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1 Introduction

In this paper we investigate an analogue for curves of the famous Kakeya
conjecture about straight lines. The simplest version of the latter asks
whether a set in R

n that includes a unit line segment in every direction
must necessarily have dimension n. The analogue we have in mind replaces
the line segments by curved arcs from a specified family. (This is a quite
different problem from that considered by Minicozzi and Sogge [MS] who
looked at geodesics in curved space.) The families of curves we are in-
terested in arise from Hörmander’s conjecture in harmonic analysis, which
deals with oscillatory integral operators of the form

TNf(x) :=
∫

R
n−1

eiNϕ(x,y)a(x, y)f(y) dy . (1)

Here x ∈ R
n, y ∈ R

n−1, a is some smooth cut-off, and the phase function
ϕ is assumed to be smooth on the support of a and to have the following
properties:

The matrix ∂2ϕ
∂x∂y (x, y) has full rank n− 1 . (2)

For all θ ∈ Sn−1 the map y �→ θ · ∂ϕ
∂x (x, y) has only

non-degenerate critical points . (3)
In [B2] it is observed that by making appropriate changes of variable, any
phase satisfying these criteria can be expressed in the form

ϕ(x, y) = ytx′ + xny
tAy +O

(|xn||y|3 + |x|2|y|2) (4)
with A an invertible (n − 1) × (n − 1) matrix and t denoting transpose.
Hörmander showed that both Restriction and Bochner–Riesz problems can
be formulated as special cases of operators TN , which prompted him to ask
the following:
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Question 1 (Hörmander [H]). Is it true that for every ϕ satisfying the
above properties, the operator TN has the bound

‖TNf‖s � N−n/s‖f‖r (5)
for 1

s <
n−1
2n and 1

s ≤ n−1
n+1

1
r′ ?

Hörmander himself proved this for n = 2 [H], and in higher dimensions
it has been proved for s ≥ 2(n+1)

n−1 by Stein [St]. The known and conjectured
regions are shown in Figure 1.

1
2

1
r

1
s

known

conjectured
s = (n+1)r′

n−1
n−1

2(n+1)

n−1
2n

Figure 1: Exponents for Hörmander’s conjecture

It was a great surprise in 1991 when Bourgain [B2] disproved Hörman-
der’s conjecture. Roughly, he showed that in dimension three for most
phases the best exponent s is strictly greater than 2n

n−1 = 3, and that there

exist phases where the known value 2(n+1)
n−1 = 4 is the best. More precisely:

Theorem 1 (Worst case [B2]). In dimension three there is a phase
function, namely

ϕ(x, y) = x1y1 + x2y2 + x3y1y2 + 1
2x

2
3y

2
1

for which (5) fails for all s < 4, even with r = ∞.

Theorem 2 (Generic failure [B2]). In dimension three, if ϕ has the
property that

∂2

∂y2

(
∂2ϕ

∂x2
3

)∣∣∣∣
x=0,y=0

is not a multiple of
∂2

∂y2

(
∂ϕ

∂x3

)∣∣∣∣
x=0,y=0

(6)

then the inequality (5) cannot hold even for r = ∞ unless s ≥ 118/39 > 3.

His method was to link the oscillatory integral problems to Kakeya-type
problems about curves. Diagrammatically we have the following chain of
implications:
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Oscillatory
integral estimates =⇒ Kakeya maximal

function estimates =⇒ Kakeya sets
have large dimension.

(7)
(Compare this with Fefferman’s famous counterexample to the disc con-

jecture [Fe], which used the fact that Kakeya sets can have measure zero
to disprove a Bochner–Riesz type estimate.)

Both Restriction and Bochner–Riesz give rise to straight line problems –
strictly speaking, Restriction implies the Kakeya conjecture while Bochner–
Riesz implies the Nikodym conjecture, which is like the Kakeya conjecture
but with the roles of positions and directions exchanged. In the straight-
line case these are equivalent and so attention has been focused entirely
on the former, but for any fixed class of curves they are different, as will
be seen in section 3 where we consider quadratic curves. The relationship
between the two is explored in [C2], [T] and [CW].

Since 1991 there has been much progress on the straight-line Kakeya
problem, with contributions from Bourgain, Wolff, Katz, �Laba, Tao and
Schlag. Our aim in this paper is to apply some of these new techniques
to the curved case. As we shall see, we can prove positive results for cer-
tain families of curves, which may indicate that their corresponding phase
functions allow reasonably good non-trivial bounds for the operators TN .

We begin by giving precise definitions and brief proofs of the implica-
tions above. Then in section 2 we prove the so-called “trivial bound” (a
maximal function estimate implying that the sets have dimension at least
n+1

2 ), which holds for a very broad class of curves. From section 3 on-
wards we restrict to quadratic curves, and demonstrate (in Theorem 10)
that these are still general enough to exhibit the pathological behaviour
discovered by Bourgain. We then tackle the maximal function problem by
means of geometry, proving a result (Theorem 12) corresponding to the
lower bound n+2

2 for the dimension of Nikodym sets of parabolas satisfying
a certain algebraic condition. Finally we look at arithmetic methods, and
obtain (in Theorems 19, 20 and 28) lower bounds of the form αn+ β with
α > 1/2 for the dimension of various sets of curves, including a bound for
the Nikodym sets of the previous section which equals the best currently
known for straight lines.

1.1 The relevance of Kakeya with curves. Given a phase function
ϕ and cutoff a ∈ C∞

c as in (1), define curves and curved tubes as follows:

Notation. Let y, ω ∈ B
n−1 and let δ > 0 be a thickness. Define

Γy(ω) :=
{
x ∈ R

n : ∇y ϕ(x, y) = ω , (x, y) ∈ supp(a)
}



1322 L. WISEWELL GAFA

T δ
y (ω) :=

{
x ∈ R

n : |∇yϕ(x, y) − ω| < δ , (x, y) ∈ supp(a)
}

to be the curve “centre” ω in “direction” y and the corresponding δ-tube.
Here B

n−1 denotes a ball in R
n−1 of some constant radius: for quadratic

curves the unit ball will do, but more generally we will need to choose the
constant to depend on ϕ, although of course larger sets of directions can
then be handled simply by taking unions of small enough balls.

Using the rank condition (2) and the implicit function theorem we see
that Γy(ω) is indeed a smooth curve. The descriptions “centre” and “direc-
tion” are to aid intuition; in some cases the meaning of the variables may in
fact be the other way round. On one hand, the Restriction problem for the
paraboloid corresponds to the phase ϕ(x, y) = ytx′ + xny

ty, so that Γy(ω)
is a straight line centred at ( ω

0 ) in direction ( y
1 ). But on the other hand,

Bochner–Riesz for the paraboloid has the phase ϕ(x, y) = 1
xn
ytx′ + 1

xn
yty,

and Γy(ω) is still a straight line, but with centre ( y
0 ) and direction ( ω

1 ).
Because of the smoothness of ϕ, the tubes have the following “doubling

property”: Suppose that |y− ȳ| < δ and |ω− ω̄| < δ. Then TCδ
y (ω) ⊃ T δ

ȳ (ω̄)
for some constant C depending only on ϕ. This will often allow us to
consider only finite δ-separated collections of tubes.

By analogy with the straight-line case, we define the following sets:
Definition (Curved Kakeya set). A set E ⊂ R

n is a curved Kakeya set
(associated to ϕ) if for all y ∈ B

n−1 there exists an ω ∈ B
n−1 such that

Γy(ω) ⊂ E.
So for the Restriction phase above, this is the usual definition of a

Kakeya set, while for the Bochner–Riesz phase this is a set that includes a
line segment in some direction through every one of a large set of points,
which might be termed a Nikodym set although this is not quite the same
definition as is usually given in, say, [F].

As we shall see shortly, curved Kakeya sets need not have full dimension,
so rather than a conjecture we have a question:
Question 2. Given a phase function, what is the minimum possible di-
mension for its corresponding Kakeya sets? For which curves must the
dimension be exactly n?

We can ask this about either the usual Hausdorff notion of dimension,
or more weakly about the Minkowski dimension. This is always greater
than or equal to the Hausdorff and is simpler to use: a set E has (upper)
Minkowski dimension at least d if and only if its δ-neighbourhood nbdδ(E)
has Lebesgue measure satisfying |nbdδ(E)| � δn−d. This is the notion we
shall use in section 5 when applying the arithmetic techniques.
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More difficult questions about overlap of tubes can be posed in terms
of maximal operators.

Definition (Curved maximal operator). The curved Kakeya maximal
function (associated to ϕ and of eccentricity 1/δ) is the operator that takes
a function f on R

n to the function Kδ f on B
n−1 given by

Kδ f(y) := sup
ω∈B

n−1

1
|Ty(ω)|

∫
Ty(ω)

|f(x)|dx .

In the straight-line case it is conjectured that this should have Ln → Ln

operator norm at most δ−ε. This and the bounds which follow by inter-
polation are shown in Figure 2. However as we shall see shortly, for many

1
n

2
n+1

1
p

1
q

1
n

1
n+1

q = (n− 1)p′

Known for most curves (§2).

Conjectured for straight lines

Figure 2: Region where the Lp → Lq norms of the Kakeya maximal
operator should be at most δ1−n/p−ε

families of curves the Ln → Ln bound is false, so we have another question.

Question 3. Given a phase function, how can we find the best bound
for the corresponding maximal functions? For which phases is an Ln → Ln

bound of order δ−ε possible?

These estimates imply lower bounds for the dimension of the sets in the
following way.

Proposition 3 (Maximal implies dimension). Assume that for some ϕ an
estimate ‖Kδ f‖q,∞ ≤ Cδ−α‖f‖p,1 holds. Then the corresponding Kakeya
sets have Hausdorff dimension at least n− pα.

So a sharp Lp → Lq bound implies that the sets have dimension at
least p. The implication is easy if we use Minkowski dimension: simply let
f be the characteristic function of the δ-neighbourhood of the set, and the
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required estimate follows. The proof for the Hausdorff dimension is similar
but requires a dyadic pigeonholing argument, following exactly that given
by Wolff for the straight-line case in [Wo2, Lemma 1.6], with an implicit
function argument to obtain suitable parameterisations of the curves.

So we have the second of the implications (7). We now turn to the first
which relates the above to the oscillatory integrals TN . The proof will show
why the curves we have defined are natural.

Proposition 4. For some phase ϕ satisfying Hörmander’s criteria (2)
and (3), suppose that ‖TNf‖s � N−n/s‖f‖r. Then the corresponding
curved Kakeya maximal function is of restricted weak type (p,q) with norm
at most δ−2(n/p−1), where p = (s/2)′ and q = (r/2)′,

To prove this, and also to prove the estimates for the maximal functions
in later sections, it is helpful to linearise the maximal function so that
instead of an Lp bound we can prove a “covering lemma” similar to those
in [C1].

