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Abstract. Let G = (V, E) be a simple undirected graph. Define Gn, the
n-th power of G, as the graph on the vertex set V n in which two vertices
(u1, . . . , un) and (v1, . . . , vn) are adjacent if and only if ui is adjacent to vi

in G for every i. We give a characterization of all independent sets in such
graphs whenever G is connected and non-bipartite.

Consider the stationary measure of the simple random walk on Gn.
We show that every independent set is almost contained with respect to
this measure in a junta, a cylinder of constant co-dimension. Moreover we
show that the projection of that junta defines a nearly independent set, i.e.
it spans few edges (this also guarantees that it is not trivially the entire
vertex-set).

Our approach is based on an analog of Fourier analysis for product
spaces combined with spectral techniques and on a powerful invariance
principle presented in [MoOO]. This principle has already been shown in
[DiMR] to imply that independent sets in such graph products have an
influential coordinate. In this work we prove that in fact there is a set
of few coordinates and a junta on them that capture the independent set
almost completely.
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1 Introduction

The n-th power of an undirected graph G = (V,E), denoted by Gn, is
defined as follows: the vertex set is V n and two vertices (u1, . . . , un) and
(v1, . . . , vn) are adjacent in Gn if and only if ui is adjacent to vi in G for
every i. This is, in graph-theoretic terms, the n-fold weak product of G
with itself. An alternative description, which is helpful for the spectral
approach we wish to adopt, is that the adjacency matrix of Gn is the n-fold
tensor product of the adjacency matrix of G with itself.

In this paper we study independent sets in Gn where G remains fixed
while n tends to infinity. In classical graph theory one studies the size of
the maximal independent set in a graph or, adopting analytical language,
its measure according to the uniform measure on the set of vertices. In the
case of Gn this is also the product measure defined by the uniform measure
on G. It turns out that there is an alternative measure on G such that
the corresponding product measure on Gn is very well suited to studying
independent sets. This is the stationary measure of the simple random walk
on G, whence the product measure on Gn is the stationary measure of the
simple random walk on Gn.

A junta is a set J ⊆ V n that is described by a constant (independent
of n) number of coordinates, i.e. a cylinder of constant co-dimension. For
example let I ⊆ V be an independent set in G. The set I × V n−1 of all
vertices whose first coordinate belongs to I is a junta. This set is also an
independent set in the graph Gn. Another example of a relatively large
independent set in Gn is the set of all vectors that have at least two of their
first three coordinates in I:

S =
{
(v1, v2, . . . , vn) ∈ V n : at least two of v1, v2, v3 belong to I

}
.

If µ is any probability measure on G and µ(I) = α then it is easy to see
that S is an independent set in Gn, whose measure is 3α2 − 2α3 according
to the product measure.

Seeing these two examples might lead one to conjecture that the only
reasonably large independent sets are juntas. A moment of reflection shows
that this conjecture is too naive for several reasons. The first is that, as
usual in these settings, one should modify the statement to say that all
large independent sets are approximable by juntas – one can add small
perturbations to independent sets to achieve other examples. The second
difficulty, that makes the proof of the statement much trickier, is that
any subset of an independent set is also independent. So, for example, a
random subset of our previous examples evades complete description by
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a small set of coordinates. However this example is still contained in a
junta. A modified conjecture would be, then, that every independent set
can be approximated by an independent set that is contained in a junta.
Of course for the theorem to be meaningful we need the junta to be non-
trivial (i.e. not all of V n which, trivially, “depends on few coordinates”).
We will ensure this by showing that the junta itself, which depends on j
coordinates, is close to being an independent set in the corresponding graph
on V j .

Still, as alluded to above, for certain graphs G this principle is not true if
the underlying measure according to which we measure our approximation
is the uniform measure. Let us study an example of this. Let G be K4

minus an edge, a graph on vertex set {a, b, c, d} where all pairs of vertices
except {b, c} are edges. Consider the following independent set in Gn:

I =
{
v ∈ {a, b, c, d}n : more than half the coordinates of v are in {b, c}} .

Obviously I is an independent set, for any two vertices in it must share a
coordinate where their entries do not span an edge in G. The number of
vertices in I is close to half of 4n (depending on the parity of n), i.e. it
captures asymptotically half of the vertices in Gn. Also, clearly, I is not
close in the uniform measure to any junta. The “reason” that I evades the
principle we are aiming to prove is that the average degree of the vertices in
I is much lower than that of Gn, hence it is “easy” for I to be independent.
(The average degree of the vertices in I is less than (

√
6)n whereas the

average degree in Gn is (5/2)n.) Hence a reasonable measure to consider,
which might imply more structure on independent sets, is one where the
measure of vertices is proportional to their degree – this is, of course, a
measure that arises naturally: it is the stationary measure of the simple
random walk on Gn. This, finally, turns out to be the correct setting for
our main theorem.

Let G = (V,E) be a simple, undirected, connected, non-bipartite graph.
Throughout this paper µ(·) will always denote the unique stationary mea-
sure of the simple random walk on G,

µ(u) =
deg(u)
2|E| .

