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GAFA Geometric And Functional Analysis

TOWARDS RELATIVE INVARIANTS OF REAL
SYMPLECTIC FOUR-MANIFOLDS

J.-Y. Welschinger

Abstract. Let (X,ω, cX) be a real symplectic four-manifold with real
part RX . Let L ⊂ RX be a smooth curve such that [L]=0∈H1(RX ; Z/2Z).
We construct invariants under deformation of the quadruple (X,ω, cX , L)
by counting the number of real rational J-holomorphic curves which realize
a given homology class d, pass through an appropriate number of points
and are tangent to L. As an application, we prove a relation between the
count of real rational J-holomorphic curves done in [W2] and the count of
reducible real rational curves done in [W3]. Finally, we show how these
techniques also allow us to extract an integer valued invariant from a clas-
sical problem of real enumerative geometry, namely about counting the
number of real plane conics tangent to five given generic real conics.

1 Statement of the Results

Let (X,ω, cX ) be a real symplectic four-manifold, that is a triple made of
a smooth compact four-manifold X, a symplectic form ω on X and an
involution cX on X such that c∗Xω = −ω. The fixed point set of cX is
called the real part of X and is denoted by RX. It is assumed to be non-
empty here so that it is a smooth lagrangian surface of (X,ω). We label its
connected components by (RX)1, . . . , (RX)N . Let L ⊂ RX be a smooth
curve which represents 0 in H1(RX; Z/2Z), and B ⊂ RX be a surface
having L as a boundary.

1.1 Definitions. Let l � 1 be an integer large enough and Jω be
the space of almost complex structures of X which are tamed by ω and
of class C l. Let RJω be the subspace of Jω made of almost complex
structures J for which the involution cX is J-antiholomorphic. These two
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spaces are separable Banach manifolds which are non-empty and contractible
(see §1.1 of [W2] for the real case). Assume that the first Chern class
c1(X) of the symplectic four-manifold (X,ω) is not a torsion element in
H2(X; Z) and let d ∈ H2(X; Z) be a homology class satisfying c1(X)d > 1,
c1(X)d �= 4 and (cX)∗d = −d. Let x = (x1, . . . , xc1(X)d−2) ∈ Xc1(X)d−2

be a real configuration of c1(X)d − 2 distinct points of X, that is an or-
dered subset of distinct points of X which is globally invariant under cX .
For j ∈ {1, . . . , N}, we set rj = #(x ∩ (RX)j) and r = (r1, . . . , rN ) so
that the N -tuple r encodes the equivariant isotopy class of x. We will
assume throughout the paper that r �= (0, . . . , 0). Finally, denote by I
the subset of those i ∈ {1, . . . , c1(X)d − 2} for which xi is fixed by the
involution cX , so that I �= ∅. For each i ∈ I, choose a line Ti in the tan-
gent plane TxiRX. Let J ∈ RJω be generic enough. Then, as in [W3],
we denote by Cuspd(J, x) (resp. Redd(J, x), T and(J, x)) the finite set of
real rational cuspidal (resp. reducible, whose tangent line at some point
xi, i ∈ I, is Ti) J-holomorphic curves which realize the homology class d
and pass through x. Likewise, we denote by T and

L(J, x) the finite set of
real rational J-holomorphic curves which realize the homology class d, pass
through x and are tangent to L. Note that the genericity assumption on
J ∈ RJω implies that the non-trivial point of contact of the curve with L is
unique and of order two. Also, all these curves have only transversal dou-
ble points as singularities lying outside of x, with the exception of elements
of Cuspd(J, x) which have in addition a unique real ordinary cusp. Let
C ∈ T and

L(J, x)∪Cuspd(J, x)∪Redd(J, x)∪T and(J, x), we define the mass
of C and denote by m(C) its number of real isolated double points. Here,
a real double point is said to be isolated when it is the local intersection
of two complex conjugated branches, whereas it is said to be non-isolated
when it is the local intersection of two real branches. Let C ∈ T and

L(J, x)
and y be its point of contact with L. Then, either RC is locally included in
B near y, or its intersection with B is locally restricted to {y}. We define
the contact index 〈C,B〉 to be −1 in the first case and +1 in the second.
Likewise, if C ∈ Cuspd(J, x) (resp. C ∈ T and(J, x)), then its cuspidal point
(resp. its tangent line Ti, i ∈ I) is unique and we define 〈C,B〉 to be −1 if
it is outside B or +1 if it is inside. Finally, if C belongs to Redd(J, x) and
C1, C2 denote its irreducible components, then both these components are
real and we set
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multB(C) =
∑

y∈RC1∩RC2

〈y,B〉 ,

where 〈y,B〉 equals −1 if y is outside B or +1 if it is inside.

1.2 Statement of the results. We set

Γd,B
r (J, x) =

∑

C∈∪T and
L(J,x)∪T and(J,x)∪Cuspd(J,x)

(−1)m(C)〈C,B〉

−
∑

C∈Redd(J,x)

(−1)m(C) multB(C) .

Theorem 1.1. Let (X,ω, cX ) be a real symplectic four-manifold and
B ⊂ RX be a surface with boundary L. The connected components of
RX are labelled by (RX)1, . . . , (RX)N . Let d ∈ H2(X; Z) be such that
c1(X)d > 1 and c1(X)d �= 4, and x ⊂ X \ L be a real configuration of
c1(X)d−2 distinct points. For j ∈ {1, . . . , N}, denote by rj the cardinality
of x ∩ (RX)j and by r = (r1, . . . , rN ), which is assumed to be different
from (0, . . . , 0). Finally, let J ∈ RJω be generic enough so that the integer

Γd,B
r (J, x) is well defined. Then, this integer Γd,B

r (J, x) neither depends on
the choice of J , nor on the choice of x.

From this theorem, the integer Γd,B
r (J, x) can be denoted without am-

biguity by Γd,B
r , and when it is not well defined, we set Γd,B

r = 0. Note
that the condition c1(X)d �= 4 is to avoid appearance of multiple curves,
see Remark 1.11 of [W3].

Remark 1.2. 1) In particular, the integer Γd,B
r (J, x) does not depend on

the relative position of x with respect to B, it only depends on r.

2) When B = ∅, Γd,B
r = −Γd

r , where Γd
r is the invariant defined in [W3].

Theorem 1.1 then follows from Theorem 0.1 of [W3]. In fact, Theorem 0.1
of [W3] is nothing but the particular case B = ∅ of Theorem 1.1. Note that
this case B = ∅ is, however, of a slightly different nature since Γd,∅

r = −Γd
r

is an absolute invariant whereas, as soon as B �= ∅, the first term in the
right-hand side defining Γd,B

r makes it a relative invariant in the spirit of
[LR] and [IP].

3) One has Γd,B
r = −Γd,RX\B

r .

We denote by Γd,B(T ) the generating function
∑

r∈N
N Γd,B

r T r ∈
Z[T1, . . . , TN ], where T r = T r1

1 . . . T rN
N . This polynomial function is of

the same parity as c1(X)d and each of its monomials actually only de-
pends on one indeterminate. It follows from Theorem 1.1 that the function
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ΓB : d ∈ H2(X; Z) 
→ Γd,B(T ) ∈ Z[T ] only depends on the quadruple
(X,ω, cX , B). Moreover, it is invariant under deformation of this quadru-
ple, that is if ωt is a continuous family of symplectic forms on X for which
c∗Xωt = −ωt and Bt is an isotopy of compact surfaces in RX, then this
function is the same for all (X,ωt, cX , Bt).

Theorem 1.3. Under the hypothesis of Theorem 1.1, assume that B is a
disk in RX. Then 2χd

r+1 = Γd,B
r + Γd

r . Moreover,

1) If (X,ω, cX ) is the complex projective plane equipped with its stan-

dard symplectic form and real structure, then Γd,B
r = Γd

r .

2) If (X,ω, cX ) is the hyperboloid (CP 1×CP 1, ωCP 1⊕ωCP 1, conj×conj),
then Γd,B

r = 2χd
r+1 + Γd

r .

(Remember that the integer χd
r+1 has been defined in [W1,2] and the

integer Γd
r in [W3]. Note that when RX is connected, r ∈ N

∗.)

Corollary 1.4. Under the hypothesis of Theorem 1.3, we have χd
r+1 =

Γd
r = Γd,B

r in the case of the complex projective plane and Γd,B
r = 2χd

r+1,
Γd

r = 0 in the case of the hyperboloid. �

The first equality of this corollary has been announced in [W3, Prop. 0.3].
It provides a relation between the count of real rational J-holomorphic
curves done in [W2] and the count of reducible and cuspidal curves done
in [W3]. Does such a relation have a complex analog?

