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THE WIDTH-VOLUME INEQUALITY
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Abstract. We prove that a bounded open set U in R
n has k-width less

than C(n)Volume(U)k/n. Using this estimate, we give lower bounds for the
k-dilation of degree 1 maps between certain domains in R

n. In particular,
we estimate the smallest (n − 1)-dilation of any degree 1 map between
two n-dimensional rectangles. For any pair of rectangles, our estimate is
accurate up to a dimensional constant C(n). We give examples in which
the (n − 1)-dilation of the linear map is bigger than the optimal value by
an arbitrarily large factor.

This paper proves some estimates having to do with the areas of k-
dimensional surfaces in Euclidean space. We deal with two problems. First,
suppose that U is a bounded open set in R

n. We consider the problem of
sweeping out U with k-dimensional surfaces, trying to arrange that the vol-
umes of all the surfaces are as small as possible. Depending on the geometry
of U , we give upper and lower bounds for the possible volumes of the sur-
faces. In particular, we construct a family of k-dimensional surfaces sweep-
ing out U so that each surface has volume bounded by C(n)Volume(U)k/n.
The next question concerns mappings from one open set to another – for
example from the unit cube to a long thin cylinder. After we fix a domain
and a range, we consider the problem of finding a degree 1 mapping which
stretches the volumes of k-dimensional surfaces as little as possible. For
certain pairs of (n-dimensional) rectangles, we show that the linear map-
ping stretches the k-dimensional surfaces far more than necessary. We give
upper and lower bounds for the minimal amount of stretching by any de-
gree 1 map. When k = n − 1, these upper and lower bounds match up to
a constant factor.

The definition of k-width. As a first approximation to the defini-
tion of width, we define a linear version of k-dimensional width. Let U be
a bounded open set in R

n. For each (n − k)-plane P through the origin,
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let F (P ) denote the family of all k-planes perpendicular to P . Define the
width of F (P ) to be the maximum volume of the intersection of U with
any of the k-planes in F (P ). Then define the linear k-width of U to be the
minimum width of F (P ) as P varies among all the (n − k)-planes through
the origin.

The width considered in this paper is a non-linear generalization of
the definition above. Instead of families of parallel k-planes, we consider
families of k-dimensional surfaces. The surfaces we consider will be oriented
relative k-cycles in U . For the reader not familiar with k-cycles, there is
no harm in picturing k-dimensional submanifolds of U with boundary in
∂U . We define the k-width of a family F to be the largest k-volume of
any of the k-cycles in F . In order to define the k-width of U , we look at
families of cycles that sweep out U . Morally, a closed (n − k)-dimensional
family F of k-cycles can be glued together to form a single n-dimensional
cycle. If this n-dimensional cycle has a non-zero homology class, then we
say that F sweeps out U . For example, if π is a generic PL map from U
to R

n−k, then the fibers π−1(y) form a family of k-cycles sweeping out U ,
parametrized by y ∈ R

n−k. We define the k-width of U to be the smallest
k-width of any family of k-cycles sweeping out U . Because the definition
doesn’t involve planes, it also makes sense if we replace U by any compact
oriented Riemannian manifold.

Mathematicians working on geometric measure theory began to look at
families of cycles in the 1960’s. In the unpublished paper [A], Almgren used
such families as a tool to construct minimal cycles on a Riemannian man-
ifold using Morse-theoretic arguments. A good reference for this material
is the first chapter of Pitts’s book [P]. Gromov had the idea to use families
of cycles as a way of describing the size of a Riemannian manifold (M,g).
He sketched his ideas about this subject in section F of appendix 1 of his
long paper on metric geometry [G1]. In this section he essentially gave the
definition above.

Because the space of all k-cycles is infinite dimensional, it takes some
work to prove that the k-width of an open set is not zero. The first proof of
this fact is essentially due to Almgren. Gromov pointed out that Almgren’s
work establishes the exact k-width of the unit n-sphere: the k-width of the
unit n-sphere is equal to the volume of the unit k-sphere. Almgren’s proof
requires a substantial amount of geometric measure theory. Gromov also
gave an elementary lower bound for the k-width of the unit n-sphere. Using
Gromov’s proof, it’s not hard to estimate the k-width of simple shapes like
rectangles.
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Proposition 1. Let R be an n-dimensional rectangle with dimensions
R1 ≤ . . . ≤ Rn. Then the k-width of R is at least c(n)R1 . . . Rk and at
most R1 . . . Rk.

(It seems reasonable to guess that the k-width of a rectangle is R1 . . . Rk,
but the exact value of the k-width is unknown.)

The width-volume inequality. The first theorem of this paper is
an upper bound for the k-width of sets with small volume in Euclidean
space.

Theorem 1 (The width-volume inequality). Let U be a bounded open set
in R

n with volume V (U) and k-width Wk(U). Then Wk(U)< C(n)V (U)k/n.

To prove the theorem, we have to construct a family of cycles that
sweep out U in an efficient way. The first approach one might try is to
use parallel planes at a well-chosen angle, as in the definition of linear k-
width. This approach can fail because of the Kakeya phenomenon. As
proven by Besicovitch, there are open sets U in R

2 with arbitrarily small
area containing a unit line segment in every direction. These sets have
linear 1-width at least 1 and arbitrarily small area. A good reference for
Besicovitch sets is Wolff’s article [Wo]. While I was revising this paper,
I learned that taking parallel k-planes does work when k > n/2. This
result was proven by Falconer in the interesting short paper [F] (in slightly
different language). In the last section, we briefly explain Falconer’s proof,
which is based on Fourier analysis. For the intermediate range 2 ≤ k ≤ n/2,
I don’t know if the linear k-width of a set U can be bounded in terms of
its volume. There are some more comments in the open problem section.

We now sketch the proof of our theorem, which deals with all values
of k. Because of a scaling argument, we can assume that the volume of U
is 1. The first step of the argument is to find a lot of k-planes that meet
U in a small volume. We find these planes by an averaging trick. Let S0

be the k-skeleton of the unit lattice in R
n. We consider the translations of

S0 by a vector x ∈ [0, 1]n. On average, the translation of S0 meets U in a
region of volume

(
n
k

)
. Therefore, we can choose a translate S of S0 which

meets U in a controlled volume. We can then control the k-volume of any
k-cycle lying in the skeleton S.

It is not possible to sweep out U with cycles lying in the skeleton S,
because any family of cycles sweeping out U must pass through every point
of U . But it turns out to be possible to sweep out U by a family of k-cycles
each of which lies in S except for a subset of controlled volume.
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Proposition 2. For any bounded open set V ∈ R
n (of any volume), there

is a family of k-cycles sweeping out V so that each cycle lies in S, except
for a subset of volume at most C(n).

We include some pictures to indicate how such a family might look for
k = 1, n = 2. The thin lines denote the 1-skeleton S and the thick lines
denote a 1-cycle in our family.

1. 2.

3. 4.

Figure 1

The general case is somewhat harder than the case k = 1, n = 2. In
general, the family of k-cycles is constructed by starting with a family of
parallel k-planes transverse to S, and then bending them so that almost all
of the volume of each k-plane is pushed into the skeleton S. We call this
construction bending planes around a skeleton.

Area-contracting maps between rectangles. In the second half of
the paper, we apply the width-volume inequality to estimate the k-dilations
of degree 1 maps. Recall that k-dilation measures how much a mapping
stretches k-dimensional volumes. If a map f takes any k-dimensional man-
ifold with volume V to an image with volume at most λV , then f has
k-dilation at most λ.

The second main problem of this paper is to estimate the infimal k-
dilation of all degree 1 maps from a rectangle R to another rectangle S. This
innocuous-sounding problem has turned out to be much more complicated
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than I expected. When I first approached the problem, I guessed that a
linear diffeomorphism from R to S would give at least roughly the smallest
k-dilation. My guess was wrong. Let us define Dk(R,S) to be the infimal
k-dilation of any degree 1 map from R to S (taking the boundary of R
to the boundary of S). For comparison, let us define Link(R,S) to be the
smallest k-dilation of a linear diffeomorphism from R to S.

Proposition 3. For each n ≥ 3 and each k in the range 2 ≤ k ≤
n − 1, there are pairs of n-dimensional rectangles (R,S) so that the ra-
tio Link(R,S)/Dk(R,S) is arbitrarily large.

For example, if the rectangle R has dimensions ε×1×1, and the rectangle
S has dimensions ε × ε × ε−1, then Lin2(R,S) = ε−1. On the other hand,
there is a non-linear degree 1 map from R to S with 2-dilation less than
1000, regardless of ε. I call this map the snake map because it somewhat
resembles a snake uncoiling.

We take a little time to describe this map. The snake map does not
have any analogue in 2 dimensions, but there is a map related to it. Let U
be the unit square, and let A ⊂ U be the shape in Figure 2.

U

A

Figure 2

The set A is bilipschitz to the rectangle [0, ε]×[0, ε−1], and it snakes back
and forth across U roughly ε−1 times. Let Ac denote the complement of A
in U . The first map that we consider is a retraction φ of U onto A, which



1144 L. GUTH GAFA

maps Ac onto ∂A. The 1-dilation of φ is roughly ε−1 and the 2-dilation of
φ is exactly 1.

We now turn to three dimensions. The rectangle R is equal to [0, ε]×U
and the rectangle S is bilipschitz to [0, ε] × A. We can get a degree 1
map from R to S by first retracting R onto [0, ε] × A and then using the
bilipschitz equivalence of [0, ε] × A with S.

The most obvious retraction from R onto [0, ε] × A is id × φ, where id
denotes the identity map from [0, ε] to itself. This retraction has 2-dilation
roughly ε−1. Using this retraction, we get a degree 1 map from R to S with
2-dilation roughly ε−1, slightly larger than the 2-dilation of the linear map.

The trick in the construction of the snake map is to improve the re-
traction from R to [0, ε] × A. The improved retraction takes place in two
steps. We first retract R onto the union ({0} × U) ∪ ([0, ε] × A). We then
retract this set onto [0, ε] × A. The set ({0} × U) ∪ ([0, ε] × A) resembles
a snake sitting on a piece of cardboard. The first retraction can be done
with 1-dilation roughly 1, and hence 2-dilation roughly 1 also. The second
retraction is accomplished by the map id × φ. The second retraction has
1-dilation roughly ε−1 but it has 2-dilation 1. To check the 2-dilation of the
retraction, we reason as follows. The restriction of id×φ to [0, ε]×A is the
identity, and so it has 2-dilation 1. But the complement of [0, ε]×A in the
domain of our map is just {0}×Ac. Our retraction maps this 2-dimensional
set to the 1-dimensional set {0}×∂A. Therefore, the second retraction has
2-dilation 1.

Lower bounds for the k-dilation. Next we approach the problem
from the other side, proving lower bounds for the k-dilation Dk(R,S). Our
lower bounds are based on k-width and on the width-volume inequality.
Our estimates for Dk(R,S) depend on the dimensions of R and S. We
adopt the convention that R and S are n-dimensional rectangles, that R
has dimensions R1 ≤ · · · ≤ Rn and that S has dimensions S1 ≤ · · · ≤ Sn.

The first lower bound on Dk(R,S) comes from knowing the k-width
of S. Suppose that f is a degree 1 map from R to S with k-diliation λ.
The rectangle R can be sliced into k-dimensional rectangles with dimensions
R1 × · · ·×Rk, and these rectangles form a family of cycles sweeping out R.
The image of each k-dimensional rectangle has volume at most λR1 . . . Rk.
The situation is illustrated in Figure 3.

The image of our family of rectangles is a family of k-cycles sweeping
out S. According to Proposition 1, this family must contain a cycle with
volume at least c(n)S1 . . . Sk. Since each cycle in the family has volume at
most λR1 . . . Rk, we get a lower bound for the k-dilation λ.
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R S

f

Figure 3

Proposition 4. Dk(R,S) > c(n)[S1 . . . Sk]/[R1 . . . Rk].

We can get more estimates if, instead of considering the k-width of S,
we work with the k-width of subsets of S. Let’s see how this idea works
out in a particular case. Suppose that S is a 3-dimensional rectangle with
dimensions S1 ≤ S2 ≤ S3. Then S contains many subrectangles with
dimensions S1×S2×S2. We can find N disjoint rectangles in S with those
dimensions, where N is roughly S3/S2. Call the rectangles Vi. Each one of
these rectangles has 2-width roughly S1S2. Now suppose that f is a degree
1 map from R to S with 2-dilation λ. Then each of our rectangles has a
preimage Ui = f−1(Vi), and each of these preimages has 2-width at least
S1S2/λ. The situation is illustrated in Figure 4.

