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Abstract. The dimension of the space of SU(n) and translation-invariant con-
tinuous valuations on C

n, n ≥ 2, is computed. For even n, this dimension equals
(n2 + 3n + 10)/2; for odd n it equals (n2 + 3n + 6)/2. An explicit geometric ba-
sis of this space is constructed. The kinematic formulas for SU(n) are obtained as
corollaries.

1 Introduction and Statement of Theorems

Let V be a finite-dimensional vector space and denote by K(V ) the set of compact
convex subsets of V . A valuation on V is a map µ : K(V ) → C which is finitely
additive in the following sense:

µ(K ∪ L) + µ(K ∩ L) = µ(K) + µ(L)
whenever K, L, K ∪ L ∈ K(V ).

A valuation µ is continuous if it is continuous with respect to the Hausdorff
topology on K(V ). It is translation invariant if µ(v + K) = µ(K) for all v ∈ V .

Now suppose V is a Euclidean vector space. Then µ is called motion invariant
if µ(ḡK) = µ(K) for all Euclidean motions ḡ.

Hadwiger’s famous characterization theorem states that the space ValSO(n) of
motion invariant continuous valuations is of dimension n + 1, where n = dim V .
The only natural choice (up to scale) of a basis of ValSO(n) consists of the intrinsic
volumes µ0, . . . , µn. From Hadwiger’s theorem, the array of kinematic formulas,
mean projection formulas, additive kinematic formulas and many other results can
be obtained in an elegant and simple way.

It is natural to weaken the hypothesis of motion invariance. The theory of
translation invariant continuous valuations is a very rich one, see for instance [Mc],
[A1,2,8], [K], [BF1]. The space of translation invariant continuous valuations is an
infinite-dimensional Fréchet space.

In view of potential applications to integral geometry, it is natural to consider
translation invariant continuous valuations which are invariant under some compact
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subgroup G of O(n). Let ValG denote the corresponding space. Alesker has shown
that ValG is finite-dimensional if and only if G acts transitively on the unit sphere
[A1,7]. This is a strong condition on G; in fact Borel [Bo1,2] and Montgomery–
Samelson [MoS] gave a complete classification of connected compact Lie groups
acting transitively and effectively on the sphere (compare also [Be], 7.13). There are
six infinite series

SO(n), U(n), SU(n), Sp(n), Sp(n) · U(1), Sp(n) · Sp(1) (1)
and three exceptional groups

G2, Spin(7), Spin(9) . (2)
The computation of the dimension of ValG and the determination of the kine-

matic formulas for a group G from this list is a very important question in modern
integral geometry. Let us mention what is known in this context.

Hadwiger’s theorem solves the case G = SO(n). The kinematic formulas for this
group (which were first proved by Blaschke, Chern and Santaló) are corollaries to
this theorem.

The next interesting case is G = U(n) acting on C
n. For n ≤ 3, Park [P]

computed the dimension of ValU(n) and the kinematic formulas. Alesker [A2] gave
the result in the general case:

dim ValU(n) =
(

n + 2
2

)
.

Two different natural and geometric bases of ValU(n) were constructed in [A3].
In contrast to the case of the orthogonal group, the computation of the kinematic

formulas requires a lot more work and has been completed only very recently [F2],
[BF2].

Alesker [A5] showed that dim ValSU(2) = 10. The kinematic formulas for SU(2)
have been obtained in [B2]. Using the results of the present paper, bases for the
spaces ValG2 and ValSpin(7) and explicit kinematic formulas were found in [B3].

For the groups Sp(n), Sp(n) · U(1), Sp(n) · Sp(1) as well as for the exceptional
group Spin(9), a Hadwiger-type theorem is still unknown. Some partial results
have been obtained by Alesker: several Sp(n) · Sp(1)-invariant valuations on H

n

were constructed in [A6]; a new Spin(9)-invariant valuation on R
16 is given in [A9].

The present paper is devoted to the study of the integral geometry of SU(n) for
all n ≥ 2. We compute the dimension of the space ValSU(n) and derive all kinematic
formulas.

Before stating our main results, we need some notation.
Recall that a translation-invariant valuation µ on a vector space V is said to be

of degree k if µ(tK) = tkµ(K) for all t ≥ 0 and all compact convex sets K. Each
continuous translation-invariant valuation on V can be uniquely decomposed as a
sum of valuations of degrees 0, 1, . . . ,dim V [Mc]. We let Valk(V ) denote the space
of continuous translation-invariant valuations of degree k.
Definition 1.1. A valuation µ ∈ ValSU(n) has weight l if

µ(gK) = det(g)lµ(K)
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for all g ∈ U(n). We write ValSU(n),l for the space of valuations of weight l. Clearly
ValSU(n),0 = ValU(n).

Taking g = −1, we see that a valuation µ of weight l is even (i.e. µ(−K) = µ(K)
for all K) if nl is even and odd (i.e. µ(−K) = −µ(K) for all K) if nl is odd.
Proposition 1.2. (a) The space ValSU(n) admits a splitting

ValSU(n) =
2⊕

l=−2

ValSU(n),l .

In particular, the weight of a valuation can only be 0,±1,±2.

(b) The weight of an Alesker product is the sum of the weights of the factors.

(c) If Φ : ValSU(n) → ValSU(n) is any linear operator commuting with the action
of U(n), then Φ preserves the weight.

