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A DUALITY THEOREM FOR RIEMANNIAN
FOLIATIONS IN NONNEGATIVE SECTIONAL

CURVATURE

Burkhard Wilking

Using a new type of Jacobi field estimate we will prove a duality theorem
for singular Riemannian foliations in complete manifolds of nonnegative
sectional curvature. Recall that a transnormal system F is a subdivision of
M into C∞ immersed connected complete submanifolds without boundary,
called leaves, such that geodesics emanating perpendicularly to one leaf
stay perpendicular to the leaves. If M is complete the leaf L(p) of each
point p ∈ M is intrinsically complete as well. A transnormal system F is
called a singular Riemannian foliation if there are vector fields Xi (i ∈ I)
in M such that TpL(p) = spanR{Xi|p | i ∈ I} for all p ∈ M , see [M].
Examples of singular Riemannian foliations are the fiber decomposition of
a Riemannian submersion or the orbit decomposition of an isometric group
action.

A piecewise smooth curve c is called horizontal with respect to a trans-
normal system F , if ċ(t) is in the normal bundle νc(t)(L(c(t))) of the leaf
L(c(t)). One can define a dual foliation F# by defining

L#(p) :=
{
q ∈M | there is a piecewise smooth horizontal curve from p to q

}

as dual leaf of a point p ∈M . We will see that L#(p) is a smooth immersed
submanifold of M , see section 2. The double dual is not always equal to the
original foliation. But the triple dual foliation is usually isomorphic to the
dual foliation. In general one cannot expect that the dual foliation has too
many reasonable properties. We will see that this is different in nonnegative
curvature. The main results can be interpreted as rigidity versions of the
following:
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Theorem 1. Suppose that M is a complete positively curved manifold
with a singular Riemannian foliation F . Then the dual foliation has only
one leaf.

In other words one can connect two arbitrary points in M by a hori-
zontal curve. It should be noted that the theorem is global in nature. If
one considers a cohomogeneity one action on a sphere then of course the
horizontal distribution is one dimensional in the generic part and hence in-
tegrable. However, a horizontal curve can run into singular orbits and then
with different directions out of singular orbits. This way one can reach
more than just a one-dimensional subset and in fact every point on the
sphere.

Theorem 1 suggests to introduce a new length metric on M by defining
the distance of two points as the infimum over the length of all horizontal
curves connecting these two points. The previous example shows that one
cannot expect that the two metrics induce the same topology, but it would
be interesting to know whether one can say more about the latter metric,
other than that M stays connected.

We prove Theorem 1 together with the following rigidity result in sec-
tion 3.
Theorem 2. Suppose that M is a complete nonnegatively curved mani-
fold with a singular Riemannian foliation F . Suppose the leaves of the dual
foliation are complete. Then F# is a singular Riemannian foliation as well.

In many cases it is actually possible to remove the assumption on the
completeness of the dual leaves.
Theorem 3. Suppose that M is a complete nonnegatively curved mani-
fold with a singular Riemannian foliation F . Then the dual foliation has
intrinsically complete leaves if in addition one of the following holds:

(a) F is given by the orbit decomposition of an isometric group action.
(b) F is a non-singular foliation and M is compact.
(c) F is given by the fibers of the Sharafutdinov retraction.

We recall that an open nonnegatively curved manifold M is by the soul
theorem of Cheeger and Gromoll [ChG] diffeomorphic to the normal bundle
of a compact totally geodesic submanifold Σ, the soul of M . Sharafutdi-
nov showed that there is a distance nonincreasing retraction P : M → Σ.
By Perelman’s [P] solution of the soul conjecture, P is a Riemannian sub-
mersion of class C1. Guijarro [Gu] improved the regularity to C2. Before
we prove Theorem 3 in section 5, we will use Theorem 2 to establish the
following regularity result in section 4.
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Corollary 4. Let (M,g) be an open nonnegatively curved manifold, Σ a
soul of M . Then the Sharafutdinov retraction P : M → Σ is of class C∞.

Cao and Shaw [CS] proposed an independent proof of Corollary 4. They
showed that the fibers of the Sharafutdinov retraction admit locally a one-
dimensional foliation by geodesics. However, the tangent fields of these
geodesics are obtained from the convex exhaustion in the soul construction.
This vector field is continuous and in general not differentiable. Thus the
map G constructed in the proof of Proposition 6 of [CS] is also just a C1

parametrization and not of class C∞ as claimed. Subsequently the author
heard that Cao and Shaw think they can fix the problem, by somehow
reducing it to showing that the vector field is “horizontally of class C∞”.
However, this announcement contains no definition or argument and thus
the author is not able to comment on its validity.

Recall that a map between metric spaces σ : X → Y is a submetry if
σ(Br(p)) = Br(σ(p)) for any metric ball Br(p) in X. If both X and Y are
Riemannian manifolds then σ is a Riemannian submersion of class C1,1 by
a result of Berestovskii and Guijarro [BG]. If X is a Riemannian manifold
and Y is arbitrary, then the fibers of σ give rise to a generalized singular
Riemannian foliation. In general the fibers can have boundary and might
be only of class C1,1.

Corollary 5. Let (M,g) be an open nonnegatively curved manifold, and
let Σ be a soul of M . Then there is a noncompact Alexandrov space A and
a submetry

σ : M → Σ ×A

where Σ×A is endowed with the product metric. Moreover the fibers of σ
are compact smooth submanifolds without boundary.

In particular, any non-contractible open manifold of nonnegative sec-
tional curvature has a nontrivial product as a metric quotient, for the proof
see section 7.

Corollary 6. Let (M,g) be an open nonnegatively curved manifold,
Σ a soul of M , and P : M → Σ the Sharafutdinov retraction. Suppose
x ∈ TpM is horizontal with respect to P , and suppose that v ∈ TpM is a
vertical vector perpendicular to the holonomy orbit. Then v and x span a
totally geodesic flat.

We should mention that the family of totally geodesic flats in Corollary 6
is at least as big as the family obtained from Perelman’s proof of the soul
conjecture. Equality occurs precisely if the normal holonomy group of Σ
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acts transitively on the normal sphere. From a metric point of view this is
a somewhat special case which is better understood than the general sit-
uation. For example by Walschap [W] the normal exponential map of the
soul is a diffeomorphism and the cone at infinity is a ray. In general the
diffeomorphism between ν(Σ) and M is not given by the exponential map.
However using our results we can show that the diffeomorphism can be
chosen such that it respects the structure of M as a doubly foliated space,
see section 8.

Corollary 7. There is a diffeomorphism f : ν(Σ) →M satisfying

(a) P ◦ f = π, where π : ν(Σ) → Σ denotes the natural projection.
(b) f∗ maps the horizontal geodesics in ν(Σ) onto horizontal geodesics

in M , where ν(Σ) is endowed with the natural connection metric.