We want to use this information to get a lower bound on λ. Since the
sets Ui are disjoint, one of them must have volume at most R1R2R3/N .
We are led to the following question: if U ⊂ R is an open set with volume
V (U), what is the largest possible 2-width of U? Since U is a subset of R,
its 2-width is at most R1R2. For large volumes V (U), this upper bound
is the best possible, but for smaller volumes it can be improved. Using
the width-volume inequality, we can bound the 2-width of U by CV (U)2/3.
This upper bound is sharp for small volumes V (U). These upper bounds
can be improved if V (U) is in the intermediate range R3

1 � V (U) � R1R
2
2.

An example of a set U with 2-width roughly V (U)2/3 is the round ball of
volume V (U), which has radius roughly V (U)1/3. If R3

1 � V (U), then this
round ball does not fit in the rectangle R. It turns out that all subsets of R
with volume V (U) are substantially thinner than the round ball. We make
this precise in the following proposition.
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Proposition 5. Let R be a 3-dimensional rectangle with dimensions R1 ≤
R2 ≤ R3. Suppose that U ⊂ R is an open set with volume V (U). Then

the 2-width of U is at most CR
1/2
1 V (U)1/2.

This estimate is a variation on the width-volume inequality adapted to
subsets of the rectangle R. It improves on the original inequality exactly
when R3

1 � V (U). The proof is only a small modification of the proof
of the width-volume inequality. Using this inequality to upper bound the
2-width of one of the sets Ui, we get a new lower bound for D2(R,S).

Proposition 6. If R and S are 3-dimensional rectangles with
dimensions R1 ≤ R2 ≤ R3 and S1 ≤ S2 ≤ S3, then D2(R,S) >

c[S1S
1/2
2 S

1/2
3 ]/[R1R

1/2
2 R

1/2
3 ].

In the paper we carry out this idea for all values of k and n, proving
lower bounds for Dk(R,S). In the special case that k = n − 1, our lower
bounds and the maps we will construct match up well enough to determine
Dn−1(R,S) up to a constant factor.

Theorem 2. Let R and S be n-dimensional rectangles. Let R have di-
mensions R1 ≤ · · · ≤ Rn, and S have dimensions S1 ≤ · · · ≤ Sn. Let
Qi denote the quotient Si/Ri. Up to a constant factor C(n), the optimal
(n − 1)-dilation Dn−1(R,S) is equal to the maximum of the following list
of n monomials in the variables Qi.
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The first n − 1 monomials are given by Q1 . . . Ql(Ql+1 . . . Qn)
n−l−1

n−l ,
where l is an integer in the range 1 ≤ l ≤ n − 1. The final monomial
is Q2 . . . Qn.

The algebra here is somewhat complicated, but the complicated expres-
sions in Qi are not the important point. We have seen that the snake map
can have (n − 1)-dilation much smaller than that of the linear map. For
any two rectangles R and S we will construct an explicit map with nearly
optimal (n − 1)-dilation. Depending on the rectangles, it may be a lin-
ear map, or it may be a minor generalization of the snake map. Up to
a constant factor, the expression in the theorem will turn out to be the
(n − 1)-dilation of this map. The lower bounds in the theorem guarantee
that the (n−1)-dilation of this map cannot be substantially improved. (On
the other hand, for 2 ≤ k < n − 1, the k-dilation of the snake map can be
improved in some cases. For more information on this problem, see [Gu].)

Related results and open questions. The literature contains a
couple of theorems in a similar spirit to the width-volume inequality. For
example, in appendix 1 of [G1, p. 128], Gromov proved the following esti-
mate connecting the Uryson width and the area of a Riemannian 2-sphere.
(The Uryson width is a different notion of width from the one in this paper.
For a definition, see Gromov’s book [G2, p. 108].)

Theorem (Gromov). Let (S2, g) be a Riemannian 2-sphere with Uryson
1-width W and area A. Then W < 2A1/2.

Another geometric quantity related to the k-width is the volume of
the smallest stationary k-cycle in a Riemannian manifold. According to
the work of Almgren [A], a closed oriented Riemannian manifold (M,g)
contains a stationary k-dimensional varifold with volume at most Wk(M,g).
Recently, Nabutovsky and Rotman proved several estimates for the length
of the shortest stationary 1-cycle in a Riemannian manifold. One important
estimate is the following theorem from [NR].

Theorem (Nabutovsky, Rotman). A closed Riemannian n-manifold (M,g)
of volume V contains a stationary 1-cycle of length at most C(n)V 1/n.

Although these theorems are in a similar spirit to Theorem 1, they
don’t give any upper bounds for k-width for any value of k. These theo-
rems hold in a more general setting than Theorem 1 because they apply to
arbitrary Riemannian metrics, whereas Theorem 1 applies only to domains
in Euclidean space.
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Comparing our result to the results of Gromov, Rotman, and Nabu-
tovsky, it seems reasonable to ask whether there is a width-volume inequal-
ity for all Riemannian manifolds. We phrase this as a problem.

Open Problem. For which integers k < n is there a constant C(k, n)
so that for every closed oriented Riemannian n-manifold (M,g), the k-
width is bounded in terms of the volume by the formula Wk(M,g) <
C(k, n)Volume(M,g)k/n?

In an appendix to this paper, we show that the answer to this question
is negative when k = n − 1. In other words, a closed oriented Riemannian
n-manifold may have volume 1 and arbitrarily large (n − 1)-width. For
k < n − 1, the problem is open.

Now we turn to some other open problems related to k-width.

Open Problem. If k is in the range 2 ≤ k ≤ n/2, is it possible to bound
the linear k-width of a bounded open set U ⊂ R

n in terms of its volume?

This problem is related to the problem of Besicovitch (n, k) sets. An
(n, k) set is defined to be a subset of R

n of Lebesgue measure zero containing
a translate of every k-plane. Besicovitch gave examples of (2, 1) sets, and
an easy generalization shows that (n, 1) sets exist for all n. On the other
hand, Falconer’s theorem mentioned above proves that there are no (n, k)
sets for k > n/2. There is recent progress on this problem starting with
Bourgain’s important paper [B] on the Kakeya maximal function. Bourgain
proves that there are no (4, 2) sets and no (7, 3) sets, among other results.
The problem of (n, k) sets, however, is not equivalent to the problem above.
For example, to prove that there are no (4, 2) sets, Bourgain establishes the
following slightly weaker version of a linear width-volume inequality. (The
theorem below follows immediately from Proposition 3.3 in [B].)

Theorem (Bourgain). For each ε > 0, there is a constant Cε so that
the following estimate holds. Let U be a bounded open subset in R

4, with
volume V (U) and diameter D(U). Then the linear 2-width of U is bounded

by CεV (U)
2−ε
4 D(U)ε.

Open Problem. Find the k-width of the unit n-cube.

The exact k-width of the unit n-sphere was determined by Almgren,
and in [G1], Gromov claims that the k-width of the unit n-ball is exactly
the volume of the unit k-ball. Because a cube contains a ball, the results of
Almgren and Gromov show that the k-width of the unit n-cube is bounded
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below by a constant independent of n. The linear k-width of the unit n-
cube is known to be 1 by a result of Vaaler [V]. Even this result is difficult.
Another interesting problem along these lines, described by Gromov in [G1],
is to estimate the k-width of the unit ball in the finite-dimensional Banach
space l∞(n). Gromov showed that an estimate independent of n would lead
to results in intrinsic Riemannian geometry.

Open Problem (The sponge problem). Recall that an embedding I is
called expanding if its derivative increases the length of all vectors, or equiv-
alently if it increases the lengths of all curves. For which dimensions n is
there a constant ε > 0 so that any bounded open set U ⊂ R

n with volume
less than ε admits an expanding embedding into the unit n-ball?

A potential counterexample U must have a small volume and a large
diameter. It might resemble a sponge: a large cube from which many
tubes have been cut leaving a complicated region with small volume. The
expanding embedding reminds me of squeezing the water out of the sponge.
An affirmative answer to the sponge problem would give a new proof of the
width-volume inequality, because the image of U can be swept out by k-
planes with volume 1, and the inverse images of these k-planes sweep out
U with bounded volume. I tried for a long time to construct the expanding
embeddings, but I wasn’t able to do it even in dimension 2.

Open Problem. Estimate Dk(R,S) up to a constant factor, for k in the
range 2 ≤ k ≤ n − 2.

The cases k = 1 and k = n are elementary, and the case k = n−1 is done
in this paper. This paper contains some lower bounds for Dk(R,S). It also
includes some degree 1 mappings which give upper bounds for Dk(R,S).
There are several more upper and lower bounds for Dk(R,S) in [Gu]. The
gap between the best upper and lower bounds can be arbitrarily large,
however. The work in [Gu] suggests that the cases 2 ≤ k ≤ n − 2 are a
lot harder than the case k = n − 1. This specific problem may not have
any applications, but I think it’s a good testing ground to see how well we
understand k-dilation.

The plan of the paper. In the first section of the paper, we give the
precise definition of k-width and its basic properties. We give Gromov’s
proof that the k-width is not zero and estimate the k-widths of cubes and
rectangles. In the second section of the paper, we carry out the bending
planes around a skeleton construction and use it to prove the width-volume
inequality. The second section also includes the variation of the width
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volume inequality adapted to subsets of a rectangle. In the third section,
we use these estimates to prove lower bounds for the k-dilation of degree 1
maps. In particular, we prove all the lower bounds in Theorem 2. In
the fourth section, we construct the snake map and its higher-dimensional
analogues. Using these maps, we check that non-linear maps can have much
smaller k-dilation than linear maps. Then we prove all the upper bounds
in Theorem 2. The fifth section is an appendix which gives lower bounds
for the width of Riemannian manifolds using isoperimetric inequalities. It
shows that a Riemannian manifold of volume 1 may have arbitrarily large
(n − 1)-width. The sixth section is a second appendix, briefly explaining
Falconer’s bound on the linear k-width for k > n/2.

Throughout the paper we use c(n) and C(n) to denote constants that
depend only on the dimension n. The value of these constants may change
from line to line. We use C(n) to denote a large constant and c(n) to
denote a small positive constant. As described above, when we talk about
a rectangle R, we always order its dimensions so that R1 ≤ · · · ≤ Rn.

This paper is based on a section of my thesis [Gu], and I would like to
thank my advisor Tom Mrowka for his help and support. I am also grateful
to the referees for their constructive comments.

1 The Definition of k-Width

In this section, we will make precise the intuitive idea of k-width described
in the introduction. Our first task is to give a precise meaning to a family
of k-cycles. We will use families of flat integral cycles which are continuous
in the flat topology. Roughly speaking, the flat topology means that two k-
cycles are close to one another if their difference bounds a (k+1)-chain with
small volume. The precise definition that we give is somewhat technical. A
reader interested in the main ideas of the paper might skip the definition
and proceed with only an intuitive idea of a family of cycles sweeping
out M .

After defining the k-width, we prove that it behaves monotonically with
respect to appropriate mappings and that it is not zero. At the end of the
section, we estimate the k-widths of cubes and rectangles.

Our explanation of the flat topology and flat cycles essentially follows
Fleming’s paper [Fl]. We recall that an integral Lipschitz k-chain in (M,g)
is a finite sum

∑
cifi, where each ci is an integer and each fi is a Lipschitz

map from the k-simplex to M . An integral k-chain is a special case of
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a singular k-chain with integer coefficients. We define the boundary of a
k-chain as in the singular homology theory.

We define the volume of the map fi to be the volume of the k-simplex in
the induced metric f∗

i (g). Then we define the mass of the chain
∑

cifi to
be

∑ |ci| volume(fi). We abbreviate the mass of a k-chain C by |C|. The
most important fact about k-chains and mass is the isoperimetric inequal-
ity. We will use the following rather weak formulation of the isoperimetric
inequality.

Theorem (Isoperimetric inequality). For each compact manifold (M,g),
there is a constant ε so that every integral Lipschitz k-cycle with mass less
than ε is homologically trivial. Moreover, if C is a k-cycle with mass m < ε,
then C = ∂D for some integral Lipschitz (k + 1)-chain D with mass less
than C(n)m.

