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Abstract. We prove several superrigidity results for isometric actions on
Busemann non-positively curved uniformly convex metric spaces. In par-
ticular we generalize some recent theorems of N. Monod on uniform and cer-
tain non-uniform irreducible lattices in products of locally compact groups,
and we give a proof of an unpublished result on commensurability super-
rigidity due to G.A. Margulis. The proofs rely on certain notions of har-
monic maps and the study of their existence, uniqueness, and continuity.

Ever since the first superrigidity theorem for linear representations of
irreducible lattices in higher rank semisimple Lie groups was proved by
Margulis in the early 1970s, see [M3] or [M2], many extensions and gener-
alizations were established by various authors, see for example the exposi-
tion and bibliography of [J] as well as [P]. A superrigidity statement can
be read as follows:
Let

• G be a topological group,
• Γ a subgroup of G,
• H another topological group, and
• f : Γ → H a homomorphism.

Then, under some certain conditions on G,Γ,H and f, the homomorphism
f extends uniquely to a continuous homomorphism F : G → H. In case
H = Isom(X) is the group of isometries of some metric space X, the
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conditions on H and f can be formulated in terms of X and the action of
Γ on X.

In the original superrigidity theorem [M1] it was assumed that G is a
semisimple Lie group of real rank at least two and Γ ≤ G is an irreducible
lattice. (Superrigidity theorems were proved later also for lattices in the
rank one Lie groups SP(n, 1), F−20

4 see [C] and [GS]. It seems however that
the same phenomenon holds in these cases for different reasons.) It is not
clear how to define a rank for a general topological group. One natural
extension, although not a generalization, of the notion of higher rank is
the assumption that G is a non-trivial product. Margulis [M1] also proved
a superrigidity theorem for commensurability subgroups in semisimple Lie
groups. The target in these superrigidity theorems was the group of isome-
tries of a Riemannian symmetric space of non-compact type or an affine
building.

It was later realized in an unpublished manuscript of Margulis [M4]
which was circulated in the 1990s (cf. [J]), that superrigidity for commen-
surability subgroups extends to a very general setting: a general locally
compact, compactly generated G and a target group being the isometry
group of a complete Busemann non-positively curved uniformly convex
metric space.

In this paper we establish quite general superrigidity theorems for ac-
tions of irreducible lattices in products of locally compact groups on Buse-
mann non-positively curved uniformly convex metric spaces. We also in-
clude a proof of the unpublished result for commensurability subgroups
mentioned above, since the methods are similar.

Our method relies on certain notions of generalized harmonic maps. The
main part is the proof of their existence (Theorem 3.2, Proposition 8.2)
which is of independent interest and may have other applications. Once
the existence is established the superrigidity results follow from the nice
properties of these maps.

Our results for lattices in products generalize recent theorems of
N. Monod [Mo] for actions on CAT(0) spaces. Loosely speaking, the ar-
gument of Monod [Mo] is divided into three steps: 1. Inducing the lattice
action to an action of the ambient group on the space of square integrable
equivariant maps. 2. Proving a splitting theorem for actions of product
groups on CAT(0) spaces (generalizing earlier results for Riemannian man-
ifolds and general proper CAT(0) spaces, cf. [BrH, p. 239]). 3. Using the
splitting of the induced space to obtain an invariant subset of the original
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space on which the lattice action extends. The proof we give here is in a
sense more direct and therefore applies in a more general setup where the
splitting result does not hold. The spaces considered in the current paper,
namely Busemann non-positively curved uniformly convex metric spaces,
generalize CAT(0) spaces in a similar manner as (uniformly convex) Banach
spaces generalize Hilbert spaces and (uniformly convex NPC) Finsler man-
ifolds generalize NPC Riemannian manifolds. In particular, CAT(0) spaces
are BNPC and UC, but these conditions are much weaker than CAT(0), for
instance Hilbert spaces, while being the least convex among CAT(0) spaces,
are the most convex among UC Banach spaces (we refer the reader to [H],
[N], [U] for examples). There are several technical difficulties that could
be avoided by requiring stronger assumptions on the spaces considered (for
example, Proposition 2.13 with p = 2 is obvious for CAT(0) spaces). In
particular, when assuming the CAT(0) condition, our proof is significantly
simplified. Note that we also obtain some new results for actions on CAT(0)
spaces (cf. Theorem 1.4).

Sections 1 through 7 deal with lattices in products, and section 8 deals
with commensurability subgroups. The argument in section 8 is slightly
simpler and more detailed than the original proof given in [M4], however
we assume here a slightly stronger convexity assumption on the space X.

Acknowledgements. We would like to thank Nicolas Monod for sev-
eral helpful discussions, and the anonymous referees for their remarks and
suggestions.

1 Assumptions and Conclusion

We shall first discuss some properties of the groups, the spaces and the
actions under consideration, and then state our main results.

By saying that a lattice Γ in a locally compact group with a specified
decomposition G = G1 × . . . Gn is irreducible, we mean that Γ

( ∏
j �=iGj

)

is dense in G for each 1 ≤ i ≤ n. (Note that the projection of Γ to a
sub-product

∏
j∈J Gj with |J | > 1 is not necessarily dense.)

A complete geodesic metric space X is said to be Busemann non-
positively curved (BNPC), if the distance between any two constant speed
geodesics is a convex function. In particular, X is a uniquely geodesic
space, i.e. any two points x, y ∈ X are joined by a unique arc whose length
is d(x, y). We shall denote the midpoint of x and y by x+y

2 .
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A uniquely geodesic metric space X is said to be strictly convex if
d
(
x, y1+y2

2

)
< max{d(x, y1), d(x, y2)}, ∀x, y1, y2 ∈ X with y1 �= y2. We

shall say that X is weakly uniformly convex (WUC) if additionally for any
x ∈ X, the modulus of convexity function

δx(ε, r) := inf
{
r − d

(
x,
y1 + y2

2

)
: yi ∈ X , d(x, yi) ≤ r , d(y1, y2) ≥ εr

}

is positive for any ε, r > 0. We shall say that X is uniformly convex (UC)
if

∀ε > 0 , ∃δ(ε) > 0 such that ∀r > 0 , x ∈ X , δx(ε, r) ≥ δ(ε) · r .
We do not know an example of a BNPC WUC space which is not UC, and
it is conceivable that BNPC and WUC imply UC. We will allow ourselves
to assume whenever we find it convenient that the metric space under
consideration is UC, although some of our results can be proved under
weaker convexity assumptions. For instance Theorem 8.1 was proved in
[M4] under the assumption thatX is BNPC and WUC. All the main results
stated below remain true if one assumes only that X is uniformly convex
with respect to some point x0 ∈ X, i.e. that infr>0

1
r δx0(ε, r) > 0, ∀ε > 0

(and the proofs require only minor changes).
The projection of a point x ∈ X to a closed convex set C ⊂ X is the

point p ∈ C closest to x. It is a standrd fact that projections exists uniquely
in spaces which are weakly uniformly convex and complete.

Suppose that Γ acts on X by isometries. The action is called C-minimal
if there is no non-empty closed convex proper Γ-invariant subset of X.

For any subset Σ ⊂ Γ we associate the displacement function,

dΣ(x) := max
σ∈Σ

d(σ · x, x) .
We shall say that dΣ goes to infinity and write dΣ →∞ if limx→∞ dΣ(x)=∞,
where x→ ∞ means that x eventually gets out of any ball.

Following [Mo], we shall say that an action Γ � X is reduced if there
is no unbounded closed convex proper subset Y ⊂ X which is of finite
Hausdorff distance from γ · Y for any γ ∈ Γ.

Recall that a Clifford isometry T of a metric space X is a surjective
isometry T : X → X for which d(x, T (x)) is constant on X. A necessary
assumption in some of the superrigidity theorems below is that X has no
non-trivial Clifford isometries. However, for typical spaces, this assumption
follows from reduceness of Isom(X) (cf. Corollary 2.6).

The assumption that the action is reduced is very strong, and by re-
quiring it we can prove a quite general statement.
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Theorem 1.1. Let G = G1 × . . . × Gn, n > 1 be a locally compact
compactly generated topological group, and Γ an irreducible uniform lattice
in G. Let X be a complete Busemann non-positively curved uniformly
convex metric space without non-trivial Clifford isometries. Assume that
Γ acts on X by isometries and that this action is reduced and has no
global fixed point. Then the action of Γ extends uniquely to a continuous
G-action, and this G-action factors through one of the Gi’s.

