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Abstract. Let f : F
n
2 → {0, 1} be a boolean function, and suppose that

the spectral norm ‖f‖A :=
∑

r |f̂(r)| of f is at most M . Then

f =
L∑

j=1

±1Hj ,

where L � 22CM4

and each Hj is a subgroup of F
n
2 .

This result may be regarded as a quantitative analogue of the Cohen–
Helson–Rudin structure theorem for idempotent measures in locally com-
pact abelian groups.

1 Introduction

Let G = F
n
2 be the n-dimensional cube, and let f : G → {0, 1} be a

boolean function, or more generally a function from G to R. In many
works, particularly in theoretical computer science, the Fourier transform

f̂(r) := Ex∈Gf(x)(−1)r
T x = 1

|G|
∑

x∈G

f(x)(−1)r
T x

is considered. Here, r lies in the dual group Ĝ which we have identified
with G by choosing the scalar product uT v.

It is natural to consider the �p-norms

‖f̂‖p :=
( ∑

r∈Ĝ

∣
∣f̂(r)

∣
∣p

)1/p
,

for 1 � p <∞, as well as the �∞-norm ‖f̂‖∞ := supr |f̂(r)|.
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There are many tools available for analysing these norms when p � 2,
particularly when p is ∞ or an even integer. When 1 � p < 2, however,
the situation is in many ways rather mysterious. Of these cases, a very
natural one is the endpoint p = 1. In this case the norm ‖f̂‖1 is called
the algebra norm, Wiener norm or spectral norm; we shall denote it by
‖f‖A. It is quite easy to show, using an instance of Young’s inequality for
convolutions, that

‖fg‖A � ‖f‖A‖g‖A

for any two functions f, g : G→ R. This explains the term algebra norm.
A basic question is the following.

Question 1.1. Let M be a fixed positive real number and let f : G →
{0, 1} be a boolean function. When is ‖f‖A � M?

A partial answer to this question will be the main business of this paper.
By far the most important feature of the problem is that we are asking it for
boolean functions, which take only the values 0 or 1. There is a ready supply
of functions f with ‖f‖A small: Take for instance any pair g, h : G → R.
Then f := g ∗ h has

‖f‖A = ‖g ∗ h‖A = ‖ĝĥ‖1 � ‖ĝ‖2‖ĥ‖2 = ‖g‖2‖h‖2 ,

which is small if g and h are small in L2. It is rather hard, however, to
construct a large supply of such functions which take only the values 0
and 1.

To get a feel for the question, we prove a simple folklore result concern-
ing the case M = 1. In fact, by choosing a suitable argument from among
the many available, one can cover the case M < 3/2.

Proposition 1.2 (Boolean functions with tiny spectral norm). Let f :
G → {0, 1} be a boolean function which does not vanish identically. Then
either f = 1t+H , where t+H is a coset of a subgroup of G, in which case
‖f‖A = 1, or else ‖f‖A � 3/2.

Proof. First note that since f is not identically zero we have ‖f‖∞ � 1,
and so ‖f‖A � ‖f‖∞ � 1, by the simplest instance of the Hausdorff–Young
inequality.

Now suppose that H � G. The Fourier transform of 1t+H is supported
on H⊥ := {r ∈ Ĝ : rTx = 0 for all x ∈ H}, and it has modulus ‖1H‖1

there. It follows from this and the fact that |H||H⊥| = |G| that ‖f‖A = 1
when f = 1t+H .

To get the stronger statement claimed, we note that if f is not (the
characteristic function of) a coset of a subgroup then there are four distinct
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points x, x + h, x + k, x + h + k forming a parallelogram in G such that
f(x) = f(x+ h) = f(x+ k) = 1 but f(x+ h+ k) = 0 (this is actually an if
and only if statement – we leave the proof of both directions to the reader).
Let

φ := δx + δx+h + δx+k − δx+h+k ,

thus φ(x) = φ(x+ h) = φ(x+ k) = |G|, φ(x+ h+ k) = −|G| and φ(y) = 0
for all other y. Now we can compute that

〈f, φ〉 := Ex∈Gf(x)φ(x) = 3 and ‖φ̂‖∞ = 2 ,
and so it follows from Plancherel’s theorem that

3 = 〈f, φ〉 = 〈f̂ , φ̂〉 � ‖f̂‖1‖φ̂‖∞ � 2‖f‖A ,

which proves the result. �

Remarks. We leave it to the reader to confirm that the constant 3/2 is
best possible. The result (and proof) are inspired by two papers of Saeki
[S1,2] in which the same question is addressed over all locally compact
abelian groups G. In that more general setting the constant 3/2 should
be reduced to 1

2(1 +
√

2), and equality can occur in any group G with an
element of order 4.