(d) There are natural isomorphisms, given by complex conjugation,

ValSU(n),1 ∼= ValSU(n),−1, ValSU(n),2 ∼= ValSU(n),−2 . (3)
Let W ⊂ C

n be a (real) subspace of dimension n. By work of Tasaki, one can
associate m = 	n/2
 Kähler angles 0 ≤ θ1 ≤ · · · ≤ θm ≤ π/2 to W . These numbers
describe the orbits of the U(n)-action on Grn(Cn). We refer to section 2 and [T] for
their definition.

We choose an orthonormal basis w1, w2, . . . , wn of W . If the restriction of the
symplectic form of C

n to W is non-degenerated (this is the case if and only if n
is even and all Kähler angles are strictly less than π/2), we want w1 ∧ . . . ∧ wn to
induce the same orientation as the symplectic form.
Definition 1.3. The Θ-invariant of W is the number

Θ(W ) := det(w1, . . . , wn)
which is a complex number if the restriction of the symplectic form to W is non-
degenerated and which is an element of C/{±1} otherwise.

Proposition 1.4. (a) Let W1, W2 be two n-dimensional subspaces of C
n. There

exists g ∈ SU(n) with gW1 = W2 if and only if W1 and W2 have the same Kähler
angles and the same Θ-invariant.

(b) If W ∈ Grn(Cn) has Kähler angles θ1, . . . , θm and Θ := Θ(W ) then

|Θ| =
m∏

j=1

sin(θj) . (4)

Conversely, given 0 ≤ θ1 ≤ · · · ≤ θm ≤ π/2 and Θ satisfying (4), there exists
W ∈ Grn(Cn) with θj(W ) = θj , Θ(W ) = Θ.

(c) For all W ∈ Grn(Cn)
Θ(W⊥) = Θ(W ) . (5)

(d) If k �= n, then the orbits of U(n) and SU(n) on Grk(Cn) are the same.

An even valuation µ ∈ Valk(Cn) is completely determined by its restriction to
k-dimensional subspaces. More precisely, if W ∈ Grk(Cn), then µ|W is a multiple of
the k-dimensional volume on W . The proportionality factor is denoted by Klµ(W )
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and Klµ ∈ C(Grk(Cn)) is called the Klain function of µ. The resulting map Kl :
Val+k (Cn) → C(Grk(Cn)), µ 
→ Klµ is injective by a result of Klain [K].

In general, it is rather difficult to write down a valuation with given Klain func-
tion. However, a constant coefficient valuation (see [BF2] and subsection 5.1 for the
definition) can be easily recovered from its Klain function. If µ is such a valuation
and P ⊂ C

n a convex polytope, then
µ(P ) =

∑
F,dim F=k

γ(F ) vol(F ) Klµ(WF ),

where F runs over all k-dimensional faces of P ; WF ∈ Grk(Cn) is the linear space
parallel to F and γ(F ) is the normalized volume of the exterior angle at F .

Our main theorem is the following structure theorem for ValSU(n).

Theorem 1.5. There exists a unique constant coefficient valuation φ2 ∈ ValSU(n)
n

with Klain function
Klφ2 = Θ2. (6)

φ2 is even, of degree n and spans ValSU(n),2. If n = 2m is even, there exists a unique

constant coefficient valuation φ1 ∈ ValSU(n)
n with Klain function

Klφ1(W ) = Θ(W )
m∏

j=1

cos
(
θj(W )

)
, W ∈ Grn(Cn) . (7)

φ1 is even, of degree n and spans ValSU(n),1. If n is odd, then ValSU(n),1 = 0. In
particular, there are no odd invariant valuations and

ValSU(n)
k = ValU(n)

k if k �= n ;

dim ValSU(n)
n = dim ValU(n)

n +4 if n ≡ 0 mod 2 ;

dim ValSU(n)
n = dim ValU(n)

n +2 if n ≡ 1 mod 2 .

It is not clear a priori why SU(n)-invariant valuations of degree k �= n are U(n)-
invariant. Also the fact that such valuations are even is not trivial if n is odd. We
do not know if there is a geometric proof of these facts. Note, however, that the
second statement implies the first one: since the U(n)-orbit and the SU(n)-orbit on
Grk(Cn) agree for k �= n by Proposition 1.4, Klain’s injectivity theorem implies that
even SU(n)-invariant valuations of degree k �= n are U(n)-invariant.

Our approach is based on the fact that SU(n)-invariant valuations can be iden-
tified with a quotient of the space of SU(n)-invariant differential forms on the unit
sphere bundle of C

n. This is a consequence of Alesker’s irreducibility theorem [A2]
and the kernel theorem of [BB]. Here it is important that SU(n) acts transitively
on the unit sphere, compare [A7] and [F1] for more information.

Our main application is to the integral geometry of the group SU(n) acting
on C

n. Recall that for any group G from the lists (1) and (2), one may define an
injection kG : ValG → ValG ⊗ValG by

kG(µ)(K, L) =
∫

Ḡ
µ(K ∩ ḡL)dḡ , K, L ∈ K(V ) .