1.3 More tangency conditions, the case of conics. It is possible to
extend the above results to curves having more than one tangency condition
with L, at least in the case of plane conics (see also §4.3). We illustrate
this phenomenon here on the following classical problem of real enumerative
geometry, solved by De Joncquières in 1859: there are 3264 conics which
are tangent to five given generic conics in the complex projective plane. If
the five given conics are real, then the number of real conics tangent to
them of course depends on the choice of the conics. We however show here
how it is possible to extract an integer valued invariant from this problem.

Let B1, . . . , B5 be five embedded disks in RP 2 which are transversal to
each other and Li = ∂Bi, i ∈ {1, . . . , 5}. Let J ∈ RJω be generic enough.
We denote by Con(J) the finite set of real conics tangent to L1, . . . , L5

and by Conred(J) the finite set of real reducible conics, that is pairs of
J-holomorphic lines, tangent to four out of these five curves L1, . . . , L5.
Let C ∈ Con(J), we set 〈C,B〉 =

∏5
i=1〈C,Bi〉. In the same way, let

C ∈ Conred(J) and i1, . . . , i4 ∈ {1, . . . , 5} be such that C is tangent to
Li1 , . . . , Li4 . We set 〈C,B〉 =

∏4
j=1〈C,Bij 〉 and multB(C) = +1 if the
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singular point of C belongs to Bi5 and −1 otherwise. Set

ΓB(J) =
∑

C∈Con(J)

〈C,B〉 −
∑

C∈Conred(J)

〈C,B〉multB(C) ∈ Z .

Theorem 1.5. The integer ΓB(J) does not depend on the generic choice
of J ∈ RJω. Moreover, it is invariant under isotopy of B = B1 ∪ · · · ∪B5.

In particular, during such an isotopy, the five curves L1, . . . , L5 have to
remain transversal to each other. Note that there are only finitely many
isotopy classes of five real conics in the plane. How does ΓB depend on the
isotopy classes will be studied in §4.2, Proposition 4.1. The integer ΓB is
computed in the following cases.

Proposition 1.6. Let B1, . . . , B5 be five disjoint disks in RP 2, then ΓB =
272. The same holds when B1, . . . , B5 are close to a generic configuration
of five real double lines of the plane.

Here, a disk is said to be close to a double line with equation y2 = 0
in the plane if it has an equation of the form {y2 ≤ ε2x2 − δ} for small ε
and δ’s.

Corollary 1.7. Let L1, . . . , L5 be five real generic plane conics whose
isotopy class is given by Proposition 1.6. Then, the number of real conics
tangent to L1, . . . , L5 is bounded from below by 32.

Proof. The number of lines tangent to two different generic conics is four,
they correspond to the intersection points between the two dual conics.
The number of real reducible conics tangent to four out of the five conics
L1, . . . , L5 thus does not exceed 240 = 5 ∗ 3 ∗ 4 ∗ 4. The result follows now
from the definition of ΓB and Proposition 1.6. �

Hence, this Corollary 1.7 provides lower bounds in real enumerative
geometry. Note that this number of real conics does not admit any non-
trivial upper bound. Indeed, F. Ronga, A. Tognoli and T. Vust have found
a configuration of five real conics close to the double edges of some pentagon
such that all the 3264 conics tangent to them are real, see [RTV].

The paper is organized as follows. The first paragraph is devoted to the
construction of the moduli space RMd

L of real rational pseudo-holomorphic
curves which realize the homology class d and are tangent to L. The sec-
ond paragraph is devoted to the proof of the results of §1.2 and the third
paragraph to the proof of the results of §1.3.
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2 Moduli Space of Real Rational Pseudo-Holomorphic
Curves Tangent to L

Let d ∈ H2(X; Z) be such that (cX)∗d = −d and c1(X)d > 1, c1(X)d �= 4.
Let τ be an order two permutation of the set {1, . . . , c1(X)d − 2} hav-
ing one fixed point at least. Let cτ : (x1, . . . , xc1(X)d−2) ∈ Xc1(X)d−2 
→
(cX(xτ(1)), . . . , cX(xτ(c1(X)d−2))) ∈ Xc1(X)d−2 be the associated real struc-
ture of Xc1(X)d−2, its fixed point set is denoted by RτX

c1(X)d−2. Let
L ⊂ RX be a smooth curve such that [L] = 0 ∈ H1(RX; Z/2Z) and
B ⊂ RX be a surface having L as a boundary. Finally, let g be a rieman-
nian metric on X, invariant under cX and for which L is a geodesic. We
denote by ∇ the associated Levi–Civita connection on TX.

2.1 Moduli space RP∗
L of real rational pseudo-holomorphic maps

tangent to L. Let S be an oriented sphere of dimension two and conj
be a smooth involution conjugated to the complex conjugation of CP 1.
Denote by RS the fixed point set of conj and by RJS the space of complex
structures of class C l of S which are compatible with its orientation and
for which conj is J-antiholomorphic. Let ξ ∈ RS, �ξ ∈ TξRS \ {0} and
z = (z1, . . . , zc1(X)d−2) ∈ Sc1(X)d−2 be an ordered set of c1(X)d− 2 distinct
points of S \ {ξ}. We assume that z is globally invariant under conj and
that the permutation of {1, . . . , c1(X)d − 2} induced by conj is τ . We set

RPL =
{
(u,JS ,J,x) ∈ Lk,p(S,X) × RJS × RJω × RτX

c1(X)d−2
∣∣ u∗[S] = d,

u(z)=x, du+J◦du◦JS = 0, cX◦u=u◦conj, u(ξ) ∈ L and dξu(�ξ)∈Tu(ξ)L
}
,

where 1 � k � l is large enough and p > 2.
Let RP∗

L ⊂ RPL be the space of non-multiple pseudo-holomorphic maps,
that is the space of quadruples (u, JS , J, x) for which u cannot be written
u′ ◦ Φ where Φ : S → S′ is a non-trivial ramified covering and u′ : S′ → X
a pseudo-holomorphic map.

Proposition 2.1. The space RP∗
L is a separable Banach manifold of

class C l−k with tangent bundle
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T(u,JS ,J,x)RP∗
L

=
{
(v, J̇S , J̇ , ẋ) ∈ T(u,JS ,J,x)(L

k,p(S,X) × RJS × RJω × RτX
c1(X)d−2)

∣∣

v(z) = ẋ , dcX ◦ v = v ◦ conj, v(ξ) ∈ Tu(ξ)L , ∇�ξ
v ∈ Tu(ξ)L

and Dv + J ◦ du ◦ J̇S + J̇ ◦ du ◦ JS = 0
}
.

Here, TuL
k,p(S,X) = {v ∈ Lk,p(S,Eu)} where Eu = u∗TX and D :

v ∈ Lk,p(S,Eu) 
→ ∇v+J ◦∇v ◦JS +∇vJ ◦du◦JS ∈ Lk−1,p(S,Λ0,1S⊗Eu)
is the associated Gromov operator (see [MS, Prop. 3.1.1]).

Proof. If we remove the Cauchy–Riemann equation du + J ◦ du ◦ JS = 0
from the definition of RP∗

L, then the corresponding space RA∗
L is a separable

Banach manifold of class C l−k. After differentiation, the equation dξu(�ξ) =
λ(u)ζ(u), where ζ is a unitary vector field tangent to L, becomes ∇�ξ

v =
dλ(u)ζ(u)+λ(u)∇vζ(u). Since L is a geodesic for g and v is collinear to ζ,
the term ∇vζ(u) vanishes and ∇�ξ

v ∈ Tu(ξ)L. We have to prove that the
space of non-multiple pseudo-holomorphic maps is a Banach submanifold
of RA∗

L. This follows from the fact that the section σ∂ : (u, JS , J, x) 
→
du+J◦du◦JS of the bundle Lk−1,p(S,Λ0,1S⊗Eu) vanishes transversely, the
proof of the latter being the same as the one of Proposition 3.2.1 of [MS]. �

2.2 Normal sheaf. Remember that the C-linear part of the Gromov
operator D is some Cauchy-Riemann operator denoted by ∂. The latter
induces a holomorphic structure on the bundle Eu = u∗TX which turns
the morphism du : TS → Eu into an injective homomorphism of analytic
sheaves (see [IvS], Lemma 1.3.1). Likewise, the C-antilinear part of D is
some order 0 operator denoted byR and defined by the formulaR(u,JS ,J,x)(v)
= NJ(v, du) where NJ is the Nijenhuis tensor of J . Denote by OS(Eu)
(resp. OS(TS)) the sheaf of analytic Z/2Z-equivariant sections of Eu (resp.
TS). Also, denote by Nu the quotient sheaf OS(Eu)/du(OS(TS)) so that
it fits in the following exact sequence of analytic sheaves 0 → OS(TS) →
OS(Eu) → Nu → 0. Denote by EL

u the sheaf of Z/2Z-equivariant analytic
sections of Eu which satisfy v(ξ) ∈ Tu(ξ)L and ∇�ξ

v ∈ Tu(ξ)L.

