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Abstract. We show that a Riemannian manifold of dimension at least 3 can be re-
covered from the space of boundaries of rectifiable integral 2-currents (the “lcycles”)
equipped with the filling area distance, and discuss possible approaches to “spaces
with area structures”.

1 Introduction

This paper is motivated by the idea of studying spaces using areas instead of lengths.
In particular, one can think of a space formed by closed curves equipped with a
function that mimics the “minimal filling area”. Hence the first question we asked
ourselves was: “How much information does this space capture in case of a Rieman-
nian manifold?”. The main result of this paper asserts that in dimensions ≥ 3 both
the topology and geometry of the manifold in question can be recovered from this
“cycle space”. After proving this result, we took the liberty of including a short
section (section 5) with speculations about possible approaches to “area spaces” in
general, even though we have not gotten almost anywhere in this direction (yet).

Let M be a compact Riemannian manifold. For an integer m ≥ 0, let Sm(M) de-
note the abelian group of all m-dimensional Lipschitz chains with integer coefficients
and Bm(M) the image of the boundary map ∂ : Sm+1(M) → Sm(M).

The group B1(M) is equipped with a (possibly non-homogeneous) semi-norm
|γ|F = inf

{
area(s) : s ∈ S2(M) , ∂s = γ

}
.

In other words, |γ|F is the filling area of γ in M . This yields a semi-metric dF on
B1(M):

dF (γ1, γ2) = |γ1 − γ2|F .

Note that the semi-norm | · |F is not necessarily homogeneous: in general, |2γ|F �=
2|γ|F .

It is possible that dF (γ1, γ2) = 0 for different γ1, γ2 ∈ B1(M) (for instance, a
segment traversed back and forth, and a constant curve).
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Definition 1.1. Let B(M) denote the associated metric space B1(M)/dF , that is,
we identify γ1 and γ2 if dF (γ1, γ2) = 0. We refer to B(M) as the cycle space of M .

This space is not complete. This is an Abelian group equipped with an invariant
intrinsic metric induced by the filling norm.
Definition 1.2. Let B(M) denote the completion of B(M), which is thus also a
geodesic space. Note that the norm | · |F and the abelian group structure naturally
extend to B(M).

To picture a “nasty” element of B(M), consider a smooth surface in M and a
Cantor set of positive area (or, more generally, any Borel measurable set) in this
surface. The boundary of the corresponding current is an element from B. In terms
of geometric measure theory, B(M) is a subset of the space F1(M) of integral flat 1-
chains in M . More precisely, B(M) is the set of all integral flat chains representable
as boundaries of rectifiable 2-currents (see section 2).

Two curves which are located far apart in M may be very close when viewed as
elements in B(M): For instance, for two far-apart small circles in Euclidean space,
the filling distance between them is achieved by a pair of flat discs filling each in.

If φ : M1 → M2 is a smooth map then φ pushes forward curves and currents, and
so induces a map φ∗ : B(M) → B(M). If φ is an isometry then φ∗ is an isometry.

Furthermore, any area preserving diffeomorphism between higher-dimensional
Riemannian manifolds is an isometry, as can be seen by examining the eigenvalues
of the differential of the map. With a little bit more care one can show that if
a diffeomorphism between M and M ′ induces an isomorphism between B(M) and
B(M ′), then the diffeomorphism is an isometry. The following theorem, which is the
main result of this paper, is a far-stretched generalization of this simple observation:
Theorem 1.3. Let M,M ′ be compact Riemannian manifolds (possibly with
boundaries) of dimension ≥ 3. Suppose that the metric spaces B(M) and B(M ′) are
isometric via a homogeneous isometry. (An isometry Φ is homogeneous if Φ(ks) =
kΦ(s) for all k ∈ Z.) Then M and M ′ are isometric. Moreover, every homogeneous
isometry Φ : B(M) → B(M ′) is induced by a Riemannian isometry φ : M → M ′ so
that φ∗ = Φ.

Let us emphasize that the homogeneous isometry in the formulation of the the-
orem is not assumed to be coming from some map between manifolds, it is a map
between abstract Abelian groups with norms.

Note that Theorem 1.3 does not hold in dimension 2. Indeed, any two simply
connected surfaces, M1,M2, of the same area have an area preserving diffeomorphism
between them f : M1 → M2, [Mos]. This diffeomorphism induces an isometry
between B(M1) and B(M2). Furthermore, even if one does not assume that M is
simply connected, one can actually show that the only information about M that can
be recovered from B(M) is the area of M : there is a discontinuous area-preserving
map that “cuts all handles by shrinking several loops” and still induces an isometry
between cycle spaces. We do not use this assertion and leave the details to the
reader.
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Theorem 1.3 asserts that when two cycle spaces are isometric (via a homogeneous
isometry; this seems to be a minor assumption which we however cannot remove)
then the manifolds are isometric. It would have been easier to prove than Theo-
rem 1.3 because everything would have been Lipschitz and rectifiable. However, it
is important for feasible applications of these results that we only assume in the
hypothesis of Theorem 1.3 that the completions of the cycle spaces are isometric.

