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TREES AND MARKOV CONVEXITY
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Abstract. We show that an infinite weighted tree admits a bi-Lipschitz
embedding into Hilbert space if and only if it does not contain arbitrarily
large complete binary trees with uniformly bounded distortion. We also
introduce a new metric invariant called Markov convexity, and show how
it can be used to compute the Euclidean distortion of any metric tree up
to universal factors.

1 Introduction

Given two metric spaces (X, dX ), (Y, dY ), and a mapping f : X → Y , we
denote the Lipschitz constant of f by ‖f‖Lip. If f is injective then the
(bi-Lipschitz) distortion of f is defined as dist(f) = ‖f‖Lip · ‖f−1‖Lip. The
smallest distortion with which X embeds into Y is denoted cY (X), i.e.
cY (X) = inf{dist(f) : f : X →֒ Y }. When Y = Lp for some p ≥ 1 we use
the shorter notation cp(X) = cLp(X). The parameter c2(X) is known in
the literature as the Euclidean distortion of X.

The ubiquitous problem of embedding metric spaces into “simpler”
spaces occurs in various aspects of functional analysis, Riemannian ge-
ometry, group theory, and computer science. In most cases low distortion
embeddings are used to “simplify” a geometric object by representing it
as a subset of a better understood geometry. In other cases, embeddings
are used to characterize important invariants such as various notions of
dimensionality in metric spaces, and superreflexivity, type and cotype of
normed spaces. More recently, striking applications of bi-Lipschitz embed-
dings were found in computer science, where the information obtained from
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concrete geometric representations of finite spaces is used to design efficient
approximation algorithms and data structures.

The present paper is devoted to the study of the Euclidean (and Lp)
distortion of trees. In what follows, by a metric tree we mean the shortest-
path metric induced on the vertices of a weighted graph-theoretical tree
T = (V,E). In fact, all of our results will hold true for arbitrary subsets
of metric trees, which are characterized among all metric spaces by the
well-known four-point condition: For every four points x, y, u, v two of the
three numbers {d(x, y) + d(u, v), d(x, u) + d(y, v), d(x, v) + d(y, u)} are the
same, and that number is at least as large as the third (see [Dr]). But,
because our statements are asymptotic in nature, this does not increase
the generality of our results, since Gupta [Gu] proved that any finite subset
of a metric tree is bi-Lipschitz equivalent to a metric tree with distortion
at most 8. The R-tree corresponding to a tree T is the one-dimensional
simplicial complex induced by T , i.e. the path metric obtained by replacing
each edge in T by an interval whose length is the weight of the edge. The
R-tree corresponding to T will be denoted TR. In what follows, when we
refer to an R-tree we mean an R-tree corresponding to some metric tree.
We will see later that, for every metric tree T and every p ≥ 1, cp(T ) has
the same order of magnitude as cp(TR), so in most cases the distinction
between metric trees and R-trees will not be important, though in a few
instances we will need to distinguish the two notions.

Let Bk denote the complete binary tree of depth k (with unit edge
weights). In the famous paper [Bo], Bourgain proved that the Euclidean
distortion of Bk is Θ

(√
log k

)
. Moreover, he showed that a Banach space

Y is superreflexive (i.e. admits an equivalent uniformly convex norm) if
and only if limk→∞ cY (Bk) = ∞. This remarkable characterization of a
linear property of Banach spaces in terms of their metric structure sparked
a considerable amount of work on problems of a similar flavor (see the
introduction of [MeN] for more information on this topic). Among the
corollaries of Bourgain’s work is the following dichotomy: For a Banach
space Y either cY (Bk) = 1 for all k, or there exists α > 0 such that
cY (Bk) = Ω ((log k)α) (similar phenomena are known to hold in a few other
cases – see [BoMW], [MeN]). Moreover, Bourgain used his theorem to solve
a question posed by Gromov, showing that the hyperbolic plane does not
admit a bi-Lipschitz embedding into Hilbert space. Similar applications of
Bourgain’s theorem to prove that certain metric spaces do not embed into
Hilbert space were obtained by Benjamini and Schramm [BeS] in the case
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of graphs with positive Cheeger constant, and by Leuzinger [Le] in the case
of certain Tits buildings.

The bi-Lipschitz structure of trees has been studied extensively. Trees
are the “building blocks” of hyperbolic geometry, and embeddings of cer-
tain non-positively curved spaces into products of trees are used in several
contexts (see for example [D], [BuS], [NPSS], [LS]). Similar results (known
as “probabilistic embeddings into trees”) are a powerful tool in computer
science (see for example [Bar], [FRT]). We refer to [Dr], [M1], [JLPS] for
other results on the Lipschitz structure of trees. In spite of these appli-
cations, and the vast amount of work on trees in the Lipschitz category,
the following natural problem remained open: When does an infinite met-
ric tree embed with finite distortion into Hilbert space? One of the main
results of this paper is the following answer to this question.

Theorem 1.1. Let T = (V,E) be an infinite metric tree. Then the
following conditions are equivalent:

1. c2(T ) = ∞;

2. supk∈N cT (Bk) < ∞;

3. For every k ∈ N, cT (Bk) = 1.

In other words, a metric tree admits a bi-Lipschitz embedding into
Hilbert space if and only if it does not bi-Lipschitzly contain arbitrarily
large complete binary trees. Thus there is a unique obstruction to a tree
being non-Euclidean. Similar “unique obstruction” results are known only
in very few cases: As we mentioned above, Bourgain [Bo] proved that
complete binary trees are the unique obstruction to a Banach space being
superreflexive; Bourgain, Milman and Wolfson [BoMW] showed that Ham-
ming cubes are the unique obstruction to a metric space having non-trivial
type; Mendel and Naor [MeN] showed that ℓn

∞ integer grids are the unique
obstruction to a metric space having finite cotype; Thomassen [T] proved
that certain transient graphs must contain transient trees, and Benjamini
and Schramm [BeS] proved that a graph with positive Cheeger constant
must contain a tree with positive Cheeger constant. Another result in the
spirit of Theorem 1.1 is the tree Szemeredi theorem of Furstenberg and
Weiss [FuW]: A subset of positive density in the infinite complete binary
tree must contain arbitrarily large copies of complete binary trees.

It is not surprising that Theorem 1.1 is a “local” result, in the sense that
it deals with finite subsets of the metric tree T . Indeed, it is well known that
a metric space embeds into Hilbert space if and only if all of its finite subsets
do. It is thus natural to expect characterizations in the spirit of Theorem 1.1
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to be local. Let us say that a metric space X is finitely representable in
a metric space Y if there exists a constant D ≥ 1 such that for every
finite subset F ⊆ X we have cY (F ) ≤ D (this is an obvious adaptation of
standard terminology from Banach space theory). Thus, denoting by B∞

the infinite unweighted complete binary tree, Theorem 1.1 can be rephrased
as follows: A metric tree T admits a bi-Lipschitz embedding into Hilbert
space if and only if B∞ is not finitely representable in T . The following
section contains optimal quantitative versions of this result, and explains
the ingredients of its proof.

1.1 Markov convexity and quantitative bounds. Quantitative
bounds on the Euclidean distortion of trees were obtained in [LinMS], [M2],
[LinS], [GuKL]. In particular, Matoušek proved in [M2] that for any n-
point metric tree T we have c2(T ) = O

(√
log log n

)
. This result cannot

be improved due to Bourgain’s lower bound for the complete binary tree.
Gupta, Krauthgamer and Lee [GuKL] obtained upper bounds on the Eu-
clidean distortion of trees in terms of their doubling constant; in particular,
they showed that every doubling tree admits a bi-Lipschitz embedding into
a finite-dimensional Euclidean space. We present a new simpler proof of
this fact in section 2.3, where we also recall the definition of the doubling
constant.

We shall now state an optimal quantitative version of Theorem 1.1.
Given a metric space (X, dX ), k ∈ N and c > 1, we denote

BX(c) = max
{
k ∈ N : cX(Bk) < c

}
.

In what follows we write A <∼ B to mean A = O(B). If A <∼ B and B <∼ A
then we write A ≈ B.

Theorem 1.2. Let T be an arbitrary metric tree. Then for every c > 1,
1

c

√
log BT (c) <∼ c2(T ) <∼

√
c

c − 1
· BT (c) .

The lower bound in Theorem 1.2 is simply Bourgain’s lower bound,
and is therefore optimal. Somewhat surprisingly, the upper bound in
Theorem 1.2 cannot be improved. The construction of a family of trees,
which we call Cantor trees, exhibiting this is presented in section 3.3.3.

It follows that in order to obtain tight bounds on the Euclidean distor-
tion of a given metric tree T we need an invariant which is more refined
than the size of the biggest binary tree contained in T . This is achieved via
the following definition. Let {Xt}∞t=0 be a Markov chain on a state space Ω.

Given an integer k ≥ 0 we denote by {X̃t(k)}∞t=0 the process which equals
Xt for time t ≤ k, and evolves independently (with respect to the same
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transition probabilities) for time t > k. Observe that for k < 0, X̃t(k) and
Xt evolve independently for all t ≥ 0.

Definition 1.3. Let (X, d) be a metric space and p > 0. We shall say
that (X, d) is Markov p-convex with constant Π if for every Markov chain
{Xt}∞t=0 on a state space Ω, and every f : Ω → X, we have for every m ∈ N,

m∑

k=0

2m∑

t=1

E[d(f(Xt), f(X̃t(t − 2k)))p]

2kp
≤ Πp

2m∑

t=1

E
[
d(f(Xt), f(Xt−1))

p
]
. (1)

The least constant Π above is called the Markov p-convexity constant
of X, and is denoted Πp(X). We shall say that X is Markov p-convex
if Πp(X) < ∞.

To understand this notion, recall that the chains Xt and X̃t(t− 2k) run
together for the first t − 2k steps, and then evolve independently for the
remaining 2k steps. Thus the left-hand side in (1) is measuring the sum over
many “dyadic scales” k ∈ {0, 1, 2, . . .} of the average of the pth power of the
normalized “drift” of the chain in X, with respect to scale k. We will say
that X has non-trivial Markov convexity if X is Markov p-convex for some
p < ∞. We note that L2 is Markov 2-convex. More generally, the name
comes from the fact that if X is a Banach space which admits an equivalent
uniformly convex norm whose modulus of convexity is of power type p, then
X is also Markov p-convex. These results are proved in section 3.1.

In Bourgain’s paper [Bo] there is an implicit “non-linear” notion of
uniform convexity related to the presence of complete binary trees. For the
results in this paper, we require the above “Markov variant,” analogous to
Ball’s notion of Markov type [Ba]. The search for Poincaré-type inequalities
on metric spaces which are analogs of classical Banach space invariants
have been fruitfully investigated by several authors – we refer to the papers
[E], [G], [BoMW], [P2], [Ba], [NS], [NPSS], [MeN] for a discussion of this
research direction, to which Definition 1.3 belongs. The following theorem
shows that Markov convexity determines the Euclidean distortion of a tree,
up to universal factors.

Theorem 1.4. Let T be a metric tree. Then c2(T ) ≈ Π2(TR).

Recall that TR denotes the R-tree corresponding to T . See Remark 3.3
for a discussion of why we have to pass to R-trees in Theorem 1.4.

We also obtain a combinatorial way to compute the Euclidean distortion
of any tree. Let T = (V,E) be a metric tree, and let χ : E → Z be an edge
coloring. We call χ a monotone coloring if all of its color classes are paths
contained in a root-leaf path (such paths are called monotone paths in what
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follows). For δ ∈ (0, 1), the coloring χ is called δ-strong if it is monotone
and for every u, v ∈ V at least half of the length of the path joining u and v
can be covered by color classes of length at least δdT (u, v). We define δ∗(T )
to be the largest δ for which T admits a δ-strong coloring. The following
theorem shows that δ∗(T ) determines the Euclidean distortion of T .

Theorem 1.5. Let T be a metric tree. Then

c2(T ) ≈
√

1 + log

(
1

δ∗(T )

)
.

The upper bound on c2(T ) in Theorem 1.5 continues a theme that also
appeared in [LinMS], [M2], [GuKL]: Certain edge colorings can be used to
construct embeddings into L2. Specifically, our proof draws on ideas from
Matoušek’s embedding [M2]. But, Matoušek’s argument requires colorings
with a small number of colors, the existence of which depends only on
the topology of T and does not take into account the edge lengths. Our
argument for the upper bound, which is contained in Theorem 2.6, builds
on Matoušek’s proof while taking the metric into consideration, and is
therefore more involved.

The lower bound on c2(T ) in Theorem 1.5 goes through Theorem 1.4.
We construct a special coloring of T , and show that if the coloring is not
δ-strong, then we can construct a Markov chain on T which wanders too
quickly for T to have a small Markov 2-convexity constant. This is done by
locating a special type of subtree of T , which we call a weak prototype – see
section 3.3 for the definition, where it is shown that weak prototypes cannot
have good Markov convexity properties. This “reconstruction paradigm” is
inspired by a result of [GuKL] which shows that if a certain procedure fails
to produce a good coloring, then the tree under consideration must have
a large doubling constant. Our approach is able to pick out significantly
more delicate sub-structures (e.g. embedded complete binary trees or the
aforementioned “weak prototypes”). A key difficulty that arises in our
setting involves choosing the “scale” at which the required weak prototype
embeds into T . This “scale selection” argument is a central part of our proof
of Theorem 1.2, Theorem 1.4, and Theorem 1.5 – we refer to section 2.2
and section 4 for the details.

We remark that all of our results can be applied to compute the Lp

distortion of trees. Namely, we show that for every p, c > 1 and every
metric tree T ,

1

c

(
log BT (c)

)min{1/p,1/2} <∼ cp(T ) <∼
(

c

c − 1
· BT (c)

)min{1/p,1/2}

, (2)
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and

cp(T ) ≈ Πmax{p,2}(TR) ≈
[
log

(
2

δ∗(T )

)]min{1/p,1/2}

, (3)

where the implied constants may depend only on p; see Theorem 4.1.

The use of Markov convexity as a metric invariant, and thus a tool
for proving distortion lower bounds, is not limited to the case of trees.
In section 3.2 we investigate classes of spaces which can be shown not
to embed into L2, by analyzing their Markov convexity. In particular,
we prove a lower bound on the Euclidean distortion of balls of finitely
generated groups (equipped with the word metric) which admit a bounded
non-constant harmonic function. We also bound from below the Euclidean
distortion of the lamplighter group over the cycle (see section 3.2 for the
definition). In a future paper, which will be devoted to embeddings of the
lamplighter group, we use the methods of [NPSS] to show that this group
has Markov type 2 in the sense of Ball [Ba]. Thus, Markov convexity is the
only known invariant which demonstrates that this group does not embed
well into Hilbert space.

Our results, specifically Theorem 1.5, have algorithmic implications.
Given an n-point metric space X, the problem of efficiently computing its
distortion in a class of metric spaces up to a small factor has attracted a lot
of attention in recent years, and is known as the “relative embedding” prob-
lem. We refer to [BCIS] and the references therein for a discussion of this
topic, and also for some hardness results. The Euclidean distortion of an n-
point metric space can be computed in polynomial time, since this problem
can be cast as a semidefinite program [LinLR]. Hence Theorem 1.5 yields
a polynomial time algorithm for estimating the parameter log(1/δ∗(T )) up
to a constant factor for any tree T . In conjunction with (3), this gives a
polynomial time algorithm which computes the Lp distortion of any tree
up to a universal constant factor. Note that it not known whether the Lp

distortion of a general finite metric space can be approximated efficiently.