Definition (Linearised operator). Decompose B
n−1 into disjoint δ-cubes

Qj for j ∈ B
n−1 ∩ δZn−1. To each index j associate a tube Tj = T δ

yj
(ωj)

where yj ∈ Qj and ωj ∈ B
n−1. Define a linearisation of Kδ by

LKδ f(y) :=
∑

j

�Qj (y)
1

|Tj |
∫

Tj

f(x) dx .

Now taking the adjoint of this operator puts the problem in the following
useful form:

Lemma 5 (Covering lemma). Let {Tj}M
j=1 be 1 × δ-tubes with centres ωj

and directions yj (where both of these are in B
n−1). Then the estimate

∥∥∥∥
M∑

j=1

�Tj

∥∥∥∥
p′
≤ A(δ)(δn−1M)1/q′

holds for all choices of yj ∈ Qj with arbitrary ωj if and only if the (curved)
Kakeya maximal function is of weak type (p, q) with constant A(δ).

This is easy to prove, and the details are given in [W2].
Now we use the linearisation to sketch a proof of Proposition 4, which

will show the reason for the definition of the curves. This proof is similar to
that given by Wolff in [Wo2, pp. 153–154] for the Restriction problem, but
incorporating ideas found in Bourgain’s “generic failure” proof for curves
[B2, pp. 326–327].
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Proof of Proposition 4. Suppose that we are given tubes Tj with directions
yj ∈ Qj and arbitrary centres ωj as above. Set

f(y) =
M∑

j=1

εje
−iNωj .(y−yj)�Qj (y)

where the εj are random signs. Then TNf is a sum of integrals∫
Qj
eiN(ϕ(x,y)−ωj .(y−yj))a(x, y) dy, and it is easy to see that if we choose

N ∼ δ−2 then the phase is roughly constant for x ∈ Tj so that the integral
is at least δn−1

�Tj (x). Applying Khinchin’s inequality and the assumed
bound for ‖TN‖r→s gives the covering lemma required. �

An immediate corollary is that the optimal s = 2n
n−1 would imply the

best estimate ‖Kδ ‖n→n � δ−ε for the curved Kakeya maximal function
and full dimension for the sets. However, away from the optimal exponent
this correspondence becomes very poor: Stein’s result s = 2(n+1)

n−1 merely
implies that the sets have dimension at least 1.

2 “Trivial” Results for Most Curves

Before we go on to discuss the dimension of curved Kakeya and Nikodym
sets we should first mention that they can indeed have measure zero. This
is proved in [W1] by adapting a result due to Sawyer, and in fact applies
to more general problems of surfaces lying in sets of measure zero.

Also we point out that, as with straight lines, the problem is entirely
understood in dimension 2 since Hörmander’s conjecture is true in the
plane, and so the implications (7) give the best possible bounds for the
maximal functions and set dimensions.

The next simplest result is the n+1
2 bound. For the maximal function

with straight lines this was first proved in 1986 by Christ, Duoandikoetxea
and Rubio de Francia [ChDR] using Fourier transform methods. Since
then, more geometric proofs have been given. One of these is a two-slice
version of the arithmetic methods which we look at in section 5 for the set
dimension problem. Here we use the “bush argument” of Bourgain [B1] to
obtain the stronger maximal function estimate. In a sense this is analogous
to the two-slice method by point-line duality, since the main idea is an
estimate for the size of the intersection of two different tubes (compare
with Lemma 15). So we begin by looking at the way curved tubes can
intersect, and prove the L

n+1
2 bound for a very broad class of families of

curves. We then show geometrically why the non-degeneracy criterion (3)
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is crucial, by providing a counterexample to the maximal function result
if it is not assumed. We also mention the slightly curious fact that even
without non-degeneracy, the set dimension result still holds.

At this point we restrict our attention to phases of a slightly simpler
form than (4), namely those in which the higher-order terms depend only
on xn and not on x′. For convenience in later sections we write these as

ϕ(x, y) = ytM(xn)x′ + ϕ̃(xn, y) , (8)

where M : R → GL(n − 1,R) is a matrix-valued function. The curves
corresponding to this can be parametrised by the height xn as follows:

Γy(ω) =
{(

M(xn)−1 [ω −∇y ϕ̃(xn, y)]
xn

)
: (x, y) ∈ supp(a)

}
, (9)

where the matrix inverse exists by the rank condition (2). This notation
is introduced because the phases we want to look at in sections 3–5 which
give rise to parabolic curves are more conveniently expressed in the form
(8) than as in (4) where we had M(xn) ≡ I.

We also now specify the radius of the ball B
n−1. Given a phase ϕ of

the form (8), write ψ = ∂
∂xn

∇y ϕ̃. Hörmander’s criterion (3) tells us that
the matrix ∂

∂yψ has non-zero determinant throughout the support of the
cutoff a, so let k be the minimum absolute value of its eigenvalues on this
support. Then by the definition of the derivative, find ρ > 0 such that

|ψ(xn, y) − ψ(zn, ȳ) −Dψ(xn, ȳ)(y − ȳ)|
|y − ȳ| <

k

2
(10)

whenever |y− ȳ| ≤ ρ. This constant ρ depends only on ϕ, and B
n−1 will be

taken to mean the ball of this radius from now on. (In the case of quadratic
phases which we consider in the next sections, the above fraction is zero
and so this issue does not arise.)

We now state and prove the crucial estimate for the size of the intersec-
tion of two tubes. Call two tubes Ty(ω), Tȳ(ω̄) d-separated if |y − ȳ| ≥ d.
Lemma 6. Assuming (3), there is a constant C depending only on ϕ
such that if two d-separated δ-tubes corresponding to curves of the form
(9) meet, then the diameter of their intersection is at most Cδ/d.

Proof. Curves of the form (9) have tangents given by(−M(xn)−1M ′(xn)M(xn)−1 [ω−∇y ϕ̃(xn, y)]−M(xn)−1 ∂
∂xn

∇y ϕ̃(xn, y)
1

)
.

If two different curves Γy(ω) and Γȳ(ω̄) meet at height xn = t0, then

M(t0)−1
[
ω −∇y ϕ̃(t0, y)

]
= M(t0)−1

[
ω̄ −∇y ϕ̃(t0, ȳ)

]
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and so the difference between their tangents is simply∣∣M(t0)−1[ψ(t0, y) − ψ(t0, ȳ)]
∣∣

�
∣∣Dψ(t0, ȳ)(y − ȳ)

∣∣− ∣∣ψ(t0, y) − ψ(t0, ȳ) −Dψ(t0, ȳ)(y − ȳ)
∣∣

> k
2 |y − ȳ| by (10) .

So the tangents are at an angle comparable to |y − ȳ| and so the diameter
of the intersection is at most δ

δ+|y−ȳ| , giving the result claimed. �

This allows us to prove the L
n+1

2 bound using the bush argument.
Theorem 7. Assuming (3), the curved Kakeya maximal function Kδ

corresponding to curves of the form (9) satisfies

‖Kδ f‖q ≤ Cεδ
−(n/p−1+ε)‖f‖p (11)

for 1 ≤ p ≤ n+1
2 and 1 ≤ q ≤ (n − 1)p′.

Proof. It is enough to prove a restricted weak type estimate at the endpoint,
since this implies strong type at the cost of an additional log [CHS, p. 48].
The proof follows exactly the bush argument for the straight-line case, a
suitable version of which is given in [Wo2] or [W2]. �

So the so-called “trivial bound” holds for all curves of the form (9), and
in particular, it is true for the “worst case” example of Bourgain. That
example had curves given by

ω1 − x3y2 − x2
3y1

ω2 − x3y1

x3


 .

If we choose ω1 = 0, ω2 = −y2 then we see that each curve lies in the
surface x1 = x2x3. So the Kakeya set has dimension two, and for this ϕ
the “trivial” bound is in fact best possible.

This suggests that n+1
2 for the set dimension and maximal function

ought to correspond to the exponent s = 2(n+1)
n−1 in Hörmander’s conjecture,

since this is the result that is known to be true for all phases and cannot
be improved for Bourgain’s example. However, the implication proved in
Proposition 4 is weaker; one feels that the factor of 2 in the power of δ we
obtained should not be there.

The proof of the “trivial” bound also reveals the reason for the non-
degeneracy criterion (3), since if this does not hold, then the curves can
essentially share a tangent, which makes the intersection of the tubes larger
than the estimate given in Lemma 6. This is illustrated in Figure 3. As
one would expect, this behaviour means that the L

n+1
2 estimate for the

maximal function fails.
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(a) Proper Intersection (b) Tangential Intersection

Figure 3: The intersection of two curved tubes

Proposition 8. If the non-degeneracy criterion (3) fails, then (11) also
fails for p = n+1

2 .

Proof. Suppose that a degenerate critical point occurs at (t0, z0). With
ψ(xn, y) := ∂

∂xn
∇y ϕ̃(xn, y) as on page 1326, this means that det ∂

∂yψ(t, y)
evaluated at (t0, z0) is zero. Let U be the subspace

U =
{
u ∈ R

n−1 : ∂
∂yψ(t0, z0)u = 0

}
and let r ≥ 1 denote the dimension of this subspace. As always, the curves
have the parametrisation (9), and so for each y we choose ω = ∇y ϕ̃(t0, y)
to make all of the curves meet at the bad point. Consider those directions
y such that y − z0 ∈ U . As before, the difference in tangent of the curves
Γy and Γz0 at their intersection is M(t0)−1[ψ(t0, y) − ψ(t0, z0)]. By the
definition of the derivative we then have

ψ(t0, y) − ψ(t0, z0) = ∂
∂yψ(t0, z0)(y − z0) +O

(|y − z0|2
)

= O
(|y − z0|2

)
since y − z0 ∈ U ,

which is at most δ provided that |y − z0| � √
δ. Pick a maximal

√
δ-

separated subset {yj}M
j=1 of these y. Then M ∼ √

δ−r, and each tube
Tj := T δ

y (∇y ϕ̃(t0, y)) meets T0 := T δ
z0

(∇y ϕ̃(t0, z0)) at an angle of at most δ.
So there is a cylinder of radius δ and length some small constant c which
is included in all M of the tubes. Hence∥∥∥∥

M∑
j=0

�Tj

∥∥∥∥
n+1
n−1

≥M(δn−1c)
n−1
n+1

� δ
−n−1

n+1
− r

2(n+1) (δn−1M)
n

n+1 .
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Hence, by the covering lemma (Lemma 5), we find that the L
n+1

2 → Ln+1

norm of Kδ is at least δ−
n−1
n+1

− r
2(n+1) which is greater than the estimate δ−

n−1
n+1

obtained in the non-degenerate case. �

Rather curiously, the non-degeneracy criterion is not required for the
set dimension problem.

Proposition 9. For any phase φ of the form (8) satisfying (2) (but not
necessarily (3)), the corresponding curved Kakeya sets have Hausdorff and
Minkowski dimension at least n+1

2 .