By abuse of notation we will often use µ to also denote the product measure
on Gn (which is also the stationary measure on Gn). The following is
our main theorem. We remark that although the theorem is given in its
most general form, the special case where G is a regular graph is already
interesting. For this special case µ is simply the uniform measure.
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Theorem 1.1. Let G = (V,E) be a simple, undirected, connected, non-
bipartite graph. Then there exists a function j = j(ε) such that if I ⊆ V n

is an independent set in Gn then for every ε > 0 there exists a set J ⊆ V n

depending on at most j coordinates such that µ(I \ J) ≤ ε and such that
J spans less than ε|E(Gj)| edges in the graph Gj .

Remarks. • If G is either bipartite or not connected, then there is no
unique stationary measure, and it is not hard to see that the assertion of
the theorem is false for the uniform measure.

• Our proof shows that the theorem also holds for the case that I is
a sparse set rather than an independent set. More precisely, there is a
function ζ(ε) > 0, such that for all ε > 0, if I ⊆ V n is a set spanning
less than ζ(ε)|E(Gn)| edges in Gn then there exists a set J ⊆ V n as in
Theorem 1.1.

• We wonder whether it is possible to strengthen our theorem and prove
the existence of such a set J which is a bona fide independent set (rather
than a sparse set) or whether this setback reflects a necessary caveat.

• The theorem and its proof can be easily extended to multigraphs
(graphs G with multiple edges and self-loops) or, more generally, to graphs
with weighted edges. Equivalently, we can think of G as a reversible (finite,
aperiodic, irreducible) Markov chain. So in Theorem 1.1 the measure µ
becomes the stationary measure of the random walk on the weighted graph,
and the number of edges spanned by J is now replaced with the weight
of edges spanned by J . For more details, see [DiF] where this extension
is applied to deduce a theorem concerning the structure of intersecting
families of sets.

• For which connected, non-bipartite graphs does the assertion of the
theorem hold under the uniform measure? Here we note that these are
exactly the regularizable graphs. A graph is called regularizable if a regular
graph can be obtained from it by replacing each edge by some positive
number of edges. By the previous remark, it follows that for any connected,
non-bipartite, regularizable graph, the assertion of the theorem holds under
the uniform measure. For the converse, we use a characterization of Berge
[Ber], which says that a connected, non-bipartite graph is regularizable if
and only if every non-empty independent set S ⊆ V has more neighbors
than elements, i.e. |N(S)| > |S|. Now note that if there exists a non-empty
independent set S such that |N(S)| ≤ |S|, then the assertion of the theorem
is false under the uniform measure since we can consider the independent
set in Gn given by all vertices in which more than n|S|/|V | coordinates are
from S and less than n|S|/|V | coordinates are from N(S).
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The natural emergence of cylinders in graph powers appears already
in [GL] where it was proven that for a certain class of base graphs G the
only optimal colorings are those induced by a coloring of the base graph.
This was reproved in [ADFS] via an analytical approach, which also gave
the following robustness theorem: for a wide family of regular base graphs
G any independent set in Gn whose measure is 1 − ε times the maximum
value, is O(ε) near to a cylinder over an independent set in the base graph.
Furthermore, [ADFS] conjectured that for regular base graphs every inde-
pendent set whose size is α|V |n, for any constant α < 1, is contained (up
to a negligible error) in a junta. This is essentially a special case of what
we prove in this paper.

Our main new tool here that was absent in [ADFS] is a corollary of the
powerful new invariance principle of Mossel, O’Donnell and Oleszkiewicz as
presented in [MoOO]. Their approach gives the basic leverage needed for
our proof: the fact that when two sets of vertices have few edges between
them then they can be described by functions which depend jointly, in a
non-negligible manner, on a certain coordinate. This idea was previously
exploited in [DiMR], a forerunner of this paper, where it was used to derive
certain inapproximability results for coloring problems. (This was one of
the original motivations for studying these questions in the first place.)
Some other tools that arise in the proof are a hypercontractive inequality
due to Miclo [M], and the notion of fractional expansion in a graph, first
described in [AKRS].

2 Background: The Spectral Basis, Influences, Noise and
Hypercontractivity

2.1 An analog of Fourier expansion. Let G = (V,E) be a simple,
undirected, connected and non-bipartite graph. We write u ∼ v to mean
that the vertices u, v ∈ V are adjacent in G. Let V = {0, 1, . . . , |V | − 1}.

We will consider independent sets in Gn as functions f : V n → {0, 1}.
We will also represent these functions as column vectors and let matrices
representing linear operators operate on them from the left. In the spirit
of [ADFS], we will consider the following analog of the Fourier expansion.
Just as the Fourier–Walsh basis for the space of functions on {0, 1}n is an
n-fold tensor product of a two-dimensional basis, we will define a similar
basis for functions f : V n → R. This basis will enjoy many of the nice
properties of the Fourier–Walsh basis.
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We begin by defining a basis for the space of functions from V to R. Let
A be the transition matrix of the simple random walk on G (when acting
from the right on row vectors), henceforth the transition matrix of G,

Au,v =
{

1/deg(u) u ∼ v ,
0 otherwise .

Let µ be the unique stationary measure of this walk on V , henceforth the
stationary measure,

µ(u) =
deg(u)
2|E| .

Let M denote the diagonal |V | × |V | matrix with entries Mu,v = δu,vµ(u).
We will consider the inner product on R

V defined by

〈f, g〉µ = Eµ

[
f(u)g(u)

]
=

∑

u∈V

f(u)g(u)µ(u) = f tMg .