1.2 Some open problems. We end this introduction by stating some
interesting open problems that arise from our work.

Problem 1. In section 3.1 we show that every p-uniformly convex Banach
space is Markov p-convex. We also show that if X is a Banach lattice which
is Markov p-convex then it is also q-uniformly convex for every q > p. The
relation between Markov p-convexity and uniform p-convexity for general
Banach spaces is unclear.
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Problem 2. One corollary of our results is that if a metric tree is not
Markov p-convex for any p < ∞ then it contains arbitrarily large complete
binary trees with distortion arbitrarily close to 1. It is possible that this
holds true for arbitrary metric spaces, and not just metric trees. If this is
the case, then it would correspond to known results in Banach space theory,
and would complement the existing theory of metric type and cotype.

Problem 3. It would be interesting to investigate other “unique obstruc-
tion” results of the type described here. In particular, can one classify the
obstructions to a planar graph being embeddable in L2? Another interest-
ing generalization would be to classify the subsets of H2 – the hyperbolic
plane – which embed into L2; it seems plausible that complete binary trees
are the only obstruction in this case, just as for tree metrics. In a similar
vein, it might be the case that the only subsets of a product of trees which
do not admit a bi-Lipschitz embedding into L2 are those that contain ar-
bitrarily large bi-Lipschitz copies of complete binary trees. If true, then in
combination with the result of [BuS], this would imply the same result for
the hyperbolic plane.

Problem 4. In section 3.2 we give lower bounds on the Euclidean dis-
tortion of the lamplighter group over the n-cycle. We do not know what
the correct asymptotic behavior of this distortion is . It is also unknown
whether or not these groups embed into L1 with uniformly bounded dis-
tortion.

2 Distortion Bounds via the Containment of Binary Trees

The purpose of this section is to prove the following theorem which, when
combined with Bourgain’s lower bound for binary trees [Bo], implies The-
orem 1.1 and Theorem 1.2.

Theorem 2.1. Let T be an arbitrary metric tree and p ≥ 1. Then for
every c > 1,

cp(T ) ≤ 130

(
c

c − 1
· BT (c)

)min{1/p,1/2}

.

In section 3.3.3 we will show that the asymptotic dependence on BT (c)
in the upper bound of Theorem 2.1 cannot be improved.

2.1 Coloring based upper bounds. We begin with some definitions
and notation. Let T = (V,E) be a finite graph-theoretic tree with positive
edge lengths ℓ : E → (0,∞), and let dT be the induced path metric on V .
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Section 4: Ω
(
(log (2/δ∗(T )))

min{1/p,1/2}
)
≤ Πmax{p,2}(TR) ≤ O(cp(T ))

Theorems 1.4 + 1.5

Section 3.1

Section 3.2

Section 3.3

Bourgain’s theorem [6]

Section 2.2

Theorem 1.2

Theorem 1.1

Section 2.1

Section 2.3: The case of doubling trees

Figure 1: A schematic description of the implications between the

sections in this paper.

We also fix some arbitrary root r ∈ T . A monotone path in T is a connected
subset (also called a segment in what follows) of some root-leaf path. By
an edge-coloring of T , we mean a map χ : E → Z. We say that the coloring
is monotone if for every m ∈ Z the color class χ−1(m) is a monotone path.
For u, v ∈ V we let P (u, v) ⊆ E denote the unique path from u to v, and
set P (v) = P (v, r). Given an edge coloring χ : E → Z, k ∈ χ(E), and
u, v ∈ V , we write

ℓχ
k (u, v) :=

∑

e∈P (u,v)
χ(e)=k

ℓ(e) .

We also set ℓχ
k(v) = ℓχ

k(v, r). Finally, given u, v ∈ V we let lca(u, v) denote
the least common ancestor of u and v in T .

Definition 2.2 (ε-good coloring). We say that a coloring χ : E → Z is
ε-good if it is monotone, and for every u, v ∈ T , the unique path from u
to v contains a monochromatic segment of length at least ε · dT (u, v). We
define ε∗(T ) to be the largest ε for which T admits an ε-good coloring.

The following simple lemma will not be used in the proof of Theorem 2.1,
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but we include it since it illustrates the relation between colorings and
embeddings, and it will be used eventually in section 2.3.

Lemma 2.3. For every weighted tree T and p ≥ 1,

cp(T ) ≤ 21/p

ε∗(T )
.

Proof. Fix ε < ε∗(T ) and let χ : E → Z be an ε-good coloring. Let {ek}k∈Z

be the standard basis of ℓp = ℓp(Z). Define f : V → ℓp by

f(v) =
∑

k∈Z

ℓχ
k (v)ek .

(Recall that ℓk(v) is the distance that the segment colored k contributes to
the path joining v to the root).

Fix u, v ∈ V and write w = lca(u, v). The fact that the coloring χ is
monotone implies that χ(P (u,w)) ∩ χ(P (v,w)) = ∅. Thus

dT (u, v) =
∑

e∈P (u,w)

ℓ(e) +
∑

e∈P (v,w)

ℓ(e) =
∑

k∈Z

∣∣ℓχ
k (u) − ℓχ

k (v)
∣∣

=
∥∥f(u)−f(v)

∥∥
1
≥
∥∥f(u)−f(v)

∥∥
p
.

On the other hand, since χ is ε-good, there are a, b ∈ Z such that ℓχ
a(u,w) ≥

εdT (u,w) and ℓχ
b (v,w) ≥ εdT (v,w). It follows that

∥∥f(u) − f(v)
∥∥

p
≥
(
[ℓχ

a(u,w)]p + [ℓχ
b (v,w)]p

)1/p

≥ ε

21/p

[
dT (u,w) + dT (v,w)

]
=

ε

21/p
dT (u, v) . (4)

�

To get tighter control on the Euclidean distortion of trees we introduce
the notion of δ-strong colorings.

Definition 2.4 (δ-strong coloring). We say that a coloring χ : E → Z is
δ-strong if it is monotone, and for every u, v ∈ V∑

k∈Z

ℓχ
k (u, v) · 1{ℓχ

k (u,v)≥δdT (u,v)} ≥ 1
2dT (u, v) .

In other words, we demand that at least half of the shortest path joining u
and v is covered by color classes of length at least δdT (u, v). As before, we
define δ∗(T ) to be the largest δ for which T admits an δ-strong coloring.

The notions of δ-strong colorings and ε-good colorings are related via
the following simple lemma.

Lemma 2.5. Every weighted tree T satisfies δ∗(T ) ≥ 2−3/ε∗(T ).
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Proof. Let χ be an ε-good coloring of T . We will prove that it is also
2−3/ε-strong. In fact, we shall show that for every α ∈ (0, 1] and u, v ∈ V ,
the total length of the monochromatic segments of length at least αdT (u, v)
on the path P (u, v) satisfies

∑

k∈Z

ℓχ
k (u, v) · 1{ℓχ

k (u,v)≥αdT (u,v)} ≥
(
1 −

(
α
ε

)ε/2
)

dT (u, v) . (5)

Choosing α = 2−3/ε in (5), and using the fact that 21/ε ≥ 1/ε, we deduce
that χ is 2−3/ε-strong. The proof of (5) is by induction on dT (u, v). If
dT (u, v) is minimal then P (u, v) is an edge, and hence monochromatic, so
that the assertion holds trivially. In general, since the coloring χ is ε-good,
there are two vertices on the path P (u, v) such that the segment P (a, b)
is monochromatic and dT (a, b) ≥ εdT (u, v). Without loss of generality we
assume that dT (a, u) < dT (b, u). If ε < α then there is nothing to prove, so
assume that ε ≥ α. Denoting A = dT (u, a), B = dT (b, v) and D = dT (u, v),
we apply the inductive hypothesis to the paths joining u and a and b and v,
to get that∑

k∈Z

ℓχ
k (u, v) · 1{ℓχ

k (u,v)≥αdT (u,v)}

≥ dT (a, b) +

(
1 −

(
Dα

Aε

)ε/2)
A +

(
1 −

(
Dα

Bε

)ε/2)
B

= D −
(

Dα

ε

)ε/2

(A1−ε/2 + B1−ε/2)

≥ D − 2

(
Dα

ε

)ε/2(A + B

2

)1−ε/2

(6)

≥ D − 2

(
Dα

ε

)ε/2((1 − ε)D

2

)1−ε/2

(7)

≥
(
1 −

(α

ε

)ε/2 )
D , (8)

Where in (6) we used the concavity of the function t 7→ t1−ε/2, in (7) we
used the fact that D = A + B + dT (a, b) ≥ A + B + εD, and in (8) we
used the elementary inequality 2ε/2(1−ε)1−ε/2 ≤ 1, which is valid for every
ε ∈ [0, 1]. �

In [M2], Matoušek proves that if χ is a monotone edge-coloring of T
such that every root-leaf path contains at most M distinct color classes,
then cp(T ) ≤ O((log M)min{1/p,1/2}). Clearly any such coloring is 1/(2M)-
strong. The next theorem generalizes Matoušek’s result along these lines.
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We suggest that the reader skip this rather technical proof upon a first
reading. In particular, the much simpler Lemma 2.3 suffices for the proof
of Theorem 1.1, although it does not give the optimal quantitative bounds
of Theorem 1.2.

Theorem 2.6. For every weighted tree T = (V,E) and p ≥ 1,

cp(T ) ≤ 4

[
log

(
2

δ∗(T )

)]min{1p,1/2}

.

Proof. We may assume that p ∈ [2,∞), since if p ∈ [1, 2) the required
result follows by embedding T into ℓ2 ⊆ Lp. Fix δ < min{δ∗(T ), 1/2} and
let χ : E → Z be a δ-strong coloring. Let {ek}k∈Z be as in Lemma 2.3.
For v ∈ V we denote by (k1(v), . . . , kmv (v)) the sequence of color classes
encountered on the path from the root to v. We shall denote by dj(v) the
distance that the color class kj(v) contributes to the path from the root
to v, i.e.

dj(v) =
∑

e∈P (v)
χ(e)=kj(v)

ℓ(e) .

Now let

si(v) =

mv∑

j=i

max

{
0, dj(v) − δ

2

j∑

h=i

dh(v)

}
,

and define f : V → ℓp(Z) by

f(v) =

mv∑

i=1

[
di(v)

]1/p[
si(v)

](p−1)/p
eki(v) .

We will break the proof of the fact that f satisfies the required distortion
bound into several claims.

Claim 2.7. For all v ∈ V and j ∈ {1, . . . ,mv},

si(v) ≥ 1

4

mv∑

j=i

dj(v) .

Proof. This is where the fact that χ is a δ-strong coloring comes in. Indeed,

si(v)=

mv∑

j=i

max

{
0, dj(v)−δ

2

j∑

h=i

dh(v)

}
≥

∑

j∈{i,...,mv}
dj(v)≥δ

Pmv
h=i dh(v)

dj(v)

2
≥ 1

4

mv∑

j=i

dj(v) .

�

Claim 2.8. ‖f‖Lip ≤ [5 log(3/δ)]1/p.
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Proof. We need to show that for every edge (u, v) ∈ E, ‖f(u) − f(v)‖p ≤
10[log(1/δ)]1/p. Assume that v is further than u from the root of T . In this
case k1(u) = k1(v), . . . , kmu(u) = kmu(v) and mv ∈ {mu,mu + 1}. If mv =
mu + 1 then, for the sake of simplicity, we denote dmv (u) = smv(u) = 0.
With this notation we have that

∥∥f(u) − f(v)
∥∥p

p
=

mv∑

i=1

∣∣[di(u)]1/p[si(u)](p−1)/p − [di(v)]1/p[si(v)](p−1)/p
∣∣p

=

mv−1∑

i=1

di(v)
∣∣[si(u)](p−1)/p − [si(v)](p−1)/p

∣∣p

+
∣∣[dmv (u)]1/p[smv(u)](p−1)/p − [dmv (v)]1/p[smv(v)](p−1)/p

∣∣p.
Note that by our definitions, smv(u) = dmv (u) and smv (v) = dmv (v). Thus

∥∥f(u)−f(v)
∥∥p

p
=

mv−1∑

i=1

di(v)
∣∣[si(u)](p−1)/p−[si(v)](p−1)/p

∣∣p+
∣∣dmv (u)−dmv (v)

∣∣p

≤
mv−1∑

i=1

di(v)
∣∣[si(u)](p−1)/p − [si(v)](p−1)/p

∣∣p +
[
dT (u, v)

]p
.

(9)

Observe that for all i ∈ {1, . . . ,mv − 1}, si(v) ≥ si(u). Thus
∣∣[si(u)](p−1)/p − [si(v)](p−1)/p

∣∣ ≤ |si(u) − si(v)|
[si(v)]1/p

, (10)

where we used the elementary inequality yα − xα ≤ y − x/y1−α, which is
valid for all y ≥ x > 0 and α ∈ (0, 1).

Observe that for every i ≤ mv − 1,

si(v) − si(u) = max

{
0, dmv (v) − δ

2

mv∑

h=i

dh(v)

}

− max

{
0, dmv (u) − δ

2

mv∑

h=i

dh(u)

}
≤ dT (u, v) . (11)

Thus, combining (10) and (11) we see that
mv−1∑

i=1

di(v)
∣∣[si(u)](p−1)/p − [si(v)](p−1)/p

∣∣p ≤
mv−1∑

i=1

di(v) · |si(u) − si(v)|p
si(v)

≤
[
dT (u, v)

]p ·
∑

i∈{1,...,mv−1}
si(u)6=si(v)

di(v)

si(v)
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≤ 4
[
dT (u, v)

]p ·
∑

i∈{1,...,mv−1}
si(u)6=si(v)

di(v)∑mv
j=i dj(v)

, (12)

where in the last line we used Claim 2.7.

Observe that for every x1, . . . , xk > 0,
k∑

i=1

xi

xi + xi+1 + · · · + xk + 1
≤

1∑

i=k

∫ xi+···+xk

xi+1+···+xk

dt

t + 1

=

∫ x1+···+xk

0

dt

t + 1
= log(x1 + · · · + xk + 1) .

Thus
∑

i∈{1,...,mv−1}
si(u)6=si(v)

di(v)∑mv
j=i dj(v)

=
∑

i∈{1,...,mv−1}
si(u)6=si(v)

di(v)/dmv (v)(∑mv−1
j=i dj(v)/dmv (v)

)
+ 1

≤ log

(
1 +

1

dmv (v)

∑

i∈{1,...,mv−1}
si(u)6=si(v)

di(v)

)
. (13)

Let i be the smallest integer in {1, . . . ,mv − 1} such that si(u) 6= si(v).
Then by the definition of si(·),

dmv (v) >
δ

2

mv∑

h=i

dh(v) .

It follows that

log

(
1 +

1

dmv (v)

∑

i∈{1,...,mv−1}
si(u)6=si(v)

di(v)

)
≤ log

(
1 +

1

dmv (v)

mv∑

h=i

dh(v)

)

≤ log

(
1 +

2

δ

)
.

Plugging this bound into (13), and using (12) and (9), we get that

∥∥f(u)−f(v)
∥∥

p
≤
[
4 log

(
1+

2

δ

)
+1

]1/p

·dT (u, v) ≤
[
5 log(3/δ)

]1/p ·dT (u, v) .

