that admit Thurston’s decomposition
as the maximum of µ1 of the hyperbolic components (of finite volume) of Z.

(3→2)-Mapping inequalities.

Let X be a closed connected 3-manifold,m α : X → Z a continuous
map of non-zero degree, where Z is a closed connected 3-manifold, where
all component Zi of Thurston’s decomposition are hyperbolic and let F :
X → Y be a smooth generic map, where Y is a connected surface of
genus b. Then the number N2 of the double (self-crossing) points of the
fold of the critical set Σ = Σ(F ) ⊂ Y satisfies,

N2 ≥ εmax
i

µ1(Zi)/(b + 1) (N2)

for some universal positive ε > 0.001, where µ1(Zi) are taken for the
complete hyperbolic metrics of finite volumes in Zi.
Furthermore, if Y is open, then the depth of the critical set of F satisfy,

dep(Σ) ≥ εµ
1/2
1 (Z)/b . (dep)

Consequently, there exits an infinite sequence of finite si-sheeted cover-
ings of a closed (hyperbolic) 3-manifold, Xi → X, such that every generic
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smooth map Xi → Y , has
N2 ≥ ε(X)s2

i /(b + 1) and dep(Σ) ≥ ε(X)si/b .

To prove these, we need the following (well-known)

Graphs over Trees Lemma. Every graph of valency (degree) ≤ δ with N vertices,
that is embedded into a surface of genus b, admits a simplicial map f into a binary
tree T such that the cardinality of each f -fiber satisfies

c = card
(
f−1(t)

)
≤ const ·δ2b1/2

√
N for all t ∈ T .

We shall present the standard construction of f (that sends the vertices of our
graph to the leaves of the tree and where the depth of the tree is of order log(N))
in 6.6.
Proof of (N2). Apply the lemma to the graph Σ = Σ(F ) ⊂ Y , and slightly modify
f in order to make it generic, where the genericity of maps of smooth manifolds to
trees T (and similarly to simplicial polyhedra of all dimensions) is defined as follows.
Imbed T into R2 linearly on the edges and let R : U = U(T ) → T by the standard
piecewise linear retraction of some neighborhood U ⊂ R2 of T . Then generic maps
to T are, by definition, are the composition of generic C∞-maps to U with R.

Every continuous map Y → T can be approximated by a generic one and, in the
present situation, we can (obviously) find such an approximation that only slightly
enlarges c, say by c �→ c′ ≤ 4c. We ignore this and assume f1 is generic to start
with.

The fibers of a generic f1 are graphs (curves) Lt ⊂ Y , such that smooth curves,
for all but finitely many t ∈ T , including the singular points of T , i.e. the vertices
of valency 3.

If t is a singular point of T , then Lt may contain vertices of valency 3 and no
other singularities. The map f1 near Lt is locally topologically equivalent to R.

The map f1 over each non-singular point (regarded as a real function) is Morse
and thus Lt may have only finitely many Morse singularities.

The curves Lt meet Σ transversally for almost all t including all singular t,
where, clearly, card(Lt ∩ Σ) = card F−1(t)) (where Lt may have connected circular
components that do not meet Σ).

It follows that the fibers Gt = F−1
1 (t), that are equal F−1(Lt), make a point/edge

singular surface family with
|χ|hyp(Gt) ≤ c

(compare the application of around the Retraction Lemma in 2.2).
Now the proof of (N2) follows from 5.3. 5.9, 5.11 and 6.1 (where the F -pullbacks

of the circular components of Lt are tori that do not contribute to |χ|hyp) and the
proof of (dep) for hyperbolic Z is similar with the above lemma replaced by the
Retraction Lemma.
Remark. One may allow some non-hyperbolic Zi in the Thurston decomposition,
e.g. graph manifolds with CAT(κ ≤ 0) metrics and totally geodesic toric boundaries,
and, probably, this is true in general.
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6.4 Surface families in non-compact manifolds and the crossing numbers
of links. Consider a smooth link L ⊂ R3 ⊂ S3 and project it to S2 via the Hopf
map S3 → S2. Denote by Ncr(L) its crossing number i.e. the minimal number of
crossing such map L′ → S2 may have for all links L′ ⊂ R3 diffeotopic to L.