Remark 1.2. (i) In section 7 we shall give a generalization of Theorem 1.1
for non-uniform lattices which are p-integrable and weakly cocompact.

(ii) The theorem also remains true when G is not assumed to be com-
pactly generated but only a σ-compact group if we add the assumption
that dΣ → ∞ for some finite subset Σ ⊂ Γ. (One should only choose the
function h in the definition of the energy E below more carefully so that
the energy of some Γ-equivariant map (in L2(Γ\G,X)) would be finite.)
Note however that when G is not compactly generated, Γ is not finitely
generated. Hence this additional assumption is perhaps not very natural.

Even when an action is reduced, it is not clear how to verify this. More-
over, in many cases, the action can be extended under weaker assumptions.
By requiring stronger assumptions on the space X we can drop this as-
sumption. The following two theorems imply (and generalize) Margulis’
original theorem in the case where G is not simple. For an explanation
why Theorem 1.3 implies Margulis’ theorem, we refer to [Mo] where the
same result is proved under the assumption that X is CAT(0). Note that
Remark 1.2 applies also for Theorems 1.3 and 1.4.

Theorem 1.3. Let G,Γ be as in Theorem 1.1, let X be a complete
BNPC uniformly convex space, and assume further that X is proper (i.e.
the closed balls in X are compact). Assume that Γ acts on X without a
global fixed point. Then there is a non-empty closed invariant subset L
of the visual boundary ∂X (cf. [Pa] for definition) on which the Γ action
extends to a continuous G action which factors through some Gi.

We will say that the space X is geodesically complete (resp. uniquely
geodesically complete) if any geodesic segment inX is contained in a (unique)
two-sided infinite geodesic.

Theorem 1.4. Let G and Γ be as above, and let Σ be a finite generating
set of Γ. Let X be a complete uniquely geodesically complete CAT(0)
space without Euclidean factors with the additional assumption that if two
geodesic segments are parallel then the corresponding geodesics are parallel.
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Suppose that Γ acts on X by isometries with dΣ → ∞. Then there is a Γ-
invariant geodesically complete closed subset Y ⊂ X, such that the Γ-action
on Y extends to a continuous G-action. Moreover, Y can be decomposed
to an invariant direct product Y = Y1 × . . . × Yn such that each Gi acts
trivially on each Yj with j �= i.

Remark 1.5. (1) Recall that a CAT(0) space X admits a non-trivial
Clifford isometry iff it has an Euclidean factor, i.e. can be decomposed as
a direct product X ′ × R (cf. [BrH, p. 235]).

(2) If X is CAT(0) and the distance function between any two geodesics
is analytic (except at intersection points) then all assumptions on X (in 1.4)
are satisfied.

(3) Trees and buildings are usually not uniquely geodesically complete.

2 Some Remarks about the Assumptions

2.1 Parallel segments. We shall say that two segments [a, b], [x, y]⊂X
are parallel, and write [a, b] ‖ [x, y], if

d(a, x) = d(b, y) = d

(
a+ b

2
,
x+ y

2

)
.

Recall the following fact:

Lemma 2.1 (Busemann [Bu, Th. 3.14]). Whenever X is BNPC

[a, b] ‖ [x, y] ⇔ [a, x] ‖ [b, y] .

2.2 Intersection property for convex sets. A real valued function
on X is called convex if it is convex in the usual sense when restricted to
any geodesic segment, i.e. if its sub-level sets are convex.

Lemma 2.2. Let X be a weakly uniformly convex complete metric space.
Then any collection of closed bounded convex sets has the finite intersection
property. If f is a convex function on X which satisfies f(x) → ∞ when
x→ ∞, then f attains a minimum in X.

Proof. To prove the first claim let Cα be a descending net of closed convex
sets which are contained in some ball. Fix x0 ∈ X and let xα be the
projection of x0 to Cα. Then d(x0, xα) is a non-decreasing bounded net
of non-negative numbers and hence has a limit. If this limit is 0 then x0

belongs to the intersection ∩Cα, and if it is positive one shows that xα must
be a Cauchy net as follows: if β > α then xβ belongs to Cα and if α is “large”
then d(x0, xβ) is “almost” the same as d(x0, xα) and hence d(xβ, xα) must
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be “small” for otherwise xα+xβ

2 would be closer to x0 than xα, by positivity
of the modulus of convexity function. Clearly lim xα ∈ ∩Cα, and hence
∩Cα �= ∅.

The second claim follows from the first by taking the convex sets to be
non-empty sub-level sets of f . �

2.3 Linear growth of convex functions. The following lemma will
be used in the proof of the existence of a harmonic map.
Lemma 2.3. Let X be a geodesic metric space and let f : X → R be a
convex function. Assume that f(x) → ∞ when x→ ∞. Then there exists
b > 0 such that f(x) ≥ b · d(x, x0) − 1

b , ∀x ∈ X. Moreover if X is weakly
uniformly convex and f(x) > 0, ∀x ∈ X, then there exist b > 0 such that
f(x) > b · d(x0, x), ∀x ∈ X.

Proof. The second statement follows from the first using Lemma 2.2. Now,
assuming the contrary, there must be a sequence xn in X such that

• f(xn) ≤ 1
nd(xn, x0), and

• d(xn, x0) ≥ n2.
Take yn to be the point of distance n from x0 on the geodesic segment
[x0, xn]. Then yn → ∞ but

f(yn) ≤ d(yn, xn)f(x0) + d(yn, x0)f(xn)
d(x0, xn)

≤ f(x0) +
d(yn,x0)

n d(x0, xn)
d(x0, xn)

= f(x0) + 1 .

This however contradicts the assumption that f(x) → ∞ when x→ ∞. �

2.4 Spaces with Clifford isometries. For spaces with Clifford iso-
metries, the analog of Theorem 1.1 is not true as shown by the simple
example from [Mo] where G is the discrete group (Z/(2)�Z)× (Z/(2)�Z)
and Γ the index 2 irreducible subgroup Z/(2) � (Z ⊕ Z), and Γ acts on R,
each Z by translation and the order 2 element by reflection through 0; this
action does not extend to G.

The typical example of a space with many Clifford isometries is a Banach
space. A weaker superrigidity result for isometric and, more generally, for
uniformly bounded affine actions of irreducible lattices on uniformly convex
Banach spaces was proved in [BGFM] (cf. Theorem D there).

On the other hand, spaces with non-trivial Clifford isometries admit a
canonical non-trivial invariant metric foliation and one can prove super-
rigidity theorems for the induced action on the space of leaves. Moreover,
an action on such a space cannot be reduced, unless it is a Banach space.
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Proposition 2.4. Let X be a complete BNPC metric space, and assume
that the set CL(X) of all Clifford isometries of X form a subgroup of
Isom(X). Then CL(X) is normal and abelian. The orbits of CL(X) are all
isometric to some fixed uniformly convex real Banach space. The quotient
space X/CL(X) is BNPC. The induced action of Isom(X) on X/CL(X) is
by isometries. Furthermore, if X is uniformly convex then so is X/CL(X).

Proof. It follows from Lemma 2.1 that S−1T−1ST (x) = x, ∀x ∈ X, and for
arbitrary S, T ∈ CL(X), hence CL(X) is abelian. Clearly CL(X) � Isom(X).
To give the structure of a Banach space to CL(X) · x note that it follows
from our assumptions and Lemma 2.1 that T 1/2(x) := x+T (x)

2 is also a Clif-
ford isometry and hence we can define a multiplication by a dyadic number,
and by continuity we can define a multiplication by any real number. It
is also easy to verify that X/CL(X) is BNPC, and also uniformly convex
if X is. Any isometry T induces a 1-Lipschitz map on X/CL(X), which
forces it, as T−1 is also a 1-Lipschitz, to be an isometry. �

Remark 2.5. The assumption that CL(X) is a group holds in many cases,
e.g. it holds for CAT(0) spaces (cf. [BrH, p. 235]), as well as spaces for
which parallelity of segments is a transitive relation, i.e. ([a1, b1] ‖ [a2, b2])∧
([a2, b2] ‖ [a3, b3]) ⇒ [a1, b1] ‖ [a3, b3].