�

Our final claim bounds ‖f−1‖Lip.

Claim 2.9. The embedding f is invertible, and ‖f−1‖Lip ≤ 48.

Proof. Fix u, v ∈ V , u 6= v, and let j be the integer satisfying
k1(u) = k1(v), . . . , kj(u) = kj(v) and kj+1(u) 6= kj+1(v). It follows that
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u

v

)(vd j

)(ud j

)()( 11 vdud ====

)(vd
vm

)(ud
um

Figure 2: A schematic description of the location of u and v in the
tree T . The bold segment corresponds to the color class kj(u) = kj(v).

d1(u) = d1(v), . . . , dj−1(u) = dj−1(v), and we may assume without loss of
generality that dj(u) ≥ dj(v). With this notation (see Figure 2),

dT (u, v) = dj(u) − dj(v) +

mu∑

i=j+1

di(u) +

mv∑

i=j+1

di(v) . (14)

On the other hand,
∥∥f(u) − f(v)

∥∥p

p
≥
∣∣[dj(u)]1/p[sj(u)](p−1)/p − [dj(v)]1/p[sj(v)](p−1)/p

∣∣p

+

mu∑

i=j+1

di(u)
[
si(u)

]p−1
+

mv∑

i=j+1

di(v)
[
si(v)

]p−1
. (15)

Using Claim 2.7 we see that
mu∑

i=j+1

di(u)
[
si(u)

]p−1 ≥ 1

4p−1

mu∑

i=j+1

di(u)

( mu∑

h=i

dh(u)

)p−1

≥ 1

4p−1

mu∑

i=j+1

∫ di(u)+···+dmu (u)

di+1(u)+···+dmu (u)
tp−1dt

=
1

4p−1

∫ dj+1(u)+···+dmu (u)

0
tp−1dt

=
1

p4p−1
·
( mu∑

i=j+1

di(u)

)p

. (16)
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Similarly,
mv∑

i=j+1

di(v)[si(v)]p−1 ≥ 1

p4p−1
·
( mv∑

i=j+1

di(v)

)p

. (17)

We now consider two cases:

Case 1.
dj(u)−dj(v)

2 ≤ ∑mv
i=j+1 di(v). In this case, using (14) we see

that
[
dT (u, v)

]p ≤ 3p

( mu∑

i=j+1

di(u) +

mv∑

i=j+1

di(v)

)p

≤ 3p · 2p−1

( mu∑

i=j+1

di(u)

)p

+ 3p · 2p−1

( mv∑

i=j+1

di(v)

)p

≤ p4p−1 · 3p · 2p−1
∥∥f(u) − f(v)

∥∥p

p
,

where in the last inequality we plugged the bounds (16) and (17) into (15).
Thus we get that ∥∥f(u) − f(v)

∥∥
p
≥ 1

48 · dT (u, v) ,

as required.

Case 2.
dj(u)−dj (v)

2 >
∑mv

i=j+1 di(v). In this case we observe that

sj(u) =

mu∑

i=j

max

{
0, di(u) − δ

2

i∑

h=j

dh(u)

}
≥
(

1 − δ

2

)
dj(u) ,

and similarly

sj(v) ≤
(

1 − δ

2

)
dj(v) +

mv∑

i=j+1

di(v) ≤
(

1 − δ

2

)
dj(v) +

dj(u) − dj(v)

2
.

Thus[
dj(u)

]1/p[
sj(u)

](p−1)/p −
[
dj(v)

]1/p[
sj(v)

](p−1)/p

≥
(

1−δ

2

)(p−1)/p

dj(u)−
(

1−δ

2

)(p−1)/p

dj(v) ·
(

1+
dj(u)−dj(v)

(2−δ)dj(v)

)(p−1)/p

≥
(

1 − δ

2

)(p−1)/p

dj(u) −
(

1 − δ

2

)(p−1)/p

dj(v) ·
(

1 +
dj(u) − dj(v)

(2 − δ)dj(v)

)

=

(
1 − δ

2

)(p−1)/p

· 1 − δ

2 − δ
·
[
dj(u) − dj(v)

]

≥ dj(u) − dj(v)

4
.
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where we used the fact that δ ≤ 1/2. Using (15) and the bounds (16) and
(17), it follows that∥∥f(u) − f(v)

∥∥p

p

≥ 1

4p

[
dj(u)−dj(v)

]p
+

1

p4p−1
·
( mu∑

i=j+1

di(u)

)p

+
1

p4p−1
·
( mv∑

i=j+1

di(v)

)p

≥ 1

p4p · 3p−1

(
dj(u) − dj(v) +

mu∑

i=j+1

di(u) +

mv∑

i=j+1

di(v)

)p

≥ 1

24p
·
[
dT (u, v)

]p
. �

Claim 2.9, together with Claim 2.8, concludes the proof of Theo-
rem 2.6. �

2.2 Relating coloring bounds to the containment of large bi-

nary trees. The following theorem, in conjunction with Theorem 2.6
and Lemma 2.5, implies Theorem 2.1. If one is concerned with simply
giving some upper bound on cp(T ) in terms of BT (c), then it suffices to
combine the following theorem with Lemma 2.3.

Theorem 2.10. For every weighted tree T = (V,E) and every c > 1,

BT (c) ≥ c − 1

250c
· 1

ε∗(T )
.

Proof. We start by introducing some notation. For a vertex v ∈ V we
denote by C (v) the set of all children of v in T . Given u ∈ C (v) we denote
by Tu = (Vu, Eu) the subtree rooted at u. We also let Fu denote the tree
Fu = (Vu ∪{v}, Eu ∪{(v, u)}), i.e. Fu is Tu plus the “incoming” edge (v, u).

Recall that Bk = (Vk, Ek) is the complete binary tree of height k.
Let rk be the root of Bk, and define an auxiliary tree Mk by Mk =
(Vk ∪ {mk}, Ek ∪ {(mk, rk)}) (i.e. Mk is Bk with an extra incoming edge).
Given a connected subtree H of T rooted at rH , we shall say that H admits
a copy of Mk at scale j if there exits a one-to-one mapping f : Mk → H
such that

1. f(mk) = rH

2. ‖f‖Lip ≤ 9c
c−1 · 4j and ‖f−1‖Lip ≤ c−1

9·4j (thus in particular dist(f) ≤ c).

We define

µj(H) = max {k ∈ N : H admits a copy of Mk at scale j} ,

or µj(H) = −1 if no such k exists.
We shall now define a function g : V → Z ∪ {∞} and a coloring

χ : E → Z. These mappings will be constructed by induction as follows.
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We start by setting g(r) = ∞. Assume inductively that the construction is
done so that whenever v ∈ V is such that g(v) is defined, if u is a vertex
on the path P (v) then g(u) has already been defined, and for every edge
e ∈ E incident with v, χ(e) has been defined.

Let v ∈ V be a vertex closest to the root r for which g(v) hasn’t yet
been defined. Then, by our assumption, for every e ∈ P (v), χ(e) has been
defined, and for every vertex u other than v lying on the path P (v), g(u)
has been defined. Let βχ(v) ⊆ V denote the set of breakpoints of χ in P (v),
i.e. the set of vertices on P (v) for which the incoming and outgoing edges
have distinct colors (for convenience, in what follows we shall also consider
the root r as a breakpoint of χ). We define

g(v) = max
{
j ∈ Z : ∀ u ∈ βχ(v) , dT (u, v) ≥ 4min{g(u),j}

}
.

Having defined g(v) we choose one of its children w ∈ C (v) for which

µg(v)(Fw) = max
z∈C (v)

µg(v)(Fz) .

Letting u be the father of v on the path P (v), we set χ(v,w) = χ(u, v), and
we assign arbitrary new (i.e. which haven’t been used before) distinct colors
to each of the edges {(v, z)}z∈C (v)\{w}. In other words, given the “scale”
j = g(v) we order the children of v according to the size of the copy of Mk

which they admit beneath them at scale j. We then continue coloring with
the color χ(u, v) the path P (v) along the edge joining v and its child which
admits the largest Mk at scale j, and color the remaining edges incident
with v by arbitrary distinct new colors.

This definition clearly results in a monotone coloring χ. To motivate
this somewhat complicated construction, we shall now prove some of the
crucial properties of χ and g which will be used later.

Claim 2.11. Let P be any monotone path in T , and let (b1, b2, . . . , bm)
be the sequence of breakpoints along P ordered down the tree (i.e. in in-
creasing distance from the root). Assume that j ∈ Z satisfies for every
i ∈ {2, . . . ,m}, dT (bi, bi−1) ≤ 4j , and assume also that dT (b1, bm) ≥ 30c

c−1 ·4j .
Then there exists a subsequence of the indices 1 ≤ i1 < i2 < · · · < ik ≤ m
such that

1. k ≥ c−1
20c·4j · dT (b1, bm);

2. For every s ∈ {1, . . . , k} we have g(bis) = j;
3. For every s ∈ {1, . . . , k−1} we have 9

c−1 ·4j ≤ dT (bis+1 , bis) ≤ 9c
c−1 ·4j .

Proof. We shall show that if i ∈ {1, . . . ,m} is such that dT (bi, bm) > 4j+1

3
then there exists an index t ∈ {1, . . . ,m} with g(bt) = j and dT (bt, bi) ≤
4j+1. Assuming this fact for the moment, we conclude the proof as follows.
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Let i1 be the smallest integer in {2, . . . ,m} such that g(bi1) = j. Then
dT (bi1 , b1) ≤ 4j+1. Assuming we defined i1 < i2 < · · · < is, if dT (bis , bm) ≤
9c

c−1 · 4j we stop the construction, and otherwise we let t be the smallest

integer bigger than is such that dT (bt, bis) ≥ 4c+5
c−1 · 4j . Since dT (bt−1, bis) <

4c+5
c−1 · 4j , we know that dT (bt, bis) < 4c+5

c−1 · 4j + 4j . Thus dT (bt, bm) >

dT (bis , bm)− 4c+5
c−1 ·4j−4j > 4j+1

3 (because we are assuming that dT (bis , bm) <
9c

c−1 · 4j). So, there exists is+1 ∈ {1, . . . ,m} such that g(bis+1) = j and

dT (bis+1 , bt) ≤ 4j+1. Since by construction dT (bt, bis) ≥ 4c+5
c−1 · 4j > 4j+1 we

deduce that is+1 > is and
9

c − 1
· 4j ≤ dT (bt, bis) − dT (bis+1 , bt) ≤ dT (bis+1 , bis)

≤ dT (bis+1 , bt) + dT (bt, bis) ≤
9c

c − 1
· 4j .

This construction terminates after k steps, in which case we have that

dT (b1, bm) = dT (b1, bi1) +
k−1∑

s=1

dT (bis , bis+1) + dT (bik , bm)

≤ 4j+1 + (k − 1) · 9c

c − 1
· 4j +

9c

c − 1
· 4j .

Since dT (b1, bm) ≥ 30c
c−1 · 4j , this implies the required result.

It remains to show that if i ∈ {1, . . . ,m} is such that dT (bi, bm) > 4j+1/3
then there exists t ∈ {1, . . . ,m} with g(bt) = j and dT (bt, bi) ≤ 4j+1. We
first claim that for every i ∈ {1, . . . ,m} there is a breakpoint w ∈ βχ(bi)
with g(w) ≥ j and dT (w, bi) < 4j+1/3. Indeed, if g(bi) ≥ j then there is
nothing to prove, so assume that g(bi) < j. By the definition of g there
exists a breakpoint w1 ∈ βχ(bi) such that

4min{g(w1),g(bi)} ≤ dT (w1, bi) < 4min{g(w1),g(bi)+1}.

Thus necessarily g(w1) ≥ g(bi) + 1 and dT (w1, bi) < 4g(bi)+1 < 4j . If
g(bi) + 1 ≥ j then we are done by taking w = w1. Otherwise, contin-
uing in this manner we find a breakpoint w2 ∈ βχ(w1) ⊆ βχ(bi) with
g(w2) ≥ g(w1) + 1 ≥ g(bi) + 2 and dT (w2, w1) < 4g(w1)+1. This pro-
cedure terminates when we find a sequence bi = w0, w1, w2, . . . , wt with
g(wt) ≥ j, g(wt−1) < j, and for every 0 ≤ s ≤ t − 1, g(ws+1) ≥ g(ws) + 1
and dT (ws+1, ws) < 4g(ws)+1. Thus

dT (bi, wt) =

t−1∑

s=0

dT (ws+1, ws) <

t−1∑

s=0

4g(ws)+1 <

j∑

s=−∞

4s =
4j+1

3
.

Now, assume that dT (bi, bm) > 4j+1/3. Let s be the largest integer
in {i + 1, . . . ,m} such that dT (bs, bi) ≤ 4j+1/3 (such an integer s exists
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since dT (bi, bi+1) ≤ 4j). Then 4j+1

3 < dT (bs+1, bi) ≤ 4j+1

3 + 4j . By the
previous argument there is a break point w ∈ βχ(bs+1) with g(w) ≥ j and
dT (w, bs+1) < 4j+1/3. This implies that w = bt for some t∈{i+1, . . . , s+1},
and dT (bi, bt) ≤ 4j+1

3 + 4j .
We proved that as long as bi satisfies dT (bi, bm) > 4j+1/3, there are

1 ≤ t ≤ i ≤ s ≤ m such that g(bs) ≥ j, g(bt) ≥ j, and dT (bt, bi) ≤ 4j+1/3,

dT (bs, bi) ≤ 4j+1

3 + 4j . Thus, by the definition of g,

4min{g(bs),g(bt)} ≤ dT (bs, bt) ≤
2 · 4j+1

3
+ 4j < 4j+1.

It follows that either g(bs) = j or g(bt) = j, as required. �

To conclude the proof of Theorem 2.10 we may assume that ε∗(T ) <
c−1
240c , since otherwise the assertion of Theorem 2.10 is trivial. Fix c−1

240c > ε >
ε∗(T ). By the definition of ε∗(T ), the coloring χ constructed above is not
ε-good. Thus, there exist two vertices u, v ∈ V such that the path P (u, v)
does not contain a monochromatic segment of length at least εdT (u, v). We
may assume without loss of generality that u is an ancestor of v, and let
(b1, b2, . . . , bm) be the sequence of breakpoints along this path, enumerated
down the tree (i.e. from u to v, not necessarily including u or v). Denoting
D = dT (u, v) we have that dT (u, b1), dT (v, bm), dT (bi, bi+1) ≤ εD for all
i ∈ {1, . . . ,m−1}. Fix j ∈ Z such that εD ≤ 4j ≤ 4εD. This choice implies
that dT (bi, bi+1) ≤ 4j and dT (b1, bm) ≥ (1 − 2ε)D ≥ 1−2ε

4ε · 4j ≥ 30c
c−1 · 4j .

By Claim 2.11 there is an integer k ≥ (c−1)(1−2ε)D
20c·4j ≥ c−1

250c · 1
ε + 2 (using the

upper bound on ε) and a sequence of breakpoints s1, . . . , sk on the path
P (u, v) (ordered down the tree) such that g(s1) = · · · = g(sk) = j and for
i ∈ {1, . . . , k − 1}, 9

c−1 · 4j ≤ dT (si, si+1) ≤ 9c
c−1 · 4j .