Then kG is a cocommutative, coassociative coproduct.
A detailed study of kU(n) (generalizing results of Park [P], Tasaki [T], Alesker

[A3] and Fu [F2]) is contained in [BF2]. In the next theorem, we identify ValU(n)
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with the corresponding subspace in ValSU(n). We let ωn be the volume of the n-
dimensional unit ball.
Theorem 1.6. The principal kinematic formulas for U(n) and SU(n) are related by

kSU(n)(χ) = kU(n)(χ) +
1
2n

(φ1 ⊗ φ̄1 + φ̄1 ⊗φ1) +
ω2

n

(n + 2)22n−1ω2n
(φ2 ⊗ φ̄2 + φ̄2 ⊗φ2)

if n is even and by

kSU(n)(χ) = kU(n)(χ) − ω2
n

(n + 2)22n−1ω2n
(φ2 ⊗ φ̄2 + φ̄2 ⊗ φ2)

if n is odd. If µ is a U(n)-invariant valuation of degree k > 0, then kSU(n)(µ) =
kU(n)(µ). If n is even, then

kSU(n)(φ1) = φ1 ⊗ vol + vol⊗φ1 .

For all n ≥ 2
kSU(n)(φ2) = φ2 ⊗ vol + vol⊗φ2 .

The interested reader may rewrite this theorem in terms of the algebra structure
of ValSU(n). By [F2] and Theorem 1.5, this graded algebra is generated by a unitarily
invariant valuation t of degree 1, a unitarily invariant valuation s of degree 2, the
two SU(n)-invariant valuations φ2, φ̄2 of degree n and, if n is even, the two SU(n)-
invariant valuations φ1, φ̄1 of degree n. The relations between these elements are
computed in section 6.

Plan of the paper. In section 2 we introduce the Θ-invariant and prove Proposi-
tion 1.4. In section 3 we construct a generating set of the algebra of SU(n)-invariant
differential forms on SC

n = C
n × S2n−1. We also establish some relations between

such forms. The following section 4 contains the proof of Proposition 1.2. The main
part of the paper is the proof of Theorem 1.5 in section 5. In the final section 6, we
recall the definition of Alesker’s product of valuations and its relation with kinematic
formulas, we prove Theorem 1.6 and we derive an additive kinematic formula.

Acknowledgements. I wish to thank Semyon Alesker and Joseph Fu for very
useful remarks on a first version of this manuscript. Proposition 1.2 (c) and some
other improvements were suggested by the anonymous referee.

2 The Orbit Space of Grk(C
n) under the SU(n)-Action

By work of Tasaki [T] each U(n)-orbit in Grn(Cn) is described by m := 	n/2
 Kähler
angles 0 ≤ θ1 ≤ · · · ≤ θm ≤ π.

Given W ∈ Grn(Cn), we consider the composition JW := πW ◦ J |W : W → W
of the orthogonal projection πW with the multiplication J by

√−1. Since JW is
skew-symmetric and ‖JW ‖ ≤ 1, each eigenvalue of JW is purely imaginary and has
absolute value at most 1. The multiple Kähler angle of W is the m-tuple (θ1, . . . , θm)
with

0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θm ≤ π
2

such that {± cos(θ1)i, . . . ,± cos(θm)i} (and 0 if n is odd) are the eigenvalues of
πW ◦ J |W .
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Two n-dimensional spaces belong to the same U(n)-orbit if and only if their
multiple Kähler angles agree [T]. Fixing a hermitian basis e1, . . . , en of C

n, a typical
space in such an orbit is given by

W :=
m⊕

j=1

[
Re2j−1 ⊕ R(cos(θj)ie2j−1 + sin(θj)e2j)

] (⊕
Ren

)
︸ ︷︷ ︸

only if n≡1 mod 2

. (8)

Now we turn our attention to the action of SU(n).
Let W ∈ Grn(Cn) have Kähler angles θ1, . . . , θm. If θm < π/2 and n is even, then

the restriction of the Kähler form is non-degenerated and its m-th power defines an
orientation of W . In all other cases, we fix an arbitrary orientation of W .

Fix a positively oriented orthogonal basis (w.r.t. to the Euclidean structure
on C

n) w1, . . . , wn of W and define
Θ(W ) := det(w1, . . . , wn) ∈ C .

If θm < π/2 and n is even, Θ(W ) ∈ C is independent of the choice of the positively
oriented orthonormal basis. In the other cases, Θ(W ) ∈ C/{±1} is independent of
the choice of the orientation and of the choice of the orthonormal basis.

We call Θ(W ) the Θ-invariant of W .
Remark. As was pointed out to us by J. Fu, the restriction of Θ2 to the Lagrangian
Grassmannian has values in S1 and is a primitive of the Maslov 1-form (compare
[MS, p. 53]).

Proof of Proposition 1.4. Fix a positively oriented orthonormal basis w1, . . . , wn of
W ∈ Grn(Cn). If g ∈ U(n), then gw1, . . . , gwn is a positively oriented basis of gW .
Hence

Θ(gW ) = det(g)Θ(W ) . (9)
In particular, Θ is SU(n)-invariant.

Conversely, suppose that W1 and W2 in Grn(Cn) have the same Kähler angles
and that Θ(W1) = Θ(W2).

If Θ(W1) = 0, then the complex subspace W C
1 generated by W1 is of positive

codimension. Let g ∈ U(n) be such that gW1 = W2. Let g0 be the element which
acts by multiplication by det(g)−1 on a one-dimensional complex subspace in the
complement of W C

1 and identically elsewhere. Then g0 fixes W1. Hence gg0W1 = W2
and gg0 ∈ SU(n).

Let us now assume that Θ(W1) �= 0. If n is even and θm < π/2, then (9) shows
that g ∈ SU(n).