If all components Zi of the Thurston decomposition of Z = S3 \ L are
hyperbolic then

Ncr ≥ εmax
i

µ1(Zi) . (Ncr)

Proof. Let L ⊂ S2 be the Hopf projection of L and consider a map of L to a binary
tree T with small fibers provided by the above lemma. Extend this map to S2 and
then compose it with the Hopf map on Z. Thus we arrive at the earlier situation
except that Z is now an open manifold with the standard cuspidal/toral geometry at
infinity. We conclude the proof by observing that the above inequality (N2) applied
to the double 2Z of Z (obtained by gluing two copies of Z across the boundary)
yields (Ncr).
Remark. This picture with links is similar to that with “slices” in 2.3 we shall
revisit both of them in a more general context in Part 2 of the paper.

6.5 Problems with higher codimensional filling inequalities. Given a k-
dimensional Zp-cycle G in a Riemannian manifold Z, let f volk+1(G) denote the
infimum of the (k + 1)-volumes of the (k + 1)-chains with boundary G and define
the filling (or isoperimetric) profile

filk+1(v) = filk+1(v, Z; Zp) , v ∈ R+ , p = 2, 3, 5, . . . ,∞ ,

as the supremum of fil volk+1(G) over all cycles with volk(G) ≤ v.
Observe that fil(v) = ∞ for v ≥ sysk(Z), where sysk(Z; Zp), the k-systole of Z

with Zp coefficients, is the infimum of the volumes of the k-cycles G in Z that are
not homologous to zero. In particular filN (v) = 0 for v < volN (Z) and filN (v) = ∞
for v ≥ volN (Z) for closed connected manifolds Z (assumed orientable if p = 2).
Standard Examples. (a) If Z = RN then filk(v) equals the volume of the
Euclidean (k + 1)-ball B with volk(∂B) = v by a theorem of Almgren [A] and
Almgren’s proof yields a similar result for round spheres SN as was pointed out to
me by Bruce Kleiner.

(b) If Z is a simply connected CAT(0)-space one expects that filk+1(v, Z) ≤
filk+1(v, Rk+1). Apart from the simple case of k = 1 and and the classical one of
N = k + 1 and Z of constant curvature, such sharp inequality for variable curvature
is known only for k + 1 = N = 3, 4 (see [Kl], [Cr]).

On the other hand, the rough inequality,

filk+1(v, Z) ≤ const(k)v
k+1

k ,

follows from the filling inequality from [Gr2]. Furthermore, one knows (see section 6
in [Gr14]) that

the filling profile is (sub)linear for k ≥ rank(Z),
filk+1(v, Z) ≤ const(Z) · v ,
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where the inequality k ≥ rank(Z) means that neither Z nor any Haus-
dorff (ultra)limit of pointed spaces (Z, z ∈ Z) for z → ∞ contain (k+1)-
flats, i.e. isometric copies of Rk+1 (e.g. Z itself contains no such flat
and admits a cocompact isometry group).

(c) The filling profile of the (2N +1)-dimensional Heisenberg (Lie) group H2N=1

(with a left-invariant Riemannian metric) satisfies filk(v) ∼ v
k+1

k for k < N and
v � 1, while filk+1(v) ∼ v

k+2
k+1 for k > N and filN+1(v) ∼ v

N+2
N . (See [You], where

this is proved, beside H2N+1, for a rather large class of nilpotent Lie groups.)

Systoles and fillings profiles of compact CAT(κ ≤ 0)-spaces. Let Z̃ →Z
be a covering map which is injective on the R-balls in Z̃ for some R ≥ 1.