The proof of Theorem 1.3 is contained in sections 2–4. In the proof, there
are notions and constructions of two different types, and it is very important to
distinguish between them. Namely, there are objects and constructions that use the
underlying manifold M , and there are ones formulated entirely in terms referring to B
as an Abelian group with a (non-homogeneous) norm |·|F that is a complete geodesic
space. Then, for instance, the notions of sub(C), tube, width, TubeLength, TubeDist,
and TubeDiam are well defined on an Abelian groups with an invariant intrinsic
metric. On the other hand, such notions as span(C), and results relating TubeDist
to Riemannian metric heavily use the Riemannian structure of the manifold M and
its relationship with B(M).

One might ask whether something can be said about two manifolds with isometric
spaces of real flat chains. It is clear that two proportional metrics give rise to the
same space of real flat chains. One could even guess that, as in the case of L1-spaces,
the space of real currents is simply the same for all manifolds. We do not know if
this is true or not.

Acknowledgements. This work was started in collaboration with Christina Sor-
mani. Regretfully, Christina decided to quit the collaboration when this work was
nearly completed. We are very grateful to her for many inspiring discussions, with-
out which this paper would hardly appear at all. We are grateful to Frank Morgan
for many useful remarks. In particular, Frank pointed out to us the existence of
minimizing currents spanning non-rectifiable boundaries of rectifiable currents.

2 Geometric Measure Theory Preliminaries

Of course, the language of Lipschitz chains used in the formulation is rather in-
convenient. Following the basic techniques of the Geometric Measure Theory, we
will work with rectifiable currents and their boundaries. More precisely, we identify
B(M) with the set of boundaries of rectifiable 2-currents (which actually lies in the
space of 1-dimensional integral flat chains) (see [F, 4.1.7, 4.1.24] for definitions and
details). For a Lipschitz boundary α, |α|F is the same as the least mass of rectifiable
2-currents spanning α (as follows from [F, 4.2.20]). Now we consider | · |F on the
space of all boundaries of rectifiable 2-currents.

The space of rectifiable m-currents in M is denoted by Rm(M), the space of
m-dimensional integral flat chains (that is, the space generated by the rectifiable
m-currents and the boundaries of rectifiable (m + 1)-currents) by Fm(M).

Note that the traditionally used flat norm, introduced to work with currents
with boundaries, is different from | · |F . Recall that the flat norm F on Fm(M) is
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defined by
F(T ) = inf

{
M(A) + M(B) : T = A + ∂B , A ∈ Rm(M) , B ∈ Rm+1(M)

}
(cf. [F, 4.1.24]).

We use our filling area norm because it depends only on area (not length) and so
Theorem 1.3 takes information purely about areas and produces information about
lengths. On the other hand, it is obvious that F(T ) ≤ |T |F . Furthermore, if T is
the boundary of a rectifiable 2-current, then |T |F ≤ C · F(T ) for some constant C
depending only on M . (This follows from the following fact: if A is a boundary of a
rectifiable current, then it can be filled by a current of mass not exceeding C ·M(A).)
Therefore, the flat norm F restricted to boundaries and | · |F are equivalent before
taking the completion, and sequences which converge with respect to our filling area
norm | · |F converge if and only if they converge with respect to the usual flat norm;
hence the flat norm compactness theorem and other similar theorems hold for our
filling norm as well.

Our cycle space B(M) is isometric to the F-closure of the set of currents cor-
responding to Lipschitz chains from B1(M). This set is the set of boundaries of
rectifiable 2-chains. This follows from the approximation theorem ([F, 4.2.20], [Mo,
7.1]) and the fact that E2 is M-dense in R2 (a remark in [F, 4.1.24], an exercise in
[Mo, 4.10]).

It is well known that for every rectifiable boundary there exist a mass-minimizing
current filling this boundary. As it was pointed out to us by Frank Morgan, this is
also true for non-rectifiable boundaries.
Lemma 2.1 ([Mo, 5.7], [F, 5.1.6]). If a current T ∈ F1(M) is a boundary of a
rectifiable 2-current, then |T |F is realizable by rectifiable 2-currents, namely there
exists a S ∈ R2(M) such that

M(S) = |T |F .

We say that S is a minimizing current spanning T .

The existence of minimizers is used throughout the proof.

2.1 Recovering the addition. In this section we study our space, B(M) as an
Abelian group with a (non-homogeneous) norm (| · |F ). Our aim is to show that we
can recover the addition of the currents as soon as we have a homogeneous isometry
between the spaces:
Proposition 2.2. If I : B(M) → B(M ′) is a homogeneous isometry, then I is a
homomorphism.

Proof. We need the following lemma.
Lemma 2.3. Let A and B be torsion-free abelian groups equipped with homo-
geneous norms | · |A and | · |B , I : A → B satisfy |I(a)|B = |a|A. Then I is a
homomorphism.

Proof. The lemma follows immediately from Theorem A.1 (see Appendix). �

The proposition follows by applying the above lemma to A = B(M), B = B(M ′)
and the norms defined as the stabilizations of | · |F given by |γ| = limn→∞ |nγ|F /n.
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One can easily check that this is actually a norm, that is, it does not vanish on non-
zero elements. Indeed, let γ ∈ B(M) \ {0}. Consider γ as a 1-current. Since γ �= 0,
there exists a differential 1-form ω on M such that γ ·ω = a �= 0. Then, for every 2-
current s such that ∂s = nγ, one has s ·dω = ∂s ·ω = na, hence M(s) ≥ |na|/‖dω‖∞
where M denotes the mass. Therefore |γ| ≥ |a|/‖dω‖∞ > 0. �

2.2 Subsets and spans. We begin with the following definition:
Definition 2.4. Let C ⊂ B. We denote by sub(C) ⊂ B the set of all C ′ ∈ B such
that |C ′|F + |C − C ′|F = |C|F .