Also, for any p ≥ 1, the p-th norm of f is defined as ‖f‖p = (Eµ|f |p)1/p.
Notice that ‖f‖2

2 = 〈f, f〉µ. The following lemma states some standard
basic facts related to such a Markov chain, see, e.g. [KeS].

Lemma 2.1. There exists a basis {χ0, χ1, . . . χ|V |−1} for R
V , which consists

of (right) eigenvectors of A corresponding to a set of real eigenvalues

1 = λ0 > λ1 ≥ λ2 ≥ · · · ≥ λ|V |−1 > −1 (1)

such that the basis is orthonormal with respect to the above inner product,
i.e.

〈χi, χj〉µ = δi,j .

Furthermore, χ0(u) = 1 for all u in V .

Proof. The statement concerning the range of A’s eigenvalues follows from
the fact that A represents a reversible, irreducible, aperiodic Markov chain.

Let B =
√MA

√
M−1. It is easy to see that B is symmetric and hence

has a complete set of eigenvectors {wi}i=0,...,|V |−1 which are orthonormal
with respect to the standard Euclidean inner product, i.e.

wt
iwj = δi,j .

Since B is similar to A they have the same eigenvalues so we can assume
Bwi = λiwi. Now define χi =

√
M−1wi. This is the required basis. Indeed,

Aχi =
√
M−1B

√
M

√
M−1wi =

√
M−1λiwi = λiχi

and
〈χi, χj〉µ = χt

iMχj = wt
i

√
M−1M

√
M−1wj = δi,j .

In particular the fact that A is (right) stochastic implies that χ0 ≡ 1. �
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We now proceed to tensor the above basis. This yields a basis of eigen-
vectors of A⊗n given by all

χS =
n⊗

j=1

χSj (2)

as S ranges over all multi-indices S = (S1, . . . , Sn) ∈ V n. This basis is
an orthonormal basis for the space of real valued functions on V n with
respect to the stationary measure µ⊗n, which will also be denoted as µ.
The corresponding eigenvalues are

λS =
n∏

j=1

λSj ,

and we also define
|S| =

∣
∣{j : Sj �= 0}∣∣ .

A key notion in what follows is the spectral gap of G and Gn. Let

λ(A) = λ(G) = max
{|λi| : i �= 0

}
.

In the cases that we consider λ(A) will always be strictly less than 1. Note
that for any n ≥ 1 we have λ(Gn) = λ(G).

Adopting the usual Fourier notation we write the expansion of f :V n→R

according to the tensor basis as

f =
∑

f̂(S)χS .

From the orthogonality of the basis vectors we have

〈f, g〉µ =
∑

f̂(S)ĝ(S)

and in particular ‖f‖2
2 =

∑
f̂(S)2.

2.2 Influence. Since we are interested in proving that certain functions
essentially depend on few coordinates we need a way to measure this de-
pendence. The greatly influential notion of the influence of a variable on
a function f whose domain is a product space was introduced by Ben-Or
and Linial in [BeL]. They measured the probability that when one chooses
a point in the domain of f at random, the value of the function changes
if the i-th variable changes its value. Let us make this precise in our case.
Let f be a real valued function on V n. Define a function fi : V n → R by

fi(x) = f(x) − Eµ,xi [f(x)] .

For example, in the case of the graph (K3)n, fi(x) = 2f(x)−f(x+ei)−f(x+2ei)
3 ,

where ei is the vector (0, 0, . . . , 1, . . . , 0) with 1 in the i-th coordinate, and
addition is taken modulo 3.
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Clearly fi measures the dependence of f on the i-th variable. We will
define the influence of the i-th variable on f by

Infi(f) = ‖fi‖2
2 .

A nice aspect of this definition, as observed, e.g., in [KKL], is that it has
a very simple expression in terms of the Fourier expansion of f . It is not
hard to see that

f̂i(S) =
{

f̂(S) Si �= 0 ,
0 Si = 0 .

Therefore
Infi(f) =

∑

S:Si �=0

f̂(S)2.

As mentioned in the introduction, a crucial tool in this paper is a result
stemming from the work of Mossel, O’Donnell and Oleszkiewicz [MoOO].
The importance of this tool is that it enables us to find a variable that has
large influence simultaneously on two (and ultimately on many) different
functions. This will be crucial when trying to identify variables participat-
ing in a junta. The statement below is basically derived from [MoOO] in
[DiMR, Th. 3.1], where it is used for similar purposes. (There are two small
technical differences. First, [DiMR] only considers the special case where
µ is uniform, but their proof easily generalizes to our case. Second, the
conclusion of [DiMR, Th. 3.1] regards the k-degree influence (see ibid.) as
opposed to the influence. Since the former is a lower bound on the latter,
our statement follows.)
Theorem 2.2 (Corollary of invariance principle). Let G be a connected,
non-bipartite graph with transition matrix A and let µ be its stationary
measure. Then, there exist functions δ = δmoo(ε) > 0 and τ = τmoo(ε) > 0
such that, for any ε > 0, n ≥ 1, and functions g1, g2 : V n → [0, 1] with
Eµ[g1] ≥ ε, Eµ[g2] ≥ ε and 〈g1, Ag2〉µ < δ, there exists a coordinate i with
influence τ on both functions, i.e.

Infi(g1) > τ and Infi(g2) > τ .