Lemma 2.2. Let w be a real vector field on S which vanishes at ξ. Then
du(w) ∈ EL

u .

Proof. Denote by v = du(w), then v ∈ Eu and v(ξ) = du(w(ξ)) = 0.
Moreover, ∇�ξ

v = (∇�ξ
du)(w) + du(∇�ξ

w). The first term vanishes since
w(ξ) = 0 and the second belongs to Tu(ξ)L. �
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We denote by NL
u the quotient sheaf OS(EL

u )/du(OS(TS−ξ)), so that
we have the exact sequence 0 → OS(TS−ξ) → OS(EL

u ) → NL
u → 0. Denote

by ẼL
u the sheaf of Z/2Z-equivariant sections of Eu for which v(ξ) ∈ Tu(ξ)L,

so that EL
u ⊂ ẼL

u .

Lemma 2.3. If dξu �= 0, then the quotient of ẼL
u by du(OS(TS)) is the

sheaf Nu,−ξ. If dξu = 0, but ∇�ξ
du(�ξ) /∈ Tu(ξ)L, then this quotient is the

sheaf Nu = OS(Eu)/du(OS(TS) ⊗OS(ξ)).

Proof. The first part follows from the fact that the condition v(ξ) ∈ Tu(ξ)L
for a section v of Eu reads in the quotient as a section of Nu which
vanishes at ξ, since Tu(ξ)L ⊂ Im(dξu). In the second case, the nor-
mal sheaf Nu splits as Nu ⊕ N sing

u , where N sing
u is the skyscraper part

du(OS(TS) ⊗OS(ξ))/du(OS(TS)). From the hypothesis, the cuspidal point
at ξ is non-degenerated and has a tangent line distinct from Tu(ξ)L. Thus,
du(TS ⊗ OS(ξ)) �⊂ ẼL

u and the skyscraper part N sing
u does not belong to

the quotient ẼL
u /du(OS(TS)). The projection ẼL

u /du(OS(TS)) ⊂ Nu onto
Nu induced by Nu ⊕N sing

u → Nu provides the required isomorphism. �

As soon as dξu �= 0, we deduce the exact sequence 0 → OS(TS−ξ) →
ẼL

u → Nu,−ξ ⊕ TξL → 0, where TξL is the skyscraper sheaf
du(OS(TS))/du(OS(TS−ξ)). We deduce the inclusion NL

u ⊂ Nu,−ξ ⊕ TξL.

Proposition 2.4. 1) Assume that dξu �= 0. Then, the skyscraper

part TξL is included in NL
u if and only if ∇�ξ

du(�ξ) ∈ Tu(ξ)L, that is if

u(ξ) is a degenerated point of contact between u(S) and L. In this case,
the projection Nu,−ξ ⊕ TξL → Nu,−ξ restricted to NL

u has image Nu,−2ξ.
Otherwise, this projection establishes an isomorphism between NL

u and
Nu,−ξ.

2) Assume that dξu = 0 but ∇�ξ
du(�ξ) /∈ Tu(ξ)L. Then, the sheaf NL

u is
isomorphic to Nu.

Proof. If dξu �= 0, the skyscraper part TξL is generated by du(OS(TS)).
Let w be a real vector field on S, we have to see under which condition
du(w) ∈ EL

u . From the relation

∇�ξ
(du(w)) = (∇�ξ

du)(w) + du(∇�ξ
w) , (1)

it is necessary and sufficient that ∇�ξ
du(�ξ) ∈ Tu(ξ)L. In this case, the

connection ∇ induces at ξ a derivation ∇ξ of sections of the sheaf Nu such
that the relations v(ξ) ∈ Tu(ξ)L and ∇�ξ

v ∈ Tu(ξ)L reads in the quotient
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v(ξ) = 0 and ∇ξv = 0. Thus, the projection Nu,−ξ⊕TξL→ Nu,−ξ restricted
to NL

u has image Nu,−2ξ. Otherwise, it induces an isomorphism.
Assume now that dξu = 0 but ∇�ξdu(

�ξ) /∈ Tu(ξ)L. Then, if w is a
real vector field on S such that w(ξ) �= 0, du(w) /∈ EL

u from (1). The
exact sequence 0 → OS(TS) → ẼL

u → Nu → 0 restricts thus as 0 →
OS(TS−ξ) → EL

u → Nu → 0, hence the result. �
Denote by OS(TS−z) (resp. OS(Eu,−z), OS(EL

u,−z), Nu,−z, NL
u,−z,

Tu(ξ),−zL) the subsheaf of sections of OS(TS) (resp. OS(Eu), OS(EL
u ),

Nu, NL
u , Tu(ξ)L) which vanish at z. Remember that the operator D :

Lk,p(S,EL
u,−z) → Lk−1,p(S,Λ0,1S ⊗ Eu) induces a quotient operator D :

Lk,p(S,NL
u,−z) := Lk,p(S,EL

u,−z)/du(Lk,p(S, TS−z) → Lk−1,p(S,Λ0,1S⊗NL
u ).

From the short exact sequence of complexes
0→ Lk,p(S, TS−ξ−z)

du→ Lk,p(S,EL
u,−z) → Lk,p(S,NL

u,−z) → 0
↓ ∂S ↓ D ↓ D

0→Lk−1,p(S,Λ0,1S⊗TS) du→ Lk−1,p(S,Λ0,1S⊗EL
u ) → Lk−1,p(S,Λ0,1S⊗NL

u )→ 0,

we deduce the long exact sequence 0 → H0(S, TS−ξ−z) → H0
D(S,EL

u,−z) →
H0

D
(S,NL

u,−z) → H1(S, TS−ξ−z) → H1
D(S,EL

u,−z) → H1
D

(S,NL
u,−z) → 0,

where H0
D, H0

D
(resp. H1

D, H1
D

) denote the kernels (resp. cokernels) of the
operators D, D on the associated sheaves. In particular,

indR(D) = indR(D) − indR(∂S)
=

(
c1(X)d+ 2 − 2 − 2#z

)
− (3 − 1 − #z)

= 0 .

2.3 Moduli space of real rational pseudo-holomorphic curves
tangent to L. Denote by Diff+

R
(S, z, ξ) the group of diffeomorphisms

of class C l+1 of S, which preserve the orientation, fix z ∪{ξ} and commute
with conj. This group acts on RP∗

L by

φ.(u, JS , J, x) =
(
u ◦ φ−1, (φ−1)∗JS , J, x

)
,

where (φ−1)∗JS = dφ ◦ JS ◦ dφ−1. Denote by RMd
L the quotient of

RP∗
L by this action. The projection π : (u, JS , J, x) ∈ RP∗

L 
→ (J, x) ∈
Jω × Xc1(X)d−2 induces on the quotient a projection RMd

L →
RJω × RτX

c1(X)d−2 still denoted by π.
Proposition 2.5. The space RMd

L is a separable Banach manifold of
class C l−k, and π is Fredholm of vanishing index. Moreover, if [u, JS , J, x] ∈
RMd

L, then we have the isomorphisms ker dπ|(u,JS ,J,x)
∼= H0

D(S,NL
u,−z) and

coker dπ|(u,JS ,J,x)
∼= H1

D(S,NL
u,−z).



1166 J.-Y. WELSCHINGER GAFA

Proof. The proof is analogous to the one of Corollary 2.2.3 of [S] and
Proposition 3.2.1 of [MS]. The action of Diff+

R
(S, z) on RP∗

L is smooth,
fixed point free and admits a closed supplement. From Proposition 2.1 thus
follows that RMd

L is a separable Banach manifold of class C l−k. Moreover,

ker dπ|[u,JS,J,x] =
{
(v, J̇S , 0, 0)∈T(u,JS ,J,x)RP∗

L

∣∣ v(z) = 0
}
/TIdDiff+

R
(S, z, ξ)

=
{
v ∈ Lk,p(S,EL

u,−z)
∣∣ ∃φ ∈ Lk−1,p(S,Λ0,1S ⊗ TS) ,

Dv = du(φ)
}
/du

(
Lk,p(S, TS−z)

)

= H0
D(S,NL

u,−z) .