Observe that
C ′ ∈ sub(C) iff sub(C ′) ⊂ sub(C) .

Intuitively, when B = B(M) and C is represented by a closed cycle, then
C ′ ∈ sub(C) iff C ′ lies in a minimal surface spanned by C.
Definition 2.5. Let C ∈ B(M). We define span(C) ⊂ M as the union of supports
of all minimizing 2-currents spanning C.

Note that, if C is a boundary of a unique minimal surface S, then then span(C)
is (the image of) S. The following proposition intuitively says that if a curve, C ′,
lies on a minimal surface filling another curve, then its minimal filling also lies on
that minimal surface. The proposition is in fact stronger than this statement since
B(M) includes a large class of objects:
Proposition 2.6. If C,C ′ ∈ B(M) and C ′ ⊂ sub(C), then span(C ′) ⊂ span(C).

Proof. Let S′ be a minimizing 2-current spanning C ′. It suffices to prove that
there exist a minimizing 2-current S spanning C such that spt(S′) ⊂ spt(S). Let
S1 be a minimizing 2-current spanning C − C ′ (whose existence is guaranteed by
Lemma 2.1). Define S = S′ + S1. Then ∂S = C and

M(S) ≤M(S′) + M(S1) = |C|F + |C − C ′|F = |C|F ,

because C ′ ∈ sub(C). Hence S is mass-minimizing and M(S) = M(S′) + M(S1).
The latter implies that spt(S) = spt(S′) ∪ spt(S1), hence spt(S′) ⊂ spt(S). �

Proposition 2.7. There exists an ε0 > 0 such that, if C ∈ B(M) and the support
spt(C) lies in a closed metric ball B of radius ε < ε0, then span(C) ⊂ B.

Proof. Let ε0 be one third of the convexity radius of M (that is, every geodesic ball
of radius < 3ε0 is convex). Let ε < ε0, B a ball of radius ε centered at o. We want
to prove that if S is a minimizing 2-current and spt(∂S) ⊂ B, then spt(S) ⊂ B.

It suffices to construct a 1-Lipschitz map f : M → B such that F |B = idB

and F is strictly contracting (that is, has a Lipschitz constant < 1) outside any
neighborhood of B.

To construct such an f , introduce normal spherical coordinates (ρ, θ) in 3ε-
neighborhood of o (ρ ∈ [0, 3ε], θ ∈ S2) and define a map f : B3ε(o) → M sending a
point (ρ, θ) to itself if ρ ≤ ε and to

(1
2(3ε− ρ), θ

)
if ε ≤ ρ ≤ 3ε. Define f(x) = o for

all x ∈ M \B3ε(o). The resulting map f : M →M has the desired properties. �
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3 Areas to Distances

In this section we will work to convert information about areas into information
about lengths. Let us describe the intuitive idea in dimension 3. Note that in
a Riemannian manifold we can examine the boundary of a tubular neighborhood,
∂Tε(γ), of a geodesic γ. The length of ∂Tε(γ) will be close to the length of γ and
can be computed using its area and its radius. The radius ε can be computed using
the cut area of Tε(γ) which is close to πε2.

Since we do not have means of defining tubular neighborhoods without a distance,
we need to work towards this concept using minimal surfaces. Instead of using the
tubular neighborhood, we could have used a large collection of circular cycles Ci

lying in ∂Tε(γ) running around γ which lie very close together, so that the minimal
surfaces running from each Ci to Ci+1 look like a cylinder (a wide catenoid), and we
build a tube from these minimal surfaces. We then measure the length of this tube
using its width and cut area. As a matter of fact, we only “mimic” this geometric
picture, for our objects can be defined for an abstract Abelian group B with an
invariant intrinsic metric.

3.1 Tubes and cylinders. Here we begin with a rigorous construction of a
tube in an abstract space B and define its length in that setting, so that an isometry
between B1 and B2 maps tubes to tubes and preserves their lengths. In the next
section we will relate their lengths to Riemannian lengths when B = B(M).
Definition 3.1. A cylinder is a pair (C0, C1) of elements C0, C1 ∈ B.

Definition 3.2. The width of a cylinder is defined as
W (C0, C1) = inf

{|C|F : |C0 − C|F + |C −C1|F = |C0 − C1|F
}

.

Example 3.3. For instance, in Euclidean three space, given two circular cycles,
C0(t) = (0, sin(t), cos(t)) and C1(t) = (1, sin(t), cos(t)), then the flat norm between
them is achieved by a standard catenoid, and the width, W (C0, C1) is the area of
the disk filling the intersection of the catenoid with the plane z = 1/2.

