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A LAURENT EXPANSION FOR REGULARIZED
INTEGRALS OF HOLOMORPHIC SYMBOLS

Sylvie Paycha and Simon Scott

Abstract. For a holomorphic family of classical pseudodifferential opera-
tors on a closed manifold we give exact formulae for all coefficients in the
Laurent expansion of its Kontsevich–Vishik canonical trace. This general-
izes to all higher-order terms a known result identifying the residue trace
with a pole of the canonical trace.

Introduction

Let M be a compact boundaryless Riemannian manifold of dimension n
and E a smooth vector bundle based on M . For a classical pseudodiffer-
ential operator (ψdo) A of non-integer order acting on smooth sections of
E one can define, following Kontsevich and Vishik [KV] and Lesch [L], the
canonical trace of A

TR(A) :=
∫

M
dx TRx(A) , TRx(A) := −

∫
T ∗

x M
trx

(
σA(x, ξ)

)
d̄ξ ,

in terms of a local classical symbol σA and a finite-part integral −∫ T ∗
x M over

the cotangent space T ∗
xM at x ∈M . Here, d̄ξ = (2π)−n dξ with dξ Lebesgue

measure on T ∗
xM

∼= R
n, while trx denotes the fibrewise trace. Since the

work of Seeley [Se1] and later of Guillemin [Gu], Wodzicki [W] and then
Kontsevich and Vishik [KV], it has been known that given a holomorphic
family z �→ A(z) of classical ψdos parametrized by a domain W ⊂ C, with
holomorphic order α : W → C such that α′ does not vanish on

P := α−1
(
Z ∩ [−n,+∞[

)
,

then the map z �→ TR(A(z)) is a meromorphic function with no more than
simple poles located in P . The complex residue at z0 ∈ P is given by a
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local expression [W], [Gu], [KV]

Resz=z0 TR(A(z)) = − 1
α′(z0)

res
(
A(z0)

)
, (0.1)

where for a classical pseudodifferential operator B with symbol σB

res(B) :=
∫

M
dx resx(B) , resx(B) :=

∫
S∗

xM
trx

(
(σB)−n(x, ξ)

)
d̄Sξ

is the residue trace of B. Here, d̄Sξ = (2π)−ndS(ξ) with dS(ξ) the sphere
measure on S∗

xM = {|ξ| = 1 | ξ ∈ T ∗
xM}, while the subscript refers to the

positively homogeneous component of the symbol of order −n.

In this paper, extending the identification (0.1), we provide a complete
solution to the problem of giving exact formulae for all coefficients in the
Laurent expansion of TR(A(z)) around each pole in terms of locally-defined
canonical trace and residue trace densities.

For a meromorphic function G, define its finite-part fpz=z0
G(z) at z0

to be the constant term in the Laurent expansion of G(z) around z0. Let
A(r)(z) = ∂r

zA(z) be the derivative ψdo with symbol σA(r)(z) := ∂r
zσA(z).

Theorem. Let z �→ A(z) be a holomorphic family of classical ψdos of order
α(z) = qz + b. If z0 ∈ P and q �= 0, then TR(A(z)) has Laurent expansion
for z near z0

TR(A(z)) = −res(A(z0))
q

1
(z − z0)

+
∞∑

k=0

fpz=z0
TR

(
A(k)(z)

)(z − z0)k

k!
.

(0.2)
Furthermore,(

TRx

(
A(k)(z0)

) − 1
q(k + 1)

resx,0

(
A(k+1)(z0)

))
dx (0.3)

defines a global density on M and

fpz=z0
TR

(
A(k)(z)

)
=

∫
M
dx

(
TRx

(
A(k)(z0)

)− 1
q(k+1)

resx,0

(
A(k+1)(z0)

))
.

(0.4)
At a point z0 /∈ P the function TR(A(z)) is holomorphic near z0 and the
Laurent expansion (0.2) reduces to the Taylor series

TR(A(z)) = TR(A(z0)) +
∞∑

k=1

TR
(
A(k)(z0)

)(z − z0)k

k!
.

It is to be emphasized here that A(r)(z) cannot be a classical ψdo
for r > 0, but in local coordinates is represented for |ξ| > 0 by a log-
polyhomogeneous symbol of the form
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σA(r)(z)(x, ξ) ∼
∑
j≥0

r∑
l=0

σ
(
A(r)(z)

)
α(z)−j,l

(x, ξ) logl |ξ|

with σ(A(r))α(z)−j,l(x, ξ) positively homogeneous in ξ of degree α(z)− j. It
follows that individually the terms in (0.3),

TRx

(
A(k)(z0)

)
dx := −

∫
T ∗

x M
trx

(
σA(k)(z0)(x, ξ)

)
d̄ξ dx , (0.5)

and

resx,0

(
A(k+1)(z0)

)
dx :=

∫
S∗

xM
trx

(
σ(A(k+1)(z0))−n,0(x, ξ)

)
d̄Sξ dx , (0.6)

do not in general determine globally-defined densities on the manifold M
when r > 0, rather it is then only the sum of terms (0.3) which integrates
to a global invariant of M . (In particular, it is important to distinguish
(0.6) from the higher residue trace density of [L], see Remark 1.5 here.)
When α(z) = qz + b is not integer valued it is known that TRx(A(k)(z))dx
does then define a global density on M ; in this case, resx,0(A(k+1)(z)) is
identically zero and (0.4) reduces to the canonical trace TR(A(k)(z)) =∫
M dxTRx(A(k)(z)) on non-integer order ψdos with log-polyhomogeneous

symbol [L].
These results hold more generally when α(z) is an arbitrary holomorphic

function with α′(z0) �= 0 at z0 ∈ P . Then the local residue term in (0.4) is
replaced by the local residue of an explicitly computable polynomial in the
symbols of the operators A(k+1)(z0), . . . , A(z0). A general formula is given
in Theorem 1.20, here we state the formula just for the constant term in
the Laurent expansion of TR(A(z)): one has

fpz=z0
TR(A(z)) =

∫
M
dx

(
TRx

(
A(z0)

) − 1
α′(z0)

resx,0

(
A

′
(z0)

))

+
α′′(z0)

2α′(z0)2
res

(
A(z0)

)
. (0.7)

Thus compared to (0.4), the constant term (0.7) in the expansion acquires
an additional residue trace term. Moreover, the identification implies that(

TRx

(
A(z0)

) − 1
α′(z0)

resx,0

(
A′(z0)

))
dx (0.8)

defines a global density on M independently of the order α(z0) of A(z0) (for
z0 /∈ P the residue term vanishes and (0.8) reduces to the usual canonical
trace density). Though this follows from general properties of holomorphic
families of canonical traces, we additionally give an elementary direct proof
in Appendix A.
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Applied to ψdo zeta-functions this yields formulae for a number of
widely studied spectral geometric invariants. For Q an elliptic classical
pseudodifferential operator of order q > 0 and with spectral cut θ, its
complex powers Q−z

θ are well defined [Se1], and to a classical pseudodif-
ferential operator A of order α ∈ R one can associate the holomorphic
family A(z) = AQ−z

θ with order function α(z) = α − qz. The generalized
zeta-function

z �→ ζθ(A,Q, z) := TR(AQ−z
θ )

is meromorphic on C with at most simple poles in P :=
{

α−j
q

∣∣j ∈ [−n,∞)∩Z
}
.

It has been shown by Grubb and Seeley [GruS], [Gru1] that Γ(s)ζθ(A,Q, s)
has pole structure

Γ(s)ζθ(A,Q, s) ∼
∑

j≥−n

cj

s+ j−α
q

− Tr (AΠQ)
s

+
∑
l≥0

(
c
′
l

(s+l)2
+

c
′′
l

(s+l)

)
, (0.9)

where the coefficients cj and c
′
l are locally determined, by finitely many

homogeneous components of the local symbol, while the c
′′
l are globally

determined. In particular, whenever
j − α

q
:= l ∈ [0,∞) ∩ Z

it is shown that the sum of terms
c
′′
l + cα+lq (0.10)

is defined invariantly on the manifold M , while individually the coefficients
c
′′
l and cα+lq (which contain contributions from the terms (0.5) and (0.6)

respectively) depend on the symbol structure in each local trivialization.
Here, in Theorem 2.2, we compute the Laurent expansion around each of
the poles of the meromorphically continued Schwartz kernel

KAQ−z
θ

(x, x)|mer := −
∫

T ∗
x M

σAQ−z
θ

(x, ξ)d̄ξ

giving the following exact formula for (0.10). One has

c
′′
l + cα+lq =

(−1)l

l!

∫
M
dx

(
TRx(AQl) − 1

q
resx,0(AQl logθ Q)

)
. (0.11)

The remaining coefficients in (0.9) occur as residue traces of the form (0.1).
By a well-known equivalence, see for example [GruS], [Gru1], when Q is
a Laplace-type operator these formulae acquire a geometric character as
coefficients in the asymptotic heat trace expansion

Tr (Ae−tQ) ∼
∑

j≥−n

cjt
j−α

q +
∑
l≥0

(−c′l log t+ c
′′
l )tl

as t→ 0+.
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From (0.1) ([W], [Gu], [KV]) ζθ(A,Q, z) has a simple pole at z = 0 with
residue −1

q res(A), which vanishes if α /∈ Z. The coefficients of the full
Laurent expansion of ζθ(A,Q, s) around z = 0 are given by the following
formulae (Theorem 2.5).

Theorem. For k ∈ N, let ζ
(k)
θ (A,Q, 0) denote the coefficient of zk/k! in

the Laurent expansion of ζθ(A,Q, z) around z = 0. Then

ζ
(k)
θ (A,Q, 0) = (−1)k

∫
M
dx

(
TRx(A logk

θ Q) − 1
q(k+1)

resx,0(A logk+1
θ Q)

)

+ (−1)k+1tr(A logk
θ QΠQ) , (0.12)

where ΠQ is a smoothing operator projector onto the generalized kernel
of Q. Specifically, for a classical ψdo A of arbitrary order(

TRx(A) − 1
q resx,0(A logθ Q)

)
dx (0.13)

is a globally-defined density on M and, setting ζθ(A,Q, 0) := ζ
(0)
θ (A,Q, 0),

the constant term in the expansion around z = 0 is

ζθ(A,Q, 0) =
∫

M
dx

(
TRx(A) − 1

q resx,0(A logθ Q)
)
− tr(AΠQ) . (0.14)

When A is a differential operator ζθ(A,Q, 0) = limz→0 ζθ(A,Q, z) and equa-
tion (0.14) becomes

ζθ(A,Q, 0) = −1
q res(A logθ Q) − tr(AΠQ) . (0.15)

When Q is a differential operator and m a non-negative integer, setting
ζθ(Q,−m) := fpz=−mζθ(I,Q, z), one has

ζθ(Q,−m) = −1
q res(Qm logθ Q) − tr(QmΠQ) . (0.16)

If A is a ψdo of non-integer order α /∈ Z then 0 /∈ P and from [L] the
canonical trace of A logk

θ Q is defined. Then (0.12) reduces to

ζ
(k)
θ (A,Q, 0) = (−1)kTR(A logk

θ Q) − (−1)ktr(A logk
θ QΠQ) (0.17)

and, in particular, in this case

ζθ(A,Q, 0) = TR(A) − tr(AΠQ) . (0.18)
Notice that in (0.15) the term res(A logθ Q) = ζθ(A,Q, 0) + tr(AΠQ) is

locally determined, meaning that it depends on only finitely many of the
homogeneous terms in the local symbols of A and Q ([GruS, Th. 2.7], see
also [S, Prop. 1.5]). In the case A = I the identity (0.15) was shown for
pseudodifferential Q in [S] and [Gru2], and in the particular case where Q is
an invertible positive differential operator (0.16) can be inferred from [Lo].
The identity (0.18) is known from [Gru1, Rem. 1.6]. A resolvent proof of
(0.14) has been given recently in [Gru3].
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If, on the other hand, one considers, for example, A(z) = AQ
− z

1+µz

θ ,

then the corresponding ‘zeta function’ TR
(
AQ

− z
1+µz

θ

)
has simple and real

poles in C\{−1/µ} and by (0.7) the constant term at z = 0 has, compared
to (0.14), an extra term

fpz=0TR
(
AQ

− z
1+µz

θ

)
=

∫
M
dx

(
TRx(A) − 1

q
resx,0(A logθ Q)

)

− tr(AΠQ) +
µ

q
res(A) .

The appearance here of µ/q res(A) corresponds to additional terms that
occur as a result of a rescaling of the cut-off parameter when expectation
values are computed from Feynman diagrams using a momentum cut-off
procedure, see [Gr]. See also Remark 1.23.

One view point to adopt on (0.7) is that it provides a defect formula for
regularized traces and indeed most well-known trace defect formulas [MN],
[O1], [CDMP], [Gru2] are an easy consequence of it. On the other hand,
new more precise formulae also follow. In particular, though TR is not in
general defined on the bracket [A,B] when the bracket is of integer order,
we find (Theorem 2.18) that in this case the following exact global formula
holds: ∫

M
dx

(
TRx([A,B]) − 1

q
resx,0

(
[A,B logθ Q]

))
= 0 . (0.19)

This holds independently of the choice of Q, when [A,B] is not of integer
order (0.19) reduces to the usual trace property of the canonical trace
TR([A,B]) = 0, see section 2.

Looking at the next term up in the Laurent expansion of TR(Q−z) at
zero, equation (0.12) provides an explicit formula for the ζ-determinant

detζ,θ Q = exp
( − ζ ′θ(Q, 0)

)
,

where ζ ′θ(Q, 0) = ∂zζθ(Q, z))|z=0
, of an invertible elliptic classical pseudo-

differential operator Q of positive order q and with spectral cut θ. The zeta
determinant is a complicated non-local invariant which has been studied in
diverse mathematical contexts. From (0.12) one finds (Theorem 2.11):

Theorem.

log detζ,θ(Q) =
∫

M
dx

(
TRx(logθ Q) − 1

2q
resx,0(log2

θ Q)
)
. (0.20)

A slightly modified formula holds for non-invertible Q. Notice, here,
that TR of logθ Q does not generally exist; if resx,0(log2

θ Q) = 0 pointwise it
is defined, and then log detζ,θ(Q) = TR(logθ Q), which holds, for example,
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for odd-class operators of even order, such as differential operators of even
order on odd-dimensional manifolds [KV], [O2]. Equation (0.20) leads to
explicit formulae for the multiplicative anomaly.