Likewise,

Imdπ|[u,JS ,J,x] =
{
(J̇ , ẋ) ∈ TJRJω × TxRτX

c1(X)d−2
∣∣

∃(v, J̇S) ∈ Lk,p(S,EL
u,−z) × TJS

RJS ,

Dv + J ◦ du ◦ J̇S = −J̇ ◦ du ◦ JS , v(z) = ẋ
}
,

so that

coker dπ|[u,JS ,J,x]
∼= Lk−1,p(S,Λ0,1S ⊗ EL

u ) × TxRτX
c1(X)d−2/Im(D̂ × ev) ,

where D̂ : (v, J̇S) ∈ Lk,p(S,EL
u ) × TJS

RJS 
→ Dv + J ◦ du ◦ J̇S ∈
Lk−1,p(S,Λ0,1S ⊗ EL

u ) and ev : v ∈ Lk,p(S,EL
u ) 
→ v(z) ∈ TxRτX

c1(X)d−2.
In particular, Imdπ|[u,JS ,J,x] is closed and π is Fredholm. By definition,
cokerD = H1

D(S,EL
u ). From the short exact sequence 0 → EL

u,−z → EL
u

ev→
TxRτX

c1(X)d−2 → 0, we deduce the long exact sequence → H0
D(S,EL

u ) →
H0(S, TxRτX

c1(X)d−2) → H1
D(S,EL

u,−z) → H1
D(S,EL

u ) → 0. Hence, the
cokernel ofD×ev in TJRJω×TxRτX

c1(X)d−2 is isomorphic toH1
D(S,EL

u,−z).
From the long exact sequence given at the end of §2.2, we deduce that
the cokernel of D̂ × ev and hence the one of dπ|[u,JS ,J,x] is isomorphic to
H1

D(S,NL
u,−z). �

Corollary 2.6. The critical points [u, JS , J, x] of π are those for which
u(S) has a point of contact of order greater than two with L at u(ξ) or u
has a cuspidal point outside ξ. �

2.4 Generic critical points of π are non-degenerated.

Theorem 2.7. Let [u, JS , J, x] ∈ RMd
L be such that u(S) has a point

of contact of order two with L at u(ξ) and a unique real ordinary cuspidal
point outside ξ. Then, [u, JS , J, x] is a non-degenerated critical points of π.
The same holds if u(S) is immersed but has a point of contact of order
three with L at u(ξ).
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The critical points of π which appear in this Theorem 2.7 are said to
be generic.

Proof. The proof of the first part of this theorem is the same as the one of
Lemma 2.13 of [W2], it is not reproduced here. Let [u, JS , J, x] ∈ RMd

L be
such that u(S) is immersed but has a point of contact of order
three with L at u(ξ). We have to prove that the quadratic form
∇dπ|[u,JS ,J,x] : ker dπ|[u,JS ,J,x] × ker dπ|[u,JS ,J,x] → coker ker dπ|[u,JS ,J,x] is
non-degenerated. We saw in the proof of Proposition 2.5 that the ker-
nel and cokernel of the map dπ are the same as the ones of the morphism
−D̂R : (v, J̇S , J̇ , ẋ)∈T[u,JS,J,x]RMd

L 
→ J̇ ◦ du ◦ JS ∈Lk−1,p(S,Λ0,1S⊗NL
u ).

From the relation Dv + J ◦ du ◦ J̇S + J̇ ◦ du ◦ JS = 0, we deduce that
D̂R(v, J̇S , J̇ , ẋ) = Dv+J◦du◦J̇S . We then have to prove that ∇D̂R|[u,JS,J,x] :
H0

D(S,NL
u,−z)

2 → H1
D(S,NL

u,−z) is non-degenerated. Let (v, J̇S , 0, 0) be a
generator of H0

D(S,NL
u,−z). From Propositions 2.4 and 2.5, v = du(w) for

some real vector field w on S which does not vanish at ξ. We can assume
that J̇S vanishes in a neighbourhood of z ∪ ξ. After differentiation of the
relation D ◦ du = du ◦ ∂S , we deduce

∇vD ◦ du+D ◦ (∇vdu) + ∇J̇S
D ◦ du = (∇vdu) ◦ ∂S mod (Im(du)) .

Moreover, ∇(v,J̇S ,0,0)D̂ = ∇vD+ (∇vdu) ◦ JS ◦ J̇S +∇J̇S
D mod (Im(du)).

Since the relation Dv + J ◦ du ◦ J̇S = 0 forces ∂S(w) + JS J̇S = 0, we get
(compare Lemma 2.13 of [W2] and Theorem 1.8 of [W3])

(∇(v,J̇S ,0,0)D̂)(v) +D(∇vdu)(w) = 0 mod (Im(du)) .

From Proposition 2.4, NL
u,−z

∼= Nu,−z−2ξ. From Riemann–Roch duality,
H1

D(S,Nu,−z−2ξ)∗+1
∼= H0

D(S,KS ⊗Nu,−z−2ξ)−1, see [W2, Lem. 1.7]. Let ψ
be a generator of H0

D(S,Nu,−z−2ξ)−1 so that D∗ψ is a linear combination
of Dirac sections of N∗

u at z ∪ ξ as well as of the derivative δ′ξ of the Dirac
section at ξ. Note that since H0

D(S,KS ⊗Nu,−z−ξ) = 0, the coefficient aξ

of δ′ξ in D∗ψ does not vanish. We have
〈
ψ,∇dπ((v, J̇S ), (v, J̇S))

〉
= −

〈
ψ,∇D̂((v, J̇S), (v, J̇S))

〉

=
〈
ψ,D(∇vdu)(w)

〉

=
〈
D∗ψ, (∇vdu)(w)

〉
.

Choose a local chart at u(ξ) such that L is conjugated to the first co-
ordinate axis of R

2 ⊂ C
2. Without loss of generality, we can assume

that the first coordinate axis is J-holomorphic and that the metric g is
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constant in this chart, so that ∇ = d. The map u writes then z 
→
((z − ξ) + o(|z − ξ|), (z − ξ)3 + o(|z − ξ|3)) in a neighbourhood of ξ. Thus,
∇vdu(w) = ∇wv, considered as a section of the normal bundle of u, has a
simple zero at ξ. Since w vanishes at z, we deduce that 〈D∗ψ, (∇vdu)(w)〉 =
aξ〈δ′ξ, (∇vdu)(w)〉. Now since the vanishing order of ∇vdu(w) at ξ is one,
〈δ′ξ , (∇vdu)(w)〉 �= 0, hence the result. �

2.5 Gromov compactification RMd
L of RMd

L. The projection π :
RMd

L → RJω×RτX
c1(X)d−2 is not proper in general. Its lack of properness

is described by the following lemma which follows from Gromov’s compact-
ness theorem (see [MS, Thm. 5.5.5]).
Lemma 2.8. Let [un, Jn

S , J
n, xn] be a sequence of elements of RMd

L such
that (Jn, xn) converges to (J∞, x∞). Then, after possibly extracting a
subsequence, we have one of the following:

1) This sequence [un, Jn
S , J

n, xn] converges in RMd
L.

2) The sequence un(S) converges to some irreducible curve, tangent
to L, but the point of contact belongs to x∞.

3) The sequence un(S) converges to some reducible curve. Moreover, in
this case, the reducible curve is either tangent to L, or has two of its
irreducible components which intersect on L. �

3 Proofs of Theorems 1.1 and 1.3

Let (J0, x0) and (J1, x1) be two generic elements of RJω ×RτX
c1(X)d−2 so

that the integers Γd,B
r (J0, x0) and Γd,B

r (J1, x1) are well defined. We have
to prove that they coincide.

3.1 Choice of a path γ. Remember that by definition, a stratum of
codimension k ≥ 0 of a separable Banach manifold M is the image of a
separable Banach manifold L under a Fredholm map Φ of index −k such
that the limits of sequences Φ(xn) where (xn)n∈N diverges in N belong to
a countable union of strata of higher codimensions. In particular, Φ is not
assumed to be proper.
Proposition 3.1. The subset of elements [u, JS , J, x] of RMd

L for which
u(S) has only transversal double points as singularities, outside x∪L, and
a unique point of contact of order two with L, is a dense open subset of
RMd

L. The four followings are substrata of codimension one of RMd
L.

1) Curves having only transversal double points as singularities, outside
x ∪ L, and a unique point of contact with L which is of order three.
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2) Curves having a unique real ordinary cusp and transversal double
points as singularities, outside x ∪ L, and a unique point of contact
with L which is of order two.

