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ON THE EXPLICIT RECONSTRUCTION OF A
RIEMANN SURFACE FROM ITS

DIRICHLET–NEUMANN OPERATOR
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Abstract. This article gives a complex analysis lighting on the problem
which consists in restoring a bordered connected riemaniann surface from
its boundary and its Dirichlet–Neumann operator. The three aspects of
this problem, unicity, reconstruction and characterization are approached.

1 Statements of the Main Results

Let X be an open-bordered riemannian real surface (i.e. the interior of an
oriented riemannian two-dimensional real manifold all of whose components
have non-trivial one-dimensional smooth boundary) and g its metric. Using
the boundary-control method, Belishev and Kurylev ([B1], [BK]) began the
study of the inverse problem consisting in recovering (X , g) from the opera-
tors Nλ : C∞(bX ) � u �→ (∂ũλ/∂ν)bX where bX is the boundary of X , ν is
the normal exterior unit to bX and ũλ is the unique solution of ∆gU = λU
such that U |bX = u. The principal result of [BK] implies that the knowl-
edge of λ �→ Nλ on an non-empty open set of R+ determines (X , g) up to
isometry. The important question whether (X , g) is uniquely determined
by only one operator Nλ∗ with λ∗ �= 0, remains open. This article mainly
deals with the case of the Dirichlet–Neumann operator NX := N0. Sec-
tion 2 gives an intrinsic interpretation electrical impedance tomography on
manifolds, EIT for short, in terms of the inverse Dirichlet–Neumann prob-
lem for twisted Laplacian. In dimension two, this clearly underlines how
the complex structure of Riemannian surfaces is involved.

Two surfaces in the same conformal class which have the same ori-
ented boundary and whose metrics coincide there, need to have the same
Dirichlet–Neumann operator. Conversely, Lassas and Uhlmann [LU] have
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proved for a connected X that the conformal class and so the complex struc-
ture of (X , g) is determined by NX . Hence, it is relevant to consider X as
a Riemann surface. In [B2], using also the full knowledge of NX , Belishev
gives another proof of the above unicity by abstractly recovering X as the
spectre of the algebra of boundary values of functions holomorphic on X
and continuous on X = X ∪bX . It turns out that, in our Theorems 1 and 2,
only three generic functions on the boundary and their images by NX are
sufficient for unicity to hold and to reconstruct X by integral Cauchy type
formulas. Theorems 3a, 3b and 3c deal with characterizations of data of
the type (bX , NX ) where X is a Riemann surface.

While the frame of bordered manifolds is sufficient for real analytic
boundaries, characterization statements lead to consider a wider class of
manifolds. In this article, (X , γ) is a Riemann surface with almost smooth
boundary if the following holds: X is a compact metrizable topological man-
ifold which is the closure of X = X\γ, X is a Riemann surface h2(X ) <∞,
where hd is the d-dimensional Hausdorff measure, γ is a smooth real curve
and the set X sing of points of γ, where X has no smooth boundary, satisfies
h1(X sing) = 0; X\X sing is denoted X reg.

Note that a Stokes formula holds automatically for such manifolds (see
Lemma 11 in section 3). Note also that it could have been possible to allow
singularities on γ itself, but we have avoided it for the sake of simplicity of
statements. Likewise, we consider only smooth DN-data in the sequel.

If (X , γ) is a Riemann surface with almost smooth boundary, classical
results contained in [AS] imply Riemann’s existence theorem: a real valued
function u of class C1 on γ has a unique continuous extension ũ to X
which is harmonic on X , smooth on X reg and satisfies

∫

X i ∂ũ ∧ ∂ũ < +∞.
Moreover, NXu still makes sense as the element of the dual space of C1 (γ)
which equals ∂ũ/∂ν on γ\X sing (see Proposition 12).

In the sequel, γ is a smooth compact oriented real curve without com-
ponent reduced to a point, N is an operator from C1 (γ) to the space of
currents on γ of degree 0 and order 1 (i.e. functionals on C1 1-forms on γ),
τ is a smooth generating section of Tγ and ν is another vector field along
γ such that the bundle T generated by (νx, τx), x ∈ γ, has rank 2; γ is
assumed to be oriented by τ and T by (ν, τ).

The inverse Dirichlet–Neumann problem for (γ,N,T ) is to find, when it
exists, an open riemaniann surface (X , g) with almost smooth boundary γ
such that for all x ∈ γ ∩ X reg, (νx, τx) is a positively oriented orthonormal
basis of TxX and for all u ∈ C1(γ), Nu = NXu in the sense of currents.
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As these conditions do not distinguished between metrics g in the same
conformal class, we look after X as a Riemann surface. The connection
between real and complex analysis in the IDN-problem is realized through
the operators L and θ defined for u ∈ C1(γ) by

Lu = 1
2(Nu− i Tu) and θu = (Lu)(ν∗ + iτ∗) (1.1)

where T is the tangential derivation by τ and (ν∗x, τ∗x) is the dual basis of
(νx, τx) for every x ∈ γ. Note that, in the sense of currents, the equality
Nu = NXu is equivalent to the identity ∂ũ = θu, the tilde denoting, as all
through this article, continuous harmonic extension to X .

If (X , γ) is a Riemann surface with almost smooth boundary, g is a
hermitian metric on X for which (τx, νx) is a positively oriented orthonormal
basis of TxX for x ∈ γ outside σ = X sing and if ρ ∈ C0(X ) ∩ C∞(X\σ) is
a defining function of γ in X , then (ν∗, τ∗) = 1

|dρ|g (dρ, dcρ) on γ\σ where

dc = i( ∂ − ∂ ) and ∂ũ = (Lu) |∂ρ|−1
g ∂ρ = θu on γ\σ for all u ∈ C1 (γ).

Main hypothesis. In addition to the assumptions on γ, throughout this
paper, we consider u0, u1, u2 ∈ C∞(γ) three real valued functions only ruled
by the main hypothesis that

f = (f1, f2) =
(
(Lu�)/(Lu0)

)

�=1,2
=

(
(θu�)/(θu0)

)

�=1,2
(1.2)

is an embedding of γ in C
2 considered as the complement of {w0 = 0} in

the complex projective plane CP2 with homogeneous coordinates (w0 : w1 :
w2). Proposition 0 whose proof is omitted shows this is somehow generic:
Proposition 0. Assume γ, u0, u1 real analytic and that f1 is non-constant
on each connected component of γ. For any function u2 ∈ Cω(γ), one
can construct v2 ∈ Cω(γ), arbitrarily close to u2 in C2 norm, such that
(f1, (Lv2)/(Lu0)) is an embedding of γ into C

2.

Assuming that u = (u�)0���2 satisfies the main hypothesis, we set
θu = (θu�)0���2 and call (γ, u, θu) a restricted DN-datum for an open Rie-
mann surface X if X has almost smooth boundary γ, (∂ũ�)|γ\σ = θu� for
0 � 	 � 2, and the well-defined meromorphic quotient F� of (1,0)-
forms (∂ũ�)/(∂ũ0) extends f� to X in the sense that, for every x0 ∈ γ,
limx→x0, x∈X F (x) exists and equals f(x0). If γ and f are real analytic, this
last property holds automatically.

We define an isomorphism between two Riemann surfaces with almost
smooth boundary, (X , γ) and (X ′, γ′), as a map from X to X ′ which realizes
a complex analytic isomorphism between X and X ′. As the definition of
a Riemann surface with almost smooth boundary implies that its bound-
ary is locally a Jordan curve in its double which is the compact Riemann
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surface obtained by gluing along its boundary its conjugate (see [AS]), a
theorem of Caratheodory implies that if Φ : X → X ′ is a complex analytic
isomorphism, Φ and Φ−1 extend continuously to γ and γ′ so that Φ becomes
a homeomorphism from X to X ′. Hence, Φ is a diffeomorphism between
manifolds with boundary from X reg ∩ Φ−1(X ′

reg) to X ′
reg ∩ Φ(X reg).

The first theorem of this article is a significative improvement of results
in [BK], [LU] on how unique X can be when a restricted DN-datum is
specified.
Theorem 1. Assume that X and X ′ are open Riemann surfaces with
restricted DN-datum (γ, u, θu). Then, there is an isomorphism of Riemann
surfaces with almost smooth boundary between X ∪ γ and X ′ ∪ γ whose
restriction on γ is the identity.

Remarks. 1. If E ⊂ γ and h1(E ∩ c) > 0 for each connected component
c of γ, meromorphic functions are uniquely determined by their values
on E and it follows that Theorem 1’s conclusions hold when NX ′u� =
NXu� is ensured only on E, and the meromorphic functions (∂ũ�)/(∂ũ0)
are continuous near γ. This includes [LU, Th. 1.1.i] which is stated for a
connected X .

2. The proof of Theorem 1 also contains the fact that two connected
compact Riemann surfaces Z and Z ′ are isomorphic when they share the
same real smooth curve γ which can be embedded into C

2 by a map which
extends meromorphically both to Z and Z ′ and continuously near γ.

The assumption on u0, u1 and u2 is used only to ensure that the map f
defined by (1.2) is an embedding of γ into C

2 extending meromorphically
to X into F = (∂ũ�/∂ũ0)�=1,2. Moreover, Theorem 10 in section 3 implies
that if X has an almost smooth boundary and solves the IDN-problem, the
map F enables us to see X as a normalization of the closure of a complex
curve of CP2\f(γ) uniquely determined by γ. This shows that in each
characterization Theorem 3a, 3b, 3c, the constructed Riemann surface is,
up to isomorphism, the only one which has a chance to solve the IDN-
problem.

In this paper, complex curves are pure 1-dimensional complex analytic
subsets of complex manfolds.

Our next result explains how to recover F (X ) and ∂ũ� from θu� and
the intersection of F (X ) with the lines ∆ξ = {z ∈ C

2; z2 = ξ}, ξ ∈ C. De-
singularization arguments then enable the reconstruction of X from F (X ).
Theorem 2. If X is an open Riemann surface with restricted DN-datum
(γ, u, θu), the following hold:
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(1) The map f defined by (1.2) has a meromorphic extension F to X and
there are discrete sets A and B in X and Y = F (X )\f(γ) respectively
such that F : X\A → Y\B is one to one.

(2) Almost all ξ∗ ∈ C has a neighborhood Wξ∗ such that, for all ξ in Wξ∗ ,
Yξ = Y ∩ ∆ξ =

⋃

1�j�p{(hj(ξ), ξ)} where h1, . . . , hp are p mutually
distinct holomorphic functions on Wξ∗ whose symmetric functions
Sh,m =

∑

1�j�p h
m
j are recovered by the Cauchy type integral formu-

las
1

2πi

∫

γ

fm
1

f2 − ξ
df2 = Sh,m(ξ) + Pm(ξ) , m ∈ N , (Em,ξ)

where Pm is a polynomial of degree at most m. More precisely, the
system Eξ = (Em,ξν )0�m�B−1

o�ν�A−1
enables explicit computation of hj(ξν)

and Pm if A � B � 2p+1 and ξ0, . . . , ξA are mutually distinct points.

(3) For almost all ξ∗ ∈ C, Wξ∗ can be chosen so that B ∩
⋃

ξ∈Wξ∗
Yξ = ∅

and ∂ũ�, 0 � 	 � 2, can be reconstructed in F−1
( ⋃

ξ∈Wξ∗
Yξ

)
from

the well-defined meromorphic quotient (∂ũ�)/(∂F2) thanks to the
Cauchy-type formulas

1
2πi

∫

γ

fm
1

f2 − ξ
θu� =

∑

1�j�p

hj(ξ)m
∂ũ�

∂F2

(
F−1(hj(ξ), ξ)

)
+Qm (ξ) (Tm,ξ)

where m is any integer and Q is a polynomial of degree at most m.

Remark. The number α of connected components of X can be computed
by the following algorithm: let γ1 be a component of γ and let λ1 be
a function which is zero on γj for j �= 0 and non-constant on γ1; then
if X1 is the component of X whose boundary contains γ1, Nλ1 �= 0 on
each component γ1, . . . , γk of γ which with γ1 are the components of bX1.
Iterating this with components γ different from γ1, . . . , γk, yields a process
with α steps.

The numerical resolution of (Eξ) and the study of its stability requires
an estimate of the number I∆ξ

of points of intersection, multiplicities taken
into account, of Y with ∆ξ. To achieve this, it is sufficient to estimate
the number I∆ of intersection points of Y with a CP2-line ∆, generic in the
sense that ∆ does not contain the germ of a component of Y near γ. Indeed,
if L (resp. Lξ) denotes a linear homogeneous form defining ∆ (resp. ∆ξ),

I∆ξ
− I∆ =

1
2πi

∫

γ
(Lξ/L)−1d(Lξ/L) .

Thus, an a priori upper bound of I∆ for any particular line ∆ would be
very useful. This open problem is related, because of the Ahlfors theorem
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on covering surface, to the computation of the genus gX of X from some
DN-datum when X is connected. Under the condition γ is connected,
Belishev [B2] has shown that 2gX is the rank of Id + (NXT−1)2 acting
on the space of smooth functions on γ admitting a smooth primitive, T−1

being a primitive operator. A formula for gX involving only the action of
NX on a finite generic set of functions has yet to be found.