If n is odd or if θm = π/2, we can only deduce that det(g) ∈ {±1}. In both
cases, there exists w1 ∈ W with Jw1 ⊥ W . We complete w1 to an orthonormal basis
{w1, . . . , wn} of W . Then w2, . . . , wn belong to the orthogonal complement of the
complex subspace Cw1. Let g0 ∈ U(n) be the element which acts by multiplication
by det(g) on Cw1 and by the identity on (Cw1)⊥. Then g0 fixes W1. It follows that
gg0W1 = W2 and gg0 ∈ SU(n). This proves the first part.

For the second assertion, we consider the space W defined in (8). Clearly

Θ(W ) =
m∏

j=1

sin(θj) .
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If W1 is any other space with these multiple Kähler angles, there exists g ∈ U(n)
with gW = W1. Then∣∣Θ(W1)

∣∣ =
∣∣ det(g)Θ(W )

∣∣ =
∣∣Θ(W )

∣∣ =
m∏

j=1

sin(θj) .

Conversely, given any Θ with |Θ| =
∏m

j=1 sin(θj), we find ξ ∈ S1 with
ξ · ∏m

j=1 sin(θj) = Θ. Taking g ∈ U(n) of determinant ξ and setting W1 := gW ,
we obtain that Θ(W1) = Θ.

It suffices to show the third assertion for one space in each U(n)-orbit. As
before, we take the space W of (8). The Θ-invariant of W equals

∏m
j=1 sin(θj). The

Θ-invariant of its orthogonal complement

W⊥ =
m⊕

j=1

[R(− sin(θj)ie2j−1 + cos(θj)e2j) ⊕ Rie2j ]
(⊕

Rien

)
︸ ︷︷ ︸

only if n≡1 mod 2

;

is again
∏m

j=1 sin(θj), which proves the third assertion.
If W ∈ Grk(Cn) for k < n, then the complex space generated by W has positive

codimension. It follows that for any u ∈ S1 there is an element g ∈ U(n) which
stabilizes W and which has determinant u. Therefore the SU(n)-orbit and the U(n)-
orbit on Grk(Cn) are the same. By passing to the orthogonal complements, the same
is true for k > n. �

3 Invariant Differential Forms

Let SC
n = C

n ×S2n−1 be the sphere bundle of C
n. We consider the diagonal action

of U(n) on SC
n. Park [P] described the algebra of U(n)-invariant forms on SC

n as
follows.

Let us introduce complex coordinates zj = xj + iyj , j = 1, . . . , n on C
n and use

induced coordinates (zj , ζj = ξj + iηj) on C
n × C

n. We consider SC
n as a subset of

C
n × C

n and define real-valued differential forms by

α =
1
2

n∑
j=1

(ζjdz̄j + ζ̄jdzj)

β =
i

2

n∑
j=1

(ζjdz̄j − ζ̄jdzj)

γ =
i

2

n∑
j=1

(ζjdζ̄j − ζ̄jdζj)

θ0 =
i

2

n∑
j=1

dζj ∧ dζ̄j

θs − iθ1 =
n∑

j=1

dzj ∧ dζ̄j − β ∧ γ + iα ∧ γ
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θ2 :=
i

2

n∑
j=1

dzj ∧ dz̄j − α ∧ β .

For all computations not involving exterior differential, it is convenient to use
the fact that SU(n) acts transitively on the unit sphere and that an invariant form
is thus determined by its value at the special point (0, e1) ∈ SC

n. At this point, the
above forms are given by

α = dx1

β = dy1

γ = dη1

θ0 =
n∑

j=2

dξj ∧ dηj

θs =
n∑

j=2

dxj ∧ dξj + dyj ∧ dηj

θ1 =
n∑

j=2

dxj ∧ dηj − dyj ∧ dξj

θ2 =
n∑

j=2

dxj ∧ dyj .

Proposition 3.1 [P]. The algebra of U(n)-invariant forms on SC
n is generated

by α, β, γ, θ0, θ1, θ2 and θs. They satisfy

dα = −β ∧ γ − θs

dβ = α ∧ γ + θ1

dγ = 2θ0

dθ0 = 0
dθ1 = 2α ∧ θ0 + γ ∧ θs

dθ2 = α ∧ θ1 + β ∧ θs

dθs = 2β ∧ θ0 − γ ∧ θ1 .

Let us introduce n − 1-forms χk, k = 0, . . . , n − 1 by setting

χk =
1

k!(n − k − 1)!

∑
π∈Sn

sgn(π)ζπ(1)dzπ(2) ∧ . . . ∧ dzπ(k+1) ∧ dζπ(k+2) ∧ . . . ∧ dζπ(n).

Here Sn is the group of permutations of {1, . . . , n} and sgn(π) denotes the sign of a
permutation π. For convenience, we set χk := 0 if k �∈ {0, . . . , n − 1}.
Proposition 3.2. The algebra of (complex-valued) SU(n)-invariant forms on SC

n

is generated by α, β, γ, θ0, θ1, θ2, θs, χk and χ̄k (k = 0, . . . , n − 1). Moreover,

dχk = (n − k)
(
(α + iβ) ∧ χk−1 + iγ ∧ χk

)
. (10)

For the proof, we need the following lemma.
Lemma 3.3. Consider V := C

n ⊕ C
n with the diagonal action of SU(n). Let

e0
1, . . . , e

0
n, e1

1, . . . , e
1
n be the standard basis of V , and denote the dual basis by
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e0∗
1 , . . . , e0∗

n , e1∗
1 , . . . , e1∗

n ∈ V ∗. Then Λ∗(V ∗)SU(n) is generated, as an algebra, by
the following elements:

Θ0 :=
i

2

n∑
j=1

e1∗
j ∧ ē1∗

j

Θ2 :=
i

2

n∑
j=1

e0∗
j ∧ ē0∗

j

Θs :=
1
2

n∑
j=1

(
e0∗
j ∧ ē1∗

j + ē0∗
j ∧ e1∗

j

)

Θ1 :=
i

2

n∑
j=1

(e0∗
j ∧ ē1∗

j − ē0∗
j ∧ e1∗

j )

Ξk :=
1

k!(n−k)!