3) Curves having a unique real ordinary cusp on L and transversal dou-
ble points outside x∪L as singularities. These curves are not tangent
to L and the tangent line of the curve at the cusp is distinct from the
one of L.

4) Curves having a real ordinary triple point or real ordinary tacnode or
a transversal double point on x ∪ L or two points of contact with L.

The set of curves not listed above belongs to a countable union of strata
of codimension greater than one of RMd

L.

Proof. The proof is the same as the one of Proposition 2.7 of [W2]. It is
left to the reader. �

Let γ : t ∈ [0, 1] 
→ (J t, xt) ∈ RJω × RτX
c1(X)d−2 be a generic path

transversal to πR. Denote by RMγ = RMd
L ×γ [0, 1], RMγ its Gromov

compactification and πγ : RMγ → [0, 1] the associated projection.

Proposition 3.2. As soon as γ is generic enough, the elements of
RMγ \ RMγ are either irreducible curves [ut, J t

S , J
t, xt] such that xt ∩ L

is non-empty, or reducible curves Ct having two irreducible components
Ct

1, C
t
2, both real, and only transversal double points as singularities, out-

side x. Moreover, we have the following alternative:

1) Either Ct has a unique point of contact with L which is of order two
and outside its singular points.

2) Or Ct has a unique double point on L which is an intersection point
of RCt

1 and RCt
2. In this case, it is not tangent to L.

Finally, if we denote by mi = #(xt ∩ Ct
i ) and di = [Ct

i ] ∈ H2(X; Z),
i ∈ {1, 2}, so that m1 +m2 = c1(X)d− 2, then either m1 = c1(X)d1 − 1 or
m1 = c1(X)d1 − 2.

Proof. The proof is the same as the ones of Proposition 2.9, Corollary 2.10
and Proposition 2.11 of [W2], as well as Corollary 1.12 of [W3]. It is not
reproduced here. �

Remark 3.3. Remember that to cover the case r = (0, . . . , 0), one should
take into account real reducible curves made of two complex conjugated
components, see Remark 1.9 of [W3]. It would then be possible to extend
Theorem 1.1 to this case provided an analog of Theorem 3.2 of [W3] is
proved, see Remark 3.5 of [W3].



1170 J.-Y. WELSCHINGER GAFA

From now on, we fix a choice of γ generic enough so that RMγ consists
of curves listed in Propositions 3.1 and 3.2.

3.2 Neighbourhood of curves having an order three point of con-
tact with L.

Proposition 3.4. Let C = [u, JS , J, x] ∈ RMγ be a curve having an
order three point of contact with L and t0 = πγ(C). Then, there exist η > 0
and a neighbourhood W of C in RMγ such that for every t ∈ ]t0 − η, t0 [,
π−1

γ (t)∩W consists of two curves C+
t , C−

t having same mass and for which

〈C+
t , B〉 = −〈C−

t , B〉 and for every t ∈ ]t0, t0 + η[ , π−1
γ (t) ∩W = ∅, or vice

versa.

C+
t C−

t

L

L L

C
t = t0

t < t0
Proof. From Theorem 2.7, C is a non-degenerated critical point of πγ . Since
RMγ is of dimension one, this implies that there exist η > 0 and a neigh-
bourhood W of C in RMγ such that for every t ∈ ]t0 − η, t0[ , π−1

γ (t) ∩W
consists of two curves and for every t ∈ ]t0, t0 + η[ , π−1

γ (t) ∩W = ∅, or
vice versa. The only thing to prove is that in the first case, the two
curves C+

t , C
−
t have the same mass and satisfy 〈C+

t , B〉 = −〈C−
t , B〉. The

former is obvious. Choose a parameterization λ ∈ ] − √
η,
√
η [ 
→ Cλ =

[uλ, Jλ
S , J

λ, xλ] ∈ RMγ such that πγ(Cλ) = t0 − λ2. Fix a local chart
0 ∈ ] − 1, 1[ of ξ ∈ RS and 0 ∈ R

2 of u0(ξ) ∈ RX. We can assume that
in this second chart, L is identified with the first coordinate axis and B
with the upper half plane of R

2. The one parameter family (uλ)λ∈ ]−√
η,
√

η [

reads as a map f : (λ, z) ∈ ] − √
η,
√
η [× ] − 1, 1[ 
→ f(λ, z) ∈ R

2. Denote
by f1(λ, z) and f2(λ, z) the two coordinates of f(λ, z). These maps of class
C l−k, satisfy f1(0, z) = z + o(|z|), f2(0, z) = z3 + o(|z|3), f2(λ, 0) = 0 and
∂
∂zf2(λ, z)|z=0 = 0. Moreover, ∂

∂λCλ|λ=0 generates the kernel of dπγ |Cλ
.

It thus follows from Proposition 2.5 that ∂
∂λf(λ, z)|λ=0 = ∂

∂zf(λ, z)|λ=0 =
(1 + o(1), 3z2 + o(|z|2)). We deduce that the order three jet of f2 writes
f2(λ, z) = z2(z + aλ) + o(||(λ, z)||3), for some a ∈ R

∗. Hence, when λ > 0
(resp. λ < 0), the sign of f2(λ, z) in a neighbourhood of z = 0 is the one of a
(resp. its opposite). In particular, as soon as λ �= 0, 〈Cλ, B〉 = −〈C−λ, B〉. �
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3.3 Neighbourhood of curves having a cuspidal point.

Proposition 3.5. Let C = [u, JS , J, x] ∈ RMγ be a curve having a
real ordinary cusp outside L and t1 = πγ(C). Then, there exist η > 0
and a neighbourhood W of C in RMγ such that for every t ∈ ]t1 − η, t1[ ,
π−1

γ (t) ∩W consists of two curves C+
t , C

−
t such that m(C+

t ) = m(C−
t ) + 1

and 〈C+
t , B〉 = 〈C−

t , B〉 and for every t ∈ ]t1, t1 + η[ , π−1
γ (t) ∩W = ∅, or

vice versa.

Proof. From Theorem 2.7, C is a non-degenerated critical point of πγ .
Since RMγ is of dimension one, this implies that there exist η > 0 and a
neighbourhood W of C in RMγ such that for every t ∈ ]t1−η, t1[ , π−1

γ (t)∩
W consists of two curves and for every t ∈ ]t1, t1 + η[ , π−1

γ (t) ∩W = ∅, or
vice versa. The only thing to prove is that m(C+

t ) = m(C−
t )+1. The proof

of this is readily the same as the one of Proposition 2.16 of [W2]. It is not
reproduced here. �

Proposition 3.6. Let C = [u, JS , J, x] ∈ RMγ be a curve having a
real ordinary cusp on L and t2 = πγ(C). Then, there exist η > 0 and a
neighbourhood W of C in RMγ such that for every t ∈ ]t2−η, t2 +η[ \{t2},
π−1

γ (t) ∩W is reduced to one element {Ct}. Moreover, 〈Ct, B〉 does not
depend on t ∈ ]t2 − η, t2 + η[ \{t2}. Likewise, C extends to a one parameter
family Ccusp

t of cuspidal real rational J t-holomorphic curves which pass
through xt and realize d. Assume that for t ∈ ]t2−η, t2[ (resp. t ∈ ]t2, t2+η[ ),
RCcusp

t does not intersect locally L (resp. intersects L locally in two points)
near the cusp of C. Then for t ∈ ]t2 − η, t2[ , m(Ct) = m(C) and for
t ∈ ]t2, t2 + η[ , m(Ct) = m(C) + 1.

Note that after changing the parameterization t 
→ 2t2 − t if necessary,
we can always assume that for t ∈ ]t2 − η, t2[ (resp. t ∈ ]t2, t2 + η[ ), RCcusp

t

does not intersect locally L (resp. intersects locally L in two points) near
the cusp of C.