It was shown in [Wi] that if a group G acts isometrically on a positively
curved manifold with a nontrivial principal isotropy group, then the orbit
space M/G has boundary. In nonnegative sectional curvature we have the
following rigidity result (section 9).
Corollary 8. Let (M,g) be a nonnegatively curved complete manifold,
and suppose a Lie group G acts isometrically and effectively on (M,g) with
principal isotropy group H �= 1. If the orbit space M/G has no boundary,
then there is a closed subgroup K with H � K, an invariant metric on G/K,
and a G equivariant Riemannian submersion σ : M → G/K with totally
geodesic fibers.

The main new tool used to prove the above results is a simple and
general observation which may very well be useful in different context as
well. It allows us to give what we call transversal Jacobi field estimates.
Let c : I → (M,g) be a geodesic in a Riemannian manifold (M,g), and
let Λ be an (n − 1)-dimensional family of normal Jacobi fields for which
the corresponding Riccati operator is self adjoint. Recall that the Riccati
operator L(t) is the endomorphism of (ċ(t))⊥ defined by L(t)J(t) = J ′(t)
for J ∈ Λ. Suppose we have a vector subspace Υ ⊂ Λ. Put

T v
c(t)M :=

{
J(t)

∣
∣ J ∈ Υ

} ⊕ {
J ′(t) | J ∈ Υ , J(t) = 0

}
.

Observe that the second summand vanishes for almost every t and that
T v

c(t)M depends smoothly on t. We let T⊥
c(t)M denote the orthogonal com-

plement of T v
c(t)M , and for v ∈ Tc(t)M we define v⊥ as the orthogonal

projection of v to T⊥
c(t)M . If L is non-singular at t we put

At : T v
c(t)M → T⊥

c(t)M , J(t) �→ J ′(t)⊥ for J ∈ Υ .
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It is easy to see that A can be extended continuously on I. For a vector field
X(t) ∈ T⊥

c(t)M we define ∇⊥X/∂t = (X ′(t))⊥. The following observation
which is proved in section 1 is key.
Theorem 9. Let J ∈ Λ−Υ and put Y (t) := J⊥(t). Then Y satisfies the
following Jacobi equation

(∇⊥)2

∂t2
Y (t) +

(
R(Y (t), ċ(t))ċ(t)

)⊥ + 3AtA
∗
tY (t) = 0 .

One should consider (R(·, ċ(t))ċ(t))⊥ +3AtA
∗
t as the modified curvature

operator. The crucial point in the equation is that the additional O’Neill
type term 3AtA

∗
t is positive semidefinite. We will denote the family of all

vector fields Y obtained from Λ and Υ by Λ/Υ.
Corollary 10. Consider an (n−1)-dimensional family Λ of normal Jacobi
fields with a self adjoint Riccati operator along a geodesic c : R → M in a
nonnegatively curved manifold. Then

Λ = spanR

{
J ∈ Λ | J(t) = 0 for some t

} ⊕ {
J ∈ Λ | J is parallel

}
.

It should be understood that this does not follow from the usual Rauch
or Riccati comparison for the family Λ since this fails after the first conju-
gate point. Instead one considers

Υ :=
{
J ∈ Λ | J(t) = 0 for some t

}
.

Then for any J ∈ Λ − Υ and any t ∈ R the vector J(t) is transversal to

T v
c(t)M :=

{
J(t) | J ∈ Υ

} ⊕ {
J ′(t) | J ∈ Υ , J(t) = 0

}
.

By Theorem 9 the family Λ/Υ satisfies again a Jacobi equation with non-
negative curvature operator, and as explained for this family the selfdual
Riccati operator is non-singular everywhere. By the usual Riccati compari-
son (see for example [EH]) the Riccati operator of the family Λ/Υ vanishes
and Λ/Υ consists of parallel Jacobi fields. Clearly Corollary 10 follows. We
conclude the introduction with a few open problems.
Problem (Berestovskii and Guijarro). Let σ : M → B a submetry be-
tween complete nonnegatively curved manifolds. Is σ of class C∞?

If one assumes in addition that M is compact and that σ is of class C∞

on some open subset U ⊂ M , then it is conceivable that one can modify
the proof of Corollary 4 to show that σ is smooth. Similarly Theorem 3
might be viewed as support for the following

Conjecture. Suppose F is a singular Riemannian foliation of a non-
negatively curved complete manifold M . Then the dual foliation has com-
plete leaves.
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In singular spaces one can define metric foliations as subdivisions into
connected subsets which are given locally by the fibers of a submetry. One
can still define horizontal curves in this setting and it is natural to ask

Problem. Suppose X is an Alexandrov space of nonnegative curvature
and suppose that F is a metric foliation. Is the dual foliation also a metric
foliation?

The idea for this paper came when the author thought about a prob-
lem posed by V. Kapovitch proposing that collapse of manifolds with lower
curvature bound should in a suitable sense occur along the fibers of a sub-
metry. If M is an open manifold of nonnegative sectional curvature, then
the cone at infinity C(M) of M is isometric to the cone at infinity of A
where A is the Alexandrov space from Corollary 5. By combining with
Perelman’s stability theorem, if dim(C(M)) = dim(A), then the collapse of
M to C(M) indeed occurs along the fibers the submetry pr2 ◦σ : M → A
from Corollary 5.

Remark 11. Corollary 10 also gives obstructions for invariant positively
curved metrics on cohomogeneity one manifolds. In fact, if c(t) is a normal
geodesic in a positively curved cohomogeneity one G–manifold, then the
Killing fields of the action give rise to an (n − 1)–dimensional family of
Jacobi fields along c with a self adjoint Riccati operator. Applying Corol-
lary 10 gives that the Lie algebras of the isotropy groups along c generate
the Lie algebra of G as a vectorspace. For more details we refer the reader
to [GWZ].

I would like to thank one of the referees for useful comments.

1 The Transversal Jacobi Field Equation

In this section we prove Theorem 9. It suffices to prove the equality for a
generic t0, i.e. we may assume that the Riccati operator is non-singular at t0
or equivalently (ċ(t0))⊥ = {J(t0) | J ∈ Λ}. Since we can add a Jacobi field
of Υ to J without changing Y , we can without loss of generality assume
that J(t0) ∈ T⊥

c(t0)M . Let X1(t), . . . ,Xd(t) ∈ T⊥
c(t)M be orthonormal vector

fields with ∇⊥
∂t Xi = 0. We may assume J(t0) = X1(t0). We claim

(
J ′(t0)

)v = A∗J(t0) and X ′
i(t) = −A∗Xi(t) . (1)

To prove these equations let V (t) denote a Jacobi field in Υ. Then
〈
J ′(t0), V (t0)

〉
=

〈
J(t0), V ′(t0)

〉
=

〈
J(t), AV (t)

〉
,
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where we used that the Riccati operator of the family Λ is self adjoint. The
second equation of (1) follows from

0 = d
dt

〈
Xi(t), V (t)

〉
=

〈
X ′

i(t), V (t)
〉

+
〈
Xi(t), V ′(t)

〉

=
〈
X ′

i(t), V (t)
〉

+
〈
Xi(t), AV (t)

〉
.

