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Abstract. We prove the Hodge–Riemann bilinear relations, the hard
Lefschetz theorem and the Lefschetz decomposition for compact Kähler
manifolds in the mixed situation.

1 Introduction and Statement of the Main Results

Around the year 1979, Khovanskii (see [K1,2,3]) and Teissier (see [T1,2,3])
discovered independently a beautiful intimate relationship between the the-
ory of mixed volumes and algebraic geometry. In order to describe this
connection we recall some facts from the theory of mixed volumes. Let
K1, . . . ,Kr be r n-dimensional convex bodies in R

n and I = (i1, . . . , ir) ∈ N
r

with |I| :=
∑r

s=1 is = n. Then the (Minkowski) mixed volume KI =
[Ki1

1 . . . Kir
r ] is determined by the following identity:

Vol
( r∑

s=1

λsKs

)

=
∑

I=(i1,...,ir): |I|=n

n!
i1! · · · ir!K

Iλi1
1 · · ·λir

r , λ1, . . . , λr ≥ 0 .

The Aleksandrov–Fenchel inequalities state that
(
[Ki1

1 Ki2
2 . . . Kir

r ]
)2 ≥ [Ki1+1

1 Ki2−1
2 Ki3

3 . . . Kir
r ][Ki1−1

1 Ki2+1
2 Ki3

3 . . . Kir
r ] .

Now let X be a complex algebraic manifold of dimension n and D1,...,Dr

very ample divisors on X. Let DI = [Di1
1 . . . Dir

r ] denote the index of
intersection of Di1

1 ∩· · ·∩Dir
r , where Drs

s stands for Ds∩· · ·∩Ds (rs times).
Khovanskii and Teissier found out a profound analog between Aleksandrov–
Fenchel inequalities and the Hodge–Riemann bilinear relations in algebraic
geometry

(
[Di1

1 Di2
2 . . . Dir

r ]
)2 ≥ [Di1+1

1 Di2−1
2 Di3

3 . . . Dir
r ][Di1−1

1 Di2+1
2 Di3

3 . . . Dir
r ] .
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Their proofs use the usual Hodge–Riemann bilinear relations (see Theo-
rem 1.1 below) applied to Kähler forms corresponding to the divisors and
an induction argument. Khovanskii and Teissier also noted that many other
interesting inequalities from convex geometry (for example the Brunn–
Minkowski inequality, Bonnesen-type inequalities, etc.) either could be
deduced from the Hodge–Riemann bilinear relations, or find their analogs
for algebraic varieties that generalize the Hodge–Riemann bilinear rela-
tions. Based on this point of view P. McMullen (see [M]) developed a
deep and important generalization of Aleksandrov–Fenchel inequalities for
simple convex polytopes. On the other hand, Khovanskii and Teissier’s dis-
covery also suggests a generalization of the mixed Hodge–Riemann bilinear
relations in the context of compact Kähler manifolds. That is the main
motivation of our work.

Let X be a compact Kähler manifold of dimension n. Let 0 ≤ p, q ≤ n
and 0 ≤ r ≤ 2n be integers. One denotes by Ep,q(X) (resp. L2

p,q(X))
the space of complex-valued differential forms of bidegree (p, q) on X with
smooth coefficients (resp. with L2-coefficients). For α ∈ L2

p,q(X), ‖α‖L2

denotes its L2-norm, i.e. the sum of L2-norms of its coefficients on charts.
In the sequel Hp,q(X) denote the space of smooth d-closed (p, q)-forms
modulo smooth d-exact (p, q)-forms. Moreover, for any smooth d-closed
form α ∈ Ep,q(X), [α] denotes the class of α in Hp,q(X). We can identify
Hp,q(X) to the subspace of Hp+q(X) spanned by classes of smooth d-closed
(p, q)-forms. The classical Hodge decomposition theorem asserts that

Hr(X) =
⊕

p+q=r

Hp,q(X) and Hp,q(X) = Hq,p(X) .

We refer the reader to [BDIP], [GH], [V], [W] for the basics of Hodge theory
and to [BS], [Gr], [K3], [T2], [Ti] for some of its advanced aspects.