2.3 The noise operator. A central tool in the application of discrete
Fourier analysis on product spaces are noise operators (see, e.g. [Bou],
[DiFKO]) and these will play a crucial role in this paper too. Fix some
set V and let µ be some probability measure on V . For any 0 ≤ η ≤ 1, we
define the noise operator Nη on the space of functions on V by

(Nηf)(x) = ηf(x) + (1 − η)Eµ[f ] .
Clearly N1 is the identity operator whereas N0 is the averaging operator,
mapping each f to the constant function Eµ[f ]. It is often useful to think
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of N in the following way. For x ∈ V , (Nηf)(x) is the expectation of f(y)
where y is chosen to be x with probability η and chosen according to µ
with probability 1 − η.

The eigenvalues and eigenvectors of Nη have a particularly simple de-
scription: the constant function is an eigenvector with eigenvalue 1, whereas
the orthogonal subspace containing all functions whose expectation under
µ is zero has eigenvalue η. In particular, if G is a connected non-bipartite
graph on vertex set V , with stationary measure µ, then its eigenvectors
χ0, χ1, . . . , χ|V |−1 also form a complete set of eigenvectors of Nη with cor-
responding eigenvalues 1, η, . . . , η.

We now tensor the noise operator to obtain (Nη)⊗n. For any x ∈ V n

and f : V n → R, ((Nη)⊗nf)(x) can be seen as the expectation of f(y) where
each coordinate yi of y is chosen, independently of the other coordinates,
to be xi with probability η and otherwise it is chosen according to µ. For
any graph G as before, {χS}S∈V n forms a complete set of eigenvectors
of (Nη)⊗n with corresponding eigenvalues η|S|. This decay of the “higher
frequencies” helps to explain why the noise operator has a smoothing effect
on functions. This will also be true for A⊗n, as described in Theorem 2.6
(see also [S]).

The following lemma summarizes some properties of the noise opera-
tor. By abuse of notation, we sometimes write Nη to denote (Nη)⊗n or
(Nη)⊗(n−j) etc., and similarly for A.
Lemma 2.3. Let η ∈ [0, 1] and f : V n → R. Then,

1. Noise preserves mass. If f ≥ 0 then ‖f‖1 = ‖Nηf‖1.
2. Noise preserves monotonicity. If f ≥ f∗ pointwise then Nηf ≥ Nηf

∗

pointwise.
3. Noise decreases the range. If f(x) ∈ [a, b] for all x ∈ V n then also

Nηf(x) ∈ [a, b] for all x ∈ V n.
4. Noise commutes with averaging. Let j ≥ 0 and for v ∈ V n write v =

(a, x) with a ∈ V j and x ∈ V n−j. Then,

Eµ,x

[
(Nη)⊗nf(a, x)

]
= (Nη)⊗j

Eµ,x

[
f(a, x)

]
.

5. Noise decreases influences. Infi(Nηf) ≤ Infi(f) for all i ∈ {1, . . . , n}.
6. The sum of influences of a noisy version of a bounded function is bounded.

If |f(x)| ≤ 1 for all x ∈ V n then,
n∑

i=1

Infi(Nηf) ≤ (1 − η2)−2.

In particular, the number of variables in Nηf that have influence larger
than τ is at most (1 − η2)−2/τ .
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Proof. Items 1, 2 and 3 follow from the fact that Nη is an averaging
operator. For item 4 it suffices to verify the equality on the basis vectors
{χS}S . It is easy to see that if S ⊆ [j] then both sides are η|S|χS (when
viewed as a function on V j) and if S � [j] then both sides are zero. Item 5
follows directly from the formula Infi(f) =

∑
S:Si �=0 f̂2(S), and because for

all S ∣
∣N̂ηf(S)

∣
∣ =

∣
∣η|S|f̂(S)

∣
∣ ≤ ∣

∣f̂(S)
∣
∣ .

For item 6, notice that |f | ≤ 1 implies that
∑

f̂(S)2 = ‖f‖2
2 ≤ 1. So,

n∑

i=1

Infi(Nηf) =
n∑

i=1

∑

S:Si �=0

(
N̂ηf(S)

)2 =
∑

S

|S|η2|S|(f̂(S)
)2

<

∞∑

k=1

kη2k ≤ (1 − η2)−2. �

2.4 The transition matrix of Gn. We now consider the transition
matrix of Gn in more detail. We first notice, following [ADFS], that this
matrix is useful for identifying independent sets in Gn.

Observation 2.4. Let J ⊆ V n. The expression 〈1J , A1J 〉µ is equal to
the fraction of the edges of Gn that are spanned by J . Consequently, J is
an independent set in Gn if and only if 〈1J , A1J〉µ = 0.

Proof.

〈1J , A1J 〉µ =
∑

u

µ(u)1J (u)A1J (u) =
∑

u

deg(u)
2|E| 1J(u)

∑

v:v∼u

1J(v)/deg(u)

=
1
|E|

∑

u∼v

1J(u)1J (v) . �

Next, we observe that the expression 〈1J , A1J 〉µ does not change much
if we replace 1J with an η-noisy version of it when η is close to 1.

Lemma 2.5. Let λ = λ(G) = λ(A). Let 1−λ < η < 1 be sufficiently close
to 1 so that

(1 − η) logλ(1 − η) ≤
√

1 − η . (3)

Let g = Nηf . If |f(x)| ≤ 1 for all x, then
∣
∣〈f,Af〉µ − 〈g,Ag〉µ

∣
∣ ≤

√
1 − η .