If filk(v, Z̃) ≤ c̃min
(
v, v

k
k−1

)
, then

sysk(Z) ≥ const(k) exp(c̃R) , (sysk)
and if filk+1(v, Z̃) is majorized by a sub-linear (f(v1+v2) ≤ f(v1)+f(v2))
monotone increasing function f(v) then

filk+1(v, Z) ≤ const(c̃, k)f(3v) for v ≤ const′′(k) exp 1
2 c̃R . (filk+1)

The proof is standard. Take a volk-minimizing k-cycle G ⊂ Z non-homologous to
zero (i.e. volk(G) = sysk(Z)), consider the r-balls balls B(r) = B(g, r) ⊂ Z, g ∈ G,
and let vk(r) = volk(G ∩ B(r)) and vk−1(r) = volk(G ∩ ∂B(r)). Then

filk
(
vk−1(r), Z̃

)
≥ filk

(
vk−1(r), Z

)
≥ min

(
vk(r), volk(G) − vk(r)

)
for r ≤ R, while the r-derivative of vk(r) satisfies

v′k(r) ≥ vk−1(r) .

This implies the required lower bound on sysk(Z), provided the minimal G exists.
In fact, “minimal” can be replaced by “ q- quasi-minimal”:

filk
(
vk−1(r), Z

)
≥ 1

qvk(r)
for all balls B(g, r); this, say with q = 2, implies the same lower bound on sysk(Z)
but with a slightly smaller (yet strictly positive!) const(k). Therefore, the condition
v = volk(G) ≤ const′′(k) exp 1

2 c̃R implies that G is not 2-quasi-minimal.
Now, to prove (filk+1), take a (minimal) filling Gmin(r) ⊂ Z of the intersections

G ∩ ∂B(g, r) for g ∈ G and r ≤ R maximizing vk(r) and such that volk(Gmin(r)) ≤
1
2vk(r) = 1

2 volk(G ∩B(r)). Let G′(r) = G− (G ∩B(r)) + Gmin(r) and observe that
volk(G′(r)) ≤ volk(G) − 1

2vk(r)
and

fil volk+1(G) ≤ fil volk+1(G′(r)) + filk+1
(3

2vk(r), Z̃
)
.

Thus, the required bound on fil volk+1 for G is reduced to that for G′ of smaller
volume and the proof trivially follows by iterating: G � G′ � G′′ � . . . → 0.

Lower bound on vol◦[Z]−k by the filling profiles. Define the functions
fi(v) by induction on i,

f1(v) = filk+1(v) and fi(v) = filk+i

(
ifi−1(v)

)
for i = 2, 3, . . . ,m = N − k .

Then the Federer–Fleming induction by skeleton argument in 5.11 shows that
fm

(
vol◦[Z]−k

)
= ∞ .



836 M. GROMOV GAFA 

This provides, for example, a lower bound on vol◦[Z]−k for (possibly singular)
CAT(κ) spaces and for δ-hyperbolic spaces that is equivalent to such bound proved
in [Gr5] for Riemannian CAT(κ)-manifolds.

Simplicial filling. If Z is a simplicial complex, then one defines the com-
binatorial ∆ fil vol by considering simplicial Zp-cycles G =

∑
I Ai∆k

i and chains
C =

∑
j bj∆k+1

j with ∂C = G, with the volume(s) substituted by the “l1-norms” of
these

∆ filk+1(v) = sup
G

inf
C

∑
|bi| ,

where the sup is taken over all G with
volk(G) =def

∑
i

|ai| = v

where |a|, a ∈ Z/pZ, is the minimum of the absolute values of the integers repre-
senting a.

If Z is a manifold with 1-bounded geometry (| curv |(Z) ≤ 1, Inj Rad(Z) ≥ 1)
then it admits a triangulation into roughly unit simplices, i.e. l-bi-Lipschitz equiva-
lent to the unit Euclidean simplices with roughness (i.e. the bi-Lipschitz constant l)
depending on n dim(Z). Then the Federer–Fleming “pushing to the skeleta” argu-
ment implies that the two filling volumes are equivalent:

c1(v)∆ fil
(
c2(v)v

)
= fil(v)

for two functions satisfying 0 < C−1
1 (N) ≤ c1, c2,≤ C(N) < ∞.