Fix non-negative integers p, q such that p+q ≤ n. Let ω1, . . . , ωn−p−q+1

be Kähler forms. Put Ω := ω1∧ · · · ∧ωn−p−q. Consider the mixed primitive
subspace

P p,q(X) :=
{
[α] ∈ Hp,q(X) : [α] ∧ [Ω] ∧ [ωn−p−q+1] = 0

}
. (1.1)

Let us define the mixed Hodge–Riemann bilinear form on Hp,q(X)⊗Hp,q(X)
as follows

Q
(
[α], [β]

)
:= iq−p(−1)

(p+q)(p+q+1)
2

∫

X
α ∧ β ∧ Ω . (1.2)

Observe that Q( · , · ) is a sesquilinear Hermitian symmetric form.
The classical Hodge–Riemann bilinear relations state that

Theorem 1.1. If ω1 = · · · = ωn−p−q+1, then Q( · , · ) is positive definite
on the primitive space P p,q(X).
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The open question can be formulated as follows:
Does Theorem 1.1 still hold if ω1, . . . , ωn−p−q+1 are arbitrary Kähler

forms?
An attempt towards this generalization is made by Gromov. Namely,

the following theorem is stated in [Gr].

Theorem 1.2 (Gromov’s theorem). If p = q, then Q( · , · ) is positive
semi-definite on P p,q(X), that is, Q([α], [α]) ≥ 0 for α ∈ P p,q(X).

However, Gromov only gave therein a complete proof for the special
case where p = q = 1. On continuation of Gromov’s work and using Alek-
sandrov’s approach, Timorin has proved general mixed Hodge–Riemann
bilinear relations, but only in the linear situation [Ti] (see also [K3], [T2]).
His result may be rephrased as follows (see also Proposition 2.1 below).

Theorem 1.3 (Timorin’s theorem). If X is a complex torus of dimension n,
then Q( · , · ) is positive definite on P p,q(X).

The purpose of this article is to prove the above theorems in the general
context. Now we state the main results.

Theorem A. Let X be a compact Kähler manifold of dimension n and
p, q integers such that 0 ≤ p, q ≤ p + q ≤ n. Then, for arbitrary Kähler
forms ω1, . . . , ωn−p−q+1, the mixed Hodge–Riemann bilinear form Q( · , · )
is positive definite on the mixed primitive subspace P p,q(X).

Note that when ωj are cohomologous to very ample divisors of X,
by Bertini theorem, one can replace [ωj] by divisors Dj which intersects
transversally. Then one deduces from the classical Hodge-Riemann theo-
rem on the submanifold D := D1 ∩ · · · ∩Dn−p−q that Q([α], [α]) ≥ 0 for all
[α] satisfying [α]∧ [ωn−p−q+1] = 0 on Hp+1,q+1(D) (see also [K1,2], [T2] and
[V]). This is the original reason to believe that the mixed Hodge–Riemann
bilinear relations hold in the general situation.

The following results generalize the hard Lefschetz theorem and the
Lefschetz decomposition theorem.

Theorem B. Let X be a compact Kähler manifold of dimension n and p, q
integers such that 0 ≤ p, q ≤ p + q ≤ n. Then, for arbitrary Kähler forms
ω1, . . . , ωn−p−q, the linear map τ : Hp,q(X) → Hn−q,n−p(X) given by

τ([α]) := [Ω] ∧ [α] , [α] ∈ Hp,q(X) ,

where [Ω] := [ω1] ∧ · · · ∧ [ωn−p−q], is an isomorphism.

Theorem C. Let X be a compact Kähler manifold of dimension n and p, q
integers such that 0 ≤ p, q ≤ p + q ≤ n. Then, for arbitrary Kähler forms
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ω1, . . . , ωn−p−q+1, the following canonical decomposition holds:

Hp,q(X) = P p,q(X) ⊕ [ωn−p−q+1] ∧Hp−1,q−1(X) ,

with the convention that Hp−1,q−1(X) := 0 if either p = 0 or q = 0.
We close the introduction with a brief outline of the paper to follow.
Our strategy is to reduce the general case to the linear case. In order to

achieve this reduction we apply the L2-technique to solve a ddc-equation.
Recall here that d = ∂+∂, dc = i

2π (∂−∂) and ddc = i
π∂∂. Section 2 is then

devoted to developing the necessary technique. We begin this section by
collecting some results of Timorin and by establishing some estimates. This
will enable us to construct a solution of the above equation. We will, in the
remaining part of section 2, regularize this solution. Based on the results
of section 2, the proofs of the main theorems are presented in section 3.