Proof. For all S we have ĝ(S) = η|S|f̂(S), so
∣
∣〈g,Ag〉µ−〈f,Af〉µ

∣
∣=

∣
∣∣
∑

S

(
ĝ(S)2−f̂(S)2

) · λS

∣
∣∣≤

∑

S

f̂(S)2
(
1−η2|S|) · |λS | .
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Since
∑

S f̂(S)2 = ‖f‖2
2 ≤ 1 our result will follow if we show that for all S

(1 − η2|S|) · |λS | ≤
√

1 − η .

Let r = 1
2 logλ(1 − η). Then for |S| ≤ r we have

1 − η2|S| ≤ 2|S|(1 − η) ≤ 2r(1 − η)

which, by our choice of r and by (3) is at most
√

1 − η. For |S| > r we
have by the definition of r and of λ

|λS | ≤ λ|S| ≤
√

1 − η . �

2.5 Hypercontractivity and expansion. A key feature of the graph
Gn that we use is its strong expansion properties. As we will show below,
these properties follow from the fact that A⊗n, the normalized adjacency
matrix of Gn, satisfies what is known as a hypercontractive inequality. Such
an inequality bounds some high norm of A⊗nf by some low norm of f , for
any f : V n → R and n ≥ 1 (see Theorem 2.6).

The intuitive connection between hypercontractive inequalities and ex-
pansion is clear: A⊗n replaces f(x) with the average of f over the neighbors
of x. If the graph has a strong expansion, one can expect this to “smooth”
the function f , thereby decreasing the larger norms. We will actually prove
the reverse implication and deduce expansion properties from hypercon-
tractivity.

2.5.1 Hypercontractivity. Hypercontractive inequalities for func-
tions on discrete product spaces have been proven independently by several
different people: Bonami [Bo], Gross [Gr], Beckner [B], and possibly oth-
ers. These inequalities have become an indispensable tool in the study of
Boolean functions, see, e.g. [KKL], [F], [ADFS], [MoOO], [MoORSS]. It is
also of interest to find the optimal constants in such inequalities, see, e.g.
[O] and [W].

It is a well-known fact that there is a connection between the log-Sobolev
constant of a Markov chain and the hypercontractivity of the associated
continuous semi-group see, e.g. [DS]. However, we need the hypercontrac-
tivity of the transition matrix A of the discrete (finite) Markov chain. Pre-
cisely such a result is given in [M] by Miclo, who uses the the log-Sobolev
constant of A itself to derive its hypercontractivity. (In fact, Miclo’s result
is far more general, and applies to arbitrary Markov chains under some
mild conditions.)

Theorem 2.6 (Hypercontractive inequality, [M]). Let G be a connected,
non-bipartite graph with transition matrix A. Then there is a constant
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p = p(G) > 2 which does not depend on n, such that for all functions
f : V n → R

‖Af‖p ≤ ‖f‖2 ,

where the norms are with respect to the stationary measure of the random
walk on Gn.

As usual in proving hypercontractive inequalities concerning operators
on product spaces, it suffices to treat the one dimensional case due to the
submultiplicativity of the operator norms (see, e.g. [Bo], [B]). Hence the
fact that A is hypercontractive implies that A⊗n too is hypercontractive
with the same constants.

In a recent paper [W], Wolff finds the optimal constants for hypercon-
tractivity of such operators. For the sake of self-containedness we present
in the appendix a loose adaptation of certain portions of his proof with no
attempt to compute any constants, making do with proving the existential
statement of Theorem 2.6.

2.5.2 Expansion and fractional expansion. The usual notion of
expansion for a graph G implies that for any set X of vertices in G, the
size of Γ(X), its neighbor set, is at least of the same order of magnitude
as the size of X. In other words, if for each x ∈ X we let Γx be the set of
neighbors of x, then for Γ = Γ(X) := ∪x∈XΓx we have |Γ| = Ω(|X|). Using
the hypercontractivity of A, we will see in Lemma 2.7 below that Gn satisfies
an expansion property which, for small sets X, is much stronger, namely,
that µ(Γ) ≥ µ(X)2/p where p > 2 is the constant from Theorem 2.6.

In fact, for our application we need to prove an even stronger property
known as fractional expansion, a notion which first appeared in [AKRS].
Let 0 < β ≤ 1 be a constant, and let Bx be an arbitrary subset of Γx,
containing at least a β > 0 fraction of x’s neighbors. Fractional expansion
says that for any such setting, the set B = ∪x∈XBx is still much larger
than the set X. In our lemma below we actually prove a slightly stronger
statement by only requiring that the average fractional size of Bx is at
least β. This lemma and its proof are adapted from the similar statement
and proof of Theorem 6 in [AKRS].

Lemma 2.7. Let G = (V,E) be a connected non-bipartite graph and let
p = p(G) the constant defined in Theorem 2.6. Let j ≥ 1 and X ⊆ V j and
let 0 < β < 1. For each x ∈ X let Bx be a set of neighbors of x such that

∑

x∈X

|Bx| ≥ β
∑

x∈X

degGj (x) .
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Let B = ∪x∈XBx. Then

µ(B) ≥ µ(X)2/pβ2

where, as usual, µ denotes the stationary measure of the random walk
on Gj .

Proof. Let 1B be the indicator function of B. Then our assumption
implies that ∑

x∈X

µ(x) · (A1B)(x) ≥ µ(X)β .