Returning to our main question, let us recall that ‖ · ‖A is an algebra
norm. Thus if f1, f2 : G→ {0, 1} are functions for which ‖f1‖A and ‖f2‖A

are small then the functions f1 ∨ f2, f1 ∧ f2,1− f1 and 1− f2 also have this
property. Loosely speaking, we refer to functions which can be obtained
by a small number of operations of this kind from the basic functions 1t+H

as belonging to the coset ring of G. In fact, it is easy to see (ignoring
quantitative issues for the time being) that all elements of the coset ring
are in fact of the form

L∑

j=1

±1Hj , (1.1)

for subgroups Hj � G and some “small” L.
One trivially has the bound

∥
∥
∥
∥

L∑

j=1

±1Hj

∥
∥
∥
∥

A

� L ,

and so it is rather natural to ask whether something like the converse is
true; this is the main result of our paper.
Theorem 1.3 (Main theorem). Suppose that f : G → {0, 1} has
‖f‖A � M . Then we may write

f =
L∑

j=1

±1Hj ,
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where the Hj are subgroups of G and L � 22CM4

for some absolute con-
stant C.

Remarks. The bound may seem unimpressive, and indeed in a sense it
is. However it depends only on M , a feature which we believe is new to
this paper. We do not dare to venture a guess as to the correct bound, and
it seems to us that it would be difficult to use our method to reduce the
number of exponentials below two. It may be possible to reduce the power
4 somewhat, although we have not attempted to do this.

The reader may wonder why we bothered to introduce the coset ring at
all, when only the very natural functions (1.1) are involved in our theorem.
The answer is that the description of the coset ring in the form (1.1) is
specific to the case G = F

n
2 , and the phenomenon described by Theorem 1.3

is, in a sense, more general.
Indeed our entire approach was motivated by Cohen’s celebrated idem-

potent theorem [Co]. Suppose that G is a locally compact abelian group,
and that M(G) is the Banach algebra of finite measures on G under con-
volution (see [R2, App.E] for details). We say that a measure µ ∈ M(G)
is idempotent if µ ∗ µ = µ. Cohen’s theorem is that µ is idempotent if and
only if µ̂ lies in the coset ring of Γ = Ĝ.

In our setting, Cohen’s result implies that if f : G → {0, 1} has
‖f‖A <∞ then there is a decomposition of the form of (1.1) with L fi-
nite. This is, of course, a vacuous result. It was, however, natural to start
with Cohen’s argument (as described in Rudin [R2]) and try to make it
effective. A näıve attempt along these lines fails at several points and there
are even “softer” proofs of Cohen’s theorem that we have not managed to
interpret in a finite setting at all, cf. [HMP]. Nevertheless access to these
classical results was crucial to our understanding and we could not have
written this paper without them.

We also import some “modern” ingredients from additive combinatorics
such as the Balog–Szemerédi theorem and Ruzsa’s analogue of Freiman’s
theorem. It seems to the authors that it may be worth revisiting a number
of classical results in the light of these developments.

It is possible that our methods, in combination with the ideas in [Co],
could lead to a fully quantitative proof of Cohen’s idempotent theorem. We
intend to pursue this direction in future work.

We conclude the introduction by remarking that the spectral norm of
boolean functions is discussed in the computer science literature, but not
in a great deal of detail. The papers [B], [M] show that functions which can
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be computed using a small binary decision tree have small spectral norm.
Such functions are, however, rather special elements of the coset ring.

2 Notation

Much of the notation we will use is implicit in the introduction, but it may
be helpful to clarify things here. When working with functions on G, we
will always use Haar probability measure. Integration with respect to this
measure will be denoted by Ex∈G, or sometimes just E. If f : G → R is a
function and 1 � p <∞ then we define

‖f‖p :=
(
Ex∈G|f(x)|p)1/p

.

We also define ‖f‖∞ := supx |f(x)| as usual. If f1, f2 : G → R are two
functions then we set

〈f1, f2〉 := Ex∈Gf1(x)f2(x)
and

f1 ∗ f2(x) := Ey∈Gf1(x)f2(x− y) .
When working with the Fourier transforms of functions we will use counting
measure. Integration with respect to this measure will be denoted by

∑
as

usual. We defined the �p norms in the introduction. Note also Plancherel’s
identity, which implies that

〈f1, f2〉 = 〈f̂1, f̂2〉 :=
∑

r

f̂1(r)f̂2(r) .

We will occasionally write, e.g. E∧, when taking the Fourier transform of
a particularly complicated expression E.

Finally, a word concerning absolute constants. The letter C will always
denote an absolute constant, but the exact value of this constant may
change from expression to expression. If in doubt, the reader should recall
that all instances of C could, if desired, be replaced by specific constants
in such a way that all our proofs are correct.