1 Finite-Part Integrals (and Canonical Traces) of
Holomorphic Families of Classical Symbols (and

Pseudodifferential Operators)

1.1 Classical and log-polyhomogeneous symbols. We briefly re-
call some notions concerning symbols and pseudodifferential operators and
fix the corresponding notation. Classical references for the polyhomoge-
neous symbol calculus are, e.g., [G], [GruS], [Hö], [Se2], [Sh], and for the
extension to log-polyhomogeneous symbols [L]. E denotes a smooth her-
mitian vector bundle based on some closed Riemannian manifold M . The
space C∞(M,E) of smooth sections of E is endowed with the inner product
〈ψ, φ〉 :=

∫
M dµ(x)〈ψ(x), φ(x)〉x induced by the hermitian structure 〈· , ·〉x

on the fibre over x ∈ M and the Riemannian measure µ on M . Hs(M,E)
denotes the Hs-Sobolev closure of the space C∞(M,E).

Given an open subset U of R
n and an auxiliary (finite-dimensional)

normed vector space V , the set of symbols Sr(U, V ) on U of order r ∈ R con-
sists of those functions σ(x, ξ) in C∞(T ∗U,End(V )) such that ∂µ

x∂ν
ξ σ(x, ξ)

is O((1 + |ξ|)r−|ν|) for all multi-indices µ, ν, uniformly in ξ, and, on com-
pact subsets of U , uniformly in x. We set S(U, V ) :=

⋃
r∈R

Sr(U, V )
and S−∞(U, V ) :=

⋂
r∈R

Sr(U, V ). A classical (1-step polyhomogeneous)
symbol of order α ∈ C means a function σ(x, ξ) in C∞(T ∗U,End(V ))
such that, for each N ∈ N and each integer 0 ≤ j ≤ N there exists
σα−j ∈ C∞(T ∗U,End(V )) which is homogeneous in ξ of degree α − j for
|ξ| ≥ 1, so σα−j(x, tξ) = tα−jσα−j(x, ξ) for t ≥ 1, |ξ| ≥ 1, and a symbol
σ(N) ∈ SRe(α)−N−1(U, V ) such that

σ(x, ξ) =
N∑

j=0

σα−j(x, ξ) + σ(N)(x, ξ) ∀(x, ξ) ∈ T ∗U . (1.1)

We then write σ(x, ξ) ∼ ∑∞
j=0 σα−j(x, ξ). Let CS(U, V ) denote the class

of classical symbols on U with values in V , and let CSα(U, V ) denote the
subset of classical symbols of order α. When V = C, we write Sr(U),
CSα(U), and so forth; for brevity we may omit the V in the statement of
some results. A ψdo which, for a given atlas on M , has a classical symbol
in the local coordinates defined by each chart is called classical, this is
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independent of the choice of atlas. Let Cl(M,E) denote the algebra of
classical ψdos acting on C∞(M,E) and let Ell(M,E) be the subalgebra of
elliptic operators. For any α ∈ C, let Clα(M,E), resp. Ellα(M,E), denote
the subset of operators in Cl(M,E), resp. Ell(M,E), of order α. With
R+ = (0,∞), set Ellord>0(M,E) :=

⋃
r∈R+

Ellr(M,E).
To deal with derivatives of complex powers of classical ψdos one con-

siders the larger class of ψdos with log-polyhomogeneous symbols. Given
an open subset U ⊂M , a non-negative integer k and a complex number α,
a symbol σ lies in CSα,k(U, V ) and is said to have order α and log degree
k if

σ(x, ξ) =
N∑

j=0

σα−j(x, ξ) + σ(N)(x, ξ) ∀(x, ξ) ∈ T ∗U , (1.2)

where σ(N) ∈ SRe(α)−N−1+ε(U, V ) for any ε > 0, and

σα−j(ξ) =
k∑

l=0

σα−j,l(x, ξ) logl[ξ] ∀ξ ∈ T ∗
xU ,

with σα−j,l homogeneous in ξ of degree α−j for |ξ| ≥ 1, and (in the notation
of [Gru1]) [ξ] a strictly positive C∞ function in ξ with [ξ] = |ξ| for |ξ| ≥ 1.
As before, in this case we write

σ(x, ξ) ∼
∞∑

j=0

σα−j(x, ξ) =
∞∑

j=0

k∑
l=0

σα−j,l(x, ξ) logl[ξ] . (1.3)

Then CS∗,∗(U, V ):=
⋃∞

k=0 CS∗,k(U, V ), where CS∗,k(U, V )=
⋃

α∈C
CSα,k(U, V ),

defines the class filtered by k of log-polyhomogeneous symbols on U . In
particular, CS(U, V ) coincides with CS∗,0(U, V ).

Given a non-negative integer k, let Clα,k(M,E) denote the space of
pseudodifferential operators on C∞(M,E) which in any local trivialization
E|U ∼= U×V have symbol in CSα,k(U, V ). Set Cl∗,k(M,E) :=

⋃
α∈C

Clα,k(M,E).
The following subclasses of symbols and ψdos will be of importance in

what follows.

Definition 1.1. A log-polyhomogeneous symbol (1.3) with integer order
α ∈ Z is said to be even-even (or, more fully, to have even-even alternating
parity) if, for each j ≥ 0,

σα−j,l(x,−ξ) = (−1)α−jσα−j,l(x, ξ) for |ξ| ≥ 1 , (1.4)

and the same holds for all derivatives in x and ξ. It is said to be even-odd
(or, more fully, to have even-odd alternating parity) if, for each j ≥ 0,

σα−j,l(x,−ξ) = (−1)α−j−1σα−j,l(x, ξ) for |ξ| ≥ 1 , (1.5)
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and the same holds for all derivatives in x and ξ. A ψdo A ∈ Clα,k(M,E)
will be said to be even-even (resp. even-odd) if in each local trivialization
any local symbol σA(x, ξ) ∈ CSα,k(U, V ) representing A (modulo smoothing
operators) has even-even (resp. even-odd) parity.

Thus, an even-even symbol with even-integer degree is even in ξ, while
an even-odd symbol with even-integer degree is odd in ξ; a similar statement
holds if the symbol has odd-integer degree.

Remark 1.2. The terminology in Definition (1.1) follows [Gru4]. Kont-
sevich–Vishik [KV] studied even-even classical ψdos on odd-dimensional
manifolds, calling them odd-class operators. Odd-class operators (or sym-
bols) form an algebra and include differential operators and their para-
metrices. The class of operators with even-odd parity symbols on even-
dimensional manifolds, which includes the modulus operator |A| = (A2)1/2

for A a first-order elliptic self-adjoint differential operator, was introduced
and studied by Grubb [Gru1]; this class admits similar properties with re-
spect to traces on ψdos as the odd-class operators, though they do not
form an algebra. In [O2] Okikiolu uses the terminology ‘regular parity’ and
‘singular parity’ for (1.4) and (1.5).

1.2 Finite part integrals of symbols and the canonical trace. In
order to make sense of

∫
T ∗

x M σ(x, ξ)d̄ξ when σ ∈ CSα,∗(U, V ) is a log-
polyhomogeneous symbol (the integral diverges a priori if Re(α) ≥ −n)
on an open subset U ⊂ R

n, one can extract a finite part when R → ∞
from the integral

∫
B∗

x(0,R) σ(x, ξ)d̄ξ where B∗
x(0, R) ⊂ T ∗

xU denotes the ball
centered at 0 with radius R for a given point x ∈ U .

First, though, we introduce the local residue density on log-polyhomo-
geneous symbols, which acts as an obstruction to the finite-part integral
of a classical symbol defining a global density on M and measures the
anomalous contribution to the Laurent coefficients at the poles of the finite-
part integral when evaluated on holomorphic families of symbols.

Definition 1.3. Given an open subset U ⊂ R
n, the local Guillemin–

Wodzicki residue is defined for σ ∈ CSα(U, V ) by

resx(σ) =
∫

S∗
xU

trx

(
σ−n(x, ξ)

)
d̄Sξ ,

and extends to a map resx,0 : CSα,k(U, V ) → C by the same formula

resx,0(σ) =
∫

S∗
xU

trx

(
σ−n(x, ξ)

)
d̄Sξ
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=
k∑

l=0

∫
S∗

xU
trx

(
σ−n,l(x, ξ)

)
logl |ξ|d̄Sξ

=
∫

S∗
xU

trx

(
σ−n,0(x, ξ)

)
d̄Sξ .

When k > 0 the extra subscript is included in the notation resx,0(σ)
as a reminder that it is the residue of the log degree zero component of
the symbol that is being computed. The distinction is made because when
k > 0 the local densities resx,0(σ)dx do not in general define a global density
on M , due to cascading derivatives of powers of logs when changing local
coordinates. When k = 0, Guillemin [Gu] and Wodzicki [W] showed the
following properties.
Proposition 1.4. Let A ∈ Clα(M,E) be a classical ψdo represented in a
local coordinate chart U by σ ∈ CSα(U, V ). Then resx(σ)dx determines a
global density on M , that is, an element of C∞(M, |Ω|), which defines the
projectively unique trace on Cl∗,0(M,E).

Proofs may be found in loc. cit., and in section 2 here. The first property
means that resx(σ)dx can be integrated over M . The resulting number,

res(A) :=
∫

M
resx(σ)dx =

∫
M
dx

∫
S∗

xM
trx

(
σ−n(x, ξ)

)
d̄Sξ , (1.6)

is known as the residue trace of A. The terminology refers to the trace prop-
erty in Proposition 1.4 that if the manifold M is connected and has dimen-
sion larger than 1, then up to a scalar multiple (1.6) defines on Cl∗(M,E)
the unique linear functional vanishing on commutators

res([A,B]) = 0 , A,B ∈ Cl∗(M,E) .
Notice, from its definition, that the residue trace also vanishes on operators
of order < −n and on non-integer order operators.
Remark 1.5. The residue trace was extended by Lesch [L] to A∈Clα,k(M,E)
with k > 0 by defining resk(A) := (k + 1)!

∫
M dx

∫
S∗

xM trx(σ−n,k(x, ξ))d̄Sξ.
For an operator with log-polyhomogeneous symbol of log degree k > 0
the form σ−n,k(x, ξ)dx defines a global density on M , a property which
is not generally true for the lower log degree densities σ−n,0(x, ξ)dx, . . . ,
σ−n,k−1(x, ξ)dx which depend on the symbol structure in each local co-
ordinate chart. We emphasize that the higher residue is not being used
in the Laurent expansions we compute here, rather the relevant object
is the locally defined form σ−n,0(x, ξ)dx which for suitable A defines one
component of a specific local density which does determine an element of
C∞(M,End(E) ⊗ |Ω|).
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It was, on the other hand, observed by Kontsevich and Vishik [KV]
that the usual L2-trace on ψdos of real order < −n extends to a functional
on the space ClC\Z(M,E) of ψdos of non-integer order and vanishes on
commutators of non-integer order. Lesch [L] subsequently showed that the
resulting canonical trace can be further extended to

ClC\Z,∗(M,E) :=
⋃

α∈C\Z

Clα,∗(M,E)

in the following way.

Lemma 1.6. Let U be an open subset of R
n and let σ ∈ CSα,k(U, V )

be a log-polyhomogeneous symbol of order α and log-degree k. Then for
any x ∈ U the integral

∫
B∗

x(0,R) σ(x, ξ)d̄ξ has an asymptotic expansion as
R→ ∞,

∫
B∗

x(0,R)
σ(x, ξ)d̄ξ ∼R→∞ Cx(σ)+

∞∑
j=0,α−j+n �=0

k∑
l=0

Pl(σα−j,l)(logR)Rα−j+n

+
k∑

l=0

1
l + 1

∫
S∗

xU
σ−n,l(x, ξ)d̄Sξ logl+1R , (1.7)

where Pl(σα−j,l)(X) is a polynomial of degree l with coefficients depending
on σα−j,l. Here B∗

x(0, R) stands for the ball of radius R in the cotangent
space T ∗

xM and S∗
xU the unit sphere in the cotangent space T ∗

xU .

Discarding the divergences, we can therefore extract a finite part from
the asymptotic expansion of

∫
B(0,R) σ(x, ξ)d̄ξ:

Definition 1.7. The finite-part integral of σ ∈ CSα,k(U, V ) is defined to
be the constant term in the asymptotic expansion (1.7)

−
∫

T ∗
x U
σ(x, ξ)d̄ξ := LIMR→∞

∫
B∗

x(0,R)
σ(x, ξ)d̄ξ := Cx(σ). (1.8)

(This concept is closely related to partie finie of Hadamard [H], hence the
terminology used here. However in the physics literature this is also known
as “cut-off regularization”.)