Things do not always appear as cylindrical as in the catenoid example. For
instance, if C0 and C1 are two small circles far away from each other, the width
w(C0, C1) = 0 because one can take C = 0. It is also possible that C0 is formed
by two circles and C1 is a single circle, so that the minimal surface between them
looks like a pair of pants, or that both Ci consist of pairs of circles and the minimal
surface between them is diffeomorphic to a pair of cylinders.
Definition 3.4. A tube is a finite sequence T = (C0, C1, . . . , Cn) in B. We refer to
C0 and Cn as the bases of T . The area of T is defined by area(T ) =

∑ |Ci−Ci+1|F .
The reader should think of a tube as a hose made of pieces (cylinders) each

looking like a short catenoid. In actuality a tube may be built of pants or its “top”
and “bottom” could be completely disconnected. The width of a tube is, intuitively,
the size of a smallest cut of the hose. If the hose is disconnected the width will be
zero. The smallest slice of a hose could cut across more than one cylinder: imagine
a cylinder made of slanted sections. Hence we need the following formal definition,
which at first glance may look a bit complicated:
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Definition 3.5. We say that a cycle C ∈ B(M) is a cut of a cylinder (C0, C1) if
|C0 − C1|F = |C0 − C|F + |C −C1|F .

A cycle C ∈ B(M) is said to be a cut of a tube T = (C0, C1, . . . , Cn) if the cycle
C + C1 + C2 + · · · + Cn−1 can be represented as a sum C ′

1 + C ′
2 + · · · + C ′

n where
each C ′

i is a cut of the cylinder (Ci−1, Ci).
An interested reader can see the geometric meaning of this definition by picturing

a tube C0, C1, C2 made of two cylinders and with a cut crossing both of them.
Dividing this cut into two segments and adding appropriate segments of the middle
cycle C2, one gets two cuts of the cylinders. We will however use this definition in
a rather formal way.
Definition 3.6. The width w(T ) of a tube T is defined by

w(T ) = inf
{|C|F : C is a cut of T

}
.

Note that the width of T = (C1, . . . , Cn) could be significantly smaller than the
smallest of the individual widths of cylinders (Ci, Ci+1) (picture a slanted slicing of
a cylinder).

If a tube were actually a standard cylinder of length L, surface area A, circum-
ference R, and cut area W , then

L = A/C = A/(2πr) = A
/(

2π
√

W/π
)

= A
/(

2
√

π
√

W
)
.

So we define the following length of a tube:
Definition 3.7. The length of T is defined by

TubeLength(T ) =
area(T )

2
√

π
√

w(T )
.

Since none of “real tubes” in a Riemannian manifold are cylinders, even if the
manifold is flat and they are made of catenoids, this length is distinct from the
geometric length of the tube.
Example 3.8. If we create a tube (C0, C1) from two circles as in the above
“catenoid example” then both the area and the width of the tube are less than the
corresponding circle, and TubeLength is not 1. On the other hand if we create a
tube with the same bases C0 and C1 and many identical circles lying on the cylinder
between them, then the area of the tube approaches the area of the cylinder and
the width approaches the width of the cylinder, and thus the length of the tube
approaches the length of the cylinder.

Later on in the proof of Theorem 1.3 we will be taking limits of areas, width,
and lengths of tubes. To prepare for this we first examine the stability of the width.
Lemma 3.9. For every C0, C1, . . . , Cn ∈ B(M) one has

w(C0, . . . , Cn) ≥ w(C0, . . . , Cn−1)− |Cn−1 − Cn|F .

Proof. Let C be a cut of (C0, . . . , Cn), then by definition
C = C ′

1 + · · · + C ′
n − C1 − · · · − Cn−1 ,

where each C ′
i is a cut of the cylinder (Ci−1, Ci). Define

A = C ′
1 + · · ·+ C ′

n−1 − C1 − · · · − Cn−2 .
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Then A is a cut of (C1, . . . , Ck), hence |A|F ≥ w(C1, . . . , Cn−1). On the other hand,
C −A = C ′

n − Cn−1, hence
|C −A|F = |C ′

n − Cn−1|F = |Cn − Cn−1|F − |C ′
n − Cn|F ≤ |Cn − Cn−1|F

(the second equality follows from the fact that C ′
n is a cut of (Cn−1, Cn)). The

inequalities |A|F ≥ w(C1, . . . , Cn−1) and |C − A|F ≤ |Cn − Cn−1|F imply that
|C|F ≥ w(C0, . . . , Cn−1)− |Cn−1 − Cn|F . �

3.2 TubeLength vs Riemannian distance. In this section we use the co-area
formula to prove the following relationship between the tube lengths in B(M) and
the Riemannian distances on M .
Proposition 3.10. For every tube T = (C0, . . . , Cn),

TubeLength(T ) ≥ ρ0
(
1− ψ(w(T ))

)
,

where limt→0 ψ(t) = 0, ρ0 is the Riemannian distance between the supports of
span(C0) and span(Cn).

Proof. Let Si be a minimizing 2-current spanning Ci − Ci−1, i = 1, . . . , n. Define
S = S1 + · · · + Sn. Then area(T ) ≥ M(T ), and it suffices to prove that M(T ) ≥
2
√

π
√

w(T )ρ0(1− ψ(w(T ))).
Let f : M → R be the distance function of the set span(S0). This is a Lipschitz-1

function with respect to the Riemannian structure. Define S̃ = S+S0+Sn+1, where
S0 and Sn+1 are minimizing 2-currents spanning C0 and −Cn+1 (we added the “top”
and “bottom” S0 and Sn+1 to work with a closed current S̃ rather than S which
may have non-rectifiable boundary). We slice S̃ by the level sets of f , cf. [Mo, 4.11]
and [F, 4.2.1], namely, for each 0 < r < ρ0, we consider the slice 〈S, f, r+〉 which is
defined as the boundary of the restriction of S̃ to the sublevel set of f :

〈S, f, r+〉 = ∂
(
S �{x : f(x) ≤ r}) .