∑
π∈Sn

sgn(π)e0∗
π(1) ∧ . . . e0∗

π(k) ∧ e1∗
π(k+1) ∧ . . . ∧ e1∗

π(n) , k = 0, . . . , n

Ξ̄k :=
1

k!(n−k)!

∑
π∈Sn

sgn(π)ē0∗
π(1) ∧ . . . ē0∗

π(k) ∧ ē1∗
π(k+1) ∧ . . . ∧ ē1∗

π(n) , k = 0, . . . , n .

Proof. We adapt the proof of [P, Th. 2.1.2] to our situation. Let φ ∈ Λk(V ∗)SU(n).
Write v = (v0, v1) for an element v ∈ V . By the first fundamental theorem of
invariant theory for SU(n) ([S, Th. 64]), φ(v1, . . . , vk) may be written as a polynomial
in the real and imaginary parts of the hermitian scalar products

(va
i , vb

j) , i, j = 1, . . . , k , a, b = 0, 1 ,

the determinant functions
det(va1

i1
, . . . , van

in
) , i1, . . . , in ∈ {1, . . . , k} , a1, . . . , an ∈ {0, 1}

and their conjugates. Since φ is multilinear, each lower index i ∈ {1, . . . , k} appears
exactly once in each monomial.

We apply the alternation operator
Alt : ⊗∗V ∗ → Λ∗V ∗

to such an expression. Since Alt is linear, Alt(ψ ⊗ ϑ) = c Alt(ψ) ∧ Alt(ϑ) and
Alt φ = φ, we deduce that φ is the wedge product of the alternations of the real
and imaginary parts of the hermitian scalar products and the determinant func-
tions and their conjugates. These alternations are - up to constants - the elements
Θ0, Θ1, Θ2, Θs, Ξk, Ξ̄k. �

Proof of Proposition 3.2. First note that SU(n) acts transitively on the unit sphere.
If ω is an invariant form on SC

n, then ω is determined by its value at the point
(0, e1). The tangent space at this point splits as

T(0,e1)SC
n = Ce1 ⊕

n⊕
j=2

Cej ⊕ Rie1 ⊕
n⊕

j=2

Cej .

The action of the stabilizer at (0, e1) on the first and third factor is trivial and is the
diagonal action on the second and fourth factor. Note that α + iβ is the projection
on the first factor and γ is the projection on the third factor. The first statement



GAFA A HADWIGER-TYPE THEOREM FOR THE SPECIAL UNITARY GROUP 365

of the proposition thus follows from the lemma. Equation (10) is easily obtained by
comparing the restriction to T(0,e1) of both sides. �

Proposition 3.4. For k = 1, . . . , n − 1
χk ∧ θ0 = − i

2χk−1 ∧ (θs − iθ1) (11)

χk−1 ∧ θ2 = i
2χk ∧ (θs + iθ1) . (12)

If k + l ≥ n, then
χk ∧ (θs − iθ1)l = 0 . (13)

If l > k, then
χk ∧ (θs + iθ1)l = 0 . (14)

Proof. Easy computation. �

4 Weight Decomposition

Proof of Proposition 1.2. Recall from Definition 1.1 that a valuation µ ∈ ValSU(n)

has weight l if µ(gK) = det(g)lµ(K) for all g ∈ U(n) and all compact convex
sets K. We shall show that each valuation can be decomposed into valuations of
weight ±2,±1 or 0.

Let us say that a differential form ω ∈ Ω∗(SC
n)SU(n) has weight l if g∗ω =

(det g)lω for all g ∈ U(n). Clearly, α, β, γ, θ0, θ1, θ2, θs are of weight zero (since they
are invariant under U(n)), while χk is of weight 1 and χ̄k is of weight −1. The
weight is additive under wedge products and invariant under differentiation. Each
invariant form ω can be decomposed in a unique way as

ω =
∞∑

l=−∞
ωl , (15)

where ωl is of weight l and where only finitely many ωl are non-zero.
The only SU(n)-invariant valuation in degree 2n is the volume, which is of

weight 0. If µ is an invariant valuation of degree k < 2n, then we represent µ

by ω ∈ Ω2n−1(SC
n)SU(n), i.e. if nc(K) is the normal cycle of K (compare [Z] for the

normal cycle of compact convex sets), then
µ(K) = nc(K)(ω) .

The fact that such an expression exists is a consequence of Alesker’s irreducibility
theorem [A2]. Note, however, that ω is not unique in general. The forms inducing
the trivial valuation are characterized in [BB]. All we need here is that exact forms
and vertical forms (i.e. forms vanishing on the contact distribution) induce the zero
valuation; which is a triviality since nc(K) is a Legendrian cycle.

In the case n = 2, any product of 3 forms of weight 1 vanishes (since there are
only two such forms, χ0 and χ̄0, and they are of degree 1). In the case n > 2, we have
3 deg χk = 3(n− 1) > 2n− 1 = deg ω, hence ω cannot contain three or more factors
of weight 1. In both cases it follows that the non-zero terms in the decomposition
(15) can only appear for l ∈ {0,±1,±2}.