Thus we can finish the proof of Theorem 9 as follows:
〈

(∇⊥)2

∂t2
J⊥,Xk(t0)

〉
+

〈
R(J(t0), ċ(t0))ċ(t0),Xk(t0)

〉

= d2

dt2 t=t0
〈J,Xk〉 −

〈
J ′′(t0),Xk(t0)

〉

= 2
〈
J ′(t0),X ′

k(t0)
〉

+
〈
J(t0),X ′′

k (t0)
〉

= 2
〈
J ′(t0),X ′

k(t0)
〉

+
〈
X1(t0),X ′′

k (t0)
〉

= 2
〈
J ′(t0),X ′

k(t0)
〉 − 〈X ′

1(t0),X
′
k(t0)

〉
+ d

dt |t=t0

〈
X1(t),X ′

k(t)
〉

= −3
〈
AA∗J(t0),Xk(t0)

〉
,

where we used 〈X1(t),X ′
k(t)〉 ≡ 0 and equation (1) for the last equality.

Clearly the theorem follows.

2 Some General Remarks on Dual Foliations

Proposition 2.1. Let (M,g) be a Riemannian manifold with a trans-
normal system F , and let F# denote the dual foliation. There is a family
of C∞ vector fields (Xi)i∈I with compact supports such that any dual leaf
L# is a C∞ immersed submanifold with TpL# = spanR{Xi|p | i ∈ I}.
Remark 12. (a) Even if the ambient manifold and the leaves of F are
complete it is in general not clear that the dual leaves are complete. The
dual foliation could for example have open leaves.

(b) The proof below also shows that one can connect two points of one
dual leaf by a piecewise horizontal geodesic.

Proof of Proposition 2.1. Let L be a leaf of F . By assumption, geodesics
emanating perpendicularly to L stay horizontal. We consider all C∞ vector
fieldsX inM which can be obtained as follows: there is a relatively compact
open subsetK of the normal bundle of L such that expK is a diffeomorphism
onto its image, the image contains the support of X and exp−1∗ (X) is a
vector field tangential to the fiber direction, that is exp−1∗ (X) is in the
kernel of π∗ where π : ν(L) → L denotes the natural projection. Since the
set exp(νp(L)) is contained in a dual leaf for each p ∈ L, it follows that the
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flow lines of such a vector field stay in a dual leaf. In fact two points on a
flow line can be connected by a piecewise horizontal geodesic.

We let C denote the collection of all these vector fields where L runs as
well. Let D denote the diffeomorphism group generated by the flows of all
vector fields in C. Finally put

C2 := {φ∗X◦φ−1 | X ∈ C , φ ∈ D} .
Since φ ∈ D maps the integral curves of X ∈ C to the integral curves
of φ∗X◦φ−1 , the group D is also the group generated by the flows of the
vector fields in C2. By construction the singular distribution spanned by
C2 has constant dimension along orbits of D. Using the description of the
Lie bracket as a Lie derivative, we see that Lie brackets of vector fields in
C2 are tangential to the distribution. As in the proof of Frobenius’ theorem
we see that the orbits of D are smooth submanifolds whose tangent space
at each point is spanned by vector fields in C2. Since these tangent spaces
contain all vectors which are horizontal with respect to F , it is clear that
the orbits of D coincide with the dual leaves. �

3 The Dual Foliation in Nonnegative Curvature

In this section we prove Theorem 1 and Theorem 2 simultaneously. Let
F be a singular Riemannian foliation of a complete nonnegatively curved
manifold. Suppose the dual foliation has more than one leaf. Then there
is a dual leaf L# which is not open. By Remark 12 any two points in L#

can be connected by a piecewise horizontal geodesic.
We first plan to show that for any F-horizontal geodesic c : R → L#

the normal space of L# along c is spanned by parallel Jacobi fields.
We consider the family Λ of normal Jacobi fields along c that correspond

to variations of c by geodesics emanating perpendicularly to L(c(0)) at
time 0. Clearly, the Riccati operator corresponding to Λ is self adjoint.

Consider a Jacobi field J ∈ Λ with J(t0) = 0 for some t0. We want to
prove J ′(t0) ∈ ν(L(c(t0)). By assumption J is the variational vector field
a variation cs(t) of c by horizontal geodesics. Let Yi (i ∈ I) be a family of
vector fields satisfying spanR{Yi|p | i ∈ I} = TpL(p) for all p. Since ċs(t0)
is perpendicular to Yi|cs(t0) and d

ds |s=0
cs(t0) = J(t0) = 0, we get

0 = ∂
∂s |s=0

〈Yi|cs(t0), ċs(t0)〉 = 〈Yi|c(t0), J
′(t0)〉

for all i. Thus J ′(t0) ∈ ν(L(c(t0)). This shows that J can be written also as
a variation of c by horizontal geodesics with a fixed value c(t0) at time t0.
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Therefore J(t) is tangential to the dual leaf L# for all t. Hence the vector
fields in

Υ := spanR

{
J ∈ Λ | J(t) = 0 for some t

}

are everywhere tangential to the dual leaf L#.
We deduce from Corollary 10 that Λ contains a nontrivial subfamily of

parallel Jacobi fields and this completes the proof of Theorem 1.
We proceed with the proof of Theorem 2. Each Jacobi field J ∈ Λ with

J(0) ∈ TL# is everywhere tangential to L#. Therefore, the subspace V ⊂ Λ
of normal Jacobi fields which are everywhere tangential to L# has the
maximal possible dimension dim(L#)−1. Notice that the decomposition of
Corollary 10 necessarily defines two pointwise orthogonal families of Jacobi
fields. Because of Υ ⊂ V we see that the normal bundle of L# along c is
spanned by parallel Jacobi fields. The rest of the proof is divided into three
steps.

Step 1. Let L#
0 be a dual leaf of maximal dimension. Then F# induces

a (non-singular) Riemannian foliation in the r-tube Br(L#
0 ) around L#

0 for
a suitable small r > 0.

By Proposition 2.1 there is an open neighborhood U of L#
0 such that

F# induces an actual foliation on U . We may assume that U decomposes
into dual leaves. In fact otherwise we can replace U by

⋃
φ∈D φ(U), where

D denotes the group of diffeomorphisms defined in the proof of Proposi-
tion 2.1. Let L# ⊂ U be a dual leaf, and let N ⊂ ν(L#) be an induced leaf
of the normal bundle of L#. The natural projection N → L# is a covering
and along F-horizontal geodesics in L#, the submanifold N develops by
parallel Jacobi fields. Since any two points in a dual leaf can be connected
by a piecewise horizontal geodesic, it follows that N consists of vectors of
the same length. Clearly this shows that F# is a Riemannian foliation
in U .

Choose a point p ∈ L#
0 and a number r > 0 such that Br(p) ⊂ U . Since

the Riemannian foliation F|U decomposes into intrinsically complete dual
leaves, it follows that Br(L#

0 ) ⊂ U . This completes the proof of Step 1.