The proof of Theorem 2.10 will be complete once we show that BT (c) ≥
k− 2. For i ∈ {1, . . . , k} let ti be the child of si along the path P (u, v). We
will prove by reverse induction on i ∈ {1, . . . , k−1} that µj(Fti) ≥ k−i−1,
implying the required result. The base case is true, i.e. µj(Ftk−1

) ≥ 0, since
the pair (sk−1, sk) constitutes a copy of M0 at scale j.

Assuming that µj(Fti) ≥ k − i − 1 we shall prove that µj(Fti−1) ≥
k − i. Since si was a breakpoint, the construction of χ implies that there
must be a child t′i of si, other than ti, for which µj(Ft′i

) > µj(Fti) ≥
k − i − 1. Thus, there exist one-to-one mappings f, f ′ : Mk−i−1 → T such
that f(mk−i−1) = f ′(mk−i−1) = si, f(Mk−i−1) ⊆ Fti , f ′(Mk−i−1) ⊆ Ft′i

,

‖f‖Lip, ‖f ′‖Lip ≤ 9c
c−1 · 4j , and ‖f−1‖Lip, ‖(f ′)−1‖Lip ≤ c−1

9·4j . Thinking of
Mk−i as two disjoint copies of Mk−i−1, joined at the root mk−i, we may
“glue” f and f ′ to an embedding f of Mk−i by setting f(mk−i) = si−1.
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Figure 3: A schematic description of the gluing procedure in the
inductive step. Because si was a breakpoint it must have two copies
of Mk−i−1 at scale j below it.

Since 9
c−1 ·4j ≤ dT (si, si−1) ≤ 9c

c−1 ·4j , this results in an embedding at scale
j of Mk−i into Fti−1 , as required (see Figure 3). �

2.3 Embedding into finite-dimensional spaces. We recall that the
doubling constant λ(X) of a metric space X is the infimal value of λ for
which every ball in X can be covered by λ balls of half the radius. If
S ⊆ X is a δ-separated set in X, then a standard observation is that |S| ≤
λ(X)O(diam(S)/δ). This section is devoted to a simpler proof of the following
theorem of Gupta, Krauthgamer, and Lee originally proved in [GuKL].
(We stress that the only results we need for this section are Lemma 2.3 and
Theorem 2.10.)

Theorem 2.12 [GuKL]. A tree metric T embeds into a finite-dimensional
Euclidean space if and only if λ(T ) < ∞. In other words, every doubling
tree T admits a D-embedding into Rk with D, k depending only on λ(T ).

Let T = (V,E) be a weighted, rooted tree. Note that the “only if”
part of Theorem 2.12 is trivial. In order to prove the remaining implication
we need a coloring notion weaker than ε-good. Let χ : E → Z be a
coloring of the edges of T which is not necessarily monotone. We will
say that χ is ε-reasonable if the following holds for every u, v ∈ V . Let
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w = lca(u, v), and recall that P (w, u), P (w, v) denote the paths from w to
u and v, respectively. Then there should exist a color c ∈ Z for which∣∣∣

∑

e∈P (w,u):χ(e)=c

ℓ(e) −
∑

e∈P (w,v):χ(e)=c

ℓ(e)
∣∣∣ ≥ εdT (u, v) . (18)

Since a reasonable coloring is not necessarily monotone, it is possible
to construct such colorings where χ−1(E) is finite even though T might be
infinite. The number of colors used, i.e. |χ−1(E)|, controls the dimension
of the embedding from Lemma 2.3.

Lemma 2.13. Let T = (V,E) be a weighted tree, and suppose that
T admits an ε-reasonable coloring for some ε > 0. Then T embeds in Rk

(equipped, e.g. with the L2 norm) with distortion O(1/ε), and k = |χ−1(E)|.

Proof. Let χ : E → Z be an ε-reasonable coloring of T . We use the
embedding f : V → ℓ2 of Lemma 2.3. In particular, it is easy to check
that the definition of the embedding does not require χ to be monotone.
Observe that Im(f) lies naturally in span{ek : k ∈ χ−1(E)}, and thus we
may assume that f : V → Rk with k = |χ−1(E)|.

From the proof of Lemma 2.3, we conclude that ‖f‖Lip ≤ 1, and thus
we need only consider ‖f−1‖Lip. But it is easy to see that condition (18)
suffices to obtain a similar lower bound in equation (4) of Lemma 2.3. �

We note that the dependence of k on |χ−1(E)| in the above lemma
can be improved to k = O(log |χ−1(E)|) using a “nearly-orthogonal” set
of vectors instead of the orthonormal set {ek}k∈Z. We refer to [GuKL] for
details.

Now, clearly BT (2) ≤ O(log λ(T )) since λ(Bm) = 2Θ(m), hence ε∗(T ) ≥
1/O(log λ(T )) using Theorem 2.10. In light of Lemma 2.13 and the pre-
ceding remark, the following result completes the proof of Theorem 2.12.
(Note that we can assume T finite by compactness – a tree embeds into a
finite-dimensional Euclidean space if and only if every finite subset embeds
with uniformly bounded distortion).

Theorem 2.14. Let T = (V,E) be a finite, weighted tree. If T admits an
ε-good coloring, then it also admits an O(ε)-reasonable coloring with only

λ(T )(1/ε)O(1/ε)
colors.

Proof. We will say that a monotone coloring χ : E → Z is regular
if the following holds: For every maximal monochromatic segment s =
{e1, e2, . . . , ek} ⊆ E (with edges ordered down the tree), and for every
1 ≤ i ≤ k, we have ℓ(ei+1) ≤ 2

∑i
j=1 ℓ(ei).
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Lemma 2.15. If a finite tree T admits an ε-good coloring, then T admits
an O(ε)-good regular coloring.

Proof. Let T = (V,E) be a rooted tree, and let χ0 : E → Z be an
ε-good coloring of T . Suppose that some monochromatic segment s =
{e1, e2, . . . , ek} ⊆ E violates the regularity condition. Let i ∈ [k] be the
smallest index for which ℓ(ei+1) > 2

∑i
j=1 ℓ(ei). We derive a new coloring

χ1 : E → Z by coloring the edges e1, . . . , ei with a new unused color c ∈ Z,
i.e. χ1(e) = c if e = ej for some 1 ≤ j ≤ i and χ1(e) = χ0(e) otherwise.
Continue this process inductively until the resulting coloring χ′ : E → Z
is regular. This process terminates because T is finite. It remains to show
that χ′ is O(ε)-good.

To this end, let s = {e1, . . . , ek} ⊆ E be a maximal monochromatic seg-
ment according to χ0, and let s1, s2, . . . , sm ⊆ s be the maximal monochro-
matic segments of s according to χ′, ordered down the tree. By construc-
tion, we have

ℓ(sm) ≥ 2ℓ(sm−1) ≥ ℓ(sm−1) + 2ℓ(sm−2) ≥ · · · ≥ ℓ(s1) + · · · + ℓ(sm−1) ,

hence ℓ(sm) ≥ 1
2ℓ(s). It follows that χ′ is a regular ε/2-good coloring of T . �

Let T be a rooted tree, and let χ : E → Z be an ε-good coloring of T .
Using the preceding lemma, we may assume that χ is regular. Let C be the
set of color classes. We will think of segments s ∈ C sometimes as a subset
of edges and sometimes a subset of vertices (the endpoints and internal
vertices of the segments), depending on the context. In everything that
follows, we will assume that for s 6= s′ ∈ C, we have diam(s) 6= diam(s′).
This is without loss of generality by applying arbitrarily small perturba-
tions to T . (Alternatively, we could fix a total order on segments of equal
diameter, but this would add unnecessary notation to the proof.)

For every segment s ∈ C, we define p(s) as the vertex of s which is
closest to the root. For every s0 ∈ C and K > 0 we define a relative length
function

lengths0
(s;K) = max

{
diam(P (p(s), x)) : x ∈ s ∩ BT (p(s0),K · diam(s0))

}
,

(19)
where we take s ∈ C, and we set lengths0

(s;K) = 0 in case the maximum
is empty. In words, this is how long the segment s ∈ C “looks” from
p(s0), where the “view” is restricted to a ball of radius K · diam(s0). It is
important to note that even when s * BT (p(s0),K · diam(s0)), one might
have 0 < lengths0

(s;K) ≪ K ·diam(s0) since T is not necessarily an R-tree.
Now we define carefully a directed graph GC = (C, EC). The adjacency

relationship on GC will be the key in producing an O(ε)-reasonable coloring.
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We put
(s, s′) ∈ EC ⇐⇒ lengths(s

′;K) > diam(s) , (20)

for some constant K ≥ 6 to be chosen later. Observe, in particular, that
(s, s′) ∈ EC =⇒ diam(s′) > diam(s). We will argue that the undirected
graph ĜC which results from ignoring the edge directions in GC has its
chromatic number bounded solely by a function of λ(T ). We accomplish
this with the following sequence of lemmas. (This step is non-trivial since
ĜC does not have bounded degree.)

Lemma 2.16. For every s ∈ C, the out-degree is bounded, i.e.∣∣{s′ ∈ C : (s, s′) ∈ EC}
∣∣ ≤ λ(T )O(K).

Proof. Fix s ∈ C. For every s′ ∈ C with (s, s′) ∈ EC , let xs′ ∈ s′ be
the node achieving the maximum in (19). If the maximum does not exist
then lengths(s

′;K) = 0, hence (s, s′) /∈ EC . By definition, dT (p(s), xs′) ≤
K · diam(s). Furthermore, dT (p(s′), xs′) = lengths(s

′;K) > diam(s). It
follows that the set Xs = {xs′ : (s, s′) ∈ EC} is diam(s)-separated. Since
Xs ⊆ BT (p(s),K · diam(s)), the doubling property implies that∣∣{s′ ∈ C : (s, s′) ∈ EC}

∣∣ = |Xs| ≤ λ(T )O(K). �

For any undirected graph G = (VG, EG) and v ∈ VG, we define N(v) to
be the set of neighbors of v in G, we let deg(v) = |N(v)| and degS(v) =
|N(v) ∩ S| for S ⊆ VG. The next result is well known.

Lemma 2.17. Let G = (VG, EG) be any finite, undirected graph. Let
k ∈ N and let π : VG → {1, 2, . . . , n} be a permutation. We denote πj =
{v ∈ VG : π(v) ≤ j}. If, for every j = 1, 2, . . . , n, we have

degπj−1
(π−1(j)) ≤ k ,

then the chromatic number of G is at most k + 1.

Proof. The proof follows by inductively coloring the elements
π−1(1), π−1(2), . . . , π−1(n) in order. If we have a palette of k + 1 col-
ors, then since degπj−1

(π−1(j)) ≤ k, we can always choose a new color for

π−1(j) that doesn’t conflict with any already colored vertex in πj−1. �

Corollary 2.18. If ĜC is the undirected version of GC , then the chro-
matic number of ĜC is bounded by λ(T )O(K).

Proof. Let π : C → {1, 2, . . . , |C|} be any permutation for which diam(π(j)) ≥
diam(π(j + 1)) for 1 ≤ j ≤ |C| − 1 (i.e. the diameters of the segments de-
crease monotonically). Then combining Lemmas 2.16 and the fact that
(s, s′) ∈ EC =⇒ diam(s′) > diam(s) shows that for j = 1, 2, . . . , n,

degπj−1
(π−1(j)) ≤ λ(T )O(K).

Applying Lemma 2.17 completes the proof. �
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Now let χC : C → [k] be a proper coloring of ĜC using only k = λ(T )O(K)

colors. We are done as soon as we show that χC is an O(ε)-reasonable edge-
coloring of T (where we consider χC as a coloring of E in the obvious way)
for some choice of K ≤ (1/ε)O(1/ε).

Lemma 2.19. Suppose that for s 6= s′ ∈ C, we have

diam
(
s ∩ P (u, v)

)
, diam

(
s′ ∩ P (u, v)

)
≥ dT (u, v)

K/2 − 1
,

where u, v ∈ T . Then χC(s) 6= χC(s
′).

Proof. Assume that diam(s′) > diam(s), and let x be the bottom-most
point of s′ ∩ P (u, v). Then

dT

(
p(s), x

)
≤ diam(s)+dT (u, v) ≤

(
1+(K/2−1)

)
diam(s) ≤ K

2 · diam(s) .
(21)

In this case, lengths(s
′;K) ≥ diam(P (p(s′), x)), hence if diam(P (p(s′), x)) >

diam(s), we have (s, s′) ∈ EC , which finishes the proof of the lemma.
So we may assume that diam(P (p(s′), x)) ≤ diam(s). We claim that in

this case, lengths(s
′;K) > diam(s) using the regularity of χ. Let y ∈ s′

be such that dT (x, y) ≤ K
2 diam(s), and for which dT (p(s′), y) is maxi-

mal. If dT (p(s′), y) > diam(s), then we are done since by (21), we have
dT (p(s), y) ≤ K · diam(s), implying lengths(s

′;K) ≥ dT (p(s′), y) > diam(s).
Hence we may assume that dT (p(s′), y) ≤ diam(s). In this case, since
diam(s′) > diam(s), there exists an edge (y, y′) with y′ ∈ s′ and dT (p(s′), y′)
> K

2 · diam(s) > 3 · diam(s). But this implies that ℓ(y, y′) > 2 · dT (p(s′), y),
which contradicts the regularity of χ.

It follows that lengths(s
′;K)> diam(s), which again implies (s, s′)∈EC . �

Now fix u, v ∈ V and w = lca(u, v), and suppose that dT (w, u) ≥
dT (w, v). Since χ is an ε-good coloring, there exists a maximal monochro-
matic segment (with respect to χ) s ⊆ E for which diam(s ∩ P (w, u)) ≥
εdT (w, u)≥ (ε/2)dT (u, v). Now set K =4(2/ε)1+2/ε. Applying Lemma 2.19,
we see that for any s′ ⊆ E with χC(s) = χC(s

′), we have diam(s′∩P (w, v)) ≤
(ε/2)1+2/ε. But now (5) in the proof of Lemma 2.5 implies that segments
of this length can cover at most an ε/2-fraction of P (w, v) (since χ is an
ε-good coloring), which is at most an ε/4-fraction of P (u, v). It follows that
χC is a δ-reasonable coloring for δ = ε

2 − ε
4 ≥ ε

4 , completing the proof. �

3 Markov Convexity and Distortion Lower Bounds

In this section, we study Markov convexity and show how it can be used
to prove several distortion lower bounds. In particular, we will discuss the
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connection between Markov convexity and uniform convexity in Banach
spaces, and we will prove that Theorem 2.1 is optimal.

3.1 Markov convexity in Banach spaces. We start by showing that
Hilbert space is Markov 2-convex. This has essentially been proved by
Bourgain in [Bo]. We give the following proof here because the argument is
extendable to the case of p 6= 2. We refer also to [LinS] for another variant
of Bourgain’s proof.

Lemma 3.1. For every x0, . . . , x2m ∈ L2,
2m∑

i=1

‖xi−xi−1‖2
2 =

‖x2m−x0‖2
2

2m
+

m∑

k=1

1

2k

2m−k∑

j=1

‖xj2k−2x(2j−1)2k−1+x(j−1)2k‖2
2 .

(22)

Proof. Let Fn be the σ-algebra of subsets of [0, 1] generated by the intervals{
In
j :=

[ j−1
2n , j

2n

]}2n

j=1
. Define ϕ : [0, 1] → L2 by ϕ ≡ xj − xj−1 on Im

j .