Proof. This is intuitively clear, since a Kakeya set of degenerate curves
includes a set of non-degenerate ones by simply removing slices around the
“bad” heights. Shifting and scaling part of what remains so that it lies in
the region xn ∈ [−1, 1] gives a set of curves that falls within the scope of
Theorem 7. So this subset, and hence the whole set, of the original curves
has Minkowski and Hausdorff dimension at least n+1

2 . To prove this fact
directly one merely needs to note that the conclusion of Lemma 6 is true
when δ = d whether the intersection is tangential or not, and then follow
the proof of Theorem 7. �

3 Negative Results for Quadratic Curves

In the next three sections we look at the possibility of non-trivial results.
Since we already know that these cannot hold of all classes of curves, from
here onwards restrict our attention to simpler ones. Notice that in both of
Bourgain’s theorems the bad behaviour is caused by the presence of terms
non-linear in x in the phase function. For this reason we now focus entirely
on parabolic curves of the following form:

Γy(ω) =
{(

ω − tAy − t2By
t

)
: t ∈ [−1, 1]

}

where A and B are (n − 1) × (n − 1) real symmetric matrices. Kakeya
questions about these curves arise from the phase

ϕ(x, y) := ytx′ + xn
1
2y

tAy + x2
n

1
2y

tBy (12)

which is of the form (8), and includes the Restriction problem as the special
case B = 0. Meanwhile, the phase

ϕ(x, y) = 1
2xn

yt(A+ xnB)−1y − 1
xn
yt(A+ xnB)−1x′ (13)

is again of the form (8) and includes Bochner–Riesz as the case B = 0, but
it gives rise to the same curves above but with y and ω exchanged. For this
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reason it is now convenient to call the Kakeya maximal function arising
from (13) a Nikodym maximal function and to denote it by

Nδ f(ω) := sup
y∈B

n−1

1
|Ty(ω)|

∫
Ty(ω)

|f(x)|dx ,

where we now fix the curves Γy(ω) and tubes Ty(ω) to be as above. So Γy(ω)
is always a parabola through the point ( ω

0 ) whose direction is governed by y.
Similarly, we define a curved Nikodym set to be one which includes a Γy(ω)
for every ω ∈ B

n−1.
It is easy to check that both phases above satisfy the first of Hörmander’s

criteria (2); the second says we must assume that

det(A+ 2xnB) �= 0 (14)

throughout the support of the cutoff a, which we will take to be [−1, 1],
with the obvious deletion of a neighbourhood of xn = 0 in the second
case. Also, by applying linear maps to x and/or y in the phase, we see
that the oscillatory integral problem is invariant under congruence of the
matrices. Since they are symmetric, we may assume that one of them is
diagonal, or even has only 0 and ±1 on the diagonal. This is of limited
help, but in the special case where one of A,B is positive-definite we are
able to simultaneously diagonalise (that is, using change of variable we
can make both A and B diagonal). This will enable us to perform certain
computations that seem intractable in the general case.

At the level of the curves rather than the phases, we are free to multiply
through by any invertible matrix. This allows us, if it is convenient, to
replace A by I and B by C := A−1B, so that the curves are now

Γy(ω) =
{(

ω − ty − t2Cy
t

)
: t ∈ [−1, 1]

}
. (15)

Note however that this matrix is not necessarily symmetric, nor is B as-
sumed to be invertible. By a further transformation we may assume that
C is in rational canonical form.

Note also that if B is a multiple of A (so C = λI say) then we can
eliminate C altogether using the diffeomorphism xn + λx2

n �→ xn. So the
curved case only arises if C is not a multiple of I. Moreover, in the case
C = 0, where the two phases above correspond to Restriction and Bochner–
Riesz respectively, their corresponding maximal functions are related. This
is because the transformation

(x′, xn) �→
(

x′
xn
, 1

xn

)
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(which was first used by Carbery [C2] in showing that Restriction implies
Bochner–Riesz) maps straight lines to straight lines: specifically, the line
centred at ( ω

0 ) in direction ( y
1 ) maps to the line with centre ( y

0 ) and di-
rection ( ω

1 ). This is why the Kakeya and Nikodym problems for straight
lines are equivalent. Importantly, however, this transformation does not
map parabolas to parabolas even if the roles of position and direction are
exchanged. So there is no reason to expect Kδ and Nδ to satisfy the same
bounds for a given matrix C, and in fact we shall see later that they do
not.

Although very simple, these phases are general enough to exhibit many
kinds of behaviour. Taking C = ( 0 0

1 0 ) gives the “worst case” example
of Theorem 1. More interestingly still, the generic failure criterion (6) of
Theorem 2 has the simple form

C is not a multiple of I .

Bourgain’s proof of Theorem 2 is considerably simpler for these special
curves, works in higher dimensions, and in fact gives a better bound in
dimension 3, so we include the details here.

Theorem 10. Suppose that the characteristic polynomial of C divided by
its minimum polynomial consists of irreducible factors each of multiplicity
at most k, where 0 ≤ k ≤ n− 2. Then

‖Kδ ‖p→1 � δ
1

2n−3−k
(1− 1

p
)− 1

p

for all p. If k = 0 and additionally tr adjC = 0, then this is strengthened

to δ
1

2n−2
(1− 1

p
)− 1

p , while if k = 0 and tr adjC = 0 and detC = 0 it is
strengthened further to δ−1/p.

This applies only to the Kakeya problem with parabolas and not the
Nikodym version, although if n = 3 then phases of the form (13) are covered
by Bourgain’s generic failure result (Theorem 2) after making changes of
variable and expanding the 1/xn as a power series to obtain the standard
form (4).

Combining this with the implication of Proposition 4 gives the following
partial answers to Questions 3 and 1:

Corollary 11. If ϕ is of the form (12) with B not a multiple of A,
then the desired estimate ‖Kδ ‖p→q � δ1−n/p for the corresponding Kakeya
maximal function is false for all p > n− n−k−2

2n−k−4 even with q = ∞, and the

estimate ‖TN‖r→s � N−n/s is false for all s < 2n
n−1 + 2n−2k−2

(2n−k−3)(n−1)(2n−3)
even with r = 1.
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If k = 0 and additionally tr adjC = 0, then these are strengthened
to p > n− n−1

2n−3 and s < 2n
n−1 + 2n−2

2(n−1)2(2n−3) , while if k = 0 and tr adjC = 0
and detC = 0 these are strengthened further to p > n − 1 and s <
2n

n−1 + 2
(n−1)(2n−3) .

So we cannot achieve the optimal p = n, s = 2n
n−1 unless k = n − 2,

which means that the minimum polynomial of C is linear and so C ‖ I .
Moreover, since a “generic” matrix has its characteristic and minimal poly-
nomials equal, we can “usually” achieve no better than p = n− 1

2 and s =
2n

n−1 + 1
(n−1)(2n−3) .

Note that in three dimensions we are dealing with 2 × 2 matrices and
so we always have k = 0 as long as C ∦ I. So we cannot exceed the bound
p = 5

2 = n+2
2 , which for straight lines is due to Wolff [Wo1]. If additionally

trC = 0 we cannot exceed p = 7/3, which was obtained for straight lines
first by Bourgain [B1] and then by Schlag [S]. Their results have since
been improved for straight lines, but the above theorem for curves suggests
that 5/2 and 7/3 are “natural barriers” in the problem. The case k = 0
and tr adjC = 0 and detC = 0 in dimension three corresponds precisely
to Bourgain’s “worst case” example of Theorem 1, and in fact there are
analogues in higher dimensions as we shall see later.

The gain in three dimensions here compared with Theorem 2 is because
of the absence of higher order terms. Their absence is also needed to make
the proof work in dimensions 4 and above, since Bourgain’s method of
handling the general case in [B2] uses that the order of the terms neglected
is equal to the dimension n.

Proof of Theorem 10. It is enough to show that we can choose suitable
ω = ω(y) to produce a set of curves that is too small. We will use a
linear function: ω = Wy. We claim that if we can make the determinant
of the map y �→ x′ := Wy − ty − t2Cy of order |t|m for small t, then
‖Kδ ‖p→1 � δ1/m−1/p(1+1/n) for all p.

Fix t ∈ [−δ1/m, δ1/m] so that the determinant is at most δ. Then if y
ranges over the ball in R

n−1 of radius 1, we find that x′ ranges over a set of
measure at most δ, and we are interested in the size of the δ-neighbourhood
of this. Now since the eigenvalues of the map are bounded, no side of the
set can be larger than |y| < 1, but having all sides this large would exceed
the maximum permitted volume. So the worst case has n − 2 sides of
length 1 and one thin side of length δ so that the volume does not exceed
that permitted by the determinant.
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Hence the largest possible neighbourhood is of measure δ. Now allowing
xn to vary over the interval [−δ1/m, δ1/m] gives us that the union E of
these tubes of length δ1/m has measure at most δ1+1/m. Observing that
Kδ �E(y) ≥ δ1/m for all y ∈ B

n−1 proves the claim.
So we must consider when the above condition on the determinant is

satisfied for some m ≥ n. Clearly if C ‖ I then it cannot be, since the
determinant is just the characteristic polynomial of W evaluated at (t+λt2),
but in all other cases we can simply write down a suitable W . By a change
of variable we may assume that C is in rational canonical form; that is,
C = Cp0 ⊕ · · · ⊕Cpk

where k is as above, each Cpi is the companion matrix
of the polynomial pi, pk is the minimum polynomial of C, and pi divides
pi+1 for i = 0, . . . , k − 1.

We show that for an l × l companion matrix

C =




c1 1 0 0 . . . 0
c2 0 1 0 . . . 0
c3 0 0 1 . . . 0
...

...
...

. . . . . .
...

cl−1 0 0 . . . 0 1
cl 0 0 . . . 0 0




we can achieve det(W − tI − t2C) � t2l−1. Choose W to be zero except in
the first column, whose elements are as follows:

w1,1 = 0 w2,1 = −1 wi,1 = ci−2 for i ≥ 3 .

If we expand det(W − 2tI − 2t2C) down the first column we obtain

(−1)l

[
(c1t2 + t)tl−1 − (c2t2 + 1)tl +

l∑
i=3

(−1)i− 1(cit2 − ci−2)tl+i−2

]

= (−1)l

[
c1t

l+1 − c2t
l+2 +

l∑
i=3

(−1)i−1cit
l+i −

l−2∑
i=1

(−1)i−1cit
l+i

]

= cl−1t
2l−1 − clt

2l .