LL L

t > t2t = t2t < t2

Ccusp
t

C

Ct

Ct

Ccusp
t

Proof. Remember that the choice of γ implies that the tangent line of C at
the cusp is distinct from the one of L. Without loss of generality, we can
assume that J , x are constant and that L (and the metric g) moves along
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a one parameter family Lt which crosses the cuspidal point of C. This
indeed can be realized equivalently by fixing L and having J , x moving
along one parameter families φ∗tJ , φt(x) where φt is some Z/2Z-equivariant
hamiltonian flow of X. The family of curves Ccusp

t is then nothing but the
constant family C. Moreover, from Proposition 2.16 of [W2], the curve
C extends to a one parameter family Cλ, λ ∈ ] − ε, ε[ , of real rational J-
holomorphic curves which pass through x and realize d. These curves Cλ

have an isolated real double point near the cusp of C when λ < 0 and a non-
isolated one when λ > 0. Moreover, the latter form a one parameter family
of loops which fill some disk of RX centered at the cusp of C (compare [W3,
Lem. 3.3]). This follows from the fact that the intersection points between
two curves in this family are located near their double points and at x.
Since for t ∈ ]t2 − η, t2[ , Lt is locally disjoint from C, there does exist some
curve Cλ, λ > 0, in this family which is tangent to Lt, as soon as η is small
enough. It has the same mass as C. From Corollary 2.6, C is a regular
point of πγ . The first part of the proposition is thus proved. Now for each
λ < 0 close enough to 0, there should exist some t ∈ ]t2 − η, t2 + η[ such
that Lt is tangent to Cλ. From what precedes, t has to be greater than t2
and the proposition is proved, since m(Cλ) = m(C) + 1 when λ < 0. �

3.4 Neighbourhood of reducible curves. Let C ∈ RMγ be a re-
ducible curve and C1, C2 be its irreducible components. For i ∈ {1, 2},
denote by di = [Ci] ∈ H2(X; Z), xi = x ∩ Ci and mi = #xi. From Propo-
sition 3.2, m1 ∈ {c1(X)d1 − 2, c1(X)d1 − 1}. Denote by t3 = πγ(C) and
assume that RC1∩RC2∩L = {y} and that m1 = c1(X)d1−1. Then, there
exists η > 0 such that the curves C deforms to a one parameter family of
real reducible J t-holomorphic curves Ct

red, t ∈ ]t3 − η, t3 + η[ , which pass
through xt, where (J t, xt) = γ(t). The nodal point y then deforms to a one
parameter family of real non-isolated double point yt of RCt

red. Without
loss of generality, we can assume that yt /∈ B if t ∈ ]t3 − η, t3[ and yt ∈ B
if t ∈ ]t3, t3 + η[ .

Proposition 3.7. Let Ct3 = Ct3
1 ∪ Ct3

2 ∈ RMγ be a real reducible
curve and t3 = πγ(Ct3). Assume that RCt3

1 ∩ RCt3
2 ∩ L = {yt3} and that

m1 = c1(X)d1 − 1 with the above notation. Denote by Ct
red (resp. yt),

t ∈ ]t3 − η, t3 + η[ , the associated one parameter family of real reducible
J t-holomorphic curves (resp. of real double point of Ct

red). Assume that
yt /∈ B if t ∈ ]t3 − η, t3[ and yt ∈ B if t ∈ ]t3, t3 + η[ . Then, as soon as η
is small enough, there exists a neighbourhood W of C in RMγ such that
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for every t ∈ ]t3 − η, t3[ (resp. t ∈ ]t3, t3 + η[ ),
∑

C∈(π−1
γ (t)∩W )〈C,B〉 = −1

(resp.
∑

C∈(π−1
γ (t)∩W )〈C,B〉 = +1).

Note that all the curves Ct close to Ct3 are obtained topologically by
smoothing the non-isolated real double point yt3 of Ct3. Thus, they have
the same mass as Ct3 .

LL L

B B B

Ct
red

Ct
red

Ct
red

Ct
Ct

Ct

t < t3 t = t3 t > t3

Proof. Without loss of generality, we can assume that J t, xt are constant
and that L (and the metric g) moves along a one parameter family Lt which
crosses the double point yt3 of Ct3. This indeed can be realized equivalently
by fixing L and having J , x moving along one parameter families φ∗tJ , φt(x)
where φt is some Z/2Z-equivariant hamiltonian flow of X. The family of
curves Ct

red is then nothing but the constant family C. Moreover, from
Proposition 2.14 of [W2], the curve Ct3 extends to a one parameter family
Ct3

λ , λ ∈ ]− ε, ε[ , of real rational J-holomorphic curves which pass through
x and realize d. These curves are obtained topologically by smoothing the
real double point yt3 of Ct3. The intersection points between two different
curves in this family (Ct3

λ )λ∈]−ε,ε[ are located near the double points of Ct3

and at x. Thus, a neighbourhood U of yt3 in RX is foliated by curves
Ct3

λ ∩ U and this foliation looks like the level sets of an index one critical
point of some Morse function f : U → R.

L

C
f > 0

f < 0 f < 0

f > 0

We can assume that L ∩ U belongs to the domain f ≤ 0. Let (t−, t+) ∈
]t3 − η, t3[× ]t3, t3 + η[ , restricting U and ε if necessary, we can assume
that Lt− and Lt+ are transversal to all the level sets f ≤ 0. The number
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of maxima minus the number of minima of f restricted to Lt± is then
equal to one, provided the latter have been chosen generic. Now each
maximum (resp. minimum) of f restricted to Lt− corresponds to a curve
Ct− having contact index 〈Ct− , B〉 = +1 (resp. 〈Ct− , B〉 = −1). Likewise,
each maximum (resp. minimum) of f restricted to Lt+ corresponds to a
curve Ct+ having contact index 〈Ct+ , B〉 = −1 (resp. 〈Ct+ , B〉 = +1),
hence the result. �

Proposition 3.8. Let Ct4 = Ct4
1 ∪ Ct4

2 ∈ RMγ be a reducible curve
and t4 = πγ(Ct4). Assume that RCt4

1 ∩ RCt4
2 ∩ L = {yt4} and that

m1 = c1(X)d1 − 2 with the notation of Proposition 3.7. Then, there ex-
ist η > 0 and a neighbourhood W of Ct4 in RMγ such that for every
t ∈ ]t4 − η, t4 + η[ \{t4},

∑
C∈(π−1

γ (t)∩W )〈C,B〉 = 0.

Note that once more, all the curves in W have the same mass. Note
also that Ct4

1 belongs to a one parameter family Ct4
1 (λ) of J t4-holomorphic

curves which pass through xt4
1 = xt4 ∩Ct4

1 and realize d1, whereas Ct4
2 does

not deform to any J t-holomorphic curve for t �= t4.

Proof. Without loss of generality, we can assume that xt is constant. Let
U be a small neighbourhood of yt4 , it is foliated by the curves Ct4

1 (λ) ∩ U .
Choose a transversal T to this foliation which is disjoint from Ct4

2 ∩ U .
From Proposition 2.14 of [W2], as soon as η is small enough, there is one
and only one J t-holomorphic real rational curve which pass through xt and
realize d through every point of T . This produces a one parameter family
of disjoint J t-holomorphic real rational curves RCt(λ) ∩ U , λ ∈ T .

t < t4 t = t4 t > t4

Ct(λ) Ct(λ)Ct4
1 (λ)

Ct4
2

T T T

Each of these curves RCt(λ) ∩ U has two connected components, which
produce two functions partially defined on L to T . To get the result, it is
enough to observe that the number of maxima minus the number of minima
of these functions are either +1 and −1, or 0 and 0. �

Proposition 3.9. Let Ct5 = Ct5
1 ∪Ct5

2 ∈ RMγ be a real reducible curve
tangent to L and t5 = πγ(Ct5). Let R be the number of real intersection
points between RCt5

1 and RCt5
2 . Then, there exist η > 0 and a neigh-

bourhood W of Ct5 in RMγ such that for every t ∈ ]t5 − η, t5 + η[ \{t5},
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π−1
γ (t)∩W consists of exactly R curves each of them obtained by smoothing

a different real intersection point between RCt5
1 and RCt5

2 .