Now we define the flat norm. The flat norm was introduced by Whitney
in [W] and used to define spaces of cycles by Fleming in [Fl]. The flat norm
of a k-chain C is the infimal value of |C−∂D|+ |D| as D varies over all the
integral Lipschitz (k + 1)-chains in M . We define the flat distance between
chains C1 and C2 as the flat norm of C1 − C2. It may happen that the
distance between two flat chains is zero. This occurs when the two chains
parametrize the same geometric object in different ways. According to a
result of Fleming (see [Fl]), the distance is zero only for this reason. We do
not need this result however. We identify any two chains separated by flat
distance zero. The space of equivalence classes is now a metric space. The
completion of this metric space is called the space of integral flat k-chains
in M .

We define the mass of a flat chain C to be the infimal number m so that
there exists a sequence of integral Lipschitz chains Ci converging to C with
mass less than m.

The boundary map on integral Lipschitz chains is bounded with respect
to the flat norm. In fact, if C is a k-chain and D is a (k + 1)-chain, then
the flat norm of ∂C is at most |C − ∂D|. Taking the infimum over all D
shows that the flat norm of C is greater than or equal to the flat norm
of the boundary of C. Therefore, we can define boundaries of flat chains.
The flat k-cycles are the subset of flat k-chains with boundary zero. Let Z
denote the space of flat k-cycles with the flat topology.

By a family F of k-cycles in M , we mean a continuous map F from a
parameter space P to Z. We will always assume that P is a finite simplicial
complex. We define the width of the family F to be supp∈P |F (p)|.
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Our next task is to define what it means for a family of k-cycles to sweep
out M . Morally, an i-dimensional family of k-cycles can be glued together
to form a (k + i)-cycle, but this is not literally true for the space of flat
cycles. We now give a construction that takes an i-dimensional family of
cycles and gives a (k + i)-cycle that, in some sense, is a small perturbation
of the family.

Let F be a family of k-cycles parametrized by P . We take a fine tri-
angulation of P . We pick a small number δ > 0. For each vertex v of the
triangulation, we choose an integral Lipschitz cycle C(v), with flat distance
less than δ from F (v), and mass less than |F (v)| + δ.

(For completeness, we include the proof that such a cycle C(v) exists.
By the definition of a flat cycle, we can take a sequence of integral Lipschitz
k-chains Ci converging to F (v) in the flat norm. By the definition of mass,
we may assume that each chain Ci has mass less than |F (v)|+ε. We have to
show that we can choose the chains Ci to be cycles. Because the boundary
operation is continuous in the flat norm, we know that the flat norm of ∂Ci

converges to zero. By the definition of the flat norm, we may choose integral
Lipschitz k-chains Di so that |∂Ci − ∂Di| + |Di| → 0. According to the
isoperimetric inequality, for sufficiently large i, there is a k-chain Ei with
∂Ei = ∂Ci−∂Di and |Ei| < C|∂Ci−∂Di|. Now we define C̃i = Ci−Di−Ei.
Each C̃i is an integral Lipschitz k-cycle. Moreover, |Di| + |Ei| → 0. Since
the mass controls the flat norm, C̃i converges to F (v) in the flat topology.
Since |Di|+ |Ei| → 0, the mass of C̃i is less than |F (v)|+ 2ε for sufficiently
large i.)

Now, since the triangulation is fine, we may assume that if v1 and v2

are neighboring vertices, then the flat distance between C(v1) and C(v2) is
less than 3δ. By definition, this means that there is an integral Lipschitz
(k + 1)-chain D with |C(v1) − C(v2) − ∂D| + |D| less than 3δ. The k-
cycle C(v1) − C(v2) − ∂D must have mass less than 3δ. According to the
isoperimetric inequality, it must bound a (k + 1)-chain D′ with mass at
most C(n)δ. In other words, C(v1) − C(v2) = ∂(D + D′). We know that
the mass of D + D′ is bounded by C(n)δ.

Let E denote the edge from v1 to v2, oriented so that ∂E = v1 − v2.
We define C(E) = D + D′. We repeat this operation for every edge of
the triangulation of P . For each edge E with boundary v1 − v2, C(E) is a
(k + 1)-chain with boundary C(v1) − C(v2) and mass at most C(n)δ.

We continue this procedure inductively. For each oriented i-dimensional
simplex ∆i in P , we define a (k+i)-chain C(∆i) with the following properties.
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If the boundary of the simplex ∆i is equal to
∑

j ∆i−1
j with orientations,

then the boundary of C(∆i) is equal to
∑

j C(∆i−1
j ) as integral Lipschitz

cycles. Moreover, C(∆i) has mass less than C(n)δ. We can always choose
such chains by using the isoperimetric inequality in M , provided the initial
number δ is sufficiently small.

The map C taking oriented simplices of P to integral Lipschitz chains
in M can be thought of as a chain map between two chain complexes. The
first complex is associated to P . To describe it, it is convenient to first pick
an orientation for every simplex in P . The complex has i-chains consisting
of sums ci∆i, where ci is an integer and ∆i is any i-dimensional simplex
of P . The homology of this chain complex is the simplicial homology of P
with coefficients in Z. The second chain complex consists of the integral
Lipschitz chains in M . The homology of this complex is equal to the sin-
gular homology of M with coefficients in Z. The map C is a map from the
first complex to the second complex, taking i-chains to (k + i)-chains, and
commuting with boundary operations – in other words a chain map with
shift k. We call such a chain map C a complex of k-cycles in M .

The chain map C induces a map from the simplicial homology of P
to the singular homology of M . Since simplicial homology and singular
homology agree, we get a map from Hi(P, Z) to Hk+i(M, Z). We call this
map the gluing homomorphism G.

The chain map C was not canonical. On the contrary it involved
many choices. Nevertheless, the gluing homomorphism does not depend on
these choices, as long as δ is sufficiently small. To see this, let C0 and C1

be two possible choices of chain map following the construction
above. Divide P × [0, 1] into cells given by ∆ × {0},∆ × {1}, and
∆ × [0, 1], where ∆ varies over the triangulation of P . Now define
C(∆ × {0}) = C0(∆) and C(∆ × {1}) = C1(∆). Suppose that ∆i is an i-
simplex in P , and that the boundary of ∆i × [0, 1] is equal to
∆i × {1} − ∆i × {0} +

∑
j ∆i−1

j × [0, 1] with orientations. Proceeding in-
ductively, we define C(∆i × [0, 1]) to be a (k + i + 1)-chain with boundary
C(∆i × {1}) − C(∆i × {0}) +

∑
j C(∆i−1

j × [0, 1]). Again, as long as we
assume δ sufficiently small, we can construct all these chains using the
isoperimetric inequality. We can view C as a chain map as well, and it
induces a map on homology from Hi(P × [0, 1], Z) to Hk+i(M, Z). This
map agrees with the gluing homomorphisms induced by both C0 and C1,
and so these two gluing homomorphisms agree with one another.

We say that a family of k-cycles F sweeps out M if its gluing homo-
morphism G : Hn−k(P, Z) → Hn(M, Z) is non-trivial.
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We define the k-width of M to be the infimal width of any family of
k-cycles sweeping out M . We denote the k-width of M by Wk(M).

(On a manifold with boundary, the k-width is defined using relative flat
k-cycles. The above arguments also apply to relative chains and cycles.
In this case, the gluing homomorphism maps Hi(P, Z) to Hk+i(M,∂M, Z).
We say that a family F of relative k-cycles sweeps out M if the gluing
homomorphism from Hn−k(P ) to Hn(M,∂M) is non-trivial.)

Next we discuss some basic properties of the k-width.

Monotonicity. The k-width is monotonic in two respects. First, if M
is an open subset of (N, g) with the induced metric, then the k-width of
M is at most the k-width of N . Let F be a family of k-cycles sweeping
out N with width less than Wk(N) + ε. There is a restriction map which
takes integral Lipschitz chains in N to integral Lipschitz chains in M . This
map commutes with the boundary action and is bounded in the flat norm.
Therefore, it takes flat k-cycles in N to (relative) flat k-cycles in M .

Restricting F to M gives a family of cycles sweeping out M with width
less than Wk(N) + ε. This proves the first form of monotonicity.

The second form of monotonicity concerns maps from M to N . If f is a
Lipschitz map between compact Riemannian manifolds M and N , then it
maps integral Lipschitz chains in M to integral Lipschitz chains in N . This
induced map is continous with respect to the flat distance, so it maps flat
k-chains in M to flat k-chains in N . If M and N are both closed, it maps
flat k-cycles in M to flat k-cycles in N . If M and N both have boundaries,
and if f maps (M,∂M) to (N, ∂N), then f maps relative flat k-cycles in
M to relative flat k-cycles in N . If M has boundary and N is closed, and
if f maps (M,∂M) to (N, ∗), where ∗ is a point of N , then f takes relative
flat k-cycles in M to flat k-cycles in N . The construction above shows that
the gluing homomorphism is natural.

If f is a Lipschitz map from M to N with Lipschitz constant L and
non-zero degree then LkWk(M) ≥ Wk(N). To see this, let F be a family
of flat k-cycles sweeping out M with width less than Wk(M) + ε. Since f
has non-zero degree, the image f(F ) is a family of k-cycles sweeping out N .
Since f maps each integral Lipschitz k-chain with mass M to one with mass
at most LkM , the width of f(F ) is less than Lk(Wk(M) + ε).

The last estimate really only depended on how much the map f stretched
k-dimensional volumes. Let f be a piecewise smooth map. Recall that the
k-dilation of f is at most λ if f maps each k-dimensional submanifold of
the domain with volume V to an image with volume at most λV . For
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more information on k-dilation, see the beginning of section 3. Let f be a
piecewise smooth map of non-zero degree from M to N with k-dilation λ.
Since Lipschitz maps can be well-approximated by C1 maps, f takes each
integral Lipschitz chain with mass M to an integral Lipschitz chain with
mass at most λM . Let F be a family of k-cycles sweeping out M with
width at most Wk(M) + ε. Then f(F ) sweeps out N with width at most
λ(Wk(M) + ε). Therefore, λWk(M) ≥ Wk(N).

Non-degeneracy. The non-degeneracy property says that Wk(M) > 0
for any (M,g). Because of the monotonicity estimates for Wk, the non-
degeneracy follows for every n-manifold as soon as we know that Wk(Sn)> 0
for the standard round metric on Sn. Gromov gave an elegant elementary
proof of this fact which we include here in our language. This proof origi-
nally appeared in [G1].
Proposition 1.1 (Gromov). For the standard round metric on Sn, the
k-width Wk(Sn) is greater than c(n) > 0.

Proof. Suppose not. Then there is a family F of k-cycles sweeping out Sn

with width less than ε. Above, we constructed a complex of cycles C based
on F , with a non-trivial gluing map. For each vertex v of the triangulation
of the parameter space P , we had |C(v)| < ε + δ, and for each higher-
dimensional simplex ∆i of P , we had |C(∆i)| < C(n)δ. These estimates
hold for a number δ as small as we like. We assume δ much smaller than ε.

Using the isoperimetric inequality, each cycle C(v) can be filled by a
(k+1)-chain of mass less than C(n)ε. For each vertex v of the triangulation,
define Fill(v) to be such a filling. Now let E be an oriented edge of the trian-
gulation with ∂E = v1−v2. We define C̄(E) = C(E) − Fill(v1) + Fill(v2).
Since the boundary of Fill(vi) = C(vi), C̄(E) is a (k + 1)-cycle. The mass
of C̄(E) is bounded by C(n)ε. Next, using the isoperimetric inequality
again, choose an oriented (k + 2)-chain Fill(E) with boundary C̄(E), and
with mass bounded by C(n)ε.