By convexity it follows that

‖A1B‖p
p ≥

∑

x∈X

µ(x) · ((A1B)(x)
)p ≥ µ(X)βp.

Hence, by the hypercontractive inequality of Theorem 2.6,

‖1B‖p
2 ≥ µ(X)βp.

But ‖1B‖p
2 = µ(B)p/2 so we are done. �

The following lemma is a consequence of the strong fractional expansion
property of Gj . It shows that if we assign to each vertex an arbitrary list of
at most 
 labels in such a way that for at least ε of the edges of Gj the lists
corresponding to their two endpoints have a nonempty intersection, then
there must exist a “popular” label contained in many of the lists. It can
be interpreted as saying that some weak local consistency implies certain
global consistency.

Lemma 2.8. Let G and p = p(G) be as above. Let ε > 0, 
, j ∈ N be
parameters. For every vertex a ∈ V j let L(a) ⊆ N be a set of labels with
|L(a)| ≤ 
. Assume also that for at least an ε fraction of the edges {a, b} in
Gj it holds that L(a)∩L(b) �= ∅. Then there exists a label i ∈ N such that

µ
( {a : i ∈ L(a)} ) ≥ (ε/
2)

2p
p−2 .

Proof. Consider the labelling of V j obtained by choosing for each vertex
one random label from its label set. Then, for each edge {a, b} satisfying
L(a) ∩ L(b) �= ∅, the probability that both its endpoints obtain the same
label is at least 1/
2. Hence, it follows that there exists a labelling such
that the set of edges H both of whose endpoints have the same label is of
size at least ε

�2
|E(Gj)|. Equivalently, we have that

∑

x∈V j

degH(x) ≥ ε


2

∑

x∈V j

degGj(x) .
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By partitioning these sums according to the connected components of H,
we obtain that there exists a connected component X of H such that

∑

x∈X

degH(x) ≥ ε


2

∑

x∈X

degGj(x) .

We can now apply Lemma 2.7 with the set X, each Bx chosen to be the
set of neighbors of x in H, and β = ε/
2. By our choice of Bx, we see that
B = X. Therefore,

µ(X) ≥ µ(X)2/pβ2

from which it follows that

µ(X) ≥ β
2p

p−2 = (ε/
2)
2p

p−2 .

It remains to notice that since X is a connected component, all vertices in
X must have the same label. �

3 Proof of the Main Theorem

In this section we prove our main theorem:

Theorem 1.1. Let G = (V,E) be a simple, undirected, connected, non-
bipartite graph. Then there exists a function j = j(ε) such that if I ⊆ V n

is an independent set in Gn then for every ε > 0 there exists a set J ⊆ V n

depending on at most j coordinates such that µ(I \ J) ≤ ε and such that
J spans less than ε|E(Gj)| edges in the graph Gj .

In order to better understand the proof strategy let us return to a
problematic example of a large independent set. Let I0 ⊆ V be some
independent set in G, and let J = I0 ×V n−1 be the set of all vectors whose
first coordinate is in I0. Now let K be a random subset of J where every
point is taken independently with probability 1/2. If f is the characteristic
function of K then with high probability all variables have influence of
order Θ(1) on f . However, suppose we introduce a slight noise and consider
g = Nηf for some η very close to 1. Recall that, by definition, g(x) is the
average of f over vectors y whose first coordinate is the same as x with
probability at least η. Therefore, for most points x ∈ J the value of g(x)
will be very close to 1/2, whereas for most points x′ �∈ J , g(x′) will be very
close to 0. We have “recovered” J , a junta containing K. The only variable
that has non-negligible influence on g is the first one, and hence when we
partition V n according to it we discover J .

The plan of the proof is now clear. Given an independent set I ⊆ V n

let f be its characteristic function and take g = Nηf to be a slightly noisy
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version of f . There will be few variables that have non-negligible influence
on g, without loss of generality assume these are the variables indexed
1, . . . , j. Partition V n into |V |j subcubes according to these variables, let
J ′ ⊆ V j be the set of subcubes where g has non-negligible expectation, and
let J = J ′ × V n−j . We will show that

• J almost contains I, that is, the expectation of f outside of J is small.
• J is almost independent, i.e. 〈1J , A1J〉µ is small. In particular J is

not trivially equal to V n.

3.1 The proof. Let us begin by setting parameters. Let p = p(G) be
the constant defined in Theorem 2.6 and fix some ε > 0. Let τ and δ be
defined by

τ = τmoo(ε) , δ = δmoo(ε) .

Let λ = λ(G). We choose η < 1 close enough to 1 so that η > 1 − λ,√
1 − η ≤ δε/2, and (3) holds. Moreover, we define


 =
(1 − η2)−2

τ
.

Finally, choose γ > 0 small enough so that

γ < τ · (ε/2
2)
2p

p−2 .

Let I ⊆ V n be an independent set, let f : V n → {0, 1} be its character-
istic function, and define

g = Nηf .

By item 3 of Lemma 2.3 we have g : V n → [0, 1]. Let j be the number of
variables with influence larger than γ on g, and assume without loss of gen-
erality that these are the variables {1, . . . , j}. By item 6 of Lemma 2.3, j is
upper bounded by a constant independent of n, namely j ≤ (1 − η2)−2/γ.
We will now think of V n as V j × V n−j. We will denote the elements of V j

by the letters a and b, and the elements of V n or V n−j by x and y. For
every a ∈ V j define a function ga : V n−j → [0, 1] by

ga(x) = g(a, x) .