This proves the result since there are k+ 1 blocks each of order li × li with∑
i li = n− 1, and so we take m = 2(n− 1) − k − 1. If k = 0 then we have

just one block of order (n − 1) × (n − 1). The conditions tr adjC = 0 and
detC = 0 correspond to cn−2 = 0 and cn−1 = 0, which allow us to take
m = 2(n − 1) or m = ∞ respectively, giving the improvements stated. �
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4 Geometric Methods

In this section we will prove a result for the curved Kakeya maximal function
of a particular class of curves which implies that the corresponding sets have
dimension at least n+2

2 . In the straight-line case this result is due to Wolff
[Wo1] and uses geometric techniques, however, here we shall adapt a more
recent proof due to Katz [K]. In both, the main geometric object is the
hairbrush, a configuration of tubes which all pass through some central
fixed one. Wolff’s idea was that such configurations can be handled by
grouping the tubes into planes all containing the central tube, and then by
applying the known dimension 2 result for the Kakeya maximal function in
each plane. Curves, however, cannot easily be grouped in this way, which is
why we turned to Katz’s work. His proof seems more elementary, in that it
isolates the geometry showing that the main fact is that a triangle lies in a
plane, and the remainder of the argument is a simple (but clever) splitting
up of the linearised maximal function into bounded pieces.

Our result is the following:
Theorem 12. The Nikodym maximal function Nδ satisfies the bound

‖Nδ ‖n→n � δ−
n−2
2n

provided that the curves under consideration are parabolas of the form (15)
with C2 = 0.

By Proposition 3 this implies that the Nikodym sets of these curves
have Hausdorff and Minkowski dimension at least n+2

2 .
The condition on the matrix C arises naturally in the proof as we shall

see in Proposition 14. This class of curves seems to be particularly amenable
to the proof methods that have been used in the straight-line case, since
further results for these curves will be obtained by the arithmetic methods
in section 5. However, the class is not equivalent to straight lines since, as
we will see in section 6, the Kakeya conjecture fails completely for all these
curves. Unfortunately it seems difficult to give the criterion C2 = 0 any
geometric interpretation.

We shall actually prove Theorem 12 for the linearised version of the
Nikodym maximal function LN δ – recall its definition from page 1324: We
have divided R

n−1 into δ-cubes Qj where j runs over B
n−1 ∩ δZn−1. To

each index j we have an associated curved tube Tj = Tyj (ωj) where ωj ∈ Qj

and yj is arbitrary. Then

LN δ f(ω) =
∑

j

�Qj (ω)
1

|Tj |
∫

Tj

f(x) dx .
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Of course, we must seek bounds that are independent of the choice of the
tubes. We shall also need to define related functions where the index set is
specified:

LNAf(ω) =
∑
j∈A

�Qj (ω)
1

|Tj |
∫

Tj

f(x) dx .

As in Wolff’s approach, the main geometric object considered is the
hairbrush:

Definition. Let A be a finite set of indices j ∈ δZn−1. A hairbrush is a
set H ⊆ A such that there exists some curved 1 × δ tube T that intersects
all Ti with i ∈ H.

Note that the central tube T can be any curved tube of the family, not
necessarily one of those associated to some j.

Much of the geometry of the situation is encoded in the behaviour of
these hairbrushes, in the form of the following lemma:
Lemma 13 (Hairbrush lemma). If the curves are parabolas with C2 = 0,
then for all hairbrushes H we have ‖LNH‖n→n ≤ C(log 1/δ)α for some
constant α

The proof of this will involve surfaces, and will show why we are able to
handle only a restricted class of curves. But given the lemma, we can prove
the theorem just as in the straight-line case, by splitting up the operator
into many sums.

Proof of Theorem 12. As usual it is enough to prove a weak type estimate.
By the covering lemma (Lemma 5) the theorem is true if and only if∥∥∥∑

j∈A

�Tj

∥∥∥
n′

� δ−
n−2
2n (δn−1#A)1/n′

⇐⇒
∫

R
n

(∑
j∈A

�Tj (x)
) n

n−1 dx � δ
− n−2

2(n−1) (δn−1#A)

⇐⇒
∑
j∈A

1
|Tj |
∫

Tj

(∑
i∈A

�Ti(x)
) 1

n−1 dx � δ
− n−2

2(n−1) #A .

Denote the quantity appearing in the first sum by MA, that is

MA(j) :=
1

|Tj |
∫

Tj

(∑
i∈A

�Ti(x)
) 1

n−1 dx.

We would like to subdivide this quantity into dyadic scales, by considering
those i that are at distance between 2−k and 2−(k+1) from j. Note that
by elementary properties of sequences of positive reals, the sum over k can
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then be pulled out of the integral. But what remains then depends only on
pairs i, j with |i− j| ∼ 2−k. Let P be a cube in R

n−1 of side 10×2−k. Note
that this cube is larger than the cubes Qj since δ < 2−k. It then suffices,
for every choice of P , to obtain the estimate∑

j∈A∩P

Mk(j) :=
∑

j∈A∩P

1
|Tj |
∫

Tj

( ∑
i∈A∩P

|i−j|∼2−k

�Ti(x)
) 1

n−1 dx

� δ
− n−2

2(n−1) #(A ∩ P )
and then sum over P and k. Both sums have only logarithmically many
terms.

The next stage is to find as many large hairbrushes in A∩P as possible,
where large means of cardinality at least N , to be chosen later. So, if there
exists some curved tube T (of the form Ty(ω) but not necessarily one of
the Tj) such that there are at least N elements i ∈ A ∩ P with T ∩ Ti �= ∅,
then call these elements H1. Then look for another large hairbrush in the
remaining elements A∩P \H1. Eventually there are no more hairbrushes, so
call the remaining bad elements B. This constructs hairbrushes H1, . . . ,Hm

each of cardinality at least N , and a bad set B := A \ (H1 ∪ · · · ∪Hm). Let
H := H1 ∪ · · · ∪ Hm.

Since the hairbrushes are disjoint sets of indices (although the tubes they
correspond to may well not be), and A ∩ P has at most 2−k(n−1)δ−(n−1)

elements, it follows that m ≤ 2−k(n−1)δ−(n−1)/N .
Now split the sum into four pieces∑

j∈A∩P

Mk(j) ≤
∑
j∈H

Mk,H(j) +
∑
j∈B

Mk,H(j) +
∑
j∈H

Mk,B(j) +
∑
j∈B

Mk,B(j)

where

Mk,H(j) :=
1

|Tj |
∫

Tj

( ∑
i∈H

|i−j|∼2−k

�Ti(x)
) 1

n−1 dx

Mk,B(j) :=
1

|Tj |
∫

Tj

( ∑
i∈B

|i−j|∼2−k

�Ti(x)
) 1

n−1 dx.

The first sum is estimated using the hairbrush lemma. For

‖LNHf‖n
n =
∫ (∑

i

LNHif(ω)
)n

dω

=
∑

i

∫ (LNHi
f(ω)

)n dω since each ω gives only one non-zero term
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≤ m‖LNHi‖n
n→n‖f‖n

n ,

showing that ‖LNH‖n→n ≤ Cm1/n(log 1/δ)α by Lemma 13. Then by the
covering lemma we obtain∑

j∈H

Mk,H(j) ≤ (Cm1/n(log 1/δ)α)n′
#H .

For the second sum∑
j∈B

Mk,H(j) =
∑
j∈B

1
|Tj |
∫

Tj

( ∑
i∈H

|i−j|∼2−k

�Ti(x)
) 1

n−1 dx

≤
∑
j∈B

(
1

|Tj |
∫

Tj

∑
i∈H

|i−j|∼2−k

�Ti(x) dx
) 1

n−1

by Jensen

≤ (#B)1−
1

n−1

(∑
j∈B

1
|Tj |
∫

Tj

∑
i∈H

|i−j|∼2−k

�Ti(x) dx
) 1

n−1

by Hölder

≤ (#B)1−
1

n−1

(∑
i∈H

∑
j∈B

|i−j|∼2−k

1
|Tj | |Ti ∩ Tj|

) 1
n−1

by swapping sums

� (#B)1−
1

n−1

(∑
i∈H

∑
j∈B

Ti∩Tj �=∅

1
δn−1

δn2k

) 1
n−1

by Lemma 6

≤ (#B)1−
1

n−1

(∑
i∈H

Nδ2k
) 1

n−1 since no large hairbrushes in B

= (#B)1−
1

n−1 (#HNδ2k)
1

n−1

≤ (#A ∩ P )
(
Nδ2k

) 1
n−1 .

The third and fourth sums can be tackled together, since for all j ∈ A∩P
we have

2Mk,B(j) :=
1

|Tj |
∫

Tj

( ∑
i∈B

|i−j|∼2−k

�Ti(x)
) 1

n−1 dx

≤
(

1
|Tj |
∫

Tj

∑
i∈B

|i−j|∼2−k

�Ti(x) dx
) 1

n−1

by Jensen
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=
(

1
|Tj |

∑
i∈B

|i−j|∼2−k

|Ti ∩ Tj |
) 1

n−1

�
( 1
δn−1

∑
i∈B

Ti∩Tj �=∅

δn2k
) 1

n−1 by Lemma 6

≤ (Nδ2k
) 1

n−1 since no large hairbrushes in B.

So the last three sums all give an estimate of #(A ∩ P )(Nδ2k)
1

n−1 ,
while the first, after putting in the upper bound for m, gives
#H(2−k(n−1)δ−(n−1)/N)

1
n−1 . We optimally choose N = 2−k n

2 δ−
n
2 and add

the four pieces to obtain∑
j∈A∩P

Mk(j) � 2−k n−2
2(n−1) δ

− n−2
2(n−1) #(A ∩ P )

which gives the result after summing over all P of side 2−k and all k. �

To prove the hairbrush lemma for curves, we need an analogue of the
following fact about straight lines:

Two intersecting straight lines determine a plane, and thus a
third line intersecting these two is fixed up to one parameter,
i.e. its direction must lie parallel to the plane, or equivalently
the point where it meets the base plane xn = 0 must lie along
a fixed line.

So we must now study the locus of all curves meeting two given ones.
By the linearity of (15) in y and ω, we may assume that one of the given

curves is Γ0(0). Let the other be Γy0(ω0) and assume that they meet at
height t0. The surface is the locus of those curves Γy(ω) that meet the first
at s and the second at u. Note that none of these three heights are equal,
since the curves are never horizontal, and we must exclude the possibility
of Γy(ω) meeting the two given curves at their common point, since this
would allow every curve to belong to the locus. This is made clearer by the
following picture (Figure 4).

Now we have the following equations:

0 = ω0 − t0y0 − t20Cy0 (16)

0 = ω − sy − s2Cy (17)

ω0 − uy0 − u2Cy0 = ω − uy − u2Cy (18)
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t

s

Γ0(0) Γy0(ω0)

t0

u

Figure 4: Notation for a curved triangle

Subtracting (17) from (18) we find that

y =
1

s− u

(
I + (s + u)C

)−1(
ω0 − uy0 − u2Cy0

)
which is well defined because s �= u and by (14). Substitute into (17) to
find ω:

ω =
s

s− u

(
I + sC

)(
I + (s+ u)C

)−1(
ω0 − uy0 − u2Cy0

)
.