Note that the Lipschits constant of f is 1. Then by the co-area inequality, we
have

M(S) ≥M
(
S̃ �{x : 0 < f(x) < ρ0}

) ≥
∫ ρ0

0
M

(〈S, f, r+〉)dr .

Our goal is to estimate the integral from below. First we need the following
geometrically obvious fact:
Lemma 3.11. For every 0 < r < ρ0, the slice 〈S, f, r+〉 is a cut of T .

Proof. We need the following properties of the restriction operator �: for every
rectifiable current S and every Borel measurable set A ⊂ M , the restriction S �A
is a rectifiable current and

(0) S �M = S;
(1) if A ∩ spt(S) = ∅, then S �A = 0;
(2) if A,B⊂M are Borel measurable and A∩B=∅, then S �(A∪B)=S �A+S �B

and M(S �(A ∪B)) = M(S �A) + M(S �B);
(3) (S1 + S2)�A = S1 �A + S2 �A if S1 and S2 are rectifiable currents.

Denote A = {x : f(x) ≤ r}, B = {x : f(x) > r}. Note that 〈S, f, r+〉 belongs
to our space B(M) since it is the boundary of a rectifiable 2-current S̃ �A. For
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i = 1, . . . , n define
C ′

i = ∂(Si �A) + Ci−1 = Ci − ∂(Si �B) .

The second equality here follows from the fact that ∂Si = Ci − Ci−1 and the above
properties of �. Then

|C ′
i −Ci−1|F =

∣∣∂(Si �A)
∣∣
F
≤M(Si �A) ,

|Ci − C ′
i|F =

∣∣∂(Si �B)
∣∣
F
≤M(Si �B) ,

hence
|C ′

i − Ci−1|F + |Ci − C ′
i|F ≤M(Si �A) + M(Si �B) = M(Si) = |Ci − Ci−1|F .

Therefore C ′
i is a cut of (Ci−1, Ci). Furthermore,

C ′
1 + · · ·+ C ′

n = ∂(S �A) + C0 + C1 + . . . Cn−1 .

Observe that
∂(S �A) + C0 = ∂(S �A) + ∂(S0 �A) + ∂(Sn+1 �A) = ∂(S̃ �A) = 〈S̃, f, r+〉 ,

since S0 �A = S0 and Sn+1 �A = 0 (recall that spt(S0) ⊂ span(C0) ⊂ A,
spt(Sn) ⊂ span(Cn) ⊂ B). Thus

C ′
1 + · · ·+ C ′

n = 〈S̃, f, r+〉+ C1 + . . . Cn−1 ,

hence 〈S̃, f, r+〉 is a cut by definition. �

We now continue with the proof of Proposition 3.10.
By Almgren’s isoperimetric inequality [A], for every closed rectifiable 1-current

C is Rn, |C|F ≤ 1
4πM(C)2. It follows that, in a compact Riemannian manifold M ,

a rectifiable 1-current C ∈ B(M) satisfies |C|F ≤ 1
4πM(C)2(1 + ϕ(M(C))) where

ϕ(t) → 0 as t → 0 (the correction term ϕ depends on Riemannian metric). For
C = 〈S̃, f, r+〉, we have |C|F ≥ w(T ) by the definition of width, hence

M
(〈S, f, r+〉) ≥ 2

√
π
√

w(T )
(
1− ψ(w(T )

)
,

where ψ(t) = 1 − (1 + ϕ(t))−1/2. Applying the above coarea inequality finishes the
proof of the proposition. �

Example 3.12. Recall Example 3.8. It was pointed out there that a tower of
catenoids formed a tube whose length did not agree with its height but that if
the number of catenoids between fixed curves were increased so that the height of
each catenoid approached zero then the length approached the total height. By
Proposition 3.10, we now know that if we not only decreased the height of the
catenoids but also the radii, the limit could not be less than the total height. If we
decrease the radii too fast compared to the heights then the tube could break and
have width 0 sending the length to infinity.

3.3 TubeDistance vs Riemannian distance.

Definition 3.13. For C,C ′ ∈ B(M), we say that a tube T = (C0, . . . , Cn) connects
C and C ′ if C0 ∈ sub(C), Cn ∈ sub(C ′). We define

TubeDist(C,C ′) = lim
ε→0

inf
{
TubeLength(T ) : w(T ) < ε

}
,

where the infimum is taken over tubes T connecting C and C ′.
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Intuitively the tubular distance measures the smallest tubular length of thinner
and thinner tubes with bases lying within two minimal surfaces.

Now we want to show that the Riemannian distance between the spans is actually
equal to TubeDist. The results of the previous section imply that the Riemannian
distance is less than the tubular distance between two spans.
Corollary 3.14. For all C,C ′ ∈ B(M), we have

TubeDist(C,C ′) ≥ dM

(
span(C), span(C ′)

)
.