Step 2. Let L#
0 be a dual leaf of maximal dimension, and let N ⊂ ν(L#

0 )
be an induced leaf of the normal bundle of L#

0 . There is a unique maximal
s0 ∈ (0,∞] such that exp(sN) is a dual leaf of maximal dimension for all
0 < s < s0. If s0 < ∞, then exp(s0N) is a dual leaf whose dimension is
not maximal. Furthermore, the map N → exp(s0N), v �→ exp(s0v) is a
submersion.
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By Step 1 exp(sN) is a dual leaf of maximal dimension for small s > 0.
Suppose s0 < ∞. The inclusion L#(exp(s0x)) ⊂ exp(s0N) follows from
L#(exp(sx)) ⊂ exp(sN) for s < s0 and Proposition 2.1.

We next want to prove that exp(s0N) is contained in a dual leaf. Here
the definition of F# enters the proof once more. Fix x ∈ N and let y ∈ N
be any other point. Choose a piecewise horizontal geodesic c̃ from the foot-
point of x to the foot-point of y such that x and y are parallel along c̃. Let
X(t) be the parallel vector field along c̃ with X(0) = x. By the previous
considerations cs = exp(sX(t)) is a variation of curves that maps to the
trivial variation on a local quotient, s < s0. Since c0 projects to a locally
minimizing curve in a local quotient we deduce from the Rauch II compari-
son theorem and the equality discussion that cs = exp(sX(t)) is a piecewise
horizontal geodesic as well, s < s0. By continuity the same holds for s = s0
and exp(s0y) is contained in the same dual leaf as exp(s0x). In other words,
exp(s0N) ⊂ L#(exp(s0x)). Thus exp(s0N) = L#(exp(s0x)). Since s0 was
chosen maximal it is clear that L#(exp(s0x)) cannot have maximal dimen-
sion. It remains to check that the map ψ : N → exp(s0N), v �→ exp(s0v)
is a submersion. Put L#

1 := exp(s0N). We define a map ϕ : N → ν(L#
1 )

by assigning to x ∈ N the normal vector y = − d
ds |s=s0

exp(sx). Clearly

ι is an injective immersion. If we let π : ν(L#
1 ) → L#

1 denote the natu-
ral projection, then ψ = π ◦ ϕ. Thus it suffices to prove that π|ϕ(N) is a
submersion.

Consider vector fields (Xi)i∈I as in Proposition 2.1, and let D denote
the diffeomorphism group generated by the flows of these vector fields.
In particular the orbits of D are dual leaves. If we identify νp(L#

1 ) with
TpM/TpL#

1 , we get a natural action of D on the normal bundle ν(L#
1 ). It

is clear that ϕ(N) is invariant under this action. Since π|ϕ(N) is equivariant
with respect to the D-action it follows that it is a submersion.

Step 3. F# is a singular Riemannian foliation.

Consider again a dual leaf L#
0 of maximal dimension. Notice that the

closure F of the immersed submanifold L#
0 in M is contained in the tubu-

lar neighborhood Br(L#
0 ) from Step 1. In particular we deduce that F

decomposes into dual leaves of maximal dimension.
We claim that the set of points in M for which the dual leaves have

maximal dimension is open and dense. In fact for q ∈ M choose a mini-
mal geodesic c : [0, 1] → M from F to q. We have seen that L#(c(0)) has
maximal dimension and clearly ċ(0) ∈ ν(L#(c(0))). If we let N denote the
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leaf of ċ(0) in ν(L#(c(0))), then exp(sN) is a leaf of maximal dimension for
s ∈ [0, 1). In fact for each s ∈ [0, 1) the map N → exp(sN), x �→ exp(sv)
is injective because otherwise c would not be a minimal geodesic from
L#(c(0)) ⊂ F to q.

We are now ready to verify that F# is a singular Riemannian foliation.
Let q0 ∈ M . It suffices to show that each geodesic emanating perpendic-
ularly to L#(q0) at q0 stays for a short time perpendicular to the dual
leaves. We let Lr denote the component of L#(q0) ∩ B5r(p) with q0 ∈ Lr

for small r. Since L(q0) is an immersed submanifold it is clear that Lr is
Lipschitz continuous in r ∈ (0, r0] with respect to the Hausdorff distance
between subsets of M . We also may assume that the normal exponential
map of Lr has an injectivity radius > 3r.

Clearly we can establish our claim by verifying the following statement
for some r > 0: for any dual leaf L# the distance function d(·, Lr) is locally
constant on Br(q0) ∩ L#. As above, we can find a leaf N ⊂ ν(L#

h ) in the
normal bundle of a dual leaf of maximal dimension such that exp(sN) is a
dual leaf of maximal dimension for all s ∈ [0, 1) and L#(q0) = exp(N).

We choose an element u ∈ N with exp(u) = q0 and let for δ � r, Lr(δ)
denote the connected component of L#(exp(1 − δ)u) ∩ B5r(q0). We have
seen above that the map N �→ L(exp(1−δ)u), x �→ exp((1−δ)x) is injective
and thus there is a local submersion Lr(δ) → Lr+δ that maps exp((1− δ)x)
to exp(x). In summary, we can say that the Hausdorff distance between Lr

and Lr(δ) is proportional to δ.
Therefore it suffices to check that the following holds. Let L1 denote

a component of L#
1 ∩ B5r(q0) that intersects Br(q0) where L#

1 is a dual
leaf of maximal dimension. Then for any other dual leaf L#

2 the function
q �→ d(L1, q) is locally constant on L#

2 ∩Br(q0).
Fix a point in q′ ∈ L2 ∩Br(q0). We plan to show that L2 ∩Br(q0) → R,

q �→ d(q, L1) attains a local maximum at q′. Since q′ was arbitrary, this
will imply that the function is locally constant. Choose a vector v ∈ TM of
minimal length with a foot point in the closure of L1 and with exp(v) = q′.
The foot point pv of v is clearly contained in B3r(q0) and the dual leaf
L#(pv) has maximal dimension as well. Furthermore an intrinsic open
neighborhood L′ of p(v) in L#(pv) is contained in the closure of L1 in M .
In particular d(q, L1) ≤ d(q, L′) for all q ∈M . Therefore it suffices to prove
that L2 ∩ Br(q0) → R, q �→ d(q, L′) attains a local maximum at q′. Let N
be the induced leaf in the normal bundle of L#(pv) with v ∈ N , and let N ′

be the connected component of N intersected with the normal bundle of L′



1308 B. WILKING GAFA

with v ∈ N ′. For all s < 1 the set exp(sN ′) is not contained in a singular
dual leaf because otherwise the geodesic exp(τv) would not be a minimal
connection from L′ to q′. By our previous considerations it follows that for
all s ≤ 1 the set exp(sN ′) is an open subset of a dual leaf. In particular,
L2 ∩Br(q0) → R, q �→ d(q, L′) attains a local maximum at q′.

4 Smoothness of the Sharafutdinov Retraction

The aim of this section is to prove Corollary 4.
We consider the Sharafutdinov retraction P : M → Σ. By Perelman P

is a Riemannian submersion of class C1,1. Moreover, P ◦ exp: ν(Σ) → Σ
equals the natural projection π from the normal bundle ν(Σ) to the soul Σ.
We let F denote the fiber decomposition given by P and F# the dual
foliation. There is a distance tube Br(Σ) of radius r around Σ on which
P is of class C∞. Also any horizontal curve in M has constant distance
to the soul. Thus there is a natural subdivision of Br(Σ) into dual leaves.
These submanifolds are of class C∞ and for suitable small r they are also
intrinsically complete since they are via the exponential map diffeomorphic
to the corresponding dual leaves in ν(Σ).