We then repeat this construction for the higher-dimensional simplices in
the triangulation of P , working one skeleton at a time. For each i-simplex
∆i of P , we define a (k + i)-cycle C̄(∆i) and a (k + i + 1)-chain Fill(∆i).
They have the following properties:

1. If ∆i is an i-simplex of P , and the boundary of ∆i =
∑

j ∆i−1
j , then

C̄(∆i) = C(∆i) − ∑
j Fill(∆i−1

j ).
2. If

∑
l cl∆i

l is any i-cycle in P , then
∑

l clC(∆i
l) =

∑
clC̄(∆i

l).
3. The boundary of Fill(∆i) = C̄(∆i).
4. The mass of each C(∆i) and each Fill(∆i) is bounded by C(n)ε.
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To prove that we can find C̄(∆i) and Fill(∆i) we work inductively. We
already did the case i = 1, which anchors the induction. We assume that
the above properties hold for simplices of dimension at most i−1. We define
C̄(∆i) by using the formula in 1. We have to check that C̄(∆i) is a cycle.
Its boundary is

∑
j C(∆i−1

j ) − ∑
j C̄(∆i−1

j ). According to the equation in
2 and the inductive hypothesis, this expression vanishes. Next, we have to
check that C̄ obeys property 2 for i-simplices. Let

∑
l cl∆i

l be an i-cycle
in P . Let the boundary of ∆i

l be
∑

j ∆i−1
l,j . Because

∑
l cl∆i

l is an i-cycle,
∑

l,j cl∆i−1
l,j = 0. Now

∑
l clC̄(∆i

l) =
∑

l(clC(∆i
l) + cl

∑
j Fill(∆i−1

l,j )), and
the terms in the second sum cancel because

∑
l cl∆i

l is a cycle. Therefore,
C̄ obeys property 2 for i-simplices. Because C(∆i) has mass at most δ
and Fill(∆i−1

j ) has mass at most C(n)ε, C̄(∆i) has mass at most C(n)ε.
Therefore, we can use the isoperimetric inequality to define Fill(∆i) with
mass at most C(n)ε.

Since F sweeps out Sn, there must be an (n − k)-cycle a in P with
G(a) non-trivial in Hn(Sn, Z). Write a =

∑
cm∆n−k

m . By definition∑
cmC(∆n−k

m ) has a non-trivial homology class in Hn(Sn, Z). But this
sum is equal to a sum of cycles

∑
cmC̄(∆i

m). Each cycle C̄(∆i
m) has mass

less than C(n)ε, and hence is null-homologous in Sn. This contradiction
finishes the proof. �

We now estimate the k-widths of some simple shapes. The k-width of
the unit n-cube is at most 1, because it is swept out by parallel k-planes
each meeting it in a unit k-cube. Because of the non-degeneracy proposition
and the monotonicity estimate, the k-width of the unit n-cube is at least
c(n) > 0.

Applying the monotonicity estimate to our bounds for the unit cube, we
can estimate the k-width of any rectangle. Let R be a rectangle with dimen-
sions R1 ≤ · · · ≤ Rn. In other words, R is the product [0, R1] × · · · × [0, Rn].

Proposition 1.2. The k-width of the rectangle R is roughly R1 . . . Rk.
More precisely, c(n)R1 . . . Rk ≤ Wk(R) ≤ R1 . . . Rk.

Proof. To get the upper bound, simply consider the projection of R onto the
last (n − k) coordinates. Each fiber of this projection is a k-dimensional
rectangle with volume (R1 . . . Rk), and the fibers fit together to form a
family of k-cycles sweeping out R.

To get the lower bound, consider the map from R to the unit cube which
sends (x1, . . . , xn) to (x1/R1, . . . , xn/Rn). This map has degree 1 and k-
dilation (R1 . . . Rk)−1. Therefore (R1 . . . Rk)−1Wk(R) ≥ Wk(C), where C
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denotes the unit cube. According to Proposition 1.1, Wk(C) ≥ c(n) > 0,
so Wk(R) ≥ c(n)R1 . . . Rk. �

2 The Width-Volume Inequality

In this section, we prove Theorem 1.
Theorem 1 (Width-volume inequality). Let U be a bounded open set in
R

n with volume V (U) and k-width Wk(U). Then Wk(U) < C(n)V (U)k/n.

Proof. By a scaling argument, it suffices to prove the theorem when the
volume of U is 1.

The first step in the proof is to translate the unit lattice so that its
k-skeleton meets U in a region of controlled volume. Let S(x) denote the
k-skeleton of the unit cubical lattice centered at x, with axes parallel to the
coordinates. Since the volume of U is 1, the average volume of U ∩ S(x)
as x varies over the unit cube is equal to

(n
k

)
. We can choose a point x so

that the volume of U ∩ S(x) is no more than the average value
(n
k

)
. From

now on, we refer to S(x) simply as S.
The second step in the proof is to construct a family of cycles sweeping

out U , each of which lies mostly in the k-skeleton S.
Construction 1 (Bending planes around a skeleton). Let B(R) denote
the ball of radius R in R

n, and let S be the k-skeleton of a unit lattice.
Then there is a family F of k-cycles sweeping out B(R) with the following
properties. Each cycle in F lies in S except for a subset of mass less than
C(n). A cycle in F may contain some portions of S with multiplicity
greater than 1, but this multiplicity is bounded by C(n). (The constant
C(n) depends only on n; it does not depend on the radius R.)

Using this family of k-cycles we finish the proof of Theorem 1. By
choosing R sufficiently large, we may assume that U lies in the ball B(R).
Then we consider the restriction of F to U , which is a family of k-cycles
sweeping out U . To prove Theorem 1, we only have to check that each
k-cycle in this family has mass at most C(n). Let E be a k-cycle in F .
In other words, we have to check that the mass of E restricted to U is at
most C(n). We divide the restriction of E to U into two pieces. We let
E1 be the part of this restriction which is contained in S, and we let E2

be the part of this restriction which is not contained in S. The chain E1

is contained in S, and according to Construction 1, it has multiplicity at
most C(n). Therefore its mass is at most C(n)|S∩U | ≤ (

n
k

)
C(n). On the

other hand, according to Construction 1, E2 has mass at most C(n). �
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Next we turn to the proof of Construction 1.

Proof. We begin with a family of parallel k-planes. Let P be an (n − k)-
plane through the origin, in general position with respect to S. Let F0 be
the family of all k-planes perpendicular to P . To bend the planes, we will
construct a degree 1 proper PL map Ψ from R

n to itself. Our family F will
be Ψ(F0). In other words, the cycles in F will be Ψ(Q) as Q varies over
all the k-planes perpendicular to P . Because Ψ is degree 1, this family of
cycles sweeps out the ball B(R) or any other open set.

The reader can roughly imagine Ψ as follows. Let T denote the dual
(n − k − 1)-skeleton to S, and let Tε denote the ε-neighborhood of T . The
mapping Ψ retracts the complement of Tε onto S while stretching Tε to fill
all of R

n − S.
The idea of our proof is as follows. Since Ψ retracts the complement of

Tε onto S, the map Ψ takes Q∩(Rn−Tε) into S. On the other hand, we will
try to control the size of Q∩Tε using the fact that T is (n−k−1)-dimensional
and Q is k-dimensional. Because of these dimensions, a generic plane Q
will not intersect T at all. The set of planes Q in F0 which intersect T has
codimension 1. The set of planes which intersect T twice has codimension 2,
and so on. Therefore, each plane Q intersects T at most (n−k) times. Using
this kind of argument, we will show that Q ∩ Tε is contained in a union of
(n− k) small balls. Finally we will have to analyze the action of Ψ on each
of these small balls. This last step requires us to write down the map Ψ
carefully.

We state the properties of the map Ψ we will use in the form of a lemma.

Lemma 2.1. For each ε > 0, there is a piecewise-linear map Ψ from R
n to

itself with the following properties. The map Ψ is linear on each simplex
of a certain triangulation of R

n. Each top-dimensional simplex of this
triangulation is labelled good or bad. For each good simplex ∆, Ψ(∆) lies
in S. Each bad simplex lies in Tε. The triangulation and the map obey the
following bounds:

1. The number of simplices of our triangulation meeting any unit ball is
bounded by C(n).

2. The displacement |Ψ(x) − x| is bounded by C(n).
3. The diameter of each simplex is bounded by C(n).

The only tricky part in checking this lemma is to get the bounds with
constants that don’t depend on ε. We defer the proof of the lemma until
we finish the construction.
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Because of the displacement bound, the map Ψ is proper. We can
deform Ψ to the identity by taking Ψt(x) = (1 − t)Ψ(x) + tx. Then Ψ0 is
equal to Ψ and Ψ1 is the identity. Each map Ψt also obeys the displacement
bound, so they are all proper. Therefore, Ψ has degree 1.

We think of the cycle Ψ(Q) as a sum of chains
∑

Ψ(Q∩∆) as ∆ varies
over all the simplices of our triangulation.

We first consider the contribution to Ψ(Q) coming from the good sim-
plices. For each good simplex ∆, Ψ(∆) lies in S, and so Ψ(Q ∩ ∆) also
lies in S. Since Ψ is linear on ∆, the image Ψ(Q ∩ ∆) has multiplicity at
most 1. Next, we bound the multiplicity of the sum

∑
∆ Ψ(Q ∩ ∆) as ∆

ranges over all the good simplices. Because of the displacement bound in
Lemma 2.1, the multiplicity of this sum at a point s in S only depends
on the contributions from good simplices ∆ in a ball around s of radius
C(n). But estimate 1 in Lemma 2.1 tells us that there are less than C(n)
simplices in this ball.

We now consider the contribution to Ψ(Q) coming from the bad sim-
plices. Since we are only proving bounds for the restriction of Ψ(Q) to the
ball B(R), we only need to consider the bad simplices ∆ so that Ψ(∆) in-
tersects the ball B(R). Because of the displacement bound in Lemma 2.1,
we only need to consider the bad simplices ∆ in the ball of radius R+C(n).
We let B(R′) denote this larger ball, and from now on we only consider the
bad simplices in this ball. This argument about balls is not the main point,
but it is technically easier to proceed this way because we only have to
consider finitely many simplices.

Next we show that if ε is sufficiently small, the plane Q intersects less
than C(n) bad simplices. This estimate is the main idea of the proof. Recall
that Q is a plane perpendicular to the (n − k)-plane P . Let π denote the
orthogonal projection from R

n onto P . The plane Q is one of the fibers
of π. Let T ′ denote the finite complex T ∩B(R′). Note that T ′ is contained
in a finite union of (n− k − 1)-planes. We denote these planes as Ti. Since
P is in general position with respect to T , the projections π(Ti) are a finite
set of (n − k − 1)-planes in P , meeting transversely. Therefore, any point
p in P lies in π(Ti) for at most (n − k) values of i. Since the number of
planes is finite, we can choose ε sufficiently small so that any point p in P
lies within ε of π(Ti) for at most (n− k) values of i. Since Q is a fiber of π,
it meets the ε-neighborhood of Ti for at most (n−k) values of i. Since Q is
transverse to each of these planes, Q∩ T ′

ε is contained in (n− k) balls each
of radius C(n)ε. Because of estimate 1 in Lemma 2.1, these balls meet at
most C(n) bad simplices, and so Q intersects at most C(n) bad simplices.
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Finally, we bound the volume of Ψ(Q ∩ ∆) where ∆ is a bad sim-
plex. Because of the diameter bound and the displacement bound, Ψ(∆)
has diameter at most C(n). Therefore, Ψ(Q ∩ ∆) is a portion of k-plane
with diameter at most C(n). We conclude that Ψ(Q ∩ ∆) has volume at
most C(n).

We finish the proof of Construction 1 by assembling these estimates.
The cycle Ψ(Q) lies in S except for the contributions from the bad simplices.
There are at most C(n) bad simplices, and each bad simplex contributes
mass at most C(n), and so the cycle Ψ(Q) lies in S except for a portion
with mass at most C(n). The multiplicity of Ψ(Q) is also bounded. We
already bounded the contribution to the multiplicity coming from the good
simplices. Since Q intersects only C(n) bad simplices in B(R′), the contri-
bution to the multiplicity coming from the bad simplices is also bounded. �

Before we go on, let us clarify which constants depend on which other
constants. The most important point is that the constants C(n) depend
only on n. The constants C(n) don’t depend on R. On the other hand, the
size of ε that we need to make the above construction work does depend
on R. Therefore, we need to prove Lemma 2.1 with constants C(n) that
don’t depend on ε. We now give the proof of Lemma 2.1.