Proof. Proposition 3.10 implies that

TubeDist(C,C ′) ≥ lim
ε→0

inf
{
dM (span(C0), span(Ck))(1 − ψ(w(T ))) :

w(C0, . . . , Ck) < ε,C0 ∈ span(C), Ck ∈ span(C ′)
}

,

where limt→0 ψ(t) = 0. Now Proposition 2.6 tells us that span(C0) ⊂ span(C) and
span(Ck) ⊂ span(C ′), and the corollary follows. �

To prove the opposite inequality we need to construct tubes approaching the
infimum. The idea is that we can always run a geodesic achieving the distance
between span(C) and span(C ′) and then find C0 ∈ sub(C) and C1 ∈ sub(C ′) lying
arbitrarily near the ends of this geodesic. Then we build a thin tube around the
geodesic. This is intuitively easy and has already been described at the beginning of
this section. However, to complete the construction given the large class of limiting
objects included in our completion space B(M) we first need the following lemma
and the concept of a density point:
Lemma 3.15. For a rectifiable 2-current S �= 0, there exists a point x ∈ spt(S)
and a C1 surface Σ passing through x such that, for all sufficiently small r, the disc
in Σ of radius r centered at x is o(r2)-close (in | · |F ) to a sub-current Sr of S (Sr

is said to be a sub-current of S if M(Cr) + M(C − Cr) = M(C)). We call such a
point x a density point.

Furthermore, the set of density points x is dense in spt(S).

Proof. By [F, 4.1.28, 3.2.29], every rectifiable 2-current S can be represented as
a countable sum S =

∑
Si where each Si is a current associated with a Borel

measurable subset of a 2-dimensional oriented C1 submanifold Σi of M . We may
assume that there is no cancellations between the Si’s, that is, M(S) =

∑
M(Si).

Then every Si is a sub-current of S. We abuse notation and use the same letters
Si for the currents and the respective subsets of surfaces Σi. Assuming S1 �= 0, let
Σ = Σ1 and x a density point of S1 (here S1 is regarded as a subset of Σ). Let Br

denote the metric ball of radius r in Σ centered at x, then∣∣Br − (S1 ∩Br)
∣∣
F
≤M(Br \ Si) = o(r2) .

Then S1 ∩Br is a desired sub-current.
To show that the set of such points x is dense in spt(S), we just apply the first

statement to S �U where U is an arbitrary open set intersecting spt(S). �

Proposition 3.16. Let C,C ′ ∈ B(M), and let ρ be the Riemannian distance
between span(C) and span(C ′). Then TubeDist(C,C ′) = ρ.
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Proof. By Corollary 3.14, we have TubeDist(C,C ′) ≥ ρ. It remains to prove the
opposite inequality. Let S and S′ be minimizing 2-currents spanning C and C ′

respectively and such that the distance between them is close to ρ. We need to
prove the following: for every ε > 0, there exist a tube T = (C0, . . . , Cn) such that
C0 ∈ sub(C), Cn ∈ sub(C ′), w(T ) < ε and TubeLength(T ) < ρ + ε.

To facilitate understanding, we first consider the case when S and S′ are smooth
embedded surfaces. To construct a desired tube, consider a simple smooth curve
γ connecting two interior points of S and S′ such that L = length(γ) < ρ + ε/5
and γ is orthogonal to S and S′ at endpoints. Let r > 0 be so small that the (5r)-
neighborhood U of γ is bi-Lipschitz diffeomorphic, with bi-Lipschitz constant very
close to 1, to the (5r)-neighborhood of a straight line segment [0, Le1] in Rm where
m = dimM . Furthermore, the diffeomorphism can be chosen so that it maps S ∩U
and S′ ∩ U to affine subspaces parallel to the coordinate (e2, e3)-plane.

Now consider a solid cylinder [0, L]×Br ⊂ R3 ⊂ Rm where Br is the r-ball in R2.
Pick h � r and consider cycles Ci = {hi} × ∂Br in R3, for i = 0, 2, . . . , n = L/h.
In Rm, the resulting tube (C0, . . . , Cn) has width πr2 +o(1) and area 2πrL+o(1) as
h → 0, and hence its TubeLength is close L. Since the corresponding Riemannian
tube is bi-Lipschitz close to the Euclidean one, its TubeLength is also close to L.

To prove the general case, we choose density points in S, S′ such that the Rie-
mannian distance between them is less than ρ + 1

5ε and simply apply the above
argument for smooth surfaces guaranteed by Lemma 3.15. The bases of the result-
ing tube T = (C0, . . . , Cn) may not lie exactly in S, S′. They however lie within small
| · |F -distance from sub-currents C ′

0, C
′
n of S, S′ (by the definition of density points),

so we can replace the tube by T ′ = (C ′
0, C0, C1, . . . , Cn, C ′

n). Then Lemma 3.9 tells
us that the widths of T and T ′ differ by no more than o(r2), which concludes the
proof. �

Recall that for A ⊂ M , the diameter of A is
diam(A) = sup

{
d(x, y) : x, y ∈ A

}
.

Definition 3.17. Let C ∈ B(M). We define
TubeDiam(C) = sup

{
TubeDist(C ′, C ′′) : C ′, C ′′ ∈ sub(C) , C ′, C ′′ �= 0

}
.

The following lemma is a trivial corollary of the previous proposition:
Lemma 3.18. Let C ∈ B(M), then

TubeDiam(C) = diam(span(C)) .

4 Proof of Theorem 1.3

Recall that we have an isometry Φ : B(M) → B(M ′) (which is also a homomor-
phism). We want to construct a corresponding isometry φ : M → M ′.
Definition 4.1. A cycles to a point sequence is a sequence {C1, C2, . . . } of elements
of B such that

lim
i→∞

TubeDiam(Ci) = 0
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and
lim

i,j→∞
TubeDist(Ci, Cj) = 0 .