Let µl be the valuation represented by ωl. Clearly, µl has weight l and µ =∑2
l=−2 µl. The uniqueness of such a decomposition is clear. This proves (a).
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Statement (b) follows from the fact that a linear automorphism on a vector space
V induces an algebra automorphism on Val(V ).

Statement (c) is trivial: µ is of weight l if and only if gµ = (det g)−lµ for all
g ∈ U(n). If Φ commutes with the action of U(n), then

gΦ(µ) = Φ(gµ) = (det g)−lΦ(µ) , g ∈ U(n) ,

hence Φ(µ) is again of weight l.
In order to prove (d), we note that if µ is of weight l, then µ̄ is of weight −l:

µ̄(gK) = det g
l
µ̄(K) = (det g)−lµ̄(K) . �

5 Classification of SU(n)-Invariant Valuations

In this section, we prove Theorem 1.5.

5.1 Construction of φ2. Let ωn be the volume of the n-dimensional unit ball.
We claim that the valuation

φ2(K) :=
(−1)n+1i

nωn
nc(K)(β ∧ χ0 ∧ χn−1)

satisfies (6). Note that

β∧χ0∧χn−1 ≡ (−1)nidz1∧ . . . dzn∧
n∑

j=1

(−1)j+1ζjdζ1∧ . . .∧ d̂ζj ∧ . . .∧dζn mod α .

It follows that φ2 is a constant coefficient valuation in the sense of [BF2]. In
fact, the right-hand side of this relation clearly extends to a form on C

n ⊕C
n whose

exterior differential has constant coefficients.
Let W ∈ Grn(Cn) and denote the unit ball inside W by BW .
The part of bidegree (n, n − 1) of nc(BW ) is given by [[BW ]] × [[∂BW ]].
It follows that

φ2(BW ) =
(−1)n+1i

nωn
nc(BW )(β ∧ χ0 ∧ χn−1)

=
1

nωn
[[BW ]](dz1 ∧ . . . dzn)[[∂BW ]]

( n∑
j=1

(−1)j−1ζjdζ1 ∧ . . . ∧ d̂ζj ∧ . . . ∧ dζn

)

= vol(BW )Θ(W )Θ(W⊥) .

Using Proposition 1.4 we thus obtain
Klφ2(W ) = Θ(W )2.

5.2 Classification of invariant valuations of weight 2. A valuation of
weight 2 must be represented by a form ω with g∗ω = (det g)2ω for all g ∈ U(n).
The vector space of such forms is generated by α ∧ χj ∧ χk (which induces the zero
valuation), β ∧ χj ∧ χk and γ ∧ χj ∧ χk with j, k = 0, . . . , n − 1.

It follows readily from the definition that χj ∧ χk = 0 unless j + k = n − 1 and
that the forms χj ∧ χn−j−1, j = 0, . . . , n − 1, are all proportional. From (10) we
obtain that

d(γ ∧ χ0 ∧ χn−1) = 0 .
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Therefore γ ∧χ0 ∧χn−1 represents the zero valuation. It follows that each valuation
of weight 2 can be represented by a multiple of the form β∧χ0∧χn−1, which implies
that φ2 spans ValSU(n),2.

5.3 Construction of φ1. Suppose that n = 2m is even. We claim that

φ1(K) :=
1

nπm
nc(K)(χ0 ∧ θm

2 )

satisfies (7).
Since nc(P ) is Legendrian, we can replace θ2 by θ2 + α ∧ β = i

2
∑n

j=1 dzj ∧ d̄zj .
It easily follows that φ1 is a constant coefficient valuation.
Let W ∈ Grn(Cn). If the restriction of the symplectic form to W is non-

degenerated, we fix the orientation given by the symplectic form.
Then

[[BW ]]
(
(θ2 + α ∧ β)m

)
= m! vol(BW )

m∏
j=1

cos θj(W ) .

It thus follows that

φ1(BW ) =
1

nπm
nc(BW )

(
χ0 ∧ (θ2 + α ∧ β)m

)

=
1

nπm
[[BW ]]((θ2 + α ∧ β)m)[[∂BW ]]

( n∑
j=1

(−1)j−1ζjdζ1 ∧ . . . ∧ d̂ζj ∧ . . . ∧ dζn

)

= vol(BW )
m∏

j=1

cos θj(W )Θ(W ) .

5.4 Classification of invariant valuations of weight 1 if n is even. Let us
next show that φ1 generates ValSU(n),1. If µ ∈ ValSU(n),1

k with k �= n, then we may
apply Klain’s injectivity theorem [K] (note that µ is even) and Proposition 1.4 (4)
to deduce that µ is U(n)-invariant. Therefore µ ∈ ValU(n) ∩ValSU(n),1 = {0}.

Hence we may suppose that µ ∈ ValSU(n),1
n . Let µ be represented by a form ω of

bidegree (n, n − 1). Proposition 3.4 implies that, up to multiples of α and dα, ω is
a linear combination of the forms

χm ∧ θm
1 and β ∧ γ ∧ χm ∧ θm−1

1 .

We will make frequent use of the relation
θs ≡ −β ∧ γ mod (α, dα) . (16)

Using (13) and (16), we obtain that
χm ∧ θm

1 ≡ miβ ∧ γ ∧ χm ∧ θm−1
1 mod (α, dα) .