The proof of the following formula [Gru1], [P] and of Lemma 1.6 is
included in Appendix B.
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Lemma 1.8. For σ ∈ CSα,k(U, V )

−
∫

T ∗
x U
σ(x, ξ)d̄ξ =

N∑
j=0

∫
B∗

x(0,1)
σα−j(x, ξ)d̄ξ +

∫
T ∗

x U
σ(N)(x, ξ)d̄ξ

+
N∑

j=0,α−j+n �=0

k∑
l=0

(−1)l+1l!
(α− j + n)l+1

∫
S∗

xU
σα−j,l(x, ξ)d̄Sξ . (1.9)

It is independent of N > Re(α) + n− 1.
The residue terms on the right side of (1.9) measure anomalous be-

haviour in the finite-part integral. Specifically, (1.9) implies that, for a
rescaling R→ µR,

LIMR→∞
∫

B∗
x(0,µR)

σ(x, ξ)d̄ξ = LIMR→∞
∫

B∗
x(0,R)

σ(x, ξ)d̄ξ

+
k∑

l=0

logl+1 µ

l + 1

∫
S∗

xU
σα−j,l(x, ξ)d̄Sξ (1.10)

(cf. Appendix B) and hence that the finite-part integral is independent of
a rescaling if

∫
S∗

xU σ−n,l(x, ξ)d̄Sξ vanishes for each integer 0 ≤ l ≤ k. More
generally, just as ordinary integrals obey the transformation rule

|detC| ·
∫

Rn

f(Cξ)d̄ξ =
∫

Rn

f(ξ)d̄ξ ,

one hopes for a similar transformation rule for the regularized integral
−∫

Rnσ(ξ)d̄ξ when σ is a log-polyhomogeneous symbol in order to obtain
a globally-defined density on M . That, however, is generally not the case
in the presence of a residue, as the following proposition shows.
Proposition 1.9 [L]. The finite-part integral of σ ∈ CS∗,k(U) is generally
not invariant under a transformation C ∈ Gln(T ∗

xU). One has,

|detC| · −
∫

T ∗
x U
σ(x,Cξ)d̄ξ = −

∫
T ∗

x U
σ(x, ξ)d̄ξ

+
k∑

l=0

(−1)l+1

l + 1

∫
S∗

xU
σ−n,l(x, ξ) logl+1 |C−1ξ|d̄ξ . (1.11)

Proof. We refer the reader to the proof of Proposition 5.2 in [L]. �
As a consequence, whenever

∫
S∗

xU σ−n,l(x, ξ) logl+1 |C−1ξ|d̄ξ vanishes for
each integer 0 ≤ l ≤ k and x ∈ U , one then recovers the usual transforma-
tion property

|detC| · −
∫

T ∗
x U
σ(x,Cξ)d̄ξ = −

∫
T ∗

x U
σ(x, ξ)d̄ξ . (1.12)
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With respect to a trivialization E|U ∼= U × V , a localization of
A ∈ Clα,k(M,E) in Clα,k(U, V ) can be written

Af(x) =
∫

Rn

∫
U
ei(x−y).ξa(x, y, ξ)f(y)dy d̄ξ

with amplitude a ∈ CSα(U × U, V ). Then with
σA(x, ξ) := a(x, x, ξ) ∈ CSα(U, V )

we define
TRx(A)dx := −

∫
T ∗

x M
trx

(
σA(x, ξ)

)
d̄ξ dx .

If (1.12) holds for σ = σA in each localization it follows that TRx(A)dx
is independent of the choice of local coordinates. This is known in the
following cases.
Proposition 1.10. Let A ∈ Clα,k(M,E). In each of the following cases
TRx(A)dx defines an element of C∞(M, |Ω|), that is, a global density on M :

(1) α /∈ [−n,∞) ∩ Z;
(2) A (of integer order) is even-even and M is odd-dimensional;
(3) A (of integer order) is even-odd and M is even-dimensional.

Cases (1) and (2) were shown in [KV], where the canonical trace was
first introduced, in terms of homogeneous distributions. Case (1) was
reformulated in [L] in terms of finite-part integrals and extended to log-
polyhomogeneous symbols k ≥ 0. Case (3) was introduced in [Gru1] where
it was shown that (2) and (3) may be included in the finite-part integral
formulation. We refer there for details. Notice though that it is easily seen
that the integrals

∫
S∗

xU σ−n,l(x, ξ) logl+1 |C−1ξ|d̄ξ vanish in each case; for
(1), there is no homogeneous component of the symbol of degree −n and so
the integrals vanish trivially, while setting g(ξ) := σ−n,l(x, ξ) logl+1 |C−1ξ|,
for cases (2) and (3) one has g(− ξ) = −g(ξ) and so the vanishing is imme-
diate by symmetry.
Definition 1.11. For a ψdo A ∈ Clα,∗(M,E) satisfying one of the criteria
(1),(2),(3) in Proposition 1.10, the canonical trace is defined by

TR(A) :=
∫

M
dxTRx(A) .

The case of ψdos of non-integer order is all that is needed for the general
formulae we prove here, cases (2) and (3) of Proposition 1.10 will be rele-
vant only for applications and refinements. Case (2) in particular includes
differential operators on odd-dimensional manifolds, though this holds by
default in so far as TRx vanishes on differential operators in any dimension
(noted also in [Gru1]):
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Proposition 1.12. Let A ∈ Cl(M,E) be a differential operator with
local symbol σA, then for any x ∈M

TRx(A) := −
∫

T ∗
x M

trx

(
σA(x, ξ)

)
d̄ξ = 0 .

Proof. Since A is a differential operator, σA(x, ξ) =
∑ordA

|k|=0 σk(x, ξ) with
k = (k1, . . . , kn) a multi-index with ki ∈ N and σk(x, ξ) = ak(x)ξk posi-
tively homogeneous (with the previous notation we have σ(N) = 0 provided
N ≥ ordA). Its finite-part integral on the cotangent space at x ∈M there-
fore reads

−
∫

T ∗
x M

σA(x, ξ)d̄ξ =
ordA∑
|k|=0

ak(x)LIMR→∞
∫

B∗
x(0,R)

ξkd̄ξ

=
ordA∑
|k|=0

ak(x)LIMR→∞
(∫ R

0
r|k|+n−1dr

)∫
S∗

xM
ξkd̄ξ

which vanishes since LIMR→∞ R|k|+n

|k|+n = 0. �
On commutators the canonical trace has the following more substantial

vanishing properties [KV], [MN], [L], [Gru1], providing some justification
for its name.
Proposition 1.13. Let A ∈ Cla,k(M,E), B ∈ Clb,l(M,E). In each of the
cases,

(1) α+ β /∈ [−n,∞) ∩ Z,
(2) A and B are both even-even or are both even-odd and M is odd-

dimensional,
(3) A is even-even, B is even-odd, and M is even-dimensional,

the canonical trace is then defined on the commutator [A,B] and is equal
to zero,

TR([A,B]) = 0 .
The canonical trace extends the usual operator trace defined on the

subalgebra Clord<−n(M,E) of ψdos of real order Re(α) < −n, in so far as
for ψdos with (real) order less than −n, finite-part integrals coincide with
ordinary integrals. More precisely, if KA(x, y) denotes the Schwartz kernel
of A ∈ Clord<−n(M,E) in a given localization, then σA(x, ξ) is integrable
in ξ and KA(x, x)dx =

( ∫
T ∗

x M σA(x, ξ)d̄ξ
)
dx determines a global density

on M , and one has

tr(A) =
∫

M
dx trx

(
KA(x, x)

)
=

∫
M
dx−

∫
T ∗

x M
trx

(
σA(x, ξ)

)
d̄ξ = TR(A) .
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1.3 Holomorphic families of symbols. We consider next families
of symbols depending holomorphically on a complex parameter z. The
definition is somewhat more delicate than that used in [KV] (or [L]) since
growth conditions must be imposed on each z-derivative of the symbol.
This is in order to maintain control of the full Laurent expansion.

First, the meaning here of holomorphic dependence on a parameter is as
follows. Let W ⊂ C be a complex domain, let Y be an open subset of R

m,
and let V be a vector space. A function p(z, η) ∈ C∞(W × Y,End(V )) is
holomorphic at z0 ∈W if, for fixed η with

p(k)(z0, η) = ∂k
z

(
p(z, η)

)∣∣
z=z0

,

there is a Taylor expansion in a neighbourhood Nz0 of z0,

p(z, η) =
∞∑

k=0

p(k)(z0, η)
(z − z0)k

k!
, (1.13)

which is convergent, uniformly on compact subsets of Nz0, with respect
to the (metrizable) topology on C∞(W × Y,End(V )) associated with the
family of semi-norms,

‖q‖m,K1,K2 = sup
(z,η)∈K1×K2

r+|µ|≤m

∣∣∂r
z∂

µ
η q(z, η)

∣∣ , (1.14)

defined for m ∈ N and compact subsets K1 ⊂W , K2 ⊂ R
m.

Definition 1.14. Let m be a non-negative integer, let U be an open
subset of R

n, and let W be a domain in C. A holomorphic family of log-
polyhomogeneous symbols parametrized by W of order α ∈ C∞(W,C) and
of log-degree m means a function

σ(z)(x, ξ) := σ(z, x, ξ) ∈ C∞(W × U × R
n,EndV )

for which

(1) σ(z)(x, ξ) is holomorphic at z∈W as an element of C∞(W×U×R
n,EndV )

and

σ(z)(x, ξ) ∼
∑
j≥0

σ(z)α(z)−j(x, ξ) ∈ CSα(z),m(U, V ) , (1.15)

where the function α : W → C is holomorphic;
(2) for any integer N ≥ 1, the remainder

σ(N)(z)(x, ξ) := σ(z)(x, ξ) −
N−1∑
j=0

σα(z)−j(z)(x, ξ)

is holomorphic in z ∈ W as an element of C∞(W × U × R
n,EndV )

with kth z-derivative,

σ
(k)
(N)(z)(x, ξ) := ∂k

z

(
σ(N)(z)(x, ξ)

) ∈ Sα(z)−N+ε(U, V ) , (1.16)
for any ε > 0.
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A family z �→ A(z) of log-classical ψdos on C∞(M,E) parametrized by
a domain W ⊂ C is holomorphic if in each local trivialisation of E one has

A(z) = Op(σA(z)) +R(z)
with σA(z) a holomorphic family of log-polyhomogeneous symbols and R(z)
a smoothing operator with Schwartz kernel R(z, x, y)∈C∞(W×X×X,End(V ))
holomorphic in z.

There are, of course, other ways to express these conditions; for example,
in terms of the truncated kernel K(N)(z)(x, y) :=

∫
T∗

x U e
iξ·(x−y)σ(N)(z)(x, ξ)d̄ξ

with large N , and its derivatives ∂k
zK

(N)(z)(x, y), used in the case k = 0
in [KV] to compute the pole of Tr (A(z)) at z0 ∈ P . When dealing with
the full Laurent expansion the essential requirement is that a balance be
preserved between the Taylor expansion in z, in terms of the growth rates
of the z-derivatives of the symbol, and the asymptotic symbol expansion
in ξ.

Proposition 1.15. If σ(z)(x, ξ) ∈ CSα(z),m(U, V ) is a holomorphic
family of log-classical symbols, then so is each derivative

σ(k)(z)(x, ξ) := ∂k
z

(
σ(z)(x, ξ)

) ∈ CSα(z),m+k(U, V ) . (1.17)

Precisely, σ(k)(z)(x, ξ) has an asymptotic expansion

σ(k)(z)(x, ξ) ∼
∑
j≥0

σ(k)(z)α(z)−j(x, ξ) , (1.18)

where as elements of
⋃m+k

l=0 CSα(z)−j,l(U, V )

σ(k)(z)α(z)−j(x, ξ) = ∂k
z

(
σ(z)α(z)−j(x, ξ)

)
. (1.19)

That is, (
∂k

zσ(z)
)
α(z)−j

(x, ξ) = ∂k
z

(
σ(z)α(z)−j(x, ξ)

)
. (1.20)

Proof. We have to show that

∂k
z

(
σ(z)(x, ξ)

) ∼
∑
j≥0

∂k
z

(
σ(z)α(z)−j(x, ξ)

)
, (1.21)

where the summands are log-polyhomogeneous of the asserted order. First,
the estimate

∂k
z

(
σ(z)(x, ξ)

) −
N−1∑
j=0

∂k
z

(
σ(z)α(z)−j(x, ξ)

) ∈ Sα(z)−N+ε(U, V )

for any ε > 0, needed for (1.21) to hold is equation (1.16) of the definition. It
remains to examine the form of the summands in

∑N−1
j=0 ∂k

z (σ(z)α(z)−j(x, ξ)).
Taking differences of remainders σ(N)(z)(x, ξ) implies that each term
σ(z)α(z)−j(x, ξ) is holomorphic. In order to compute ∂z(σ(z)α(z)−j(x, ξ))
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one must compute the derivative of each of its homogeneous components;
for |ξ| ≥ 1 and any l ∈ {0, · · · ,m}

∂z

(
σα(z)−j,l(z)(x, ξ)

)
= ∂z

(
|ξ|α(z)−jσα(z)−j,l(z)

(
x, ξ

|ξ|
))

=
(
α′(z)|ξ|α(z)−jσα(z)−j,l(z)

(
x, ξ

|ξ|
))

log |ξ|
+ |ξ|α(z)−j∂z

(
σα(z)−j,l(z)

(
x, ξ

|ξ|
))

.

Since σα(z)−j,l(z)(x, ξ|ξ|−1) is a symbol of constant order zero, so is its
z-derivative. Hence,
∂z

(
σ(z)α(z)−j,l(x, ξ)

)
= α′(z)σ(z)α(z)−j,l(x, ξ) log[ξ] + pα(z)−j,l(z)(x, ξ) ,

(1.22)
where σα(z)−j,l(z), pα(z)−j,l(z) ∈ CSα(z)−j(U) are homogeneous in ξ of or-
der α(z) − j. Hence, ∂z(σ(z)α(z)−j) ∈ CSα(z)−j,m+1(U). Iterating (1.22),
∂k

z (σα(z)−j(z)(x, ξ)) is thus seen to be a polynomial in log[ξ] of the form
(
α′(z)

)k
σα(z)−j,k(z)(x, ξ) logk+m[ξ] + · · ·

+ |ξ|α(z)−j∂k
z

(
σα(z)−j,l(z)

(
x, ξ

|ξ|
))

log0[ξ]

with each coefficient homogeneous of order α(z) − j. This completes the
proof. �

Thus, taking derivatives adds more logarithmic terms to each term
σ(z)α(z)−j(x, ξ), increasing the log-degree, but the order is unchanged.
Specifically, σ(k)(z)α(z)−j takes the form

σ(k)(z)α(z)−j(x, ξ) =
m+k∑
l=0

σ(k)(z)α(z)−j,l(x, ξ) logl[ξ] , (1.23)

where the terms σ(k)(z)α(z)−j,l(x, ξ) are positively homogeneous in ξ of de-
gree α(z)−j for |ξ| ≥ 1 and can be computed explicitly from the lower-order
derivatives of σ(z)α(z)−j,m(x, ξ). The following more precise inductive for-
mulae will be needed in what follows.
Lemma 1.16. Let σ(z)(x, ξ) ∈ CS(U, V ) be a holomorphic family of
classical symbols. Then for |ξ| ≥ 1

σ
(k+1)
α(z)−j,k+1(z)(x, ξ) = α′(z)σ(k)

α(z)−j,k(z)(x, ξ) ,

σ
(k+1)
α(z)−j,l(z)(x, ξ) = α′(z)σ(k)

α(z)−j,l−1(z)(x, ξ)

+ |ξ|α(z)−j∂z

(
σ

(k)
α(z)−j,l(z)(x, ξ/|ξ|)

)
, 1 ≤ l ≤ k ,

σ
(k+1)
α(z)−j,0(z)(x, ξ) = |ξ|α(z)−j∂z

(
σ

(k)
α(z)−j,0(z)(x, ξ/|ξ|)

)
.