3 Almost Integer-Valued Functions and Almost
Homomorphisms

A key feature of this paper is that we cannot work entirely within the “cat-
egory” of boolean functions. We must also consider more general functions
which are close to being integer valued.
Definition 3.1 (Almost integer-valued functions). Let ε ∈ (0, 1/2). We
say that a function f : G → R is ε-almost integer valued if there is a
function fZ : G→ Z such that ‖f − fZ‖∞ � ε.
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We will need to study the behaviour of almost integer-valued functions
under a certain class of map. Let H be a subgroup of G. For any function
f : G→ R, we define ψHf by

(ψHf)(x) := Ey∈x+Hf(y) = f ∗ µH(x) ,
where µH denotes the Haar probability measure on H. Equivalently, one
may define ψH in terms of its Fourier transform by

(ψHf)∧(r) := f̂(r)1H⊥(r) ,
where the subgroup H⊥ � Ĝ is the annihilator of H, defined by

H⊥ := {r ∈ Ĝ : rTx = 0 for all x ∈ H} .
The following simple properties of ψH follow immediately from the

above definitions.
Lemma 3.2 (Simple properties of ψH). The norm of ψH is at most 1 in
both the operator norm induced by the spectral norm and in that induced
by the L∞-norm. That is to say

‖ψHf‖A � ‖f‖A and ‖ψHf‖∞ � ‖f‖∞ for all f : G→ R .

Definition 3.3 (Spectral support). Let η > 0 be a parameter, let
f : G→ R be a function, and suppose that H � G. Then we say that f is
η-spectrally supported on H if

sup
r �∈H⊥

∑

r′∈r+H⊥

∣
∣f̂(r′)

∣
∣ � η .

Note that we do not assume that f̂ has substantial mass on H⊥ itself.
Lemma 3.4 (Finding the spectral support). Let H � G be any sub-
group, let η > 0 be any parameter, and let f : G → R be a function with
‖f‖A � M . Then there is a subgroup H ′ � H with

codim(H : H ′) � M/η

such that f is η-spectrally supported on H ′.

Proof. Set H0 := H. We define a descending sequence H0 � H1 � . . . of
subgroups with codim(Hi : Hi+1) = 1.

If, at some stage, f is η-spectrally supported on Hi then we stop. If
not, there is some ri /∈ H⊥

i such that
∑

r′∈ri+H⊥
i

∣
∣f̂(r′)

∣
∣ > η .

Define H⊥
i+1 to be the subgroup of G generated by ri and H⊥

i . It is clear
that for any j we have

‖f‖A �
j∑

i=0

∑

r′∈ri+H⊥
i

∣
∣f̂(r′)

∣
∣ ,
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and so this inductive process must terminate after no more than M/η
steps. �

The purpose of Definition 3.3 and Lemma 3.4 is to allow us to use the
following approximate homomorphism property.
Lemma 3.5 (ψH is an approximate homomorphism). Suppose that f, g :
G→ R are two functions, and that f is η-spectrally supported on H. Then

∥
∥ψH(fg) − ψH(f)ψH(g)

∥
∥

A
� η‖g‖A .

Proof. We have
∥
∥ψH(fg) − ψH(f)ψH(g)

∥
∥

A
=

∑

r

∣
∣f̂ ∗ ĝ(r)1H⊥(r) − f̂1H⊥ ∗ ĝ1H⊥(r)

∣
∣ .

However
f̂ ∗ ĝ(r)1H⊥(r) =

∑

s

f̂(r − s)ĝ(s)1H⊥(r)

=
∑

s

f̂(r−s)ĝ(s)1H⊥(r−s)1H⊥(s)+
∑

s/∈H⊥
f̂(r−s)ĝ(s)1H⊥(r)

= f̂1H⊥ ∗ ĝ1H⊥(r) +
∑

s/∈H⊥
f̂(r − s)ĝ(s)1H⊥(r) .

Now simply note that
∑

r

∣
∣
∣

∑

s/∈H⊥
f̂(r − s)ĝ(s)1H⊥(r)

∣
∣
∣ �

∑

s/∈H⊥

∑

r∈H⊥

∣
∣f̂(r − s)

∣
∣
∣
∣ĝ(s)

∣
∣

�
∑

s

∣
∣ĝ(s)

∣
∣ sup

s/∈H⊥

∑

r∈H⊥

∣
∣f̂(r − s)

∣
∣

� η‖g‖A .

This completes the proof. �
Our aim is to show that, provided the parameter η is suitably small,

the map ψH preserves almost integer-valued functions.
Lemma 3.6. Let d � 0 be an integer, and write Pd(X) :=
4d(2d)!−1

∏d
j=−d(X − j). Let ε, δ � 1/2 be positive real parameters. Let

f : G→ R be a function.

(1) If f is ε-almost integer valued and ‖f‖∞ � d then ‖Pd(f)‖∞ � ε4d.
(2) If ‖Pd(f)‖∞ � δ then f is δ-almost integer valued.

Proof. To prove the first statement, simply note that
∥
∥Pd(f)

∥
∥
∞ � 4d(2d)!−1 · (2d)! sup

x
inf
j

∣
∣f(x) − j

∣
∣ � ε4d.