Hence χm ∧ θm
1 and β ∧ γ ∧ χm ∧ θm−1

1 induce the same valuation (up to a
constant). Since φ1 is a non-zero valuation of degree n and weight 1, it follows that
dim ValSU(n),1

n = 1.

5.5 Classification of invariant valuations of weight 1 if n is odd. Suppose
that n = 2m + 1 is odd. Let µ be a valuation of weight 1 and of degree n. We
represent µ by integration of an invariant differential form ω of bidegree (n, n − 1)
and of weight 1.
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Using Proposition 3.4, we get that ω is – up to multiples of α and dα – a linear
combination of the forms

β ∧ χm ∧ θm
1 and γ ∧ χm+1 ∧ θm

1 .

From (13) we see that χm+1 ∧ θm
1 is divisible by θs. Therefore,

γ ∧ χm+1 ∧ θm
1 ≡ 0 mod (α, dα) . (17)

Using Proposition 3.1, (10) and (17), we compute that
d(χm+1 ∧ θm

1 ) ≡ miβ ∧ χm ∧ θm
1 mod (α, dα) .

Since multiples of α and dα and exact forms induce the zero valuation, the same
holds true for β ∧ χm ∧ θm

1 and γ ∧ χm+1 ∧ θm
1 . It follows that dim ValSU(n),1

n = 0.
From the hard Lefschetz theorem [BB] we deduce that dim ValSU(n),1

k = 0 for all
k = 0, . . . , 2n.

This finishes the proof of Theorem 1.5.

6 Kinematic Formulas

6.1 Some facts about the product structure and kinematic formulas.
Alesker has shown that there is a dense subspace in the space of all translation-
invariant valuations on which a natural product structure exists. In fact, this product
can even be extended to the much larger space of smooth valuations on a smooth
manifold. We refer to [A4] and [A7] for the definition and the properties of this
product.

If G is a compact subgroup of the orthogonal group acting transitively on the
unit sphere, then the kinematic formulas for G can be obtained from the product
structure of the space ValG of G-invariant and translation-invariant valuations. This
important fact is explained in [F2] and [BF1] and used in a crucial way in the
determination of kU(n) in [BF2].

Recall that SC
n is a contact manifold of dimension 2n− 1 with a global contact

form α. Given an n − 1-form ω, there exists a unique vertical form α ∧ ξ such that
d(ω+α∧ξ) is vertical. The operator Dω := d(ω+α∧ξ) is a second-order differential
operator which was introduced by Rumin [R]. It was first used in integral geometry
in [BB].

In order to compute the product structure on ValSU(n), we need the following
corollary of Theorem 4.1. from [B2].
Proposition 6.1. Let µ1, µ2 ∈ ValSU(n) be of degree n. Suppose that µ1, µ2 are
represented by invariant forms ω1, ω2 respectively. Then

µ1 · µ2 = (−1)n 2πn

(n − 1)!
c vol ,

where the constant c is determined by

ω1 ∧ Dω2 = cd volSCn .

The factor (−1)n is due to the fact that each SU(n)-invariant valuation of de-
gree n is even and thus lies in the (−1)n-eigenspace of the Euler–Verdier involu-
tion σ, compare [B1]. The factor 2πn

(n−1)! is the volume of the 2n − 1-dimensional
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unit sphere. If π : SC
n → C

n is the natural projection map, then we have
π∗d volSCn = 2πn

(n−1)!d volCn .
By Proposition 1.2, the product of a unitarily invariant valuation of positive

degree with φ1 or φ2 or their complex conjugates is zero. Using Proposition 1.2 and
the fact that valuations outside the middle degree are of weight 1, we obtain that
the only non-trivial products are those in weight 0 as well as φ1 · φ̄1 and φ2 · φ̄2.

6.2 Computation of φ1 · φ̄1. Let n = 2m be even. We know that φ1 is repre-
sented by ω := 1

nπm χ0 ∧ θm
2 .

Let us compute the Rumin differential of ω. Computing modulo α and using
(16), we obtain

dω ≡ i

πm
γ ∧ χ0 ∧ θm

2 +
1

2πm
β ∧ χ0 ∧ θs ∧ θm−1

2

=
im+1

(2π)m
γ ∧ χm ∧ (

(iθ1 + θs)m − (iθ1 − θs)m
) − 1

2πm
dα ∧ β ∧ χ0 ∧ θm−1

2

= −dα ∧
(

2im+1

(2π)m
γ ∧ χm ∧

∑
j≡1(2)

im−j

(
m

j

)
θj−1
s ∧ θm−j

1 +
1

2πm
β ∧ χ0 ∧ θm−1

2

)
.

Setting

ξ :=
2im+1

(2π)m
γ ∧ χm ∧

∑
j≡1(2)

im−j

(
m

j

)
θj−1
s ∧ θm−j

1 +
1

2πm
β ∧ χ0 ∧ θm−1

2

we thus have

Dω = d(ω + α ∧ ξ) = α ∧
(

1
2πm

χ0 ∧ θ1 ∧ θm−1
2 − dξ

)
.