508 S. PAYCHA AND S. SCOTT GAFA

Proof. From the above,

σ(k)(z)α(z)−j(x, ξ) = ∂k
z

(
σ(z)α(z)−j(x, ξ)

)
=

k∑
l=0

σ(k)(z)α(z)−j,l(x, ξ) logl[ξ] ,

so that

σ(k+1)(z)α(z)−j(x, ξ) =
k∑

l=0

∂z

(
σ(k)(z)α(z)−j,l(x, ξ)

)
logl[ξ] . (1.24)

Hence, for |ξ| ≥ 1,
k+1∑
l=0

σ(k+1)(z)α(z)−j,l(x, ξ) logl |ξ| =
k∑

r=0

α′(z)σ(k)(z)α(z)−j,r(x, ξ) logr+1 |ξ|

+ |ξ|α(z)−j∂z

(
σ(k)(z)α(z)−j,r

(
x, ξ

|ξ|
))

logr |ξ|
where for the right side we apply (1.22) to each of coefficient on the right
side of (1.24). Equating coefficients completes the proof. �

A corresponding result on the level of operators follows in a straight-
forward manner:
Proposition 1.17. Let z �→ A(z) ∈ Clα(z),m(M,E) be a holomorphic
family of log-polyhomogeneous ψdos. Then for any non-negative integer k,
A(k)(z0) lies in Clα(z0),m+k(M,E).

Example 1.18. For real numbers α, q with q > 0, the function σ(z)(x, ξ) =
ψ(ξ)|ξ|α−qz , where ψ is a smooth cut-off function which vanishes near the
origin and is equal to 1 outside the unit ball, provides a holomorphic family
of classical symbols; at any point z = z0 ∈ C, we have

σ(k)(z0)(x, ξ) = (−q)kψ(ξ) logk |ξ| |ξ|α−qz0

which lies in CSα−qz0,k(U). More generally, if Q ∈ Clq(M,E) is a clas-
sical elliptic ψdo of order q > 0 with principal angle θ, then one has for
each z ∈ C the complex power Q−z

θ ∈ Cl−qz(M,E) [Se1] represented in a
local coordinate chart U by a classical symbol q(z)(x, ξ) ∈ CS−qz(U, V ).
Let A ∈ Clα(M,E) be a coefficient classical ψdo represented in U by
a(x, ξ) ∈ CSα(U). Then σAQ−z

θ
(x, ξ) ∈ CSα−qz(U, V ) is a holomorphic fam-

ily of symbols parametrized by W = C whose convergent Taylor expansion
in C∞(C × U, V ) around each z0 ∈ C is from [O1, Lem. 2.1] given by

(σAQ−z
θ

)α−qz−j(x, ξ)

=
∞∑

k=0

k∑
l=0

(−1)k
(
a ◦ logk(q) ◦ q(z0)

)
α−qz0−j,l

(x, ξ) logl |ξ| (z − z0)k

k!
,
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where ◦ denotes the usual mod(S−∞) symbol product, q := q(−1) and
logk(q)(x, ξ) := (log(q) ◦ . . . ◦ log(q))(x, ξ) ∈ CS0,k(U, V ) with k factors.

1.4 A Laurent expansion for finite-part integrals of holomor-
phic symbols. The following theorem computes the Laurent expansion
for finite-part integrals of holomorphic families of classical symbols of or-
der α(z) in terms of local canonical and residue densities. This extends
Proposition 3.4 in [KV], and results of [Gu, W], where the pole, the first
coefficient in the expansion, was identified as the residue trace. The proof
uses the property that each term of the Taylor series of a holomorphic fam-
ily of classical symbols has an asymptotic symbol expansion, allowing the
Laurent expansion of −∫ σ(z)(x, ξ) d̄ξ to be computed through Lemma 1.8.
Notice that although the Taylor expansion in the C∞ topology gives no
control over the symbol as |ξ| → ∞, (1.15), (1.16) impose what is needed
to ensure integrability requirements.

Definition 1.19. A holomorphic function α : W → C defined on a domain
W ⊂ C is said to be non-critical on

P := α−1
(
Z ∩ [−n,+∞[

) ∩W
if α′(z0) �= 0 at each z0 ∈ P .

Theorem 1.20. (1) Let U be an open subset of R
n. Let z �→ σ(z) ∈

CSα(z)(U, V ) be a holomorphic family of classical symbols parametrized by
a domain W ⊂ C such that the order function α is non-critical on P . Then
for each x ∈ U the map z �→ −∫ T ∗

x Uσ(z)(x, ξ)d̄ξ is a meromorphic function
on W with poles located in P . The poles are at most simple and for z near
z0 ∈ P one has

−
∫

T ∗
x U
σ(z)(x, ξ)d̄ξ = − 1

α′(z0)

∫
S∗

xU
σ(z0)−n(x, ξ)d̄Sξ

1
(z − z0)

+
(
−
∫

T ∗
x U
σ(z0)(x, ξ)d̄ξ − 1

α′(z0)

∫
S∗

xU
σ′(z0)−n,0(x, ξ)d̄Sξ

)

+
α′′(z0)

2α′(z0)2

∫
S∗

xU
σ(z0)−n(x, ξ)d̄Sξ +

K∑
k=1

(
−
∫

T ∗
x U
σ(k)(z0)(x, ξ)d̄ξ

−
∫

S∗
xU

Lk

(
σ(z0), · · · , σ(k+1)(z0)

)
−n,0

(x, ξ)d̄Sξ

)
(z − z0)k

k!

+ o
(
(z − z0)K

)
, (1.25)
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where

Lk

(
σ(z0), . . . , σ(k+1)(z0)

)
=

k+1∑
j=0

pk+1−j

α′(z0)
k+2−j

σ(j)(z0) ∈ CSα(z0),k+1(U, V ) ,

(1.26)
and pk+1−j is an explicitly computable polynomial of degree k + 1 − j in

α
′
(z0), . . . , α(k+1)(z0). Furthermore, the coefficient of (z−z0)k

k! in (1.25) is

equal to fpz=z0
−∫ T ∗

x Uσ
(k)(z). If α is a linear function α(z) = qz + b with

q �= 0 then (1.25) reduces to

−
∫

T ∗
x U
σ(z)(x, ξ)d̄ξ = −1

q

∫
S∗

xU
σ(z0)−n(x, ξ)d̄Sξ

1
(z − z0)

+
(
−
∫

T ∗
x U
σ(z0)(x, ξ)d̄ξ − 1

q

∫
S∗

xU
σ′(z0)−n,0(x, ξ)d̄Sξ

)

+
K∑

k=1

(
−
∫

T ∗
x U
σ(k)(z0)(x, ξ)d̄ξ

− 1
q(k+1)

∫
S∗

xU
σ(k+1)(z0)−n,0(x, ξ)d̄Sξ

)
(z−z0)k

k!
+ o

(
(z − z0)K

)
. (1.27)

If z0 ∈W but z0 /∈ P , then −∫ T ∗
x Uσ(z)(x, ξ)d̄ξ is holomorphic at z = z0 and

(1.25) then simplifies to the Taylor expansion

−
∫

T ∗
x U
σ(z)(x, ξ)d̄ξ = −

∫
T ∗

x U
σ(z0)(x, ξ)d̄ξ

+
K∑

k=1

−
∫

T ∗
x U
σ(k)(z0)(x, ξ)d̄ξ

(z − z0)k

k!
+ o

(
(z − z0)K

)
. (1.28)

(2) For any holomorphic family z �→ A(z) ∈ Clα(z)(M,E) of classical
ψdos parametrized by a domain W ⊂ C, such that order function α is
non-critical on P , the map z �→ TR(A(z)) :=

∫
M dx

∫
T ∗

x M trx(σA(z)(x, ξ))d̄ξ
is a meromorphic function on W with poles located in P . The poles are at
most simple and for z near z0 ∈ P

TR(A(z)) = − 1
α′(z0)

res
(
A(z0)

) 1
(z − z0)

+
∫

M
dx

(
TRx

(
A(z0)

) − 1
α′(z0)

resx,0(A′(z0))
)

+
α′′(z0)

2α′(z0)2
res

(
A(z0)

)

+
K∑

k=1

∫
M
dx

(
TRx(A(k)(z0))−resx,0(Lk(σA(z0), . . . , σA(k+1)(z0)))

) (z−z0)k
k!

+ o
(
(z − z0)K

)
. (1.29)
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Furthermore, the coefficient of (z − z0)k/k! in (1.29) is equal to
fpz=z0

TR(A(k)(z)). If A(z) has order α(z) = qz + b with q �= 0 then

TR(A(z)) = −1
q

res
(
A(z0)

) 1
(z − z0)

+
∫

M
dx

(
TRx

(
A(z0)

) − 1
q

resx,0

(
A′(z0)

))

+
K∑

k=1

∫
M
dx

(
TRx(A(k)(z0)) − resx,0(σ

(k+1)
A (z0))

q (k + 1)

)
(z − z0)k

k!

+ o
(
(z − z0)K

)
. (1.30)

If z0 ∈W but z0 /∈ P , then TR(A(z)) is holomorphic at z = z0 and (1.29)
then simplifies to the Taylor expansion

TR(A(z)) = TR
(
A(z0)

)
+

K∑
k=1

TR
(
A(k)(z0)

) (z−z0)k
k!

+o
(
(z−z0)K

)
. (1.31)

Remark 1.21. Since α is non-critical on P , we have from Proposition 1.17
and equation (1.22) that the operators A(k)(z0) ∈ Clα(z0),k(M,E) in equa-
tion (1.29) are not classical for k ≥ 1.

Remark 1.22. At a point z0 ∈ P , α′(z0) �= 0; writing α(z) =
α(z0) + α′(z0)(z − z0) + o(z − z0) we find that α is injective in a neigh-
borhood of z0. As a consequence, Z being countable, so is the set of poles
P = α−1(Z ∩ [−n,+∞) ) ∩W countable.

Remark 1.23. Setting α(z) = z/(1 + λz) with λ ∈ R
∗ for z ∈ C\{−λ−1}

gives rise to an additional finite part α′′(0)
2α′(0)2

∫
S∗

xU σ(0)−n(x, ξ)d̄Sξ =
λ

∫
S∗

xU σ(0)−n(x, ξ)d̄Sξ just as a rescaling R → eλR in the finite-part in-
tegrals gives rise to the extra term λ

∫
S∗

xU σ(0)−n(x, ξ)d̄Sξ (see (1.10) with
k = 0 and µ = eλ).

Proof. Since the orders α(z) define a holomorphic map at each point of P ,
for any z0 ∈ P there is a ball B(z0, r) ⊂ W ⊂ C centered at z0 ∈ W
with radius r > 0 such that (B(z0, r)\{z0})

⋂
P = φ. In particular, for

all z ∈ B(z0, r)\{z0}, the symbols σ(z) have non-integer order. As a con-
sequence, outside the set P , the finite-part integral −∫T ∗

x U σ(z)(x, ξ)d̄ξ is
defined without ambiguity and −∫T ∗

x U σ(z)(x, ξ)d̄ξ dx defines a global den-
sity on M .

Since z0 ∈ P , there is some j0 ∈ N ∪ {0} such that α(z0) + n− j0 = 0.
On the other hand, for z ∈ B(z0, r)\{z0} we have α(z)+n−j �= 0 and N >
Re(α(z))+n−1 can be chosen uniformly to ensure that σ(N)(z) ∈ S<−n(U, V ).
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Hence, for z ∈ B(z0, r)\{z0}, equation (1.9) yields (with k = 0)

−
∫

T ∗
x U
σ(z)(x, ξ)d̄ξ

=
N∑

j=0

∫
B∗

x(0,1)
σ(z)α(z)−j(x, ξ)d̄ξ +

∫
T ∗

x U
σ(N)(z)(x, ξ)d̄ξ

−
N∑

j=0

1
α(z) + n− j

∫
S∗

xU
σ(z)α(z)−j(x, ξ)d̄Sξ

=
N∑

j=0

∫
B∗

x(0,1)
σ(z)α(z)−j(x, ξ)d̄ξ +

∫
T ∗

x U
σ(N)(z)(x, ξ)d̄ξ

−
N∑

j=0,j �=j0

1
α(z) + n− j

∫
S∗

xU
σ(z)α(z)−j(x, ξ)d̄Sξ

− 1
α(z) − α(z0)

∫
S∗

xU
σ(z)α(z)−j0(x, ξ)d̄Sξ , (1.32)

where, in view of the growth conditions (1.15) and (1.16), it is not hard to
see that each of the integrals on the right side of (1.32) is holomorphic in z.
Since σα(z)−j(z)(x, ξ) is a holomorphic family of classical symbols, there is
a Taylor expansion (1.13)

σ(z)α(z)−j(x, ξ) =
∞∑

k=0

σ(k)(z0)α(z0)−j(x, ξ)
(z − z0)k

k!
(1.33)

with coefficients in CSα(z0)−j, k(U)

σ(k)(z0)α(z0)−j(x, ξ) := ∂k
z

(
σ(z)α(z)−j

)∣∣
z=z0

=
(
∂k

zσ(z)
)
α(z)−j

∣∣
z=z0

, (1.34)

where the first equality is by definition, while the second equality is equa-
tion (1.20), and likewise there is a Taylor expansion of the remainder
σ(N)(z)(x, ξ) with coefficients

∂k
z

(
σ(N)(z)(x, ξ)

) |z=z0 =
(
∂k

zσ(z)
)
(N)

(x, ξ)|z=z0 , (1.35)

where again the equality is consequent on equations (1.18) and (1.20).
For any non-negative integer K we may therefore rewrite the first two
lines of (1.32) as a polynomial

∑K
k=0 ak

(z−z0)k

k! plus an error term of order
o((z − z0)K) with
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ak =
N∑

j=0

∫
B∗

x(0,1)