The third aspect of the IDN-problem, characterization of which can and
should be a DN-datum, has lead us to allow X to have only almost smooth
boundary. Theorem 3a below explicitly characterizes the only right candi-
date for X while its part C gives a test which determines which (γ, u, θu)
are DN-data and which are not. To perform it, we need a Green function
for X relative to a domain D of Z containing X , that is a smooth symmet-
ric function g defined on D×D without its diagonal such that each g( . , z)
is harmonic on D\{z} and has singularity 1

2π ln dist( . , z) at z, the distance
being computed in any hermitian metric on Z.

Theorem 3a. Assume that the main hypothesis is valid and consider

G : C
2 � (ξ0, ξ1) �→

1
2πi

∫

γ
f1
d(ξ0 + ξ1f1 + f2)
ξ0 + ξ1f1 + f2

. (1.3)

A. If an open Riemann surface X has restricted DN-datum (γ, u, θu),
then almost all point ξ∗ of C

2 has a neighborhood where one can find
mutually distinct holomorphic functions h1, . . . , hp such that

0 =
∂2

∂ξ20

(

G−
∑

1�j�p

hj

)

(1.4)

hj
∂hj

∂ξ0
=
∂hj

∂ξ1
, 1 � j � p . (1.5)

B. Conversely, assume γ is connected and the conclusion of A is sat-
isfied in a connected neighborhood Wξ∗ of one point (ξ0∗, ξ1∗). Then, if
(∂2G/∂ξ20)|Wξ∗ �= 0, there is an open Riemann surface X with almost

smooth boundary γ where f extends meromorphically. If (∂2G/∂ξ20)|Wξ∗= 0,
the same conclusion holds for a suitable orientation of γ.

C. Assume that (X , γ) is a Riemann surface with almost smooth bound-
ary. Let Z be the double of X , D a smooth domain of Z containing X and g
a Green function for X relatively to D. Then, (γ, u, θu) is actually a re-
stricted DN-datum if and only if, for any z ∈ D\X ,

∫

γ
u� (ζ) ∂ζg (ζ, z) + g (ζ, z) θu� (ζ) = 0 , 0 � 	 � 2 . (1.6)
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Remarks. 1. The connectness of γ is essentially used to ensure that any
possible solution to the IDN-problem has to be connected. Taking in ac-
count the remark following Theorem 2, one may weaken the connectness as-
sumption on γ into the requirement that the given DN-datum ensures that
possible solutions are connected. Then, the conclusions of Theorem 3a.B
are still true (see the proof).

2. The proof includes that if γ and f are real analytic, (X , γ) is a
manifold with boundary in the classical sense.

3. Emphasizing f2 instead of f1, one can consider

G2 : ξ �→ 1
2πi

∫

γ
f2
d(ξ0 + ξ1f1 + f2)
ξ0 + ξ1f1 + f2

.

If hj is linked to hj,2 by 0 = ξ0 + ξ1hj + hj,2, (h1, . . . , hp) satisfy (1.5) and
(1.4) if and only ∂2

∂ξ2
0

(
G2 −

∑

1�j�p hj,2

)
= 0 and hj

∂hj,2

∂ξ0
= ∂hj,2

∂ξ1
, 1 � j � p.

4. Select H = {h1, . . . , hp} satisfying (1.5) and minimal for (1.4). Then,
section 5.2 and Proposition 14 show that there is τ ′ ⊂ δ = f(γ) such that
h1(τ ′) = 0, and X is a normalization of the abstract curve Y ∪ τ ′ where,
when H = ∅, Y is the polynomial hull of δ in the affine complex plane

C
2
ξ∗ = {w ∈ CP

2 ; ξ∗w = ξ0∗w0 + ξ1∗w1 + w2 �= 0} .
and, otherwise, Y is the analytic extension in CP2\δ of the union of the
graphs of the functions (1 : hj : −ξ0 − ξ1hj), 1 � j � p. Hence, when H
is minimal, decomposition (1.4) of G is unique up to order, and CardH is
the minimal number p for which such a decomposition exists. Moreover,
Theorem 10 implies that the only Riemann surfaces X which have a chance
of solving the IDN-problem are normalizations of Y.

5. With [HL1, Ex. 10.5], one can construct smooth restricted DN-data
for which the solution of the IDN-problem is a manifold with only almost
smooth boundary.

The vanishing of ∂2G/∂ξ20 in a connected neighborhood Wξ∗ of ξ∗ ∈ C
2

is known to be equivalent to the fact that δ = f(γ) satisfy the classi-
cal Wermer–Harvey–Lawson moment condition in C

2
ξ∗ : for all k1, k2 ∈ N,

∫

δ z
k1
1 zk2

2 dz2 = 0 where z = (wj/ξ∗w)j=1,2 (see [DoH, Cor. 1.6.2]). When ξ∗
belongs to the connected component of infinity of {ξ ∈ C

2; ∀w ∈ δ, ξw �= 0},
this moment condition is equivalent to the moment condition in C

2
(1,0) and

also to the vanishing of G on this component. It is proved in [W] for the
real analytic case and in [Bi], [HL1] for the smooth case, that for a suit-
able orientation of γ, this moment condition guarantees the existence in
C

2
ξ∗\δ of a unique complex curve Y with finite mass and boundary ±δ in
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the sense of currents. In [AlW], Alexander and Wermer have improved
this Wermer–Bishop–Harvey–Lawson statement by showing that a closed
oriented smooth connected real curve δ of C

2 is, with its given orientation
the boundary, in the sense of currents of a complex curve of finite mass in
C

2
ξ∗\δ, if and only if 1

2πi

∫

δ
dA
A � 0, for any polynomial A which does not

vanish on γ. Hence, in case (∂2G/∂ξ20)|Wξ∗ = 0, it is sufficient to find one
polynomial A such that

∫

f(γ) dA/A �= 0 to determine the correct orientation
of γ.

Note that the case (∂2G/∂ξ20)|Wξ∗ = 0 occurs only for very special DN-
data since it implies that for 	 = 1, 2, f� admits a C

2
ξ∗-valued holomorphic

extension to X . Proposition 20 proposes another result of this kind for
some other special DN-data when they are available.

To palliate the difficulty of computing Green functions, the theorem
below proposes another way to achieve the same goals: select the right
candidates for X and extension of θu�; check this yields a solution.
Theorem 3b. Assume that the main hypothesis is valid. Let G be
the function defined by (1.3) and let be G̃ the form which in CP2 with
homogenous coordinates η = (η0 : η1 : η2) is given by

G̃ =
∑

0���2

1
2πi

(∫

γ

θu�

η0 + η1f1 + η2f2

)

dη� =
∑

0���2

G̃� dη� . (1.7)

A. If an open Riemann surface X has restricted DN-datum (γ, u, θu),
then,

(a1) Almost all points η∗ = (ξ∗0 : ξ∗1 : 1) of CP2 have a neighborhood
where G̃ can be written as the sum of p holomorphic closed forms
gj =

∑

0���2 gj,� dη� such that (hj) = (gj,1/gj,0)1�j�p satisfy (1.5)
with the affine coordinates ξ0 = η0/η1, ξ1 = η1/η2.

(a2) The form Θ� = ∂ũ�, 0 � 	 � 2, satisfies
∫

c
ReΘ� = 0 (1.8)

for all c in the first homology group H1(X ) of X .

B.
(b1) Assume γ is connected and there is η∗ = (ξ∗0 : ξ∗1 : 1) and a connected

neighborhood Wξ∗ of ξ∗ = (ξ∗0, ξ∗1) such that (a1) is true for all
η ∈ Wη∗ = {(ξ0 : ξ1 : 1); (ξ0, ξ1) ∈ Wξ∗}. Then, there exists an open
Riemann surface X , topologically bordered by γ, where f extends
meromorphically, and each θu� extends weakly into a meromorphic
(1, 0)-form Θ� outside a set Σ of zero length.
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(b2) In addition to (a1), assume that Θ� satisfies
∫
iΘ� ∧ Θ� < +∞ and

(1.8). Then if (∂2G/∂ξ20)|Wξ∗ �= 0, (X , γ) is a manifold with almost

smooth boundary; the same conclusion holds when G̃|Wη∗ = 0 if γ

has a suitable orientation. If (∂2G/∂ξ20)|Wξ∗ = 0 but G̃|Wη∗ �= 0,
then either X is a domain with boundary γ in a normalization of an
algebraic curve of CP2, or X is a compact Riemann surface where γ
is a slit, which means that X\γ is connected. In all cases, u� admits
a continuous extension ũ� to X which is harmonic in X and such that
Θ� = ∂ũ�, which means that Nu� is actually the DN-datum of X
for u�.

That θu� extends weakly to Θ means that
∫

γ ϕθu� =
∫

X d(ϕΘ�) =
∫

X (∂ϕ)∧Θ� holds for any Lipschitz function ϕ on X which is a holomorphic
function of f near points of Σ and singular points of (X , γ); if (X , γ) is a
manifold with boundary, this definition means that Θ�|γ = θu� in the usual
sense.

Remarks. 1. When (a1) holds, hj,2 = gj,2

gj,0
verify hj

∂hj,2

∂ξ0
= ∂hj,2

∂ξ1
,

1 � j � p.
2. Formulas (Em,ξ) and (Tm,ξ) enable direct reconstruction of a projec-

tive presentation of X and forms Θ�.
3. Based on [D, Ex. 1], one can construct examples where (a1) is satisfied

while the weak extension Θ� has essential singularities on some zero length
set Σ.

Theorem 3b is obtained by a normalization of a singular version of the
IDN-problem which is more explicit. When X is smooth, the harmonicity
of a distribution U is equivalent to the fact that ∂U is holomorphic. For
the case where X is a complex curve of an open set in CP2, we need two of
the several non-equivalent definitions of holomorphic (1,0)-forms.

At first, we use the weakly holomorphic forms introduced by Rosenlicht
[R] which can be defined as meromorphic (1,0)-forms ψ such that ψ ∧ [X ]
is a ∂-closed current of CP2. Such forms ψ are also characterized by the
fact that p∗ψ is a usual holomorphic (1, 0)-form for any holomorphic proper
function p : X → C. A distribution U is defined as weakly harmonic if ∂U
is weakly holomorphic.

Now assume X lies in CP2 and that X is bounded in the sense of currents
by γ. A distribution U on X is said almost smooth up to the boundary if it
is the case near each p ∈ γ where (X , γ) is a manifold with boundary and
if U has a restriction on γ in the sense of currents. When u is a smooth
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function on γ, a weakly harmonic extension of u to X is a weakly harmonic
distribution U almost smooth up to boundary whose restriction on γ is u.
Since two weakly harmonic extensions, U1 and U2, of u to X are equal
when ∂U1 = ∂U2 on γ in the sense of currents, we consider a weak Cauchy–
Dirichlet problem: a data is a smooth function u on γ and a smooth section
λ of T ∗

γX ; a solution is a weakly harmonic function U almost smooth up
to γ such that u = U |γ and λ = (∂U)γ in the sense of currents; when
it exists, such a U is unique and is denoted ũ as any harmonic extension
in this article. In connection with this notion, we define a weak restricted
data as a triplet (γ, u, θu) where u = (u�)0���2 (resp. θu = (θu�)0���2) is a
triplet of smooth functions (resp. (1,0)-forms) on γ such that θu� = (∂ũ�)γ
in the sense of currents.

The weak CD-problem has its own interest and arises naturally in the
proof of Theorem 3b. However, the original IDN-problem requires a more
restrictive notion of harmonicity. According to Griffiths [G], holomorphic
forms (resp. harmonic functions) are, by definition, push forwards of holo-
morphic forms (resp. harmonic functions) on a normalization of X . Equiv-
alently, a real function U on X is harmonic if and only if U is harmonic in
the regular part Xreg of X and

∫

Xreg
i ∂U ∧ ∂U < +∞. This notion is close

in spirit to a Riemann characterization of the harmonic function with given
boundary value u as the smooth function extending u to X and minimizing
the preceding integral. We can now state a singular version of Theorem 3b.

Theorem 3c. Consider in CP2\{w0 = 0} a smooth oriented real curve γ,
three functions u0, u1, u2 in C∞(γ) and θ0, θ1, θ2 three smooth sections of
(T ∗1,0

CP2)|γ such that du� = 2Re θ�, 0 � 	 � 2, and linked by the relations

θ1 = z1θ0, θ2 = z2θ0. Let G and G̃ be the form given by (1.3) and (1.7)
but with (f1, f2) = (z1, z2).

A. Assume γ bounds, in the sense of currents, a complex curve X of
CP2\γ which has finite volume and weak restricted DN-datum (γ, u, θu).
Then,

(a1) The conclusions of Theorem 3b.A.a1 are valid.

(a2) The form Θ� = ∂ũ� satisfies (1.8) for all c in H1(Xreg).

B.

(b1) Conversely, assume that γ is connected and that (a1) is valid for one
point η∗ = (ξ0∗ : ξ1∗ : 1). Then, there is in CP2\γ a complex curve
X of finite mass where each θ� extends weakly on X into a weakly
holomorphic (1, 0)-form Θ�. Moreover, if (∂2G/∂ξ20)|Wξ∗ �= 0, then X
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has boundary γ in the sense of currents; the same conclusion holds if
G̃|Wη∗ = 0 but for a suitable orientation of γ. If (∂2G/∂ξ20)|Wξ∗ = 0
but G̃|Wη∗ �= 0, either X is a domain in an algebraic curve of CP2 and
has boundary γ in the sense of currents, either X itself is an algebraic
curve of CP2 where γ is a slit.