Results of the previous section immediately imply that, given a cycles to a point
sequence {Ci} in B(M), the sets {span(Ci)} form a Cauchy sequence (with re-
spect to the Hausdorff distance on M), and their diameter goes to zero. Hence
limi→∞ span(Ci) is a single point in M .
Definition 4.2. We say the “M-limit” MLim{Ci} of a cycles to a point sequence
{Ci} in B(M) is the point p ∈ M where {p} = limi→∞ span(Ci).

Naturally the limit of this sequence with respect to | · |F is 0 ∈ B(M).
Had we not required TubeDiam(Ci) → 0 and just assumed |Ci|F → 0 then the

Ci would not necessarily be localized (say, we could get a sequence of cycles formed
by pairs of circles shrinking to two fixed points).

Proposition 2.7 implies that for every p ∈ M there is a cycles to a point sequence
{Ci} in B(M) such that MLimi→∞{Ci} = p.

Now we are ready to define φ from the formulation of Theorem 1.3. Let
MLimi→∞{Ci} = p. The images Φ(Ci) is a cycle to a point sequence for M ′, and the
spans of the cycles converge to some point q ∈ M ′. We set φ(p) = q. To see that φ
is correctly defined note that, for two cycle to a point sequences {Ci} and {C̃i}, one
has MLimi→∞{Ci} = MLimi→∞{C̃i} if and only if limi→∞ TubeDist(Ci, C̃i) = 0.

Note that, more generally, the Riemannian distance between MLim{Ci} and
MLim{C̃i} is equal to limi→∞ TubeDist(Ci, C̃i). This immediately implies that φ is
a distance preserving map. Applying the same argument to Φ−1 we conclude that
φ is a surjective map and hence is an isometry between M and M ′.

To conclude the proof, we need to show that the map φ∗ between B(M) and
B(M ′) induced by φ is the same as Φ. First note that points p lying in span(C) can be
characterized in terms of B(M) as follows: p ∈ span(C) if and only if p = MLim(Ci)
for some sequence Ci ∈ sub(C). This implies that span(Φ(C)) = φ(span(C)) for
all C ∈ B(M). Therefore Φ(C) = φ∗(C) if C is a smooth cycle spanning a unique
area-minimizing surface (indeed, in this case span(C) uniquely determines C). Such
cycles generate a dense subgroup of B(M) (since boundaries of smooth minimizing
currents are dense in B(M), and a sub-current of a smooth minimizing current is a
unique minimizer if it has sufficiently small diameter). This implies that Φ = φ∗. �

5 Area Spaces: Where to Proceed?

We now take the liberty to include a short speculation on prospects of this approach.
This work was motivated by a rather naive idea to introduce “area spaces”, with an
ultimate goal of obtaining some compactness theorems, which could be helpful in
proving inequalities involving areas in situations without a good control over lengths.

We will not even attempt to define an area space here: we have not studies enough
examples yet. Vaguely speaking, we expect that, similarly to length structures, an
area structure could be a function on a certain class of closed curves in a topological
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space X. Of course, the function should satisfy certain axioms, and examples we
looked at suggest that we better keep some class of metrics or length structures
on X, too.

Furthermore, one could run the recovery construction for an abstract Abelian
group with an invariant metric. Of course, this metric should be a length metric,
so one does not want to look at examples like Z. Furthermore, as we mentioned
earlier, it is crucial that we work with currents with integer coefficients, so perhaps
one should think of an Abelian group which sits ”as a lattice” in the tensor product
of this group and R equipped with an invariant intrinsic metric. We have not tried
studying any examples yet.

Our observation that B(M) uniquely determines M for higher-dimensional man-
ifold suggests that convergence of “area spaces” could be defined via (some sort
of) convergence of corresponding spaces B. Note that it is very unlikely that the
recovery result Theorem 1.3 is stable. Spaces of this type even tend to be univer-
sal (like in two dimensions) rather than unique for each manifold. Theorem 1.3 is
based on certain rigidity. Perhaps this (plausible) lack of stability could even be
good, for whatever convergence one defines for “area spaces’, it should not imply
metric convergence. An interesting example can already be obtained by looking at
two different surfaces Σ1 and Σ2 of the same area multiplied by a circle or length
ε when ε → 0 (recall that B(Σ1) = B(Σ2)). It is absolutely not clear what one can
conclude from the assumption that B(M) admits a short map on B(M ′), and what
one should assume to guarantee the existence of an area non-increasing map with
certain topological properties (say, of degree one).
B(M) is full of strange “garbage”. For instance, consider a circle of radius 1/5

centered at every integer point of a huge 3-D cube of size n, and re-scale the cube
down to size n−1/2. One gets a “cycle” whose filling area is π/25 contained in a
microscopic chunk of space. There are “cycles” of a huge filling norm formed by
“dust” of microscopic circles spread all over the manifold. These ugly cycles have
nothing to do with objects we may be ultimately interested in, but they caused a
lot of trouble when we were working on the proof of the main theorem, and they
cause a lot of problems in our attempts to define convergence.