(
∂k

zσ(z)
)
α(z)−j

(x, ξ)
∣∣
z=z0

d̄ξ+
∫

T ∗
x U

(
∂k

zσ(z)
)
(N)

(x, ξ)|z=z0 d̄ξ

−
N∑

j=0,j �=j0

∂k
z |z=z0

(
1

α(z) + n− j

∫
S∗

xU
σ(z)α(z)−j(x, ξ) d̄Sξ

)
. (1.36)

Here, since j �= j0, we use the fact that each factor in the terms of the final
summation of (1.36) are holomorphic in a neighbourhood of z0 (including
at z = z0). On the other hand, from (1.18),

σ(k)(z0)(x, ξ) := ∂k
zσ(z)(x, ξ)|z=z0 ∼

∑
j≥0

(
∂k

zσ(z)
)
α(z)−j

(x, ξ)|z=z0 ,

while we know from (1.17) that σ(k)(z) ∈ CSα(z),k(U). Hence (1.9) may be
applied to see that

−
∫

T ∗
x U
σ(k)(z0)(x, ξ)d̄ξ

=
N∑

j=0

∫
B∗

x(0,1)

(
∂k

zσ(z)
)
α(z)−j

(x, ξ)|z=z0 d̄ξ +
∫

T ∗
x U

(
∂k

zσ(z)
)
(N)

(x, ξ)|z=z0 d̄ξ

+
N∑

j=0,j �=j0

k∑
l=0

(−1)l+1l!
(α(z0)−j+n)l+1

∫
S∗

xU

(
∂k

zσ(z)
)
α(z)−j,l

(x, ξ)|z=z0 d̄Sξ . (1.37)

From the following lemma, we conclude that the expressions in (1.36)
and (1.37) are equal.
Lemma 1.24. For j �= j0, one has in a neighbourhood of z0

∂k
z

( −1
α(z) + n− j

∫
S∗

xU
σ(z)α(z)−j(x, ξ)d̄Sξ

)

=
k∑

l=0

(−1)l+1l!
(α(z) − j + n)l+1

∫
S∗

xU

(
∂k

zσ(z)
)
α(z)−j,l

(x, ξ)d̄Sξ . (1.38)

Proof. We choose z in a neighbourhood of z0 such that each of the factors
on both sides of (1.38) are holomorphic. The equality holds trivially for
k = 0. For clarity we check the case k = 1 before proceeding to the general
inductive step. For k = 1, the left side of (1.38) is equal to

α′(z)
(α(z) − j + n)2

∫
S∗

xU
σ(z)α(z)−j(x, ξ)d̄Sξ

− 1
α(z) − j + n

∫
S∗

xU
∂z

(
σ(z)α(z)−j

)
(x, ξ)d̄Sξ . (1.39)
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From (1.18) and (1.22), for |ξ| ≥ 1,(
∂zσ(z)

)
α(z)−j

(x, ξ) = α′(z)σ(z)α(z)−j(x, ξ) log |ξ| + pα(z)−j(z)(x, ξ) ,

and hence (∂zσ(z))α(z)−j,1(x, ξ) = α′(z)σ(z)α(z)−j (x, ξ) for |ξ| ≥ 1. The
expression in (1.39) is therefore equal to

1
(α(z) − j + n)2

∫
S∗

xU

(
∂zσ(z)

)
α(z)−j,1

(x, ξ)d̄Sξ

− 1
α(z) − j + n

∫
S∗

xU
∂z

(
σ(z)α(z)−j

)
(x, ξ)d̄Sξ ,

which is the right side of (1.38) for k = 1.
Assume now that (1.38) holds for some arbitrary fixed k ≥ 0. Then the

left side of (1.38) for k + 1 is equal to

∂z

(
∂k

z

( −1
α(z) + n− j

∫
S∗

xU
σ(z)α(z)−j(x, ξ)d̄Sξ

))

= ∂z

( k∑
l=0

(−1)l+1l!
(α(z) − j + n)l+1

∫
S∗

xU

(
∂k

zσ(z)
)
α(z)−j,l

(x, ξ)d̄Sξ

)

=
k∑

l=0

(−1)l(l + 1)!α′(z)
(α(z) − j + n)l+2

∫
S∗

xU
σ(k)(z)α(z)−j,l(x, ξ)d̄Sξ

+
k∑

l=0

(−1)l+1l!
(α(z)−j+n)l+1

∫
S∗

xU
∂z

(
σ(k)(z)α(z)−j,l(x, ξ)

)
d̄Sξ , (1.40)

where, for the second equality we use the property that both of the factors
in each summand on the right side of (1.38) are holomorphic near z0, and
in the notation of (1.23)

(
∂k

zσ(z)
)
α(z)−j

(x, ξ) =
k∑

r=0

σ(k)(z)α(z)−j,r(x, ξ) logr[ξ] .

In that notation the right side of (1.38) for k replaced by k + 1 reads
k+1∑
l=0

(−1)l+1l!
(α(z) − j + n)l+1

∫
S∗

xU
σ(k+1)(z)α(z)−j,l(x, ξ)d̄Sξ , (1.41)

while on the (co-)sphere S∗
xU where |ξ| = 1 the identities of Lemma 1.16

become
σ

(k+1)
α(z)−j,k+1(z)(x, ξ) = α′(z)σ(k)

α(z)−j,k(z)(x, ξ) ,

σ
(k+1)
α(z)−j,l(z)(x, ξ) = α′(z)σ(k)

α(z)−j,l−1(z)(x, ξ)+∂z

(
σ

(k)
α(z)−j,l(z)(x, ξ)

)
, 1≤l≤k ,

σ
(k+1)
α(z)−j,0(z)(x, ξ) = ∂z

(
σ

(k)
α(z)−j,0(z)(x, ξ)

)
.
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Substitution of these identities in (1.41) immediately shows (1.41) to be
equal to (1.40). This completes the proof of Lemma 1.24. �

Returning to the proof of Theorem 1.20, from (1.36) and (1.37) and
Lemma 1.24, we now have

ak = −
∫

T ∗
x U
σ(k)(z0)(x, ξ)d̄ξ ,

and so the first two lines of (1.32) may be replaced by
K∑

k=0

−
∫

T ∗
x U
σ(k)(z0)(x, ξ)d̄ξ

(z − z0)k

k!
+ o

(
(z − z0)K

)
.

Hence (1.32) becomes

−
∫

T ∗
x U
σ(z)(x, ξ)d̄ξ =

K∑
k=0

−
∫

T ∗
x U
σ(k)(z0)(x, ξ)d̄ξ

(z − z0)k

k!
+ o

(
(z − z0)K

)

− 1
α(z) − α(z0)

∫
S∗

xU
σ(z)−n(x, ξ)d̄Sξ . (1.42)

To expand the sphere integral term in (1.42), since α is holomorphic we
have in a neighbourhood of each z0 ∈ P a Taylor expansion

α(z) − α(z0) =
L∑

l=1

α(l)(z0)
l!

(z − z0)l + o(z − z0)L

and hence since α′(z0) �= 0 an expansion

1
α(z) − α(z0)

=
1

α′(z0)(z − z0)
· 1

1 +
∑L

l=1
α(l+1)(z0)

α′(z0)
(z−z0)l

(l+1)! + o(z − z0)L

=
1

α′(z0)
· 1
(z − z0)

− α′′(z0)
2α′(z0)2

+
J∑

j=1

βj(z0)(z − z0)j + o(z − z0)J , (1.43)

with βj(z0) an explicitly computable rational function in α(k)(z0), 1 ≤ k ≤
j + 1 with denominator an integer power of α′(z0). On the other hand,
since α(z0) − j0 = −n, the expansion (1.33) for j = j0 becomes

σ(z)α(z)−j0(x, ξ) =
∞∑

k=0

k∑
l=0

(
σ(k)(z0)

)
−n,l

(x, ξ) logl[ξ]
(z − z0)k

k!
. (1.44)

Since (σ(k)(z0))−n,l(x, ξ) logl |ξ| = 0 for l ≥ 1 on S∗
xU , we find from the

expansions (1.43) and (1.44)
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1
α(z) − α(z0)

∫
S∗

xU
σ(z)α(z)−j0(x, ξ)d̄Sξ

=
1

α′(z0)
·
∫

S∗
xU

(
σ′(z0)

)
−n,0

(x, ξ)d̄Sξ
1

(z − z0)

−
K∑

k=0

∫
S∗

xU
Lk

(
σ(z0), σ′(z0), . . . , σ(k+1)(z0)

)
−n,0

(x, ξ)d̄Sξ
(z−z0)k
k!

+ o
(
(z − z0)K

)
, (1.45)

where Lk

(
σ(z0), σ′(z0), · · · , σ(k+1)(z0)

)
is readily seen to have the form in

(1.26). In particular, the explicit formulae given for the first two terms in
(1.43) lead to the formula

L0

(
σ(z0), σ′(z0)

)
(x, ξ)

=
1

α′(z0)

∫
S∗

xU
σ′(z0)−n,0(x, ξ)d̄Sξ − α′′(z0)

2α′(z0)2

∫
S∗

xU
σ(z0)−n(x, ξ)d̄Sξ ,

which with the contribution from the k = 0 finite-part integral on the right-
side of (1.42) gives the stated constant term in the expansion (1.25). The
next term up, for example, is

L1

(
σ(z0), σ′(z0), σ′′(z0)

)
(x, ξ) =

1
α′(z0)

∫
S∗

xU
σ′′(z0)−n,0(x, ξ)d̄Sξ − α′′(z0)

2α′(z0)2

∫
S∗

xU
σ′(z0)−n,0(x, ξ)d̄Sξ

+
3α′′(z0)2 − 2α′′′(z0)α′(z0)

12α′(z0)3

∫
S∗

xU
σ(z0)−n(x, ξ)d̄Sξ.

When α(z) = qz+ b with q �= 0 the right-side of (1.43) is 1
q (z−z0)

and so

from (1.33) one then has Lk

(
σ(z0), σ′(z0), · · · , σ(k+1)(z0)

)
= σ(k+1)(z0)

q (k+1)! and
so (1.27) follows.

If z0 /∈ P then α(z) ∈ C\Z and so the log-polyhomogeneous symbols
Lk in (1.45) then have non-integer order and hence have no component
of degree −n, and therefore vanish. Likewise the pole in (1.45) vanishes
and so (1.25) simplifies, in this case, to (1.28). Alternatively, this can be
seen in a simpler more direct way by using the linearity of the finite-part
integral over log-polyhomogeneous symbols of non-integer order applied to
the Taylor expansion of the symbol at z0. (Indeed, in this case the term
j = j0 in (1.32) does not need to be treated separately from the sum in the
previous line and (1.36) holds by linearity, from which Lemma 1.24 may
then be inferred and now including the case j = j0.)
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This shows the first part of the theorem.

For the second part we use a partition of unity {(Ui, φi) | i ∈ J} such
that for i, j ∈ J there is an lij ∈ J with supp(φi) ∪ supp(φj) ⊂ Uij := Ulij .
We suppose trivialisations of π : E →M over each open set Ui. Then, with
Uij identified with an open subset of R

n, one has A(z) =
∑

i,j φiA(z)φj

where φiA(z)φj = Op(σ(ij)(z)) is the localization of A over Uij with am-
plitude

σ(ij)(z)(x, y, ξ) ∈ CSα(z)(Uij × Uij , V ) ,
a local holomorphic family of symbols in (x, y) form. Each finite-part in-
tegral −∫ TxUij

σ(ij)(z)(x, x, ξ)d̄ξ is well defined outside P , since A(z) has
non-integer order for those values of z. Using the linearity there of the
canonical trace functional it follows that for z /∈ P

TR(A(z)) =
∑
i,j

∫
Uij

−
∫

TxUij

tr
(
σ(ij)(z)(x, x, ξ)

)
d̄ξ dx,

where tr is the trace on End(V ), allowing (1.25) to be applied to each of
the summands defined over the trivialising charts. Each locally defined
coefficient in the Laurent expansion is seen by holomorphic continuation to
define a global density on M in the way explained in Proposition 1.25. The
first part of the theorem therefore yields that TR(A(z)) is meromorphic
with simple poles in P and since

σ
(k)
A(z0) = σA(k)(z0) (1.46)

the identity (1.29) now follows from the formula (1.25) applied to each
localization.

The fact that the coefficients of (z − z0)k/k! in the Laurent expansions
of the meromorphic maps z �→ −∫ T ∗

x Uσ(z) and z �→ TR(A(z)) correspond
to the finite part at z = z0 of their derivative at order k follows from the
general property for a meromorphic function f on an open set W ⊂ C with
Laurent expansion around z0 given by

f(z) =
J∑

j=1

bj
(z−z0)j +

K∑
k=0

ak
(z−z0)k
k!

+ o((z−z0)K) ,

that
fpz=z0

f (k)(z) = ak . (1.47)

Combined with the equality ∂k
z TR(A(z)) = TR(A(k)(z)) valid for z �∈ P we

reach the conclusion.
Since the formulas (1.30), (1.31) now follow from (1.27) and (1.28), this

ends the proof of the theorem. �
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In passing from the local formula (1.25) to the global formula (1.29)
in the proof of Theorem 1.20 we have implicitly used the following fact,
yielding the Laurent coefficients to be global densities on M which can be
integrated.

Proposition 1.25. Let ck(x) denote the coefficient of (z − z0)k/k! in the
Laurent expansion (1.25). Then ck(x)dx is defined independently of the
choice of local coordinates on M .

Proof. By formula (1.47), the coefficient ck(x) of (z − z0)k/k! in the Laurent
expansion (1.25) with σ(z)(x, ·) = σA(z)(x, ·) is identified with the finite
part at z0 of the k-th derivative of the map

z �→ IA(z)(x) := −
∫

T ∗
x U
σA(z)(x, ξ)d̄ξ ,

i.e. ck(x) = fpz=z0
IA(k)(z)(x). For z /∈ P the property (1.12) holds for the

finite-part integral IA(z)(x) as well as for the finite-part integrals IA(k)(z)(x)
since the order of A(k) differs from that of A(z) by an integer.