Filling in 0-homologous cycles. Extend filk+1(v) beyond v = sysk by lim-
iting the definition of the cycles G that are required to be homologous to zero. Since
the resulting filling function, call it fil0k+1(v), is bounded for k = N − 1 in terms of
the first eigenvalue λ1 of the Laplace operator on Z, one has

fil0N (v, Z℘) ≥ const(Z)v
for the congruence coverings Z℘ of a compact locally symmetric Z by the Closel–
Selberg theorem.
Questions. What is the asymptotic behavior of vol◦k[Z℘]−k, filk+1(v, Z℘),
fil0k+1(v, Z℘), and sysk(Z℘), |℘| → ∞, of the congruence coverings Z℘ of compact
locally symmetric (e.g. arithmetic) spaces Z for 2 ≤ k ≤ N − 2? Are there in-
stances of the Selberg type inequalities fil0k+1(v, Z℘) ≥ const(Z)v for k ≤ dim(Z)−2
or, pointing to the opposite direction, of isosystolic inequalities sysk(Z℘) ≤
const(Z) volN (Z℘)k/N?

What are the asymptotics of the volumes and/or of the injectivity radii of the
“Jacobian tori” Hk(Z℘; R)/Hk(Z℘; Z), for the L2-metrics (norms) on the vector
spaces Hk(Z℘; R) realized by harmonic forms on Z℘?

(The stable isosystolic inequalities see [Kat] appeal to the L∞-metric on closed
forms but the L2-metric may display some asymptotic regularity of the “Jacobian
volume”,

v℘ = volr℘

(
Hk(Z℘; R)/Hk(Z℘; Z)

)
for r℘ = rank(Hk(Z℘)). This is suggested by the behavior the Laplace–Hodge ζ-
function associated with the analytic torsion; also one is tempted to take some
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Euler product over ℘, where the most promising case is that of an arithmetic Z with
non-zero Euler characteristic and k dim(Z)/2, where rank(Hk(Z℘)) ∼ volN (Z℘).)

6.6 Appendix: Separation and maps of graphs to trees. The main ingre-
dient of the proof of the Graphs over Trees Lemma from 6.2 is the following version
of a more general result from [GHT] (also, see [AlST] for a far reaching combina-
torial generalization). Our notation below somewhat deviates from the rest of the
paper.

Rough Separator Theorem. Every graph G = (V,E) of valency ≤ d and genus
≤ g contains a subset W ⊂ V of cardinality r ∈ [r0, 10dr0], for any given positive
integer r0, such that card(∂1(W )) ≤ const ·dg1/2√r, where “const” is a universal
positive constant.

Proof by the “length-area” argument of Loewner–Hersch. Remove loops in G and
observe this does not changes isoperimetry and disregard multiple edges in G (this
will be justified in the course of the proof below). We also can assume that G
is embedded into a closed connected orientable surface S of genus ≤ g, such that
each connected component of the complement S \ G is a topological 2-cell. There
is an obvious subdivision of each of these cells into triangles without introducing
new vertices and at most tripling the valency of the vertices. Thus we arrive at the
situation, where G equals the 1-skeleton of a triangulation of a surface S of genus
≤ g and we endow S with the piecewise Euclidean metric ρ, where each 2-simplex
is isometric to the regular plane triangle of unit area.

Take a (ramified) conformal map ϕ of degree h ≤ 2g + 1 of S to the unit sphere
S2 that is guaranteed by the Riemann theorem. Denote by µ the ϕ-pushforward
of the (area) measure on S corresponding to ρ and let B0 ⊂ S2 be the disk (ball)
of minimal radius with µ(B0) = r0. Observe that the concentric disc B1 of radius
R1 = 1.1R0 can be covered by 4 disks of radius R0 and thus µ(B1) ≤ 4r0. Also
observe that the annulus A = (B1 \ B0) ⊂ S2 is conformally equivalent to the
cylinder S1× [0, δ], where S1 is the circle of unit length and where δ ≥ 0.05. Identify
A with this cylinder and denote by |Dϕ| the conformal factor of ϕ, i.e. the norm of
the differential of ϕ with respect to the metrics ρ on Â and the cylindrical metric
on A.