Proof. We will now construct the map Ψ. We begin by constructing the
triangulation of good and bad simplices. First we need to make some
definitions. If A is a k-dimensional face in S, then we define the link
of A in the following way. The set A is defined by equations xi = ai

for (n − k) coordinates i, and equations aj ≤ xj ≤ aj + 1 for the other
k coordinates. There is an (n − k) cube transverse to A given by the
equations ai − 1/2 ≤ xi ≤ ai + 1/2 for the (n− k) coordinates i above, and
xj = aj + 1/2 for the other k coordinates. This cube is simply the (n − k)
cube centered at the center of A, perpendicular to A, with axes parallel to
the coordinate axes. The link of A is defined to be the boundary of this
(n − k)-cube. It consists of 2(n − k) (n − k − 1)-cubes, each of which is
an (n − k − 1)-dimensional face of T . If B is an (n − k − 1)-dimensional
face of T , we define the link of B in an analogous way. It is a topological
k-sphere consisting of 2(k + 1) k-dimensional faces of S. We let A denote
a k-dimensional face of S and B an (n − k − 1)-dimensional face of T . A
quick calculation shows that A is in the link of B if and only if B is in the
link of A. For each pair (A,B) of faces with A in the link of B, we define
K(A,B) to be the convex hull of the union of A and B.
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Next we check that the sets K(A,B) tile R
n. The hyperfaces of the tile

K(A,B) correspond to pairs (A, b) where b is an (n − k − 2)-face in the
boundary of B, or pairs (a,B), where a is a (k − 1)-face in the boundary
of A. (The corresponding face is just the convex hull of A and b, or of a
and B.) Each face borders exactly two tiles in our tiling. Given a face
(A, b), let B′ be the (n− k− 1)-face in the link of A which lies on the other
side of b from B. Then K(A,B′) is the only other tile with (A, b) as a face.
Therefore, the tiles form a pseudo-manifold, and the embedding of the tiles
is an orientation preserving proper map from the tile space to R

n. The
intersection of K(A,B) with the skeleton S is equal to A. In particular,
the only tiles that come near to the center of A are tiles K(A,B) for some
B in the link of A. It is easy to check that a typical point close to the
center of A lies in exactly one of the tiles K(A,B). Therefore, the tiles
have disjoint interiors and cover all of space.

Any two tiles in our tiling are isometric. After renumbering the coor-
dinates, translating, and reflecting, we can assume that A and B have the
following simple form. The face A is given by the inequalities 0 ≤ xi ≤ 1
for i from 1 to k, xi = 0 for i from k + 1 to n. The face B is given by in-
equalities −1/2 ≤ xi ≤ 1/2 for i from k+1 to n−1, the equations xi = 1/2
for i from 1 to k, and xn = 1/2. The convex set K(A,B) is given by the
inequalities 0 ≤ xn ≤ 1/2, −xn ≤ xi ≤ xn for i from k + 1 to n − 1, and
|1/2 − xi| ≤ |1/2 − xn| for i from 1 to k.

We now divide each tile K(A,B) into good and bad parts. The good
part of K(A,B) is given by xn ≤ 1/2 − ε and denoted KG(A,B). The bad
part of K(A,B) is given by xn ≥ 1/2 − ε and denoted by KB(A,B). In
other words, the bad part of K(A,B) lies in a small neighborhood of B,
and its complement is the good part. Since B is a face of T , the bad part
of K(A,B) lies in C(n)ε neighborhood of T .

If K is any convex polyhedron, we can define a barycentric triangula-
tion for K as follows. For each face F of K, of any dimension, let c(F )
denote the center of mass of F . The triangulation of the 0-skeleton of K is
trivial. Now suppose we have triangulated the i-skeleton of K. We extend
this triangulation to each (i + 1)-face F of K, by taking the cone from
c(F ) to the triangulation on the boundary of F . A good thing about the
barycentric triangulation is that if two convex polyhedra intersect in a face
of any dimension, then the two barycentric sub-divisions of that face agree.
Therefore, applying the barycentric subdivision to each good and bad poly-
hedron in our tiling, we get a triangulation of R

n. This is the triangulation
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that appears in the statement of the lemma. The map Ψ will be linear on
each simplex of this triangulation. We call a top-dimensional simplex good
if it lies in the good part of K(A,B) and bad if it lies in the bad part of
K(A,B).

At this point, we can check some of the bounds in the lemma. The
number of simplices in a unit ball is bounded by C(n). The number of tiles
K(A,B) does not depend on ε at all. The combinatorial structure of the
tiles KG(A,B) and KB(A,B) also does not depend on ε. Therefore, the
number of simplices in the barycentric triangulation also does not depend
on ε. Each simplex in contained in some set K(A,B) and so has diameter
at most C(n). Also, each bad simplex lies within a C(n)ε-neighborhood
of T .

To finish the proof of the lemma, we need to construct the map Ψ. We
will have to check that Ψ is linear on each simplex of our triangulation,
that Ψ maps each good simplex into S, and that Ψ obeys the displacement
bound.

The map Ψ will take KG(A,B) onto A and KB(A,B) onto K(A,B).
We will specify the value of Ψ at the center of each face of KG(A,B) and
of KB(A,B). We then define Ψ to be the unique function which is linear
on the barycentric subdivision and takes these values at the centers of the
faces. To carry this out, we must write down all of the faces in KG(A,B)
and KB(A,B).

The faces in K(A,B) are as follows. First, any face a of A. Second, any
face b of B. Third, the convex hull of any face a of A and any face b of B.
(These faces may have any dimensions.)

The faces of KG(A,B) are as follows. First, any face a of A. Second, the
intersection of the convex hull of a and b with the set xn ≤ 1/2− ε. Third,
the intersection of the convex hull of a and b with the set xn = 1/2 − ε.
In each case, we define Ψ(c(F )) to be the center of a. Therefore, Ψ maps
KG(A,B) into A.

The faces of KB(A,B) are as follows. First, any face b of B. Second, the
intersection of the convex hull of a and b with the set xn ≥ 1/2− ε. Third,
the intersection of the convex hull of a and b with the set xn = 1/2 − ε.
In the first case, we define Ψ(c(F )) to be the center of b. In the last two
cases, we define Ψ(c(F )) to be the center of a.

If a certain face F belongs to several different polyhedra, then we have
to check that our definition for Ψ(c(F )) is consistent. For this purpose, it
suffices to check that the faces a and b are defined consistently. The face b
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is recovered as the largest face of T in the nε neighborhood of F , provided
ε is sufficiently small. The face a is recovered as the smallest face of S so
that F is contained in the convex hull of a and b.

From the construction, we see that Ψ is linear on each simplex of our
triangulation. If ∆ is a good simplex, then each vertex of ∆ corresponds
to the center of a face of KG(A,B), and so it gets mapped to a point in A.
Since A is convex, the simplex ∆ is mapped into A, and so Ψ(∆) lies in S.
Finally, if ∆ denotes any good or bad simplex in K(A,B), then Ψ(∆) lies
in K(A,B), and so Ψ obeys the displacement bound. �

There is an analogue of Theorem 1 for the widths of functions instead
of sets. Once we define the k-width of a function, the proof is exactly the
same. Let f be a compactly supported function on R

n which is greater
than or equal to zero. Let B(R) denote a large ball containing the support
of f . If F is a family of k-cycles in B(R), then we define the k-width of
F to be the supremum of

∫
F (p) f over all p in the parameter space of F .

We define the k-width of f to be the infimal W so that there is a family of
k-cycles sweeping out B(R) with k-width less than W . The k-width of f
is denoted Wk(f).
Proposition 2.1. If f is a function with compact support on R

n, and
0 ≤ f ≤ 1, then Wk(f) < C(n)(

∫
f)k/n.

Proof. After rescaling the coordinates, it suffices to prove that Wk(f) <
C(n) when

∫
f = 1.

By translating the k-skeleton of the unit lattice, we can arrange that∫
S f ≤ (n

k

)
. Next we apply Construction 1, bending planes around the

skeleton S. This construction gives us a family F of k-cycles sweeping out
B(R). To prove the proposition, we have to bound the integral

∫
E f , where

E is a k-cycle in the family F . We define E1 to be the part of E which is
contained in S, and we define E2 to be the part of E which is not contained
in S. The chain E1 is contained in S and, according to Construction 1, it
has multiplicity at most C(n). Therefore,

∫
E1

f ≤ C(n)
∫
S f ≤ C(n)

(
n
k

)
.

On the other hand, E2 has mass at most C(n). Because 0 ≤ f ≤ 1, we
have the bound

∫
E2

f ≤ C(n). �
In our applications, we will need a width-volume inequality adapted to

subsets of rectangles. Let R be the n-dimensional rectangle with dimensions
R1 ≤ · · · ≤ Rn. Let U be a subset of R with volume V (U). What is the
largest possible k-width of such a set U? We already know that Wk(U) <
CV (U)k/n, but this estimate turns out not to be sharp. A round ball with
volume V (U) has k-width roughly V (U)k/n. If V (U)1/n is much larger
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than R1, the round ball with volume V (U) does not fit inside of the rect-
angle R. What are the subsets of R that maximize the k-width for a given
volume? One candidate is a rectangle of dimensions R1×· · ·×Rl×S× · · ·×S,
where l ≤ k − 1 and S is between Rl and Rl+1. We call this set U0. The
volume V (U0) is equal to R1 . . . RlS

n−l and the k-width Wk(U0) is approx-
imately R1 . . . RlS

k−l. Solving for S in terms of V (U0) and plugging in, we
see that Wk(U0) is roughly equal to (R1 . . . Rl)(n−k)/(n−l)V (U0)(k−l)/(n−l).
It turns out that U0 has roughly the largest k-width among all subsets of
R with its volume. We now prove that any subset U of R obeys the in-
equality Wk(U) < C(n)(R1 . . . Rl)(n−k)/(n−l)V (U)(k−l)/(n−l). This inequal-
ity becomes roughly an equality when U = U0.

Proposition 2.2. If U is an open set contained in R, then for each integer
l in the range 0 ≤ l ≤ k, the following inequality holds:

Wk(U) < C(n)(R1 . . . Rl)(n−k)/(n−l)V (U)(k−l)/(n−l).

Proof. When l = 0, this inequality reduces to the width-volume inequal-
ity. When l = k, this inequality says that the width of U is less than
C(n)R1 . . . Rk. Since U is a subset of R, the width of U is at most the
width of R, and this inequality follows. Now we turn to the intermediate
values of l.

Let f be the function on the (n−l)-dimensional rectangle Rl+1×· · ·×Rn

with f(y) equal to (R1 . . . Rl)−1 times the volume of U∩[0, R1]×· · ·×[0, Rl]
×{y}. In other words, if U contains all of [0, R1]× · · · × [0, Rl]×{y}, then
f(y) will be 1, and if U contains half of that region, f(y) will be 1/2.

The function f is compactly supported, and 0 ≤ f ≤ 1. Applying the
width-volume inequality for functions to the function f , we see that the
(k − l)-width of f is bounded by C(n)(

∫
f)

k−l
n−l . This expression is equal to

C(n)[(R1 . . . Rl)−1V (U)]
k−l
n−l . According to the definition of (k − l)-width,

there is a family F of (k − l)-cycles sweeping out the support of f , so that
the integral of f over each cycle F (p) is bounded by this expression. We
define a family F ′ of k-cycles sweeping out R. The family F ′ has the same
parameter space as F , and we define F ′(p) = F (p) × [0, R1] × · · · × [0, Rl].
The volume of U intersected with a cycle F ′(p) is bounded by (R1 . . . Rl)
times the integral of f over the corresponding cycle F (p). Therefore, the
k-width of U is bounded by C(n)(R1 . . . Rl)

n−k
n−l V (U)

k−l
n−l . �

This proposition allows us to estimate how many disjoint wide sets can
be packed into a rectangle. We define Pk,N (U) to be the supremal W so
that there exist N disjoint subsets Ui ⊂ U each with k-width at least W .
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The letter P stands for packing-width. For a rectangle R, we can estimate
Pk,N (R) up to a constant factor C(n). The formula is a little complicated,
but the geometric meaning is that cutting a rectangle R into rectangular
grids gives roughly the optimal packings.

Proposition 2.3. Suppose R is an n-dimensional rectangle with dimen-
sions R1 ≤ · · · ≤ Rn. Then, up to a factor of C(n), Pk,N(R) is equal
to the infimum of the following expression over all integers l in the range
0 ≤ l ≤ k:

R1 . . . Rl(Rl+1 . . . Rn)
k−l
n−l N− k−l

n−l .

Proof. First we prove that Pk,N(R) is bounded above by each of the ex-
pressions in the proposition. Let Ui be N disjoint subsets of R. One of
them must have volume at most R1 . . . Rn/N . Applying the width vol-
ume inequality for rectangles, we see that this set has k-width less than
C(n)(R1 . . . Rl)

n−k
n−l (R1 . . . RnN−1)

k−l
n−l , for each l between 0 and k. Ex-

panding this expression, we get R1 . . . Rl(Rl+1 . . . Rn)
k−l
n−l N− k−l

n−l . This is
the inequality we wanted to prove.