(b2) If in addition (1.8) is satisfied by Θ� for all c ∈ H1(Xreg), then u� has
a (unique) weakly harmonic extension ũ� and Θ� = ∂ũ�. If Θ� also
satisfy

∫

Xreg
iΘ� ∧ Θ� < +∞, then ũ� is harmonic.

Remark. It is possible that X has zero boundary in the sense of currents.
This occurs only in the exceptional case where X is a compact complex
curve of CP2 and (so is algebraic) where γ is a slit. In the other cases, X
has boundary ±γ in the sense of currents, and a result of Chirka [Ch] gives
that, outside a zero one Hausdorff-dimensional subset, (X ,±γ) is locally a
manifold with boundary.

The proofs of the preceding theorems are given in sections 3 to 5. They
use the results on the complex Plateau problem started in [W], [Bi], devel-
oped in [HL1], [H], [D] for C

n and in [He], [DoH], [HL] for CPn.

The non-constructive existence criteria of Theorems 3a, 3b and 3c may
inspire one to seek a less general but more effective characterization. It has
already been mentioned, after Theorem 3a, that in the special case p = 0,
the condition (∂2G/∂ξ20)|Wξ∗ = 0 together with the Alexander–Wermer
moment criterion gives an effective tool but only when special DN-data are
at hand.

For p > 0, the main result of [DoH] is that conditions of type (1.4)
and (1.5) characterize the fact that a given closed, smooth and orientable
real chain γ of CP2 is, with adequate orientation, the boundary of some
holomorphic chain of CP2\γ. These conditions have been qualified as mys-
terious in [HL] because the functions satisfying these relations are produced
“deus ex machina”. The following criterion, which completes for a closed
connected curve γ the one of [DoH], is obtained in [HL]: Suppose that the
second coordinate f2 of C

2 does not vanish on γ, then there exists in CP2\γ
a connected complex curve X with boundary ±γ in the sense of currents
if and only if there exist p ∈ N and Ad in the space O (d) of holomorphic
homogeneous polynomials of order d, 1 � d � p, such that for ξ0, in some
neighborhood of 0, Cm(ξ0) = 1

2πi

∫

γ
fm
1

f2+ξ0
df2 satisfies

Ck = Qk,p(C1, . . . , Cpt) mod O(k) , k > p ,
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Cd(ξ0) =
∑

k>d

(−ξ0)k
2πi

∫

γ

fd
1

fk+1
2

df2 +Ad(ξ0) , 1 � d � p ,

where Qk,p are universal homogeneous polynomials.

In section 6.1, Theorem 3a is developed for p > 0 into Theorem 4 below
which gives a more effective criterion for the Plateau problem in CP2 and
also for the IDN-problem. This new criterion follows from considerations
on sums of shock-wave functions modulo affine functions in ξ0. Even if
decompositions in sum of shock-wave functions are studied for ξ0-affine
functions, Theorem 4 does not consider the case where G is of that type
since it corresponds to a plain case of (1.4).

If H and u are holomorphic functions on a simply connected domain D,
we set DH = ∂

∂ξ1
− ∂H

∂ξ0
and denote by LHu the unique function v ∈ O(D)

such that ∂v/∂ξ0 = DHu and v(0, . ) = 0; π1 is the projection (ξ0, ξ1) �→ ξ1.

Theorem 4. Let f be defined by (1.2) and consider the function G defined
by (1.3). We assume that γ is connected and that f2 does not vanish on γ
so that G, which is assumed to be not affine in ξ0, is defined in a simply
connected neighborhood D of 0 in C

2.

A. If (X , γ) is a Riemann surface with almost smooth boundary where
f extends meromorphically, then the following assertions hold for G:

(1) There is p ∈ N
∗ and holomorphic functions a, b, λ1, . . . , λp−1 on ∆ =

π1(D) such that the integro-differential equation

−DG+LLp−1
G+Lt(G+ L) +

∑

1�j�p−1

DG+LLp−1−j
G+L λ̃j = 0

is valid with L = ξ0 ⊗ a+ 1 ⊗ b and λ̃j = 1 ⊗ λj , 1 � j � p;

(2) For sk = −Lk−1
G+LG + Lk−2

G+Lλ̃1 + · · · + L0
G+Lλ̃k−1, 1 � k � p, the

discriminant of Tξ0,ξ1 = Xp +
∑

1�k�p sk(ξ0, ξ1)Xp−k does not vanish
identically in D;

(3) G = −s1 − L;

(4) Here is q ∈ N, α, β ∈ Cq[ξ1] such that α(0) = 0, deg β < q and

a = α ′
1−α , b = β

1−α .

Moreover, if p is the least integer such that (1), (2) and (3) assertions
holds, (γ, f) uniquely determines (a, b, λ1, . . . , λp−1).

B. Assume (1), (2) and (3) hold for some p ∈ N
∗. Then, there exists an

open Riemann surface X such that X = X ∪ γ is a manifold with almost
smooth boundary where f extends meromorphically. Moreover, (4) holds.
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Remarks. 1. Non-unicity of (a, b, λ1, . . . , λp−1) solving (1), (2) and (3)
means that X exists but p is not minimal.

2. It is possible that regardless of its orientation, γ is the almost smooth
boundary of an open Riemann surface X where f extends meromorphically.
It is the case when γ cuts a compact Riemann surface Z into two smooth
domains and f is the restriction to γ of an analytic map from Z to CP2.

2 Intrinsic EIT on Riemann Surfaces

The inverse Dirichlet–Neuman problem, which goes back to Calderon [C]
and which is now called the Electrical-Impedance-Tomography problem,
can be sketched like this: Suppose that a bounded domain X in R

2 or
R

3 is an ohmic conductor which means that the density of current j it
may have is proportional (in isotropic cases) to the electrical field e = ∇U
where U is an electrical potential. The scalar function σ such that j = σe
is then called the conductivity of X ; ρ = 1/σ is the resistivity. When
there is no time dependence and no source or sink of current, the equation
div j = 0 holds and Calderon’s problem is then to recover σ on the whole
of X from the operator C∞(γ) � u �→ (σ∇ũ)γ , ũ being the unique solution
of div(σ∇ũ) = 0 with boundary value u.

In what follows, linking the Calderon problem to the Belishev problem
mentioned in the introduction, we formulate the EIT-problem for a more
general setting than the case of domains in R

n. The second part of this
section, despite the fact it is also quite elementary, seems to be new and
underlines how complex structure is involved in the dimension-two case.

General dimension. Assume that X , an open oriented bordered
manifold of dimension n with boundary γ, is given with a volume form µ
and a conductivity σ modelled as a tensor from T ∗X to Λn−1T ∗X (see [Sy]).
The gradient associated to σ relative to µ is the differential operator which
to any f ∈ C1(X ) associates the tangent vector field ∇µ,σf characterized
by

(∇µ,σf) �µ = σ(df)
where � is the interior product. When U ∈ C1(X ) is some given potential,
the density of physical current J is by definition

J = ∇µ,σU .

That ∇µ,σU truly models the density of current is the assumption of Ohm’s
law. If X has no source or sink of currents and if U has no time dependence,
the flux of current through the boundary of any domain is zero. Using
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Stokes’ formula, this can be modeled by the simplified Maxwell equation
0 = divµ J = divµ(∇µ,σU) (2.1)

where divµ is the divergence with respect to the volume form µ; if t is a dif-
ferentiable vector field, divµ t is defined by d(t �µ) = (divµ t)µ. Going back
to the definition of gradient and divergence, we see that (2.1) is equivalent
to the intrinsic equation formulated in [Sy] for domains in R

n,
dσ(dU) = 0 . (2.2)

Since µ is no longer involved, the usual DN-operator has to be replaced
by the operator Θ which to u ∈ C1(γ) associates σ(du)γ which is a section
of ΛN−1t∗γX . The electrical impedance tomography problem, is then to
reconstruct (X , σ) from its DN-map Θ. Of course, the two other aspects of
this problem, unicity and characterization, also have to be studied.

The problem in such generality is still wide open; almost all publications
are about domains in R

3. In such a case, (2.1) is generally written in
euclidean global coordinates. However, when X is a manifold, (2.2) yields
the same equation in any chart (W,x); setting σdxj =

∑

1�k�n σkj(−1)kdx
k̂

with dx
k̂

=
∧

j �=k dxj , (2.2) becomes
∑

1�k�n

∑

1�j�n

∂

∂xk

(

σk,j
∂U

∂xj

)

= 0 . (2.3)

When the conductivity σ is symmetric (σ(a)∧ b ≡ σ(b)∧ a) and invert-
ible tensor, it is possible to design a natural metric gµ,ρ associated to the
resistivity map ρ = σ−1 by the well-defined quotient of n-forms,

gµ,σ−1(t) =
σ−1(t �µ) ∧ (t �µ)

µ
, t ∈ TX . (2.4)

If (W,x) is any coordinates chart for X , a direct calculus in x-coordinates
shows that for t = Σtk∂/∂xk (2.4) becomes

gµ,ρ(t) =
∑

k,�

t�tkλρk,� , (2.5)

where (ρk,�) is the matrix of the resistivity ρ = σ−1 when, at any given
point z, the chosen basis for Λn−1T ∗

z X and T ∗
z X are ((−1)kdx

k̂
) and (dxk)

respectively. When (σj,k) is positive definite, gµ,ρ is a metric on X .
When n � 3, there is a specially adequate choice of metric and volume.

Proposition 5. Assume n � 3. Then one can correctly design a global

volume form µ by letting it be defined by µ = [det(ρk,�)]
−1

n−2 dx1 ∧ · · · ∧ dxn

in any coordinates chart (W,x) for X . For this specific volume form, σ
is the Hodge star operator of gµ,ρ and µ is the riemannian volume form
of gµ,ρ.
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This statement, already pointed out by Bossavit and Lee–Uhlmann (see
[Bo] and [LU]) for domains in affine spaces, follows from calculus in coor-
dinates.

The interest of Proposition 5 is to state the strict equivalence between
the IDN-problem for riemannian manifolds and the EIT-problem when
n � 3. When dimX � 3 and X is a riemannian real analytic manifold with
boundary, Lassas and Uhlmann have proved in [LU] that the DN-operator
uniquely determines X and its metric.

The two-dimensional case. We now assume n = 2 and σ = ρ−1 is
symmetric and positive so that (X , gµ,ρ) becomes a riemannian manifold
whose volume form is thereafter denoted by Vµ,ρ. Let us emphasize the
complex structure associated to the conformal class of (X , gµ,ρ) by choosing
isothermal coordinates charts, that is holomorphic charts (see e.g. [V]). In
such a chart (W, z),

gµ,ρ = κµ,ρ(dx⊗ dx+ dy ⊗ dy) = Re(κµ,ρdz ⊗ dz) ,
where x = Re z, y = Im z and κµ,ρ ∈ C1(W,R∗

+). Hence, in these coordi-
nates, (σk,�) = s diag(1, 1) with κµ,ρ = λ/s and λ ∈ C1(W,R∗

+) is defined
by µ = λdx ∧ dy = λ i

2dz ∧ dz. Note that s is a global-positive function
on X since it is the well-defined quotient of volume forms,

s = µ/Vµ,ρ .

Note also that s does not depend on µ and that (2.2), since σdU = sdcU ,
evolves into

d(sdcU) = 0 , (2.6)
where dc = i(∂ − ∂), ∂ and ∂ being the usual global differential operators
associated to the complex structure of the conformal class of (X , gµ,ρ).
Hence, we have proved the following which generalizes a result written by
Sylvester [Sy] for domains in R

2.

Proposition 6. Let X be a real two dimensional manifold equipped with
a symmetric and positive tensor σ : T ∗X → T ∗X . Then, there is a complex
structure on X and s ∈ C1(X ,R∗

+), called scalar conductivity, such that
(2.2) is equivalent to (2.6).

The beginning of this paper has shown that the data ∂U/∂ν is equivalent
to the data (∂U)γ which don’t involve any metric. Since the knowledge
of (∂U)γ is equivalent to the knowledge of (sdcU)γ , we consider (sdcU)γ
as the DN-datum. We can now state an intrinsic IDN-problem for two-
dimensional ohmic conductors; for the sake of simplicity, we limit ourselves
to manifolds with boundary and smooth data.
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A two-dimensional ohmic conductor is a couple (X , ρ) where X is an
open-oriented bordered two-dimensional real surface (with boundary γ),
the conductivity σ = ρ−1 is a positive definite tensor from T ∗X to T ∗X ,
and X is equipped with the complex structure associated to the riemannian
metric gµ,ρ defined by (2.4) where µ is any volume form of X . In this setting,
the scalar conductivity is the function s = µ/Vµ,ρ where Vµ,ρ is the volume
associated to gµ,ρ. The DN-operator is the operator θX ,ρ defined by

θX ,ρ : C1(γ) � u �→ (sdcũ)γ ∈ T ∗
γX ,

where ũ is the unique solution of the following Dirichlet problem:

U |γ = u and d(s dcU) = 0 . (2.7)

The IDN-problem associated to this setting is threefold:

Unicity. Assume that two dimensional ohmic conductors (X ,ρ) and (X ′,ρ′)
share the same boundary γ and the same DN-operator θ. Is it true
that there is a diffeomorphism ϕ : X → X ′ between manifolds with
boundaries such that ϕ : X → X ′ is analytic and s = s′ ◦ ϕ where s
and s′ are scalar conductivities of X and X ′ ?

