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A CHARACTERIZATION OF THE DUALITY
MAPPING FOR CONVEX BODIES

Károly J. Böröczky and Rolf Schneider

Abstract. We characterize the duality of convex bodies in d-dimensional
Euclidean vector space, viewed as a mapping from the space of convex
bodies containing the origin in the interior into the same space. The ques-
tion for such a characterization was posed by Vitali Milman. The property
that the duality interchanges pairwise intersections and convex hulls of
unions is sufficient for a characterization, up to a trivial exception and the
composition with a linear transformation.

1 Introduction

By R
d we denote the d-dimensional real Euclidean vector space, equipped

with its standard scalar product 〈 · , · 〉. We assume throughout that d ≥ 2.
The set of convex bodies (compact convex subsets) in R

d which contain
0 is denoted by Kd

0, and the subset of bodies containing 0 in the interior
by Kd

(0). For K ∈ Kd
(0), the dual or polar body is defined by

K∗ :=
{
x ∈ R

d : 〈x, y〉 ≤ 1 for all y ∈ K
}
.

It is again in Kd
(0). The duality mapping K �→ K∗ has a number of remark-

able properties, of which we list the following (see, for example, [S, §1.6]);
they are valid for all K,L ∈ Kd

(0):

(D1) (K∗)∗ = K;
(D2) K ⊂ L implies K∗ ⊃ L∗;
(D3) (K ∩ L)∗ = conv(K∗ ∪ L∗);
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(D4) [conv(K ∪ L)]∗ = K∗ ∩ L∗;
(D5) If K ∪L is convex, then (K ∩L)∗ = K∗∪L∗ and (K ∪L)∗ = K∗∩L∗;
(D6) Continuity with respect to the Hausdorff metric.
(D7) If g ∈ GL(d), then (gK)∗ = g−tK∗.

Of course, the listed properties of a mapping K �→ K∗ are not indepen-
dent. For example, (D3) implies (D2); (D1) and (D3) imply (D4) and (D5).

The question, which properties of the duality mapping are sufficient to
characterize it, was posed to the authors by Vitali Milman. A complete
characterization would definitely require additional assumptions, since also
the map K �→ −K∗ satisfies (D1)–(D7). Note also that a constant map
K �→ B (with B ∈ Kd

(0) fixed), as well as a map K �→ gK∗ (with g ∈ GL(d)
fixed), satisfies (D2)–(D6). On the other hand, when we are prepared to
accept such modifications, then characterizations by a few of the above
properties are possible. Here, the following result will be proved.

We write A ∨ B := conv(A ∪ B) for A,B ⊂ R
d and x1 ∨ · · · ∨ xk :=

conv{x1, . . . , xk} for x1, . . . , xk ∈ R
d.

Theorem. Let ψ : Kd
(0) → Kd

(0) be a mapping satisfying

ψ(K ∩ L) = ψ(K) ∨ ψ(L) , (1)
ψ(K ∨ L) = ψ(K) ∩ ψ(L) , (2)

for all K,L ∈ Kd
(0). Then either ψ is constant, or there exists a linear

transformation g ∈ GL(d) such that ψ(K) = gK∗ for all K ∈ Kd
(0).

Note, in particular, that no continuity assumption is required.
If ψ satisfies (1) and (2), and if we define

ψ∗(K) := ψ(K)∗, for K ∈ Kd
(0) , (3)

then the mapping ψ∗ : Kd
(0) → Kd

(0) satisfies

ψ∗(K ∩ L) = ψ∗(K) ∩ ψ∗(L) , ψ∗(K ∨ L) = ψ∗(K) ∨ ψ∗(L) . (4)

Thus, ψ∗ is an endomorphism of the lattice (Kd
(0),∩,∨). Gruber [G1] has

explicitly determined all endomorphisms of the lattice (Kd,∩,∨), where Kd

is the system of all compact convex subsets of R
d (including the empty set).