It remains to show that the packing-width is at least as great as this
expression. To do this we will use the packing formed by cutting R along
a rectangular grid. First we consider the case N ≤ (Rn . . . Rk+1)/Rn−k

k .
In this case, we can find N disjoint subrectangles in R each of dimension
R1×· · ·×Rk ×Rk ×· · ·×Rk. Each of these rectangles has k-width roughly
R1 . . . Rk. Therefore, Pk,N (R) ≥ c(n)R1 . . . Rk. Since the k-width of R
is at most R1 . . . Rk, it follows that Pk,N (R) ≤ R1 . . . Rk, and this lower
bound is sharp up to a constant factor. Second we consider the main
case that N ≥ (Rn . . . Rk+1)/Rn−k

k . In this case, we can find N disjoint
parallel rectangles in R each with dimensions R1 × · · · × Rl×S× · · · × S,
for some number S in the range Rl ≤S≤ Rl+1, where l < k. More-
over, we can choose these rectangles so that they fill up a good portion
of the total volume of R. In other words, NR1 . . . RlS

n−l > c(n)R1 . . . Rn.
Solving for S, we see that S > c(n)(Rn . . . Rl+1)

1
n−l N− 1

n−l . Now the k-
width of each rectangle is R1 . . . RlS

k−l, so we conclude that Pk,N (R) >

c(n)R1 . . . Rl(Rl+1 . . . Rn)
k−l
n−l N− k−l

n−l . This lower bound comes within a con-
stant factor of one of the upper bounds we proved in the first paragraph.
Therefore, we have determined Pk,N (R) up to a factor C(n). �
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3 Estimates of k-Dilation

In this section, we will estimate the k-dilation of degree 1 maps between
certain domains in Euclidean space, especially rectangles. The first esti-
mate follows from our knowledge of the k-width of rectangles, and the more
refined estimates follow from our knowledge of the packing widths of rect-
angles. We begin by reviewing the definition of k-dilation and some of its
basic properties.

Recall that a piecewise smooth map f has k-dilation at most λ if f
maps each k-dimensional submanifold of the domain with volume V to an
image with volume at most λV . The k-dilation of f can also be expressed
in terms of the derivative df . When k = 1, the 1-dilation of f is equal
to its Lipshitz constant, which is equal to the supremum of |df |. We now
generalize this result to all values of k.

If f maps M to N , then df at a point m maps TMm to TNf(m). Taking
the k-fold exterior power of this map gives a map Λkdfm from ΛkTMm to
ΛkTNf(m). By |Λkdfm|, we denote the operator norm of this linear map. In
other words, this norm is the maximum over all unit k-vectors v in ΛkTMm

of the norm |Λkdfm(v)|.
Proposition 3.1. The k-dilation of a piecewise smooth map f is equal to
the supremum of |Λkdfm| as m varies over M .

Proof. If the original derivative dfm has singular values 0 ≤ s1 ≤ · · · ≤ sn,
corresponding to singular vectors v1, . . . , vn, then the singular values of
Λkdf are given by all products of k distinct numbers si, and the singular
k-vectors are given by the wedge products of the corresponding vectors vi.
Therefore, it follows that the norm |Λkdfm| is equal to sn−k+1 . . . sn. More-
over, this singular value corresponds to a simple k-vector vn−k+1 ∧ · · · ∧ vn.
Taking a small disk near m in the plane spanned by vn−k+1, . . . , vn, we
see that the k-dilation of f is at least |Λkdfm|. On the other hand, the
linear map dfm stretches the volume of each k-dimensional disk by at most
|Λkdfm|. By a standard calculus argument, the k-dilation of f is at most
supm |Λkdfm|. �

Formulating the k-dilation in terms of the singular values of the deriva-
tive allows us to show that the k-dilation controls the (k + i)-dilation for
all i > 0.

Proposition 3.2. Let f be a piecewise smooth map with k-dilation at

most λ. Then for each i > 0, the (k + i)-dilation of f is at most λ
k+i

k .
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Proof. In the proof of the last proposition, we showed that the k-dilation of
f is equal to the supremum of sn−k+1 . . . sn. Similarly, the (k + i)-dilation
is equal to the supremum of sn−k−i+1 . . . sn. This expression is bounded by
si
n−k+1sn−k+1 . . . sn. Since the k-dilation of f is at most λ, sn−k+1 ≤ λ1/k.

Plugging this bound into the last expression, we see that the (k+i)-dilation
of f is at most λ

k+i
k . �

We now turn to the main problem of this section. Let U and V be
connected bounded open sets in R

n with piecewise smooth boundaries. Let
Dk(U, V ) denote the infimal k-dilation of a degree 1 map from the pair
(U, ∂U) to the pair (V, ∂V ). How can we estimate Dk(U, V )?

To give some context, we first consider the more familiar cases when
k is equal to n or to 1. If k = n, we can get sharp estimates by using
Moser’s theorem for inducing differential forms. Suppose that U and V
are diffeomorphic. Let dvolU denote the volume form on U and dvolV
denote the volume form on V . Moser proved in [M] that there is a dif-
feomorphism φ from U to V so that φ∗dvolV = µ dvolU , where µ is the
ratio Volume(V )/Volume(U). This diffeomorphism has n-dilation µ. Since
a degree 1 map is surjective, any degree 1 map from U to V must have
n-dilation at least the ratio Volume(V )/Volume(U). This result is very
satisfactory, but it has no analogue for k < n. Next we consider the case
k = 1. For complicated domains U and V , our problem may be difficult
even for k = 1. The distinguishing feature of k = 1 is that we have a
brute force approach which is not available for higher values of k. If we fix
bounded open sets U and V , then the set of maps from (U, ∂U) to (V, ∂V )
with 1-dilation at most λ is compact in C0. Therefore, at least in theory,
one can systematically search this class of maps for maps of degree 1. This
approach can be carried out on a computer if U and V are polyhedra, and
it would give an estimate of D1(U, V ) to arbitrary accuracy, although it
would be extremely slow. By constrast, the set of maps with 2-dilation at
most λ is not compact in C0, so that even with unlimited computing time
I don’t know how to systematically estimate D2(U, V ) up to a factor of
10100.

We will focus on the special case of maps from a rectangle R to a rect-
angle S. Even in this special case, the problem is much harder than I
initially expected. We use the convention that the rectangle R has dimen-
sions R1 ≤ · · · ≤ Rn and the rectangle S has dimensions S1 ≤ · · · ≤ Sn.
To make the algebra simpler, we let Qi denote the quotient Si/Ri. We now
prove some lower bounds for k-dilation.
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Proposition 3.3. Suppose that U is a subset of R. Then Dk(U,S) is at
least c(n)Q1 . . . Qk.

Proof. Since U is a subset of R, Wk(R) ≥ Wk(U). Now if there is a degree
non-zero map from U to S with k-dilation λ, then λWk(U) ≥ Wk(S).
Therefore, λ ≥ Wk(S)/Wk(R). But according to Proposition 1.2, Wk(S) is
at least c(n)S1 . . . Sk, and Wk(R) is at most R1 . . . Rk. Therefore, λ is at
least c(n)Q1 . . . Qk. �

We can get more complicated bounds by considering the packing-widths
of R and S.

Proposition 3.4. Suppose that U is a subset of R. Then, for each integer

l from 0 to k, Dk(U,S) is at least c(n)Q1 . . . Ql(Ql+1 . . . Qn)
k−l
n−l .

Proof. Since U is a subset of R, we have Pk,N (R) ≥ Pk,N(U) for every k
and N . If there is a map f of non-zero degree from U to S with k-dilation λ,
then λPk,N (U) ≥ Pk,N (S). To see this, let Si be N disjoint subsets of S,
each with width at least Pk,N(S) − ε. Then let Ui be the inverse image
F−1(Si). The map f restricts to a degree non-zero map from (Ui, ∂Ui) to
(Si, ∂Si). Therefore the k-width of Ui is at least λ−1(Pk,N (S) − ε). Since
the sets Ui are disjoint, λPk,N (U) ≥ Pk,N(S). This estimate gives us a
lower bound λ ≥ Pk,N (S)/Pk,N (R), for every natural number N .

The value of Pk,N(R) is estimated in Proposition 2.3. Up to a constant

factor C(n), it is equal to the infimum of R1 . . . Rl(Rl+1 . . . Rn)
k−l
n−l N− k−l

n−l ,
where l lies in the range 0 ≤ l ≤ k. In particular, we can consider the
case that N = Sn . . . Sl+1/S

n−l
l . Since there are roughly N disjoint rect-

angles in S with dimensions S1 × · · · × Sl × Sl × · · · × Sl, the packing-
width Pk,N(S) is at least c(n)S1 . . . SlS

k−l
l . On the other hand, Pk,N(R)

is at most C(n)R1 . . . Rl(Rl+1 . . . Rn)
k−l
n−l [Sn . . . Sl+1/S

n−l
l ]−

k−l
n−l . Therefore,

Pk,N (S)/Pk,N (R) is at least c(n)Q1 . . . Ql(Ql+1 . . . Qn)
k−l
n−l .

This finishes the proof of the proposition. The reader can check that the
supremum over N of the quotient Pk,N (S)/Pk,N (R) is approximately equal

to the maximum of Q1 . . . Ql(Ql+1 . . . Qn)
k−l
n−l for l in the range 0 ≤ l ≤ k.

Therefore, the packing-width does not give any further lower bounds for
Dk(R,S). �

The second theorem of this paper is an estimate for Dn−1(R,S).

Theorem 2. Let R and S be n-dimensional rectangles. Suppose that R
has dimensions R1 ≤ · · · ≤ Rn and that S has dimensions S1 ≤ · · · ≤ Sn.
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Up to a constant factor C(n), Dn−1(R,S) is equal to the supremum of the
following quantities:

Q1 . . . Ql(Ql+1 . . . Qn)
n−l−1

n−l , (1)
Q2 . . . Qn . (2)

In equation (1), the number l is allowed to take any value in the range
1 ≤ l ≤ n − 1.

For example, if n is 3, then D2(R,S) is roughly the supremum of
Q1Q

1/2
2 Q

1/2
3 , Q1Q2, and Q2Q3.

We have already proven the lower bounds in equation (1). They are
exactly the lower bounds in Proposition 3.4 in case k = n − 1.

The lower bound in equation (2) is simple. Suppose that f is a degree 1
map from R to S with (n−1)-dilation λ. The map f restricts to a degree 1
map from the boundary of R to the boundary of S. Since this map must be
surjective, it follows that λVolume(∂R) ≥ Volume(∂S). But the volume of
the boundary of R is at most 2nR2 . . . Rn, and the volume of the boundary
of S is at least 2S2 . . . Sn. Therefore, λ is at least (1/n)Q2 . . . Qn. This
finishes the proof of the lower bounds on Dn−1(R,S).

In the next section, we will construct degree 1 maps showing that these
lower bounds are sharp up to a constant factor.

4 Maps with Small (n − 1)-Dilation

In this section, we construct a degree 1 map between rectangles with sur-
prisingly small k-dilation. After the construction, we check that the k-
dilation of this map can be smaller than the k-dilation of any linear diffeo-
morphism by an arbitrarily large factor. Then we will finish the proof of
Theorem 2, determining Dn−1(R,S) up to a constant factor.

Construction 2 (The snake map). Let R and S be n-dimensional rect-
angles. Suppose that n ≥ 3 and that k lies in the range 2 ≤ k ≤ n − 1.
Suppose that Ri = Si for i ≤ n − k. Suppose that Rn−k+1 . . . Rn−k+b ≥
Sn−k+1 . . . Sn−k+b for every b in the range 1 ≤ b ≤ k. Then there is a
degree 1 map from R to S with k-dilation less than C(n).

Proof. We write R as the product R′×R′′, where R′ = [0, R1]×· · ·×[0, Rn−k]
and R′′ = [0, Rn−k+1] × · · · × [0, Rn]. Similarly, we write S = S′ × S′′. By
assumption R′ is congruent to S′.