Set ϕj = E(ϕ|Fj), where the expectation is with respect to the Lebesgue
measure on [0, 1]. In other words, for every j ∈ {1, . . . , 2k} and t ∈ Ik

j

ϕk(t) =
1

2m−k

j2m−k∑

ℓ=2m−k(j−1)+1

(xℓ − xℓ−1) =
xj2m−k − x(j−1)2m−k

2m−k
.

Since the sequence {ϕk − ϕk−1}m
k=1 is a martingale difference sequence,

and ϕ0 is constant, the functions ϕ0, ϕ1 − ϕ0, ϕ2 − ϕ1, . . . , ϕm − ϕm−1 are
orthogonal (in the Hilbert space L2(L2)). Thus

E‖ϕm‖2
2 = E‖ϕ0‖2

2 +

m∑

k=1

E‖ϕk − ϕk−1‖2
2 .

This is precisely the required identity. �

We can remove the dyadic bias from (22) by averaging over shifts.

Corollary 3.2. For every x0, . . . , x2m ∈ L2,
2m∑

i=1

‖xi −xi−1‖2
2 ≥ 1

2

‖x2m − x0‖2
2

22m
+

1

2

m∑

k=1

2−2k
2m∑

t=1

‖xt −2xt−2k−1 +xt−2k‖2
2,

where, by convention, xj = x0 for j ≤ 0.

Proof. First, consider the sequence of length 3 · 2m − 2,

x0, x0, . . . , x0, x0, x1, . . . , x2m , x2m , x2m , . . . , x2m ,

which is the original sequence with 2m − 1 copies of x0 and x2m appended
to the front and back, respectively. Call this sequence {yj}3·2m−2

j=1 . Now

average the equality (22) over all 2m+1 contiguous subsequences of length
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2m + 1, i.e. {yi, yi+1, . . . , yi+2m} for i = 1, . . . , 2m+1. By counting terms,
this yields the desired result. �

Theorem 3.3. Hilbert space is Markov 2-convex. In fact, Π2(L2) ≤ 4.

Proof. Let {Xt}∞t=0 be a Markov chain on a state space Ω, and take f :
Ω → L2. By Corollary 3.2,

2m∑

t=1

E
∥∥f(Xt) − f(Xt−1)

∥∥2

2

≥ 1

2

m∑

k=1

2−2k
2m∑

t=1

E
∥∥f(Xt) − 2f(Xt−2k−1) + f(Xt−2k)

∥∥2

2

+
1

2

E‖f(X0) − f(X2m)‖2
2

22m
,

where by convention we set Xt = X0 for t ≤ 0.

Observe that for every two i.i.d. random vectors Z,Z ′ ∈ L2, and ev-
ery constant a ∈ L2, E‖Z − Z ′‖2

2 ≤ 2E‖Z − a‖2
2. Thus, using the fact

that conditioned on X = (X0, . . . ,Xt−2k−1) the random vectors f(Xt) and

f(X̃t(t − 2k−1)) are i.i.d., we see that

E
∥∥f(Xt) − f(X̃t(t − 2k−1))

∥∥2

2
= E

(
E(‖f(Xt) − f(X̃t(t − 2k−1))‖2

2

∣∣∣X )
)

≤ 2E
∥∥f(Xt) − 2f(Xt−2k−1) + f(Xt−2k)

∥∥2

2
.

Likewise, E‖f(X0)− f(X̃2m(0))‖2
2 ≤ 2E‖f(X0)− f(X2m)‖2

2. It follows that
2m∑

t=1

E
∥∥f(Xt) − f(Xt−1)

∥∥2

2
≥ 1

4

m+1∑

k=1

2−2k
2m∑

t=1

E
∥∥f(Xt) − f(X̃t(t − 2k−1))

∥∥2

2

=
1

16

m∑

k=0

2−2k
2m∑

t=1

E
∥∥f(Xt) − f(X̃t(t − 2k))

∥∥2

2
,

completing the proof. �

Remark 3.1. The above argument can be generalized to prove that p-
convex Banach spaces are Markov p-convex. Recall that a Banach space X
is said to be p-convex with constant K (see [BaCL]) if for every x, y ∈ X,

2‖x‖p + 2
Kp‖y‖p ≤ ‖x + y‖p + ‖x − y‖p.

The least such constant K is denoted Kp(X).

We claim that for every Banach space X,

Πp(X) ≤ 2(p−1)/p(2p−1 − 1)1/p · Kp(X) ≤ 4Kp(X) .



1636 J.R. LEE, A. NAOR AND Y. PERES GAFA

Indeed, repeating the argument of Lemma 3.1, we replace the use of or-
thogonality by Pisier’s inequality [P1] to get that (see the argument in [Ba]
for the constant used below),

(2p−1 − 1)
[
Kp(X)

]p
E‖ϕm‖p

X ≥ E‖ϕ0‖p
X +

m∑

k=1

E‖ϕk − ϕk−1‖p
X .

As in the proof of Theorem 3.3 (and using the notation there) this shows
that

(2p−1 − 1)
[
Kp(X)p

] 2m∑

t=1

E
∥∥f(Xt) − f(Xt−1)

∥∥p

X

≥ 1

2

m∑

k=1

2−pk
2m∑

t=1

E
∥∥f(Xt) − 2f(Xt−2k−1)

+ f(Xt−2k)
∥∥p

X
+

1

2

E‖f(X0) − f(X2m)‖p
X

2pm
.

Since for every two i.i.d. random vectors Z,Z ′ ∈ X, and every constant
a ∈ X, we have that E‖Z −Z ′‖p

X ≤ 2p−1E‖Z − a‖p
X (this fact follows from

a straightforward interpolation argument), we conclude exactly as in the
proof of Theorem 3.3.

We mention some partial converses to Remark 3.1.

Corollary 3.4. Let X be an infinite dimensional Banach space. Then
Πp(X) < ∞ implies that X is superreflexive and has cotype q for every
q > p.

Proof. Let qX = inf{q : X has cotype q}. By the Maurey–Pisier [MaP]
theorem, X contains copies of ℓn

qX
with distortion uniformly bounded in n.

By Bourgain’s embedding of trees into ℓqX
[Bo], this implies that cX(Bm) =

O((log m)1/qX ). From Bourgain’s lower bound [Bo], or alternatively Claim 3.7
below, we deduce that qX ≤ p, as required. The fact that X is superreflex-
ive follows from Bourgain’s characterization of superreflexivity [Bo]. �

Corollary 3.5. Let X be a Banach lattice with Πp(X) < ∞. Then for
every q > p, X admits a q-convex equivalent norm.

Proof. This is a direct consequence of a theorem of Figiel [Fi] (see [LiT,
p. 100]) which says that a Banach lattice with cotype q and non-trivial
type can be renormed to be q-convex (X has non-trivial type since it is
superreflexive). �
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3.2 Distortion lower bounds. We can now use the discrepancy be-
tween Πp(X) and Πp(Y ) to prove distortion lower bounds for embeddings
between the two spaces.

Lemma 3.6. Let (X, dX ), (Y, dY ) be metric spaces, then for every p < ∞,
we have

cY (X) ≥ Πp(X)

Πp(Y )
.

Proof. Fix Π > Πp(Y ). Let g : X → Y be a bi-Lipschitz map, let {Xt}∞t=0

be a Markov chain with state space Ω, and let f : Ω → X. Then
m∑

k=0

2m∑

t=1

E[dX(f(Xt), f(X̃t(t − 2k)))p]

2kp

≤ ‖g−1‖p
Lip ·

m∑

k=0

2m∑

t=1

E[dY (g(f(Xt)), g(f(X̃t(t − 2k))))p]

2kp

≤ ‖g−1‖p
Lip · Πp ·

2m∑

t=1

E
[
dY (g(f(Xt)), g(f(Xt−1)))

p
]

≤ ‖g‖p
Lip · ‖g−1‖p

Lip · Πp ·
2m∑

t=1

E
[
dY (f(Xt), f(Xt−1))

p
]
.

It follows that Πp(X) ≤ cY (X) · Πp(Y ), as required. �

As a warm up to the more involved lower bounds that will follow, we
show how Markov convexity can be used to prove Bourgain’s theorem for
complete binary trees.

Claim 3.7. For every m ∈ N, we have Πp(B2m) ≥ 2
1− 2

p · m
1
p .

Proof. Let {Xt}∞t=0 be the forward random walk on B2m (which goes
left/right with probability 1/2), starting from the root, with the leaves
as absorbing states. Then

2m∑

t=1

E
[
dB2m (Xt,Xt−1)

p
]
≤ 2m.

Moreover, in the forward random walk, after splitting at time r ≤ 2m with
probability at least 1/2 two independent walks will accumulate distance
which is at least twice the number of steps (until a leaf is encountered).
Thus
m∑

k=0

2m∑

t=1

E[dB2m (Xt, X̃t(t − 2k))p]

2kp
≥

m∑

k=0

2m−2k∑

t=1

1

2kp
· 1
2
·2(k+1)p ≥ 2p−2 ·m ·2m.

The claim follows. �
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Since Lp is Markov max{2, p}-convex for every p > 1, combining
Claim 3.7 with Lemma 3.6 recovers Bourgain’s result [Bo], i.e. for every
p > 1, we have cp(Bk) ≥ Ω((log k)min{1/2,1/p}).

Simple random walks with positive speed. In fact, the proof
of Claim 3.7 applies in more general situations where a random walk has
positive speed. We consider some examples.

Let G = (V,E) be an infinite, vertex-transitive graph of bounded degree.
Let {Xt}∞t=0 be a simple random walk on G starting from an arbitrary
vertex. Denote by dG the shortest-path metric on G. One defines the speed
of the random walk as the limit

lim
t→∞

E dG(X0,Xt)

t
.

Subadditivity implies that the limit above always exists.

Lemma 3.8. If the speed of the simple random walk on a vertex-transitive
graph G is at least s > 0, then Πp(BG(R)) = Ω((log R)1/p), where BG(R)
denotes the ball of radius R in G. In particular for every p > 1,

cp

(
BG(R)

)
= Ω

(
(log R)min{1/2,1/p}

)
.

Proof. The proof is similar to that of Claim 3.7. One simply observes that
for two independent simple random walks Xt, X̃t started at the same point,
we have

lim
t→∞

E dG(Xt, X̃t)

t
= lim

t→∞

E dG(X0,X2t)

t
≥ 2s > 0 .

In particular, for t large enough, with constant probability we have
dG(Xt, X̃t) = Ω(t). �

As an application, consider the lamplighter group over Zd. This is
a group with elements (f, x), where x ∈ Zd, and f : Zd → {0, 1} with
f(y) = 0 for all but finitely many y ∈ Zd. Traditionally, one imagines a
lamp placed at every element of Zd, where each lamp can either be on or
off. In the pair (f, x), f denotes the settings of all the lamps, and x denotes
the position of the lamplighter. Accordingly, the generating set consists of
two types of moves.

1. The lamplighter can move to an adjacent vertex in Zd, i.e. (f, x) 7→
(f, x′) where x′ is adjacent to x in the standard Cayley graph of Zd;
or

2. The lamplighter can turn on/off the lamp at x, i.e. (f, x) 7→ (f ′, x)
where f ′(y) = f(y) for y 6= x and f ′(x) = 1 − f(x).

We will use L(Zd) to denote the associated group as well as the Cayley
graph with the described generators. A result of Kăımanovich and Vershik
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[KV] shows that the simple random walk on L(Zd) has positive speed for
d > 2. Using Remark 3.1 and Lemma 3.8, we conclude:

Corollary 3.9. For d > 2, the word metric on L(Zd) does not embed
into any p-convex Banach space. In particular, if BL(Zd)(R) denotes a ball
of radius R, then for p > 1,

cp

(
BL(Zd)(R)

)
≥ Ω

(
(log R)min{1/2,1/p}

)
.

We remark that, by a theorem of Varopoulos [V], the simple random
walk on the Cayley graph of a finitely generated group has positive speed
if and only if there exists a bounded, non-constant, harmonic function on
the graph.

Finally, we consider the finite lamplighter groups over ZN = Z/(NZ),
which we denote by L(ZN ). In this case, the simple random walk on L(ZN )
does not have positive speed, but it is still possible to prove a distortion
lower bound because the Markov chains in the definition of Markov con-
vexity need not be reversible. In particular, consider the chain {Xt}∞t=0

defined as follows. X0 = (f, 0) where f ≡ 0, i.e. all lamps are turned off. If
Xt = (f, i), then with probability 1/2, we put Xt+1 = (f, i + 1), and with
probability 1/2 we put Xt+1 = (f ′, i + 1) where f ′(i + 1) = 1 − f(i + 1).
Arguing essentially exactly as in Claim 3.7 for times t ≤ N , we have the
following.

Proposition 3.10. For every p < ∞, we have Πp(L(ZN )) ≥ Ω((log N)1/p).
In particular, cp(L(ZN )) ≥ Ω((log N)min{1/2,1/p}).

Proposition 3.10 can also be proved by exhibiting an embedding of a
complete binary tree of depth Θ(N) into L(ZN ) – see [LyPP].

3.3 Weak prototypes and Markov convexity. In this section we
study the Markov convexity properties of a special class of trees called
weak prototypes. These trees will play a central role in section 4, where
Theorem 1.4 is proved. We begin with some definitions (we continue using
here the notation of section 2.1).

In what follows, by a path metric P = (u1, . . . , um) we simply mean
a graph theoretical path from u1 to um with edges (u1, u2), (u2, u3), . . . ,
(um−1, um) and edge weights {ℓ(uj , uj+1)}m−1

j=1 ⊆ [0,∞). The length of P ,

denoted ℓ(P ), is given by ℓ(P ) =
∑m−1

j=1 ℓ(uj, uj+1). Given a monotone
path P in T , and a set of vertices (v1, . . . , vm) on P , ordered down the tree
and not necessarily containing all the vertices of T lying on P , we will call
the path metric on (v1, . . . , vm) with the edge weights {dT (vj , vj+1)}m−1

j=1 ,
the path metric induced by T on (v1, . . . , vm).
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Given a path metric P = (u1, . . . , um) and ε, δ ∈ (0, 1) we shall say the
path P is (ε, δ)-weak if at least an ε-fraction of the length of P is composed
of edges of length at most δℓ(P ), i.e.

∑

j∈{1,...,m−1}
ℓ(uj ,uj+1)≤δℓ(P )

ℓ(uj , uj+1) ≥ εℓ(P ) = ε

m−1∑

j=1

ℓ(uj , uj+1) .

A monotone path P (u, v) in T will be called degree-2 (ε, δ)-weak if the
following condition holds true. Let (u1, . . . , um) be the vertices of T on P ,
ordered down the tree, which have at least two children in T . Then we
require that the path metric induced by T on (u, u1, . . . , um, v) is (ε, δ)-
weak. In other words, call a monotone path P in T a strait if every vertex
on P has exactly one child, except possibly for the initial and final vertices.
Then P (u, v) is degree-2 (ε, δ)-weak if at least an ε-fraction of the length
of P (u, v) is composed of maximal straits of length at most δdT (u, v).

Definition 3.11. Fix ε, δ,R > 0. A tree T = (V,E) with edge lengths
ℓ : E → (0,∞) is called an (ε, δ)-weak prototype with height ratio R if the
following conditions are satisfied.