In [G2], Gruber has also completely classified the endomorphisms of the
lattice (Bd,∩,∨), where Bd is the system of all unit balls of norms on R

d,
that is, of all convex bodies having 0 as an interior point and center of
symmetry. From the latter result, one obtains the version of the theorem
above where Kd

(0) is replaced by Bd. The proof in [G2] uses the central
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symmetry of the images in several crucial ways, therefore the general case
requires a different proof.

Corollary. Let ψ : Kd
(0) → Kd

(0) be a mapping satisfying

ψ(ψ(K)) = K , (5)
ψ(K ∩ L) = ψ(K) ∨ ψ(L) , (6)

for all K,L ∈ Kd
(0). Then there exists a selfadjoint linear transformation

g ∈ GL(d) such that ψ(K) = gK∗ for all K ∈ Kd
(0).

In fact, (5) and (6) give

ψ
(
ψ(K) ∩ ψ(L)

)
= ψ(ψ(K)) ∨ ψ(ψ(L)) = K ∨ L ,

hence
ψ(K ∨ L) = ψ(K) ∩ ψ(L) .

Thus, the theorem can be applied. Condition (5) excludes a constant map
and forces the linear map appearing in the theorem to be selfadjoint.

The classification can be further narrowed down if (D7) is added to the
assumptions of the theorem. If the map in the theorem additionally satisfies
ψ(hK) = h−tψ(K) for all K ∈ Kd

(0) and all h ∈ GL(d), then there exists a
real number c such that ψ(K) = cK∗ for all K ∈ Kd

(0). Also a mapping ψ
satisfying (D5) and (D7) must be of this form, as can be shown with the
methods of [L]. This was kindly pointed out to us by Monika Ludwig. We
gratefully acknowledge the helpful conversations with her. We also thank
Peter Gruber for useful hints.

2 Proof of the Theorem

Suppose ψ : Kd
(0) → Kd

(0) is a mapping satisfying (1) and (2), and define ψ∗

by (3). It is important to notice that, by (4), ψ∗ is inclusion preserving,
that is, K ⊂ L implies ψ∗(K) ⊂ ψ∗(L).

Our first aim is to define a mapping ϕ with similar properties which
is defined on the set Kd

0 of convex bodies containing the origin, but not
necessarily in the interior. Let K ∈ Kd

0 be given. We choose a sequence
(Ki)i∈N in Kd

(0) with K ∈ intKi for all i and with Ki ↓ K, that is, satisfying
Ki+1 ⊂ Ki for all i and K =

⋂
i∈N

Ki. Put

ϕ(K) :=
⋂

i∈N

ψ∗(Ki) .
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It is easy to see (using a compactness argument) that this definition is
independent of the choice of the sequence (Ki)i∈N. Clearly ϕ(K) ∈ Kd

0. We
show that properties (4) carry over to ϕ, for K,L ∈ Kd

0. Let K,L ∈ Kd
0

be given, and choose decreasing sequences (Ki)i∈N, (Li)i∈N in Kd
(0) with

K ∈ intKi, L ∈ intLi, K =
⋂

i∈N
Ki, L =

⋂
i∈N

Li. Then K ∩ L ⊂
int (Ki ∩ Li), Ki ∩ Li ↓ K ∩ L, and hence ϕ(K ∩ L) =

⋂
i ψ

∗(Ki ∩ Li) =⋂
i ψ

∗(Ki) ∩
⋂

i ψ
∗(Li) = ϕ(K) ∩ ϕ(L). Clearly, K ∨ L ⊂ ⋂

i(Ki ∨ Li). If
x ∈ R

d \ (K ∨ L), there exists an open halfspace H containing K ∨ L and
not containing x. For all sufficiently large i we have Ki ⊂ H and Li ⊂ H,
hence Ki ∨ Li ⊂ H. This shows that x /∈ ⋂

i(Ki ∨ Li) and hence that

K ∨ L =
⋂

i

(Ki ∨ Li) . (7)

By definition then, and applying (7) withKi, Li replaced by ψ∗(Ki), ψ∗(Li),
we obtain

ϕ(K ∨ L) =
⋂

i

ψ∗(Ki ∨ Li) =
⋂

i

[
ψ∗(Ki) ∨ ψ∗(Li)

]

=
( ⋂

i

ψ∗(Ki)
)
∨

( ⋂

i

ψ∗(Li)
)

= ϕ(K) ∨ ϕ(L) .