Even though B(M) uniquely determines M , it would be nice to recover basic
properties of M directly from B(M). For instance, it was suggested by the referee
of the paper that the stable norm on second homologies could be recovered using
Almgren’s isomorphism between the 2-dimensional homology group of M and the
fundamental group of the space of 1-cycles of M. Such a description would suggest
that one could try to work with convergence where the limit is just some “cycle
space” B without any underlying manifold M .
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Appendix

A Remark on the Mazur-Ulam Theorem
by Nigel Higson

A.1 Statement of the theorem. The Mazur-Ulam theorem asserts that a dis-
tance preserving map from a real normed space onto itself that maps zero to itself
is necessarily linear. I shall repeat the original argument of [MU] and observe that
it also proves the following generalization:
Theorem A.1. Let A be an additive subgroup of a real normed space V such
that R ·A = V . If φ is a distance-preserving map from A onto itself that maps zero
onto itself, then φ is the restriction to A of an isometric linear transformation from
V onto itself.

A.2 Midpoints.
Definition A.2. Let X be any metric space. If x, y ∈ X, then define the midset
of x and y to be

M(x, y) =
{
z ∈ X : d(x, z) = d(y, z) = 1

2d(x, y)
}

.

This is obviously a bounded subset of X. It may be empty.

Definition A.3. If M is any bounded subset of X, then define its sequence of
central subsets C0(M), C1(M), . . . by C0(M) = M and

Ck(M) =
{
z ∈ Ck−1(M) : d(z,w) ≤ 1

2 diam(Ck−1(M)) ∀w ∈ Ck−1(M)
}

for k ≥ 1.
The sets Ck(M) may once again be empty. But in any case the diameter of

Ck(M) is at most half the diameter of Ck−1(M), and as a result the intersection of
all the Ck(M) is either empty or consists of a single point.
Definition A.4. If M is any bounded subset of A, then its center, if it exists, is
the unique point in ∩k≥0Ck(M). The midpoint of a pair of points x, y ∈ A, if it
exists, is the center of the midset M(x, y).

A.3 Proof of the theorem. The proof of the theorem is based on the previous
definitions and the following trivial observation:
Lemma A.5. If φ is an isometry of a metric space X onto itself, and if x, y ∈ X,
then the midpoint of x and y exists if and only if the midpoint of φ(x) and φ(y)
exists. If both do exist, then φ maps the first onto the second. In particular, if φ
maps the set {x, y} onto itself, and if the midpoint of x and y exists, then φ fixes
the midpoint. �

Mazur and Ulam noted that if X is a normed space, then the midpoint of x and
y exists and is the average 1

2(x + y). As a result, surjective isometries of normed
spaces preserve averages, and hence, by a small additional argument, are affine.

To prove Theorem A.1 one needs to be just a little more careful in dealing with
the average operation, which is not generally available in an abelian group. From
now on let A be an abelian group equipped with a distance function such that

d(x + z, y + z) = d(x, y) , d(2x, 2y) = 2d(x, y) and d(x, y) = d(−x,−y) ,
for all x, y, z ∈ A.
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Lemma A.6. Let x, y ∈ A. The midpoint of x and y exists if and only if there is
an element z ∈ A such that 2z = x + y. If such an element z exists, then it is the
midpoint of x and y.

Proof. Define an isometry φx,y : A → A by the formula
φx,y(z) = x + y − z .

This isometry is its own inverse, it exchanges x and y, and its fixed point set consists
of those z ∈ A such that 2z = x + y. By Lemma A.5, if the midpoint z of x and y
exists, then φx,y fixes it. We see that if the midpoint z exists, then z ∈ M(x, y) and
2z = x + y.

Conversely, suppose z ∈ A and 2z = x + y. We should like to show that z is the
midpoint of x and y; that is, we should like to show that z belongs to each midset
Ck(M(x, y)). Certainly z ∈ M(x, y) because

x− y = 2x− 2z and y − x = 2y − 2z ,

so that by our assumptions on the distance function
d(x, y) = 2d(x, z) = 2d(y, z) .

Assume that z ∈ Ck−1(M(x, y)). If w ∈ Ck−1(M(x, y)), then the element
v = φx,y(w) = x + y − w

also belongs to Ck−1(M(x, y)). But
d(v,w) = d(x + y − w,w) = d(x + y, 2w) = d(2z, 2w) = 2d(z,w) ,

from which it follows that
d(z,w) ≤ 1

2 diam
(
Ck−1(M(x, y))

)
,

and so z ∈ Ck(M(x, y)). �

Proof of Theorem A.1. Let A and V be as in the statement of the theorem and
let φ be an isometry of A onto itself that fixes 0 ∈ A. Let x ∈ A. By Lemma A.6,
the element x is the midpoint of the elements 0 and 2x. It follows from Lemma A.5
that φ(x) is the midpoint of 0 and φ(2x), and therefore by Lemma A.6 again,

2φ(x) = φ(2x) .

Now let x, y ∈ A. By Lemma A.6, the element x + y is the midpoint of 2x and 2y,
and so φ(x+y) is the midpoint of φ(2x) and φ(2y). One final application of Lemma
A.6 tells us that

2φ(x + y) = φ(2x) + φ(2y) = 2φ(x) + 2φ(y) ,

and so φ(x + y) = φ(x) + φ(y). Thus φ is an automorphism of the abelian group A.
Since φ is a group automorphism, and since the norm on V is positive-homogeneous,
we may extend φ to an isometric group automorphism of each group 1

n! ·A ⊆ V , and
hence of Q · A ⊆ V , by means of the formula φ(ax) = aφ(x). Since R · A = V , this
extension now extends further by continuity to an isometric automorphism of V . �
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