Corollary 2.6. Let X be a BNPC complete metric space which is not
isometric to a Banach space, and assume that CL(X) is a group. Suppose
that CL(X) is non-trivial. Then the action of Isom(X) on X is not reduced.

Proof. Choose y ∈ X and let Y = CL(X) · y. Then Y is a closed con-
vex unbounded proper subset which is equidistant to its image under any
isometry. �

Still, for spaces with Clifford isometries one can prove the following:
Theorem 2.7. Let Γ and G be as in Theorem 1.1, and let X be a complete
BNPC uniformly convex metric space such that CL(X) is a group. Assume
that Γ acts on X with dΣ → ∞ where Σ ⊂ Γ is a finite generating set, and
that the induced action of Γ on X/CL(X) is reduced. Then the Γ action on
X/CL(X) extends uniquely to a continuous G action which factors through
some Gi.

We shall not elaborate on the proof of Theorem 2.7, which requires only
a small modification in step (2) of the proof of Theorem 1.1.

2.5 Reduced actions, displacement functions and C-minimality.
Suppose that a group Γ is generated by a finite set Σ and acts by isometries
on a space X.
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Lemma 2.8. Assume that X is a BNPC space which is not isomorphic
to a Banach space and that CL(X) is trivial. If the action is reduced then
the displacement function dΣ → ∞.

Proof. Since CL(X) is trivial, if γ ∈ Σ acts non-trivially on X, dγ(x) =
d(x, γ ·x) is non-constant. This implies that the function dΣ is non-constant.
To see this one can argue by contradiction as follows: Suppose dΣ(x) ≡ m,
let x ∈ X be a point where J(x) = |{γ ∈ Σ : dγ(x) = m}| is minimal,
let γ ∈ Σ be such that dγ(x) = m and let y ∈ X be another point where
dγ(y) < m. Then J

(x+y
2

) ≤ J(x)−1 in contrary to the minimality of J(x).
Now, since X is BNPC the function dΣ is convex, being the maximum of

the convex functions {dγ : γ ∈ Σ}. Since the action is reduced, each proper
sub-level set {x ∈ X : dΣ(x) ≤ a}, a > 0, is bounded, being convex and of
bounded Hausdorff distance from its translation by any γ ∈ Γ = 〈Σ〉. On
the other hand, one can show that a bounded non-constant convex function
on an unbounded geodesic space must have an unbounded proper sub-level
set. We may of course assume that X is unbounded for otherwise there is
nothing to prove. It follows that dΣ is unbounded with bounded sub-level
sets, i.e. that dΣ → ∞. �

Remark 2.9. In view of Corollary 2.6, the assumption that CL(X) is
trivial in Lemma 2.8 can be replaced by the assumption that it is a group.

Lemma 2.10. Assume that X is complete, BNPC and uniformly convex.
If dΣ → ∞ then there exists a minimal closed convex invariant subset.

Proof. We may assume that there is no global fixed point. Let Cα be a
descending chain of closed convex invariant sets. We claim that the in-
tersection ∩Cα is non-empty. By Lemma 2.2 it is enough to show that
they all intersect some given ball. Fix x0 ∈ X and let xα be the pro-
jection of x0 to Cα. Let b be the constant from Lemma 2.3 applied to
the convex function dΣ and let a = dΣ(x0). Since X is uniformly con-
vex there is R > 0 such that δx0(b, r) > a for all r ≥ R. We claim that
d(x0, xα) ≤ R. Suppose in contrary that d(x0, xα) > R, and let γ ∈ Σ be
such that d(γ · xα, xα) ≥ b · d(x0, xα). Since d(x0, γ ·xα) ≤ a+d(x0, xα) this
implies that d

(
x0,

x0+γ·xα

2

)
< d(x0, xα), contrary to the definition of xα.

Thus, we can apply Zorn lemma and conclude that there is a minimal
invariant closed convex set. �

From the existence and uniqueness of circumcenters in weakly uniformly
convex, complete spaces, it follows that a bounded minimal invariant convex
set must be a point. Indeed, the projection of the circumcenter of a closed
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bounded invariant convex set to the set is a fixed point. (Note that if X
is not CAT(0), the circumcenter of a closed bounded convex set may lie
outside the set.)

Therefore,

Corollary 2.11. Assume that X is complete, BNPC and uniformly con-
vex. If the action of Γ on X is reduced, and has no global fixed points,
then it is also C-minimal.

By the exact same argument as in the proof of Lemma 2.10 one can
show

Lemma 2.12. Assume that X is a complete, uniquely geodesically com-
plete, BNPC and uniformly convex. If dΣ → ∞ then there exists a minimal
closed geodesically complete invariant subset.

2.6 Spaces of p-integrable maps. Let (Ω, µ) be a probability space
and let 1 < p <∞. We denote by Lp(Ω,X) the space of measurable maps
ϕ : Ω → X which satisfy

∫
Ω d(ϕ(w), x0)p <∞ for x0 ∈ X with the distance

ρ(ϕ,ψ) =
(∫

Ω
d
(
ϕ(w), ψ(w)

)p
)1/p

.

Obviously, the finiteness of this integral is independent of the choice of x0.
We shall make use of the following proposition whose technical proof

might be skipped at first reading.

Proposition 2.13. Suppose that X is complete BNPC and uniformly
convex. Then, for any 1 < p < ∞, the space Lp(Ω,X) is also complete
BNPC and uniformly convex.

Proof. The completeness of Lp(Ω,X) follows from that of X by a straight-
forward argument. Similarly the BNPC property follows from that of X
since f is the midpoint of g, h ∈ Lp(Ω,X) iff f(w) is the midpoint of g(w)
and h(w) in X for almost every w ∈ Ω.

Let us show that Lp(Ω,X) is uniformly convex. Let δ(ε) > 0 be the
associated constant in a linear lower bound for the modulus of convexity
δx(ε, r). We may assume that δ(ε/4) is sufficiently small compared with ε
to satisfy inequality (3), as well as the last calculation in the proof. Let βp
be the modulus of convexity function of the Banach space Lp(0, 1). Set

τ(ε) = βp
(
δ4(ε/4)

)
.

We claim that if δ(ε/4) is chosen small enough then, for any ψ,ϕ1, ϕ2 ∈
Lp(Ω,X) which satisfy ρ(ϕi, ψ) ≤ r, i = 1, 2 and ρ(ϕ1, ϕ2) ≥ εr, we have
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ρ
(ϕ1+ϕ2

2 , ψ
) ≤ r(1 − τ(ε)). To see this, note first that if

(∫

Ω

∣
∣d(ϕ1(w), ψ(w)) − d(ϕ2(w), ψ(w))

∣
∣p

)1/p

≥ δ4(ε/4)r , (1)

then the this claim follows from the uniform convexity of Lp(0, 1), since by
BNPC,

d

(
ϕ1(w) + ϕ2(w)

2
, ψ(w)

)
≤ d(ϕ1(w), ψ(w)) + d(ϕ2(w), ψ(w))

2
, ∀w ∈ Ω .

We shall therefore assume below that inequality (1) does not hold. Set

Ω′ :=
{
w∈Ω : |d(ϕ1(w), ψ(w))− d(ϕ2(w), ψ(w))| ≥ δ2(ε/4)d(ϕ1(w), ψ(w))

}
,

then the negation of inequality (1) implies
(∫

Ω′
d
(
ϕ1(w), ψ(w)

)p
)1/p

< δ2(ε/4)r , (2)

and hence, using the negation of (1) again,
(∫

Ω′
d
(
ϕ2(w), ψ(w)

)p
)1/p

<
(
δ2

(
ε
4

)
+ δ4

(
ε
4

))
r .

Thus∫

Ω\Ω′
d
(
ϕ1(w), ϕ2(w)

)p ≥ (
εp − (

2δ2
(
ε
4

)
+ δ4

(
ε
4

))p)
rp ≥ (

ε
2r

)p
. (3)

Now let

Ω′′ =
{
w ∈ Ω \ Ω′ : d

(
ϕ1(w), ϕ2(w)

) ≥ ε
4d

(
ϕ1(w), ψ(w)

)}
.

Then from inequality (3) it follows that
(∫

Ω′′
d(ϕ1(w), ψ(w))p

)1/p

≥ ε

4
r . (4)

Thus, by uniform convexity of X
(∫

Ω′′
d

(
ϕ1+ϕ2

2
, ψ

)p)1/p

≤
(∫

Ω′′
d(ϕ1, ψ)p

)1/p

−
( ε

4
δ
( ε

4

)
−δ4

( ε
4

))
r .