The map z �→ IA(k)(z)(x) has a Laurent expansion IA(k)(z)(x) =∑k+1
j=1

bj(x)
(z−z0)j +

∑K
k=0 ck(x)

(z−z0)k

k! + o((z − z0)k) and (z − z0)k+1IA(k)(z)(x)
can be extended to a holomorphic function in a small ball centered at z0
with value bk+1(x) at z0. Since property (1.12) holds for IA(k)(z)(x) outside
z0 in this ball, it holds for the holomorphic extension on the whole ball and
hence for bk+1(x). Using (1.12), we deduce that bk+1(x) dx is defined inde-
pendently of the choice of local coordinates on M and so is the difference(
IA(k)(z)(x)− bk+1(x)

(z−z0)k+1

)
dx for any z outside z0 in a small ball centered at z0.

Iterating this argument, one shows recursively on the integer 1 ≤ J ≤ k

that
(
IA(k)(z)(x)−

∑k+1−J
j=1

bj(x)
(z−z0)j

)
dx is defined independently of the choice

of local coordinates on M in a small ball centered at z0. Consequently, the
finite part

(
fpz=z0

IA(k)(z)(x)
)
dx at z0 is also defined independently of the

choice of local coordinates. Since this finite part coincides with k! ck(x), we
have that ck(x)dx is defined independently of the choice of local coordinates
on M . �

Examining the singular and constant terms in the expansions of Theo-
rem 1.20 we have the following corollaries.

First, the singular term yields the known identification of the residue
trace with complex residue of the canonical trace, derived in [Gu], [W],
[KV]. With the assumptions of Theorem 1.20:
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Corollary 1.26. The map z �→ −∫ T ∗
x Uσ(z)(x, ξ)d̄ξ is meromorphic with

at most a simple pole at z0 ∈ P with complex residue

Resz=z0−
∫

T ∗
x U
σ(z)(x, ξ)d̄ξ = − 1

α′(z0)

∫
S∗

xU
σ(z0)−n(x, ξ)d̄Sξ . (1.48)

For the holomorphic family z �→ A(z) of ψdos parametrized by W , the
form 1

α′(z0)

∫
S∗

xU (σA(z0))−n(x, ξ)d̄Sξ dx defines a global density on the mani-

fold M and the map z �→ TR(A(z)) :=
∫
M dxTRx(A(z)) is a meromorphic

function with at most a simple pole at z0 ∈ P with complex residue

Resz=z0TR(A(z)) = − 1
α′(z0)

res (A(z0)) . (1.49)

Thus, consequent to Proposition 1.25, one infers here the global exis-
tence of the residue density for integer order operators from the existence
of the canonical trace density for non-integer order operators and holomor-
phicity.

On the other hand, the constant term provides a defect formula for
finite-part integrals.

With the assumptions of Theorem 1.20:
Theorem 1.27. For a holomorphic family of symbols z �→ σ(z) ∈
CS(U, V ) parametrized by a domain W ⊂ C and for any x ∈ U ,

fpz=z0
−
∫

T ∗
x U
σ(z)(x, ξ)d̄ξ

= −
∫

T ∗
x U
σ(z0)(x, ξ)d̄ξ − 1

α′(z0)

∫
S∗

xU
σ′(z0)−n,0(x, ξ)d̄Sξ

+
α′′(z0)

2α′(z0)2

∫
S∗

xU
σ(z0)−n(x, ξ)d̄Sξ . (1.50)

For the holomorphic family z �→ A(z) ∈ Cl(M,E) of ψdos parametrized by
W ⊂ C,

fpz=z0
TR(A(z)) =

∫
M
dx

(
TRx

(
A(z0)

) − 1
α′(z0)

resx,0

(
A′(z0)

))

+
α′′(z0)

2α′(z0)2
res

(
A(z0)

)
. (1.51)

Remark 1.28. Since α is non-critical on P , from Proposition 1.17 if z0 ∈ P
the operator A′(z0) ∈ Clα(z0),1(M,E) in equation (1.51) is not classical.

Remark 1.29. If resx,0(A(z0))= 0 then fpz=z0
TRx(A(z))= limz→z0TRx(A(z)).

If this holds for all x ∈ M , then TR(A(z)) is holomorphic at z0 and
fpz=z0

TR(A(z)) = limz→z0 TR(A(z)).
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One therefore has the following statement on the existence of densities
associated to the local canonical trace.
Theorem 1.30. With the assumptions of Theorem 1.20, for a holomor-
phic family z �→ A(z) ∈ Cl(M,E) parametrized by a domain W ⊂ C, and
irrespective of the order α(z0) ∈ R of A(z0)(

TRx(A(z0)) − 1
α′(z0)

resx,0(A′(z0))
)
dx (1.52)

defines a global density on M which integrates on M to fpz=z0
TR(A(z)). If

α(z0) /∈ Z then (1.52) reduces to the canonical trace density on non-integer
order classical ψdos of [KV].

Though this follows on the general grounds of Proposition 1.25, we have,
for completeness, given a direct proof of Theorem 1.30 in Appendix A. This
specializes to give the previously known existence of the canonical trace on
non-integer order ψdos, recalled in section 1.2.

With the assumptions of Theorem 1.20:
Theorem 1.31. Let z �→ A(z) ∈ Cl(M,E) be a holomorphic family of
classical ψdos parametrised by W ⊂ C and let z0 ∈W . If either

TRx(A(z0))dx =
(
−
∫

T ∗
x M

trx(σA(z0))(x, ξ)dξ
)
dx

or
resx

(
A′(z0)

)
dx :=

∫
S∗

xM
trx

(
(σA′(z0))−n(x, ξ)

)
dSξ dx

defines a global density on M , then TR(A(z0)) and res(A′(z0)) =∫
M resx,0(A′(z0))dx are both well defined. The following defect formula

then holds

fpz=z0
TR(A(z)) = TR(A(z0)) − 1

α′(z0)
res

(
A′(z0)

)
. (1.53)

This holds in the following cases:

(i) If A(z0) ∈ Clα(z0),0(M,E) satisfies one of the cases (1), (2) or (3) of
Proposition 1.10 then TR(A(z0)) is defined and (1.53) holds. In case (1)
this reduces to

fpz=z0
TR(A(z)) = TR(A(z0)) . (1.54)

(ii) If resx,0(A′(z0)) = 0 for all x ∈M then TR(A(z)) is holomorphic at
z0 ∈W , so that fpz=z0

TR(A(z)) = limz→z0 TR(A(z)), and (1.54) holds.

(iii) If A(z0) is a differential operator, and more generally whenever
TRx(A(z0)) = 0 for all x ∈M , (1.53) reduces to

fpz=z0
TR(A(z)) = − 1

α′(z0)
res

(
A′(z0)

)
. (1.55)
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Remark 1.32. (1.53) can hold with both summands on the right-side of
the equation non-zero. See Example 2.8.

Proof. The first statement is consequent to Theorem 1.30. Since
TRx(A(z0))dx then defines a global density the transformation rule for
finite-part integrals in Proposition 1.9 implies that∫

S∗
xM

trx

(
σA(z0)

)
−n,0

(x, ξ) log |C−1ξ|d̄Sξ = 0 ∀C ∈ GLn(C) ,

and hence (taking C = λ · I, λ ∈ C) that

resx,0(A(z0)) :=
∫

S∗
xM

d̄Sξ trx
(
σA(z0)

)
−n,0

(x, ξ) = 0 .

Equation (1.53) now follows from (1.51). Parts (i), (ii), (iii) are now obvious
in view of Proposition 1.10 and Proposition 1.12 and the vanishing of the
residue trace on non-integer order operators and on differential operators. �

2 Application to the Complex Powers

An operator Q ∈ Ell(M,E) of positive order is called admissible if there is
a proper subsector of C with vertex 0 which contains the spectrum of the
leading symbol σL(Q) of Q. Then there is a half line Lθ = {reiθ, r > 0}
(a spectral cut) with vertex 0 and determined by an Agmon angle θ which
does not intersect the spectrum of Q. Let Elladm

ord>0(M,E) denote the subset
of admissible operators in Ell(M,E) with positive order.

Let Q ∈ Elladm
ord>0(M,E) with spectral cut Lθ. For Re z < 0, the complex

power Qz
θ of Q is a bounded operator on any space Hs(M,E) of sections

of E of Sobolev class Hs defined by the contour integral:

Qz
θ =

i

2π

∫
Cθ

λz(Q− λI)−1dλ (2.1)

where Cθ = C1,θ,r ∪ C2,θ,r ∪ C3,θ,r. Here r is a sufficiently small positive
number and C1,θ,r = {λ = |λ|eiθ | +∞ > |λ| ≥ r}, C2,θ,r = {λ = reiφ | θ ≥
φ ≥ θ − 2π} and C3,θ,r = {λ = |λ|ei(θ−2π) | r ≤ |λ| < +∞}. Here λz =
exp(z log λ) where log λ = log |λ|+iθ on C1,θ,r and log λ = log |λ|+i(θ−2π)
on C3,θ,r.

For k ∈ N the complex power Qz is then extended to the half plane Re
z < k via the relation [Se1]

QkQz−k
θ = Qz

θ .

The definition of a complex power depends in general on the choice of θ
and yields for any z ∈ C an elliptic operator Qz

θ of order z · ord(Q). In
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spite of this θ-dependence, we may occasionally omit it in order to simplify
notation.

Remark 2.1. For z = 0,
Q0

θ = I − ΠQ ,

where ΠQ is the smoothing operator projection

ΠQ =
i

2π

∫
C0

(Q− λI)−1dλ ,

with C0 a contour containing the origin but no other element of spec(Q),
with range the generalized kernel {ψ ∈ C∞(M,E) | QNψ = 0 for some
N ∈ N} of Q. (See [B], [W], presented recently in [Po]).

Let Q ∈ Elladm
ord>0(M,E) be of order q with spectral cut Lθ. For ar-

bitrary k ∈ Z, the map z → Qz
θ defines a holomorphic function from

{z ∈ C,Re z < k} to the space L(Hs(M,E) → Hs−k·q(M,E)) of bounded
linear maps and we can set

logθ Q :=
[
∂

∂z
Qz

θ

]
z=0

.

From (1.22), in a local trivialisation E|U � U × V of E over an open set
U of M the symbol of logθ Q reads σlogθ Q(x, ξ) = ord(Q) log |ξ|Id + ρ(x, ξ)
with ρ ∈ Cl0(U, V ), and so logθ Q ∈ Cl0,1(M,E) has order zero and log de-
gree one. The logarithmic dependence is slight, for P,Q ∈ Elladm

ord>0(M,E),
of non-zero order p, q respectively and admitting spectral cuts Lθ and Lφ

we have logθ P
p − logφ Q

q ∈ Cl0(M,E). More generally, higher derivatives of
the complex powers have symbols with polynomial powers of log |ξ| and it
follows from Proposition 1.17 that

logk
θ Q :=

[
∂k

∂zk
Qz

θ

]
z=0

∈ Cl0,k(M,E) . (2.2)

Theorem 1.20 leads to the following Laurent expansion.

Theorem 2.2. Let Q ∈ Elladm
ord>0(M,E) with spectral cut θ and of order

q and let A ∈ Clα(M,E). On the half plane Re(z) > (α+ n)/q the lo-
cal Schwartz kernel KAQ−z

θ
(x, y) of AQ−z

θ is well defined and holomorphic

and the restriction to the diagonal KAQ−z
θ

(x, x)dx =
∫
T ∗

x M σAQ−z
θ

(x, ξ)d̄ξ dx
defines a global density, an element of C∞(M,End(E)). There is a mero-
morphic extension of KAQ−z

θ
(x, y) to all z ∈ C,

KAQ−z
θ

(x, x)|mer := −
∫

T ∗
x M

σAQ−z
θ

(x, ξ)d̄ξ , (2.3)
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with at most simple poles, each of which is located in P := {(α− j)/q | j ∈
[−n,∞[∩Z}. For any x ∈M , we have for z near (α− j)/q ∈ P

KAQ−z
θ

(x, x)|mer =
1
q

∫
S∗

xM

(
σ

AQ
(j−α)/q
θ

)
−n

(x, ξ)d̄Sξ · 1(
z − α−j

q

)

+
K∑

k=0

(−1)k

k!

(
z − α− j

q

)k

×
(
−
∫

T ∗
x U
σ

AQ
(j−α)/q
θ logk

θ Q
(x, ξ)d̄ξ

− 1
q(k + 1)

∫
S∗

xM

(
σ

AQ
(j−α)/q
θ logk+1

θ Q

)
−n,0

(x, ξ)d̄Sξ

)

+ o

((
z − α− j

q

)K )
. (2.4)

It follows that the map z �→ TR(AQ−z
θ ) :=

∫
M trx(KAQ−z

θ
(x)|mer) is a

meromorphic function with no more than simple poles located in P , and
for z near (α− j)/q ∈ P

TR(AQ−z
θ ) =

1
q

res(AQ
j−α

q

θ ) · 1(
z − α−j

q

) +
K∑

k=0

(−1)k

k!

(
z − α− j

q

)k

×
∫

M
dx

(
TRx

(
AQ

j−α
q

θ logk
θ Q

) − 1
q(k + 1)

resx,0(AQ
j−α

q

θ logk+1
θ Q)

)

+ o

((
z − α− j

q

)K )
. (2.5)

If z0 /∈ P then TR(AQ−z
θ ) is holomorphic at z0 and for z in a small enough

neighbourhood of z0

TR(AQ−z
θ ) =

K∑
k=0

(−1)k

k!
TR(AQz0

θ logk
θ Q)

(z − z0)k

k!
+ o

(
(z− z0)K

)
. (2.6)

Proof. Since σ(z) := σAQ−z
θ

has order α(z) = α−qz, (1.27) of Theorem 1.20
can be applied to equation (2.3). Using (2.2) and Example 1.18, this yields
(2.4). Applying the fibrewise trace trx and integrating over M yields equa-
tion (2.5). Equation (2.6), to which (2.5) reduces when α /∈ Z, as the
operators inside the local residue traces then have non-integer order, fol-
lows from (1.31); that TRx(AQz0

θ logk
θ Q) dx defines a global density on M

in this case is known from [L]. �

Because of the identity with the generalized zeta-function

ζθ(A,Q, z) = TR(AQ−z
θ )
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the expansion (2.5) is of particular interest near z = 0, owing to the role of
the Laurent coefficients there in geometric analysis.
Theorem 2.3. If ord(A) = α ∈ [−n,∞[∩Z then 0 ∈ P and one then
has, near z = 0,

ζθ(A,Q, z) = 1
q res(A) · 1

z+
∫

M
dx

(
TRx(A)−1

q resx,0(A logθ Q)
)
− tr(AΠQ)

+
K∑

k=1

(−1)k
zk

k!
×

∫
M
dx

(
TRx(A logk

θ Q) − 1
q(k+1)

resx,0(A logk+1
θ Q)

)

− tr(A logk
θ QΠQ) + o(zK) . (2.7)

If α /∈ [−n,∞[∩Z then ζθ(A,Q, z) is holomorphic at zero and one has for
z near zero,

ζθ(A,Q, z) =
K∑

k=0

(−1)k
(
TR(A logk

θ Q)−tr(A logk
θ QΠQ)

)zk

k!
+o(zK) . (2.8)

Remark 2.4. The formula (2.8) can also be deduced from exact formulas
for the case α /∈ Z in [Gru1, §3]. All formulas presuppose the existence
shown in [KV], [L] of the canonical trace for non-integer order ψdos with
log-polyhomogeneous symbol.