We have shown that the mapping ϕ is an endomorphism of the lattice
(Kd

0,∩,∨). Of course, K ⊂ L with K,L ∈ Kd
0 implies ϕ(K) ⊂ ϕ(L). As

mentioned, Gruber [G1] has determined all endomorphisms of the lattice
(Kd,∩,∨). We took Gruber’s proof as a model for obtaining a classification
of all endomorphisms of the lattice (Kd

0 ,∩,∨).
For x ∈ R

d, we write x̄ for the closed segment x ∨ 0 with endpoints x
and 0; in particular, 0̄ = {0}. If one tries to adapt Gruber’s [G1] approach
from Kd to Kd

0, the first thing to do is to replace the empty set ∅ by 0̄ and
any point x ∈ R

d by the segment x̄. In pursuing this for the cases 2.1 to
2.6 considered by Gruber in [G1], we found a shorter proof for his cases
2.4 and 2.5, and we present this here for our case of the lattice (Kd

0,∩,∨).
This is still more complicated than the elegant argument used by Gruber in
[G2] (to prove the implication (8) ⇒ (13) in [G2]), but the latter depends
on the fact that the images, being 0-symmetric, contain 0 in their relative
interiors. The final case 2.6 considered by Gruber [G1] also needs a different
and more elaborate argument in our situation.

Case 1: ϕ(x̄) = ϕ(0̄) for all x ∈ R
d.
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For given K ∈ Kd
0, choose points x1, . . . , xd+1 with K ⊂ x̄1 ∨ · · · ∨ x̄d+1

=: P . Then ϕ(0̄) ⊂ ϕ(K) ⊂ ϕ(P ) = ϕ(x̄1) ∨ · · · ∨ ϕ(x̄d+1) = ϕ(0̄), hence

ϕ(K) = ϕ(0̄) , for K ∈ Kd
0 . (8)

Case 2: ϕ(x̄) = ϕ(0̄) for at least one point x �= 0, but not for all x ∈ R
d.

Let A := {y ∈ R
d : ϕ(ȳ) = ϕ(0̄)}, then A is convex. Let x ∈ A\{0} and

put y := x/2, then also y ∈ A. Since the convex set A is different from R
d,

there are points u, v, w ∈ R
d\A such that ū∩ v̄ = 0̄ and w ∈ (x∨u)∩(y∨v).

Then ϕ(0̄) ⊂ ϕ(w̄) ⊂ (ϕ(x̄) ∨ ϕ(ū)) ∩ (ϕ(ȳ) ∨ ϕ(v̄)) = ϕ(ū) ∩ ϕ(v̄) = ϕ(0̄)
and hence ϕ(w̄) = ϕ(0̄), a contradiction.

Gruber’s [G1] treatment of his case 2.4 starts with the following propo-
sition (though formulated differently):
(P1) In an n-dimensional affine space, let M be a fixed convex body and

let F be a family of n-dimensional convex bodies such that K �= M
for all K ∈ F and K1∩K2 = M whenever K1,K2 ∈ F and K1 �= K2.
Then F is at most countable.

In fact, choosing a dense sequence in the space and associating with
each set K ∈ F the first term of the sequence contained in the set K \M
(which has interior points), we construct an enumeration of F . We will use
proposition (P1) to exclude the following two cases.

Case 3: ϕ(x̄) �= ϕ(0̄) for all x ∈ R
d \ {0}, ϕ(0̄) �= 0̄.

Case 4: ϕ(x̄) �= ϕ(0̄) for all x ∈ R
d \ {0}, ϕ(0̄) = 0̄; there exists a point

p ∈ R
d with dimϕ(p̄) ≥ 2.