Therefore, assuming δ(ε/4) is small enough, we have
∫

Ω

(
d(ϕ1, ψ)p − d

(
ϕ1+ϕ2

2
, ψ

)p)

=
(∫

Ω′′
+

∫

Ω\Ω′′

)(
d(ϕ1, ψ)p−|, d

(
ϕ1 + ϕ2

2
, ψ

)p)

≥
∫

Ω′′

(
d(ϕ1, ψ)p−d

(
ϕ1+ϕ2

2
, ψ

)p)
−

∫

Ω\Ω′′

(
d(ϕ2, ψ)p−d(ϕ1, ψ)p

) ∨ 0
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≥ (
1 − [

1 − ε
4δ

(
ε
4

)
+ δ4

(
ε
4

)]p) (
ε
4r

)p − pδ4
(
ε
4

)
rp ≥ δ2

(
ε
4

)
rp.

It follows that
( ∫

Ω d
(ϕ1+ϕ2

2 , ψ
)p)1/p ≤ (

1 − δ2
(
ε
4

))1/p
r. Finally, if δ

(
ε
4

)
is

sufficiently small then
(
1 − δ2

(
ε
4

))1/p ≤ 1 − δ4
(
ε
4

)
, and since βp

(
δ4

(
ε
4

)) ≤
δ4

(
ε
4

)
this completes the proof. �

Arguing similarly, and avoiding the part of Ω where both ϕi are close
to ψ one can show:

Proposition 2.14. If X is uniformly convex for large distances, i.e. for
some (and hence any) x ∈ X, limr→∞ 1

r δ(ε, r) > 0 for any ε > 0, then so is
Lp(Ω,X).

Since we will not make use of this variant of Proposition 2.13, we shall
not elaborate on its proofs.

Remark 2.15. It is straightforward that ifX is CAT(0) then so is L2(Ω,X).
Thus for CAT(0) spaces one can avoid the technical Proposition 2.13.

3 Definition and Existence of Generalized Harmonic Maps

Let G = G1 × G2 be a compactly generated locally compact group and
Γ ≤ G a uniform lattice. Let Ω be a measurable relatively compact right
fundamental domain for Γ, i.e. G =

⊔
γ∈Γ γ·Ω. Assume thatX is a complete

BNPC uniformly convex metric space, and that Γ acts by isometries on X
with dΣ → ∞, where Σ is a finite generating set for Γ containing the
identity. (Note that in this section, we neither require that the action
Γ � X is reduced, nor that CL(X) is trivial, nor that Γ ≤ G is irreducible.)

A function ϕ : G→ X is said to be Γ-equivariant if ϕ(γg) = γ ·ϕ(g) for
any γ ∈ Γ, g ∈ G. Since such a function is determined by its restriction to
Ω we will abuse notation and make no distinction between Γ-equivariant
functions and their restriction to Ω. In particular, by L2(Ω,X) we mean
the space of Γ-equivariant measurable maps Ω → X whose restriction to Ω
is square integrable (see 2.6).

Fix a compact generating set K of G1 and define h : G1 → R by
h(g1) := e−|g1|2K+1 where | |K is the word norm associated to K, i.e.

|g1|K = min{k : Kk � g1} , g1 ∈ G1 .

For convenience we will assume that K contains the compact set U1 ⊂ G1

defined in the proof of Proposition 3.3 below.
We define the (leafwise G1-) energy of a Γ-equivariant function ϕ : G→

X to be
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E(ϕ) =
∫

Ω×G1

h(g1)d
(
ϕ(ω), ϕ(ωg1)

)2 =
∫

(Γ\G)×G1

h(g1)d
(
ϕ(g), ϕ(gg1)

)2
.

Note that the energy E is convex and G2-invariant from the right, i.e.
E(ϕ) = E(ϕ(·g2)) for any g2 ∈ G2. It is also easy to check that if ϕ ∈
L2(Ω,X) then E(ϕ) < ∞ and that E is continuous on L2(Ω,X). Let
M = inf{E(ϕ) : ϕ ∈ L2(Ω,X)}.
Definition 3.1. ϕ ∈ L2(Ω,X) is called harmonic if E(ϕ) = M .

Theorem 3.2. There exists a harmonic map.

If Γ has a global fixed point y0 then the constant map ϕ(g) ≡ y0 is Γ-
equivariant with energy 0, and hence harmonic. For the rest of this section,
we will assume that Γ has no global fixed point in X.

Let us fix a point x0 ∈ X and denote by x0 also the element in L2(Ω,X)
which sends Ω to x0. For ϕ ∈ L2(Ω,X) let

‖ϕ‖ := ρ(ϕ, x0) =
[ ∫

Ω
d
(
ϕ(ω), x0

)2
]1/2

.

For each n, let ϕn ∈ L2(Ω,X) be a map satisfying:

• E(ϕn) ≤M + 1
n , and

• ‖ϕn‖ ≤ inf{‖ϕ‖ : ϕ ∈ L2(Ω,X), E(ϕ) ≤M + 1
n} + 1

n .

Proposition 3.3. The maps ϕn are uniformly bounded, i.e. sup ‖ϕn‖<∞.

Proof. Let

Fn = inf
{‖ϕ‖ : ϕ ∈ L2(Ω,X) , E(ϕ) ≤M + 1

n

}
.

Note that Fn ≤ ‖ϕn‖ ≤ Fn + 1
n .

Let Ω̃ = Σ · Ω, U = Ω−1Ω̃, and Ui = πi(U), i = 1, 2. For u ∈ U let
ui = πi(u) ∈ Ui, where πi : G → Gi is the canonical projection. We may
normalize the Haar measure µG of G so that µG(Ω) = 1.

Let b be the constant from Lemma 2.3 applied to the function dΣ, then

(b‖ϕn‖)2
4

≤ 1
4

∫

Ω
dΣ

(
ϕn(ω)

)2 ≤ inf
y∈X

∫

Ω
max
γ∈Σ

d
(
y, γ · ϕn(ω)

)2

≤ inf
y∈X

∫

Ω

∑

γ∈Σ

d
(
y, γ · ϕn(ω)

)2
,

where the second ≤ follows from the triangle inequality since Σ contains 1.
By the definition of Ω̃, the last term is equal to

inf
y∈X

∫

Ω̃
d
(
y, ϕn(ω̃)

)2 ≤
∫

Ω×Ω̃
d
(
ϕn(ω), ϕn(ω̃)

)2 ≤
∫

Ω×U
d
(
ϕn(ω), ϕn(ωu)

)2;
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here the first ≤ holds since µG(Ω) = 1, and the second since Ω̃ ⊂ wU ,
∀w ∈ Ω. By the triangle inequality, the last term is bounded by

∫

Ω×U

[
d(ϕn(ω), ϕn(ωu2)) + d(ϕn(ωu2), ϕn(ωu2u1))

]2

≤ 2
∫

Ω×U
d
(
ϕn(ω), ϕn(ωu2)

)2 + 2
∫

Ω×U2×U1

d
(
ϕn(ωu2), ϕn(ωu2u1)

)2
.

Now the second summand is bounded above by 2µ2(U2)E(ϕn) ≤
2µ2(U2)(M + 1), since h|U1 ≥ 1. Hence, if we assume that b2

4 ‖ϕn‖2 ≥
4µ2(U2)(M + 1) then we have

∫

Ω×U
d
(
ϕn(ω), ϕn(ωu2)

)2 ≥ (b‖ϕn‖)2
16

and therefore, for some u2 ∈ U2

ρ
(
ϕn, ϕn(·u2)

)2 =
∫

Ω
d
(
ϕn(ω), ϕn(ωu2)

)2 ≥ 1
µ(U)

b2

16
‖ϕn‖2.