Theorem 4.1. Consider the dual foliation F# of an open nonnegatively
curved manifold M . Suppose L# is a dual leaf of class C∞, and assume
that P|L# is smooth as well.

(a) For each v ∈ ν(L#), the curve P (exp(tv)) is constant in t.

(b) Let c(t) ∈ L# be a piecewise geodesic which is horizontal with re-
spect to P , and let X(t) be a parallel vector field along c with
X(0) ∈ ν(L#). Then exp(X(t)) is a piecewise horizontal geodesic
with respect to P as well.

(c) Let F1 = P−1(p0), F2 = P−1(q0) be fibers of the Sharafutdinov re-
traction. Consider a broken geodesic in Σ from p0 to q0 and l :F1 →F2,
p �→ cp(1), where cp denotes the unique horizontal lift of c with
cp(0) = p. For p ∈ F1 ∩ L# and q = cp(1) the diagram

νp

(L#
) Parcp−→ νq

(L#
)

exp ↓ ↓ exp

F1
l−→ F2

commutes, where Parcp denotes the parallel transport along cp.
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Sublemma 4.2. Let c(t) be a horizontal geodesic in M . Then there is an
(n − 1)-dimensional family Λ of normal Jacobi fields along c with a self-
adjoint Riccati operator such that each Jacobi field in Λ is the variational
vector field of a variation of horizontal geodesics.

If P is of class C∞ in a neighborhood of c(0), then the sublemma is a gen-
eral statement on Riemannian submersions. Since any horizontal geodesic
is a limit of such geodesics, the result follows.
Proof of Theorem 4.1. Let c(t) be a horizontal geodesic in L#. Choose a
family of Jacobi fields Λ as in the sublemma. As in the proof of Theorem 2
one can show for each J ∈ Λ that if J(t) ∈ TL# for some t, then J(t) ∈ TL#

for all t. As before we deduce that the normal bundle of L# along c is
spanned by parallel Jacobi fields contained in Λ.

Therefore each normal vector v of L# has the property that parallel
transport along any broken P -horizontal geodesic maps v to a vector which
is perpendicular to the dual leaf and hence vertical with respect to P .
Using Theorem 3.1 in [Gu] part (a) and (b) follow. Part (c) is just a simple
consequence of (b). �

The proof of Theorem 3.1 in [Gu] is a generalization of Perelman’s proof
of the soul conjecture. A similar generalization will be given in section 5.
Lemma 4.3. The dual leaves are immersed submanifolds of class C∞, and
the restriction of P to each dual leaf L#

1 is of class C∞.

Proof. As before we choose r > 0 such that P is of class C∞ in Br(Σ). Let
L# a generic dual leaf in Br(Σ). In other words the intersection of L# with
a fiber of P corresponds to a principal orbit of the action of the normal
holonomy group on the fiber. Then L# is of class C∞. Furthermore the
trivialization of the normal bundle ν(L#) of L# which is given by Bott
parallel vector fields is of class C∞ as well. We recall that Bott parallel
vector field in ν(L#) is locally given as the horizontal lift of a fixed vector in
a local quotient U/F# space of the dual foliation. Consider a Bott parallel
vector field X in the normal bundle of L#. Then X is parallel along any
horizontal geodesic in L# and by Theorem 4.1 the image of the map

h : L# →M, p �→ exp(X(p))

is a dual leaf L#
1 . Of course it is also clear that all dual leaves arise in this

way. Moreover the map is of class C∞. In order to show that L#
1 is of class

C∞ it suffices to show the map h has constant rank.
The differential of h at p gives rise to a family of Jacobi fields along

the geodesic s → exp(sX(p)). By Theorem 4.1 this family is the sum of a
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subfamily of parallel Jacobi fields which are horizontal with respect to P
and a vertical family. Thus the kernel of h∗p is vertical with respect to P .
Let q be another point in L#, cp be a horizontal broken geodesic from p
to q, and put c = P ◦ cp. Finally we define

l : P−1(P (p)) → P−1(P (q))

as in the Theorem 4.1 (c). Since P is of class C1,1 the map l is locally
bilipschitz. Furthermore P and l are of class C∞ in a neighborhood of p.
By Theorem 4.1 the diagram

L# ∩ P−1(P (p)) l−→ L# ∩ P−1(P (q))
h ↓ ↓ h
F1

l−→ F2

commutes. Thus the kernel of h∗q is given by the image of the kernel of
h∗p under l∗p. In particular, h is a map of constant rank. Thus L#

1 is
of class C∞. In order to show that P|L#

1
is of class C∞, we observe that

P ◦ h = P|L# by Theorem 4.1. Since L# is of class C∞ and h : L# → L#
1

is a smooth submersion, it follows that P|L#
1

is of class C∞ as well. �

Proof of Corollary 4. Let p ∈M . By Lemma 4.3 L#(p) is of class C∞ and
P|L#(p) is of class C∞ as well. Because of Theorem 4.1 P ◦ expν(L#(p)) =
P ◦ π, where π : ν(L#(p)) → L#(p) is the natural projection. Since P ◦ π
is of class C∞ and expν(L#(p)) is a local diffeomorphism in a neighborhood
of 0p, it follows that P is of class C∞ in a neighborhood of p. �

5 Completeness of Dual Leaves.

This section is devoted to the proof of Theorem 3. We first consider the
case (a). This case is in fact rather obvious. Since the group acts transi-
tively on the space of dual leaves, all dual leaves have the same dimension
and, by Proposition 2.1, the dual foliation is an actual non-singular folia-
tion.

(b) Let F be a Riemannian foliation by k-dimensional leaves of a non-
negatively curved n-dimensional compact manifold M . We choose a finite
foliated atlas consisting of maps xi : Ui → D

k × D
n−k where D

k,Dn−k are
unit discs in R

k and R
n−k respectively.

Notice that for each i the disc D
n−k carries a natural quotient metric gi.

We let σi : Ui → (Dn−k, gi) denote the Riemannian submersion.
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Choose ε > 0 such that the injectivity radius of the normal exponential
map of each of these k-dimensional discs is larger than 2ε and for each point
p ∈M there is an i with B̄2ε(p) ⊂ Ui. We let H ⊂ TM denote the set of all
unit vectors which are perpendicular to the dual leaves. By Proposition 2.1
it is clear that H is compact.

We claim that for v ∈ H the geodesic exp(sv) (s ∈ [0, ε]) stays in one
leaf of F .

As in [Gu] we modify Perelman’s proof of the soul conjecture to establish
our claim. We define a displacement function as follows. For v ∈ H consider
the foot point p of v and choose an i with B2ε(p) ⊂ Ui. Put

dis(s, v) := d
(
σi(p), σi(exp(sv))

)
,

where σi : Ui → (Dn−k, gi) is the Riemannian submersion. It is an impor-
tant and elementary fact that dis(s, v) is independent of the choice of i. We
consider

f(s) := max
{

dis(s, v) | v ∈ H
}
.