Reconstruction. Assume that (X , ρ) is a two dimensional ohmic conduc-
tor. How can one reconstruct, from its DN-operator, a two dimen-
sional ohmic conductor (X ′, ρ′) which is isomorphic (in the above
sense) to (X , ρ)?

Characterization. Let γ be a smooth abstract real curve, L a complex
line bundle along γ and θ an operator from C1(γ) to the space of
smooth sections of L. Find a non-trivial, necessary and sufficient
condition on (γ, L, θ) which ensures that there exists a two dimen-
sional ohmic conductor (X , ρ) such that L = Λ1,0T ∗

γX and θ = θX ,ρ.

All these problems are open. In the particular case of constant scalar
conductivity σ, the Dirichlet problem (2.7) becomes

U |γ = u and ddcU = 0 ,

where ddc = i∂∂ is the usual Laplacian. Hence, with Theorems 1 to 3c, our
article gives a complete answer to the EIT-problem with constant scalar
conductivity.

Concerning the main results given in the literature about unicity, recon-
struction and stability for the important case where X is a domain in R

2

but the scalar conductivity is not constant, see [BrU], [M] and references
therein. Note that the exact method of reconstruction for this case goes
back to [N].
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3 Unicity Under Existence Assumption

The notation and hypothesis are taken from Theorem and section 1; we
equip X with a hermitian metric g. Harmonicity does not depend of the
chosen hermitian metric. Hence, there is a compact subset σ of γ such that
h1(σ) = 0 and (X , γ) is a manifold with boundary near each point of γ\σ.

When u ∈ C∞(γ), Proposition 12 implies that u has a continuous har-
monic extension ũ with finite Dirichlet integral on X . An elementary calcu-
lus gives then that for a fixed continuous defining function ρ of γ, smooth
on X\σ, the operator L defined by (1.1) determines for all u ∈ C∞(γ)
the trace on γ of the holomorphic (1, 0)-form ∂ũ: ∂ũ = (Lu)|∂ρ|−1

g ∂ρ
on γ\σ. With (1.2), this implies that f is the restriction to γ of a func-
tion F = (F1, F2) meromorphic on X , smooth on γ\σ. Since (γ, u, θu) is
assumed to be a restricted DN-datum for X , F is continuous in a neigh-
borhood of γ in X .

The proof of Theorem 1 relies on the following lemmas which enable us
to see X as a normalization of F (X ).
Lemma 7. Set δ = f(γ). Then Y = F (X )\δ is a complex curve of
CP2\δ without compact component, which has finite mass and satisfies
d[Y] = [δ]. Moreover, each regular point of X has in X a neighborhood V
such that F : V → F (V ) is a diffeomorphism between manifolds with
smooth boundary.

Proof. Since F is continuous in a neighborhood of γ in X , Y is a closed
set of CP2\δ. As Y is also locally the image of a Riemann surface by an
analytic map, Y is a complex curve of CP2\δ. Since F∗[X ] is a locally flat
current, the Federer support theorem (see [H, p. 316], [F, 4.1.15 & 4.1.20])
produces a locally integrable function λ on Y such that F∗[X ] = λ[Y] on the
regular part Yreg of Y; since d2 = 0, λ is locally constant. Since f embeds
γ into C

2, each point x in γ which is a regular boundary point of X has a
neighborhood V of x in X such that F : Vx → F (Vx) is a diffeomorphism
between classical manifolds with boundary. Let FW be the restriction of
F to the Riemann surfaces W = ∪Vx and W ′ = F (W ). The degree of
FW is at most 1 otherwise almost all points of W ′ would have at least two
different preimages which would imply that df is zero at almost all points
of γ. So this degree is 1 and F∗[X ] = [Y] on W ′. Hence, λ = 1 on each
connected component of Y and d[Y] = [δ].

If Y contains a compact complex curve Z, F−1(Z) is a complex curve
in X without boundary and so is empty. The fact that Y has a finite mass
follows from a theorem of Wirtinger (see [H, Lem. 1.5 p. 315]). �
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As δ is smooth, the conclusion of Lemma 7 implies, thanks to [HL1],
that δ contains a compact set τ such that h1(τ) = 0 and (Y, δ) is a manifold
with boundary near points of δ\τ . The lemma below described how Y is
near a point y of τ .

Lemma 8. Assume Y is a complex curve of CP2\δ with finite mass
satisfying d[Y] = ±[δ]. Let y be a point of σ and U a domain containing
y. Then, among the components of Y ∩ U , CU

y,1, . . . , CU
y,mU

, one, says CU
y,1,

satisfies d[CU
y,1] = ±[δ]|Uy whereas for j � 2, CU

y,j ∩ U is a complex curve
of U .

Proof. [HL1, Th. 4.7] implies that for each j there is nj ∈ Z such that
d[CU

y,j ] = nj[δ] on U . As d[Y] = ±[δ], Σd[CU
y,j] = ±1 and at least one CU

y,j ,
says CU

y,1, is such that nj �= 0. Because h1(σ) = 0, δ ∩ U contains a point q
not in σ. Then, if V is a sufficiently small ball centered at q, Y ∩ V is
submanifold of V with boundary δ ∩ V , and Y ∩ V has only one connected
component which can be nothing else than CU

y,1 ∩V . Hence n1 = ±1. Since
two different bordered Riemann surfaces of some open set of CP2 meet at
most in a set of zero one-dimensional Hausdorff measure, this implies that
nj = 0 for j �= 1. Thus, if j � 2, d[CU

y,j] = 0 and with [H, Th. 2.1, p. 37] we

conclude that CU
y,j ∩ U is a complex curve of Uy. �

If y ∈ δ, we denote by my the limit of mU (see Lemma 8) when the
diameter of U goes to 0, U neighborhood of y; if my � 2, then y ∈ τ . A
point y of δ is called a strong singularity of Y if y is not a regular point of
CU

y,1 and a weak singularity of Y if y is regular point of CU
y,1 but my � 2.

We denote by τ1 (resp. τ2) the sets of points where Y has weak (resp.
strong) singularity. Then τ = τ1 ∪ τ2 and τ1 ∩ τ2 = ∅. Note that both τ1
and τ2 may contain points y where my � 2.

We denote by Ysing = Ysing ∪ τ the singular locus of Y , that is the set
of points of Y where Y is not a smooth manifold with boundary and we set
B = f(σ) ∪ Ysing, A = F−1(B) and X◦ = X\F−1(δ) = X\F−1(τ2).

Lemma 9. The map F : X → Y is a normalization in the following
sense: F : X◦ → Y is a (usual) normalization and F : X\A → Y\B is a
diffeomorphism between manifolds with boundary.

Proof. Since X◦ = X\F−1(δ), the properness of F |X◦ and the finiteness
of its fibers are elementary. For each connected component C of X◦\A,
the degree mC of F : C → F (C) as a Riemann surfaces morphism is finite
and F∗[C] = δC [F (C)]. Reasoning as in Lemma 7’s proof, we get mC = 1.



134 G. HENKIN AND V. MICHEL GAFA

As Ysing contains all the points of Y which has more than one preimage
by F , F : C → F (C) is thus an isomorphism. Let C′ be another connected
component of X◦\A and assume that F (C) and F (C′) meet at q. Since
q /∈ B, the germs of F (C) and F (C′) at q are equal. This leads to F (C) =
F (C′) which yields the contradiction d[Y] = 2[δ] near regular boundary
points of δ in bF (C). Hence, F : X◦\A → Y\B = Yreg is an isomorphism of
complex manifolds. As X◦∩A = F−1(Ysing) has empty interior, F : X◦ → Y
is a usual normalization.

Set X̃ = X\A, Ỹ = Y\B, τ̃ = τ ∪ f(σ) and δ̃ = δ\τ̃ ; by definition
of B, Ỹ is a manifold with smooth boundary δ̃ = δ\τ̃ and X̃ has smooth
boundary γ\σ̃ where σ̃ = f−1(τ) = σ∪f−1(τ). The map F : X̃ → Ỹ is onto
by construction. It is injective because the maps F : X◦ → Y and f : γ → δ
are so and because if x1 ∈ X and x2 ∈ γ have the same image y by F , then
my � 2, y ∈ τ and x1, x2 ∈ A. Since Ỹ\τ̃ = Yreg and F : X◦\A → Yreg is
a diffeomorphism, the fact that F : X̃ → Ỹ is a diffeomorphism between
manifolds with boundary has only to be check locally near boundary points.
If x ∈ γ\σ̃, then y = f(x) /∈ τ and the last conclusion of Lemma 7 implies
that there are open neighborhoods V and W of x and y in X and Y such
that F : V →W is a diffeomorphism between manifolds with boundary. �

3.1 Proof of Theorem 1. Let L′ be the operator defined by (1.1) when
N is changed for N ′, let us denote F ′ the meromorphic extension of f to
X ′ and let Y ′ = F ′(X ′)\δ where δ = f(γ). By Lemma 7, the sets Y ′ and
Y are two complex curves of CP2\δ which has no compact component and
both are bordered by [δ] in the sense of currents. Hence they are identical
by a consequence of a Harvey–Shiffman theorem (see [DoH, Prop. 1.4.1]).

Taking Lemma 9 into account and the fact that B ∩ Y = Ysing = B′ ∩ Y ,
this implies that Φ = F−1 ◦ F ′ is an analytic isomorphism between
X ′\F ′−1(Ysing) and X ′\F−1(Ysing). Using the properness of F : X◦ → Y
and F ′ : X ′◦ → Y, we conclude that Φ extends holomorphically to X ′. Like-
wise, Ψ = F ′−1 ◦ F extends holomorphically to X . As Φ(Ψ(x′)) = x′ and
Ψ(Φ(x)) = x for almost all x′ ∈ X ′ and x ∈ X , the extension of Φ is an
isomorphism from X to X ′.

As F and F ′ extend f to X and X ′, Φ extends continuously to γ by
the identity map on γ. Set σ = X sing and σ′ = X ′

sing and let x′ be in
γ\(σ∪σ′). Then if y = f(x) /∈ τ = δ∩Ysing, Φ is a diffeomorphism between
neighborhoods of x in X and X ′ because F (resp. F ′) is a diffeomorphism
between a manifold with boundary from a neighborhood of x in X (resp.
in X ′) to a neighborhood of y in Y. If y ∈ τ , then the last conclusion of
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Lemma 7 implies that y ∈ τ1 so that there is a open neighborhood U of y,
a component CU

y,1 of Y ∩ U and open neighborhoods V and V ′ of x in X
and X ′ such that F : V → CU

y,1 and F ′ : V ′ → CU
y,1 are diffeomorphisms

between manifolds with smooth boundary. Hence, Φ : V → V ′ is a diffeo-
morphism between manifolds with smooth boundary. Finally, Φ realizes a
diffeomorphism between manifolds with smooth boundary from X ′\(σ∪σ′)
to X\(σ ∪ σ′) and the proof is complete. �

The proof contains the following variation of Theorem 1.

Theorem 10. Assume that X and X ′ are open Riemann surfaces with
almost smooth boundary γ such that the map f defined by (1.2) is an
embedding of γ into CP2 and has a meromorphic extension F to X and F ′

to X ′ which are continuous near γ. Then F (X )\f(γ) = F ′(X ′)/f(γ)
def
= Y

is a complex curve of CP2\δ without compact component, which has finite
mass and satisfies d[Y] = [δ]. Moreover, X and X ′ are normalizations of Y
in the sense of Lemma 9.

Thus, Riemann surfaces constructed in the converse part of Theorems
3a, 3b and 3c are the only possible candidates for a solution to the IDN-
problem.

4 Existence and Reconstruction, Proof of Theorem 2

We first prove that the Stokes formula holds in almost smoothly bordered
manifolds.

Lemma 11. Let (X , γ) be a Riemann surface with almost smooth bound-
ary. Then for any 1-form ϕ which is continuous on X such that dϕ exists
as an integrable differential on X , we have

∫

X
dϕ =

∫

γ
ϕ . (4.1)

Proof. Set σ = X sing. Since h2(X ) < ∞ and h1(σ) = 0, there is an in-
creasing sequence (Xk) of smooth open sets of X such that (h1(bXk)\γ)
and (h2(X\Xk)) both have limit zero and X\Xk is contained in a 2−k-
neighborhood of σ. Let ϕ be as above. Since dϕ is integrable and
limh2(X\Xk) = 0, (

∫

Xk
dϕ) has limit

∫

X dϕ. As bXk = (γ ∩Xk)∪ [(bXk)\γ]
and limh1((bXk)\γ) = 0, (

∫

(bXk)\γ ϕ) converges to 0. Hence, lim
∫

γ∩Xk
ϕ =

∫

γ ϕ and the classical Stokes formula for ϕ and Xk yields (4.1). �

We now prove a variation of Riemann’s existence theorem.
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Proposition 12. Let (X , γ) be a Riemann surface with almost smooth
boundary and u a real valued lipschitzian function on γ. Then u has a
unique continuous harmonic extension ũ of u to X and ũ has finite Dirichlet
integral

∫
i ∂ũ ∧ ∂ũ. Moreover, NXu defined as ∂ũ/∂ν on γ\X sing admits

an extension on γ as a current of order 1 on γ.