Since we want to compute ω̄ ∧ Dω, we only need to look at terms in Dω which
are divisible by α ∧ β ∧ γ and which are not annihilated by χ̄0. Since χ̄0 ∧ θ0 = 0,
there are no terms coming from the differentiation of θ1 and θs in the first summand
of ξ. We also note that χ̄0∧ (θs− iθ1) = 0. Using the relations from Proposition 3.4,
we compute

ω̄ ∧ Dω = ω̄ ∧ α ∧
(

1
2πm

χ0 ∧ θ1 ∧ θm−1
2 − dξ

)

= −ω̄ ∧ α ∧ dξ

=
2im+1

(2π)m
ω̄ ∧ α ∧ γ ∧ dχm ∧

∑
j≡1(2)

im−j

(
m

j

)
θj−1
s ∧ θm−j

1

+
1

2πm
ω̄ ∧ α ∧ β ∧ dχ0 ∧ θm−1

2

=
(−1)m

(π)m
ω̄ ∧ α ∧ γ ∧ dχm ∧ θm−1

1 +
mi

πm
ω̄ ∧ α ∧ β ∧ γ ∧ χ0 ∧ θm−1

2

=
(−1)mmi

πm
ω̄ ∧ α ∧ γ ∧ β ∧ χm−1 ∧ θm−1

1 +
mi

πm
ω̄ ∧ α ∧ β ∧ γ ∧ χ0 ∧ θm−1

2

=
(−1)mmi

(2i)m−1πm
ω̄ ∧ α ∧ γ ∧ β ∧ χm−1 ∧ (θs + iθ1)m−1

+
mi

πm
ω̄ ∧ α ∧ β ∧ γ ∧ χ0 ∧ θm−1

2
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=
i

πn
α ∧ β ∧ θn−1

2 ∧ γ ∧ χ0 ∧ χ̄0 .

One easily sees that iγ ∧ χ0 ∧ χ̄0 equals 2n−1 times the volume form of the unit
sphere in C

n, while α ∧ β ∧ θn−1
2 equals (n − 1)! times the volume form of C

n.
Therefore

ω̄ ∧ Dω =
2n−1(n − 1)!

πn
d volSCn .

From Proposition 6.1 we deduce that
φ̄1 · φ1 = 2n vol .

6.3 Computation of φ2 · φ̄2. Let n ≥ 2 be arbitrary. The valuation φ2 is
represented by the form ω := (−1)n+1i

nωn
β ∧ χ0 ∧ χn−1. We get

D(β ∧ χ0 ∧ χn−1) = d(β ∧ χ0 ∧ χn−1 − (n + 1)iα ∧ χ0 ∧ χn−1)
= −n(n + 2)α ∧ γ ∧ χ0 ∧ χn−1 ,

from which we deduce that

ω̄ ∧ Dω = −n + 2
nω2

n

β ∧ χ̄0 ∧ χ̄n−1 ∧ α ∧ γ ∧ χ0 ∧ χn−1

=
(−1)n+1(n + 2)

nω2
n

α ∧ β ∧ χn−1 ∧ χ̄n−1 ∧ γ ∧ χ0 ∧ χ̄0 .

The form α ∧ β ∧ χn−1 ∧ χ̄n−1 is 2n−1in
2−1 times the volume form of C

n; while
γ ∧χ0 ∧ χ̄0 equals 2n−1in

2−1 times the volume form of the unit sphere S2n−1. Hence

ω̄ ∧ Dω =
n + 2
nω2

n

4n−1d volSCn

and thus
φ̄2 · φ2 =

(−1)n(n + 2)22n−1ω2n

ω2
n

vol .

We remark that the pairing (µ1, µ2) 
→ µ̄1 ·µ2 on ValSU(n)
n is not positive definite

if n is odd. Equivalently, the pairing (µ1, µ2) 
→ µ1 · µ2 on real-valued valuations in
ValSU(n)

n is not positive definite. In contrast to this, it was shown in [BF2] that the
restriction of this pairing to ValU(n)

n is positive definite for all n.

6.4 Kinematic formulas. The principal kinematic formula for SU(n) follows
from 6.2 and 6.3 and Theorem 2.6. of [F2]:

kSU(n)(χ) = kU(n)(χ) +
(−1)nω2

n

(n + 2)22n−1ω2n
(φ2 ⊗ φ̄2 + φ̄2 ⊗ φ2)(
+

1
2n

(φ1 ⊗ φ̄1 + φ̄1 ⊗ φ1) if n is even
)

.

If µ is a U(n)-invariant valuation of degree k > 0, then µ · φ1 = 0 and µ · φ2 = 0
by Proposition 1.2 and the fact that valuations of non-zero weight appear only in
degree n. Using Lemma 2.4. of [F2], we obtain

kSU(n)(µ) = kU(n)(µ) .

By the same lemma,
kSU(n)(φ2) = φ2 ⊗ vol + vol⊗φ2 ,
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for all n, and
kSU(n)(φ1) = φ1 ⊗ vol + vol⊗φ1

for even n.
This establishes the whole array of kinematic formulas for SU(n) and finishes

the proof of Theorem 1.6.

6.5 Additive kinematic formula.

Proposition 6.2. For all compact convex sets K, L ⊂ C
n, the following additive

kinematic formula holds:∫
SU(n)

vol(K + gL)dg =
∫

U(n)
vol(K + gL)dg

+
(−1)nω2

n

(n + 2)22n−1ω2n
(φ2(K)φ̄2(L) + φ̄2(K)φ2(L))(

+
1
2n

(φ1(K)φ̄1(L) + φ̄1(K)φ1(L)) if n is even

)
.

Proof. Since the Fourier transform acts trivially on ValSU(n)
n , the proposition follows

immediately from Theorem 1.7. of [BF1]. �

Higher additive kinematic formulas (where vol under the integral is replaced
by another SU(n)-invariant valuations) can be obtained from the proposition by
applying the results of [BF1]. We leave the details to the reader.
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