Assume, first, that Case 4 holds with d = 2. Let x1, y1 ∈ R
2 be linearly

independent, and choose points x′±1 ∈ ϕ(±x̄1) \ {0}, y′±1 ∈ ϕ(±ȳ1) \ {0}.
Let a, b, c be any three of the points x1,−x1, y1,−y1, and let a′, b′, c′ be the
corresponding points chosen in their ϕ-images. Then (ā∨ b̄)∩ c̄ = 0̄, hence
(ϕ(ā)∨ϕ(b̄))∩ϕ(c̄) = 0̄. Thus, c′ cannot be in the positive hull of a′ and b′.
Since this holds for all choices of a, b, c, the set {x′1, x′−1, y

′
1, x

′−1} must be
of the form {u,−λu, v,−µv} with u, v ∈ R

2 \ {0} and λ, µ > 0. But then
the set ϕ(x1), for example, cannot be two-dimensional, since otherwise a
choice of x′1 violating the latter condition would be possible. Since we may
choose x1 = p, Case 4 cannot occur for d = 2.

Now we show (simultaneously) that Case 3 cannot occur and that Case 4
cannot occur if d ≥ 3. In Case 4, assume that d ≥ 3 and let p be as described
there; in Case 3, we set p = 0.

Put B := ϕ(p̄) and b := dimB, then b ≥ 1 in Case 3 and b ≥ 2 in
Case 4.
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By a sheet we understand a set {λp + µu : λ ∈ R, µ > 0}, where u is
a vector linearly independent from p (thus, for p = 0, a sheet is just a ray
without its endpoint 0). A sheet is called bad if it contains a point x with
ϕ(x̄∨ p̄) ⊂ linB. Let x be in a sheet. Then ϕ(x̄) ∩ ϕ(p̄) = ϕ(x̄ ∩ p̄) = ϕ(0̄).
If ϕ(x̄ ∨ p̄) = B, then ϕ(x̄) ∨ ϕ(p̄) = ϕ(p̄), thus ϕ(x̄) ⊂ ϕ(p̄) and hence
ϕ(x̄) ∩ ϕ(p̄) = ϕ(x̄) �= ϕ(0̄), a contradiction. This shows that ϕ(x̄ ∨ p̄) �= B.
If x, y are in different sheets, then (x̄∨ p̄)∩(ȳ∨ p̄)=p̄, hence ϕ(x̄∨ p̄)∩ϕ(ȳ∨ p̄)
= B. It follows from (P1) (applied in linB) that there are at most countably
many bad sheets. The other sheets are called good.

Suppose that b ≥ d−1. We want to apply (P1) in R
d, with M = B and

with F defined as follows. Let the set S contain precisely one point from
every good sheet, and no other elements, and put F := {ϕ(x̄ ∨ p̄) : x ∈ S}.
If x ∈ S, then ϕ(x̄∨ p̄) �⊂ linB, hence dimϕ(x̄∨ p̄) = d. Thus the conditions
of (P1) are satisfied. It follows that F is countable. This is a contradiction,
since there are uncountably many good sheets (here d ≥ 3 is used for p �= 0).
This shows that b ≤ d− 2. In particular, d ≥ 3 also in Case 3.

Let k ∈ {1, . . . , d − b}. A set {x1, . . . , xk} of k points in R
d, briefly a

k-set, is called full if dimϕ(x̄1 ∨ · · · ∨ x̄k ∨ p̄) ≥ b + k. A k-flat E ⊂ R
d

is called general if 0 /∈ E in Case 3, and if dim aff(E ∪ lin{p}) = k + 2 in
Case 4.

If x1 is contained in a good sheet, then B ⊂ ϕ(x̄1 ∨ p̄) �⊂ linB, hence
{x1} is a full 1-set. We assert the following:

(P2) Let k ∈ {2, . . . , d − b}. In every general (k − 1)-flat E ⊂ R
d there is

a full k-set.