On the other hand the relatively compact set ΩU2 is contained in Σ̃ ·Ω for
some finite set Σ̃ ⊂ Γ, and we have ‖ϕn(·u2)‖ ≤ ‖ϕn‖ + dΣ̃(x0), and if we
assume further that ‖ϕn‖ ≥ dΣ̃(x0) and take ε0 := b/

(
8
√
µ(U)

)
then we

also have ρ(ϕn, ϕn(·u2)) ≥ ε0(‖ϕn‖ + dΣ̃(x0)).
Let ϕ′

n = ϕn+ϕn(·u2)
2 then

E(ϕ′
n) ≤ E(ϕn) ≤M + 1

n ,

since E is convex andG2-invariant from the right. Besides, if we let τ(ε) > 0
be a linear lower bound for the modulus of convexity function of L2(Ω,X),
as in the definition of uniform convexity (see Proposition 2.13), then

‖ϕ′
n‖ ≤ (‖ϕn‖ + dΣ̃(x0)

) − τ(ε0)
(‖ϕn‖ + dΣ̃(x0)

)

≤ (Fn + 1 + dΣ̃(x0)
) − τ(ε0)

(‖ϕn‖ + dΣ̃(x0)
)
,

and since Fn ≤ ‖ϕ′
n‖, this implies that τ(ε0)(‖ϕn‖+ dΣ̃(x0)) ≤ dΣ̃(x0) + 1.

Thus ‖ϕn‖ is bounded independently of n. �
We are now able to finish the proof of Theorem 3.2. Note that we may

assume that the positive function τ(ε) is monotonic (non-decreasing) in ε.
Let F = limFn and let m > n, then

Fn ≤
∥∥
∥
∥
ϕn + ϕm

2

∥∥
∥
∥ ≤ (F + 1/n)

(
1 − τ

(
ρ(ϕn, ϕm)
F + 1/n

))
,

therefore τ
(ρ(ϕn,ϕm)

F+1/n

) → 0, which force ρ(ϕn, ϕm) → 0 when n,m → ∞.
Thus ϕn is a Cauchy sequence. Since L2(Ω,X) is complete we can take
ϕ := limϕn and by continuity of E, ϕ is a harmonic map. �
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4 The Proof of Theorem 1.1

4.1 The case n = 2. Let G,Γ,X be as in Theorem 1.1, and suppose
that we are given a reduced Γ-action on X without global fixed points. We
will first deal with the case n = 2, i.e. G = G1 ×G2.

Observe the following facts about our harmonic maps:
• If ϕ is a harmonic map then so is ϕ(·g2) for any g2 ∈ G2, because the

energy E is G2-invariant from the right.
• If ϕ and ψ are harmonic maps then so is ϕ+ψ

2 (by convexity of E).
• If ϕ and ψ are harmonic maps then [ϕ(g), ϕ(gg1)] ‖ [ψ(g), ψ(gg1)],

∀g ∈ G, g1 ∈ G1 (by BNPC of X).
Let us now fix a harmonic map ϕ. From the first and the third facts we

see that [
ϕ(g), ϕ(gg1)

] ‖ [
ϕ(gg2), ϕ(gg1g2)

]
,

and by Lemma 2.1
[
ϕ(g), ϕ(gg2)

] ‖ [
ϕ(gg1), ϕ(gg1g2)

]
,

for almost all g ∈ G, g1 ∈ G1, g2 ∈ G2.
Lemma 4.1. For any fixed g1 ∈ G1, the function g �→ d(ϕ(g), ϕ(gg1))
is essentially constant. Similarly, for any fixed g2 ∈ G2 the function g �→
d(ϕ(g), ϕ(gg2)) is essentially constant.

Lemma 4.1 is similar to a statement implanted in the proof of the main
theorem in [Mo].
Proof. The first (resp. second) function is measurable, Γ-invariant from the
left and G2 (resp. G1) invariant from the right. Since Γ is irreducible, G2

(resp. G1) acts ergodically on Γ\G from the right. The result follows. �

Corollary 4.2. The harmonic map ϕ is essentially continuous.

Proof. It follows from Lemma 4.1 that
d
(
ϕ(g), ϕ(gg1)

)
= ρ

(
ϕ,ϕ(·g1)

)
and d

(
ϕ(g), ϕ(gg2)

)
= ρ

(
ϕ,ϕ(·g2)

)
,

for almost any g ∈ G, gi ∈ Gi. Since the (right) action of G on L2(Γ\G,X)
is continuous (this is well known when X is replaced by R, and is easily
seen to be true for any metric space X), ϕ is essentially uniformly (on G)
continuous from the right along G1 and G2, and hence along G. It follows
that ϕ is essentially continuous. �

By changing ϕ on a set of measure 0, we can assume that it is actually
continuous. All harmonic maps considered below will be assumed to be
continuous rather than essentially continuous.

For the proof of Theorem 1.1 we will distinguish between two cases:
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(1) ϕ(G2) is bounded.
(2) ϕ(G2) is unbounded.

In case (1) we will show that there is a G2-invariant harmonic map
ϕ0 (perhaps different from ϕ). In case (2), we will show that ϕ is G1-
invariant. We will then conclude that in case (i) (where i = 1 or 2) the Γ
action extends to a continuous G-action which factors through Gi.

Before we start let us note that in a uniquely geodesic metric space X ′,
the closed convex hull conv(Y ) of a subset Y ⊂ X ′, which by definition is
the minimal closed convex subset of X ′ containing Y (which is also the in-
tersection of all such sets) can be constructed recursively as follows: Define
Y0 = Y , and Yn = ∪{x+y

2 : x, y ∈ Yn−1

}
. Then Yn ⊃ Yn−1 because we can

take x = y, and conv(Y ) = ∪∞
n=0Yn.

(1) If ϕ(G2) is bounded, then, as follows from Lemma 4.1, the set

G2 · ϕ =
{
ϕ(·g2) : g2 ∈ G2

}

is bounded in L2(Ω,X). By the constructive description of conv(G2 · ϕ) we
see that it consists of harmonic maps. Since conv(G2 · ϕ) is bounded and
convex and since L2(Ω,X) is uniformly convex, there is a unique relative
circumcenter, i.e. a unique point ϕ0 ∈ conv(G2 · ϕ) which minimizes

sup
{
ρ(ϕ0, ϕ

′) : ϕ′ ∈ conv (G2 · ϕ)
}
.

(The existence and uniqueness of a relative circumcenter of a closed bounded
convex subset of a complete WUC space follow from the existence and
uniqueness of the usual circumcenter by ignoring the complement of the
set.)

Since conv(G2 · ϕ) is G2-invariant, the function ϕ0 is G2-invariant.
(2) Suppose that ϕ(G2) is unbounded, and let Y = conv(ϕ(G2)). Then

the Hausdorff distance Hd(γ ·Y, Y ) is finite for any γ ∈ Γ. Indeed γ ·ϕ(g2) =
ϕ(γ2g2γ1) where γ = (γ1, γ2). Hence d(γ · ϕ(g2), ϕ(γ2g2)) is a constant
depending on γ1 as follows from Lemma 4.1. It follows, since the action
Γ � X is assumed to be reduced, that Y = X.

By the constructive description of the closed convex hull we see that
X = Y = ∪∞

n=0Yn where each point of ∪∞
n=0Yn is of the form ψ(1) for some

harmonic function ψ in the convex hull of G2 ·ϕ. Let g1 ∈ G1. Since the seg-
ments [ψ(1), ψ(g1)], ψ ∈ conv(G2 ·ϕ) are all parallel to each other, the map
ψ(1) �→ ψ(g1) extends to a Clifford isometry on {ψ(1) : ψ ∈ conv(G2 · ϕ)},
namely on X. Since X has no non-trivial Clifford isometries, we get that
ϕ(g2) = ϕ(g1g2) for any g2 ∈ G2. Since g1 is arbitrary, we get that ϕ is
G1-invariant.
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We showed that there is a harmonic map ϕ0 which is either G1 or G2

invariant. Suppose it is G2-invariant. Then, since ϕ0 is Γ-equivariant and
continuous, the orbit map γ �→ γ ·x is continuous for any x ∈ ϕ0(G), where
the topology on Γ is the (not necessarily Hausdorff) one induced from G1

(equivalently, we can consider Γ as a dense subgroup of G1). It follows that
the set

{x ∈ X : the obit map γ �→ γ · x is continuous
with respect to the G1-topology}

is nonempty. Since that set is also closed convex and Γ-invariant, it follows
from C-minimality that it is the whole space X. Thus the orbit map is
continuous for any point x ∈ X, when Γ is considered with the topology
induced from G1, so we can define the action of G on X by

g · x := lim
π1(γ)→π1(g)

γ · x .