Let
J ′ =

{
a : Eµ[ga] ≥ ε

} ⊆ V j .

Define the set J = J ′ × V n−j ⊆ V n. We claim that J is the set guaranteed
by Theorem 1.1. To prove this we must prove the following two claims.
Claim 3.1. µ(I \ J) ≤ ε.

Claim 3.2. 〈1J ′ , A1J ′〉µ ≤ ε.
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Proof of Claim 3.1. Define f̃(a) = Eµ,x[f(a, x)] and similarly g̃(a) =
Eµ,x[g(a, x)] the functions on V j obtained by averaging over the V n−j part.
Since Nη commutes with averaging (see item 4 of Lemma 2.3), we have
g̃ = Nηf̃ . With this notation we have J ′ = {a : g̃(a) ≥ ε} and we define
f∗ = f̃ · 1J ′ . Notice that µ(I \ J) = Eµ[f∗] and hence our goal is to prove
that Eµ[f∗] ≤ ε. By item 2 of Lemma 2.3 the fact that f∗ ≤ f̃ pointwise
implies that Nηf

∗ ≤ g̃ pointwise. Hence we see that

〈f∗, Nηf
∗〉µ ≤ 〈f∗, g̃〉µ ≤ ε · Eµ[f∗] .

On the other hand,

〈f∗, Nηf
∗〉µ =

∑

S

f̂∗(S)2η|S| ≥ f̂∗(0)2 =
(
Eµ[f∗]

)2
.

Combining these two yields the required result. �

Proof of Claim 3.2. Let us assume by contradiction that 〈1J ′ , A1J ′〉µ > ε,
i.e. that the graph spanned by J ′ in Gj spans more than ε|E(Gj)| edges.
We will show that this implies that there exists a variable i ∈ {j +1, . . . , n}
whose influence on g is greater than γ, in contradiction to our definition
of j. To this end, notice that the influences of g are related to those of ga

by
∀i ∈ {j + 1, . . . , n} , Infi(g) =

∑

a∈V j

µ(a)Infi(ga) .

Therefore, in order to reach a contradiction it suffices to find a variable i
with Infi(ga) > τ for a set of a’s of measure at least γ/τ .

For each a ∈ V j let L(a) be the set of variables whose influence on ga

is greater than τ ,

L(a) =
{
j < i ≤ n : Infi(ga) > τ

}
.

Below we will show that
1. |L(a)| ≤ 
 for all a ∈ V j (see Claim 3.3 below); and that
2. for at least ε

2 |E(Gj)| edges {a, b} in Gj we have L(a) ∩ L(b) �= ∅ (see
Claim 3.4 below).

From Lemma 2.8 it will follow that there exists an i ∈ {j + 1, . . . , n} for

which µ({a : i ∈ L(a)}) ≥ (ε/2
2)
2p

p−2 . Recalling that we have chosen pa-

rameters so that (ε/2
2)
2p

p−2 > γ/τ , we reach the contradiction Infi(g) > γ
and our argument is complete. It remains to prove the claims in the two
items above.
Claim 3.3. For all a ∈ V j ,

∑
Infi(ga) ≤ (1 − η2)−2. In particular, there

are at most 
 = (1 − η2)−2/τ variables whose influence on ga is at least τ .
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Proof. Let h : V n → [0, 1] be the result of applying noise on the first j
coordinates of f ,

h = (Nη)⊗j ⊗ I⊗n−jf .

For each a ∈ V j let ha : V n−j → [0, 1] be defined by ha(x) = h(a, x). The
function ga can now be written as ga = Nηha. By item 6 of Lemma 2.3,∑

Infi(ga) ≤ (1 − η2)−2. �

For the second claim, we say that an edge {a, b} in Gj is dense if
〈ga, Agb〉µ ≥ δ.

Claim 3.4. There are at most ε
2 |E(Gj)| dense edges in Gj.

Proof. First note that since 〈f,Af〉µ = 0, and since g = Nηf , Lemma 2.5
says that

〈g,Ag〉µ ≤
√

1 − η .

Next, write
g =

∑

a

1{a} ⊗ ga ,

and deduce that

〈g,Ag〉µ =
1

|E(Gj)|
∑

a∼b

〈ga, Agb〉µ .

If there were more than ε
2 |E(Gj)| dense edges they would contribute to-

gether more than δ ε
2 ≥ √

1 − η to 〈g,Ag〉µ. �

Consider now all non-dense edges spanned by J ′. By our hypothesis
and the claim above, there are at least ε

2 |E(Gj)| such edges. Moreover, by
definition each such edge {a, b} satisfies 〈ga, Agb〉µ < δ, Eµ[ga] ≥ ε, and
Eµ[gb] ≥ ε. By Theorem 2.2 this means that there exists a variable in
{j + 1, . . . , n} whose influence on both ga and gb is larger than τ , which
implies that L(a) ∩ L(b) �= ∅, thereby completing the proof. �
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Appendix – Proof of the Hypercontractive Inequality

In this appendix we provide a proof of the hypercontractive inequality of
Theorem 2.6. As mentioned before, our proof is a loose adaptation of parts
of the proof by P. Wolff appearing in [W]. Although Wolff actually finds
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the optimal constants in this inequality we make no attempt to reproduce
such a quantitative statement.