We prove this by induction with respect to k. Let k = 2. Let E ⊂ R
d

be a general 1-flat. Since E is general, each of its points, with at most
countably many exceptions, is contained in a good sheet, and different
points of E are in different sheets. Choose a point x1 ∈ E in a good sheet.
Then {x1} is a full 1-set. If there exists y ∈ E \ {x1} such that {x1, y} is a
full 2-set, we are done. Otherwise, for each y ∈ E \{x1}, the 2-set {x1, y} is
not full. This implies that A := linϕ(x̄1 ∨ p̄) is of dimension b+ 1 and that
ϕ(ȳ∨ p̄) ⊂ A. Since ϕ(ȳ1∨ p̄)∩ϕ(ȳ2 ∨ p̄) = B for different y1, y2 ∈ E \{x1},
this contradicts (P1).

Let k ∈ {2, . . . , d − b − 1} and suppose (P2) has been proved for this
number. Let E ⊂ R

d be a general k-flat. Choose a general (k − 1)-flat
F ⊂ E and a full k-set {x1, . . . , xk} in F . If there exists y ∈ E \ F such
that {x1, . . . , xk, y} is a full (k + 1)-set, we are done. Otherwise, for each
y ∈ E \ F , the (k + 1)-set {x1, . . . , xk, y} is not full. This implies that
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A := linϕ(x̄1 ∨ · · · ∨ x̄k ∨ p̄) is of dimension b + k and that ϕ(ȳ) ⊂ A.
For any (k − 1)-flat F ′ ⊂ E which is parallel to F (but different from it)
and hence also general, we choose a full k-set {y1, . . . , yk} in F ′ and put
KF ′ := ȳ1 ∨ · · · ∨ ȳk ∨ p̄. Then ϕ(KF ′) ⊂ A and dimϕ(KF ′) = b + k. We
can choose uncountably many such flats F ′ such that any two of them,
say F1 and F2, satisfy KF1 ∩ KF2 = p̄ (observe that d − b − 1 ≤ d − 2 in
Case 3 and d− b− 1 ≤ d− 3 in Case 4), thus ϕ(KF1)∩ϕ(KF2) = B. Since
dimA = b + k, (P1) yields a contradiction. This completes the induction
and thus the proof of (P2).

The case k = d − b yields uncountably many convex bodies KF such
that dimϕ(KF ) = d and ϕ(KF1) ∩ ϕ(KF2) = B for F1 �= F2. By (P1), this
is a contradiction.

Case 5: ϕ(0̄) = 0̄, and dimϕ(x̄) = 1 for all x ∈ R
d \ {0}.

For every x ∈ R
d \ {0}, the image ϕ(x̄) is a nondegenerate segment

containing 0; let x′ �= 0 be one of its endpoints (arbitrarily chosen should
0 not be an endpoint). We shall first show that 0 is always one of the
endpoints. Let x1, . . . , xd+1 ∈ R

d be the vertices of a simplex containing
0 in its interior. The set {x′1, . . . , x′d+1, 0} has a Radon partition, that
is, a decomposition into two subsets whose convex hulls have nonempty
intersection.

First case: The only Radon partition is that into the sets {0} and
{x′1, . . . , x′d+1}. In that case, x′1, . . . , x

′
d+1 are affinely independent and are

the vertices of a simplex containing 0 in its interior. If now 0 were not
an endpoint of, say, ϕ(x̄1), then ϕ(x̄1) ∩ (ϕ(x̄2) ∨ · · · ∨ ϕ(x̄d+1)) �= 0̄, in
contradiction to x̄1 ∩ (x̄2 ∨ · · · ∨ x̄d+1) = 0̄.

Second case: There exists a different Radon partition, say

conv{x′1, . . . , x′m} ∩ conv{x′m+1, . . . , x
′
d+1, 0} �= ∅ ,

without loss of generality, where m ∈ {1, . . . , d}. The only possibility for
the intersection is the set {0}, since

(x̄1 ∨ · · · ∨ x̄m) ∩ (x̄m+1 ∨ · · · ∨ x̄d+1) = 0̄ .