The mixed Hodge-Riemann theorem is not true in general if we replace
[Ω] by the class of a smooth strictly positive form as a simple example
in [BS] shows. However, by continuity, it holds for every class [Ω] close
enough to a product of Kähler classes. In section 4 we describe the domain
of validity of this theorem in the case where p = q = 1.

Acknowledgment. We would like to thank the referee for many inter-
esting suggestions and remarks. We are also grateful to Professor Nessim
Sibony for very stimulating discussions. The second author wishes to ex-
press his gratitude to the Max-Planck Institut für Mathematik in Bonn
(Germany) for its hospitality and its support.

2 Preparatory Results

In the first two propositions we place ourselves in the linear context. For
0 ≤ p, q ≤ n, let Λp,q(Cn) denote the space of (p, q)-forms with complex-
constant coefficients. Λp,q(Cn) is equipped with the Euclidean norm ‖ · ‖.
We first recall Timorin’s result [Ti].
Proposition 2.1. Let p, q be integers such that 0 ≤ p, q ≤ p + q ≤ n and
ω1, . . . , ωn−p−q+1 strictly positive forms of Λ1,1(Cn). Define the sesquilinear
Hermitian symmetric form

Q(α, β) := iq−p(−1)
(p+q)(p+q+1)

2 ∗ (
α ∧ β ∧ Ω

)
, α, β ∈ Λp,q(Cn) ,

where ∗ is the Hodge star operator, and Ω := ω1 ∧ · · · ∧ωn−p−q. Define the
mixed primitive subspace

P p,q(Cn) :=
{
α ∈ Λp,q(Cn) : α ∧ Ω ∧ ωn−p−q+1 = 0

}
.

Then
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(a) The operator of multiplication by Ω induces an isomorphism between
Λp,q(Cn) and Λn−q,n−p(Cn).

(b) Q( · , · ) is positive definite on P p,q(Cn).
(c) The space Λp,q(Cn) splits into the Q-orthogonal direct sum

Λp,q(Cn) = P p,q(Cn) ⊕ ωn−p−q+1 ∧ Λp−1,q−1(Cn) ,

with the convention that Λp−1,q−1(Cn) := 0 if either p = 0 or q = 0.

Proof. See Proposition 1, the Main Theorem and Corollary 2 in [Ti]. �

The following estimate will be crucial later on.

Proposition 2.2. There are finite positive constants C1 and C2 such
that

C1 · ‖α ∧ Ω ∧ ωn−p−q+1‖2 + C2 · Q(α,α) ≥ ‖α‖2

for all forms α ∈ Λp,q(Cn).

Proof. By Proposition 2.1(a) applied to the bidegree (p− 1, q − 1), we may
find a positive finite constant C so that

‖γ‖
C ≤ ‖γ ∧ Ω ∧ ω2

n−p−q+1‖ ≤ C · ‖γ‖ , γ ∈ Λp−1,q−1(Cn) . (2.1)

By Proposition 2.1(c) we may write
α = β + ωn−p−q+1 ∧ γ , β ∈ P p,q(Cn) , γ ∈ Λp−1,q−1(Cn) .

Then we have

Q(α,α) = Q(β, β) + Q(ωn−p−q+1 ∧ γ, ωn−p−q+1 ∧ γ) . (2.2)

On the other hand, since β ∈ P p,q(Cn), one gets that

‖α ∧ Ω ∧ ωn−p−q+1‖ = ‖γ ∧ Ω ∧ ω2
n−p−q+1‖ ≥ ‖γ‖

C , (2.3)

where the estimate follows from the left-side estimate in (2.1). Therefore,
we obtain, for C ′ > 0 large enough,

‖α‖2 ≤ C ′(‖β‖2 + ‖γ‖2
) ≤ C ′‖β‖2 + C ′C2‖α ∧ Ω ∧ ωn−p−q+1‖2. (2.4)