• Every non-leaf vertex of T has exactly one or two children.
• Every root-leaf path of T is degree-2 (ε, δ)-weak.
• If h is the length of the shortest root-leaf path in T and h′ is the

length of the longest root-leaf path in T , then h′/h ≤ R.

3.3.1 Markov convexity for unweighted weak prototypes. First,
we will prove a lower bound on the Markov convexity constants of a spe-
cial class of unweighted weak prototypes. Later, we will show that every
weak prototype can be approximated by a weak prototype satisfying these
conditions.

Theorem 3.12. Let (T, dT ) be an unweighted (ε, δ)-weak prototype with
height ratio 1 and height 2m for some m ∈ N. Then for every p ≥ 1, we
have

Πp(T ) ≥
(

ε
4

[
log2

(
ε
δ

)
− 4
])1/p

.

Proof. Let r be the root of T . Let {Xt}∞t=0 be the Markov chain on T
defined as follows. Initially, X0 = r. If Xt is a leaf node, then Xt+1 = Xt,
and otherwise Xt+1 is a uniformly random child of Xt.

First, we have dT (Xt−1,Xt) ≤ 1 for every t ≥ 1. Thus it suffices to
show that

1

2m

m∑

k=0

2m∑

t=1

E[dT (Xt, X̃t(t − 2k))]p

2kp
≥ ε

4

[
log2

(ε

δ

)
− 4
]
.
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Recall that a monotone path P in T is a strait if every node of P has
exactly one child, except possibly for the initial and final nodes. Addition-
ally, say that a node v ∈ T is a branch point if v has at least two children.
Clearly the edges of every root-leaf path partition into maximal straights
with branch points at the ends (except for the root and leaves). Let Bk(t)
be the event that the set {Xt,Xt+1, . . . ,Xt+2k−1} contains a branch point.
Observe that whenever 2k−1 ≥ δ2m, we have

2m−1∑

t=0

Pr
[
Bk(t)

]
≥

2m−1∑

t=0

Pr[Xt falls in a maximal strait

of length at most 2k−1] ≥ ε2m, (23)

since every root-leaf path of T is degree-2 (ε, δ)-weak. Furthermore, if
k ≤ m, and t ≤ 2m − 2k, then

Bk(t) occurs =⇒ Pr
[
dT (Xt+2k , X̃t+2k (t)) ≥ 2k

]
≥ 1

2 , (24)

since upon hitting a branch point, the two chains will diverge with proba-
bility at least 1/2 for at least 2k−1 additional steps.

We conclude that when 2k−1 ≥ δ2m and k ≤ m,
2m∑

t=1

E
[
d(Xt, X̃t(t − 2k))

]p ≥
2m−2k∑

t=0

E
[
d(Xt+2k , X̃t+2k (t))

]p

≥
2m−2k∑

t=0

1

2
· 2kp · Pr

[
Bk(t)

]
(25)

≥ 2kp−1 · (ε2m − 2k) , (26)

where in (25) we used (24), and in (26) we used (23) along with a correction
term for boundary values of k. Therefore,

1

2m

m∑

k=0

2m∑

t=1

E[dT (Xt, X̃t(t − 2k))]p

2kp
≥ 2−(m+1)

m∑

k≥1+log2(δ2
m)

max{0, ε2m − 2k}

≥ ε

4

[
log
(ε

δ

)
− 4
]
.

The proof of Theorem 3.12 is complete. �

3.3.2 Distortion bounds for weak prototypes. In this section,
we show how to pass from a finite tree T to a more well-behaved tree T̃ such
that cp(T̃ ) = O(1) · cp(T ) for every p ∈ [1,∞). We use this transformation
to prove distortion lower bounds for arbitrary weak prototypes.

Lemma 3.13. Let (T, dT ) be a finite, graph-theoretic metric tree, and
let TR be the R-tree that results from replacing every edge of e ∈ E(T ) by
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a closed interval whose length is length(e). Then for every p ∈ [1,∞), we
have cp(TR) ≤ 5cp(T ).

Proof. Fix a root r of T (and, in particular, an orientation of the edges).
Let f : T → Lp be an embedding of T . Let {βuv}uv∈E(T ) ⊆ Lp be a
system of disjointly supported unit vectors each of whose support is also
disjoint from the support of Im(f). Denote a point x ∈ TR by x = (u, v, η),
where uv ∈ E(T ), we have dT (r, u) ≤ dT (r, x) ≤ dT (r, v), and dT (x, u) =
η ·dT (u, v) for η ∈ [0, 1]. Assume that ‖f‖Lip = 1. We define an embedding
g : TR → Lp by

g(u, v, η) = (1 − η)f(u) + ηf(v) + η dT (u, v)βuv .

Fix (u, v, η), (u′, v′, η′) ∈ TR. If u′ is not a descendant of u or vice-versa
then

dTR

(
(u, v, η), (u′ , v′, η′)

)
= ηdT (u, v) + η′dT (u′, v′) + dT (u, u′).

Thus∥∥g(u, v, η) − g(u′, v′, η′)
∥∥

p

≤
∥∥g(u, v, η) − g(u, v, 0)

∥∥
p
+
∥∥g(u, v, 0) − g(u′, v′, 0)

∥∥
p

+
∥∥g(u′, v′, 0) − g(u′, v′, η′)

∥∥
p

=
∥∥η(f(v) − f(u)) + η dT (u, v)βuv

∥∥
p
+
∥∥(1 − η)(f(u) − f(u′))

∥∥
p

+
∥∥η′(f(v′) − f(u′)) + η′dT (u′, v′)βu′v′

∥∥
p

= η
(
‖f(u) − f(v)‖p

p + dT (u, v)p
)1/p

+ (1 − η)
∥∥f(u) − f(u′)

∥∥
p

+ η′
(
‖f(u′) − f(v′)‖p

p + dT (u′, v′)p
)1/p

≤ 21/pηdT (u, v) + 21/pη′dT (u′, v′) + (1 − η)dT (u, u′)

≤ 21/p · dTR

(
(u, v, η), (u′ , v′, η′)

)
.

If u′ is a strict descendant of u then

dTR

(
(u, v, η), (u′ , v′, η′)

)
= (1 − η)dT (u, v) + η′dT (u′, v′) + dT (v, u′), (27)

and a similar reasoning shows that ‖g(u, v, η) − g(u′, v′, η′)‖p ≤
21/p · dTR

((u, v, η), (u′, v′, η′)). The case of u = u′ is even simpler, so we
have shown that ‖g‖Lip ≤ 21/p‖f‖Lip.

On the other hand, we will now show that ‖g−1‖Lip ≤ 5/21/p. Assume
first of all that u′ is not a descendant of u or vice-versa. Then

‖g(u, v, η) − g(u′, v′, η′)
∥∥p

p

≥
[
η dT (u, v)

]p
+
[
η′dT (u′, v′)

]p

+
∣∣‖f(u) − f(u′)‖p − η‖f(u) − f(v)‖p − η′‖f(u′) − f(v′)‖p

∣∣p
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≥
[
η dT (u, v)

]p
+
[
η′dT (u′, v′)

]p
+

∣∣∣∣
dT (u, u′)

‖f−1‖Lip
− η dT (u, v) − η′dT (u′, v′)

∣∣∣∣
p

≥ 5

2

[
1

5

(
dT (u, u′)

‖f−1‖Lip
+ η dT (u, v) + η′dT (u′, v′)

)]p

(28)

≥ 2

[
1

5

(
dTR

((u, v, η), (u′, v′, η′))

‖f−1‖Lip

)]p

,

Where in (28) we used the convexity of the function a 7→ |a|p, which implies
that for all a, b, c ∈ R we have |a|p + |b|p + |c|p ≥ 5

2

∣∣2
5a + 2

5b + 1
5c
∣∣p.

If u′ is a strict descendant of u then dTR
((u, v, η), (u′ , v′, η′)) is given

by (27). Denote this distance by D, and for the sake of simplicity write
L = ‖f−1‖Lip. Since∥∥g(u, v, η) − g(u′, v′, η′)

∥∥p

p
≥
[
η dT (u, v)

]p
+
[
η′dT (u′, v′)

]p

≥ 21−p
[
η dT (u, v) + η′dT (u′, v′)

]p
,

we may assume that η dT (u, v) + η′dT (u′, v′) < 2D/5L. In this case∥∥g(u, v, η)− g(u′, v′, η′)
∥∥

p
≥
∥∥(1− η)f(u)+ ηf(v)− (1−η′)f(u′)− η′f(v′)

∥∥
p

≥
∥∥f(u) − f(u′)

∥∥
p
− η
∥∥f(u) − f(v)

∥∥
p

− η′
∥∥f(u′) − f(v′)

∥∥
p

≥ dT (u, u′)

L
− ηdT (u, v) − η′dT (u′, v′)

≥ D − η′dT (u′, v′)

L
− 2D

5L

≥ D

L
− D

5L2
− 2D

5L

≥ D

5L
.

The remaining case is when u=u′ and v=v′. But then ‖g(u, v, η)−g(u′, v′, η′)‖p

= |η − η′| · ‖f(u) − f(v)‖p, and the required lower bound is trivial.
We have thus proved that ‖g‖Lip · ‖g−1‖Lip ≤ 5‖f‖Lip · ‖f−1‖Lip, as

required. �

Remark 3.2. The above lemma does not hold if we allow “Steiner” nodes
in the tree T . To observe this, consider the subset L ⊆ Bm of leaves of a
complete binary tree of height m, and let r be the root of Bm. Then it
is not difficult to see that c2(L ∪ {r}) ≤ O(1) (independent of m), while
c2(Bm) → ∞ by Bourgain’s theorem for Bm [Bo].

We now replace any weak prototype by an “equivalent” prototype with
height ratio 1.
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Lemma 3.14. Let (T, dT ) be any finite metric tree. Then there exists
a finite, unweighted metric tree (T̃ , d

eT
) with height 2m for some m ∈ N

such that cp(T̃ ) ≤ O(1) · cp(T ) for any p ∈ [1,∞). Furthermore, if T

is an (ε, δ)-weak prototype with height ratio R, then T̃ is an unweighted
(ε/2R, δ)-weak prototype with height ratio 1.

Proof. Fix a root r of T . Since T is finite, by rescaling and incurring
an arbitrarily small distortion, we may assume that all edge lengths are
integral. For every node x ∈ T , Let m = ⌈log2 maxx∈T dT (x, r)⌉. We now
define a tree T ′ as follows. For every leaf ℓ ∈ T , define a new node ℓ̃,
and create a new edge (ℓ, ℓ̃) of length 2m − dT (r, ℓ). Thus the length of
every root-leaf path in T ′ is exactly 2m. To see that cp(T

′) = Θ(1) · cp(T ),
let f : T → Lp be an embedding of T , and let {βℓ} ⊆ Lp be a system
of disjointly supported vectors each of whose support is disjoint to Im(f).
One can extend the embedding by defining f(ℓ̃) = f(ℓ) + dT ′(ℓ, ℓ̃) · βℓ so
that cp(T

′) ≤ O(1) · cp(T ). Observe that if T has height ratio R, then the
length of any root-leaf path in T ′ has increased by at most a factor 2R over
its previous length in T .

We pass from T ′ to T ′
R

using Lemma 3.13, and then to T̃ by simply

taking the vertex set of T̃ to be V (T̃ ) = {v ∈ T ′ : dT ′(v, r) ∈ N}. We define
d

eT as the unweighted shortest-path metric on T . Then (T̃ , d
eT ) embeds

isometrically into T ′
R
. Hence cp(T̃ ) = Θ(1) · cp(T

′
R
) = Θ(1) · cp(T

′) =

Θ(1)·cp(T ). Furthermore, every root-leaf path in T̃ has length precisely 2m.

Finally, observe that if T was (ε, δ)-weak with height ratio R, then T̃ is an
unweighted (ε/(2R), δ)-weak prototype (because some root-leaf path from
T might have increased by a factor of at most 2R) with height ratio 1. �

The next corollary follows from Theorem 3.12 and Lemma 3.14.

Corollary 3.15. Let (T, dT ) be an (ε, δ)-weak prototype with height
ratio R, then for any p > 1,

cp(T, dT ) ≥ Ω(1) · cp(T̃ , d
eT
) ≥ Ω(1) · Πq(T̃ , d

eT
) ≥ Ω(1) ·

(
ε
R log

(
ε

δR

))1/q
,

where q = max{2, p} and T̃ is the associated unweighted prototype from
Lemma 3.14.

The corollary follows by applying Theorem 3.12 to T̃ and using the
relationship between Markov convexity and distortion from Lemma 3.6,
along with the known Markov convexity of Lp spaces (Remark 3.1).



Vol. 18, 2008 TREES AND MARKOV CONVEXITY 1645

2

1

2

1

1

2

2

0

Figure 4: A downward degree sequence and the corresponding SST.

3.3.3 The Cantor trees. Recall that in Theorem 2.1, we showed
that for any tree T and p ≥ 1, we have, for every c > 1,

cp(T ) ≤ O(1)

(
c

c − 1
· BT (c)

)min{1/p,1/2}

.

Here, we will show that this dependence on BT (c) cannot be improved by
exhibiting a family {Ci}∞i=0 of metric trees with |Ci| → ∞ and such that
for any fixed c > 1,

cp(Ci) ≥ Ω(1) · Πmax{2,p}(Ci) ≥ Ω(1) · BCi(c)
min{1/p,1/2}. (29)

Let T be a rooted (unweighted) graph-theoretic tree. For any root
leaf path P = {v0, v1, . . . , vm}, we define the downward degree sequence
d↓(P ) = {d↓(v0), d↓(v1), . . . , d↓(vm)} where d↓(v) is the number of children
of v in T . We will say that T is a spherically symmetric tree (SST) if for
any pair of root-leaf paths P,P ′ we have d↓(P ) = d↓(P

′). Clearly any such
tree can be completely specified by giving the degree sequence of a root-leaf
path (see Figure 4).

Definition of the Cantor trees. We now describe a family of down-
ward degree sequences inductively. For two sequences S, S′ we define S⊗S′

as their concatenation. For every i ∈ N, we use ones(i) = ⊗i{1} to denote
a sequence of i ones. Now define S0 = {2} and inductively

Si+1 = Si ⊗ ones(2i − 1) ⊗ Si.

Hence the first few sequences are {{2},{22}, {22 1 22},{22122 111 22122},...}.
To make these proper downward degree sequences, we define S̃i to be Si

except with the last element changed from 2 to 0. Finally, we let Ci be the
unique SST with downward degree sequence S̃i. We call these Cantor trees
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because the patterns of 2’s resemble finite approximations to the middle-
third Cantor set. It is clear that length(Si) = 2 · length(Si−1) + 2i−1 − 1 =
i ·2i−1+1, and that log log |Ci| = Θ(i). The next two lemmas are somewhat
less obvious.

Lemma 3.16. For every i ≥ 1, the tree Ci is a (1/2, 2−i/3)-weak prototype.

Proof. We need to show that every root-leaf path in Ci is degree-2
(1/2, 2−i/3)-weak. Fix any such path P . It is easy to see that the maxi-
mal straits in P are given by consecutive sequences of 1’s in the downward
degree sequence of Ci: A sequence of k consecutive 1’s refers to a strait
of length k + 1. Therefore for every j ≤ i − 1, there are 2i−1−j disjoint
maximal straits of length 2j in P . The question becomes how small we
need to choose m before

1
2 height(Ci) = 1

2(i · 2i−1 + 2) ≤
i−1∑

j=m

2i−1−j · 2j = 2i−1(i − m) .