It follows that 0 ∈ conv{x′1, . . . , x′m}. Therefore, 0 is contained in the
relative interior of the convex hull of less than d + 1 affinely indepen-
dent points among x′1, . . . , x′d+1, say 0 ∈ relint conv{x′1, . . . , x′k} with 2 ≤
k ≤ d. As in the first case, each image ϕ(x̄i), i ∈ {1, . . . , k}, is the
segment with endpoints x′i and 0. Let a := (x1 + · · · + xk)/k. Then
ā ⊂ ∨k

i=1 x̄i and ā ∩ ∨
i�=j x̄i = 0̄ for j = 1, . . . , k, hence ϕ(ā) ⊂ ∨k

i=1 ϕ(x̄i)
and ϕ(ā)∩∨

i�=j ϕ(x̄i)= 0̄ for j= 1, . . . , k. Since ϕ(ā) �= 0̄, this is impossible.
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We have proved that, for each x ∈ R
d, the image ϕ(x̄) is a segment

with endpoints 0 and x′; thus we can define a mapping f : R
d → R

d by
f(x) := x′. It satisfies f(0) = 0. The next steps serve to show, finally, that
f is a linear map.

In the following, we continue to denote f(x) by x′, and we write x̃ :=
0∨x′; thus ϕ(x̄) = x̃. By Rx := {λx : λ > 0} we denote the ray (without its
endpoint) spanned by x �= 0. Rays Rx, Ry are called opposite if Rx = −Ry.
Vectors x, y �= 0 are called opposite if their spanned rays are opposite. For
vectors x, y �= 0 we write y � x and x ≺ y if y = λx with λ > 1.

First we show that f maps rays into subsets of rays. Let x ∈ R
d \ {0},

then x′ �= 0. Let y ∈ Rx. If x � y, then ϕ(ȳ) ⊂ ϕ(x̄) = x̃, hence y′ ∈ Rx′ . If
y � x, then x̃ ⊂ ỹ, hence again y′ ∈ Rx′ . Thus, f(Rx) ⊂ Rf(x). If x̄∩ ȳ = 0̄,
then x̃ ∩ ỹ = 0̄, hence different rays are mapped into different rays.

Let S ⊂ R
d be a two-dimensional linear subspace. Let x, y ∈ S be

linearly independent. Then x̄ ∩ ȳ = 0̄, hence x̃ ∩ ỹ = 0̄. If y′ is opposite
to x′, we choose z ∈ S linearly independent from x and with ȳ∩z̄ = 0̄. Then
z′ cannot be opposite to x′, since otherwise z̃∩ỹ �= 0̄. Hence, we can assume
without loss of generality that x′ and y′ are linearly independent. Let S′

be the subspace spanned by x′ and y′. Then f(Rx), f(Ry) ⊂ S′. If a, b ∈ S,
z ∈ a∨b and a′, b′ ∈ S′, then z̄ ⊂ ā∨b̄, hence z̃ ⊂ ã∨b̃ ⊂ S′ and thus z′ ∈ S′.
This yields, first, that z′ ∈ S′ for z ∈ pos{x, y}. Let z ∈ pos{x,−y} \R−y.
Choose a ∈ Rx and b ∈ Ry with a ∈ z ∨ b. Then ã ⊂ z̃ ∨ b̃. Since ã �= 0̄,
this is only possible if z′ ∈ S′. Similarly, each z ∈ pos{y,−x} \ R−x is
mapped into S′. For each of the remaining points z ∈ S we can choose
points a, b ∈ S with z ∈ a∨ b and a′, b′ ∈ S′, hence z′ ∈ S′. We have proved
that f(S) ⊂ S′, thus the image of any two-dimensional subspace under f
is contained in a two-dimensional subspace.