Proof. The assumption α ∈ [−n,∞[∩Z means that (α − j0)/q = 0 for
some j0 ∈ [−n,∞[∩Z. Hence (2.7) is almost obvious from (2.5); the
subtle point is to take care to replace Q

−(α−j)/q
θ = Q0

θ by I − ΠQ, see
Remark 2.1. Since the spectral projection ΠQ is a smoothing operator
the term TRx(A logk

θ QΠQ)dx is an ordinary integral valued density and
globally defined, yielding the term tr(A logk

θ QΠQ). The formula (2.8) for
A of non-integer order (to which (2.7) reduces in this case) is immediate
from (2.6). �

We denote the coefficient of
(
z − α−j

q

)k
/k! in the Laurent expansion

of the generalized zeta function at (α− j)/q ∈ P by ζ(k)
θ (A,Q, (α − j)/q).

In the case k = 0, we use the simpler convention of writing the constant
term ζ

(0)
θ (A,Q, (α − j)/q) := fpz=(α−j)/q ζθ(A,Q, z) as ζθ(A,Q, (α − j)/q).

When A = I write ζθ(Q, (α − j)/q) := ζθ(I,Q, (α − j)/q).

Corollary 2.5. For any operator A ∈ Cl(M,E),

ζθ(A,Q, 0) =
∫

M
dx

(
TRx(A) − 1

q
resx,0(A logθ Q)

)
− tr(AΠQ) . (2.9)

More generally, for any non-negative integer k
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ζ
(k)
θ (A,Q, 0) = (−1)k

∫
M
dx

(
TRx(A logk

θ Q)− 1
q(k+1)

resx,0(A logk+1
θ Q)

)

+ (−1)k+1 tr(A logk
θ QΠQ) . (2.10)

If A has integer order α ∈ [−n,∞) ∩ Z then

ζθ

(
A,Q,

α− j

q

)
=

∫
M
dx

(
TRx(AQ

−α−j
q

θ ) − 1
q

resx,0

(
AQ

−α−j
q

θ logθ Q
))

Applied to the complex powers, the general statement on the existence
of densities associated to the canonical and residue traces of Theorem 1.30
now states that independently of the order of A ∈ Cl(M,E),(

TRx(A) − 1
q resx,0(A logθ Q)

)
dx

always defines a global density on M .
If A has non-integer order this reduces to the KV canonical trace density

and (by (2.8)) the identity (2.10) loses its residue defect term and one then
has the known formula (cf. [Gru1, Cor. 3.8])

ζ
(k)
θ (A,Q, 0) = (−1)kTR(A logk

θ Q) − (−1)k tr(A logk
θ QΠQ) . (2.11)

Applying Theorem 1.31 to the zeta function at z = 0 yields the following
refinement of (2.9).
Theorem 2.6. Let Q ∈ Elladm

ord>0(M,E) be a classical ψdo with spectral
cut θ and of order q, and let A ∈ Clα(M,E) be a classical ψdo of order α.
If either TRx(A)dx or resx(A logθ Q)dx defines a global density on M , then
ζθ(A,Q, z) is holomorphic at z = 0, TR(A) and res(A logθ Q) both exist,
and one has

ζθ(A,Q, 0) = TR(A) − 1
q res(A logθ Q) − tr(AΠQ) . (2.12)

Proof. If TRx(A)dx defines a global density then res(A) vanishes, as ac-
counted for in the proof of Theorem 1.31, and so ζθ(A,Q, z) is holomorphic
at z = 0. The formula is obvious from (1.53). �

Notice that the assumptions of Theorem 2.6 also force res(A) = 0.
The situation of Theorem 2.6 can be seen to hold for certain combi-

nations of even-even and even-odd ψdos. First, it holds in the following
circumstances.
Corollary 2.7. (i) If A satisfies one of the cases (1), (2) or (3) of
Proposition 1.10 then TR(A) is defined and (2.12) holds. In case (1) this
reduces to

ζθ(A,Q, 0) = TR(A) − tr(AΠQ) . (2.13)
If Q is an even-even operator and has even order, then (2.13) also holds
when A satisfies case (2) (assume M is odd-dimensional) or (3) (assume
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M is even-dimensional) of Proposition 1.10. These facts are known from
[Gru1].

(ii) IfA is a differential operator, and more generally whenever TRx(A) =
0 for all x ∈M , (2.12) reduces to

ζθ(A,Q, 0) = −1
q res(A logθ Q) − tr(AΠQ) . (2.14)

Proof. Part (ii) follows from Proposition 1.12. For part (i), it is clear
that (2.13) holds when resx(A logθ Q) = 0 for each x ∈ M . This is ev-
ident for case (1) operators. If A satisfies case (2) (resp. case (3)) of
Proposition 1.10 and if Q is even-even and of even order, then it is not
hard to see that σA logθ Q(x, ξ) is also even-even (resp. even-odd) and hence
(σA logθ Q)−n,0(x, ξ) vanishes when integrated over the n− 1 sphere. �

Example 2.8. To see that (2.12) may hold with all three terms non-
zero, take A = D + S with D a differential operator and S a smooth-
ing operator, and let Q ∈ Elladm

ord>0(M,E). Then TR(A) = tr(S) and
res(A logθ Q) = res(D logθ Q) both exist (note Corollary 2.7 (ii)) and are
non-zero in general. For example, if Q = D ∈ Elladm

ord>0(M,E) is invertible
one has res(D logθ D) = − ζθ(D,−1).

Remark 2.9. In Corollary 2.7 (i), if Q has odd order then (2.12) may
hold with all three terms non-zero due to dependence on the choice of the
spectral cut. The distinct behaviour for odd-order Q was kindly pointed
out to the authors by Gerd Grubb.

Remark 2.10. Using Theorem 1.31 similar facts to those in Corollary 2.7
can be seen to hold for the ζ(k)

θ (A,Q, (α − j)/q), see also [Gru1, §3]. The
regularity of ζθ(A,Q, z) at z = 0 in (ii) is proved in [GruS]. When A = I
the identity (2.14) was shown in [S]. On the other hand, when Q is a
differential operator and taking A = Qm in (2.14) gives

ζθ(Q,−m) = −1
q res(Qm logθ Q) − tr(QmΠQ) , (2.15)

which was obtained in the case when Q is positive and invertible by other
methods in [Lo]. Note that for sufficiently large m one has tr(Qm ΠQ) = 0.

Looking at the next term up in the Laurent expansion, around z = 0
the zeta function ζθ(Q, z) = TR(Q−z

θ ) is holomorphic and hence the ζ-
determinant

detζ,θ Q = exp
( − ζ ′θ(Q, 0)

)
,

is defined, where ζ ′θ(Q, 0) = ∂zζθ(Q, z))|z=0
.
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Theorem 2.11. One has

log detζ,θ(Q) =
∫

M
dx

(
TRx(logθ Q) − 1

2q resx,0(log2
θ Q)

)
− tr(logθ QΠQ) .

(2.16)
If M is odd-dimensional and Q is an even-even operator and has even order
then one has (as known from [O2], [Gru1, §3], see also [KV, §4])

log detζ,θ(Q) = TR(logθ Q) − tr(logθ QΠQ) , (2.17)
where TR(logθ Q) =

∫
M TRx(logθ Q)dx,

Proof. Examining the coefficient of z in the Laurent expansion (2.7) imme-
diately yields (2.16). If Q is even-even and of even order then the classical
component of the local symbol of log2

θ Q ∈ Cl0,2(M,E) also has even-even
parity. Hence the local residue integral of the term of homogeneity −n then
vanishes, TRx (logθ Q) dx defines a global density on M , and (2.16) reduces
to (2.17). �

2.1 The canonical trace on commutators and the residue trace
on logarithms. The canonical trace TR is not defined on a commutator
of classical ψdos which has integer order. Rather the following property
holds.
Theorem 2.12. Let Q ∈ Elladm

ord>0(M,E) be of order q and with spectral
cut θ, and let A ∈ Clα(M,E), B ∈ Clβ(M,E) for any α, β ∈ R. Then(

TRx

(
[A,B]

) − 1
q resx,0

(
[A,B logθ Q]

))
dx

defines a global density on M and one has∫
M
dx

(
TRx

(
[A,B]

) − 1
q resx,0

(
[A,B logθ Q]

))
= 0 , (2.18)

independently of the choice of Q.

Proof. Using the vanishing of TR in Proposition 1.13 (1), for z �= 0 suffi-
ciently close to 0 we have

TR
(
[A,BQ−z

θ ]
)

= 0 . (2.19)
Hence the function zTR([A,BQ−z

θ ]) also vanishes identically for such non-
zero z. But from (2.7), zTR([A,BQ−z

θ ]) extends holomorphically to include
z = 0. By equation (2.19), this analytically continued function must also
vanish at z = 0. It follows that TR([A,BQ−z

θ ]) is holomorphic near z = 0
and so (2.7) implies fpz=0TR([A,BQ−z

θ ]) = limz→0 TR([A,BQ−z
θ ]) = 0.

Applying Proposition 1.31 to A(z) = [A,BQ−z
θ ] with z0 = 0, we have by

Theorem 1.27
0 = fpz=0TR

(
[A,BQ−z

θ ]
)
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=
∫

M
dx

(
TRx

(
[A,B(I − ΠQ)]

)
+

1
q

resx,0

(
[A,B logθ Q]

))
,

which is equation (2.18), since TR ([A,BΠQ)]) = tr ([A,BΠQ)]) = 0. �

Corollary 2.13. Let Q ∈ Elladm
ord>0(M,E) be of order q and with spectral

cut θ, and let A ∈ Clα(M,E), B ∈ Clβ(M,E). Then in cases (1), (2) and
(3) of Proposition 1.13 the form resx ([A,B logθ Q]) dx determines a global
density on M and one has

res
(
[A,B logθ Q]

)
= 0 ,

independently of the choice of Q.

Remark 2.14. The independence from Q can also be seen for the residue
trace term directly; given Q1, Q2 ∈ Elladm

ord>0(M,E) of order q1 and q2 re-
spectively with common spectral cut θ, the difference(

1
q1

resx,0

(
[A,B logθ Q1]

) − 1
q2

resx,0

(
[A,B logθ Q2]

))
dx

defines a global density which integrates to

res
([
A,B

(
logθ Q1

q1
− logθ Q2

q2

)])
= 0

since logθ Q1

q1
− logθ Q2

q2
is a classical ψdo.

A useful consequence of Theorem 2.12 and Proposition 1.12 is
Corollary 2.15. Let Q ∈ Elladm

ord>0(M,E) of order q and with spectral
cut θ, and let A,B ∈ Cl(M,E). Whenever TR([A,B]) =

∫
M dxTRx([A,B])

is well defined then resx,0 ([A,B logθ Q]) dx is globally defined and one then
has

res
(
[A,B logθ Q]

)
= qTR

(
[A,B]

)
. (2.20)

In particular, if [A,B] is a differential operator then resx,0 ([A,B logθ Q]) dx
is globally defined and one has

res
(
[A,B logθ Q]

)
= 0 .

In that case, whenever resx,0(AB logθ Q)dx defines a global density, then
so does resx,0(B logθ QA)dx and

res(B logθ QA) = res(AB logθ Q) .
In particular, since res (logθ Q) exists [O1], for any invertible A ∈ Cl(M,E)

res
(
A−1 logθ QA

)
= res (logθ Q) . (2.21)

Remark 2.16. This proposition partially generalizes the fact [O1] that
resx,0 ([A, logθ Q]) dx for A a classical ψdo defines a global density and
res ([A, logθ Q]) = 0, which when A is a differential operator follows from
the corollary applied to B = I.
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On the other hand, the well-known ([MN], [O1], [CDMP], [Gru2]) trace
defect formula

ζθ
(
[A,B], Q, 0

)
= −1

q res
(
A[B, logθ Q]

)
. (2.22)

follows easily by applying the same argument as in the proof of Theo-
rem 2.12 to C(z) = A [B,Q−z]. From (2.18) and (2.22) we infer
Corollary 2.17. For classical ψdos A and B

−1
q

res
(
A[B, logθ Q]

)
=

∫
M
dx

(
TRx

(
[A,B]

) − 1
q

resx

(
[A,B] logθ Q

))
.

In cases (1), (2) and (3) of Proposition 1.13 the form resx ([A,B] logθ Q) dx
determines a global density on M and one has

res
(
A[B, logθ Q]

)
= res

(
[A,B] logθ Q

)
.

While from Proposition 2.12 we conclude
Corollary 2.18. The density resx ([A,B logθ Q] − [A,B] logθ Q) dx is
globally defined on M for classical ψdos A and B and one has

res
(
A[B, logθ Q]

)
= res

(
[A,B] logθ Q− [A,B logθ Q]

)
Proof.