4.2 The case n > 2. Let now n ≥ 2 be general, G =
∏n
i=1Gi, and

define n− 1 energies E1, E1,2, . . . , E1,...,n−1 as follow:

E1,...,k(ϕ) :=
∫

(Γ\G)×G1×...×Gk

h1(g1) . . . hk(gk)d
(
ϕ(g), ϕ(gg1 . . . gk)

)2
,

where hi(gi) = e−|gi|2, | | being the norm with respect to the word metric
on Gi associated with some compact generating set.

The set H1 of E1-harmonic maps is closed convex, and by Theorem 3.2
non-empty. Furthermore, there exist some ϕ ∈ H1 which minimize E1,2.
To see this, argue as in the proof of Theorem 3.2, taking the ϕn to be
E1-harmonic and letting

∏
i>2Gi play the rule of G2 in 3.2. Call such a

function E1,2-harmonic. More generally, for all k < n call a Γ-equivariant
map E1,...,k-harmonic if it minimizes E1,...,k among the E1,...,k−1 harmonic
maps. By repeating the argument above finitely many times, one proves
the existence of an E1,...,n−1-harmonic map ϕ. Since ϕ(G) is Γ-invariant
it must be unbounded. Let 1 ≤ k ≤ n be the smallest integer such that
ϕ(Gk+1×. . .×Gn) is bounded. Then ϕ(Gk) is unbounded, and by replacing
ϕ by the relative circumcenter of

conv
{
ϕ(·g) : g ∈ Gk+1 × . . .×Gn

}

one gets an E1,...,k′-harmonic map ϕ0 which is Gi invariant for all i > k,
where k′ = min{k, n − 1}. As in case (2) of the proof of 3.2 one deduces,
since ϕ0 is also E1,...,k−1-harmonic (in case k > 1), that ϕ is also Gi-
invariant for all i < k. Therefore one can use ϕ0 to extend the Γ-action to
a continuous G action which factors through Gk. �
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5 The Proof of Theorem 1.3

For simplicity assume again that n = 2. If dΣ � ∞ where Σ is a finite gen-
erating set, then Γ has a fixed point in ∂X. Assume therefore that dΣ → ∞.
By Lemma 2.10 there is an unbounded closed convex Γ-invariant subset on
which the action is C-minimal. Replacing X with such a subset we may
assume that the action on X is C-minimal. Moreover, since dΣ → ∞ we
have a harmonic map ϕ, and we can argue as in subsection 4.1. In case (1),
when ϕ(G2) is bounded, we obtain that the Γ-action extends to a continu-
ous G-action on X which factors through G1. In case (2), when ϕ(G2) is
unbounded, then for any g1 ∈ G1 the map ϕ(g2) �→ ϕ(g1g2) extends to a
parallel translation from conv(ϕ(G2)) onto conv(ϕ(g1G2)). Hence, in that
case Γ preserves ∂conv(ϕ(G2)) and the action on it factors through G2. Fi-
nally, since ϕ is continuous and X is proper, the Γ-action on ∂conv(ϕ(G2))
is continuous with respect to the G2-topology, and extends to a continuous
G2-action.

When the number of factors n is greater than two, one argues as in
subsection 4.2. �

6 The Proof of Theorem 1.4

By Lemma 2.12, up to replacing X with a closed non-empty geodesically
complete subset, we may assume that X is a minimal complete uniquely
geodesically complete for the Γ-action.

For a subset A ⊂ X of cardinality ≥ 2 let span(A) denote the minimal
set containing A with the geodesic extension property. One can construct
span(A) recursively by defining A0 = A and Am+1 = ∪{xy : x, y ∈ Am},
where xy is the geodesic containing x, y, and taking the union span(A) =
∪Am.

For the sake of simplicity let us assume again that n = 2, i.e. G =
G1 × G2. One can extend the argument below to any n ≥ 2 using the
energies E1,...,k, k = 1, . . . n− 1 as in subsection 4.2.

Let ϕ : G→ X be a harmonic map. If ϕ(Gi) is a single point, for i = 1
or 2, then ϕ is Gi-invariant and the action extends to a G-action which
factors through G3−i. Thus we may assume that |ϕ(Gi)| ≥ 2, for i = 1, 2.

Let H ≤ L2(Ω,X) be the subset of harmonic maps.

Lemma 6.1. L2(Ω,X) is complete CAT(0) and uniquely geodesically
complete, and so is its subset H.
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Proof. The first statement is straightforward. The second one follows, using
Lemma 2.1, from the fact that a Γ-equivariant map ψ : G→ X is harmonic
if and only if for almost all g ∈ G, g1 ∈ G1 the segment [ψ(g), ψ(gg1)] is
parallel to [ϕ(g), ϕ(gg1)]. �

Let
X1 = span

(
ϕ(G1)

)
and X2 =

{
ψ(1) : ψ ∈ H}

.

By definition X1 is closed and geodesically complete, and it follows from
Lemma 6.1 that also X2 is. We will show that X = X1 ×X2. For this we
need
Lemma 6.2. Let ϕ1, ϕ2 be two harmonic maps, then

conv
(
span(ϕ1(G1)) ∪ span(ϕ2(G1))

)

∼= span
(
ϕ(G1)

) × [
0, d(span(ϕ1(G1)), span(ϕ2(G1)))

]
.

Proof of Lemma 6.2. Since X is CAT(0), parallelity is a transitive relation
on the set of two sided infinite geodesics in X (cf. [BrH, p. 183]), and we can
use this property to extend the map ϕ1(g1) �→ ϕ2(g1) to a parallel isometry
T : span(ϕ1(G1)) → span(ϕ2(G1)), parallel means that

[
x, T (x)

] ‖ [
y, T (y)

]
, ∀x, y ∈ span

(
ϕ1(G1)

)
.

The lemma would follow from the flat strip theorem (see [BrH, p. 183];
the flat strip theorem is stated for parallel geodesics, but the proof extends
straightforwardly to parallel geodesically complete sets) once we show that
d(x, span(ϕ2(G1))) is constant over span(ϕ1(G1)). Suppose in contradiction
that there are x, y ∈ span(ϕ1(G1)) with

d
(
x, span(ϕ2(G1))

)
< d

(
y, span(ϕ2(G1))

)
.

Let c(t) be the geodesic with c(0) = x, c(d(x, y)) = y. Since the function

t �→ d
(
c(t), span(ϕ2(G1))

)

is convex on R, d(c(t), span(ϕ2(G1))) → ∞ when t → +∞, contradicting
the fact that d(c(t), T (c(t))) is constant. �

Let

Y = conv
{ ⋃

ψ(G) : ψ ∈ H
}

= conv
{ ⋃

ψ(G1) : ψ ∈ H
}
.

Using again the fact that parallelity is a transitive relation and the flat
strip theorem, one sees that every point in Y is contained in an isometric
parallel copy of X1. It follows that X1 is a direct factor of Y . (In case
X1 is a single geodesic, this is the content of [BrH, II.2.14] which again
extends straightforwardly to the more general case where X1 is geodesically
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complete). Furthermore, since Y is Γ-invariant it follows thatX = span(Y ),
which allows one to show that every point in X is contained in an isometric
parallel copy of X1. It follows that X1 is a direct factor of X.

Next we claim that, for any ϕ1, ϕ2 ∈ H, the projection

p : span
(
ϕ1(G1)

) → span
(
ϕ2(G1)

)

extending the parallel translation ϕ1(g1) �→ ϕ2(g1) is an orthogonal pro-
jection. Indeed, if that was not the case then the orthogonal projection
π : span(ϕ2(G1)) → span(ϕ1(G1)) composed with p would be a non-
trivial Clifford isometry on span(ϕ1(G1)). To see this note that for any
x1, x2 ∈ span(ϕ1(G1))

[x1, x2] ‖
[
p(x1), p(x2)

] ‖ [
π(p(x1)), π(p(x2))

]

which, by transitivity (since X is uniquely geodesically complete, parallelity
is a transitive relation on segments as well) and Lemma 2.1 implies that
[x1, π(p(x1))] ‖ [x2, π(p(x2))]. This however would imply that span(ϕ1(G1))
has a euclidian factor. Now since span(ϕ1(G1)) is isometric to X1 and since
X1 is a direct factor of X, this contradicts our assumptions on X.

It follows in particular that the set Z =
{ ⋃

span(ψ(G1)) : ψ ∈ H
}

de-
composes as a direct product

Z = span
(
ϕ(G1)

) × {
ψ(1) : ψ ∈ H

}
= X1 ×X2 ,

and hence it is geodesically complete. Since Z is also Γ-invariant, we derive
from minimality that X = Z and hence X = X1 ×X2.