Proof. Let m ≥ 2 be an integer and consider Ω, an m point space endowed
with a probability measure µ, and the norms induced by µ on Lp(Ω) for
all p ≥ 1. Let V1, . . . , Vm be an orthonormal basis for L2(Ω) with the inner
product induced by µ, and assume V1 = (1, 1, . . . , 1). Let

1 = λ1 > λ2 ≥ λ3 ≥ · · · ≥ λm > −1 ,

and define a linear operator A as follows. For 1 ≤ i ≤ m define AVi = λiVi

and extend A linearly to all f : {1, . . . ,m} → R. We want to prove the
existence of p > 2 such that, for all (c1, c2, . . . , cm) ∈ R

m,
∥∥
∥

∑
ciλiVi

∥∥
∥

p
≤

∥∥
∥

∑
ciVi

∥∥
∥

2
. (4)

First note that we may assume that 1 > λ2 = λ3 = · · · = λm = λ > 0.
Indeed, for g in the range of A write g =

∑
diVi (where di = 0 whenever

λi = 0). Then (4) translates to
∥
∥∥

∑
diVi

∥
∥∥

p
≤

∥
∥∥

∑
diλ

−1
i Vi

∥
∥∥

2
=

( ∑
(diλ

−1
i )2

)1/2

and the right-hand side is monotone decreasing in |λi|. So in the following
we assume that A acts by Af = λf + (1 − λ)Eµ[f ].

Our goal is to show that for some p > 2, ‖Af‖p ≤ ‖f‖2 holds for all
f : {1, . . . ,m} → R. We first observe that it suffices to consider non-
negative f . Indeed, replacing f by |f | does not change ‖f‖2 and can only
increase ‖Af‖p since A|f | ≥ |Af | (which follows from A|f | ≥ Af and
A|f | ≥ −Af). Next, by homogeneity, it is enough to consider f such that
‖f‖2 = 1. Let

a := Eµ[f ] =
∑

µ(i)f(i)

and notice that 0 < a ≤ 1.
So our goal now is to show that ‖Af‖p ≤ 1 holds for any function f of

the form
f = (a + b1, a + b2, . . . , a + bm)

for some 0 < a ≤ 1, with
∑

µ(i)bi = 0 , (5)
∑

µ(i)(a + bi)2 = 1 , (6)

and
∀i , a + bi ≥ 0 . (7)
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To this end, define the function

φa,p(b1, . . . , bm) := ‖Af‖p
p =

∑
µ(i)(a + λbi)p

where the equality follows from

Af = λf + (1 − λ)Eµ[f ] = (a + λb1, a + λb2, . . . , a + λbm) .

In the following, we maximize φa,p(b1, . . . , bm) subject to the constraints
(5), (6), and (7) for any fixed a and p, and show that for sufficiently small
p > 2 and all 0 < a ≤ 1 this maximum is 1.

We use the method of Lagrange multipliers. The gradient of φa,p is
given by

∇φa,p(b1, . . . , bm) =
(
λp µ(i)(a + λbi)p−1

)m

i=1
. (8)

Since this is a strictly positive vector, we see that the maximum of φa,p is
not constrained by (7). Therefore, at any maximum of φa,p, the gradient
in (8) should be in the span of the gradients of the constraints (5) and (6).
It follows that at any maximum point there exist constants t and s such
that, for all i,

(a + λbi)p−1 = t + sbi .

However, for any s, t and p > 2, this last equation in bi has at most two
solutions. Therefore, by (5), there is some Ω′ ⊆ Ω and b ≥ 0 such that
bi = (1− α)b for i ∈ Ω′ and bj = −αb for j �∈ Ω′ where α = µ(Ω′). If α = 0
or α = 1 then f is a constant function in which case ‖Af‖p = ‖f‖2 for all

p and we are done. Otherwise, using (6), we get b = b(a, α) =
√

1−a2

α(1−α) .
For the function to satisfy (7), we must have a − αb ≥ 0, which simplifies
to a ≥ √

α. Define

Φα(a, p) := φa,p(b1, . . . , bm)

= α

[
a + λ

√
(1 − a2)(1 − α)

α

]p

+ (1 − α)
[
a − λ

√
(1 − a2)α

1 − α

]p

.

So our goal in the following is to show that there exists some p > 2 such
that Φα(a, p) ≤ 1 holds for all 0 < α < 1 and all

√
α ≤ a ≤ 1. In fact,

notice that there are at most 2m − 2 possible values for α, so it suffices to
prove the inequality only for those values.

Fix some value of α ∈ (0, 1). Notice that Φα(a, 2) = a2 +λ2(1−a2) and
hence

∂Φα(a, 2)
∂a

= 2a(1 − λ2) (9)

which is strictly positive in the range a ≥ √
α > 0. Note also that for all p

Φα(1, p) = 1 . (10)
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Fix a closed rectangle, say,

∆ =
{
(a, p) : a ∈ [

√
α, 1] , p ∈ [2, 3]

}

and note that both Φα and its derivatives are uniformly continuous on ∆.
Hence we may choose p∗α > 2 such that for all (a, p) ∈ [

√
α, 1] × [2, p∗α] we

have that (9) implies
∂Φα(a, p)

∂a
> 0 ,

which together with (10) implies that Φα(a, p) ≤ 1. Hence the assertion of
the theorem holds for p = minα{p∗α} > 2 where the minimum is taken over
all finitely many possible values of α. �
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