Because of the inequalities Rn−k+1 . . . Rn−k+b ≥ Sn−k+1 . . . Sn−k+b,
there is a smooth bilipschitz embedding of S′′ into R′′ with bilipschitz
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constant at most C(n). We will need a little bit of room later, so we let
I be a smooth bilipschitz embedding of 3S′′ into R′′, with quasi-isometric
constant C(n). (By 3S′′, we mean the rectangle S′′ dilated by a factor of
3 around its center.) We let A be the image of I in R′′. (This set A corre-
sponds to the set A in the description of the snake map before this proof.)
Let H be a smooth function on 3S′′ which is equal to 1 on the central S′′

and is equal to zero on a neighborhood of the boundary of S′′. We can
choose H with Lipschitz constant as close as we like to S−1

n−k+1.
The function H ◦ I−1 is defined on the image of I in R′′, and it is equal

to zero on the boundary of this image. We extend this function to all of
R′′ by setting it equal to zero on the complement of the image of I. We
call the resulting function H̄. We denote a point in R by (x′, x′′), where
x′ lies in R′ and x′′ lies in R′′. We define Φ1(x′, x′′) = (H̄(x′′)x′, x′′). If
we differentiate Φ1, we find that the norm of the derivative is bounded
by the sum sup |H(x′′)| + sup |x′| sup |∇H̄|. The first of these expressions
is bounded by 1, and the second by C(n)Rn−k/Sn−k+1. Because of our
assumptions about the dimensions of R and S, we have Rn−k = Sn−k ≤
Sn−k+1, and so the map Φ1 has Lipschitz constant less than C. The image
Φ1(R) is contained in R′ × A ∪ {0} × R′′. We call this set Q.

The next step of our construction is to retract the region Q onto R′×A.
To do this, we first pick a retraction φ2 from R′′ to the image of I. We
choose φ2 so that it maps the complement of A onto the boundary of A.
We also assume that φ2 is piecewise smooth. Next, we define Φ2(x′, x′′) =
(x′, φ2(x′′)).

The map Φ2 has large k-dilation on R, but its restriction to Q has
k-dilation 1. On the intersection of Q with the region R′ × A, Φ2 is the
identity, and so it has k-dilation 1. The complement of this region in Q
is given by the conditions x′ = 0 and x′′ ∈ Ac, where Ac denotes the
complement of A in R′′. The map Φ2 takes this k-dimensional region into
the (k − 1)-dimension region given by the conditions x′ = 0, and x′′ ∈ ∂A.
Therefore, Φ2 has k-dilation zero on the second part of Q. All together,
the map Φ2 has k-dilation 1.

Next, we define a map Φ3 from the region R′ × A to S′ × 3S′′. This
map is defined by Φ3(x′, x′′) = (x′, I−1(x′′)). It has Lipschitz constant at
most C(n). The composition Φ3 ◦Φ2 ◦Φ1 is a map of R into S′×3S′′, with
k-dilation less than C(n). The rectangle S′ × 3S′′ contains the rectangle
S = S′ × S′′. Since S is convex, there is a retraction Φ4 from S′ × 3S′′ to
S with Lipschitz constant 1.
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The composition Φ4 ◦ Φ3 ◦ Φ2 ◦ Φ1 is a degree 1 map from (R, ∂R) to
(S, ∂S) with k-dilation less than C(n). �

Remark. With a little more work, it is possible to construct a PL
isomorphism from R to S with k-dilation less than C(n).

We now give an example to show that the snake map badly outperforms
the linear map for some rectangles. Let Link(R,S) denote the smallest k-
dilation of any linear diffeomorphism from R to S.
Proposition 4.1. For each n ≥ 3 and each k in the range 2 ≤ k ≤
n − 1, there are n-dimensional rectangles R and S which make the ratio
Link(R,S)/Dk(R,S) arbitrarily large.

Proof. Let R be the rectangle with dimensions R1 = · · · = Rn−2 = ε, and
Rn−1 = Rn = 1. Let S be the rectangle with dimensions S1 = . . . = Sn−1 = ε
and Sn = ε−1. Construction 2 gives a degree 1 map from R to S with
2-dilation at most C(n). Next we give a lower bound for Linn−1(R,S).
Any linear diffeomorphism from R to S takes each hyperface of R onto a
hyperface of S. The rectangle R has 4 hyperfaces with volume εn−2. On
the other hand, the rectangle S has 2(n − 1) hyperfaces with volume εn−3

and only 2 hyperfaces with volume εn−1. Any linear diffeomorphism from
R onto S must take a face of R with volume εn−2 onto a face of S with
volume εn−3. Therefore, it must have (n − 1)-dilation at least ε−1, and we
conclude that Linn−1(R,S) ≥ ε−1.

According to Proposition 3.2, a map with k-dilation λ has (k+i)-dilation
at most λ

k+i
k . Therefore, Dk(R,S) is less than C(n) for all k ≥ 2. By the

same argument, Link(R,S) is at least ε−
k

n−1 for all k ≤ n − 1. Combining
these estimates, we see that Link(R,S)/Dk(R,S) may be arbitrarily large
for all k in the range 2 ≤ k ≤ n − 1. �

Using the snake map, we now finish the proof of Theorem 2.
Proof. By composing snake maps and linear maps, we will construct enough
degree 1 maps to prove the theorem. We begin with the case n = 3.

By scaling the rectangle S, we can assume that the lower bound for
D2(R,S) given in Theorem 2 is equal to 1. In other words, we suppose
R1R2 > S1S2, R2

1R2R3 > S2
1S2S3, and R2R3 > S2S3. Under these assump-

tions, we need to construct a degree 1 map from R to S with 2-dilation less
than C. We do so in three cases.

If R1 < S1, then we define a 2-contracting linear diffeomorphism from R
to T , with T1 = S1, T2 = R2R1/S1, and T3 = R3R1/S1. (The length T2 is
indeed bigger than T1 because R1R2 > S1S2.) Using the first two equations



1172 L. GUTH GAFA

in the list above, we see that T2 > S2 and T2T3 > S2S3. Therefore, there
is a snake map from T to S with 2-dilation less than C.

If R1 ≥ S1 but R2 < S2, then we define a 2-contracting linear diffeo-
morphism from R to T , with T1 = R1R2/S2, T2 = S2, and T3 = R3R2/S2.
(The length T3 is indeed bigger than T2 because R2R3 > S2S3.) Since
R1R2 > S1S2, T1 > S1. Since R2R3 > S2S3, T3 > S3. Therefore, there is a
1-contracting linear diffeomorphism from T to S.

If R1 ≥ S1 and R2 ≥ S2, since we have assumed that R2R3 ≥ S2S3,
there is a snake map from R to S with 2-dilation less than C.

We now turn to the case of higher dimensions. As in the three-dimen-
sional case, we can scale S so that the lower bound on Dn−1(R,S) is equal
to 1. In other words, we can assume that the rectangles R and S obey the
following list of inequalities denoted (∗):

R1 . . . Rl(Rl+1 . . . Rn)
n−l−1

n−l > S1 . . . Sl(Sl+1 . . . Sn)
n−l−1

n−l ; (∗1)
R2 . . . Rn ≥ S2 . . . Sn . (∗2)

Equation (∗1) holds for every integer l in the range 1 ≤ l ≤ n − 1.
Assuming (∗), we have to construct a degree 1 map from R to S with

(n − 1)-dilation at most C(n). The maps we will construct will have the
following structure. First, there will be a snake map from R to an inter-
mediate rectangle T , with (n − 1)-dilation at most C(n). Then there will
be an (n−1)-contracting linear diffeomorphism from T to S. Choosing the
rectangle T and constructing the two maps is very tedious, but it requires
only elementary algebra.

We begin with the special case R1 = S1. Because of the messy algebra,
from now on we use C to denote a constant that depends only on n.

Lemma 4.1. Suppose that R and S are n-dimensional rectangles obeying
(∗). Also suppose that R1 = S1, and suppose that Theorem 2 holds for
rectangles of dimension n − 1. Then there is a degree 1 map from R to S
with (n − 1)-dilation at most C.

Proof. Since R1 = S1, the inequalities in (∗) imply that for each l in the
range 1≤ l≤n−1, R2 . . . Rl(Rl+1 . . . Rn)

n−l−1
n−l ≥S2 . . . Sl(Sl+1 . . . Sn)

n−l−1
n−l .

We are going to prove something a little more general in order to do an
inductive argument. For each p in the range 1 ≤ p ≤ n−1, let C(p) denote
the following list of conditions:

1. R1 = S1;
2. R2 . . . Ra ≥ S2 . . . Sa for a in the range 2 ≤ a ≤ p;
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3. R2 . . . Rl(Rl+1 . . . Rn)
n−l−1

n−l ≥ S2 . . . Sl(Sl+1 . . . Sn)
n−l−1

n−l for l in the
range p ≤ l ≤ n − 1; and

4. R2 . . . Rn ≥ S2 . . . Sn.

Our hypotheses are exactly C(1). We are going to prove that for every p,
C(p) implies that there is a degree 1 map from R to S with (n−1)-dilation
at most C. The point of introducing all of these new conditions is that we
can make an inductive argument, starting with C(n − 1) and working our
way down to C(1).

To anchor the induction we prove that C(n− 1) implies that there is a
degree 1 map from R to S with (n − 1)-dilation at most C. The condition
C(n − 1) says exactly that R1 = S1, and that R2 . . . Ra ≥ S2 . . . Sa for
every a. Under these conditions, our construction gives a snake map from
R to S with (n − 1)-dilation at most C.

We now turn to the inductive step. We may assume that C(q) implies
a good map for every q greater than p, and we have to prove that C(p)
implies the existence of a good map.

Suppose that R and S satisfy C(p). Let b be the smallest number for
which R2 . . . Rb < S2 . . . Sb. If there is no such b, then R and S actually
satisfy C(n − 1), and so there is a snake map from R to S with (n − 1)-
dilation at most C. Because of condition 4 we know that b is not equal
to n, and because of the condition 3 with l = n − 1, we know that b is not
equal to n − 1. On the other hand, b must be greater than p. Therefore, b
lies in the range p < b ≤ n − 2.

We begin with case b = 2, which is a bit easier than the general
case. If b = 2, then we must have had p = 1. There is an (n − 1)-
contracting linear diffeomorphism from T to S, where T1 = S1, T2 = R2,
and Ti = Si(S2/R2)1/(n−3) for all i ≥ 3. (The length T2 is at least T1

because T1 = S1 = R1 ≤ R2 = T2.) We check that R and T obey C(2).
Condition 1 follows because R1 = S1 = T1. Condition 2 follows because
R2 = T2. A computation shows that for l in the range 2 ≤ l ≤ n − 1,
T2 . . . Tl(Tl+1 . . . Tn)

n−l−1
n−l = S2 . . . Sl(Sl+1 . . . Sn)

n−l−1
n−l . Therefore, condi-

tion 3 of C(2) holds. Finally, condition 4 follows from condition 3 for l = 2
along with the equality T2 = R2. Since p = 1, our inductive hypothesis is
that C(2) implies the existence of a good map. Therefore we may conclude
there is a good map from R to T . Composing with the linear map from T
to S gives a good map from R to S.

Now we deal with the more general case that b > 2. In this case,
we apply an (n − 1)-expanding linear transformation to S that leaves S1
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through Sb−1 invariant, decreases Sb by some factor λ, and increases Sb+1

through Sn by a factor λ
1

n−b−1 . (At this stage, we use the fact that b <
n − 1.) We choose λ so that the image rectangle S′ has either R2 . . . Rb =
S′

2 . . . S′
b, or S′

b−1 = S′
b, whichever requires a smaller value of λ. This

choice of λ ensures that the dimensions of S′ are still labelled in increasing
order. If R2 . . . Rb = S′

2 . . . S′
b, then we can stop, but if S′

b−1 = S′
b, we

have to proceed with another (n − 1)-expanding linear transformation. In
this case, we then apply an (n − 1)-expanding linear transformation to
S′ that leaves S′

1 through S′
b−2 invariant, decreases S′

b−1 and S′
b equally,

and increases all the other directions equally. We choose the factor of
stretching so that the image rectangle S′′ has either R2 . . . Rb = S′′

2 . . . S′′
b or

S′′
b−2 = S′′

b−1 = S′′
b . In the latter case, we then apply a linear transformation

that decreases S′′
b−2, S

′′
b−1, and S′′

b , and so on. Because R2 > S2, this process
terminates. We call the final rectangle in this chain of (n − 1)-expanding
diffeomorphisms T .