(16) has not been used yet, so we use it to eliminate ω0:

ω =
s(t0 − u)
s− u

(
I + sC

)(
I + (s+ u)C

)−1(
I + (t0 + u)C

)
y0.

Finally substitute this y and ω into (15) to obtain(
(s−t)(t0−u)

s−u

(
I + (s+ t)C

)(
I + (s + u)C

)−1(
I + (t0 + u)C

)
y0

t

)
(19)

as the parametrisation of the locus we are interested in. Note that if C = 0
then this reduces to the plane ( ry0

t ) as expected. In general however, there
are three parameters (u, s, t) and so the locus is not a plane nor even a
surface but rather some fat object. What we need to know is whether a
curve belonging to this locus has its direction and/or its base point fixed
up to one parameter. The following proposition determines when this is so.
Proposition 14. Suppose that the curve Γy(ω) is included in the
locus (19). Then

(i) The point ω must belong to a family described by only one parameter
if and only if C ‖ I or C2 = 0, in which cases

ω = r(I + t0C)y0 (20)
for some parameter r.

(ii) The direction y must belong to a family described by only one pa-
rameter if and only if we have the straight-line case C ‖ I.
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Proof. From

ω−t(I+tC)y =
(s− t)(t0 − u)

s− u

(
I+(s+t)C

)(
I+(s+u)C

)−1(
I+(t0+u)C

)
y0

we obtain

ω =
s(t0 − u)
s− u

(I + sC)
(
I + (s+ u)C

)−1(
I + (t0 + u)C

)
y0

y =
t0 − u

s− u

(
I + (s+ u)C

)−1(
I + (t0 + u)C

)
y0

where for a given curve, s and u will be fixed. However, we are considering
the sets of all such y and ω, so we allow s and u to vary. We also require
the property for all y0 and t0.

(i) To show that the locus of all ω is one-dimensional we require that
the derivatives of ω with respect to s and u are always parallel. These are

t0 − u

s− u

[
s
(
C − (I + sC)(I + (s+ u)C)−1C

)

− u

s− u

(
I + sC

)](
I + (s+ u)C

)−1(
I + (t0 + u)C

)
y0

and
s

s− u

(
I + sC

)(
I + (s+ u)C

)−1
[
t0 − s

s− u

(
I + (t0 + u)C

)
+

(t0 − u)
(
C − C(I + (s+ u)C)−1(I + (t0 + u)C)

)]
y0.

We need this for all y0, so that in fact the matrices themselves must be
“parallel”, by which we mean that one is a scalar multiple of the other.
Next we may rewrite the above, but ignore the initial (scalar) function of
(s, u) and multiply on the left by

(
I + (s + u)C

)(
I + sC

)−1 and on the
right by

(
I + (t0 + u)C

)−1(
I + (s + u)C

)
. We thus require the following

two expressions to be parallel:
1

s− u

(
I + (s+ u)C

)− sC
(
I + sC

)−1
C

1
s− u

(
I + (s+ u)C

)− (t0 − u)C
(
I + (t0 + u)C

)−1
C

Setting s = 0 and u = −t0 we find that I − t0C, which is invertible, is
parallel to I − t0C − 2t0C2. This implies that either C ‖ I or C2 = 0.

(ii) For y, the two derivatives are

t0 − u

s− u

(
I + (s+ u)C

)−1
[
−C
(
I + (s+ u)C

)−1 − 1
s− u

I

](
I + (t0 + u)C

)
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1
s− u

(
I + (s+ u)C

)−1
[
t0 − s

s− u

(
I + (t0 + u)C

)

+ (t0 − u)C
(
I − (I + (s+ u)C

)−1(
I + (t0 + u)C

))]
.

Ignoring scalar functions and multiplying by invertible matrices on the right
and left, we thus require the following two expressions to be parallel:

I + 2sC

I + (s + u)C − (t0 − u)(s − u)C
(
I + (t0 + u)C

)−1
C

Setting u = −t0 and subtracting gives

I + 2sC ‖ (s+ t0)C [I + 2t0C]

and since I + 2sC and I + 2t0C are invertible by (14), we can deduce that
C is a (possibly zero) multiple of I.

In order to convince ourselves, we check that if C2 = 0, then y is given
by 2(t0−u)

s−u

(
I+(t0−s)C

)
y0, which does have two parameters unless C ‖ I. �

This result clearly shows that for parabolas, the Kakeya and Nikodym
versions of the problem are not the same at all. Indeed, the “worst case”
example of Bourgain had C2 = 0, and we already know that no non-trivial
Kakeya estimate can hold for this.

We are now ready to prove the hairbrush lemma, and hence complete
the proof of Theorem 12.

Proof of Lemma 13. We have a set H of indices which forms a hairbrush
with central tube T . By linearity assume that the central tube is T0(0).
Denote the other tubes by Tj = Tyj (ωj), where ωj ∈ Qj and so ωj ≈ j.
We partition the set H in several ways. First, let Hk be the set of all those
indices whose tubes meet T at “angle” 2−k; that is,

Hk :=
{
i ∈ H : |yi| ∼ 2−k

}
.

For a fixed ω, there can be only one k such that LNHk
(ω) �= 0, so it is

enough to prove ‖LNHk
‖ ≤ C(log 1/δ)α since there are only logarithmically

many k. Then by the arguments used previously, this bound is true if and
only if ∑

i∈Hk

MHk
(i) ≤ C(log 1/δ)α#Hk .

For fixed j ∈ Hk split up Hk into further sets Hj,k,l,m as follows:

Hj,k,l,m :=
{
i ∈ Hk : |yi − yj| ∼ 2−l and dist(Ti ∩ Tj, Tj ∩ T ) ∼ δ2l+m

}
.
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Note that this set is empty unless l ≥ k− 2. Now it is enough to show that
MHj,k,l,m

(j) ≤ C(log 1/δ)α, because

MHk
(i) ≤

∑
j∈Hk

∑
l

∑
m

MHj,k,l,m
(i)

and there are only logarithmically many l and m and the sum over j intro-
duces a factor #Hk.

Next comes the geometric part of the argument, which is a quantitative
version of the fact explained on page 1338. We need to show that #Hj,k,l,m

is not too big, which means that given the central tube T and another
fixed tube Tj : j ∈ Hk there are few other tubes Ti meeting these with
all the correct “angles” and distances. In the straight-line case this follows
from simple consideration of similar triangles as in Figure 5. In the curved

2−k

2−k

2−l

δ2l+m

j

i
T

Tj

Figure 5: In the straight-line case, by similar triangles we have
|i− j| � 2−l and dist(i, line) � 2−(l+m).

case, the dotted line in the picture is instead the line (20), which is the
intersection of the base plane xn = 0 with the surface (19) determined by
T and Tj . Since we cannot appeal to similar triangles with curves, we state
and prove our claim more formally:

Claim. Let C satisfy C2 = 0. Suppose that we are given three curved
tubes T = T0(0), Tj = Tyj (ωj) and Ti = Tyi(ωi) with |yj|, |yi| ∈

(
1

2k+1 ,
1
2k

)
and |yj − yi| ∈

(
1

2l+1 ,
1
2l

)
. Here l ≥ k− 2 and all the powers of 2 that occur

are greater than δ. Suppose that Tj meets the axis at height tj, Ti meets
it at ti, and they meet each other at s, where δ2l+m ≤ |s − tj| ≤ δ2l+m+1.
Then |ωj − ωi| ≤ 1

2l , and ωi is at distance at most 1
2l+m from the line (20).
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We have the following equations:
ωj = tj(I + tjC)yj

ωi = ti(I + tiC)yi + ε

ωi − s(I + sC)yi = ωj − s(I + sC)yj + η

where ε and η are errors due to the thickness of the tubes, and are of order
at most δ. The first assertion is easy:

|ωj − ωi| =
∣∣2s(I + sC)(yj − yi) − η

∣∣
≤ C|yj − yi| + |η|
� 1

2l .

For the second, begin by eliminating the ωs:
(tj − s)

(
I + (tj + s)C

)
yj + η = (ti − s)

(
I + (ti + s)C

)
yi + ε . (21)

This can be rearranged to give yi in terms of yj. Substituting back into the
2nd of our original equations gives

ωi =
ti(tj − s)
ti − s

(I + tiC)
(
I + (ti + s)C

)−1(
I + (tj + s)C

)
yj

+
ti

ti − s
(I + tiC)

(
I + (ti + s)C

)−1(η − ε) + ε

=
ti(tj − s)
ti − s

(I + tjC)yj +
ti

ti − s
(I − sC) (η − ε) + ε

where we have used the fact that C2 = 0. Looking back at (20) we discover
that the first term belongs to the intersection of the surface determined
by the first two curves with the horizontal plane. So the distance we are
interested in is at most the absolute value of the other two terms, so at most

C
|ti−s|δ + δ. Finally we just ensure that |ti − s| is comparable to |tj − s|.
From (21) using the fact that on supp(a) the eigenvalues of I + xnC are
bounded above and below, we get

|ti − s|2−k � δ2l+m2−k − δ

|ti − s| � δ2l+m − δ2k

� δ2l+m

provided that k− l+m is not too large. Since l ≥ k− 2 this could happen
only with l close to k and m small, in which case the claim is trivial anyway.
So the distance of ωi from the curve of intersection is at most 2−(l+m) and
we have proved the claim.

We can now complete the proof of the hairbrush lemma, and hence the
whole theorem. The claim tells us that

#Hj,k,l,m � 2−l
(
2−(l+m)

)n−2
δn−1
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which we use as follows:

MHj,k,l,m
(i) : =

1
|Ti|
∫

Ti

( ∑
p∈Hj,k,l,m

�Tp(x)
) 1

n−1 dx

=
1
|Ti|
∫
{x∈Ti:dist(x,Ti∩T )∼δ2l+m}

( ∑
p∈Hj,k,l,m

�Tp(x)
) 1

n−1 dx

by defn. of Hj,k,l,m

≤ 1
|Ti|
∣∣{x ∈ Ti : dist(x, Ti ∩ T ) ∼ δ2l+m}∣∣1− 1

n−1

·
(∫

Ti

∑
p∈Hj,k,l,m

�Tp(x)
) 1

n−1

dx by Hölder

≤ 1
δn−1

(δn2l+m)1−
1

n−1

( ∑
p∈Hj,k,l,m

|Ti ∩ Tp|
) 1

n−1

� 1
δn−1

(δn2l+m)1−
1

n−1
(
#Hj,k,l,mδ

n2l
) 1

n−1 by Lemma 6

� 1
δn−1

(δn2l+m)1−
1

n−1
(
2−l(2−(l+m))n−2δn−1δn2l

) 1
n−1

by the claim
= 1 .