On the other hand, by Proposition 2.1(b) we may find a positive finite
constant C ′′ so that

‖β‖2 ≤ C ′′ · Q(β, β) = C ′′ · (Q(α,α) − Q(ωn−p−q+1 ∧ γ, ωn−p−q+1 ∧ γ)
)

≤ C ′′ · Q(α,α) + C ′′C2 · ‖γ‖2

≤ C ′′ · Q(α,α) + C ′′C4 · ‖α ∧ Ω ∧ ωn−p−q+1‖2 ,

where the first identity follows from (2.2), the second estimate from the
right-side estimate in (2.1), and the last one from (2.3). This, combined
with (2.4), implies the desired estimate for C2 := C ′C ′′ and C1 :=
C ′C ′′C4 + C ′C2. �
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Proposition 2.3. We keep the hypothesis and the notation in the state-
ment of Theorem A. Assume that p ≥ 1 and q ≥ 1. Then, for every d-closed
form f ∈ Ep,q(X) such that [f ] ∈ P p,q(X), there is a form u ∈ L2

p−1,q−1(X)
such that

ddc u ∧ Ω ∧ ωn−p−q+1 = f ∧ Ω ∧ ωn−p−q+1 .

Proof. Consider the subspace H of L2
n−p+1,n−q+1(X) defined by

H :=
{

ddc α ∧ Ω ∧ ωn−p−q+1 : α ∈ Eq−1,p−1(X)
}

.

We construct a linear form h on H as follows

h(ddc α ∧ Ω ∧ ωn−p−q+1) := (−1)p+q

∫

X
α ∧ f ∧ Ω ∧ ωn−p−q+1 . (2.5)

We now check that h is a well-defined bounded linear form with respect
to the L2-norm restricted to H. To this end one first shows that there is a
positive finite constant C such that

‖ddc α‖L2 ≤ C · ‖ddc α ∧ Ω ∧ ωn−p−q+1‖L2 . (2.6)
To prove (2.6) we first use a compactness argument to find finite disjoint
open sets (Uj)Nj=1 of X so that Uj is contained in a local chart, and that
∂Uj is piecewisely smooth, and that X =

⋃N
j=1 Uj. One next invokes the

estimate in Proposition 2.2 for every point in each Uj, j = 1, . . . , N . Then
one integrates this estimate over X (one can choose the same constants
C1, C2 for all points). We extend the bilinear form Q( · , · ) given by formula
(1.2) in a canonical way to Ep,q(X) ⊗ Ep,q(X):

Q(α, β) := iq−p(−1)
(p+q)(p+q+1)

2

∫

X
α ∧ β ∧ Ω , α, β ∈ Ep,q(X) .

Consequently, for suitable positive finite constants C and C
′
,

‖ddc α‖2
L2 ≤ C · ‖ddc α ∧ Ω ∧ ωn−p−q+1‖2

L2 + C
′ · Q(ddc α,ddc α) . (2.7)

On the other hand, applying Stokes’ theorem yields that

Q(ddc α,ddc α) = iq−p(−1)
(p+q)(p+q+1)

2

∫

X
ddc α ∧ ddc α ∧ Ω = 0 .

This, combined with (2.7), implies (2.6).
By hypothesis the smooth form f ∧ Ω ∧ ωn−p−q+1 is d-exact. Conse-

quently, it follows from [BDIP, p. 41] that there is a form g ∈ En−q,n−p(X)
such that

ddc g = f ∧ Ω ∧ ωn−p−q+1 .

Applying Stokes’ theorem, we obtain that∣
∣
∣
∣

∫

X
α ∧ f ∧ Ω ∧ ωn−p−q+1

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

X
α ∧ ddc g

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

X
ddc α ∧ g

∣
∣
∣
∣

≤ ‖g‖L2 · ‖ddc α‖L2
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≤ C‖g‖L2 · ‖ddc α ∧ Ω ∧ ωn−p−q+1‖L2 ,

where the latter estimate follows from (2.6). In particular, we have
∫

X
α ∧ f ∧ Ω ∧ ωn−p−q+1 = 0 when ddc α ∧ Ω ∧ ωn−p−q+1 = 0 .