To prove the second, observe that
∣
∣Pd(t)

∣
∣ �

∣
∣Pd(t)

∣
∣
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for all t ∈ R, where t ≡ t (mod 1) and lies in the interval (−1/2, 1/2].
Furthermore one may easily confirm that

∣
∣Pd(t)

∣
∣ �

|t| · 4dd!
∏d−1

j=0

(
j + 1

2

)

(2d)!
� |t| ,

for all t. It follows that for all x the distance from f(x) to the nearest
integer is no more than δ. �

Remark. We have normalised the polynomials Pd slightly arbitrarily, so
that no factors were lost in (2). This makes no essential difference to the
argument.

To apply this, we combine it with the rest of the results of this section
to obtain the following corollary.

Proposition 3.7 (ψH preserves almost integer-valued functions). Sup-
pose that f : G → R is ε-almost integer valued, and that ‖f‖A � M for
some M � 1/2. Suppose that η � 2−CM(1+log M)ε for some suitably large
C and that f is η-spectrally supported on H. Then both ψHf and f−ψHf
are (2CM ε)-almost integer valued.

Proof. It clearly suffices to prove the result for ψHf , as the sum or differ-
ence of two almost integer-valued functions is almost integer valued. Set
d := �M. Since ‖f‖∞ � ‖f‖A � M , Lemma 3.6 (1) implies that

∥
∥Pd(f)

∥
∥
∞ � 2CM ε .

From Lemma 3.2 it follows that
∥
∥ψH(Pd(f))

∥
∥
∞ � 2CM ε . (3.1)

Now an easy induction based on Lemma 3.5 (and Lemma 3.2) confirms
that ∥

∥ψH(fn) − (ψHf)n
∥
∥

A
� η(n− 1)Mn−1,

for any positive integer n. It follows from this that
∥
∥ψH(Pd(f)) − Pd(ψHf)

∥
∥

A
� 2CM(1+log M)η � 2CM ε ,

and hence in view of (3.1) that
∥
∥Pd(ψHf)

∥
∥
∞ � 2CM ε .

The result is now an immediate consequence of Lemma 3.6 (2). �

4 Ruzsa’s Analogue of Freiman’s Theorem

In the next two sections we use variants of a well-known sequence of argu-
ments in additive combinatorics. The objective is to prove Proposition 5.1,



152 B. GREEN AND T. SANDERS GAFA

which roughly speaking states that a function with small A(G)-norm con-
centrates on a subspace. We will supply original references for the results
we use, but would also recommend the book [TV] as a general resource for
this subject.

When we actually prove Proposition 5.1 we will find ourselves dealing
with a set A ⊆ G with small doubling, that is to say a set A with E1A+A �
KE1A for some “not too large” K. There is a beautiful theorem of Imre
Ruzsa [Ru2] (see also [Sa]) which states that in this case A is contained in
a subgroup H � G with density at most K22K4

E1A. This certainly implies
that

Ex∈A1H(x) � 1 and Ex∈H1A(x) � 2−CKC
. (4.1)

One could use this result as it is, and obtain a bound in Theorem 1.3 with
a three-fold iterated exponential. To reduce the number of exponentials to
two, we need a different version of Ruzsa’s result, in which we shall replace
(4.1) with

Ex∈A1H(x) � 2−CKC
and Ex∈H1A(x) � cK−C .

A more precise version of the following proposition, which is the main
result of the section, will be contained in a forthcoming paper of the first
author and Terence Tao. The authors are grateful to the latter for useful
discussions regarding this circle of ideas.
Proposition 4.1 (Freiman in torsion groups, refined). Suppose that
A ⊆ G is a set with E1A+A � KE1A. Then there is a subgroup H � G
such that

Ex∈A1H(x) � 2−CKC
and Ex∈H1A(x) � cK−C .

Remark. It is an important unsolved problem to decide whether or
not one may replace 2−CKC

by a polynomial in the first bound. This is
known as the polynomial Freiman–Ruzsa conjecture (PFR); see for example
[Gr2]. The truth of this conjecture, however, would not make an essential
difference to the bound we obtain in Theorem 1.3.

To prove Proposition 4.1 we need to set up a little notation. Write
α := E1A for the density of A in G. Put

ν(4)(x) := 1A ∗ 1A ∗ 1A ∗ 1A(x) ,
and for any parameter η > 0 define

Sη :=
{
x ∈ G : ν(4)(x) � ηα3

}
.

For a parameter ρ ∈ (0, 1), we write (as is becoming standard)
Specρ(A) :=

{
r ∈ Ĝ : |1̂A(r)| � ρα

}
.

We begin by recording a well-known argument of Bogolyubov [Bo] in this
language.
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Lemma 4.2 (Bogolyubov’s argument). Suppose that A ⊂ G. Let
δ, ε ∈ (0, 1) be any parameters and set ρ := (ε/2)1/2 and H := Specρ(A)⊥.
Then

Sδ +H ⊆ Sδ−ε .

Proof. Suppose that x ∈ Sδ and that h ∈ H. Then we have
ν(4)(x+ h) =

∑

r∈Ĝ

∣
∣1̂A(r)

∣
∣4(−1)r

T (x+h)

=
∑

r∈Specρ(A)

∣
∣1̂A(r)

∣
∣4(−1)r

T x +
∑

r /∈Specρ(A)

∣
∣1̂A(r)

∣
∣4(−1)r

T (x+h)

� ν(4)(x) − 2
∑

r /∈Specρ(A)

∣
∣1̂A(r)

∣
∣4.