Clearly it suffices to prove that the function f[0,ε] is monotonously de-
creasing. Suppose f(t) > 0 for some t ∈ [0, ε]. Choose v ∈ H with
f(t) = dis(t, v) and i with B̄2ε(p) ⊂ Ui, where p is the foot point of v.

f(t) = d
(
σi(exp(tv), σi(p))

)
.

Let c : [0, 1] → (Dn−k, gi) be the unique minimal geodesic from σi(p) to
σi(exp(tv)), and let ch(s) be the unique horizontal lift of c starting at p.
By construction there is a δ > 0 such that the extended geodesics ch[−δ,1]
and c[−δ,1] are minimal. Furthermore by choosing δ sufficiently small we
may assume that B2ε+δf(t)(p) ⊂ Ui. Extend v to a parallel vector field X

along ch. From the proof of Theorem 2 we know that X stays perpendicular
to the dual leaf.

By applying the Rauch comparison we see that the curve exp(tX(s))
(s ∈ [−δ, 0]) is not longer than the curve c|[−δ,0]. Thus

d
(
σi(exp(tX(−δ))), c(1)) ≤ d

(
exp(tX(−δ)), exp(tX(0))

)≤ d
(
c(0), c(−δ)) .

Therefore

d
(
σi(exp(tX(−δ))), c(−δ)) ≥ d

(
c(1), c(−δ)) − d

(
c(0), c(−δ))

= d
(
c(1), c(0)

)
.

Using c(−δ) = σi(ch(−δ)) our choice of v implies that equality must hold.
By the equality discussion in Rauch II the strip exp(τX(s)), s ∈ [−δ, 0],
τ ∈ [0, t] is flat. Thus

d
(
σi(exp((t− h)X(−δ))), c(1))2 ≤ d

(
exp((t− h)X(−δ)), exp(tX(0))

)2
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≤ d
(
c(0), c(−δ))2 + h2

and

f(t− h) ≥ d
(
σi(exp((t− h)X(−δ))), c(−δ))

≥ d
(
c(1), c(−δ)) − d

(
c(−δ), c(0)) − h2

2d(c(0), c(−δ))
= f(t) − h2

2d(c(0), c(−δ)) .

Therefore
lim
h↑0

f(t) − f(t− h)
h

≤ 0 .

Consequently f[0,ε] is monotonously decreasing and thereby constant.
Using the equality discussion in Rauch II we see that for a piecewise

F-horizontal geodesic c in a dual leaf L# and a parallel unit vector field
X along c which is normal to L# the curves t �→ exp(sX(t)) are piecewise
F-horizontal geodesics as well (s ∈ [0, ε]).

Suppose there is a dual leaf L# which is not complete. We may assume
that L# has minimal dimension among all non-complete leaves. Since the
intrinsic boundary of L# in M is a union of dual leaves, we can find a dual
leaf L#

1 in the closure of L# whose dimension with dim(L#
1 ) < dim(L#).

From the previous claim it is clear that for any ε′ ≤ ε the ε′ neighborhood
around L#

1 is the union of dual leaves. By construction L#
1 is in the closure

of L#. Since L# and L#
1 have different dimensions, we can employ Propo-

sition 2.1 to see that L# and L#
1 have positive Hausdorff distance in M .

Combining the last three statements gives a contradiction.
For the proof of (c) notice that we can apply Theorem 4.1 to see that

the ε-neighborhood of a complete dual leaf decomposes into dual leaves for
all small ε > 0. As in the previous paragraph this gives the completeness
of all dual leaves.

6 Totally Geodesic Flats in Foliated Manifolds with
Nonnegative Sectional Curvature

In this section we prove Corollary 6. In fact it clearly follows from the
following more general result.
Proposition 6.1. Let F be a singular Riemannian foliation of a non-
negatively curved manifold M and suppose the dual foliation F# has
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complete leaves. Let x ∈ TpM be a vector that is horizontal with re-
spect to F and v ∈ TpM a vector that is horizontal with respect to F#.
Then x and v span a totally geodesic flat.

Proof. Let c(t) = exp(tx) and let V (t) be parallel along cwith V (0) = v. We
have seen that V (t) stays perpendicular to the dual leaf L#. Furthermore
for each t the curve s �→ exp(sV (t)) is a horizontal geodesic with respect to
F# and hence it is vertical with respect to F . For each t one can find an
ε > 0 such that c|[t,t+ε] is a local minimal connection between L(c(t)) and
L(c(t+ ε)). By Rauch II the parallel curves t �→ exp(sV (t)) are not longer.
Since these curves connect the same leaves equality must hold in Rauch’s
comparison theorem and thus c and V generate a totally geodesic flat. �

7 Non-Contractible, Nonnegatively Curved Open
Manifolds have Nontrivial Products as Metric Quotients

In this section we prove Corollary 5.
Proposition 7.1. Let F be a singular Riemannian foliation of a non-
negatively curved manifold M and suppose the dual foliation F# has com-
plete leaves. We define a singular foliation F ∩ F# by the property that
the leaf of a point p is given by the p-component of L(p) ∩ L#(p). Then
F ∩ F# is a transnormal system.

Proof. Notice that L(p) and L#(p) intersect transversely. So F ∩ F#

is indeed a subdivision into intrinsically complete immersed submanifolds.
Let u ∈ TpM be perpendicular to L(p) ∩ L#(p). Then u = x + v with
x ∈ νp(L(p)) and v ∈ νp(L#(p)). By Proposition 6.1 x and v span a totally
geodesic flat. Moreover it is clear form the proof of Proposition 6.1 that at
each point the flat is spanned by one F-horizontal and one F#-horizontal
vector. Therefore all tangent vectors of the flat are F ∩F#-horizontal and
hence the same holds for the curve exp(tu). �

Proof of Corollary 5. We let F denote the foliation induced by the Shara-
futdinov retraction and F# its dual. We define the leaves of F# as the
closures of leaves of F#. Clearly the leaves of F# are the fibers of a
globally defined proper submetry σ2 : M → A, where A is a noncompact
Alexandrov space.

Furthermore there is a distance tube Br(Σ) around the soul such that
the leaves are via the exponential map isomorphic to the corresponding
closures of dual leaves in ν(Σ). In particular the leaves of F# in Br(Σ) are
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of class C∞. Analogously to the proof of Lemma 4.3 one can now show
that all leaves in F# are of class C∞.

Thus F# is a transnormal system. As in the proof of Proposition 7.1
one can show that F# intersected with the fibers of P gives a transnormal
system as well. Hence the map σ := (P, σ2) : M → Σ × A is a submetry.
Clearly the fibers of σ are compact and smooth. �

Notice that the fibers of σ are given by the closures of orbits of the
normal holonomy group of the soul acting on the fibers of P .

8 The Horizontal Distribution of an Open Nonnegatively
Curved Manifold is Linear

In this section we prove Corollary 7. We start with an observation that is
somewhat related to the construction of the Sharafutdinov retraction.
Lemma 8.1. Let M be an open nonnegatively curved manifold and let
F# denote the dual foliation of the Sharafutdinov retraction P : M → Σ.