Proof. Following the lines of Riemann’s method for harmonic extension of
smooth functions, we first construct an adequate space W 1(X ).

Since (X , γ) is at least a topological bordered manifold, for every fixed
point x in γ, we can choose in X an open set ∆x whose closure in X is a
neighborhood of x and which is mapped by a complex coordinate ϕx into
the closure of the unit disk D of C, ϕx being a homeomorphism from ∆x

to D. Note that, if x′ ∈ γ ∩ ∆x is a regular point of X , ϕx has to be
a diffeomorphism between manifolds with boundary from a neighborhood
of x′ to a neighborhood of ϕx(x′) in D. If x ∈ X , we choose a conformal
open disk ϕx : ∆x → D of X centered at x. With the help of a continuous
partition of unity, we can now construct a continuous hermitian metric h
on X by gluing together the local metrics (ϕx)∗dz ∧ dz where z is the
standard coordinate of C. We then denote by W 1(X ) the Sobolev space of
functions in L2(X , h) with finite Dirichlet integral.

By construction, any function A in W 1(X ) is such that for each x ∈ γ,
Bx = (ϕx)∗A|∆x is square integrable for the standard metric of D. Since
the values of Dirichlet integrals are conformal invariants, it follows that
Bx is in the standard Sobolev space W 1(D) and hence admits a boundary
value bx on T = bD which is in W 1/2(T). As bx is punctually defined
almost everywhere, ax = bx ◦ ϕ is defined almost everywhere in γ ∩ ∆x.
The constructions made for each x ∈ γ glue together to form a function
defined almost everywhere in γ which we call the boundary value of A.

We consider now the subset F of W 1(X ) with boundary value u. It
is closed and non-empty since, by a result of McShane [Mc], u admits a
Lipschitz extension to X . It follows now from classical arguments that the
Dirichlet integral can be minimized in F at some function ũ which has to
be harmonic in X . It remains only to show that ũ is continuous on X .
If x ∈ γ, what precedes implies that vx = (ux ◦ ϕ−1

x )|T is in W 1/2(T),
continuous near ϕx(x) and is the boundary value of ṽx = ũ ◦ ϕ−1

x . Hence,
the classical Poisson formula for the disc implies that, near ϕx(x) in D, ṽx is
continuous up to T with restriction vx on T. Since ϕx is an homeomorphism,
we get that ũ is continuous at x with value u(x).

Let θu be the form defined by (1.1). The Stokes formula (4.1) implies
that, if ϕ ∈ C1(γ) and Φ is a Lipschitz extension of ϕ on X ,
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∫

γ
ϕθu = −

∫

X
∂ũ ∧ ∂Φ .

As the last integral is independent of the Lipschitz extension of ϕ, this
means that θu and hence NXu, are well-defined currents of order 1. �

Now assume that the hypotheses of Theorem 2 are true. Lemma 7
points out that F projects γ on a smooth curve δ of C

2 which bounds in
the sense of currents a complex curve Y of CP2\δ which has finite mass and
no compact component, and Theorem 10 implies that for some subset X◦
of X , with discrete complement in X , F : X◦ → Y is a usual normalization.
Hence, if B = Ysing and A = F−1(B), F : X\A → Y\B is one to one. This
is part 1 of Theorem 2.

Before proving the second claim of Theorem 2, we recall that CP2 is
equipped with homogenous coordinates w and C

2 identified with {w0 �= 0}
have affine coordinates z1 = w1/w0 and z2 = w2/w0. Set ∆∞ = {w0 = 0},
Y∞ = Y ∩ ∆∞ and, if ξ ∈ C, we set ∆ξ = {w2 = ξw0} and Yξ = Y ∩ ∆ξ.
Set

Ωm
ξ =

zm
1

z2 − ξ
dz2 =

wm
1

wm
0

dw2

w2 − ξw0
− wm

1

wm+1
0

w2dw0

w2 − ξw0
.

Applying the Stokes formula either for Y or X , it turns out that 1
2πi

∫

γ
fm
1

f2−ξdf2

equals Sm (ξ) + Pm (ξ) where

Sm(ξ) =
∑

z∈Yξ

Res(η∗Ωm
ξ , z) , Pm(ξ) =

∑

z∈Y∞

Res(η∗Ωm
ξ , z) ,

and η : Y → CP2 is the canonical injection.
For almost all ξ∗ in C, Y meets ∆ξ∗ transversely only in C

2 ∩ Yreg;
for such a fixed ξ∗, set p = CardYξ∗ and Yξ∗ = {z1∗, . . . , zp∗}. For ξ
in a sufficiently small connected neighborhood Wξ∗ of ξ∗, Yξ lies then in
C

2 ∩ Yreg and can be written {z1(ξ), . . . , zp(ξ)} with zj(ξ) = (hj(ξ), ξ)
where hj is holomorphic in Wξ∗ and has value zj∗ at ξ∗, 1 � j � p. Direct
calculation shows (see [DoH]) that the poles of Ωm

ξ in C
2 are z1(ξ), . . . , zp(ξ)

with residue h1(ξ)m, . . . , hp(ξ)m. Hence, Sm = Sh,m in V .
Reasoning as in Lemma 13 in the next section, we can assume, without

loss of generality, that Y meets ∆∞ transversely and that Y∞ ⊂ Yreg. In
this situation, a direct calculus (see [DoH]) gives that, at y ∈ Y∞, Ωm

ξ has
a pole of order m + 1 with a residue which is a polynomial in ξ of degree
at most m. Hence, Pm is a polynomial in ξ of degree at most m; formula
(Em,ξ) is proved.

If A � B and ξ0, . . . , ξA−1 are mutually distinct, the Vandermonde
matrix (ξµ

ν )0�ν,µ�B−1 is invertible and, hence, the system (Em,ξν )0�ν�B−1
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enables us to write the coefficients of Pm as a linear combination of the
Sh,m(ξν), 0 � ν � B−1. Introducing this result in (Eξ) = (Em,ξν )0�m�B−1

0�ν�B−1
,

we get a linear system which, since AB− 1
2B(B+1) � pA when B � 2p+1,

enables us to compute, for a generic ξ, the unknowns Sh,m(ξν) and, thanks
to the Newton–Girard formulas, the elementary symmetric functions of
h1(ξν), . . . , hp(ξν); finally we get the intersection points (hj(ξν), ξν) of Y
with ∆ξν .

We prove the third assertion of Theorem 2. Almost all ξ∗ in C
2 have a

connected neighborhoodWξ∗ such that there is a compact of CP2\(δ∪Ysing)
containing all Yξ when ξ ∈ Wξ∗ . When ξ∗ is such and ξ ∈ Wξ∗ , the form
Φm,�

ξ = F m
1

F2−ξ∂ũ� may have poles of order at most m at infinity, i.e. in
{w0 = 0} ∩ X and while its other poles lie in a compact of X . Since ũ�

is the continuous harmonic extension of u� on X ,
∫

X i ∂ũ� ∧ ∂ũ� < +∞ by
Proposition 12 and we can apply the Stokes formula (4.1) to it on X . This
gives (Tm,ξ) after a residue calculus.

Remark. The 1
2B(B+1) coefficients of the polynomials Pk come from the

residues of the intersection points of Y with {w0 = 0}. In the generic case, Y
is given near theses points as the graph of holomorphic functions ψ1, . . . , ψq

of the variable w0/w2, it appears that the coefficients of Pk are ruled by the
derivatives of order at most k at 0 of the ψ�. The reconstruction of X is
thus possible with a non-linear system with only pA+ q(B+ 1) unknowns.

5 Proofs of Characterizations Theorem 3a, 3b and 3c

The proofs of Theorems 3a, 3b and 3c follow a similar schema. The function
f defined by (1.2) embeds γ into a smooth real curve δ = f(γ) of C

2. The
necessary conditions for the existence of a solution to the IDN-problem
for γ are drawn from the fact that this existence implies that δ bounds a
“concrete” Riemann surface in CP2 or C

2. The sufficient part of Theorem
3c reconstructs the concrete but singular solution to the IDN-problem; a
normalization gives then the sufficient part of 3b. The proof of Theorem
3a follows a similar scheme.

5.1 Proof of Theorem 3a.A. Assume that X is an open bordered
riemannian surface of finite volume with restricted DN-datum (γ, u, θu).
Then the functions Fj (j = 1, 2) which are the well-defined quotients of
forms (∂ũj)/(∂ũ0) are meromorphic, and letting F = (F1, F2), Lemma 7
implies that Y = F (X )\δ, δ = f(γ), is a complex curve of finite volume,
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without a compact component and bordered by [δ] in the sense of currents.
Moreover, the function G has the expression

G(ξ0, ξ1) =
1

2πi

∫

δ
Ωξ , Ωξ =

w1

w0

dΛξ(w)
Λξ(w)

− w1

w2
0

dw0 ,

where δ = f(γ), (w0 : w1 : w2) are homogenous coordinates for CP2 and
Λξ(w) = ξ0w0 + ξ1w1 + w2.

For almost all ξ∗ = (ξ0∗, ξ1∗) and for all ξ in a sufficiently small con-
nected neighborhood Wξ∗ of ξ∗, Y meets ∆ξ = {Λξ = 0} transversely,
Yξ = Y∩∆ξ ⊂ C

2∩Yreg so that there exists p = CardYξ∗ holomorphic func-
tions Hj = (1 : hj : hj,2) : Wξ∗ → CP2 such that Yξ = {Hj(ξ), 1 � j � p}
and (hj)1�j�p are mutually distinct. Direct calculations shows that these
functions satisfy the shock-wave equation (1.5); this lemma, which goes
back to Darboux, is proved in [DoH, Lem. 2.4].

Let η : Y → CP2 the canonical injection. Since η∗Ωξ may only have
poles in Yξ ∪Y∞, the Stokes formula gives that, near ξ∗, G = H +L where

H(ξ) =
∑

z∈Yξ

Res(η∗Ωξ, z) , L(ξ) =
∑

z∈Y∞

Res(η∗Ωξ, z) .

By construction, η∗Ωξ has residue hj(ξ) at z = Hj(ξ) ∈ Yξ, and it remains
only to know that L is affine in ξ0 to prove Theorem 3a. The second part
of the lemma below is needed in the proof of Theorem 4.

Lemma 13. If Wξ∗ is small enough, L = Σhj − G is affine in ξ0. In
addition, there is an integer q such that L is the limit in O(Wξ∗) of a
continuous one parameter family of ξ0-affine functions which are the sum
of q mutually distinct shock-wave functions.

Proof. With no loss of generality, we assume ξ∗ = 0 for the proof. For
small complex parameters ε, we consider the homogeneous coordinates
wε = (w0 + εw1 : w1 : w2 + εw1). For ε in a sufficiently small neighborhood
of 0, the intersection of Y with the zero set of Λξ : w �→ ξ0 + ξ1w

ε
1 + wε

2 is
still generic in the sense that it is transverse and lies in {wε

2 �= 0} ∩ Yreg.

Hence, setting Ωε
ξ = w1

wε
0

dΛε
ξ(w)

Λε
ξ(w) −

w1
(wε

0)2
dwε

0, the function Gε : ξ �→ 1
2πi

∫

δ Ωε
ξ is,

on Wξ∗ , the sum of pmutually distinct shock-wave functions hε
1, . . . , h

ε
p. For

generic ε, Y meets ∆ε∞ = {wε
0 = 0} transversely and Yε∞ = Y ∩ {w0 = 0}

lies in Yreg ∩ {wε
2 �= 0}. Hence, [DoH, Lem. 2.3.1] implies that Lε =

Σhε
j − Gε is affine in ξ0. The dependence of Gε is clearly holomorphic

in ε. The same holds for each hε
j since what precedes has shown that

hε
j(ξ) = Res(η∗Ωε

ξ,Hj(ξ)) = 1
2πi

∫

Y∩∂Uj
η∗Ωε

ξ where Uj is any sufficiently
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small neighborhood of Hj(ξ) in CP2 whose boundary is smooth and trans-
verse to Y. Hence Lε is holomorphic in ε and has to be affine in ξ0 when
ε = 0.

Let q be the number of points in Y∞ counted with their multiplicities;
when ξ is generic, q is either defined by

p− q =
1

2πi

∫

γ

d(ξ0 + ξ1f1 + f2)
ξ0 + ξ1f1 + f2

. (5.1)

For sufficiently small generic ε, [DoH, Lem. 2.3.1] gives more precisely that
Lε =

∑

1�j�q h
ε,∞
j with

hε,∞
j = −Res(η∗Ωξ, z

ε
j ) =

−ξ0ψε
j (0) + ψε

j
′(0)

1 + ξ1ψε
j (0)

,

where Yε∞ = {zε
1, . . . , z

ε
q} and ψε

j ∈ O(U ε), U ε open neighborhood of 0 in C,
enable us to give in the affine coordinates ζε = (wε

j/w
ε
2)j=0,1 the set Y as a

graph above U ε: Y ∩V ε
j = {(ζε

0 : ψε
j (ζ

ε
0) : 1) ; ζε

0 ∈ U ε. Each hε,∞
j is clearly

a shock-wave function, that is a solution to hξ1 = hξ0h. �

Remark. When ε goes to a non-generic value, the fact that L is a sum
of q shock-wave functions may not be preserved as section 6.1 shows.