At the end of the process, we have an equality R2 . . . Rb = T2 . . . Tb. We
check that the rectangles R and T obey the condition C(b). Condition 1
follows because R1 = S1 = T1. Condition 2 follows because R2 . . . Rb =
T2 . . . Tb, and because for each a less than b, T2 . . . Ta ≤S2 . . . Sa ≤R2 . . . Ra.
A calculation shows that T2 . . . Tl(Tl+1 . . . Tn)

n−l−1
n−l = S2 . . . Sl(Sl+1 . . . Sn)

n−l−1
n−l

for l ≥ b. Therefore, condition 3 of C(b) holds for R and T . Finally
condition 4 follows from the case l = b of condition 3 along with the equality
R2 . . . Rb = T2 . . . Tb. Since b is greater than p, our inductive hypothesis
tells us that there is a degree 1 map from R to T with (n − 1)-dilation at
most C. Since there is an (n − 1)-contracting linear diffeomorphism from
T to S, we can compose them to get a degree 1 map from R to S with
(n − 1)-dilation at most C.

This argument proves the inductive step and hence the lemma. �
With the help of the lemma, we can now prove Theorem 2 for all pairs

of rectangles R and S. We assume that R and S obey (∗), and we need to
construct a degree 1 map from R to S with (n − 1)-dilation at most C.

If R1 < S1, then we proceed as follows. There is an (n − 1)-con-
tracting linear map from T to S, where T has dimensions T1 = R1,
and Ti = Si(S1/R1)

1
n−2 for all other i. A calculation shows that

T1 . . . Tl(Tl+1 . . . Tn)
n−l−1

n−l = S1 . . . Sl(Sl+1 . . . Sn)
n−l−1

n−l for each l in the
range 1 ≤ l ≤ n − 1. Since R and S obey (∗), it follows that
R1 . . . Rl(Rl+1 . . . Rn)

n−l−1
n−l ≥ T1 . . . Tl(Tl+1 . . . Tn)

n−l−1
n−l for each l in the

range 1 ≤ l ≤ n − 1. Since R1 = T1, the last equation in the case l = 1
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implies that R2 . . . Rn ≥ T2 . . . Tn. In other words, R and T obey (∗). Since
R1 = T1, we can apply Lemma 4.1, which tells us that there is a degree 1
map from R to T with (n−1)-dilation less than C. Composing with the lin-
ear map from T to S gives a degree 1 map from R to S with (n−1)-dilation
less than C, which is what we wanted to prove.

If R1 > S1, then we proceed as follows. We apply an (n− 1)-expanding
linear transformation to S which decreases S2 and increases all other di-
rections of S equally until either S1 = R1 or S1 = S2. In the second case,
we apply an (n − 1)-expanding linear transformation to S which decreases
S3 and increases all other directions of S equally until either S1 = R1 or
S1 = S2 = S3, and so on. We continue this process until either S1 = R1 or
S1 = Sn < R1. In the latter case, there is a contracting linear diffeomor-
phism from R to S.

In the former case, we call the final rectangle in this chain of
(n − 1)-expanding linear diffeomorphisms T . We have to check that R
and T obey (∗). Suppose that the last diffeomorphism was de-
creasing Sb+1 and increasing Si for all other i. We have R1 = T1 =
T2 = · · · = Tb. If l is at least b + 1, then a calculation shows that
T1 . . . Tl(Tl+1 . . . Tn)

n−l−1
n−l = S1 . . . Sl(Sl+1 . . . Sn)

n−l−1
n−l . This equation im-

plies that R1 . . . Rl(Rl+1 . . . Rn)
n−l−1

n−l ≥ T1 . . . Tl(Tl+1 . . . Tn)
n−l−1

n−l for l ≥
b + 1. Another short calculation shows that T2 . . . Tn = S2 . . . Sn.
Therefore, R2 . . . Rn ≥ T2 . . . Tn. Since T1 = Tb = R1, it follows that
R1 . . . Rl ≥ T1 . . . Tl for all l in the range 1 ≤ l ≤ b. Since R1 = T1

and R2 . . . Rn ≥ T2 . . . Tn, it follows that R1 . . . Rn ≥ T1 . . . Tn. Combin-
ing the last two inequalities, it follows that R1 . . . Rl(Rl+1 . . . Rn)

n−l−1
n−l ≥

T1 . . . Tl(Tl+1 . . . Tn)
n−l−1

n−l , for all b in the range 1 ≤ l ≤ b. Assembling all
these inequalities, we see that R and T obey (∗).

Since R1 = T1, we can apply Lemma 4.1, which tells us that there is a
degree 1 map from R to T with (n − 1)-dilation less than C. Composing
with the linear diffeomorphism from T to S gives a degree 1 map from R
to S with (n − 1)-dilation less than C. �

5 Appendix: Dividing Area and (n − 1)-Width

In this appendix, we briefly consider estimating the width of a Rieman-
nian manifold (Mn, g). The main result is that for each n ≥ 2 a closed
oriented Riemannian n-manifold with volume 1 may have arbitrarily large
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(n − 1)-width. Therefore, the width-volume inequality does not extend to
Riemannian manifolds.

Our results are based on isoperimetric inequalities. Let (Mn, g) be a
closed Riemannian manifold. We define the dividing area of (M,g) to be
the infimum of the volume of ∂A as A ⊂ M varies over all open sets with
volume between (1/4)Volume(M) and (3/4)Volume(M). Any isoperimet-
ric inequality on (M,g) will lead to a lower bound for its dividing area.
Proposition 5.1. Let (M,g) be a closed oriented Riemannian n-manifold
with dividing area A(M,g).

Wn−1(M,g) ≥ (1/2)A(M,g) .

Recall that the Cheeger isoperimetric constant h(M,g) is equal to the
supremum of vol(A)/vol(∂A) as A ranges over all open sets in (M,g) with
volume at most (1/2)vol(M). In [Br], Brooks constructed examples of Rie-
mannian manifolds with arbitrarily large volume and with Cheeger constant
bounded below. We state Brooks’s result as a theorem.

Theorem (Brooks). For each n ≥ 2, there is a sequence of closed oriented
Riemannian n-manifolds (Mi, gi) with volume Vi tending to infinity and
h(Mi, gi) > 1.

The Riemannian manifolds (Mi, gi) are finite coverings of a fixed base
manifold with an interesting fundamental group. The base manifold could
be hyperbolic, or a higher-rank symmetric space. Because of the lower
bound on the Cheeger constant, the dividing area of (Mi, gi) must be at
least (1/4)Vi. According to Proposition 5.1, the (n − 1)-width of (Mi, gi)
is at least (1/8)Vi. Now we rescale (Mi, gi) so that it has volume 1. The
rescaled version has (n−1)-width at least (1/8)V 1/n

i which tends to infinity.
In Brooks’s examples, the topology of Mi is unbounded. There are

other examples on the n-sphere for n ≥ 3. These examples follow from
the isoperimetric estimates of Burago and Ivanov, proven in [BuI]. A small
modification of their construction gives the following theorem.

Theorem (Burago, Ivanov). For each n ≥ 3 and each ε > 0, there
is a metric g on Sn which obeys the following isoperimetric inequality.
For any open set A ⊂ Sn with volume between (1/4)Volume(Sn, g) and
(3/4)Volume(Sn, g),

Volume(A)
n−1

n < εVolume(∂A) .

Since this isoperimetric inequality is scale invariant, we can also scale
the metrics so that they all have volume 1. In this case, we have (1/4) ≤
Volume(A)

n−1
n ≤ εVolume(∂A). Therefore, these metrics have dividing
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area at least (1/4)ε−1. By Proposition 5.1, we conclude that Wn−1(Sn, g) ≥
(1/8)ε−1.

Now we turn to the proof of Proposition 5.1.

Proof. Let F be a family of (n − 1)-cycles sweeping out (M,g) with width
almost Wn−1(M,g). Without loss of generality we may assume that the
parameter space of F is a circle. As in section 1, we perturb F to get a
complex of cycles, where each 0-simplex gets mapped to an (n − 1)-cycle
in M with mass at most Wn−1(M,g) + δ and each 1-simplex gets mapped
to an n-chain with mass at most δ.

Let I be an interval of the circle consisting of a union of 1-simplices,
and consider the union of the corresponding n-chains, which we denote
C(I). We consider the image of C(I), which is a set in (M,g). If I is a
single 1-simplex, this set has volume at most δ. If I is the whole circle,
then this set is all of (M,g). Since adding a 1-simplex only slightly changes
the volume of this set, we can find an interval I so that the volume of the
image of C(I) is close to (1/2)Volume(M,g). Therefore, the volume of the
boundary of this image is at least the dividing area of (M,g). Now let v1

and v2 be the boundary vertices of I. The boundary of the image of C(I)
is contained in the union C(v1)∪C(v2). Therefore, one of these two cycles
must have mass at least (1/2)A(M,g). Taking δ → 0 finishes the proof. �

6 Appendix: Falconer’s Estimate for the Linear k-Width

In [F], Falconer proved the following theorem, which we have reformulated
in our language.

Theorem (Falconer). Let U be a bounded open set in R
n. Suppose that

k > n/2. Then there is a family of parallel k-planes, each interesecting U
in a region of k-volume at most C(n)Volume(U)k/n.

The proof is based on Fourier analysis. We give a sketch in the simplest
case: k = 2, n = 3. By a scaling argument, we can assume that the volume
of U is 1, and we let f denote the characteristic function of U . Then we
consider the Fourier transform of f . Because ‖f‖1 = 1, we have ‖f̂‖∞ ≤ 1.
Because ‖f‖2 = 1, the Plancherel theoerem tells us that ‖f̂‖2 = 1. We
write this last equation in polar coordinates,

∫

S2

∫ ∞

0

∣∣f̂(θ, r)
∣∣2r2dr dθ = 1 .
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It’s convenient to expand the polar coordinates so that the radius takes
values on the whole real line by identifying (θ,−r) with (−θ, r),

∫

S2

∫ ∞

−∞

∣∣f̂(θ, r)
∣∣2r2dr dθ = 2 .

Since the unit sphere has area 4π, we conclude that for some choice of θ,
we have the following inequality:

∫ ∞

−∞

∣∣f̂(θ, r)
∣∣2r2dr ≤ 1

2π
. (∗∗)

Now the main idea of the proof is that for fixed θ, the function f̂(θ, r)
encodes the integrals of f over all the planes perpendicular to θ. This idea
appears in the theory of the Radon transform. The problem is rotationally
invariant, so we may assume that θ = (0, 0, 1). Define the averaged function
F (z) to be

∫
R

2 f(x, y, z)dx dy. Then an elementary calculation shows that
F̂ (ξ) = f̂(θ, ξ). Using equation (∗∗), we can estimate F̂ sufficiently well to
bound supz |F (z)|.

In addition to (∗∗), we also know that |F̂ (ξ)| = |f̂(θ, ξ)| ≤ 1 everywhere.
We combine these inequalities,

∫ ∞

−∞

∣∣F̂ (ξ)
∣∣2(1 + |ξ|)2

dξ < 5 .

Next we use the Cauchy–Schwarz inequality to bound
∫ ∞
−∞ |F̂ (ξ)|dξ:

∫ ∞

−∞

∣
∣F̂ (ξ)

∣
∣dξ =

∫ ∞

−∞

[|F̂ (ξ)|(1 + |ξ|)](1 + |ξ|)−1dξ

≤
[ ∫ ∞

−∞

∣∣F̂ (ξ)
∣∣2(1+|ξ|)2

dξ

]1/2[ ∫ ∞

−∞

(
1+|ξ|)−2

]1/2

<
√

10 .

Finally, by the Fourier inversion theorem, we conclude that ‖F‖∞ ≤
‖F̂‖1 <

√
10. In other words, every integral

∫
R

2 f(x, y, z)dx dy is less than√
10. Since f is the characteristic function of U , the intersection of U with

each plane z = constant has area less than
√

10.
In the general case k > n/2, the proof is only slightly more complicated.

Instead of polar coordinates, one has to average over the Grassman manifold
of k-planes in R

n, and instead of the Cauchy–Schwarz inequality, one has
to use the Holder inequality.

Falconer’s theorem does not extend to the case k = 1 because of the
Besicovitch example. I don’t know whether it extends to k in the interme-
diate range 2 ≤ k ≤ n/2. For more information, consult [B], [Wo], and the
references therein.
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