In summary, we have just shown that h given by (2.5) is a well-defined
bounded linear form with respect to the L2-norm restricted to H, and its
norm is dominated by C‖g‖L2 . Applying the Hahn–Banach theorem, we
may extend h to a bounded linear form on L2

n−p+1,n−q+1(X). Let u be a
form in L2

p−1,q−1(X) that represents h. Then, by virtue of (2.5), we have
that ∫

X
u ∧ ddc α ∧ Ω ∧ ωn−p−q+1 = (−1)p+q

∫

X
α ∧ f ∧ Ω ∧ ωn−p−q+1

for all test forms α ∈ Eq−1,p−1(X). This is the desired identity of the
proposition. �

We need to regularize the solution u given by the previous proposition.
This is the purpose of the following result.

Proposition 2.4. We keep the hypothesis and the conclusion in the
statement of Proposition 2.3. Then, there is a form v ∈ Ep−1,q−1(X) such
that ddc v = ddc u.

Proof. First we like to equip the vector bundle Ep,q(X) with a special
Hermitian metric. To this end suppose without loss of generality that
p ≤ q. For any α ∈ Ep,q(X), we apply Proposition 2.1(c) repeatedly in
order to obtain the following unique decomposition

α =
p∑

j=0

αj ∧ ωp−j
n−p−q+1 , (2.8)

where αj ∈ Ej,q−p+j(X) such that αj ∧ Ω ∧ ω2p−2j+1
n−p−q+1 = 0 (see also (1.1)).

Now we can define a new form α̃ ∈ Ep,q(X) as follows:

α̃ :=
p∑

j=0

(−1)p−jαj ∧ ωp−j
n−p−q+1 . (2.9)

Define an inner product 〈 · , · 〉 on Ep,q(X) by setting
〈α, β〉 := Q(α, β̃) , α, β ∈ Ep,q(X) , (2.10)

where Q( · , · ) is given by the same integral as in (1.2). Using Proposi-
tion 2.1(c), one may rewrite (2.10) as follows:

〈α, β〉 =
p∑

j=0

(−1)p−jQ(ωp−j
n−p−q+1 ∧ αj, ω

p−j
n−p−q+1 ∧ βj) ,
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where the βj ’s are determined by β by virtue of (2.8). Applying Proposi-
tion 2.1(b) for bidegrees (j, q−p+ j), and using (1.2) and (2.8)–(2.10), one
can check that 〈 · , · 〉 defines a Hermitian metric on Ep,q(X). Moreover, if we
consider the norm ‖α‖ :=

√〈α,α〉, then there is a positive finite constant
C such that

1
C

·
( p∑

j=0

‖αj‖L2

)

≤ ‖α‖ ≤ C ·
p∑

j=0

‖αj‖L2 .

Consider the following form of bidegree (p, q)

h := ddc u − f . (2.11)

Then by virtue of Proposition 2.3 and of the hypothesis, h belongs to
the Sobolev space W−2(Ep,q(X)). (For the Sobolev spaces on compact
manifolds, see Chapter IV in [W].) In addition, the following identities
hold

∂h = 0 , ∂h = 0 and h ∧ Ω ∧ ωn−p−q+1 = 0 . (2.12)

For any form α ∈ Ep,q−1(X), we have that

〈∂α, h〉 = Q(∂α, h) = iq−p(−1)p+q−1+
(p+q)(p+q+1)

2

∫

X
α ∧ ∂h ∧ Ω = 0 ,

where the first identity follows from (2.8)–(2.10) and from the third iden-
tity in (2.12), the second one from (1.2) and from an application of Stokes’
theorem, and the last one from the second identity in (2.12). Let ∂

∗ be
the adjoint of ∂ with respect to the inner product given in (2.10). Then
we have shown that ∂

∗
h = 0. On the other hand, ∂h = 0 by (2.12) and

h ∈ W−2(Ep,q(X)). Therefore, h is a harmonic current with respect to
the Laplacian operator ∂∂

∗ + ∂
∗
∂ (see section 5 in [W, Chap. IV]). Con-

sequently, by elliptic regularity (see Theorem 4.9 in [W, Chap. IV]) h is
smooth. Hence, ddc u is smooth by (2.11). By the classical Hodge theory
[BDIP, p. 41] there is a v ∈ Ep−1,q−1(X) such that ddc v = ddc u. Hence,
the proof is finished. �

3 Proof of the Main Results

Now we arrive at

Proof of Theorem A. Let f be a d-closed form in Ep,q(X) such that [f ] ∈
P p,q(X). We like to prove that Q([f ], [f ]) ≥ 0. Let v be the smooth
(p − 1, q − 1)-form given by Proposition 2.4. Then we have

(f − ddc v) ∧ Ω ∧ ωn−p−q+1 = 0 . (3.1)
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When either p = 0 or q = 0 we replace ddc v by 0. By virtue of the
identity (3.1), we are able to apply Proposition 2.1(b) to every point of X.
Consequently, after an integration on X, we obtain that

iq−p(−1)
(p+q)(p+q+1)

2

∫

X
(f − ddc v) ∧ (f − ddc v) ∧ Ω ≥ 0 . (3.2)

Applying Stokes’ theorem to the left-hand side of the last line yields that∫

X
f ∧ f ∧ Ω =

∫

X
(f − ddc v) ∧ (f − ddc v) ∧ Ω .

This, combined with (3.2), implies that Q([f ], [f ]) ≥ 0. The equality hap-
pens if and only if f = ddc v, in other words, [f ] = 0. Hence, the proof of
the theorem is complete. �

Proof of Theorem B. Let ωn−p−q+1 be an arbitrary Kähler form. Since
dimHp,q(X) = dimHn−q,n−p(X), it is sufficient to show that τ is injective.
To this end let α be a d-closed form in Ep,q(X) such that

τ([α]) = [α] ∧ [Ω] = 0 in Hn−q,n−p(X) .

Then we have that [α] ∈ P p,q(X) and Q([α], [α]) = 0. Applying Theorem A
yields that [α] = 0. Hence, τ is injective. �

Proof of Theorem C. Let φ : Hn−q,n−p(X) → Hn−q+1,n−p+1(X) be given
by

φ([α]) := [ωn−p−q+1] ∧ [α] , [α] ∈ Hn−q,n−p(X) .

Theorem B implies that dim P p,q(X) = dim Kerφ. On the other hand, by
the classical Hodge theory (see [BDIP], [GH], [V], [W]) we know that φ is
surjective. Hence,

dimKer φ = dimHn−q,n−p(X) − dimHn−q+1,n−p+1(X)

= dimHp,q(X) − dimHp−1,q−1(X) .

Consequently,
dim P p,q(X) + dimHp−1,q−1(X) = dimHp,q(X) . (3.3)

On the other hand, it follows from Theorem B that the multiplications
by [ωn−p−q+1] and by [Ω] ∧ [ωn−p−q+1]2 are injective on Hp−1,q−1(X). We
deduce that

P p,q(X) ∩ [ωn−p−q+1] ∧Hp−1,q−1(X) = {0} . (3.4)
Hence, the desired decomposition follows from (3.3) and (3.4). �

4 Another Version of the Hodge–Riemann Theorem

In this section we describe the domain of validity of the mixed Hodge-
Riemann theorem in the case where p = q = 1. This problem is motivated
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by the dynamical study of holomorphic automorphisms on compact Kähler
manifolds. An application of the mixed Hodge-Riemann theorem was given
in the joint work of the first author and Nessim Sibony [DiS1] (see also
[DiS2]). In order to present the results we need to introduce some notation.

Let X be as usual a compact Kähler manifold of dimension n. Define
Hp,p(X, R) := Hp,p(X) ∩H2p(X, R) .

Let Kp be the cone of all classes of smooth strictly positive (p, p)-forms in
Hp,p(X, R). This cone is open and satisfies −Kp ∩ Kp = {0}, where Kp is
the closure of Kp. Each class in Kp can be represented by a positive closed
(p, p)-current. The cone K1 is the Kähler cone of X. Here, positivity of
forms and currents of higher bidegree can be understood in the weak or
strong sense. We refer to [D] for the basics on the theory of positive closed
currents.