5.2 Proof of Theorem 3a.B. Assume that γ satisfies (1.4) in a con-
nected neighborhoodWξ∗ of one point (ξ0∗ : ξ1∗ : 1) of CP2. If (∂2G/∂ξ20)|Wξ∗
= 0, then γ satisfies the classical Wermer–Harvey–Lawson moment condi-
tion in C

2
ξ∗ = CP2\{ξ0∗w0+ξ1∗w1+w2 = 0} (see [DoH, Cor. 1.6.2]) and [W],

[HL1] imply that if δ is suitably oriented, the polynomial hull of δ in C
2
ξ∗

is the unique complex curve Y of finite mass of C
2
ξ∗\δ such that d[Y] = [δ].

Now assume (∂2G/∂ξ20)|Wξ∗ �= 0. Then we can choose a minimal H =
{h1, . . . , hp} in the sense that no proper subset of H satisfies (1.4). Although
it is not explicitly mentioned by their authors, the heart of the arguments
of [DoH, Th. II, p. 390] is that ±[δ] = d[Y] where Y is the analytic extension
Y in CP2\δ of the union Γ of the graphs Γj of the functions

Hj : ξ �→
(
1 : hj(ξ) : −ξ0 − ξ1hj(ξ)

)
, 1 � j � p .

This fact, not totally explicit in [He, p. 64], can be recovered a posteriori
by a kind of trick which was used in [DoP] and is developed later in the
proof of Theorem 3c: for the curve γ̃ which is the union of γ with the
boundaries of Γj negatively oriented, one goes back to the C

2
ξ∗-case where

(∂2G/∂ξ20)|Wξ∗ = 0. If d[Y] is −[δ] and not [δ], then the same arguments
which have proved Theorem 3a.A would give that the functions hj, geomet-
rically defined as the first coordinates of points of intersection of Y with
generic lines Λξ, should satisfy not only the shock-wave equation hξ1 = hξ0h
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but also the “negative” shock-wave equation hξ1 = −hξ0h. As this is im-
possible, d[Y] = [δ].

In both cases, we have found (up to a change of orientation if ∂2G/∂ξ20
vanish on Wξ∗) a complex curve Y of finite mass of CP2\δ such that
d[Y] = [δ].

As δ is smooth, we know from [HL1] that there is in δ a compact
set τ such that h1(τ) = 0 and for which each point of y ∈ δ\τ has a
neighborhood Uy where Y ∩Uy is a closed bordered submanifold of Uy with
boundary δ ∩ Uy. Lemma 8 in section 3 describes how Y is near points
of τ . Using the notation and definitions introduced after its proof, we
let τ2 (resp. τ ′) be the set of y in δ where Y has a strong singularity (resp.
my � 2) and define Ỹ as the abstract complex curve Y ∪ τ ′.

Consider a normalization π : X → Ỹ; Lemma 8 implies that π is an open
mapping. Let Z be the disjoint and abstract union X ∪ γ. If x ∈ γ, we
define a neighborhood of x in Z as a subset of Z which contains a set of the
kind π−1(CU

y,1) where y = f(x) and U is a neighborhood of y in CP2. Then
(Z, γ) is a compact metrizable topological manifold with boundary which
has finite 2-dimensionnal Hausdorff measure and smooth boundary outside
σ = f−1(τ2). Since f is an embedding, h1(σ) = 0 and (Z, γ) is a manifold
with almost smooth boundary. Moreover, it follows by construction that
the meromorphic extension F : Z → Y of f to X defined by F |X = π is a
normalization of Y in the sense of Lemma 9. �

Remark. When γ is real analytic, [HL1, Th. II] implies that CU
y,1 is a

manifold with boundary in the classical sense. So, in that case, (Z, γ) is a
classical manifold with boundary.

The following proposition which clarifies some results of [DoH] justifies
the fourth remark after Theorem 3a.

Proposition 14. Assume δ is connected. Then if (∂2G/∂ξ20)|Wξ∗ = 0, the

polynomial hull of γ in C
2 = CP2\{ξ0∗w0 + ξ1∗w1 +w2 = 0} has boundary

±[γ]. If (∂2G/∂ξ20)|Wξ∗ �= 0 and no proper subset of H = {h1, . . . , hpt}
satisfies (1.4), then the analytic extension Y in CP2\δ of the union Γ of the
graphs Γj of the functions Hj : ξ �→ (1 : hj(ξ) : −ξ0 − ξ1hj(ξ)), 1 � j � p,
is the complex curve which has minimal volume among complex curves Z
such that dt[Z] = [δ].

Proof. The preceding proof contains the above conclusion except the mini-
mality of volume of Y when (∂2G/∂ξ20)|Wξ∗ �= 0 and H is minimal. In that
case, let Y ′ be a complex curve of CP2\δ with boundary [δ] and minimal
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volume. Then Y = Y ′ ∪ Z where Z is a union of compact complex curves
of CP2. But the intersection of any compact curve with a line Λξ is de-
scribed, for ξ in a neighborhood of a generic ξ∗, as a finite union of graphs
of function (1 : gj : gj,2) whose second homogeneous coordinate satisfy the
shock-wave equation and such that Σgj is affine in ξ0 (see [He, §2]). Since
H is minimal, no such gj belongs to H and it appears that Γ has to be
contained in Y ′ Hence, Y ⊂ Y ′ and, finally, Y = Y ′. �

5.3 Proof of Theorem 3a.C. Let X , Z, D and g be as in the state-
ment. Let u ∈ C1(γ) and for z ∈ D\γ set

Ωz = u∂ζgz + gzθu .

If Y is a smooth domain in Z, the Stokes formula (4.1) implies that value
of 1Y(z)û(z)+

∫

Y ∂û∧∂ζgz −
∫

(∂Y)\γ u∂ζgz does not depend of the Lipschitz
extension û of u to Z and equals

∫

γ∩Y u∂ζgz when Xsing = ∅. Hence we
can take it as a definition for

∫

γ∩Y u∂ζgz in the general case. Let then F

be the function defined for z ∈ D\γ by

F (z) =
2
i

∫

ζ∈γ
Ωz(ζ) , Ωz = u∂ζgz + gzθu ,

where gz = g( . , z).
Since ũ, u and θu are continuous, the conclusion of part C follows from

the lemma below which gives ũ = F |X and θu = ∂ũ on γ\σ if F |D\X = 0.

Lemma 15. F+ = F |X and F− = F |D\X are real valued harmonic
functions such that

u = F+ − F− and θu = ∂F+ − ∂F− on γ\σ . (5.2)

Proof. The harmonicity of F is a simple consequence of the properties of g.
Now fix p in γ\σ and in a neighborhood U of p in D, a holomorphic chart
U → U centered at p; a hat “̂” denotes hereafter the coordinate expression
of a function, a form or a set. For z ∈ U\γ let us write F (z) = ϕ(z)+R1(z)
with ϕ(z) = −2i

∫

γ∩U Ωz and R1 is smooth on U . If y and x are the
coordinates of ζ ∈ γ ∩ U and z ∈ U\γ, ĝ(y, x) = g(ζ, z) can be written in
the form ĝ(y, x) = 1

2π ln |y − x| + h(y, x) where h is a smooth function on
U × U , harmonic in each variable. Hence

ϕ̂(x) =
1

2πi

∫

γ̂∩U

û(y)
y − x

dy +
∫

γ̂∩U

ln |y − x|
πi

θ̂u(y) +R2(x)

where R2 ∈ C0(U). The second integral has no jump across γ̂ and from
the classical Sohotsky–Plemelj formula, we know that the first integral has
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jump û across γ̂ in the sense of distribution and pointwise near each regular
boundary point. Since

∂ϕ̂(x) =
1

2πi
dx

∫

γ̂∩U

1
x− y

θ̂u(y) + ∂R2(x) ,

the jump of ∂ϕ̂ through γ̂ is likewise θ̂u.
In order to check that F (z) ∈ R when z ∈ D\γ, we let LX be the

DN-operator of X and we note that since ∂gz = (LX gz)(ν∗ + iτ∗) and
θu = (Lu)(ν∗ + iτ∗), − ImF (z) =

∫

γ(u τgz + gzτu)τ∗ =
∫

γ d(ugz |γ) = 0. �

5.4 Proof of Theorem3c.A. We assume that γ is in the sense of cur-
rents the boundary of a complex curve X of CP2\γ for which (γ, u, θu) is
a restricted DN-datum. Then, as in the proof of Theorem 3a.A, for almost
all (ξ∗0 : ξ∗1 : 1) in CP2, there exists a neighborhood Wξ∗ of ξ∗ = (ξ∗0, ξ∗1)
such that, for every ξ ∈Wξ∗ , X ∩∆ξ lies in C

2 and equals Γ ∩∆ξ where Γ
is the union of the graphs Γj of Hj = (1 : hj : hj,2) : Wξ∗ → CP2, 1 � j � p
where Hj is holomorphic in Wξ∗ . Since we are concerned only by generic ξ∗,
we can suppose that Γj = {(ϕj(z2), z2) ; z2 ∈ Uj} where Uj is a neighbor-
hood of z∗j,2 = hj,2(ξ∗) and ϕj ∈ O{Uj}. The decomposition sought for G̃
in (a1) can be then found in [He]. However, this residues calculus is needed
in part B, and we include it here.

When ξ ∈Wξ∗ , G̃�(ξ0 : ξ1 : 1) is the sum of the residues of

Λ� =
z�

ξ0 + ξ1z1 + z2
Θ0

(for convenience z� = 1 if 	 = 0) in X . Set Θ0 = Aj(z2)dz2 in each Γj and
let us abbreviate Hj(ξ) in zj . Then zj,2 is the only pole of Λ� in Γj . It is a
simple one and the residue of Λ� at it is

gj,� =
zj,�Aj(zj,2)
ξ1ϕ′

j(zj,2) + 1
= zj,�gj,0 (5.3)

where zj,� = 1 if 	 = 0. As Γj is also parametrized by Hj, we can set
gj =

∑

0���2

gj,�dη� on Γj ,

and get that gj,1/gj,0 = zj,1 = hj satisfy (1.5); gj,2/gj,0 = zj,2 = hj,2 satisfy
then hj

∂hj,2

∂ξ0
= ∂hj,2

∂ξ1
because hj,2 = −ξ0 − ξ1hj . Note that the dependence

in ξ of g can be made clearer if the identity hj −ϕj(−ξ0−ξ1hj) = 0 is used.
Indeed, this relation implies

(1 + ξ1ϕ
′
j)∂ξ0hj + ϕ′

j = 0 and (1 + ξ1ϕ
′
j)∂ξ1hj + hjϕ

′
j = 0 .

Hence ϕ′
j = −(∂ξ0hj)/(1 + ξ1∂ξ0hj) and

1
1 + ξ1ϕ′

j

=
∂ξ1hj

∂ξ0hj

1 + ξ1∂ξ0hj

hj
= 1 + ξ1∂ξ0hj = ∂ξ0hj,2 ,
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since hj satisfies hj∂ξ0hj = ∂ξ1hj . So, instead of (5.3), we now have

gj,� = Aj(Hj)hj,�
∂hj,2

∂ξ0
, 1 � j � p , 0 � 	 � 2 . (5.4)

where hj,0 = 1 for convenience.
From the definition we get that when expressed in the affine coordinates

ξ, gj is given by the integral formula

2πi gj =
(∫

∂Γj

Θ0

ξ0 + ξ1z1 + z2

)

dξ0 +
(∫

∂Γj

z1Θ0

ξ0 + ξ1z1 + z2

)

dξ1

from which it is clear that gj is closed.
To achieve the proof of part A, it is enough to remark that (a2) is a

direct consequence of the fact Re Θ� = dũ� is exact.

5.5 Proof of Theorem 3c.B. Assume that the hypothesis of (b1) is
true and γ is connected.

Case G̃|Wη∗ �= 0. This mean H �= ∅ when H is minimal in the
sense that no proper subset of H gives a decomposition of G̃ with the
same properties. Let Γ be the union of the graphs Γj of the functions
Hj = (1 : hj : hj,2), 1 � j � p, where hj,2 = −ξ0 − ξ1hj . If needed, we can
choose another ξ∗ so that Γ does not meet Λξ∗ in {w0 = 0}. Then for any
ξ in a neighborhood Ω of ξ∗, the Hj(ξ) are mutually distinct and are the
points of Γ ∩ Lξ. Finally, we assume, which it is not a restriction, that Γ
has a smooth oriented boundary ∂Γ.

Let γ̃ be the union of ∂Γ with opposite orientation and γ and let ϕη

be the linear function z �→ η0 + η1z1 + η2z2. From the hypothesis we get
directly 1

2πi

∫

γ
ϕ−1

η θ� =
∑

1�j�p

gj,� =
∑

1�j�p

gj,�hj,�

where hj,� = 1 if 	 = 0. On the other hand, if we set
Θ0 = (∂ξ0hj,2)−1gj,0dhj,2 , on Γj , 1 � j � p (5.5)

and z0 = 1, the residues calculus made in the proof of part A implies that
∫

∂Γ
z�ϕ

−1
η θ0 =

∑

1�j�p

gj,0hj,� , 1 � j � p .