Finally we claim that Gi acts by isometries on Xi, for i = 1, 2. First
note that, if ψ ∈ H and g2 ∈ G2, then also ψ(·g2) ∈ H, and since X2 =
{ψ(1) : ψ ∈ H} we can define an action of G2 on X2 by

g2 · ψ(1) = ψ(g2) .
We need to show that this action is well defined and is by isometries. These
two claims follow from the fact that Γ is irreducible in G. Indeed, any
g2 ∈ G2 can be approximated by γg1 where γ ∈ Γ, g1 ∈ G1, and we know
that for any two harmonic maps ϕ1, ϕ2 the segments [ϕ1(1), ϕ1(g1)] and
[ϕ2(1), ϕ2(g1)] are parallel. Since γ is an isometry and ϕi are Γ-equivariant,
we derive that

d
(
ϕ1(γg1), ϕ2(γg2)

)
= d

(
ϕ1(g1), ϕ2(g1)

)
= d

(
ϕ1(1), ϕ2(1)

)
,

and by passing to limit, d(ϕ1(g2), ϕ2(g2)) = d(ϕ1(1), ϕ2(1)).
Similarity one shows that G1 acts on X1 by isometries (with g1 ·ϕ(g′1) =

ϕ(g1g′1)) by approximating g1 with γg2 ∈ ΓG2.
This produces an action of G on X = X1 × X2 which extends the

Γ-action and is clearly continuous. �
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7 Non-Uniform Weakly Cocompact p-Integrable Lattices

Let G be a locally compact group, Γ a lattice in G, and Ω a right fun-
damental domain. We define a map χ : G → Γ by the rule g ∈ χ(g)Ω.
Suppose that Γ is generated by a finite set Σ and let | | : Γ → N be the
word norm associated to Σ. Let p > 1. In analogy to [S], we will say that
Γ is p-integrable if for any element g ∈ G the function ω �→ |χ(ωg)| belongs
to Lp(Ω). This assumption ensures that whenever Γ acts by isometries on a
metric space X, the space Lp(Ω,X) is invariant under G, i.e. if ϕ : G→ X
is Γ-equivariant and ϕ|Ω ∈ Lp(Ω,X) then also ϕ(·g) ∈ Lp(Ω,X) for any
g ∈ G. Note that the property of being p-integrable is independent of the
generating set Σ, however, it does depend on the choice of Ω. When this
condition is satisfied we shall say that Ω is p–admissible.

Let L0
p(Γ\G) denote the codimension-one subspace of Lp(Γ\G) of func-

tion with 0 mean. Following [M2, III.1.8], we will say that Γ is weakly
cocompact if the right regular representation of G on L0

p(Γ\G) does not
almost have invariant vectors. This is equivalent to each of the following:

(1) If fn ∈ Lp(Γ\G) are normalized asymptotically invariant positive func-
tions then (fn) converges to a constant function.

(2) If fn ∈ Lp(Γ\G) are normalized positive functions such that for any
compact K ⊂ G,

∫
K ‖fn − fn(·k)‖p → 0 then (fn) converges to a

constant function.

Moreover, using the Mazur map Mp,q : Lp(Γ\G) � f �→ |f |p/q sign(f) ∈
Lq(Γ\G) which intertwines the G actions and is uniformly continuous (cf.
[BeL, Th. 9.1]) one can show that this property is independent of 1 < p <∞.

The following extends the superrigidity results from the previous sec-
tions to non-uniform lattices which are p-integrable and weakly cocompact.
This is analogous to [Mo, Th. 7] which gives a similar statement for actions
of weakly cocompact 2-integrable non-uniform lattices on CAT(0) spaces.

Theorem 7.1. Theorems 1.1, 1.3, 1.4 and 2.7 remain true for finitely
generated non-uniform lattices Γ provided they are weakly cocompact and
p-integrable for some 1 < p <∞.

For the sake of simplicity, let us assume that G = G1 ×G2 is a product
of two factors. Fix 1 < p <∞ such that Γ is p-integrable with respect to Ω,
and normalize the Haar measure so that µ(Ω) = 1. ThenG acts measurably
and hence continuously from the right on Lp(Ω,X). It also follows from
p-integrability that one can choose a measurable function h : G1 → R>0

such that the energy E(ϕ) :=
∫
Ω×G1

h(g1)d(ϕ(g), ϕ(gg1))p is finite for every
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ϕ ∈ Lp(Ω,X). Since G acts continuously on Lp(Ω,X), we can take h with
infk∈K1 h(k) > 0 for every compact K1 ⊂ G1.

The only place in the previous sections that compactness of Ω was
used is the proof of Proposition 3.3. Hence, we need only justify why
the function ϕn, chosen as in section 3, are uniformly bounded when Ω is
not relatively compact but Γ is p-integrable and weakly cocompact. Let ρ
denote the distance on Lp(Ω,X), ϕx0 the Γ-equivariant function sending Ω
to x0 ∈ X, and for ϕ ∈ Lp(Ω,X) set ‖ϕ‖ = ρ(ϕ,ϕx0).

Lemma 7.2. There exists a compact subsetK ⊂ G and a positive constant
β > 0 such that any ϕ ∈ Lp(Ω,X) satisfies

∫
K ρ(ϕ, k · ϕ) > β‖ϕ‖ − 1

β .

Proof. Assuming the contrary, as G is σ-compact, one can find a sequence
ψn ∈ Lp(Ω,X) with ‖ψn‖ → ∞ and 1/‖ψn‖

∫
K ′ ρ(ψn, k · ψn) → 0 for

every compact K ′. Let f ′n(g) = d(ψn(g), ϕx0(g)) and fn = f ′n/‖f ′n‖p. It
is straightforward to verify that these (fn) satisfy the condition (2) above
and hence (fn) converges to a constant function. Let K0 ⊂ Ω be a compact
subset with positive measure. Then if n is sufficiently large, for every k in
some subset Kn ⊂ K0 of at least half the measure of K0, d(x0, ψn(k)) >
1
2‖ψn‖. Taking K = K−1

0 Σ ·K0 and using Lemma 2.3 one gets a constant
β > 0 for which

∫
K ρ(ψn, k·ψn) > β‖ψn‖ for all sufficiently large n, contrary

to the assumptions on ψn. �

Now consider the functions ϕn defined as in section 3. Replacing K by
a larger compact set, we may assume it is of the form K = K1 ×K2 with
Ki ⊂ Gi. As in section 3 the energy of ϕn bounds its variation along the
G1 factor, so we conclude that for some positive constant β′

∫

K2

ρ(ϕn, k2 · ϕn) > β′‖ϕn‖ − 1
β′ ,

and hence for some k2 ∈ K2 and another positive constant ε′ we have
ρ(ϕn, ϕn(·k2)) > ε′‖ϕn‖ − 1

ε′ . Finally since k2 belongs to the compact set
K2 the norm of ϕn(·k2) is bounded by the norm of ϕn+ some constant.
Define ϕ′

n = ϕn+ϕn(·k2)
2 then E(ϕ′

n) ≤ E(ϕn) since E is G2-invariant and
convex, and ‖ϕn‖ − ‖ϕ′

n‖ ≥ δ′‖ϕn‖ − 1
δ′ for some positive constant δ′, by

uniform convexity of Lp(Ω,X). This, together with the second property of
ϕn implies that its norm must be bounded independently of n.

Remark 7.3. (i) It is possible to show that if G is a semisimple real Lie
group without compact factors not locally isomorphic to SL(2,R), then any
lattice in G is p-integrable for some p > 1. Similarly, all irreducible lattices
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in higher-rank groups over local fields are 2-integrable (cf. [S]). Rémy [R]
showed that all Kac–Moody lattices are 2-integrable.

(ii) Every lattice in a semisimple Lie group over a local field is weakly
cocompact [M2, III.1.12]. Clearly, if G has Kazhdan property (T) then any
lattice in G is weakly cocompact.