Proof. The proof is the same as the one of Proposition 2.14 of [W2], it is
not reproduced here. The only argument which slightly differs from the one
in [W2] is to show that for every real intersection point between RCt5

1 and
RCt5

2 , there is at most one J t-holomorphic curve in π−1
γ (t) ∩W obtained

by smoothing this point. Actually, if there were two of them, they would
intersect at xt, at two points near each double point of Ct5 but the one
smoothed and near the tangency point with L. This would produce more
than d2 intersection points, which is impossible. �

3.5 Neighbourhood of the case x ∩ L �= ∅.

Proposition 3.10. Let Ct6 ∈ RMγ be an irreducible curve tangent to
L and t6 = πγ(Ct6). Assume that xt6 ∩ L = {xt6

1 }. Assume that J t is
constant and that only the point xt

1 actually depends on t. Then, there
exist η > 0 and a neighbourhood W of Ct6 in RMγ such that for every
t ∈ ]t6−η, t6 +η[ \{t6}, π−1

γ (t)∩W consists of two curves having same mass
and same contact index with L if xt

1 is locally on the same side of L as Ct6 ,
and π−1

γ (t) ∩W is empty otherwise.

xt
1

∅
t = t6t < t6

xt6
1

t > t6

Proof. The moduli space of real rational J t6 -holomorphic curves which pass
through xt6 \ {xt6

1 } and realize d is one dimensional, and Ct6 is a regular
point in this space. Thus, all the elements in this moduli space close to Ct6

are located on the same side of L as Ct6 itself. If xt
1 is not on this side,

we deduce that π−1
γ (t) ∩W = ∅ as soon as W is small enough. Denote by

Ct6(λ) the curves in this moduli space and let U be a small neighbourhood
of xt6

1 in RX. Then, the curves (RCt6(λ) ∩ U) \ L have two connected
components, which produce two different foliations of one side of L in U \L
if U is small enough. Thus, if xt

1 is on this side, then #(π−1
γ (t) ∩W ) = 2.

In this case, the two curves in π−1
γ (t) ∩W have obviously same mass and

same contact index with L. �

3.6 Proofs of Theorems 1.1 and 1.3.

3.6.1 Proof of Theorem 1.1. Let (J0, x0) and (J1, x1) be two
generic elements of RJω×RτX

c1(X)d−2 so that the integers Γd,B
r (J0, x0) and
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Γd,B
r (J1, x1) are well defined. Let γ : t∈[0, 1]
→(J t, xt)∈RJω×RτX

c1(X)d−2

be a generic path chosen in §3.1 joining (J0, x0) to (J1, x1). Then, from
genericity arguments of §3.1, we know that the integer Γd,B

r (J t, xt) is well
defined for every t ∈ [0, 1] but a finite number of parameters 0 < t0 < t1 <
· · · < tk < 1 corresponding to the following phenomena.

Concerning the first term in the definition of Γd,B
r (J t, xt):

1) appearance of a unique real ordinary triple point or a unique real
ordinary tacnode on an irreducible curve tangent to L;

2) appearance of a transversal double point of an irreducible curve tan-
gent to L on xt ∪ L;

3) appearance of a real ordinary cusp of an irreducible curve on L;
4) appearance of a an irreducible curve tangent to L which is a critical

point of πγ given by Theorem 2.7;
5) a sequence of curves of RMγ degenerates on a reducible curve given

by Propositions 3.7, 3.8 or 3.9;
6) One has xt ∩ L �= ∅.
Concerning the last three terms in the definition of Γd,B

r (J t, xt):

a) One of those considered in [W3].
b) A cuspidal curve has its cusp on L but with a tangent line distinct

from the one of L.
c) A reducible curve has one of the intersection points between its irre-

ducible components on L but is not tangent to L.
d) One has xt ∩ L �= ∅.
We have to prove that the integer Γd,B

r (J t, xt) does not change while
crossing one of these parameters 0 < t0 < t1 < · · · < tk < 1. In the cases
1, 2, a, this is proven in the same way as in [W2,3]. In the cases 3, b, it
follows from Proposition 3.6. Note that here the first term in the defini-
tion of Γd,B

r (J t, xt) is not invariant. The term on cuspidal curves allows
us to compensate for this lack of invariance. In the case 4, it follows from
Propositions 3.4, 3.5. In the cases 5, c, it follows from Propositions 3.7,
3.8 and 3.9. Note that here once more, in the case c, the first term in the
definition of Γd,B

r (J t, xt) is not invariant. The term on reducible curves
allows to compensate for this lack of invariance. In the cases 6, d, it follows
from Proposition 3.10. Here the first term in the definition of Γd,B

r (J t, xt) is
not invariant, this lack of invariance is compensated thanks to the term on
T and(J, x). Indeed, using the notation of Proposition 3.10, we can assume
that for t = t6, the tangent line T1 and T

x
t6
1
L coincide. There is then a one
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to one correspondence between the curves tangent to L at xt6
1 and the ele-

ments of T and(J, xt6) having T1 as a tangent line. During the deformation
t ∈ ]t6−η, t6+η[ , the latter deform continuously. Now if xt

1 is locally on the
same side of L as Ct6 , the two curves given by Proposition 3.10 are counted
with respect to the sign −(−1)m(C)〈xt

1, B〉 while the corresponding curve
in T and(J, xt) is counted with respect to the sign (−1)m(C)〈xt

1, B〉. The
total contribution of these curves to Γd,B

r (J t, xt) is thus −(−1)m(C)〈xt
1, B〉

in this case while it is just (−1)m(C)〈xt
1, B〉 when xt

1 is locally on the oppo-
site side of L as Ct6 . Since the sign 〈xt

1, B〉 changes as xt
1 crosses L, these

contributions are the same and Γd,B
r (J t, xt) is invariant. �

3.6.2 Proof of Theorem 1.3. Denote by B(y, ε) a disk of RX
centered at y ∈ X and having radius ε > 0. Fix a generic (J, x) ∈
RJω × RτX

c1(X)d−2. When ε converges to zero, B(y, ε) → y and the
three last terms in the definition of Γd,B

r (J, x) converge to −Γd
r(J, x) since

all the curves do not move and all the special points are outside B(y, ε).
At the same time, the first term converges to a sum over real rational
J-holomorphic curves which pass through x ∪ {y} and realize d. Each
of these curves are irreducible and immersed and deforms in exactly two
curves tangent to ∂B(y, ε) for ε� 1. Moreover, the latter are tangent from
the outside of B(y, ε) and we deduce the relation Γd,B

r = 2χd
r − Γd

r .
Likewise, when X = CP 2 and ε converges to +∞, the three last terms

in the definition of Γd,B
r (J, x) converge to Γd

r(J, x) since all the curves do not
move, and this time all the special points are inside B(y, ε). At the same
time, the first term converges to a sum over real rational J-holomorphic
curves which pass through x, realize d and are tangent to the line at infinity.
Each of these curves is irreducible and immersed and deforms in exactly
two curves tangent to ∂B(y, ε) for ε� 1. Moreover, one of these two curves
is tangent from the outside of B(y, ε) and one from the inside, so that we
get the relation Γd,B

r = Γd
r .

Finally, when X = CP 1 × CP 1 and ε converges to +∞, the boundary
of B(y, ε) accumulates on the union of a section B∞ and a fibre F∞ of
RP 1 × RP 1. Then, the three last terms in the definition of Γd,B

r (J, x)
converge to Γd

r(J, x) as before. At the same time, the first term converges
to a sum over real rational J-holomorphic curves which pass through x,
realize d and are either tangent to B∞ ∪ F∞, or pass through B∞ ∩ F∞.
Each of the curves tangent to B∞ ∪ F∞ are irreducible and immersed and
deforms in exactly two curves tangent to ∂B(y, ε) for ε � 1, one from the
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outside, the other one from the inside. Likewise, each of the curves passing
through B∞ ∩ F∞ is irreducible and immersed and deforms in exactly two
curves tangent to ∂B(y, ε) for ε� 1, both from the outside. We hence get
the relation Γd,B

r = 2χd
r + Γd

r . �

4 On Real Conics Tangent to Five Generic Real Plane
Conics

4.1 Proofs of Theorem 1.5 and Proposition 1.6.
Proof of Theorem 1.5. The proof is similar to the one of Theorem 1.1. We
construct the universal moduli space RCL of real pseudo-holomorphic con-
ics tangent to L1, . . . , L5. It is a separable Banach manifold of class C l−k

equipped with a Fredholm projection πR : RCL → RJω having vanishing
index. Let J0 and J1 be two generic elements of RJω so that ΓB(J0) and
ΓB(J1) are well defined, and γ : t ∈ [0, 1] 
→ J t ∈ RJω be a generic path
joining J0 to J1. Denote by RCγ = RCL ×γ [0, 1], RCγ its Gromov com-
pactification and πγ : RCγ → [0, 1] the associated projection. Genericity
arguments similar to the ones of §3.1 show that the elements of RCγ are
smooth real conics having a unique point of contact of order two with
each Li, i ∈ {1, . . . , 5}, but a finite number of them which may be

1) smooth real conics which are bitangent to L1 ∪ · · · ∪ L5, every point
of contact being of order at most two;

2) smooth real conics which have a point of contact of order three with
one curve Li, i ∈ {1, . . . , 5}, the other ones being non-degenerated;

3) reducible conics made of two real lines, one of them being tangent to
three curves Li, i ∈ {1, . . . , 5}, and the other one to the two remaining
ones. These points of contact are non-degenerated and outside the
singular point of the conic.