Thus we only need observe, using Parseval’s identity and the definition of
Specρ(A), that

∑

r /∈Specρ(A)

∣
∣1̂A(r)

∣
∣4 � sup

r �∈Specρ(A)

∣
∣1̂A(r)

∣
∣2

∑

r∈G

∣
∣1̂A(r)

∣
∣2 � (ρα)2 · α= εα3/2 . �

The next two lemmas are the vehicles by which we leverage the assump-
tion that A has small doubling. The first states that A has large density
on a translate of Sη, provided η is sufficiently small.
Lemma 4.3. Suppose that A ⊆ G, that E1A+A � KE1A and that
η � 1/2K4 is a parameter. Then E1Sη � α/2 and

‖1A ∗ 1Sη‖∞ � ηα/2 .

Proof. Averaging ν(4) over x ∈ G, we get
α4 = Eν(4)

� α3
E1Sη + ηα3

E14A

� α3
E1Sη + ηα4K4

� α3
E1Sη + α4/2 ,

where the second inequality follows from the Plünnecke–Ruzsa inequalities
[Ru1], and the third from the condition on η. The first conclusion of the
lemma follows immediately upon rearranging.

For the second part we use the first to see that
ηα4/2 � ηα3

E1Sη

� E(1Sην
(4))

= 〈1Sη , 1A ∗ 1A ∗ 1A ∗ 1A〉
= 〈1A ∗ 1Sη , 1A ∗ 1A ∗ 1A〉
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� ‖1A ∗ 1Sη‖∞E1A ∗ 1A ∗ 1A .

The conclusion follows immediately since E1A ∗ 1A ∗ 1A = α3. �

Lemma 4.4. Suppose that A ⊆ G has density α := E1A and that
E1A+A � KE1A. Then there is a subgroupH � G with E1H � (α/2)−CK12

and some η with 1/4K4 � η � 1/2K4, such that Sη is a union of cosets of
H together with an exceptional set X satisfying E1X � α/16K4.

Proof. Let η0 := 1/2K4 and set ε := 1/64K12. Consider the nested se-
quence

Sη0 ⊆ Sη0−ε ⊆ · · · ⊆ Sη0−(L−1)ε ,

where L := 1/4K4ε. By the Plünnecke–Ruzsa inequalities we have [Ru1]
E1Sη � E14A � K4α

for any η, and therefore by the pigeonhole principle there is some j with
0 � j < L such that

E1Sη0−(j+1)ε\Sη0−jε
� α/16K4.

Now we apply Lemma 4.2. Writing H = Specρ(A)⊥ where ρ := 1/16K6,
we know from that lemma that

Sη0−jε +H ⊆ Sη0−(j+1)ε .

Thus Sη0−(j+1)ε can be written as a union of cosets of H together with an
exceptional set X of density at most α/16K4.

It remains to establish the claimed lower bound on E1H . By a lemma
of Chang [C, Lem. 3.1] (see also [Gr1, Lec. 14, Lem. 3] and [R1], [TV])
the set Specρ(A) is contained in a subgroup of G with dimension
O(ρ−2(1 + log(1/α))) = O(K12 logα−1). This concludes the proof. �

Proof of Proposition 4.1. It is sufficient to prove the proposition when
G = 〈A〉 in which case, by Ruzsa’s theorem [Ru2], we have α � K−22−K4

.
Apply Lemma 4.4 to get a subgroup H ′ with E1H′ � 2−CK16

and some
η with 1/4K4 � η � 1/2K4, such that

Sη = X ∪
⋃

y∈Y

(y +H ′) ,

where E1X � α/16K4. Writing µH′ := 1H′/E1H′ for the Haar measure
on H ′, we have for all x ∈ G that

1A ∗ 1Sη ∗ µH′(x) � 1A ∗ 1Sη\X ∗ µH′(x)

= 1A ∗ 1Sη\X(x)

= 1A ∗ 1Sη (x) − 1A ∗ 1X(x)
� 1A ∗ 1Sη (x) − E1X

� 1A ∗ 1Sη (x) − α/16K4 .
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It follows from this, Lemma 4.3 and the assumption that η � 1/4K4 that
‖1A ∗ 1Sη ∗µH′‖∞ � ‖1A ∗ 1Sη‖∞−α/16K4 � ηα/2−α/16K4 � α/16K4.

(4.2)
Furthermore by the Plünnecke–Ruzsa inequalities [Ru1] we have
‖1A∗1Sη ∗µH′‖∞ � ‖1A∗µH′‖∞E1Sη � ‖1A∗µH′‖∞E14A �K4α‖1A∗µH′‖∞ .

Comparing with (4.2) leads immediately to
‖1A ∗ µH′‖∞ � 1/16K8.