Clearly we must have m < i/2, hence Ci is a (1/2, δ)-weak prototype for

δ =
2i/2

i · 2i−1 + 1
≤ 2−i/3. �

Combining this with Theorem 3.12 yields the following.

Corollary 3.17. For every p < ∞, Πp(Ci) ≥ Ω(i1/p).

The following claim completes the proof of (29).

Claim 3.18. For every fixed c > 1, BCi(c) ≤ O(i) as i → ∞.

Proof. The idea of the proof is simple: If the edges of Bm are mapped far
apart in Ci, then we can use the diameter of Ci to upper bound the size
of m. Otherwise, if the edges are mapped close together, then essentially
the entire image of Bm must lie inside some copy of Ci−1 in Ci. This is
because there is a “buffer” of length 2i−1 between copies of Ci−1 in Ci which
contains no branch points. An edge of Bm must stretch over this buffer if
the image of Bm spans multiple copies of Ci−1.

For our induction, it will be easier to bound B
eCi

(c) for a slightly dif-

ferent family of trees C̃i. Let C̃i be the tree Ci with the following two
additions:

1. We append a path Hi of length 2i−2 to the root of Ci.

2. We append a path of length 2i−2 to every leaf of Ci. We will use
L = {Li} to refer to this family of paths.

Clearly BCi(c) ≤ B
eCi

(c).
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We may assume that i ≥ 1 is sufficiently large with respect to c. Let
f : Bm → C̃i be a bi-Lipschitz embedding of Bm into C̃i with distortion
c = ‖f‖Lip · ‖f−1‖Lip. Assume, for the sake of contradiction, that m ≥
256 i · c log(c + 1).

Clearly

diam(C̃i) ≥ max
u,v∈Bm

d
eCi

(
f(u), f(v)

)
≥ 2m

‖f−1‖Lip
≥ 2m‖f‖Lip

c
.

Since diam(C̃i) ≤ i · 2i+2, we conclude that

max
uv∈E(Bm)

d
eCi

(
f(u), f(v)

)
= ‖f‖Lip ≤ i · 2i+2 · c

m
≤ 2i−6

log(c + 1)
, (30)

where E(Bm) is the set of edges in Bm.

We will now show that (30) implies that f(Bm) is contained completely
inside an isometric copy of C̃i−1. By induction, this will be a contradiction
and finish the proof. Let us consider a “top-down” decomposition of C̃i

into disjoint pieces. From the root downward, we see Hi, then a copy of Ci,
then the family of paths L. If we also break Ci into constituent pieces, we
see:

1. Hi;

2. a copy Ci−1;

3. a family of paths P of length 2i−1 connected to the leaves of (2);

4. copies of Ci−1 connected to every endpoint of the paths from (3);

5. the family of paths L connected to the leaves of the copies of Ci

from (4).

We now define a family of disjoint sub-trees of C̃i each of which is an

isometric copy of C̃i−1. The first copy C̃
(0)
i−1 consists of the bottom 2i−3

nodes of Hi, the copy of Ci−1 from (2) above, and the top 2i−3 nodes of
each path p ∈ P (from (3)). The other copies are indexed by paths p ∈ P.

For each such path, we construct C̃
(p)
i−1 using the bottom 2i−3 nodes of p,

the copy of Ci−1 from (4) connected to the bottom of p, and the top 2i−3

nodes of each path from L connected to this copy of Ci−1.

We claim that there exists some j ∈ {0} ∪ P for which f(Bm) ⊆ C̃
(j)
i−1.

We now prove the most difficult case; the other cases are similar. Suppose,

for the sake of contradiction, there exist x, y ∈ Bm for which f(x) ∈ C̃
(0)
i−1

and f(y) ∈ C̃
(p)
i−1 for some p ∈ P. By (30), every edge of Bm has length at

most 2i−6, hence there must be some node z ∈ Bm for which f(z) lies in
the middle 2i−3 nodes of p. In particular, |B

eCi
(f(z), r)| ≤ 2r + 1 for every
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r ≤ 2i−3, since B
eCi

(f(z), 2i−3) ⊆ p. Furthermore, |f(Bm)∩B
eCi

(f(z), r)| ≤
(2r + 1)‖f−1‖Lip. On the other hand, |BBm(z, r′)| ≥ 2r′/2 for r′ ≤ m.

But we have

f

(
BBm

(
z,

r

‖f‖Lip

))
⊆ B

eCi

(
f(z), r

)
.

Let r = min{2ic ‖f‖Lip, 2i−3}. Since, in particular r ≤ m‖f‖Lip, the above
considerations yield

2
r

2‖f‖Lip ≤ (2r + 1)‖f−1‖Lip =
(2r + 1)c

‖f‖Lip
≤ 4rc

‖f‖Lip
. (31)

Observe that the inequality 2B ≥ 8Bc hold as long as B ≥ 10 log(c + 1)
and c ≥ 1, but it is easy to check that for i ≥ 10, we have r/2‖f‖Lip ≥
10 log(c + 1) (using (30)), yielding a contradiction. This completes the
proof. �

Remark 3.3. Observe that the two point space A = {x, y} with, say,
d(x, y) = 1 is a tree metric for which Πp(A) = O(1) for every p < ∞. On
the other hand, it is easy to see that Πp([0, 1]) = ∞ for every p < 2, thus
in general Πp(TR) 6≈ Πp(T ) for p < 2. For p ≥ 2, the relationship is less
clear, though we suspect that a similar phenomenon holds in this case. A

possible example for which Π2(T
(i)
R

) 6≈ Π2(T
(i)) is when T (i) is the Cantor

tree Ci with every maximal strait replaced by a single long edge. Using
techniques similar to Lemma 3.18, one might show that Π2(T

(i)) = O(1)

as i → ∞ while Π2(T
(i)
R

) ≈ Π2(Ci) → ∞. We do not pursue this line of
reasoning further in the present work.

4 Characterizing the Distortion: Strong Colorings and

Markov Convexity

In this section we will continue to use the notation of section 2.1. Moreover,
unless explicitly stated otherwise, all paths will be assumed to be monotone.
Many of the concepts and definitions used in this section were introduced
in section 3.3, so we suggest that the reader be familiar with section 3.3
before reading the present section.

The following result, which contains Theorem 1.4, is the main theorem
of this section:

Theorem 4.1 (The Lp distortion of trees). For 1 < p < ∞ and every
metric tree T = (V,E),
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cp(T ) = Θ
(
Πmax{p,2}(TR)

)
= Θ

([
log

(
2

δ∗(T )

)]min{1/p,1/2}
)

,

where the implied constants may depend only on p.

Before proving Theorem 4.1 we make some observations. By Lemma 3.6
for every q > 0 and every two metric spaces (X, dX ) and (Y, dY ), cY (X) ≥
Πq(X)/Πq(Y ). Since Lp is max{p, 2} uniformly convex, Remark 3.1 implies
that Πmax{p,2}(Lp) < ∞. This observation, together with Theorem 2.6 and
Lemma 3.13, implies that

Ω
(
Πmax{p,2}(TR)

)
≤ 1

5
cp(TR) ≤ cp(T ) ≤ O

([
log

(
2

δ∗(T )

)]min{1/p,1/2}
)

.

Thus, using Corollary 3.15, the proof of Theorem 4.1 will be complete if
show that if a metric tree T = (V,E) does not admit any δ-strong coloring
then there exists a subtree of T which is

(
Ω(1), 2 · δΩ(1)

)
-weak prototype

with height ratio O(1). It is clearly enough to prove this for small enough δ,
so we assume in what follows that δ < (140)−2880 (the proof below yields
much better constants, but we chose this rough bound to simplify the en-
suing exposition). The proof of this assertion is analogous to the proof of
Theorem 2.10, where “strong” colorings replace “good” colorings, and weak
prototypes take the place of complete binary trees. Since the structure of
a weak prototype is not as cleanly recursive as that of a complete binary
tree, there are some inevitable added complications. The argument will be
broken down into several steps.

4.1 Preliminary results on paths in trees. In what follows, given
u, v ∈ V we shall say that a set of consecutive edges C ⊆ P (u, v) is a
δ-cluster if ℓ(e) ≤ δdT (u, v) for every e ∈ C.

Lemma 4.2. Fix α ∈
(
0, 1

2

)
, δ ∈ (0, 1), and denote τ = 1

2−4α . Assume

that u, v ∈ V are such that the path P (u, v) is
(

1
2 + α, δ

)
-weak. Then

at least an α-fraction of the length of P (u, v) is covered by δ-clusters of
length at least τδdT (u, v). Moreover, at least an α-fraction of the length of
P (u, v) is covered by edge-disjoint δ-clusters of length between τδdT (u, v)
and (2τ + 1)δdT (u, v).

Proof. Fix u, v ∈ V and denote P = P (u, v) and d = dT (u, v) = ℓ(P ). Let
M be the set of maximal δ-clusters (with respect to inclusion) contained
in P . In what follows, for a δ-cluster C ⊆ P we write ℓ(C) =

∑
e∈C ℓ(e).

Define S = {C ∈ M : ℓ(C) < τδd}. For every C ∈ S, since C is a
maximal δ-cluster, there is an edge eC ∈ P \ C which is incident with an
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edge in C, such that ℓ(eC) > δd ≥ ℓ(C)
τ . Note that for every edge e ∈ P ,

|{C ∈ S : eC = e}| ≤ 2. Now,
∑

C∈S

ℓ(C)

τ
≤
∑

C∈S

ℓ(eC) ≤ 2
∑

e∈P
ℓ(e)>δd

ℓ(e) ≤ 2
(
d −

∑

e∈P
ℓ(e)≤δd

ℓ(e)
)
≤ 2

(
1−1

2
−α

)
d

= (1 − 2α)d .

Using the fact that the path P is
(

1
2 + α, δ

)
-weak, we see that

(
1
2+α

)
d ≤

∑

e∈P
ℓ(e)≤δd

ℓ(e) =
∑

C∈M
ℓ(C)≥τδd

ℓ(C) +
∑

C∈S

ℓ(C) ≤
∑

C∈M
ℓ(C)≥τδd

ℓ(C)+(1−2α)τd.

Recalling that τ = 1
2−4α , we see that

∑
C∈M

ℓ(C)≥τδd
ℓ(C) ≥ αd, as required.

The final assertion of Lemma 4.2 is simply the fact that for any weighted
path P = (u1, . . . , um) such that for each j ∈ {1, . . . ,m − 1} we have
ℓ(uj , uj+1) ≤ a, but

∑m−1
j=1 ℓ(uj , uj+1) ≥ A, there are indices 1 = p1 < p2 <

· · · < pk = m such that for all j ∈ {1, . . . , k−1} we have
∑pj+1

i=pj
ℓ(ui, ui+1) ∈

[A, 2A+a]. Indeed, let p2 > p1 be the first index such that
∑p2

i=p1
ℓ(ui, ui+1)

≥ A. Then
∑p2

i=p1
ℓ(ui, ui+1) ≤ A+a. Continuing inductively as long as the

length of the remaining path is at least A we find 1 = p1 < p2 < · · · < pk

such that for j ∈ {1, . . . , k − 1} we have
∑pj+1

i=pj
ℓ(ui, ui+1) ∈ [A,A + a], and∑m

i=pk
ℓ(ui, ui+1) < A. The required result follows by replacing pk with m,

which increases the length of the final segment by at most A. �

In order to proceed we need to generalize the notions of ε-good and
δ-strong colorings. A coloring χ : E → Z will be called (ε, δ)-strong if it is
monotone, and for every u, v ∈ V∑

k∈Z

ℓχ
k(u, v) · 1{ℓχ

k (u,v)≥δdT (u,v)} ≥ εdT (u, v) .

Note that we can always assume that ε ≥ δ. Using the terminology of
section 2.1, an ε-good coloring is the same as an (ε, ε)-strong coloring,
and a δ-strong coloring is the same as a (1/2, δ)-strong coloring. Thus the
following lemma is a generalization of Lemma 2.5.

Lemma 4.3. Fix ε ∈ (0, 1/2] and δ ∈ (0, ε). Then any (ε, δ)-strong
coloring is is also a (δ/4ε)3/ε-strong coloring.

Proof. The proof is a slight modification of the proof of Lemma 2.5. Let
χ : E → Z be an (ε, δ)-strong coloring, and denote θ = ε/(2 log(4ε/δ)). We
shall show that for every α ∈ (0, 1] and u, v ∈ V , the total length of the
monochromatic segments of length at least αdT (u, v) on the path P (u, v)
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satisfies ∑

k∈Z

ℓχ
k (u, v) · 1{ℓχ

k (u,v)≥αdT (u,v)} ≥
(
1 −

(α

δ

)θ )
dT (u, v) . (32)

There are points a1, b1, a2, b2, . . . , am, bm ∈ V , ordered consecutively
(from u to v) on the path P (u, v), such that the color classes of length at
least δdT (u, v) on the path P (u, v) are precisely the intervals {[aj , bj]}m

j=1.
Denote for the sake of simplicity b0 = u and am+1 = v, and define β > 0 by
βdT (u, v) =

∑m
j=1 dT (aj , bj). Since the coloring is (ε, δ)-strong, we know

that β ≥ ε. By the definition of β we are also assured that m ≤ β/δ.
If α > δ then inequality (32) holds vacuously, so we assume that α ≤ δ.
Arguing inductively as in the proof of Lemma 2.5 we see that∑

k∈Z

ℓχ
k (u, v) · 1{ℓχ

k (u,v)≥αdT (u,v)}

≥
m∑

j=1

dT (aj, bj) +

m∑

j=0

(
1 −

(
αdT (u, v)

δdT (bj , aj+1)

)θ )
dT (bj, aj+1)

= dT (u, v) −
m∑

j=0

(α

δ

)θ [
dT (u, v)

]θ ·
[
dT (bj , aj+1)

]1−θ

≥ dT (u, v)−(m+1)
(α

δ

)θ[
dT (u, v)

]θ
(

1

m+1

m∑

j=0

dT (bj , aj+1)

)1−θ

(33)

= dT (u, v) − (m + 1)
(α

δ

)θ [
dT (u, v)

]θ
(

(1 − β)dT (u, v)

m + 1

)1−θ

=
(
1 −

(α

δ

)θ
(m + 1)θ(1 − β)1−θ

)
dT (u, v)

≥
(

1 −
(α

δ

)θ
(

β

δ
+ 1

)θ

(1 − β)1−θ

)
dT (u, v) (34)

≥
(

1 −
(α

δ

)θ
(

2

δ

)θ

βθ(1 − β)1−θ

)
dT (u, v)

≥
(

1 −
(α

δ

)θ
(

2

δ

)θ

εθ(1 − ε)1−θ

)
dT (u, v) (35)

≥
(
1 −

(α

δ

)θ )
dT (u, v) , (36)

where in (33) we used the concavity of the function t 7→ t1−θ, in (34) we
used the fact that m ≤ β/δ, in (35) we used the fact that the function
s 7→ sθ(1 − s)1−θ is decreasing on [θ, 1] and that β ≥ ε ≥ θ (which follows
from the definition of θ and the fact that ε ≥ δ), and in (36) we used
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the elementary inequality (2/δ)θεθ(1 − ε)1−θ ≤ 1, which is equivalent to
θ ≤ log(1 − ε)/(log[(1 − ε)δ/(2ε)]), and this follows from the definition of
θ since ε ≤ 1/2. �

Recall that for R > 0 a subset N of a metric space X is an R-net if for
every distinct x, y ∈ N we have d(x, y) ≥ R and for every z ∈ X there is
x ∈ N with d(x, z) < R. In what follows we shall use the following variant
of this notion.