(a) The convex exhaustion obtained from the soul construction is invari-
ant under the dual foliation.

(b) For each dual leaf L# �= Σ, there is a sequence of dual leaves L#
n

converging to L# with dim(L#
n ) = dim(L#), dim(L̄#

n ) = dim(L̄#)
and d(Σ,L#

n ) < d(Σ,L#).
Proof. (a) We start by considering the Busemann function of a point p0 ∈
M , b(x) = limr→∞ d(∂Br(p0), x) − r.

Let c : R → M be a horizontal geodesic. Then c is contained in a
relatively compact set and thus b ◦ c is bounded. On the other hand b ◦ c
is concave and hence b ◦ c is constant. This simple observation shows that
the levels of b decompose into dual leaves.

Let C denote the maximal level of the Busemann function, and let ∂C
denote the intrinsic boundary of C. Let Σ denote the soul of C. If ∂C is
empty then C = Σ and we are done.

We have just seen that C decomposes into dual leaves. Notice that the
dual leaf Σ has constant distance to ∂C. Put

G :=
{
p ∈ C − ∂C | L#(p) has constant distance to ∂C

}
.

We have just seen that G is not empty and clearly G is closed in C − ∂C.
We claim that G is open in C as well. Let L# denote a dual leaf in G and
let r denote the distance to ∂C. Then the set Br(L#)∩C decomposes into
dual leaves. Let c(t) be a horizontal geodesic in Br(L#) ∩ C. As before
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it is clear that t �→ d(∂C, c(t)) is both bounded and concave and thereby
constant. Thus all dual leaves in Br(L#)∩C have constant distance to ∂C
and this in turn shows that G is open in C.

We have proved that the level sets of d(∂C, ·) decompose into dual
leaves as well. A simple induction argument shows that the whole convex
exhaustion is invariant under the dual foliation.

(b) For each point p ∈ M \ Σ there is a unique convex set C in the
convex exhaustion such that p is contained in the intrinsic boundary ∂C
of C. By (a) L#(p) ⊂ ∂C. We let TpC denote the tangent cone of C, and let
c be a horizontal geodesic in L#(p). Since C decomposes into dual leaves we
can employ Theorem 4.1 to see that Tc(t)C∩νc(t)(L#(p)) is parallel along c.
For each q ∈ L#(p) we define Xq as the unique unit in the tangent cone
TqC with maximal distance to the boundary of TqC. Clearly X is normal
to the dual leaf and parallel along any horizontal geodesic in L#(p). This
proves that for each s > 0, the image of L#(p) → M, q �→ exp(sX|q) is a
dual leaf as well. Clearly its distance to the soul is smaller than the distance
of L#(p). Moreover its dimension constant in s for small s. �

We recall that the normal holonomy group of the soul does not need to
be compact even in the simply connected case.
Proposition 8.2. Let M be an open manifold of nonnegative sectional
curvature, Σ a soul of M and p ∈ Σ. Consider a fiber F := P−1(p) =
exp(νp(Σ)) of the Sharafutdinov retraction. The normal holonomy group
H of Σ acts on F by diffeomorphisms and the image of the induced homo-
morphism H → Diff(F ) has a compact Lie group as its closure.

Proof. Let Fr denote the ball of radius r in F around p. Notice that the
action of H leaves Fr invariant. For small r it is clear that the homo-
morphism H → Diff(Fr) has a relatively compact image, since the action
of H is via the exponential map isomorphic to a linear orthogonal action.

Choose r ∈ (0,∞] maximal such that the image of the above homo-
morphism is relatively compact. Suppose, on the contrary, that r <∞.

Even though the action of H is not isometric, we can use Theorem 4.1 to
see that ‖Lh∗v‖ = ‖v‖ and h exp(v) = exp(Lh∗v) for any vector v ∈ νq(Hq)
in the normal bundle of an orbit, where Lh(q) := hq. Consider an orbit H̄q
of the closure H̄ ⊂ Diff(Fr). Let ε denote the focal radius of the normal
exponential map of H̄  q. The above discussion shows that the H action
in the tubular neighborhood Bε(H̄  q) = Bε(H  q) extends naturally to an
action of H̄. Thus it suffices to show that the union of all tubes Bε(H  q)
covers the closure of Fr.
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By Lemma 8.1 each closure of an H orbit in the boundary of Fr can be
approximated by a sequence of closures of H orbits in Fr which have the
same dimension as the given one. Since the closure of these orbits are the
smooth fibers of a submetry on F , it follows that the focal radii of these
submanifolds stay bounded below and thus each orbit in the boundary of
Fr is contained in some Bε(H  q) with q ∈ Fr. �

Proof of Corollary 7. Consider a fiber F = P−1(p) of the Sharafutdinov
retraction. Recall that the distance function of p has no critical points
in F . Thus we can find a gradient-like unit vector field X in F \ p.

By Proposition 8.2 the closure H̄ acts on F . For any vector v ∈ νq(H̄q)
and any h ∈ H̄ we have ‖Lh∗v‖ = ‖v‖ and h exp(v) = exp(Lh∗v), see
Theorem 4.1. Using that the orbits of H̄ induce a singular Riemannian
foliation we see furthermore that all minimal geodesics from q to p ∈ Σ are
perpendicular to H̄  q.

It is now easy to see that for any h ∈ H̄ the vector field X̃|q := Lh∗X|h−1q

is a again a gradient like vector field. A simple averaging argument shows
that we can find a gradient like vector field Y of bounded length that
commutes with the action of H̄. We can also assume Y coincides in a small
pointed neighborhood Bδ(p)\p of p with the actual gradient of the distance
function.

Since Y commutes with the action of the holonomy group, there is a
unique way to extend Y to a vertical gradient like vector field Z on M ,
by pushing Y with diffeomorphism as in Theorem 4.1 to different fibers.
Notice Z is given by Jacobi fields along horizontal geodesics and the flow
of Z maps horizontal geodesics to horizontal geodesics.

We now consider the diffeomorphism f : ν(Σ) →M given as follows: for
rv ∈ ν(Σ) with ‖v‖ = 1 and r ≥ 0 consider the integral curve γ of Z with
γ(0) = exp(δv) and put f(rv) = γ(r − δ). Notice that f(rv) = exp(rv)
for r ≤ δ. Since the vector field Z is vertical, f satisfies (a). Since the
flow of Z maps horizontal geodesics to horizontal geodesics, f maps parallel
vector fields along geodesics in Σ onto horizontal geodesics in M , as claimed
in (b). �

Remark 13. (a) Of course Corollary 7 implies that the Alexandrov space
A from Corollary 5 is bilipschitz equivalent to νp(Σ)/H̄, where H̄ denotes
the closure of the normal holonomy group of the soul, there is of course no
global bilipschitz constant though.

(b) Because of Lemma 8.1 the convex exhaustion obtained from the soul
construction in M is just the inverse image of the convex exhaustion of the
soul construction in A under the submetry σ2 : M → A.
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9 Rigidity of Non-Primitive Actions in Nonnegative
Sectional Curvature

This section is devoted to the proof of Corollary 8.