We have found a coset of H ′ on which the relative density of A is at least
1/16K8; by adjoining the zero element to H ′ if necessary, one obtains a
subgroup H on which the relative density of A is at least 1/32K8, that is
to say

Ex∈H1A(x) � 1/32K8.

To complete the proof of Proposition 4.1 it remains to note that

Ex∈A1H(x) =
E1H

E1A
· Ex∈H1A(x) � (E1H)Ex∈H1A(x) � 2−CK16

. �

5 Concentration on a Subgroup

Proposition 5.1 (Concentration on a subgroup). Suppose that f : G→R

is an ε-integer-valued function with ‖f‖A � M , where M � 1/2 and ε �
2−CM4

. Then there is a subgroup H � G with

E1H � 2−2CM4

‖fZ‖1

and
sup
x∈G

∣
∣Ey∈x+Hf(y)

∣
∣ = ‖ψHf‖∞ � 2−CM4

.

Definition 5.2 (Arithmetic connectedness). Let m be a positive integer.
Suppose that A ⊆ G is a set with 0 /∈ A. Then we say that A is m-
arithmetically connected if, for any choice of distinct a1, . . . , am ∈ A, one
of the following alternatives holds:

(1) The vectors a1, . . . , am are linearly dependent;
(2) The vectors a1, . . . , am are linearly independent but there exists a fur-

ther a′ ∈ A such that a′ lies in the linear span of the ai.

The next lemma imports the tools we developed in section 4. The result
allows us to weaken the condition of small doubling in Proposition 4.1 to
that of arithmetic connectedness.

Lemma 5.3. Suppose that m is a positive integer and that A ⊆ G is a set
with 0 /∈ A. Suppose that A is m-arithmetically connected. Then there is
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a subgroup H � G such that

Ex∈A1H(x) � 2−2Cm
and Ex∈H1A(x) � 2−Cm.

Proof. If |A| < m2 the result is trivial, so we stipulate that |A| � m2. Pick
any m-tuple (a1, . . . , am) of distinct elements of A. With the stipulated
lower bound on |A|, there are at least |A|m/2 such m-tuples. We know
that either the vectors a1, . . . , am are linearly dependent, or else there is
a further a′ ∈ A such that a′ lies in the linear span of the ai. In either
situation there is some linear relation

λ1a1 + · · · + λmam + λ′a′ = 0
where �λ := (λ1, . . . , λm, λ

′) has elements in F2 and, since 0 /∈ A and the
ais are distinct, at least three of the components of �λ are nonzero. By the
pigeonhole principle, it follows that there is some �λ such that the linear
equation

λ1x1 + · · · + λmxm + λ′x′ = 0
has at least |A|m/2m+2 solutions with x1, . . . , xm, x

′ ∈ A. Removing the
zero coefficients, we may thus assert that there is some r, 3 � r � m + 1,
such that the equation

x1 + · · · + xr = 0
has at least |A|r−1/2m+2 solutions with x1, . . . , xr ∈ A. Note that this is a
strong structural statement about A, since the maximum possible number
of solutions to such an equation is |A|r−1.

We claim that there are at least 2−2m−4|A|3 solutions to x1 + x2 =
x3 + x4 with xi ∈ A. To see this, write Rl(x) for the number of l-tuples
(x1, . . . , xl) ∈ Al such that x1 + · · · + xl = x, and note that

∑

x

R2(x)Rr−2(x) = Rr(0) � |A|r−1/2m+2.

Noting that Rr−2(x) � |A|r−3 for all x (here, of course, it is important that
r � 3) we see from the Cauchy–Schwarz inequality that

∑

x

R2(x)2 � |A|2(r−1)

22m+4
( ∑

xRr−2(x)2
) � 2−2m−4|A|3,

confirming the claim.
It now follows from the Balog–Szemerédi–Gowers theorem [G, Prop. 12]

that there is some set A′ ⊆ A, E1A′ � 2−Cm
E1A, such that E1A′+A′ �

2Cm
E1A′ . By Proposition 4.1 there is a subgroup H � G with

Ex∈A′1H(x) � 2−2Cm
and Ex∈H1A′(x) � 2−Cm.

The result follows since E1A � E1A′ � 2−Cm
E1A. �
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Proof of Proposition 5.1. We begin by decomposing f2 as g + h where
g = f2

Z
and h = f2 − g. We have

‖h‖∞ = ‖f2 − f2
Z
‖∞ � ‖f − fZ‖∞‖f + fZ‖∞ � 4εM ,

the latter inequality being a consequence of the fact that ‖f‖∞ � ‖f‖A �
M and that ‖fZ‖∞ � ‖f‖∞ + ε.

Setm = �(2M)4 and suppose that V � G is a subgroup of dimension m.
We have

‖f21V ‖A � ‖f‖2
A‖1V ‖A = ‖f‖2

A � M2.