Fix a Kähler form ω. Define P p,q(X) and Q( · , · ) as in (1.1) and (1.2)
but for an arbitrary non-zero class [Ω] in Kn−p−q and for ωn−p−q+1 := ω.
The class [Ω]∧ [ω] does not vanish since it can be represented by a non-zero
positive closed current. Let KHR

n−p−q be the cone of all classes [Ω] ∈ Kn−p−q

which satisfy the mixed Hodge-Riemann Theorem (Theorem A), that is,
Q( · , · ) is positive definite on Pp,q(X).

From now on we consider the case where p = q = 1. The Poincaré
duality implies that P1,1(X) is a hyperplane of H1,1(X) which depends
continuously on [Ω]. It follows by continuity that KHR

n−2 is an open cone in
Hn−2,n−2(X, R). Theorem A implies that one of the connected components
of KHR

n−2 contains all the products of (n − 2) Kähler classes. Observe that
P1,1(X) does not intersect K1 since [Ω] is the class of a positive closed
current.

Let Ln−2 be the set of all classes [Ω] in Hn−2,n−2(X, R) such that the
wedge product map [α] → [α]∧[Ω] does not induce an isomorphism between
H1,1(X) and Hn−1,n−1(X). Observe that Ln−2 is an algebraic cone defined
by a homogeneous polynomial of degree dimC H1,1(X).

Proposition 4.1. The cone KHR
n−2 is a union of connected components

of Kn−2 \ Ln−2. In particular, it does not depend on the Kähler form ω.

Moreover, if [Ω] is a class in KHR
n−2 then Q( · , · ) is positive semi-definite on

P1,1(X) and for c ∈ P1,1(X) we have Q(c, c) = 0 if and only if c ∧ [Ω] = 0.

Proof. It is clear that Ln−2 ∩ KHR
n−2 = ∅. Let [Ω] be a class in Kn−2 which

belongs to the boundary of KHR
n−2. We have to show that [Ω] ∈ Ln−2. By

continuity, Q( · , · ) is positive semi-definite on P1,1(X). Since [Ω] �∈ KHR
n−2,
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there exists c ∈ P1,1(X), c �= 0, such that Q(c, c) = 0. The Cauchy–Schwarz
inequality implies that Q(c, c′) = 0 for every c′ in the hyperplane P1,1(X).
We have seen that [ω] does not belong to P1,1(X). On the other hand,
Q(c, [ω]) = 0 because c ∈ P1,1(X). Consequently, Q(c, ·) = 0. Therefore,
the Poincaré duality implies that c∧ [Ω] = 0. Hence, [Ω] ∈ Ln−2. The first
part of the proposition is proved. We obtain the second part in the same
way. �

Remarks 4.2. (a) Observe that Q( · , · ) is positive definite on H2,0(X) ⊕
H0,2(X) for Ω ∈ Kn−2 (here, we need the strong positivity in the defini-
tion of Kn−2). Then if [Ω] ∈ KHR

n−2, the multiplication by [Ω] induces an
isomorphism between H2(X) and H2n−2(X).

(b) Let K̃n−2 be the cone of the classes in Hn−2,n−2(X, R) of all positive
closed currents of bidegree (n − 2, n − 2). This cone is convex and closed.
Moreover, it contains Kn−2 and satisfies −K̃n−2 ∩ K̃n−2 = {0}. Let K̃HR

n−2

denote the cone of all classes in K̃n−2 which satisfy the mixed Hodge–
Riemann theorem. Then Proposition 4.1 holds for K̃HR

n−2. More precisely,
K̃HR

n−2 is a union of connected components of K̃n−2 \ Ln−2.

The following type of results might be useful in the dynamical study of
holomorphic automorphisms (see [DiS1,2])

Corollary 4.3. Let c1, . . . , cn−2 be classes of K1 and let cn−1 be a
Kähler class. Then a class c in H1,1(X) satisfies c∧ c1 ∧ · · · ∧ cn−1 = 0 and
c ∧ c ∧ c1 ∧ · · · ∧ cn−2 = 0 if and only if c ∧ c1 ∧ · · · ∧ cn−2 = 0.

Proof. Since each ci can be approximated by Kähler forms, Theorem A
implies that [Ω] := c1∧· · ·∧cn−2 belongs to KHR

n−2. Therefore, it is sufficient
to apply Proposition 4.1. �
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