Summing over all the index sets gives the result. �

5 Arithmetic Methods

5.1 Introduction. Sections 2 and 4 showed how geometric methods
could give lower bounds for the set dimension of the form n

2 + const. The
best-known results in the straight-line case in low dimensions (n = 3 or 4)
are still of this form [KLT], [LT], but in higher dimensions far better results
are obtained by an arithmetic approach, since these improve the coefficient
of n to something greater than 1/2.

The arithmetic arises in the form of sumset inequalities. For these we
require some notation.
Notation. Let A,B ⊆ Z

n−1 be finite sets and let G ⊆ A × B. For any
(n− 1) × (n− 1) real matrix X define the X-sumset of A and B by

A +XB :=
{
a+Xb : (a, b) ∈ G} .

In the case X = −I write A− B and call it the difference set.
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The structure of sumsets, and inequalities regarding the relative sizes of
sum and difference sets, have been extensively studied by combinatorialists
when the matrix X is an integer multiple of the identity, but they have
generally considered only G = A × B. See [N], [R]. The link with the
Kakeya problem was noticed in 1999 by Bourgain [B3], and since then
many inequalities with G ⊆ A × B have been proved. However, the case
where X is not a multiple of I arises only with curves, and seems to be a
new problem.

The most general matrix sumset problem with N + 2 “slices” is as
follows:
Question 4. Let X1,X2, . . . ,XN be (n − 1) × (n − 1) real matrices.
To avoid trivialities assume that they are non-zero, distinct, and not equal
to −I. Does there exist an ε > 0 depending only on the Xj ’s such that for
all A,B ∈ Z

(n−1), G ⊆ A× B we have

#(A− B) ≤ max
{

#A,#B,max
j

#(A +XjB)
}2−ε

?

If so, what is the largest possible ε?

The idea is to let A and B correspond to two horizontal slices through
our δ-discretised Kakeya set, and G ⊆ A× B the set of all pairs which are
joined by a line. Then the difference set A − B corresponds to the set of
directions, so must be large. However, if our set had small dimension then
A and B must be small, and moreover the set of midpoints of the lines,
which (for straight lines) has cardinality #(A + B), must also be small.
Inequalities regarding the relative sizes of sumsets and difference sets thus
lead to lower bounds for the dimension of Kakeya sets.

In the curved case, we must discover how to determine from two end-
points the location of any other point on the curve, and its direction.
Lemma 15. Let E be a set of curves of the form (15) and let A,B ⊂ Z

n−1

be the (δ-discretised) intersections of nbdδ(E) with the planes xn = t0 and
xn = t1 respectively, where t0 �= t1. Let

G :=
{

(a, b) : a and b lie on the same tube in nbdδ(E)
} ⊆ A× B .

Then

(i) The set of directions y has the same cardinality as the difference set
A− B.

(ii) Assume that t0, t1 �= 0. The set of centres ω has the same cardinality
as A− TB where T is the (n− 1) × (n− 1) matrix

T = t0
t1

(I + t0C)(I + t1C)−1.



1346 L. WISEWELL GAFA

a

b

c

A

A +X(λ)B

B xn = t1

xn = (1 − λ)t0 + λt1

xn = t0

Figure 6: Slices through a curved Kakeya set

(iii) The intersection of the set with the plane xn = (1 − λ)t0 + λt1 has
the same cardinality as the sumset A + X(λ)B, where X(λ) is the
(n− 1) × (n− 1) matrix

X(λ) =
λ

1 − λ

[
I + λ(t1 − t0)C(I + (t0 + t1)C)−1

]−1

· [I − (1 − λ)(t1 − t0)C(I + (t0 + t1)C)−1
]
.

Proof. Consider a curve through the points (a, t0) and (b, t1). The equation
(15) of the curves gives

a = ω − t0y − t20Cy (22)

b = ω − t1y − t21Cy . (23)
Subtracting these we find that y = 1

t0−t1
(I + (t0 + t1)C)−1(b − a), and so

the first assertion follows, since multiplication by an invertible matrix does
not change the cardinality. This part is analogous to Lemma 6.

If we write Mj = tj(I + tjC) for j = 0, 1 so that a = ω −M0y and
b = ω −M1y, then solving gives

ω = (M−1
0 −M−1

1 )−1(M−1
0 a−M−1

1 b) .
We can always multiply through by an invertible matrix to get the a on
its own. Therefore an appropriate “difference set” is A − TB where T =
M0M

−1
1 = t0

t1
(I + t0C)(I + t1C)−1 as in the second assertion. Note that

for the Nikodym problem, we cannot take slices through xn = 0 anyway,
because these sets arise only when xn = 0 is not in the support of the cutoff
function in (1).

For the third, denote the point of intersection of this curve with the
intermediate plane by c. It helps to take (1 − λ)(22) + λ(23), which gives

ω = (1 − λ)a+ λb+ (1 − λ)(t0y + t20Cy) + λ(t1y + t21Cy) .
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This allows lots of cancellation, so that
c = ω − ((1 − λ)t0 + λt1

)
y − ((1 − λ)t0 + λt1

)2
Cy

= (1 − λ)a+ λb+ λ(1 − λ)(t0 − t1)2Cy

= (1 − λ)a+ λb+ λ(1 − λ)(t0 − t1)2C
1

t0 − t1

(
I + (t0 + t1)C

)−1(b− a)

=
[
(1 − λ)I + λ(1 − λ)(t1 − t0)C(I + (t0 + t1)C)−1

]
a

+
[
λI − λ(1 − λ)(t1 − t0)C(I + (t0 + t1)C)−1

]
b .

Multiplying through by an invertible matrix gives the result. �
It is easy to check that all the matrices occurring above are indeed

invertible, because of the non-degeneracy criterion (14). Recall also that
in the straight-line case we have C = 0 and hence X(λ) is really just a
scalar. The sumset in the second assertion does not appear in the literature
on the straight line problem since it is only appropriate when dealing with
Nikodym rather than Kakeya sets. Although the elements of the matrices C
and the parameters t0, t1, λ are real, for our application we should consider
only matrices over Q, since each real number may be approximated to
within O(δ) by a rational, which corresponds to the same point in the
δ-discretisation.

We now show how sumset inequalities imply results about Kakeya sets.
For straight-line Kakeya sets this is due to Bourgain [B3], with the “plane-
varying” improvement noticed by Katz and Tao [KT1].
Lemma 16. (i) Suppose that for some matrix C we can choose t0, t1∈[−1, 1]
and λj ∈ (0, 1), j = 1, . . . , N such that Question 4 with Xj = X(λj) has
a positive answer. Then Kakeya sets of curves of the form (15) for this C
have Minkowski dimension at least n−1

2−ε .

(ii) If the same holds but with Xj = X(λj)T−1 where T is as in
Lemma 15 and none of the heights t0, t1, (1 − λj)t0 + λjt1 is 0, then the
corresponding curved Nikodym sets have Minkowski dimension at least
n−1
2−ε .

In both cases, if in fact we have a range of solutions, meaning that
Question 4 remains true as t0 is allowed to vary over some small interval
and the other heights to vary correspondingly, then we can obtain the better
lower bound of n−1

2−ε + 1.

Proof. Let E, A, B and G be as in Lemma 15.

(i) If E is a curved Kakeya set, then we may assume that nbdδ(E)
consists of δ−(n−1) tubes in distinct δ-separated directions. So by
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Lemma 15 we have δ−(n−1) ∼ #(A − B). By the assumption, this
means that

δ−(n−1) � max
{

#A,#B,max
j

#(A +X(λj)B)
}2−ε

and so one of the sets on the right-hand side has cardinality at least
δ−

n−1
2−ε . So nbdδ(E) includes a δ-ball at each of these points, so that

|nbdδ(E)| � δnδ−
n−1
2−ε , which says that E has Minkowski dimension

at least n−1
2−ε .

(ii) If E is a curved Nikodym set, then we may assume that nbdδ(E)
consists of δ−(n−1) tubes whose centres ω are distinct and δ-separated.
So by Lemma 15, we have δ−(n−1) ∼ #(A−TB) := #(A−B′) where
B′ := {Tb : b ∈ B}. By the assumption, this means that

δ−(n−1) � max
{

#A,#B′,max
j

#(A +X(λj)T−1B′)
}2−ε

and so one of the sets on the right-hand side has cardinality at least
δ−

n−1
2−ε , and since T−1B′ = B, this implies that nbdδ(E) includes δ-

balls as before, giving the same bound for the dimension.

If we have a range of solutions, as we vary the heights t0, t1 of A, B and
hence those of the other N slices, we always have at least one of the intersec-
tions having large cardinality. So one of them has this property for a range
of heights of positive measure. This means that instead of δ-balls, nbdδ(E)
actually includes small cylinders of width δ and height some constant c.
Hence ∣∣nbdδ(E)

∣∣ � cδn−1−n−1
2−ε

which shows that dim(E) ≥ n−1
2−ε + 1 as required. �

So we must try to answer Question 4. Clearly it always holds with ε = 0;
this recovers the “trivial bound” for which we proved the stronger maximal
function version in section 2. If we could obtain ε = 1 then the sets would
have dimension n; unfortunately this is not known for any matrices, and in
the scalar case with N = 1 has been shown to be false by Ruzsa [R].

5.2 The scalar case. We will begin by reviewing the known results in
the case where all of the Xj are multiples of the identity, and seeing what
results for curves can be deduced from them.

With three slices (N = 1) and X1 = I we have the problem Bourgain
originally used in [B3]. He proved the estimate with ε = 1/13, which was
quickly improved to 1/6 by Katz and Tao [KT1], i.e.

#(A− B) ≤ max
{

#A,#B,#(A + B)
}2−1/6

. (24)
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For all other rational multiples of I the existence of positive improvements
ε has been proved by Christ [Ch], although it is tedious to compute their
values.

The first four-slice estimate was again due to Katz and Tao, namely

#(A− B) ≤ max
{

#A,#B,#(A + B),#(A + 2B)
}2−1/4 (25)

as shown in [KT1]. In [KT2, Theorem 3.3] they showed that ε = 1/4 still
holds if, instead of using 1 and 2 as here, the two non-zero scalars simply
differ by 1. We shall generalise this for matrices shortly.

In the same theorem, they showed that six slices with scalars x, y, x̄, ȳ
satisfying (

1 + 1
x̄

)
x =

(
1 + 1

ȳ

)
y , (26)

also gave ε = 1/4. This relation allows us to obtain results for five slices
also, by taking two scalars to be equal (or by taking one to be ∞, in which
case we interpret A + ∞B := B).

They also proved an iteration result:
Theorem 17 (Katz & Tao [KT2]). If we can obtain ε = ε0 in Question 4
for some finite set of scalars, then for some larger set of scalars we can obtain

ε = 2−ε2
0

8−7ε0+ε2
0
. Hence by choosing larger and larger sets, the improvement ε

may be made as close to the fixed point 0.32486 . . . as we wish.