With the same notation as before, suppose the vector (−x)′ were oppo-
site to y′. Choose points a ∈ R−x and b ∈ Ry and set c := (a+ b)/2. Then
ã ⊂ R(−x)′ and b̃ ⊂ Ry′ . From c̄ ⊂ ā ∨ b̄ and c̄ ∩ ā = c̄ ∩ b̄ = 0̄ it follows
that c̃ ⊂ ã ∨ b̃ and c̃ ∩ ã = c̃ ∩ b̃ = 0̄, a contradiction. Now the argument
used above in the treatment of Case 4 for d = 2 shows that the two pairs
of opposite vectors x,−x, y,−y must be mapped under f into two pairs of
opposite vectors and that, necessarily, (−x)′ is opposite to x′ and (−y)′ is
opposite to y′.

Let x and z be opposite vectors. Choose a two-dimensional linear
subspace S containing them. As shown, x′ and (−x)′ are opposite, and
z′ ∈ R(−x)′ . Hence, the images x′ and z′ are on a line through 0. If x, z, 0
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are on a line, in this order, then z̃ ⊂ x̃, hence x′, z′ and 0 are on a line.
Now it follows that the images of any three points on a line through 0 are
on a line.

We want to show that f maps points on an arbitrary line to points on
a line. It suffices to do this for points in a two-dimensional linear subspace,
so we restrict ourselves to the subspace S introduced above. To see that
the images of three collinear points on a line not passing through zero are
collinear, is more difficult, for the reason that there seems to be no direct
easy way of showing that the restriction of f to a ray is injective.

A point x �= 0 is called regular if there exists a point y � x with
f(y) �= f(x). Let x, y, z be three different points that are, in this order, on
a line not passing through 0. Suppose that y is a regular point. Choose
w � y with f(w) �= f(y). Suppose that f(y) were not on the line through
f(x) and f(z). From ȳ ⊂ x̄∨ z̄ we have ỹ ⊂ x̃∨ z̃. Moreover, w̄∩(x̄∨ z̄) = ȳ
implies w̃ ∩ (x̃ ∨ z̃) = ỹ and hence w̃ = ỹ, a contradiction. Thus, we have
proved:

(P3) If the points x, y, z are, in this order, on a line not passing through
0 and if y is regular, then the images f(x), f(y), f(z) are on a line.

Next we show that any ray contains regular points arbitrarily close to 0.

(P4) For any x �= 0 there exists y with y ≺ x and f(y) �= f(x).

If this is false for some x �= 0, then f(y) = f(x) for all y ≺ x. By the
definition of the map ϕ,

ϕ(0̄) =
⋂

i

ψ∗(Ki) ,

for any sequence (Ki)i in Kd
(0) with 0 ∈ intKi and Ki ↓ 0̄. We choose the

sequence so that Ki+1 ⊂ intKi for all i; then ϕ(Ki+1) ⊂ ψ∗(Ki) (see (11)
below). For each i, there is yi ∈ Ki+1 with f(yi) = f(x). It follows that
f(x) ∈ ϕ(0 ∨ yi) ⊂ ϕ(Ki+1) ⊂ ψ∗(Ki) and hence that f(x) ∈ ϕ(0̄). Since
ϕ(0̄) = 0̄ and f(x) �= 0̄, this is a contradiction. This proves (P4).

Now we can prove that any x �= 0 is regular. Choose a regular point y
independent of x and let z := 2y − x, then z �= 0. Define z0 := λ0z with

λ0 := inf
{
λ > 0 : f(λz) = f(z)

}
.

Then z0 �= 0, according to (P4). First case: f(z0) = f(z). Let w := z0
and let y0 ∈ ȳ ∩ (x ∨ w). Choose any x0 � x, and let w0 ∈ w̄ ∩ aff{x0, y0}.
From the definition of z0 it follows that f(w0) �= f(z) = f(w). Second case:
f(z0) �= f(z). Then let w0 := z0. By the definition of z0, any point w
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with w0 ≺ w ≺ z satisfies f(w) = f(z) �= f(w0). We may choose such a
point w so that for y0 ∈ ȳ ∩ (x ∨ w), the line aff{w0, y0} intersects the ray
Rx in some point x0 � x. Now in both cases we have that y0 is regular
(since y0 ∈ ȳ), hence by (P3) the images f(w), f(y0), f(x) are collinear, and
f(w0), f(y0), f(x0) are collinear. Since f(w0) �= f(w), we get f(x0) �= f(x);
thus x is regular.