Definition 4.4. Let T = (V,E) be a tree rooted at r with edge weights
ℓ : E → (0,∞). For R > 0 we shall call a set N ⊆ V an upward R-net of T
if for every x, y ∈ N such that x is an ancestor of y we have dT (x, y) ≥ R
and for every v ∈ V there is x ∈ P (v)∩N such that dT (v, x) < R. In other
words, N is an upward R-net of T if and only if for every v ∈ V , N ∩P (v)
is an R-net in P (v).

Observe that an upward R-net in T need not be an R-net in T . However,
the following easy lemma shows that upward R-nets always exist.

Lemma 4.5. T admits an upward R-net for every R > 0.

Proof. The proof is an easy induction on V . For |V | = 1 the result is
trivial. Assume that |V | > 1 and let v ∈ V be a leaf of T . Let u ∈ V be the
father of v. By the inductive hypothesis the tree T ′ = (V \{v}, E \{(u, v)})
admits an upward R-net N ′. Thus there exists x ∈ N ∩ P (u) such that
dT ′(x, u) = dT (x, u) < R. If ℓ(u, v) ≥ R − dT (x, u) define N = N ′ ∪ {v},
which is clearly an upward R-net in T . Otherwise dT (v, x) < R, and since
x ∈ P (v), it follows that N ′ is also an upward R-net in T . �

4.2 Construction of a special coloring and the proof of Theo-

rem 4.1. Our basic strategy is similar to the proof of Theorem 2.10. To
emphasize the similarities between the two proofs, we will use the same no-
tation for the weight functions and the coloring that we construct (this will
not cause any confusion since section 2.2 can be read independently of the
present section). As in the proof of Theorem 2.10 we will define a weight
function µj on subtrees of T , and a “scale selector” g : V → Z∪{∞}, which
will be used to construct a coloring χ of T . The fact that χ is not δ-strong
will be used to find an appropriate copy of a weak prototype in T .

We begin with some notation. Let Q be a (weighted) path with initial
vertex x and final vertex y, and let F be an arbitrary tree with root y
(but otherwise disjoint from Q). For ε, δ ∈ (0, 1) and L > 0 we define
ρ(ε, δ, L;Q,F ) to be the least minimum distance from the root to a leaf in
a subtree F ′ ⊆ F which satisfies the following three conditions:
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1. Every non-leaf vertex of F ′ has exactly one or two children.
2. Let P be a root-leaf path in F ′, and let P̃ be the vertices on P which

are either one of the endpoints of P or have 2 children in F ′. Then
the path Q ∪ P̃ is (ε, δ)-weak.

3. Every path from x to a leaf of F ′ has length at most 3L.

Next, we construct a monotone coloring χ : E → Z and a “scale selec-
tor” g : V → Z ∪ {∞} in a similar way to what was done in section 2.2.
Along the way we will also construct weight functions {µs}s∈Z on subtrees
of T . As in section 2.2 we start by setting g(r) = ∞ and we assume induc-
tively that the construction is done so that whenever v ∈ V is such that
g(v) is defined, if u is a vertex on the path P (v) then g(u) has already been
defined, and for every edge e ∈ E incident to v, χ(e) has been defined.

For every t ∈ Z let Nt be an upward 4t-net of T . Since Nt is an upward
4t-net, for all w ∈ V we are assured that Nt ∩ P (w) ∩ BT (w, 4t) 6= ∅. We
define λt(w) to be the point in Nt ∩ P (w) ∩ BT (w, 2 · 4t) which is furthest
away from w. Now let t(s) ∈ Z be such that

240 · δ− 1
2880 · 4s ≤ 4t(s) < 960 · δ− 1

2880 · 4s.

Take v ∈ V which is the vertex closest to the root r for which g(v)
hasn’t yet been defined, and as in section 2.2 we set

g(v) = max
{
j ∈ Z : ∀u ∈ βχ(v) , dT (u, v) ≥ 4min{g(u),j}

}
. (37)

Recall that βχ(v) denotes the set of breakpoints of χ along the path P (v),
and that by the inductive hypothesis the path P (v) has been entirely col-
ored. Let F be a subtree of T rooted at v. We shall now define µs(F ). To
this end define a subset of the path P (v) by

Qs(v) =
{
λt(s)(v)

}⋃{
w ∈ βχ(v) : g(w) = g(v) and λt(s)(w) = λt(s)(v)

}
.

(38)

With this notation we can define

µs(F ) = ρ

(
1

2500
, δ

1
2880 , 4t(s);Qs(v), F

)
. (39)

In (39) we extended the definition of µs to all subtrees of T rooted at v.
We next choose one of the children of v, w ∈ C (v), for which

µg(v)(Fw) = max
z∈C (v)

µg(v)(Fz) .

Observe that µg(v)(Fz) is defined for all the children of v, since Fz is a
subtree of T rooted at v (it is the subtree rooted at z ∈ C (v) together with
the incoming edge {v, z}). Letting u be the father of v on the path P (v),
we set χ(v,w) = χ(u, v), and we assign arbitrary new (i.e. which haven’t
been used before) distinct colors to each of the edges {(v, z)}z∈C (v)\{w}.
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This construction yields a monotone coloring χ, a function g :
V → Z ∪ {∞}, and weight function {µs}s∈Z defined on subtrees of T .
In particular, we note here that Claim 2.11 still holds true, since its proof
only used the fact that g was defined as in (37), and this formula is identical
to the one used in section 2.2. The following lemma contains the crucial
properties of the coloring χ.

Lemma 4.6. Assume that the above coloring χ is not δ-strong. Then there
exists a sequence of vertices Q = (x,w1, . . . , wN ), ordered down the tree,

and a number L > 0, such that if we define s, t ∈ Z by 4s−1 < 1
240δ

1
2880 L ≤

4s and 240δ−
1

2880 4s ≤ 4t < 960δ−
1

2880 4s, then the path metric induced by T
on Q has the following properties:

1. For every j ∈ {1, . . . , N} the vertex wj is a breakpoint of χ.

2. For every j ∈ {1, . . . , N} we have g(wj) = s and λt(wj) = x.

3. The path Q is
(

1
2500 , δ

1
2880

)
-weak.

4. The length of Q satisfies ℓ(Q) = dT (x,wN ) ∈ [L/850, 3L].

Before passing to the proof of Lemma 4.6 we show how it can be used
to complete the proof of Theorem 4.1.

Proof of Theorem 4.1. With Lemma 4.6 at hand, the proof of Theorem 4.1
is similar to the final step of the proof of Theorem 2.10. Assume that
δ > δ∗(T ). Let Q = (x,w1, . . . , wN ) be the path constructed in Lemma 4.6,
and we shall also use the same s, t, L obtained there. Observe that using
the notation in (38) we may assume that Q = Qs(wN ). Indeed, by adding
to Q any additional breakpoint w of χ along P (wN ) with g(w) = g(wN ) = s
and λt(w) = λt(wN ) = x we do not change the conclusion Lemma 4.6.

For i ∈ {1, . . . , N −1} let zi be the child of wi along the path P (x,wN ),
and denote for the sake of simplicity zN = wN . We shall prove by induction
on i ≥ 0 that the subtree of T rooted at zN−i (i.e. the tree TzN−i

) has a
further sub-tree Wi satisfying the following properties.

1. Every path from x to a leaf of Wi has length at most 3 · 4t.
2. Every non-leaf vertex of Wi has exactly one or two children.

3. Let P be a path from zN−i to a leaf of Wi, and let P̃ be the vertices
on P which are either one of the endpoints of P or have 2 children
in Wi. Then the path (x,w1, . . . , wN−i) ∪ P̃ is

(
1

2500 , δ
1

2880

)
-weak.

4. Every root-leaf path in Wi has length at least dT (zN−i, wN ).

For i = 0 we just take W0 to be the singleton wN , and the fact that
the required properties are satisfied is asserted in Lemma 4.6. Similarly,
for i = 1 we let W1 be the tree consisting of the single edge (zN−1, wN )
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which satisfies the required properties due to Lemma 4.6. Assuming the
existence of Wi we proceed inductively as follows. Since wN−i is a break-
point of χ, the construction of χ in the proof of Theorem 2.10, and the
fact that g(wN−i) = s, implies that there is a child z′N−i of wN−i for
which µs(Fz′N−i

) > µs(FzN−i
) (recall that for u ∈ V the tree Fu is the

subtree rooted at u plus the edge joining u and its parent in T ). Now,
since Qs(wN ) = Q we also know that (since λt(wN−i) = x) Qs(wN−i) =
{x,w1, . . . , wN−i}. Thus by the definition on µs in (39)

µs(FzN−i
) = ρ

(
1

2500
, δ

1
2880 , 4t;Qs(wN−i), FzN−i

)

= ρ

(
1

2500
, δ

1
2880 , 4t; {x,w1, . . . , wN−i}, FzN−i

)
.

But, Wi is a subtree of FzN−i
in which every non-leaf vertex has two chil-

dren, for every path from x to a leaf of Wi the path metric induced by T
on the vertices which are either x, or one of the wj , or a leaf in Wi, or

have 2 children in Wi, is
(

1
2500 , δ

1
2880

)
-weak, every path from x to a leaf of

Wi has length at most 3L ≤ 3 · 4t, and the minimal distance from a root
to a leaf of Wi is at least dT (zN−i, wN ). Thus the definition of ρ implies
that µs(FzN−i

) ≥ dT (zN−i, wN ). It follows that µs(Fz′N−i
) > dT (zN−i, wN ),

implying the existence of a subtree W ′
i of Fz′N−i

, which has the same proper-
ties as those stated above for Wi. Joining these two subtrees at wN−i, and
adding an edge from zN−i+1 to wN−i we obtain a subtree WN−i+1 rooted at
zN−i+1 with the desired properties. We recommend that the reader follow
the above construction using a drawing analogous to Figure 3.

The tree T ′ obtained by joining the edges (x,w1), (w1, z1) to WN−1 is

a subtree of T which is a
(

1
2500 , δ

1
2880

)
-weak prototype with height ratio

at most 3·4t

d(x,wN ) ≤ 8L
L/850 = 6800. As explained in the discussion following

Theorem 4.1, this completes the proof. �

Thus, all that remains is to prove Lemma 4.6.

Proof of Lemma 4.6. Since we are assuming that the coloring χ is not
δ-strong, Lemma 4.3 implies that χ is also not

(
1

960 , 1
240δ

1
2880

)
-strong. Thus

there exist two vertices u, v ∈ V such that more than a 959
960 -fraction of the

length of the path joining u and v is covered by color classes of length less
than 1

240δ
1

2880 · dT (u, v). Let (b1, . . . , bm) be the breakpoints of the coloring
χ along the path P (u, v), ordered from u to v. We also denote b0 = u and
bm+1 = v. Thus
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m+1∑

j=1

dT (bj−1, bj) · 1
{dT (bj−1,bj)<

1
240

δ
1

2880 ·dT (u,v)}
≥ 959

960
dT (u, v)

=

(
1

2
+

479

960

)
dT (u, v) .

Lemma 4.2 (with α = 479
960 and τ = 1

2−4α = 240) implies that there exists
a sequence of indices 0 ≤ p1 < q1 ≤ p2 < q2 ≤ · · · ≤ pk−1 < qk−1 ≤
pk < qk ≤ m + 1 such that for every 1 ≤ i ≤ k we have dT (bpi , bqi) ∈
[δ

1
2880 dT (u, v), 3δ

1
2880 dT (u, v)] and every pi < j ≤ qi satisfies dT (bj−1, bj) ≤

1
240δ

1
2880 dT (u, v). Moreover, the total length of these “long 1

240δ
1

2880 -clusters”
is

k∑

i=1

dT (bpi , bqi) ≥
479

960
dT (u, v) . (40)

It follows in particular from (40) that k ≥ 479
3·960 · δ−

1
2880 ≥ 20 (since δ <

(140)−2880).

Denote L = dT (u, v) and recall that s ∈ Z is defined by 4s−1 <
1

240δ
1

2880 L ≤ 4s. Fix 1 ≤ i ≤ k and apply Claim 2.11 to the path P (bpi , bqi)
with c = 2 (which we are allowed to do by the definition of s). It fol-
lows that there exist at least two indices pi ≤ j1(i) < j2(i) ≤ qi such that
g(bj1(i)) = g(bj2(i)) = s and 9 · 4s ≤ dT (bj1(i), bj2(i)) ≤ 18 · 4s.

Now t ∈ Z is given by by 240δ−
1

2880 4s ≤ 4t < 960δ−
1

2880 4s. Note that
by the definition of s this implies that L ≤ 4t < 16L. For each point
w ∈ {bj1(1), bj2(1), . . . , bj1(k), bj1(k)} the vertex λs(w) is in BT (w, 2 · 4t) ∩
Nt ∩P (w) ⊆ BT (v, 2 · 4t + L)∩Nt ∩P (v) ⊆ BT (v, 3 · 4t)∩Nt ∩P (v). Since
Nt∩P (v) is 4t-separated, it follows that there are at most 4 possible vertices
which could equal λt(w). Thus there is a vertex x ∈ V and a subinterval
J ⊆ {1, . . . , k} of size at least k

4 − 1 ≥ k
5 (since k ≥ 20) such that for

all i ∈ J we have λt(bj1(i)) = λt(bj2(i)) = x. Note that since x = λt(w)
for some w ∈ {bj1(1), bj2(1), . . . , bj1(k), bj1(k)}, we know that x is the point in
Nt∩P (w)∩BT (w, 2·4t) which is furthest from w. Since Nt is an upward 4t-
net, there is a point y ∈ Nt∩P (u)∩BT (u, 4t). So, using dT (w, u) ≤ L ≤ 4t,
we see that y ∈ Nt ∩ P (w) ∩ BT (w, 2 · 4t). Thus x ∈ P (y) ⊆ P (u), i.e. x is
closer to the root than u.

Consider the path metric induced on the vertices Q = {x}∪{bj1(i)}i∈J ∪
{bj2(i)}i∈J . For simplicity of notation we enumerate it down the tree by
Q = (x,w1, . . . , wN ). We bound the length of Q as follows. First, ℓ(Q) =
dT (x,wN ) = dT (x,w1)+ dT (w1, wN ) ≤ 2 · 4t + L ≤ 3L. On the other hand,
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using (40) we see that

ℓ(Q) ≥
∑

i∈J

dT (bj1(i), bj2(i)) ≥
∑

i∈J

9 · 4s ≥ k

5
· 9 · 4s

≥ 9

5

k∑

i=1

1

240
δ

1
2880 L ≥ 3

400

k∑

i=1

1

3
dT (bpi , bqi) ≥

479

400 · 960L ≥ ℓ(Q)

2500
.

This also shows that the path Q is
(

1
2500 , δ1/2880

)
-weak, completing the

proof of Lemma 4.6. �
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