This result gives the lower bound of approximately 0.5969n + 0.403 for
the Minkowski dimension of straight-line Kakeya sets, which is currently
the best known for large n.

In order to apply these results in the curved case we must discover
whether X(λ), or X(λ)T−1 can be multiples of the identity.
Lemma 18. (i) X(λ) cannot be a multiple of the identity except in the
straight-line case.

(ii) X(λ)T−1 is a multiple of the identity for all λ if C2 = 0, but this
condition is not necessary to obtain the equality for some λ.

Proof. It will be helpful to write M = Mt0,t1 := (t1− t0)C
(
I+(t0 + t1)C

)−1

so that X(λ) := λ
1−λ [I+λM ]−1[I−(1−λ)M ]. Suppose that X(λ) = λ

1−λkI
where k = k(t0, t1, λ) is some scalar function. Then

I − (1 − λ)M = k(I + λM)
(1 − k)I = (kλ+ 1 − λ)M

which implies thatM is some (possibly zero) multiple of I. By the definition
of M this implies that C is a multiple of I. As observed before (page 1330)
this reduces to the straight-line case.
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On the other hand, if C2 = 0, then M = (t1 − t0)C and hence X(λ) =
λ

1−λ(I− (t1− t0)C), while T := t0
t1

(I+ t0C)(I+ t1C)−1 = t0
t1

(I− (t1− t0)C).
So X(λ) and T are parallel. Theorem 20 gives examples where X(λ) = T
but C2 �= 0. �

Theorem 19 (Nikodym result for C2 = 0). Nikodym sets of curves of
the form (15) with C2 = 0 have Minkowski dimension at least n−1

2−ε + 1 ≈
0.5969n + 0.403, where ε is the smallest root of ε3 − 6ε2 + 8ε− 2.

Proof. In this case, for all t0, t1 the sumsets are just the scalar ones
A + λ

1−λB. Clearly by choosing suitable heights these can be any scalars
we like, so this follows immediately from Katz and Tao’s sumset result
(Theorem 17). �

Many other families of curves admit some good bound for the Nikodym
sets, however. To use Katz and Tao’s simple three-slice estimate (24), all
we require is that there exist t0, t1 ∈ [−1, 1] \ {0} and λ ∈ (0, 1) \ { t0

t0−t1
}

such that X(λ) = T . These equations are difficult to solve, but where the
matrix C is invertible, or where one of A,B is positive definite so that we
may assume that C is diagonal and hence commuting, we can simplify the
problem.
Theorem 20. Suppose that C is either diagonal or invertible. Then
X(λ) = T if and only if C satisfies the quadratic equation

(t20t
2
2 + t21t

2
2 − 2t20t

2
1)C2 + (t0 + t1 + t2)(t0t2 + t1t2 − 2t0t1)C

+ (t0t2 + t1t2 − 2t0t1)I = 0 (27)
where t0, t1 and t2 := (1 − λ)t0 + λt1 are the heights of the planes. If this
is so for some choice of t0, t1, t2 ∈ (−1, 1), then the corresponding curved
Nikodym sets have Minkowski dimension at least 6n−6

11 , while if there is a
whole range of such heights then the dimension is at least 6n+5

11 .

Remark. For any such heights to exist, C must have at most two eigen-
values h and k with

∣∣ 1
h + 1

k

∣∣ < 3. Some cases in which h and k satisfy this
quadratic for a range of heights are as follows:

(i) If the eigenvalues h and k are real, then the necessary condition∣∣ 1
h + 1

k

∣∣ < 3 is also sufficient.
(ii) If they are complex, so h = k̄ = α + iβ, α, β ∈ R, then it is enough

for either of the following to hold:
(a) max

{
2|α| − α2, 1

2

(− 1 − 2α2 +
√

1 + 16α2
)} ≤ β2 ≤ 3α2.

(b) β2 ≥ max
{

2|α| − α2, 1
2

(− 1 − 2α2 + 1
2

√
16α2 + 24|α| + 1

)}
.

In particular, |α| ≥ 2.36 . . . suffices.
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Proof of the theorem and remark. When C is diagonal or invertible, the
equation X(λ) = T can be easily rearranged to give (27). Thus for these
cases, we require that C should have at most two eigenvalues. Moreover, if
the eigenvalues are distinct, then we requireC to be diagonalisable (over C),
while in the case of one repeated eigenvalue we need the Jordan normal
form of C to contain only 1 × 1 and 2 × 2 blocks. By considering the ratio
of the last two coefficients we find that the sum of the reciprocals of the
eigenvalues must be equal to −(t0+t1+t2) ∈ (−3, 3), which imposes further
restriction on C.

(i) If C has real eigenvalues, then they must lie in (−1/2, 1/2) by (14),
whence the necessary condition

∣∣ 1
h + 1

k

∣∣ < 3 implies that they are of opposite
sign. Without loss of generality |h| ≤ |k|. We exploit homogeneity by
setting t0 = t, t1 = bt, t2 = ct. Then (27) becomes
Q(X) := (2b2−b2c2−c2)X2+(b+c+1)(2b−bc−c)X+(2b−bc−c) = 0 (28)

which should have roots ht and kt. These lie in (−1/2, 1/2) and have
opposite sign so that the sum of their reciprocals is in (−3, 3). So we
choose b, c so that Q(0) > 0, Q(1/2) < 0 and Q(−1/2) < 0. It is easy to
check that this is so if we choose b ∈ (0, 1) and

−6 − 4b− 2b2 + 2
√

7b4 + 28b3 + 52b2 + 48b+ 9
2(b2 + 2b+ 3)

< c <
2b

1 + b
.

Consider the region of those b, c satisfying this for which b+c+1 >
∣∣ 1
h + 1

k

∣∣.
This is shown in Figure 7, and is not empty provided that

∣∣ 1
h + 1

k

∣∣ < 3.
Let X+(b, c),X−(b, c) denote the roots of Q obtained by the quadratic

formula, taking the positive or negative square root respectively, and define
the function f(b, c) := −(b + c + 1)X+(b, c), which is continuous on the
interior of the region.

On the upper curve we have X+ = X− = 0 and so f = 0, while on the
lower curve X− = 1/2. The ratio of the last two coefficients of the quadratic
function Q tells us that 1

X+ + 1
X− = −(b+ c+1), so that on the lower curve

we have f(b, c) = b+c+1
b+c+3 which tends to 3/5 as (b, c) → (1, 1). So provided

that 1 + h/k ∈ (0, 3/5) we can find a curve of points (b0, c0) on which
f(b0, c0) = 1 + h/k. We have |X+(b0, c0)| =

∣∣ 1+h/k
b0+c0+1

∣∣ < |1+h/k|
| 1
h
+ 1

k
| = |h|, so

that the heights t := X+(b0, c0)/h, t1 := b0t and t2 := c0t are all in (−1, 1).
Finally observe that

1 + h/k = −X+(b0, c0)(b0 + c0 + 1) = X+
(

1
X+ + 1

X−
)

= 1 + th/X−

so that X−(b0, c0) = tk as required. Observing that the inequalities
∣∣ 1
h + 1

k

∣∣
< 3 and |h| ≤ |k| imply 0 < 1 + h/k < 3/5 for h, k ∈ (−1/2, 1/2) gives the
result stated.
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c

b
1

1

Figure 7: The region −6−4b−2b2+2
√

7b4+28b3+52b2+48b+9
2(b2+2b+3) < c < 2b

1+b

and b+ c+ 0 >
∣∣ 1
h + 1

k

∣∣.

(ii) If the eigenvalues of C are complex conjugates α± iβ, consider the
map g : R

3 → R
2 given by

g(t0, t1, t2) =
(
−(t0 + t1 + t2),

t0t2 + t1t2 − 2t0t1
t20t

2
2 + t21t

2
2 − 2t20t

2
1

)
.

The two expressions on the right are the sum of the reciprocals of the roots
and the product of the roots respectively. So we have to solve g(t0, t1, t2) =(

2α
α2+β2 , α

2 + β2
)
.

(a) Take t1 = −t0. Then solving gives

t0 = −t1 =

√
3α2 − β2

α2 + β2
t2 =

−2α
α2 + β2

which are in (−1, 1) if and only if α and β are as claimed.
(b) Take t2 = −t0. This is not so easily solved, but t1 = −2α

α2+β2 while t0
satisfies the following cubic:

(α4 + 2α2β2 + β4)t31 + (β2 − 3α2)t1 − 6α = 0.

By considering the sign of this cubic at t1 = −1, 0, 1, we can force
a sign change in the interval (−1, 1) by letting α and β satisfy the
inequality stated.

In both cases it is easy to check that the Jacobian of g has full rank, so
that we can use the implicit function theorem to find not just one solution
for (t0, t1, t2) but a whole range.
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Once we have found ranges of heights so that the quadratic is satisfied,
the result follows from (24) and Lemma 16. �

It is likely that there are many other complex pairs h, k which work,
however it seems difficult to describe the set of all such pairs concisely.

5.3 Non-scalar matrices. In the case of curved Kakeya rather than
Nikodym sets, the matrix X(λ) is never a multiple of I, nor is there a
matrix T which it might cancel with. So we have no option but to try
to answer Question 4 with the Xj not multiples of I. This seems hard.
However, we have some negative results, and have been able to generalise
one of the positive results from the scalar case. We begin with a rather
trivial observation.

Lemma 21. If all of the Xj are block diagonal with blocks of the same
size, then a sumset inequality for these Xj implies one for each of the sets
of blocks, with the same ε.

Proof. Obvious by letting A,B consist of vectors with zeros everywhere
except in the block of interest. �

The converse seems likely to be false – we would need not only that
“collisions” often occur in each block of coordinates, but that they often
occur in all coordinates at the same time.

We now reveal the easy but disappointing fact that three slices are
simply not enough in the matrix case.

Proposition 22. If X is not a multiple of the identity, then the power of
2 in

#(A− B) ≤ max
{

#A,#B,#(A +XB)
}2

is best possible.

Proof. Choose a vector v that is not an eigenvector of X, and let B consist
of M equally spaced points along this direction. Set A = {Xb : b ∈ B},
that is, M equally spaced points along the direction Xv. Then with G =
A×B, clearly #(A +XB) is about 2M , while since v and Xv are linearly
independent, #(A− B) is about M2. �

Similar observations with more slices give another negative result.

Proposition 23. Suppose that there exists v ∈ R
n such that all the

vectors Xjv are rational multiples of some fixed vector w which is not
parallel to v itself. (That is, v is a secular vector of each pair of matrices, but
is not an eigenvector.) Then there can be no positive answer to Question 4.
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This theorem is rather weak, but it does at least rule out the case where
the matrices Xj are all multiples of each other but not of the identity,
and combining this with Lemma 21 gives further examples. This makes
sense because taking more than three slices is not really giving much more
information.