In view of the trivial estimate
‖h1V ‖A �

∑

x∈V

∥
∥h(x)1x

∥
∥

A
� 2m‖h‖∞ � 2m+2εM ,

it follows from the triangle inequality and the assumption on ε that
‖g1V ‖A � M2 + 2m+2εM � 2M2. (5.1)

Write A := Supp(g) = Supp(fZ). If A is all of G then the proposition
follows trivially so we may assume that this is not the case. Hence by
replacing f(x) by f(x+ y) for some y /∈ A, we may assume without loss of
generality that 0 /∈ A. We claim that A is m-arithmetically connected in
the sense of Definition 5.2. If this is not the case then there are elements
a1, . . . , am ∈ A such that the vectors a1, . . . , am are linearly independent,
and such that there is no a′ ∈ A with a′ in the linear span of the ai. Writing
V for the subgroup of G spanned by the ai, this means that the support of
g1V is precisely {a1, . . . , am}.

Thus we have
g1V (x) =

m∑

i=1

g(ai)1ai(x) .

Now we may compute that
∥
∥(g1V )∧

∥
∥2

2
= ‖g1V ‖2

2 =
1
|G|

m∑

i=1

∣
∣g(ai)

∣
∣2 � m

|G| ,
and that

∥
∥(g1V )∧

∥
∥4

4
=

1
|G|3

∑

i1,i2,i3,i4
ai1

+ai2
=ai3

+ai4

∣
∣g(ai)

∣
∣4 � 3

|G|3
( m∑

i=1

∣
∣g(ai)

∣
∣2

)2

=
3
|G|

∥
∥(g1V )∧

∥
∥4

2
,

the middle inequality following from the observation that ai1+ai2 = ai3+ai4

only if i1 = i2 and i3 = i4, or i1 = i3 and i2 = i4, or i1 = i4 and i2 = i3.
From Hölder’s inequality we therefore obtain

‖g1V ‖A :=
∥
∥(g1V )∧

∥
∥

1
� ‖(g1V )∧‖3

2

‖(g1V )∧‖2
4

�
( |G|

3

)1/2 ∥
∥(g1V )∧

∥
∥

2
�

√
m/3 .
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Since m > 12M4, this is contrary to (5.1), and this proves the claim.
Applying Lemma 5.3 we obtain a subgroup H ′ such that

Ex∈A1H′(x) � 2−2CM4

and Ex∈H′1A(x) � 2−CM4
.

Since f2 � 1A/4 we get Ex∈H′f2(x) � 2−CM4
, but this does not quite

imply Proposition 5.1. By Plancherel’s theorem, however, we do have
〈
(fµH′)∧, f̂

〉
= 〈fµH′ , f〉 = Ex∈H′f2(x) � 2−CM4

,

which, since ‖f‖A � M , means that
∥
∥(fµH′)∧

∥
∥
∞ � 2−CM4

/M � 2−C′M4
.

By the definition of the Fourier transform this yields an r such that
∣
∣Ex∈H′f(x)(−1)r

T x
∣
∣ � 2−CM4

.

Taking H = H ′ ∩ {r}⊥, it is clear that

‖ψHf‖∞ � sup
x∈H′

∣
∣Ey∈x+Hf(y)

∣
∣ � 2−CM4

.

Finally we note that

E1H � E1H′/2 � 2−2CM4

E1A

and that

E1A � ‖fZ‖1

‖fZ‖∞ � ‖fZ‖1

‖f‖∞ + ε
� ‖fZ‖1

‖f‖A + ε
� ‖fZ‖1

M + ε
� ‖fZ‖1

M + 1
,

two estimates which together imply the claimed lower bound on E1H . �

6 The Main Argument

The basic strategy for proving Theorem 1.3 is that of an induction on M .
Our first lemma provides the main inductive step. The most noteworthy
feature of this lemma is that, in order to make the induction work, one can-
not restrict attention to boolean functions f : G → {0, 1}. It is necessary
to consider almost integer-valued functions as well.

Lemma 6.1 (Inductive step). Suppose that f : G→ R is ε-almost integer
valued with ‖f‖A � M , where ε � 2−CM4

. Then we may decompose f as
f1 + f2, where each fi is ε′-almost integer valued for some ε′ � 2CM ε, and
for i = 1, 2 one of the following two alternatives holds:

(1) (fi)Z may be written as
∑L

j=1 ±1Hj , where each Hj is a subgroup of G
and

L � 22CM4
/ε;

(2) ‖fi‖A is most ‖f‖A − 1
2 .
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Proof. If M � 1/2 then fZ = 0, and so option (1) vacuously holds. Assume,
then, that M � 1/2. We begin by applying Proposition 5.1. This provides
a subgroup H � G such that

E1H � 2−2CM4

‖fZ‖1 and ‖ψHf‖∞ � 2−CM4
.

Set
η := 2−CM(1+log M)ε

for some large C, this choice being dictated by a later application of Propo-
sition 3.7.

By Lemma 3.4 we may find a subgroup H ′ � H with
codim(H : H ′) � M/η

such that f is η-spectrally supported on H ′. By averaging we have
‖ψH′f‖∞ � ‖ψHf‖∞ � 2−CM4

; (6.1)
we also have

E1H′ � 2−M/η
E1H � 2−2CM4

/ε‖fZ‖1 .