4) reducible conics of Conred tangent to four curves Li1 , . . . , Li4 and
whose singularity lie on the fifth curve Li5 .

Likewise, the universal moduli space RCred
L of real reducible pseudo-

holomorphic conics tangent to four curves Li1 , . . . , Li4 out of the five
L1, . . . , L5 is a separable Banach manifold of class C l−k. Denote by RCred

γ =
RCred

L ×γ [0, 1]. It is a one-dimensional compact manifold whose elements
are couples of real lines having four points of contacts with Li1 , . . . , Li4

which are of order two, but a finite number of them which may be
a) tangent to the five curves L1, . . . , L5, with non-degenerated points of

contacts;
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b) tangent to Li1 , . . . , Li4 but with one point of contact of order three;
c) tangent to Li1 , . . . , Li4 with their singular point on Li5 ;
d) tangent to Li1 , . . . , Li4 with their singular point on Li1 ∪ · · · ∪ Li4.
The only thing to check is that the value of ΓB(Jt) does not change while

t crosses one of the special values listed in 1-4 and a-d. In the cases 1, a
and d, it is easy to check. In the cases 2, b, it follows from Proposition 3.4.
In the case 3, the proof is the same as the one of Proposition 3.9. Finally,
in the cases 4, c, the proof is the same as the one of Proposition 3.7. �

Proof of Proposition 1.6. From Theorem 1.5, we can assume that the
five disjoint disks are of radius ε small, and have ε converging to zero so
that they contracts onto five distinct points y1, . . . , y5. The conics tangent
to L1, . . . , L5 degenerate onto conics passing through y1, . . . , y5. From [G],
there is only one such J-holomorphic conic. Reversing this process as in
the proof of Theorem 1.3, each conic passing through yi deforms into two
conics which are tangent to Bi from the outside, for ε small enough. As
soon as ε is small enough, the first term in the definition of ΓB then equals
25 = 32. Likewise, elements of Conred degenerate onto reducible conics
passing through four out of the five points y1, . . . , y5. There are five ways
to choose these four points, three couples of lines passing through these
four points and each of these couples deforms into 24 = 16 reducible conics
tangent to the four associated disksBi from the outside, as soon as ε is small
enough. Since the singular point of these conics is outside B = B1∪· · ·∪B5,
the second term in the definition of ΓB equals −5∗3∗16 = −240. We deduce
that ΓB = 32 + 240 = 272. Likewise, if B1, . . . , B5 are close to five generic
double lines of the plane we can have the curves L1, . . . , L5 degenerate onto
five couples of real lines L1

i ∪ L2
i close to the double lines and intersecting

each other at x1, . . . , x5. Every conic tangent to Li degenerates onto a
conic tangent to L1

i ∪ L2
i or a conic which passes through xi. Now each

conic tangent to L1
i deforms to a conic tangent to L2

i since L1
i and L2

i are
as close to each other as we wish. Hence these conics come by pairs, one
deforming to a conic tangent from the inside of Bi and the other one from
the outside. Hence, the only conics which contributes to the first term of
ΓB correspond to the ones passing through x1, . . . , x5. Their contribution
is 32 as before. In the same way, the second term of ΓB equals −240 as
before, as soon as B1, . . . , B5 are close enough to (L1

1 ∪ L2
1), . . . , (L

1
5 ∪ L2

5).
Hence the result. �

4.2 How does ΓB depend on the isotopy class of B? Let B2, . . . , B5

be four disks of RP 2 transversal to each other and (Bt
1)t∈]−ε,ε[ be a smooth
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one-parameter family of disks which are transversal to B2, . . . , B5 for
t ∈ ] − ε, ε[ \{0} and which have an order two point of contact x with B2

for t = 0. We can assume that for t ∈ ] − ε, 0[ (resp. for t ∈ ]0, ε[ ), the
curves Lt

1 = ∂Bt
1 and L2 = ∂B2 have two intersection points (resp. do not

intersect) in a neighbourhood of x.

Lt
1

L2 L2 L2Lt
1L0

1

t < 0 t = 0 t > 0

Denote by Bt = Bt
1 ∪ B2 ∪ · · · ∪ B5, the integer ΓBt

is well defined for
t ∈ ] − ε, ε[ \{0}. We have to compare the values of ΓBt

for t < 0 and
t > 0. Denote by Con(J, x) the finite set of real conics which are tangent
to L3, L4, L5, pass through x and are tangent at x to L0

1 and L2. Likewise,
denote by Conred(J, x) the finite set of real reducible conics made of the
J-holomorphic line Tx which is tangent to L0

1 and L2 at x and of a real J-
holomorphic line tangent to two curves out of the three curves L3, L4, L5.
Proposition 4.1. Let Bt = Bt

1 ∪B2∪ · · ·∪B5 be a one parameter family
of five disks in RP 2 as above and (t−, t+) ∈ ] − ε, 0[× ]0, ε[ . Then,

ΓBt+ = ΓBt− + 2〈L2, B
0
1〉

( ∑

C∈Con(J,x)

5∏

j=2

〈C,Bj〉
)

− 2〈L2, B
0
1〉

( ∑

C∈Conred(J,x)

5∏

j=2

〈C,Bj〉
)
.

Proof. We can have locally L2 degenerate on a half line. The conics tangent
to L2 degenerate then on conics tangent to the half line and conics passing
through the vertex s of this half line. As in the proof of Theorem 1.3,
the contribution to ΓBt

of conics tangent to the half line vanishes. As
t goes to zero, s converges to x and the conics passing through s and
tangent to Bt

1, B3, B4, B5 converge to conics passing through the vertex s
and tangent to B0

1 , B3, B4, B5. If the order two point of contact of the
latter with B0

1 is outside x, they can be deformed for t ∈ ]− ε, ε[ . If on the
contrary such a conic C belongs to Con(J, x)∪Conred(J, x), it follows from
Proposition 3.10 that it deforms for t ∈ ]− ε, 0] (resp. t ∈ [0, ε[ ) if and only
if 〈C,B0

1〉 = −〈L2, B
0
1〉 (resp. 〈C,B0

1〉 = 〈L2, B
0
1〉), that is, if and only if C

and L2 are locally on opposite sides of B0
1 (resp. on the same side of B0

1).
Hence the result. �
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4.3 Final remarks. 1) The results of §4 take advantage of the fact
that a pseudo-holomorphic conic cannot be cuspidal and may have two
irreducible components at most. To extend the results of §1.2 to pseudo-
holomorphic curves having s > 1 tangency conditions with L would seem to
require the introduction of 4s terms in the definition of Γd,B . These terms
consist of curves having s1 tangency conditions with L, s2 cusps, s3 + 1
irreducible components and s4 tangency conditions with the lines Ti, i ∈ I,
where s1 + · · ·+s4 = s. One should then study the collisions between these
tangency conditions, cusps, etc., which has not been done here.

2) In contrast with the works [W2,3], the moduli space RMd
L does not

appear here as the fixed point set of some Z/2Z-action on some complexified
moduli space Md

L. For such a purpose, we should have complexified L to
some surface LC in X and restricted ourselves to almost complex structures
J for which LC is J-antiholomorphic, as in [LR] and [IP]. The advantage
not to do so here was to get immediately some invariant for any J ∈ RJω

without any restrictions.

3) The condition that L is smooth and bounded by a smooth surface B is
of course too restrictive. We reduced our study to this case for convenience.
For example, one could replace the embedding B → RX with some smooth
map with finitely many ramification points and which maps the boundary L
of B to some immersed curve with transversal double points as singularities.
The index 〈x,B〉 for x ∈ RX should then be defined as twice the number of
preimages of x in B less one. Since every step of the proof of Theorem 1.1
is local, it readily extends to this case. However, when L is any immersed
curve, say for example the figure-eight curve in the projective plane, it is
not clear to me how to extend the results presented here.

4) Likewise, how does Γd,B
r depend on r can be understood exactly

in the same way as in §3 of [W2] by introducing curves passing through
c1(X)d − 3 distinct points but having a double point at one special point
of this configuration, see Theorem 3.2 of [W2]. The proof of Theorem 3.2
of [W2] adapts here without any change.
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