Consider the circles Ct = S1 × t ⊂ A = S1 × [0, δ] for t ∈ [0, δ] and denote by
Ĉt ⊂ S their ϕ-pullbacks; use the parameters ŝ in these lifted circles coming via ϕ−1

from the s-parameter in the circles Ct = S1 and let t̂ corresponds to t ⊂ [0, δ].
Observe that ∫

Ĉt

|Dϕ|−1dŝ = lengthρ(Ĉt) for all t ⊂ [0, δ]

and ∫
Â
|Dϕ|−2dŝdt̂ = areaρ(Â) = µ(A) ≤ 3r0 .

Then, by Schwartz inequality,∫
[0,δ]

lengthρ(Ĉt)dt̂ =
∫

Â
|Dϕ|−1dŝdt̂ ≤

√
δh

√∫
Â
|Dϕ|−2dŝdt̂ ≤

√
3r0δh .
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Thus we established the following version of the local-to-global hyperbolicity
criterion.

Non-hyperbolicity Cut Theorem (compare [P]). Let S be an orientable surface
of genus ≤ g (possibly non-compact) with a piecewise smooth Riemannian metric
of finite area. Then there exists a smooth co-oriented curve Ĉ ⊂ S (among Ĉt),
closed in S as a subset, consisting of at most h = 2g + 1 components of total length
≤ 6δ−1/2h1/2√r0 that cuts S into two (possibly disconnected) parts, one of which
has area between r0 and 4r0, where r0 is an arbitrarily chosen positive number and
where δ ≥ 0.05.

The existence of such cuts for (S, ρ) implies, by the Federer–Fleming “pushing
argument” (see 5.11), the existence of the required combinatorial cuts and the proof
of the separator theorem is concluded.
Remarks. Hersch [H] used the Riemann mapping theorem in his 1970 proof of the
following (sharp!) upper bound on the first eigenvalue of spheres:

among all orientable surfaces of genus zero with given (finite) area the
round sphere has the largest first eigenvalue of the Laplacian.

This was followed by similar bounds on the spectrum of other Riemann surfaces
[YY], [Ko], [Gr1], but the sharp inequalities remain unknown.

Question. Is there a link between the conformal geometry (used above and in
[YY], [Gr1]) and the theory of graph minors exploited in [AlST]? (Notice that
the arguments in [Ko] and [P] run along combinatorial rather than conformal lines.
Probably, the filling/variational technique from [Gr2] and [NR], as well as those from
[CoM], can be also applied here.)

The proof of the Graphs over Trees Lemma now follows from the

Isoperimetric mapping to trees criterion.

Let the vertex set V ′ of every subgraph X ′ of X can be partitioned into
two subsets V ′

1 and V ′
2 of cardinalities N ′

1 and N ′
2 = N ′ − N ′

1 for N ′ =
card(V ′), such that N ′1 ≥ N ′

2 ≥ C · N ′ for some constant C and such
that the number of edges between V ′1 and V ′2 is bounded by J(N ′) for
some real function J vanishing for N ′ < 1. Then there exists a map f of
X onto subtree Y in a binary tree Yd of depth d ≤ C · log2(N), such that
the vertices of X go to the leaves of Y and the f -pullbacks of all points
y ⊂ Y have cardinalities ≤ C ·kN ·

∑
i=1,2,... J

(
1− 1

C

)i, where N denotes
the number of vertices in X.

Proof. Divide the vertex set V of X into V1 and V2, then divide V1 and V2 and keep
dividing until you arrive at one point sets. The resulting family of nested vertex sets
naturally define Y as well as the required f .
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France, June 30–July 1, 1992 (A. Bellaiche, ed.), Birkhäuser Prog. Math. 144 (1996),
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