Proposition 9.1. Suppose a Lie group G acts isometrically on a non-
negatively curved manifold M . Let F denote the singular Riemannian
foliation induced by the orbit decomposition of G. Suppose the dual foli-
ation F# has a leaf which is not dense. Then there is a closed subgroup
K � G, an invariant metric G/K and a G-equivariant Riemannian submer-
sion σ : M → G/K. Furthermore the fibers of σ are closures of leaves of F#.

Proof. Let F̄# denote the foliation whose leaves are given by the closures
of leaves in F#. Clearly the group G acts transitively on the space of dual
leaves and hence also on the space of leaves of F̄#. Since F# is a singular
Riemannian submersion by Theorem 2 and Theorem 3 the leaves of F̄#

are the fibers of a submetry σ : M → X. The action of G on M induces a
transitive isometric action of G on X and hence X is a homogeneous space
G/K.

Consider the fiber F := σ−1(K). Then F = exp(ν(Kp) ∩ ν(G  p)) for
each p ∈ F and hence F is smooth. Thus σ is a Riemannian submersion. �

Proof of Corollary 8. Consider a fixed-point component N of the principal
isotropy group H which intersects a principal orbit. Using that M/G has no
boundary we deduce from Proposition 11.3 in [Wi] that any isotropy group
of a point p ∈ N is contained in the normalizer N(H) of H. In particular
it follows that for all p ∈ N the normal space νp(G  p) of the orbit G  p
is contained in TpN . Therefore for each p ∈ N the dual leaf L#(p) of p
is contained in N . By Proposition 9.1 there is a Riemannian submersion
σ : M → G/K. Furthermore one fiber F of σ is contained in N . This in
turn shows K ⊂ N(H).

We next plan to show that each fiber F := σ−1(x) is totally geodesic.
For that we consider a dense dual leaf L# ⊂ F . Let M ′ denote the union
of all principal orbits in M , and let p ∈M ′ ∩ L#. Using that M/G has no
boundary it is not hard to check

M ′∩L# :=
{
q ∈M | there is piecewise horizontal curve in M ′ from p to q

}
.

Consider a Killing field X which is perpendicular to L# at p. We claim
that X is perpendicular to L# for all q ∈ L#. To prove this we may assume
that q ∈ L#∩M ′. Since there is a piecewise horizontal geodesic in M ′ from
p to q it suffices to prove the following. If c(t) (t ∈ [0, 1]) is a horizontal
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geodesic in M ′ ∩ L# and X|c(0) ∈ ν(L#), then X|c(1) ∈ ν(L#). But this is
clear since by the proof of Theorem 2 X is a parallel Jacobi field along c
which is perpendicular to L#.

This shows that each Bott parallel vector field X along L# is the re-
striction of a Killing field. By restricting attention to those Bott parallel
vector fields along L# which are perpendicular to the closure F of L#,
we see that the Bott parallel vector fields along F with respect to σ are
given by Killing fields. Of course this implies that the holonomy maps of
the submersion σ : M → G/K are isometries and hence the fibers of σ are
totally geodesic. �

Remark 14. Notice that the fibers of the Riemannian submersion σ of
Proposition 9.1 are pairwise isometric. It would be interesting to know
whether the fibers have nonnegative curvature.

10 A Slice Theorem for Dual Foliations

In nonnegative curvature dual foliations have an additional remarkable
property.
Theorem 10.1. Let F be a singular Riemannian foliation of a non-
negatively curved manifold M . Suppose the dual foliation has closed leaves.
Then there there is subgroup D ⊂ Diff(M) such that the leaves of F# are
orbits of the D–action and for each dual leaf L# the D action on a suitable
tubular neighborhood Br(L#) is orbit equivalent to the natural action of
D on ν(L#).

We recall that the action of D on ν(L#) is induced by the identification
νq(L#) = TqM/TqL# for all q ∈ L#. In particular it follows that each
tangent cone of the orbit space M/D is isometric to R

d/H, where H is a
suitable subgroup of O(d). In other words, the singularities of M/D look
like singularities on an orbit space of an isometric group action.
Proof. Define D as in the proof of Proposition 2.1. Consider a unit normal
vector v ∈ νp(L#), a piecewise horizontal geodesic in L# starting at p,
and the parallel vector field X along c with X(0) = v. By Proposition 6.1
and Proposition 7.1 the curve t �→ exp(s(X(t)) is a piecewise horizontal
geodesic as well for each s ∈ R.

Let N denote the subset of ν(N) consisting of all unit vectors which are
parallel to v along some piecewise horizontal geodesic. It follows that for
all s the set exp(sN) is a dual leaf. Hence it suffices to prove that N is an
orbit of D with respect to the induced action of D on ν(L#).
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Consider a horizontal geodesic c in L# and a parallel vector field H
normal to L#. We extend ċ(0) to a vector field X along L := L(c(0)) in
neighborhood of c(0) by using radially normal parallel translation. We now
choose a vector field Y in the normal bundle ν(L) with compact support
such that Y contained in the kernel of π∗ and YsXp = d

dt t=s
tX in a neigh-

borhood of (p, s) = (c(0), 0). We may assume that there is an open set
U ⊂ ν(L) containing the support of Y such that expU is a diffeomorphism
onto its image.

Let Z be the vector field in M which is exp-related to Y . By construc-
tion the flow of Z is contained in D. The induced action of the flow of Z
in ν(L#) has H[−ε,ε] as an integral curve for a suitable small ε > 0. In
summary it follows that there is an ε > 0 such that H([−ε, ε]) is contained
in a D-orbit in ν(L#). A simple compactness argument shows that N is a
D-orbit in ν(L#). �

Final Remarks

Remarks. (a) One can show that for a transnormal system there are Lip-
schitz continuous vector fields {Xi | i ∈ I} such that TpL(p) = spanR{Xi|p |
i ∈ I}. Using this it is clear that Theorems 1 and 2 remain valid if one just
assumes that F is a transnormal system.

(b) If F is a transnormal system such that all leaves have the same
dimension, then F is a (non-singular) Riemannian foliation.

(c) To the best of the authors knowledge it is not known whether there
is any transnormal system which is not a singular Riemannian foliation.
There are claims in the literature that examples exist, but these claims
would also imply that part (b) of this remark is false.

The proofs of these remarks are elementary but not trivial. Maybe the
details will be carried out somewhere else.
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1988.

[P] G. Perelman, Proof of the soul conjecture of Cheeger and Gromoll, J.
Differential Geom. 40 (1994), 209–212.

[W] G. Walschap, Nonnegatively curved manifolds with souls of codimension
2, J. Differential Geom. 27:3 (1988), 525–537.

[Wi] B. Wilking, Positively curved manifolds with symmetry, Ann. of Math.
163:2 (2006), 607–668.

Burkhard Wilking, University of Münster, Einsteinstrasse 62, 48149 Münster,
Germany wilking@math.uni-muenster.de

Received: December 2005
Revision: May 2006

Accepted: June 2006