8 Superrigidity for Commensurability Subgroups

Let G be a locally compact, compactly generated group and Γ a cocompact
lattice in G. Let Λ be a subgroup of

CommG(Γ) := {g ∈ G : gΓg−1 and Γ are commensurable} ,
containing Γ which is dense in G. Let X be a complete uniformly convex
BNPC metric space. Assume that Λ acts by isometries on X such that
any subgroup Γ0 ≤ ∆ commensurable to Γ satisfies dΣ0 → ∞ where Σ0

is a finite generating set of Γ0, and has no parallel orbits, i.e. for any two
distinct points x, y ∈ X, there is γ ∈ Γ0 (equivalently, there is γ ∈ Σ0)
for which [γ · x, γ · y] ∦ [x, y]. (Note that if X is uniquely geodesically
complete then the assumption that there are no parallel orbits follows from
the assumption that dΣ0 → ∞.) Assume moreover that the action is C-
minimal. The following superrigidity theorem was proved in [M4] (under
the weaker assumption that X is WUC rather than UC).
Theorem 8.1. Under the above assumptions, the Λ-action extends
uniquely to a continuous isometric G-action.

For a subgroup Γ0 ≤ ∆ commensurable to Γ we define a Γ0-harmonic
map to be a Γ0-equivariant map in L2(Ω0,X) which minimizes

IΓ0(ϕ) =
1

µ(Ω0)

∫

Ω0×G
h(ω−1g)d

(
ϕ(ω), ϕ(g)

)2

=
1

µ(Ω0)

∫

Γ0\(G×G)
h(g−1

1 g2)d
(
ϕ(g1), ϕ(g2)

)2
,

where Ω0 is a measurable relatively compact fundamental domain for Γ0

in G and h is a function on G similar to the ones in the previous sections.
Then IΓ0(ϕ) is finite for any ϕ ∈ L2(Ω0,X). Denote the infimum value of
this functional by MΓ0 and call ϕ Γ0-harmonic if IΓ0(ϕ) = MΓ0 .
Proposition 8.2. There exists a Γ0-harmonic map.

This is actually a special case of Theorem 3.2, whereG can be considered
as a product G × 1. However, since Proposition 8.2 is much simpler than
the general case of Theorem 3.2 we shall give an alternative simpler proof.
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Proof. It is straightforward to check that

IΓ0(ϕ) =
1

µ(Ω0)

∫

Ω0×Ω0

∑

γ∈Γ0

h(ω−1
1 γω2)d

(
ϕ(ω1), γϕ(ω2)

)2
.

Let Σ be finite generating set for Γ0. By Lemma 2.3 dΣ(x) → ∞ in at least
a linear rate. Since h ≥ β > 0 on Ω0(Σ ∪ {1})Ω0, we have

IΓ0(ϕ) ≥ β

µ(Ω0)

∫

Ω0

(∫

Ω0

∑

γ∈Σ∪{Id}
d
(
ϕ(ω1), γϕ(ω2)

)2
dµ(ω2)

)
dµ(ω1) .

We divide the integration in ω2 into two parts according to whether
d(ϕ(ω2), x0)≥ d(ϕ(ω1), x0)/2 or not. Taking in account only the γ ∈Σ∪{1}
which gives the largest contribution, in view of Lemma 2.3, we get for some
constant c > 0

IΓ0(ϕ) ≥ c

∫

Ω
d
(
ϕ(ω1), x0

)2 = c‖ϕ‖2
2 .

This means that for any minimizing sequence ϕn the L2-norm is uniformly
bounded. As in the proof of Theorem 3.2, we can find such a sequence
which is cauchy and hence converges to a harmonic map. �

Proposition 8.3. The Γ0-harmonic map is unique.

Proof. Take two Γ0-harmonic maps ϕ and ψ. BNPC implies that

d

(
ϕ(g1) + ψ(g1)

2
,
ϕ(g2) + ψ(g2)

2

)2

<
d(ϕ(g1), ϕ(g2))2 + d(ψ(g1), ψ(g2))2

2
,

unless [ϕ(g1), ψ(g1)] ‖ [ϕ(g2), ψ(g2)]. Since both ϕ and ψ minimize IΓ0 and
are Γ0-equivariant, and since there are no parallel orbits for the Γ0-action,
it follows that ϕ = ψ. �

Lemma 8.4. Let ϕ be the (unique) Γ0-harmonic map and λ ∈ Λ. Then
ϕλ(g) := λ−1ϕ(λg) is the λ−1Γ0λ-harmonic map.

Proof. Indeed

ϕλ(λ−1γλg) = λ−1ϕ(γλg) = λ−1γϕ(λg) = λ−1γλϕλ(g) ,

and hence ϕλ is λ−1Γ0λ-equivariant. It is also straightforward to verify
that IΓ0(ϕ) = Iλ−1Γ0λ(ϕλ). Note that λ−1Ω0 is a fundamental domain for
λ−1Γ0λ. �

Lemma 8.5. Let Γ1 be a finite index normal subgroup of Γ0 and let ϕ be
the Γ1-harmonic map. Then ϕ is also Γ0-harmonic.
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Proof. By normality and Lemma 8.4 we get ϕγ(g) = ϕ(g) for any γ ∈ Γ0,
which proves the Γ0-equivariance. Additionally, choosing the fundamental
domain for Γ1 to be the union of finitely many translations of Ω0 one can
easily verify that IΓ1(ϕ

′) = IΓ1(ϕ
′) for any Γ0-equivariant map. �

Lemma 8.6. Let Γi ≤ ∆, i = 1, 2, be two subgroups commensurable to Γ
with associated harmonic maps ϕi. Then ϕ1 = ϕ2.

Proof. Take Γ4 ≤ Γ3 of finite index in Γ1 ∩ Γ2 such that Γ3 is normal in
Γ1 and Γ4 is normal in Γ2. Lemma 8.5 implies that ϕ1 = ϕ3 = ϕ4 = ϕ2,
where ϕi is the Γi-harmonic map, 1 ≤ i ≤ 4. �

We conclude
Proposition 8.7. The Γ harmonic map ϕ is Λ-equivariant.

Proof. Let λ ∈ Λ. By Lemma 8.6 ϕ is also λ−1Γλ-harmonic, and hence
by Lemma 8.4 ϕ = ϕλ := λ−1ϕ(λ·). Since λ ∈ ∆ is arbitrary, ϕ is ∆-
equivariant. �

Since Λ is dense in G, and hence acts ergodically on G and since ϕ is
measurable and Λ-equivariant, we conclude
Corollary 8.8. The harmonic map ϕ is essentially continuous.

Proof. Indeed, for each g′ ∈ G the function g �→ d(ϕ(g), ϕ(gg′)) is measur-
able and ∆-invariant, hence constant. The result follows as the action by
right translations of G on L2(Ω,X) is continuous. �

Changing ϕ on a set of measure 0, we can assume that it is actually
continuous. We derive from continuity and Λ-equivariance that the set of
points x ∈ X for which the orbit map λ �→ λ ·x from Λ to X is continuous,
is non-empty, indeed it contains ϕ(G). Since this set is also convex and
closed, it follows from C-minimality that the orbit map is continuous for
every x ∈ X, and hence that the isometric action extends continuously
to G.
Remark 8.9. (i) As in section 7, also Theorem 8.1 can be generalized to
the setting of finitely generated (1 < p <∞)-integrable non-uniform weakly
cocompact lattices. The only part that needs new justification is Proposi-
tion 8.2. However, since Proposition 8.2 is a special case of Theorem 3.2
this generalization can be derived from the discussion in the previous sec-
tion. Moreover, the assumption that Γ is weakly cocompact is actually not
required here. One can see this by arguing as in the proof given in section 3,
for the special case that G2 = 1. In order to keep this section as simple as
possible we chose to state and give a complete proof of Theorem 8.1 under
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the assumption that Γ is uniform and only remark on how this can be gen-
eralized to p-integrable lattices using arguments that appeared in earlier
sections.

(ii) In [Mo] it is not assumed that there are no parallel orbits, but
the conclusion is much weaker: the Γ-action extends but not necessarily
the Λ-action as in Theorem 8.1. The following example shows that this
assumption is required here: Let G be the full isometry group of R including
the reflection f in 0. Let Γ = 〈f〉�Z and Λ = 〈f〉�Z[

√
2], and let Λ act on R

where f acts by reflection, Z by positive and Z ·√2 by negative translations.
In this example also the displacement (of the index 2 subgroup Z of Γ) does
not go to infinity (see the note in parentheses on page 1546), however, one
can still prove that harmonic maps do exist, the lack of uniqueness is what
prevents us from extending the Λ action to G.
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