Hence,
∫

γ̃ ϕηθ� = 0. As γ̃ is contained in the affine space Eξ∗ = CP2\Λξ∗ , we
can apply [He, Cor. 4.2, p. 265] and [D, Prop. 1] and get in Eξ∗\γ̃ a complex
curve X̃ of finite volume where θ0 extends weakly in a weakly holomorphic
form Θ0 satisfying ∫

X
(∂ϕ) ∧ Θ0 =

∫

X
d(ϕΘ0) =

∫

γ
ϕθ0 (5.6)

holds for any ϕ smooth in a neighborhood of X and analytic near σ.
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Note that in [He], [D], (5.6) is in fact obtained only for ϕ smooth on X
and holomorphic in a neighborhood of γ, but (5.6) follows from this together
with (5.4) and the residue relations (very close in spirit to the relations Tm,ξ)

1
2πi

∫

γ
zm
1

θ0
ξ0 + ξ1z1 + z2

=
∑

1�j�p

hm
j (ξ)gj,0(ξ) ,

where hj(ξ), hj,2(ξ) and gj,0(ξ) are as above. Indeed, for generic ξ, these
relations enable the computation of gj,0(ξ) by a kramerian system and hence
imply the smoothness of Θ0 near points of γ\σ. However, this precision is
not essential in the sequel.

By construction, X = X̃ ∪ Γ is a complex curve of CP2\γ where θ0
extends as a weakly holomorphic form Θ0, this extension coinciding in Γ
with the form defined by (5.5). If 	 = 1, 2, the form Θ� = z�Θ0 is a weakly
holomorphic extension of θ� to X .

Let ε > 0 and let Wε an ε-neighborhood of Λξ∗ . As Xε = X\Wε lies in
the affine space Eξ∗\Wε, [HL1, Th. 4.7] implies that

d[Xε] = nε[γ] +
∑

1�j�p

nε,j[γε,j] (5.7)

where for 1 � j � p, nε, nε,j ∈ Z and γε,j is the (smooth) boundary of the
smooth (manifold) Wε ∩ Γj. If 0 < ε′ < ε,

∑

1�j�p

d
[
Γj ∩ (Wε\Wε′)

]
= −d[Xε] + d[Xε′ ]

= (−nε + nε′)[γ] +
∑

1�j�p

(−nε,j + nε′,j)[γε,j] .

Hence, nε = nε′
def
= n and as each Γj ∩Wε\Wε′ is a smooth manifold with

boundary, nε,j = nε′,j = −1. Now taking limits in (5.7) when ε goes to
zero, we get d[X ] = n[γ]. We suppress from X any compact component
it may have and still denote the result by X ; note that X now has to be
connected. Since X is a complex curve of CP2\γ, [Ch] implies that if n �= 0,
there is in γ a compact set σ such that h1(σ) = 0 and (X ,±γ) is a manifold
with boundary near points of γ\σ; as X is connected, this implies n = ±1.
When n = 0, the structure theorems of Harvey–Shiffman [H] imply that
Z =X is then a complex compact curve of CP2; since γ is smooth, γ is
locally a Jordan curve of Zreg and the points where γ may meet the finite
set Zsing are only self-intersection points of Z.

Since X ∩ Λξ = {(1 : hj(ξ) : hj,2(ξ)), 1 � j � p}, the Stokes formula
gives G = Σhj (see Proof of Theorem 3a.A).

Assume that (∂2G/∂ξ20)|Wξ∗ �= 0. Then n �= 0 because otherwise, for ξ
closed to ξ∗, the intersection of X with the line Λξ would have to be the
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intersection with Λξ of a compact Riemann surface, namely X , which by
a theorem of Reiss would force Σhj to be affine in ξ0 (see [GH, Ch. 5.2] or
[He, §2]). Reasoning as in the proof of 3a.B, we also eliminate the possibility
d[X ] = −[γ] because it would imply that if H = {h1, . . . , hp} is minimal
in the sense that no proper subset of H satisfy (a1), each hj also satisfies
hj,y = −hj,xhj . Hence n = 1.

When (∂2G/∂ξ20)|Wξ∗ = 0, that is when Σhj is affine in ξ0, and when X
is not an algebraic curve where γ is a slit, n has to be non-null and hence
is ±1. Since G̃|Wη∗ �= 0, the minimal H in the above sense is not empty
and reasoning likewise, we get d[X ] = [γ].

Case G̃|Wη∗ = 0. This means that the minimal H is empty. Then,
we can apply [He, Th. 4.2, p. 264] in the affine case (see [D] for a gener-
alization and a detailed proof in this case) to get in C

2\γ (here C
2 is the

complement of Λξ∗ = {ξ∗0w0 + ξ1∗w1 +w2 = 0} in CP2) a complex curve X
of finite volume where θ0 extends weakly in a weakly holomorphic form Θ0

satisfying (5.6).
Since θ0 yields a non-zero measure on γ which, because G̃|Wη∗ = 0, is

orthogonal to all polynomials of C
2 ∼ CP2\Λξ∗ , we can apply Bishop [Bi]

and [S] (Wermer originates and solves this problem [W] for the real analytic
case) to get that X is the polynomial hull γ̃ of γ in C

2 and d(±[X ]) = [γ].
[HL1] (see also [Ch]) implies then that γ contains a compact set σ such
that h1(σ) = 0 and (X , γ) is a manifold with boundary near points of γ\σ.

To prove (b2), we go back to the assumption that (a1) is true and
we assume in addition that Θ� is holomorphic and satisfies (1.8) for all
c ∈ H1(Xreg). Then, there exists U� ∈ C∞(Xreg) such that Θ� = dV� on
Xreg; since Θ� is a (1,0)-form, ∂V� = dV� = Θ�. We know from the preceding
point that d[X ] = n[γ] where n ∈ {0, 1}, up to a change of orientation of
γ when G̃|Wη∗ = 0. Assume at first that n = 1. As d is elliptic up to the
boundary, V� has to be smooth up to the boundary in the classical sense
near points of γ outside σ and the preceding equality (5.6) yields dv� = du�

where v� = V�|γ . Hence, z0 is a point of γ where (X , γ) is a manifold with
boundary, there is a constant c such that v� = u� + c near z0 in γ. Since
h1(σ) = 0 and dv� = du� is smooth we have v�(z) − v�(z0) =

∫

γz0,z
du�

where γz0,z is the positively oriented path of γ starting at z0 and ending
at z. Hence, v�(z) − u�(z0) − c = u�(z) − u�(z0) and v�(z) = u�(z) + c.
This implies that U� is a weakly-harmonic extension of u�. When n = 0,
X is two-sided locally near points of γ and each local side has the same
boundary regularity as in the case n = 1. Hence, we can reason as in this
case and get that there is a weakly-harmonic extension of u� to X .
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When we assume also that
∫

Xreg
Θ� ∧ Θ� < +∞, Θ� is holomorphic

in the sense that its pullback to any normalization π : Z → X of X is
holomorphic and not only meromorphic. The isolated singularities that the
pullback V� of U� may have in Z are removable because dV� is smooth. So
U� is harmonic on X and U� is the harmonic extension of u� to X . The
proof is complete.

5.6 Proof of Theorem 3b. The map f enable us to embed the ab-
stract IDN-problem of Theorem 3b in the projective but concrete frame of
Theorem 3c. So Theorem 3b.A is a direct consequence of 3c.A.

For the converse part B.b1, we apply 3c.B to δ = f(γ) and θ� = θu�,
	 = 0, 1, 2. We get in CP2\δ an irreducible complex curve Y such that
d[Y] = n[δ] where n ∈ {0, 1}, up to a change of orientation when G̃|Wη∗ = 0;
in addition, each θ� extends weakly to Y into a weakly holomorphic (1,0)-
form ΘY

� .
When n = 1, the boundary regularity of Y mentioned in the proof of

Theorem 3c.B enables us to apply readily the construction made in the
proof of Theorem 3a: adding to Y a subset σ′ of γ of zero one-dimensional
Hausdorff measure, we get an abstract complex curve Ỹ which can be nor-
malized in the classical sense into an abstract Riemann surface X ; γ can
then be topologically glued to X so that (X , γ) becomes a manifold with
almost smooth boundary where the pullback F to X of the meromorphic
map CP2 � z �→ (z1, z2) gives a meromorphic extension of f to X . Since
the forms ΘY

� are meromorphic on Y, Θ� = F ∗ΘY
� is well defined and mero-

morphic outside X\F−1(σ′) which has zero length.
When n = 0, Z = X is an algebraic curve and one can use a standard

normalization of Z to get the same kind of conclusions.
The supplementary hypothesis of part B.b2 forces each Θ� to have only

removable singularities. Reasoning as in the proof of 3c.B.b2, (1.8) implies
that Θ� = dV� = ∂V� for some harmonic function V� smooth up to regular
boundary points of X (when n = 0, γ cuts locally X into two domains and
this means that each restriction of V� to these domains is smooth up to γ)
and that there is a constant c such that U� + c agrees with u� on γ. �

6 Characterizations, Effective or Affine

6.1 Explicit integro-differential characterization. In this section
where Theorem 4 is proved, (ξ0, ξ1) is replaced by the simpler (x, y) and we
reason in a neighborhood of (0, 0). O0 is the set of one variable holomorphic
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functions near 0 is denoted by, O0⊗Cd[Z] stands for the set of polynomials
of degree at most d with independent variable Z and coefficients in O0. An
element of O0⊗Cd[X] (resp. O0⊗Cd[Y ]) should be thought of as a function
of the type (x, y) �→

∑

0�j�d λj(x)yj (resp. (x, y) �→
∑

0�j�d λj(y)xj) where
each λj ∈ O0.

If h is differentiable, the derivative of h with respect to one of its
variable u is denoted hu. If U is an open set in C

n, O(U) is the space
of holomorphic functions in U ; if h ∈ O(U) and 0 ∈ U , we set hx−0,y0 = h
and in any simply connected neighborhood of 0 in U , we denote by hx−α−1,yβ

(α, β ∈ N) the function which vanishes at 0 and satisfies ∂(hx−α−1,yβ )/∂x =
hx−α,yβ ; hx,αy−β−1 is defined similarly.

A two variable function h is called a shock-wave function on a domain
D of C

2 if it is holomorphic and satisfies hy = hxh on D.
A p-algebröıde function on D is a p-uple h = (h1, . . . , hm) of functions

from D to C for which one can find p holomorphic functions a0, . . . , ap−1

in D such that for z ∈ D, h1(z), . . . , hp(z) are the roots, with multiplicities,
of the polynomial T h = Xp + ap−1(z)Xp−1 + · · · + a1(z)X + a0(z).

A p-multivaluate shock-wave function on D is a p-algebröıde function
h on D such that Σ = {Discr T h = 0} is a hypersurface of D and for any
z∗ ∈ D\Σ, the holomorphic functions h∗1, . . . , h∗p which near z∗ describe the
roots of T h

z are non-null shock-wave functions; the first symmetric function
of T h, that is the sum of the roots of T h, is called the trace of T h of h. Traces
of p-multivaluate shock-wave functions are called p-shock-wave functions.

Lemma 16. Consider p mutually distinct functions h1, . . . , hp holomorphic
in a domain D of C

2. Then, each hj is a shock-wave function if and only the
functions σk = (−1)k

∑

1�j1<···<jk�p hj1 · · ·hjk
satisfy the following system:

σpσ1,x + σp,y = 0 and σkσ1,x + σk,y = σk+1,x , 1 � k � p− 1 . (6.1)

Proof. Set T = Xp +
∑

1�k�p σkX
p−k and T ′ = ∂T/∂X. The relations

0 = (Th)x = (Th)y and hp = −
∑

1�k�p σkh
p−k yields (T ′h)(hy−hhx) = Sh

with

S =
∑

1�k�p−1

[σk+1,x − σkσ1,x − σk,y]Xp−k − (σpσ1,x + σp,y) .

Since degS � p− 1, the fact that each hj is a shock-wave function implies
that the coefficients of S vanish in a non-empty open set and thus in the
domain D. If S = 0 at every point of D, then each hj verifies hy −hxh = 0
in the domain D because T ′hj �≡ 0. �
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Proposition 17. LetD be a simply connected domain of C
2 containing 0,

∆ its image by the projection (x, y) �→ y and H ∈ O(D). When u is
differentiable, we set

DHu = eHx,y−1∂(ue−Hx,y−1 )/∂y and LHu = (DHu)x−1 .

The following two assertions are equivalent:

1. H is a p-shock-wave function in D.

2. There exists λ1, . . . , λp−1 ∈ O(∆) such that for λ̃j(x, y) = λj(y),
1 � j � p− 1,

DHLp−1
H H = DHLp−2

H λ̃1 + · · · + DHL0
H λ̃p−1 (6.2)

Discr Tz �≡ 0 (6.3)

where Tz = Xp +
∑

1�k�p sk(z)Xp−k with

sk = −Lk−1
H H + Lk−2

H λ̃1 + · · · + L0
H λ̃k−1 , 1 � k � p . (6.4)

More precisely, in case (2) is true, T determines a p-multivaluate shock-
wave function with trace H. Conversely, ifH is the trace of a p-multivaluate
shock-wave function T , the p holomorphic functions which near a point z∗ in
{Discr T �= 0} describes the roots of Tz have symmetric functions (−1)ksk,
1 � k � p which satisfy (6.2) and (6.4).