In view of (P3), this proves that f maps collinear points into collinear
points.

To prove that f is injective, we only need to consider x �= x0 with
x ≺ x0. Choose y0 ≺ y independent of x with f(y0) �= f(y), and let z
be the intersection point of x ∨ y and x0 ∨ y0. Since f(x), f(z), f(y) are
collinear and f(x0), f(z), f(y0) are collinear, we have f(x) �= f(x0).

We can finally identify f . We have seen that f is injective, and maps
collinear points into collinear points. Its image is not contained in a line,
because it maps different rays into different rays. Therefore, as in [G1], f is
a non-singular affine transformation. Since f(0) = 0, we have f ∈ GL(d).

It remains to show that ϕ(K) = f(K) for K ∈ Kd
0. If x ∈ K ∈ Kd

0 ,
then x̃ = ϕ(x̄) ⊂ ϕ(K), hence f(K) ∈ ϕ(K). Suppose that x /∈ K. Then
K ∩ x̄ = z̄ with z = λx and 0 ≤ λ < 1. This gives ϕ(K) ∩ x̃ = z̃ = (λx)∼

= λx̃ (since f is a linear map), hence f(x) /∈ K, since f(x) �= 0. Altogether
this shows that ϕ(K) = f(K) for K ∈ Kd

0 and finishes the consideration of
Case 5.

Concluding, the only possible cases are those where either

ϕ(K) = B , for K ∈ Kd
0 , (9)

with B := ϕ(0̄), or
ϕ(K) = gK , for K ∈ Kd

0 , (10)

with a fixed linear transformation g ∈ GL(d).
We show now that these are also the only possibilities for the original

map ψ∗. Let K ′,K ∈ Kd
0 with K ′ ⊂ intK. In the defining relation

ϕ(K ′) =
⋂

i

ψ∗(Ki) , Ki ↓ K ′, K ′ ⊂ intKi ,

we may choose K for one of the Ki, hence

K ′ ⊂ intK ⇒ ϕ(K ′) ⊂ ψ∗(K) . (11)

Let C be a convex body with ϕ(K) ⊂ intC. We have ϕ(K) =
⋂

i ψ
∗(Ki)

for any sequence (Ki)i in Kd
(0) with Ki ↓ K and K ⊂ intKi. Since

ψ∗(Ki) ⊂ C for sufficiently large i and ψ∗(K) ⊂ ψ∗(Ki), we conclude that

ϕ(K) ⊂ intC ⇒ ψ∗(K) ⊂ C . (12)
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Assume, first, that ϕ(K) = B for K ∈ Kd
0. Let K ∈ Kd

(0). Choose
a convex C body with B ⊂ intC. Then (11) with K ′ = 0̄ and (12) give
B ⊂ ψ∗(K) ⊂ C. Since this holds for all C with B ⊂ intC, we conclude
that ψ∗(K) = B.

Now let ϕ(K) = gK for K ∈ Kd
0, with a fixed g ∈ GL(d). Let K ∈ Kd

(0),
and choose K ′,K ′′ ∈ Kd

(0) such that

K ′ ⊂ intK , K ⊂ intK ′′. (13)

Then ϕ(K) = gK ⊂ int gK ′′, and (11) and (12) give gK ′ ⊂ ψ∗(K) ⊂ gK ′′.
Since this together with gK ′ ⊂ gK ⊂ gK ′′ holds for all K ′,K ′′ satisfying
(13), we conclude that ψ∗(K) = gK.

Finally, since ψ∗(K) = ψ(K)∗ forK ∈ Kd
(0), in case (9) we have B ∈ Kd

(0)

and then ψ(K) = B∗ for all K ∈ Kd
(0). In case (10), ψ(K) = g−tK∗ for

K ∈ Kd
(0). This completes the proof of the theorem.
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