Define f1 := ψH′f and f2 := f−ψH′f . Since f is η-spectrally supported
on H ′, it is an immediate consequence of Proposition 3.7 that both f1 and
f2 are ε′-almost integer valued, for some ε′ � 2CM ε.

It turns out that for f2 alternative (2) always holds, that is to say
‖f2‖A � ‖f‖A − 1

2 . From the Fourier definition of ψH′ one sees that the
supports of f̂1 and f̂2 are disjoint, and hence that

‖f‖A = ‖f1‖A + ‖f2‖A .

Thus we need only show that ‖f1‖A � 1/2. To see this, note that from
(6.1) we have

∥
∥(f1)Z

∥
∥
∞ � ‖f1‖∞ − ε′ � 2−CM4 − ε′ > 0 .

Since (f1)Z is integer valued, this of course means that
∥
∥(f1)Z

∥
∥
∞ � 1 ,

whence
‖f1‖A � ‖f1‖∞ � 1 − ε′ � 1/2 .

To conclude the proof, then, we need only show that if ‖f2‖A < 1/2
then (f1)Z may be written as a ±1 sum of not too many cosets of H ′. The
hypothesis on ‖f2‖A then ensures that ‖f2‖∞ < ε′ which is certainly at
most 1/10. Also f is 1/10-almost integer valued so

‖fZ − ψH′f‖∞ � 1/10 + ‖f − ψH′f‖∞ � 1/5 .
Thus fZ is within 1/5 of a function which is constant on cosets of H ′. Since
fZ is integer valued, this can only be the case if fZ is itself constant on
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cosets of H ′, that is to say

fZ =
L∑

j=1

cj1xj+H′

for some x1, . . . , xL which are distinct modulo H ′ and some non-zero inte-
gers cj, |cj | � ‖fZ‖∞ � ‖f‖A + ε � 2M .

Recall that the subgroup H ′ is such that E1H′ � 2−2CM4
/ε‖fZ‖1, and

since we obviously have
‖fZ‖1 � LE1H′ ,

it follows immediately that L � 22CM4
/ε. The result follows upon noting

that any coset in G is either a subgroup, or else its characteristic function
can be expressed as 1H1 − 1H2 for two subgroups H1,H2 � G. �

Proof of Theorem 1.3. We apply Lemma 6.1 iteratively, starting with the
observation that if f : G → {0, 1} is a boolean function then f is 0-almost
integer valued, and hence ε0-almost integer valued for any ε0 > 0. An
appropriate choice of ε0 will be made later. Split

f = f1 + f2

according to Lemma 6.1. Each fi is ε1-almost integer valued, where
ε1 � 2CM ε0 ,

and is such that either (fi)Z is a sum of at most 22CM4
/ε functions of the

form ±1H (in which case we say it is finished), or else we have ‖fi‖A �
M − 1

2 .
Now split any unfinished functions fi using Lemma 6.1 again, and so

on (we will discuss the admissibility of this shortly). This procedure will
result in the definition of parameters ε0 � ε1 � . . . satisfying

εj+1 � 2CM εj (6.2)
for all j. After at most 2M − 1 steps all functions will be either finished or
will have ‖ · ‖A-norm at most 1/2, in which case they are finished for trivial
reasons. Thus we have a decomposition

f =
K∑

k=1

fk ,

where K � 22M , each function fk is ε2M -almost integer valued and, for
each k, (fk)Z may be written as a sum of at most 22CM4

/ε0 functions ±1H .
Now if ε0 is chosen so that ε2M � 2−2M/5 then

∥
∥
∥
∥f −

K∑

k=1

(fk)Z

∥
∥
∥
∥
∞

� 1/5 .
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However f only takes values in {0, 1} so it follows that

f =
K∑

k=1

(fk)Z ,

which means that f can be written as a sum of at most 22CM4
/ε0 functions

±1H .
The condition ε2M � 2−2M/5 is not the strongest condition that we

require on ε0. In the repeated applications of Lemma 6.1 we must ensure
that ε � 2−CM4

is always satisfied, and so we require
ε2M � 2−CM4

.

In view of (6.2) it is clear, however, that we may choose ε0 � 2−CM4
, for

some suitably large C, so that this is indeed always satisfied. This concludes
the proof of Theorem 1.3. �

7 Concluding Remarks

Note that our proof of Theorem 1.3 actually proves the following slightly
stronger result.

Proposition 7.1. Suppose that f : G→ R is a function with ‖f‖A � M ,
and which is ε-almost integer valued for some ε � 2−CM4

. Then the function

fZ can be written as a combination of at most 22CM4

functions of the form
±1H .

In the same way that Theorem 1.3 can be seen as a quantitative version
of Cohen’s result, this proposition can be seen as a quantitative version of
some results of Méla [HMP], [Me]. An example in Méla’s work [HMP], [Me]
shows that ε must be smaller than 2−cM for such a theorem to hold.
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