1
q

res
(
A[B, logθ Q]

)
= −

∫
M
dx

(
TRx

(
[A,B]) − 1

q
resx

(
[A,B] logθ Q

))

= −
∫

M
dx

(
TRx

(
[A,B]

) − 1
q

resx

(
[A,B logθ Q]

)

+
1
q

resx

(
[A,B] logθ Q− [A,B logθ Q]

))

=
1
q

∫
M
dx resx

(
[A,B] logθ Q− [A,B logθ Q]

)

=
1
q

res
(
[A,B] logθ Q− [A,B logθ Q]

)
�

We point out that Corollary 2.19 and (2.22) imply the following local
index formulae.
Corollary 2.19. Let A be an elliptic ψdo with parametrix B. Let
Q ∈ Elladm

ord>0(M,E) be of order q and with spectral cut θ. Then, indepen-
dently of the choice of Q,

res
(
[A,B logθ Q]

)
= res

(
A[B, logθ Q]

)
, (2.23)

and are equal to −q index (A).

Proof. In this case index (A) = tr([A,B]) and since [A,B] is smoothing
equal to TR ([A,B]). The first equality thus follows from (2.20). Since
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AB = I + S where S is a smoothing operator, and since resx,0(S logθ Q) is
therefore equal to zero, the second equality also follows. �

Appendix A: Proof of the Density Formula

The purpose here is to give a direct elementary proof of Theorem 1.30,
which for the family z �→ A(z) ∈ Cl(M,E) parametrized by a domain
W ⊂ C states that, irrespective of the order α(z0) ∈ R of A(z0),(

TRx(A) − 1
α′ resx,0(A′)

)
dx (2.24)

defines a global density on M . Here, we have written A = A(z0), A′ =
A′(z0) := d/dz|z=z0(A(z)), and α′ = α′(z0).

From previous works [KV], it is known that TRx(A(z0))dx defines a
global density on M when α(z0) is not integer valued; this follows immedi-
ately from (2.24) and Proposition 1.17.

The method of proof uses a generalization of the method used in [O1]
to show that the residue density is globally defined for any classical ψdo,
and the method in [L] used to show that the canonical density is globally
defined for classical ψdos of non-integer order. We will take A to be scalar
valued for notational brevity, but the proof works in the same way for
endomorphism valued operators; indeed it works equally for the pre-tracial
density (−∫ TxMσA(x, ξ)d̄ξ − 1

α′
∫
S∗

xM (σA′)−n,0(x, ξ)d̄Sξ)dx.

First, we have a lemma, generalizing Lemma C.1 in [O1].

Lemma 2.20. Let f(ξ) be a smooth function on Rn which is homogeneous
of degree −n for |ξ| ≥ 1 and let T be an invertible linear map on R

n. Then
for s ∈ C and any non-negative integer k∫
|η|=1

f(Tη)|Tη|s logk |Tη|d̄Sη =
(−1)k

|detT |
∫
|ξ|=1

f(ξ)|T−1ξ|−s logk |T−1ξ|d̄Sξ .

Specifically, one has∫
|η|=1

f(Tη) log |Tη|d̄Sη =
−1

|detT |
∫
|ξ|=1

f(ξ) log |T−1ξ|d̄Sξ , (2.25)
∫
|η|=1

f(Tη)d̄Sη =
1

|detT |
∫
|ξ|=1

f(ξ)d̄Sξ . (2.26)

Proof. It is enough to prove this for k = 0, differentiation with respect to s
yields the general formula. We have, using the linearity of T ,∫

1≤|η|≤2
f(Tη)|Tη|sdη =

∫
|η|=1

∫
1≤r≤2

f(rTη)rs|Tη|srn−1dr d̄Sη
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=
(

2s − 1
s

)∫
|η|=1

f(Tη)|Tη|sd̄Sη .

On the other hand, changing variable,∫
1≤|η|≤2

f(Tη)|Tη|sdη =
1

|detT |
∫

1≤|T−1η|≤2
f(η)|η|sdη

=
1

|detT |
∫
|η|=1

∫
1/|T−1η|≤r≤2/|T−1η|

f(rη)rs|η|srn−1drd̄Sη

=
1

|detT |
(

2s − 1
s

)∫
|η|=1

f(η)|T−1η|−sd̄Sη . �

Consider now a local chart on M defined by a diffeomorphism x : Ω → U
from an open subset Ω of M to an open subset U of R

n. For p ∈ Ω we then
have the local coordinate x(p) ∈ R

n. Let κ : U → V be a diffeomorphism
to a second open subset V of R

n. Then y(p) = κ(x(p)) is also a local
coordinate for Ω.

Let a(x(p), ξ) = ã(x(p), x(p), ξ) where ã(x(p), y(p), ξ) denotes the local
amplitude of A in x-coordinates, and likewise let b(y(p), ξ) denote the ampli-
tude along the diagonal in y-coordinates. From [Hö] with T (p) := (Dκx(p))t

we have

TRy(p)(A)dy(p) := −
∫

Rn

b
(
y(p), ξ

)
d̄ξ dy(p)

= −
∫

Rn

a
(
x(p), T (p)ξ)d̄ξ dy(p) .

According to the transformation rule in Proposition 1.9, for f ∈ CS(V ) and
T an invertible linear map on R

n,

−
∫

Rn

f(Tξ)d̄ξ =
1

|detT |
(
−
∫

Rn

f(ξ)d̄ξ −
∫
|ξ|=1

f(ξ)(−n) log |T−1ξ|d̄ξ
)
,

with f(ξ)(−n) the homogeneous component of f of degree −n. Hence

TRy(p)(A)dy(p)

=
1

|detT (p)|
(
−
∫

Rn

a
(
x(p), ξ

)
d̄ξ dy(p)

−
∫
|ξ|=1

a
(
x(p), ξ

)
(−n)

log
∣∣T (p)−1ξ

∣∣d̄ξ dy(p)
)

= −
∫

Rn

a
(
x(p), ξ

)
d̄ξ dx(p) −

∫
|ξ|=1

a
(
x(p), ξ

)
(−n)

log
∣∣T (p)−1ξ

∣∣d̄ξ dx(p)

= TRx(p)(A)dx(p) −
∫
|ξ|=1

a
(
x(p), ξ

)
(−n)

log
∣∣T (p)−1ξ

∣∣d̄ξ dx(p) . (2.27)
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We turn now to the other component of (2.24) given in y-coordinates
by

− 1
α′

∫
|ξ|=1

b′
(
y(p), ξ

)
(−n)

d̄Sξ dy(p) ,

where b′(y(p), ξ) = d/dz|z=z0(σA(z)(y(p), ξ)) is the symbol derivative in
y-coordinates and where b′(y(p), ξ)(−n) denotes its log-homogeneous (cf.
(1.2)) component of degree −n. From [Hö] we have the asymptotic formula

b′
(
y(p), ξ

) ∼
∑
|µ|≥0

∂µ
ξ a

′(x(p), T (p)ξ
)
Ψµ(x, ξ) , (2.28)

with Ψµ(x, ξ) polynomial in ξ of degree of at most |α|/2. To begin with,
suppose that a(x(p), ξ) is homogeneous in ξ of degree −n. Then from (1.22)
for |η| ≥ 1,

a′
(
x(p), η

)
= α′a

(
x(p), η

)
log |η| + p−n

(
x(p), η

)
, (2.29)

with p−n(x(p), η) positively homogeneous in η of degree −n, and a′(x(p), η)
= a′(x(p), η)(−n). Thus, if a(x(p), ξ) is homogeneous in ξ of degree −n, by
(2.28) and (2.29)

− 1
α′

∫
|ξ|=1

b′
(
y(p), ξ

)
(−n)

d̄Sξ dy(p) = − 1
α′

∫
|ξ|=1

a′
(
x(p), T (p)ξ

)
d̄Sξ dy(p)

= − 1
α′

∫
|ξ|=1

α′a
(
x(p), T (p)ξ

)
log |T (p)ξ|d̄Sξ dy(p)

− 1
α′

∫
|ξ|=1

p−n

(
x(p), T (p)ξ

)
d̄Sξ dy(p)

= −
∫
|ξ|=1

a
(
x(p), T (p)ξ

)
log |T (p)ξ|d̄Sξ dy(p)

− 1
α′

∫
|ξ|=1

p−n

(
x(p), T (p)ξ

)
d̄Sξ dy(p) . (2.30)

Using equations (2.25) and (2.26) of Lemma 2.20, (2.30) becomes

− 1
α′ resy(p),0(A

′)dy(p) =
1

|detT (p)|
∫
|ξ|=1

a
(
x(p), ξ

)
log

∣∣T (p)−1ξ
∣∣d̄Sξ dy(p)

− 1
α′

1
|detT (p)|

∫
|ξ|=1

p−n

(
x(p), ξ

)
d̄Sξ dy(p)

=
∫
|ξ|=1

a
(
x(p), ξ

)
log

∣∣T (p)−1ξ
∣∣d̄Sξ dx(p)

− 1
α′

∫
|ξ|=1

p−n

(
x(p), ξ

)
d̄Sξ dx(p)
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=
∫
|ξ|=1

a
(
x(p), ξ

)
log

∣∣T (p)−1ξ
∣∣d̄Sξ dx(p)

− 1
α′ resx(p),0(A

′)dx(p) , (2.31)

where the final equality follows from (2.29). Adding (2.27) and (2.31) we
have when a(x(p), ξ) is homogeneous in ξ of degree −n(

TRy(p)(A) − 1
α′(z0)

resy(p),0(A
′)
)
dy(p)

=
(

TRx(p)(A) − 1
α′(z0)

resx(p),0(A
′)
)
dx(p) , (2.32)

proving the invariance of (2.24) in this case.
Next suppose that a(x(p), ξ) is homogeneous in ξ of degree α > −n.

Then from (2.28) and since we can commute the z and µ derivatives

b′(y(p), ξ)(−n) =
∑

|µ|≥α+n

d
dz

∣∣
z=z0

∂µ
ξ

(
a(z)(x(p), T (p)ξ)

)
Ψµ,−n(x, ξ) .

where Ψµ,−n(x, ξ) is a polynomial in ξ of degree |µ| − n− α. Hence∫
|ξ|=1

b′
(
y(p), ξ

)
(−n)

d̄Sξ dy(p)

=
∑

|µ|≥α+n

d

dz

∣∣∣
z=z0

∫
|ξ|=1

∂µ
ξ

(
a(z)(x(p), T (p)ξ)

)
Ψµ,−n(x, ξ)d̄Sξ dy(p)

= 0 .

The final equality follows using the integration by parts property in Lem-
ma C1 of [O1], which states that if g(ξ) and h(ξ) are homogeneous in ξ of
degrees γ, δ where γ + δ = 1 − n, then∫

|ξ|=1

(
∂ξj
g(ξ)

)
h(ξ)d̄Sξ = −

∫
|ξ|=1

g(ξ)∂ξj
h(ξ)d̄Sξ ,

along with the fact that Ψµ,−n(x, ξ) polynomial in ξ of degree |µ| − n− α.

This completes the proof that (2.24) is a density independent of coor-
dinates.

Appendix B: Proof of Lemma 1.6 and Lemma 1.8

For a fixed N ∈ N chosen large enough such that Re(α) −N − 1 < −n, we
write σ(x, ξ) =

∑KN
j=0 σα−j(x, ξ) + σ(N)(x, ξ) and split the integral accord-

ingly as
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∫
B∗

x(0,R)
σ(x, ξ)d̄ξ =

N∑
j=0

∫
B∗

x(0,R)
σα−j(x, ξ)d̄ξ +

∫
B∗

x(0,R)
σ(N)(x, ξ)d̄ξ .

Since Re(α) − N − 1 < −n, σ(N) lies in L1(T ∗
xU) and the integral∫

B∗
x(0,R) σ(N)(x, ξ)d̄ξ converges when R → ∞ to

∫
T ∗

x U σ(N)(x, ξ)d̄ξ. On the
other hand, for any j ≤ N ,∫

B∗
x(0,R)

σα−j =
∫

B∗
x(0,1)

σα−j +
∫

D∗
x(1,R)

σα−j . (2.33)

Here D∗
x(1, R) = B∗

x(0, R)\B∗
x(0, 1). The first integral on the r.h.s. con-

verges and since σα−j(x, ξ) ∼ ∑k
l=0 σα−j,l(x, ξ) logl[ξ], the second integral

reads:∫
D∗

x(1,R)
σα−j(x, ξ)d̄ξ =

k∑
l=0

∫ R

1
rα−j+n−1 logl r dr ·

∫
S∗

xU
σα−j,l(x, ω)dω .

Hence the following asymptotic behaviour:
∫

D∗
x(1,R)

d̄ξ σα−j(x, ξ) ∼R→∞
k∑

l=0

logl+1R

l + 1
·
∫

S∗
xU
σα−j,l(x, ω)d̄Sξ

=
k∑

l=0

logl+1R

l + 1

∫
S∗

xU
σ−n,l(x, ξ)d̄Sξ if α− j = −n

∫
D∗

x(1,R)
d̄ξ σα−j(x, ξ) ∼R→∞

k∑
l=0

( l∑
i=0

(−1)i+1 l!
(l−i)! logiR

(α− j + n)i

· Rα−j+n

∫
S∗

xU
σα−j,l(x, ξ)d̄Sξ

+ (−1)ll!
Rα−j+n

(α− j + n)l+1
·
∫

S∗
xU
σα−j,l(x, ξ)d̄Sξ

+
(−1)l+1l!

(α− j + n)l+1
·
∫

S∗
xU
σα−j,l(x, ξ)d̄Sξ

)
if α− j �= −n .

Putting together these asymptotic expansions yields the statements with

Cx(σ) =
∫

T ∗
x U
σ(N) +

N∑
j=0

∫
B∗

x(0,1)
σaj +

N∑
j=0,aj+n �=0

L∑
l=0

(−1)l+1l!
(aj + n)l+1

∫
S∗

xU
σaj ,l .

The µ-dependence follows from

logl+1(µR) = logl+1R

(
1 +

log µ
logR

)l+1

∼R→∞ logl+1R

l+1∑
k=0

Ck
l+1

(
log µ
logR

)k

.
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The logarithmic terms
∑k

l=0
1

l+1

∫
S∗

xU σ−n,l(x, ξ)d̄Sξ logl+1(µR) therefore

contribute to the finite part by
∑k

l=0
logl+1 µ

l+1 ·∫S∗
xU σ−n,l(x, ξ)d̄Sξ as claimed

in the lemma.
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Partieles Linéaires Hyperboliques, Hermann, Paris, 1932.
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