Proof. (1) Assume H is a p-shock-wave function in D. Then, H is the first
symmetric function of some T ∈ O(D) ⊗ Cp[Z], Σ = {Discr T = 0} �= D
and for any fixed z∗ ∈ D\Σ, degTz∗ = p and the holomorphic functions
h∗1, . . . , h∗p which near z∗ describe the roots of Tz are non-null shock-wave
functions with no common value on a sufficient small convex neighborhood
W = U ×V of z∗. For k ∈ {1, . . . , p} and on W , set ρk = σke

−Hx,y−1 where
σk is defined in Lemma 16. Then (6.1) implies that ρp,y = 0 and that for
k ∈ {1, . . . , p− 1},

(ρk+1e
Hx,y−1 )x = −Hxσk + σk,y = eHx,y−1 ∂

∂yσke
−Hx,y−1 = eHx,y−1ρk,y

which yields λk ∈ O(V ) such that
ρk+1(x, y)e

Hx,y−1 = [eHx,y−1ρk,y]x−1 + λk(y) .

Since σ1 = −H, we get e−Hx,y−1 [eHx,y−1ρ1,y]x−1 = −e−Hx,y−1LHH. Setting
λ̃0 = −H, we obtain ρ2 = e−Hx,y−1 (LHλ0 + λ̃1) and a straightforward
finite recurrence gives (6.4) with (sk) = (σk). In particular, k = p yields
(6.2), because ρp,y = 0; the discriminant of Tz doesn’t vanish in W because
h1, . . . , hp have no common value. Since (6.4) also reads σk+1 = LHσk + λ̃k

we obtain that λk = σk+1(0, . ) on V . Hence, λ1, . . . , λp do not depend
on z∗ so that they are well-defined holomorphic functions on ∆.
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(2) Assume now (2) is true. We only have to check that T =
Xp −

∑

1�k�p skX
p−k is actually a p-multivaluate shock-wave function.

Formulas (6.4) also read sk+1 = LHsk + λ̃k for 1 � k � p − 1 and
(6.2) means that DHsp = 0. Hence 0 = sp,y − Hxsp = sp,y − s1,xsp and
sk+1,x = DHsk = sk,y − Hxsk = sk,y + s1,xsk. So, if z∗ ∈ D is outside
Σ = {Discr T = 0}, Lemma 16 implies that the holomorphic functions
h1, . . . , hp which near z∗ describe the roots of Tz are mutually distinct
shock-wave functions. �

The following describes p-shock-wave functions which are affine in x.

Proposition 18. Let D be a simply connected domain of C
2 containing 0,

a, b ∈ O(D) and H = x ⊗ a + 1 ⊗ b. Then, H is a O(D)-limit of affine
p-shock-wave functions if and only if there exists Q0, Q1 ∈ Cp−1[Y ] such
that

a =
Q1

1 −Q1,y−1

and b =
Q0

1 −Q1,y−1

(6.5)

When (6.5) and
Discr(1 −Q1,y−1) �= 0 (6.6)

are satisfied, the decomposition of H in elementary fractions gives H as a
sum of rational shock-wave functions.

Proof. First assume that H =
∑

1�j�p hj where h1, . . . , hp are mutu-
ally distinct shock-wave functions; with the notation of Proposition 17,
(−1)1s1, . . . , (−1)psp are the symmetric functions of h1, . . . , hp and satisfy
the relations DHsp = 0 and sk+1 = LHsk + λ̃k, 1 � k � p− 1. There exist
sequences of holomorphic functions, (λj,k) k∈N, (ak)k∈N and (bk)k∈N, each
satisfying the recurrence uk+1 = u′k − auk, such that

Lk
H λ̃j =

xk

k!
⊗ λj,k , Lk

HH =
xk+1

(k + 1)!
⊗ ak +

xk

k!
⊗ bk , k ∈ N .

Hence, (6.2) yields the vanishing of the x-polynomial
xp

p!
⊗ ap +

xp−1

(p − 1)!
⊗ bp −

∑

1�j�p−1

xp−1−j

(p− 1 − j)!
⊗ λj,p−j

and ensures ap = bp = λj,p−j, 1 � j � p − j. So, one can find Q1, Q0 ∈
Cp−1[Y ] and Λj ∈ Cp−j−1[Y ], 1 � j � p− 1, such that with A = ay−1

ak = Q
(k)
1 eA , bk = Q

(k)
0 eA, λj,k = Λ(k)

j eA, k ∈ N .

Thus a = a0 = Q1e
A, 1 − e−A = Q1,y−1 and hence, (6.5). To achieve the

general case, it is now sufficient to prove the last statement of the proposi-
tion. Assume (6.5) and (6.6) are true for some Q0, Q1 ∈ Cp−1[Y ]. Then, the
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decomposition in elementary fraction of H is Σhj where hj(x, y) = qjx+cj

1−qjy ,

1 � j � p and q−1
1 , . . . , q−1

p are the roots of 1 −Q1,y−1 . It is quite evident
that h1, . . . , hp are mutually distinct shock-wave functions. �

Remark 1. If x⊗ a+ 1⊗ b is the sum of p-mutually distinct shock-wave
functions h1, . . . , hp, each hj is algebraic since for 1 � k � p, (6.4) yields
sk(x, y) = [1 −Q1y−1(y)]−1Sk(x, y) where Sk is the polynomial defined by

Sk = −x
k ⊗Q

(k−1)
1

k!
− xk−1 ⊗Q

(k−1)
0

(k − 1)!
+

∑

1�j�k−1

xk−1−j ⊗ Λ(k−1−j)
j

(k − 1 − j)!
.

Remark 2. When Q1 is allowed to be non-generic, 1−Q1,y−1 can only be
written in the form 1−Q1,y−1 =

∏

1�j�m(1− qjy)αj with α1, . . . , αm ∈ N
∗.

Hence, if Q0 ∈ Cp−1[Y ] and (a, b) is defined by (6.5), there is constants cj,�
such that

H
def
= x⊗ a+ 1 ⊗ b =

∑

1�j�m

∑

1���αj

hj,�

where hj,� = qjx
1−qjy + cj,�

(1−qjy)� , 1 � j � m, 1 � 	 � αj. Each hj,� is now a
rational generalized shock-wave function in the sense it is a solution of the
equation

hy − hxh = (	− 1)κh�+1
x

where κ ∈ C is equal to cj,�/q�
j .

Generalized shock-wave functions arise when an affine function H =
x⊗ a+ 1⊗ b has coefficient a and b given by (6.5) not constrained to (6.6).
In that case, H is a limit of rational p-shock-wave functions, that is of sums
of p mutually distinct rational shock-wave functions. The lemma below,
which is an elementary consequence of Proposition 18, proves the converse
and so, shows that generalized shock-wave functions occur naturally.

Lemma 19. Let (Ht)t∈T = (x ⊗ at + 1 ⊗ bt)t∈T be a continuous fam-
ily of holomorphic affine functions in a simply connected domain D such
that the set Treg of parameters t for which Ht is a rational p-shock-wave
function is dense in T . Then there exists in Cp−1[Y ] continuous fam-
ily of holomorphic polynomials (Qt

1) and (Qt
0) such that for any t ∈ T ,

at = Qt
1(1−Qt

1,y−1)−1 and bt = Qt
1,0(1−Qt

1,y−1)−1. Hence, Ht is a p-shock

(resp. p-generalized) shock-wave function when Discr(1−Qt
1,y−1) �= 0 (resp.

Discr(1 −Qt
1,y−1) = 0).

6.1.1 Proof of Theorem 4. (1) Assume that there is an open Rie-
mann surface X such that X = X ∪ γ is a manifold with almost smooth
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boundary. Then, Theorem 3a gives that almost every point (ξ0∗, ξ1∗, 1) of
CP2 has a neighborhood Wξ∗ for which one can find an integer p and p
mutually distinct shock-wave functions h1, . . . , hp on Wξ∗ such that L =
Σhj − G is affine in ξ0. Set sk = (−1)k

∑

1�j1<···<jk�p hj1 · · ·hjk
and

T = Xp +
∑

1�k�p skX
p−k. Then Discr T �≡ 0 and Proposition 17 implies

that property (1) of Theorem 4 holds.
Now assume that p̃ is the least integer q such that there is a q-multivalu-

ate shock-wave function whose trace differs from G|Wξ∗ only by a ξ0-affine
function. Let T̃ be a p̃-multivaluate shock-wave function with trace H̃ such
that L̃ = H̃ − G|Wξ∗ is affine in ξ0. Let h̃1, . . . , h̃p̃ be the holomorphic
function on Wξ∗ which describes the roots of T̃ . Then {h̃1, . . . , h̃p̃} is min-
imal in the sense of the fourth remark below Theorem 3a.

When p̃ � 1, this remark says that X is a normalization of the analytic
extension Y in CP2\f(γ) of the union of the graphs of the functions (1 :
h̃j : −ξ0− ξ1h̃j), 1 � j � p̃, and for any ξ ∈Wξ∗ , the intersection of Y with
the projective lines ξ0w0 + ξ1w1 + w2 = 0 is

{
(1 : h̃j(ξ) : ξ0 − ξ1h̃j(ξ)) ; 1 � j � p̃

}
.

Since, by Proposition 10, Y is uniquely determined by (γ, f), each h̃j and so,
each symmetric function s̃k of h̃1, . . . , h̃k, is uniquely determined by (γ, f).
If λ1, . . . , λp̃ are any one-variable holomorphic functions such that assertion
(2) of Proposition 17 holds, with H̃ instead of H, then λk−1(ξ1) = s̃k(0, ξ1),
1 � k � p− 1. Hence, λ1, . . . , λp̃ are uniquely determined by (γ, f).

Lemma 13 implies now that L is affine in ξ0 and is, for some integer q, the
limit of a continuous one parameter family of ξ0-affine q-shock-wave func-
tions. Thanks to Lemma 19, this implies that L(ξ0, ξ1) = ξ0

α′(ξ1)
1−α(ξ1) + β(ξ1)

1−α(ξ1)

where α ∈ Cq[ξ1] vanish at zero and b ∈ Cq−1[ξ1].
(2) Assume now that property (1) of Theorem 4 holds. Set T =

Xp+
∑

1 � k � pskX
p−k where now sk are defined by (6.4). Proposition 17

implies then that T is determines a p-multivaluate shock-wave function
whose trace is G + L. Since L is affine in ξ0, G satisfies the hypothe-
sis of Theorem 3a.B. As G is not affine in ξ0 by hypothesis, γ, with its
given orientation, is the boundary of an open Riemann surface X with the
sought after properties. Hence, (4) has to be satisfied from the direct part
of Theorem 4.

6.1.2 Particular case of Theorem 4. For minimal p equal to 2,
it turns out that Theorem 4 says that γ bounds almost smoothly an open
Riemann surface X where f extends meromorphically if and only if for
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some constants c, α1, α2, β0, β1

DGLGG = cC + α1A1 + α2A2 + β0B0 + β1B1 (6.7)
where

C = (Gx − gx)egx,y−1 ,

A1 = yDGLGG+ (xLGG)x , A2 = y2DGLGG+ (2xyLGG+ x2G)x ,
B0 = DGG−DGg , B1 = yB0 + g −G .

6.2 Affine characterization. A characterization for an affine presen-
tation is possible but very special data have to be selected. Assume X is
a Riemann surface with almost smooth boundary γ. When u ∈ C∞(γ), a
straightforward computation gives that dcũ = (Nu)τ∗ as forms of γ\X sing.
So, Lemma 11 implies that∫

γ
(Nu)τ∗ =

∫

X
ddcũ = 0 . (6.8)

Hence (Nu)τ∗ has a primitive v on γ and the holomorphic extension to X
of h = u+ iv is equivalent to the moments condition

∀Ψ ∈ H1,0(X ) ,
∫

γ
hΨ = 0 . (6.9)

If H ∈ O(X )N+1 is such that h = H|γ embeds γ in C
N+1, Y = H(X )\h(γ)

is a complex curve of C
N+1\h(γ) which has finite volume and has boundary

h(γ) and γ has to satisfy the Harvey–Lawson-moments condition

∀k0, . . . , kN ∈ N ,

∫

γ
hk0

0 · · · hkN
N dh0 = 0 (6.10)

which by the way also contains (6.8).
Proposition 20. Let u0, . . . , uN ∈ C∞(γ) and let v� ∈ C∞(γ) be a
primitive of (Nu�)τ∗, 0 � 	 � N . Assume that h = (u� + iv�)0���N is
an embedding of γ into C

N+1. Then (6.10) is a necessary condition to the
existence of a Riemann surface X with almost smooth boundary γ, such
that each u� extends to X as a harmonic function with harmonic conjugate
function. The converse is true when γ is connected and suitably oriented.

Remark. Of course, the above conclusion means that X is a Riemann
surface where each h� extends holomorphically.

Proof. If X exists with the required properties, δ = h(γ) bounds, in the
sense of current, h(X )\δ which is a complex curve of finite volume of C

n\δ.
Cauchy theorem implies then that (6.10) is verified. If (6.10) is satisfied,
[HL1] produces a holomorphic 1-chain Y such that dY = [δ]; since γ is
connected, Y = [Y] for a suitable orientation of γ. A normalization of Y
constructed as in the proof of Theorem 3a gives a suitable X . �
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