Proof. We have Xjv = pj

qj
w where pj, qj are non-zero coprime integers. Let

M >
∏N

i=1 piqi be a large integer, and set

A =
{
n

( N∏
i=1

piqi

)
w : n = 1, . . . ,M

}

B =
{
n

( N∏
i=1

qi

)
v : n = 1, . . . ,M

}
.

Then if G = A× B, we find that

A +XjB =
{
pj

(∏
k �=j

qk

)[
qj

(∏
i�=j

pi

)
m+ n

]
w : m,n = 1, . . . ,M

}

A− B =
{
m

( N∏
j=1

piqi

)
w − n

( N∏
i=1

qi

)
v, n = 1, . . . ,M

}

and we have the combinatorial task of finding their cardinality. Since w
and v are linearly independent it is obvious that #(A− B) = M2. To find
the cardinality of A +XjB, first write Qj := qj

∏
i�=j pi. We need to know

how many distinct numbers (mQj + n) there are, so first let m < M be
fixed. Since M > Qj , there are Qj such numbers between mQj + 1 and
(m + 1)Qj inclusive, after which the remaining values overlap with those
for the next m. When m = M we just get all the numbers MQj + 1 up to
MQj +M . Hence we find that #(A +XjB) = Qj(M − 1) +M . So A and
B and all the sumsets have cardinality about M while the difference set is
about M2. So there can be no positive answer to Question 4. �

This result shows us exactly what goes wrong in Bourgain’s “worst case”
example, and more generally for the parabolas for which we have proved
good results in the Nikodym case.

Corollary 24. For a Kakeya set of curves of the form (15) with C2 = 0
we cannot prove any non-trivial bound by sumset methods.

Proof. If C2 = 0, then we can calculate

X(λ) =
λ

1 − λ

(
I + (t0 − t1)C

)
.
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So we would need a sumset result where the Xj were all multiples of each
other but not of I. But we have already seen in Proposition 23 that in such
a case no non-trivial estimate can hold. �

It is interesting that curves that behave well for Nikodym should not
do so for Kakeya. We shall discuss this in the final section.

So far this picture looks bleak. However, we can prove one or two
results in the positive direction, analogous to those in the scalar case. Here
we generalise the four-slice result (25) to the matrix setting. For legibility,
write X1 = X, X2 = Y .
Proposition 25. If Y −X = I and X is invertible, then

#(A− B) ≤ max
{

#A,#B,#(A +XB),#(A + Y B)
}7/4

.

Proof. This is just as in [KT1], so we only give an outline. Start by
discarding elements of G until #(A− B) = #G, and denote the maximum
on the right-hand side by M . We need to show that #G ≤M7/4.

The idea is to count trapezia: sets of four elements of G consisting of
two “sides” whose endpoints have the same value of a while the endpoints
of the remaining two sides share values of a+ Y b and b respectively. More
precisely, a trapezium is a set{

(a0, b0), (a0, b
′
0), (a1, b1), (a1, b

′
1)
} ⊆ G

such that a0 + Y b0 = a1 + Y b1 and b′0 = b′1.
First count the number of pairs in G that share their value of a. This is

#
{

(a, b), (a, b′) ∈ G} =
∑
a∈A

#
{
b : (a, b) ∈ G}2

≥ #G2

#A
by Cauchy–Schwarz. A trapezium consists of two such pairs that share
their value of (a + Y b, b′), so by Cauchy–Schwarz again we find that the
number of trapezia is at least

(#G2/#A)2

#(A + Y B)#B ≥ #G4

M4
.

But we also have the following algebraic fact:

a1 − b′1 = (I +X−1)(a0 +Xb0) −X−1(a0 +Xb′0) − Y b1 .

So, since #(A−B) = #G, knowing (a0 +Xb0), (a0 +Xb′0), and b1 is enough
to determine (a1, b

′
1), and hence the whole trapezium by substituting back.

So the number of trapezia is at most M3, which together with the lower
bound of #G4/M4 gives the result. �
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To apply this to the Kakeya problem with curves, we need conditions
on the curves (in terms of C) that guarantee the existence of t0, t1 ∈ [−1, 1]
and λ, µ ∈ (0, 1) such that X(λ)−X(µ) = I. Unfortunately, in many cases
this cannot be done. This is hardly surprising, since for fixed C, we are
trying to satisfy (n − 1)2 equations with only four unknowns. As with the
Nikodym sets, we end up trying to make C satisfy a polynomial, whose
coefficients now depend on the four heights. However, in the Kakeya case
we are able to deal with the λ and µ first, independently of t0 and t1, which
makes the problem easier.

Proposition 26. If the matrix M := (t1 − t0)C(I + (t0 + t1)C)−1 is
nilpotent, then X(λ) −X(µ) is never equal to the identity.

Proof. Let k be the highest power ofM that is non-zero. Then [I+λM ]−1 =∑k
0(−1)nλnMn, and hence

X(λ) −X(µ) =
(

λ

1 − λ
− µ

1 − µ

)
I +

k∑
1

(−1)nMn

(
λn

1 − λ
− µn

1 − µ

)
.

If this equals the identity, then some linear combination of I,M,M2, . . . ,Mk

is zero. But this cannot happen because the minimum polynomial of a
nilpotent matrix is xk+1. �

This cuts down the list of possible candidates for C. Note in particular
that all matrices with C2 = 0 make M nilpotent for every choice of t0, t1.
Obviously invertible matrices C are not ruled out, and nor are diagonal
matrices, and whenever either A or B is positive definite we can fix C to
be diagonal by a change of coordinates.

Proposition 27. Suppose that C is invertible or diagonal. Then
X(λ) −X(µ) = I if and only if M := (t1 − t0)C(I + (t0 + t1)C)−1 sat-
isfies the following quadratic:

M2 +
(

2
µ

+
1

1 − µ
− 1

1 − λ

)
M +

(
1
λµ

− 1
µ(1 − λ)

+
1

λ(1 − µ)

)
I = 0 .

(29)
This quadratic cannot have both its roots real and in (−1, 1), but suitable
λ, µ ∈ (0, 1) can be chosen to give any desired roots l and m such that
l +m < −2(1 +

√
2).

Proof. By Hörmander’s criterion (14), C is invertible or diagonal if and
only if M is. It is then easy to rearrange the equation X(λ) − X(µ) = I
to give (29). So M must either be diagonalisable with at most two distinct
eigenvalues, or have one repeated eigenvalue and have Jordan normal form
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consisting only of 1×1 and 2×2 blocks. Suppose thatM has two eigenvalues
l and m. These are either real or form a complex conjugate pair, and so
both their sum and their product are real. We obtain two simultaneous
equations by considering the sum and product of the roots of (29):

1
λµ

− 1
µ(1 − λ)

+
1

λ(1 − µ)
= lm , (30)

2
µ

+
1

1 − µ
− 1

1 − λ
= −(l +m) . (31)

Now (31) is linear in λ so we solve it to obtain

λ = 1 − µ(1 − µ)
2 − µ+ µ(1 − µ)(l +m)

.

Of course this needs to lie in (0, 1). Tedious calculation shows that in the
case l+m > −2(1+

√
2) it does so for all µ ∈ (0, 1). For l+m < −2(1+

√
2)

it does so provided we take

µ ∈
(

0, 2−(l+m)−
√

(l+m+2)2−8

2(1−l−m)

)
or µ ∈

(
2−(l+m)+

√
(l+m+2)2−8

2(1−l−m) , 1
)
. (32)

Next we substitute this expression for λ back into (30). After rearranging
we obtain an equation which is quartic in µ and quadratic in l and m. With
the help of MAPLE we express it as

0 = [lm(l +m− 1)]µ4 +
[
2lm+ (l +m)

(
(l +m)2 − lm− 1

)]
µ3

+
[
(l +m)(4 − (l +m)) − 1 − 2lm

]
µ2 + 4(1 − l −m)µ− 4

(33)

= −[µ2(1−µ)(µm+1)
]
l2 +

[
µ(µ2m−µm+µ−2)(µm−µ+2)

]
l

+ (µ2m− µm+ µ− 2)(µm− µ+ 2)
(34)

=: q(µ, l,m) .
Note that this is a real-valued function of µ. For the second part we use a
näıve approach via the intermediate value theorem. Setting µ = 0 gives −4,
while µ = 1 gives −(l+1)(m+1). This is positive only when l and m are real
with exactly one being less than −1. Similarly we obtain a positive result
by setting µ = −2

m−1 or −2
l−1 , but these too are only permitted if l,m are real

and one is less than −1. However, if we instead substitute in either endpoint
from equation (32) (which is allowable if and only if l +m < −2(1 +

√
2))

we obtain
(l +m)2 ± (l +m− 2)

√
(l +m+ 2)2 − 8

2(l +m− 1)2

which by more tedious rearranging is seen to be positive for all l,m.
For the first assertion we show that the maximum of the function q over

the region (µ, l,m) ∈ [0, 1]× [−1, 1]× [−1, 1] is zero, and moreover that this
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is attained only for µ = 1. For interior maxima we use the version (34) of
the equation as a quadratic in l. Its stationary point (a maximum) occurs
at

l =
(µ2m− µm+ µ− 2)(µm− µ+ 2)

2µ(1 − µ)(µm + 1)
.

Now if |m| < 1 then the denominator is positive, so that the whole fraction
will be less than −1 if

(µ2m− µm+ µ− 2)(µm− µ+ 2) < −2µ(1 − µ)(µm+ 1)
which rearranges to

µ2(1 − µ)m2
(
3(1 − µ)2 + 1

)
(µm+ 1) > 0 .

So there is no zero of ∂q/∂l in the region, except perhaps when µ = 1 and
m = −1. We find that q(1, l,−1) ≡ 0. Now to check the other boundaries:

q(µ, 1,m) = −m2µ2(1 − µ2) − 2(µm+ 1)(2 − µ2)

q(µ,−1,m) = −m2µ2(1 − µ)2 − 2(µm+ 1)(1 − µ)
(
(1 − µ)2 + 1

)
.

Both of these are clearly non-positive, and give zero only at (1, l,−1) as we
have already seen, and at (1, 1,m). �

Unfortunately, M cannot have real eigenvalues outwith (−1, 1). This
follows from the non-degeneracy criterion (14) and that fact that l is an
eigenvalue of M if and only if

det
[
I +
((

1 − 1
l

)
t0 +

(
1 + 1

l

)
t1
)
C
]

= 0 .
However, if the eigenvalues are complex conjugate we obtain a Kakeya
result as follows.
Theorem 28. Suppose that C is invertible and diagonalisable over C

and has only two eigenvalues α ± βi. Then if either α is sufficiently large

(|α| > 1+
√

2
2 will do) or β is large compared to α, there is a lower bound of

4n+3
7 for the curved Kakeya sets associated to C.

Proof. We have seen that this holds if we can make l +m < −2(1 +
√

2).
But l + m is simply twice the real part of the eigenvalues of M :=
(t1 − t0)C(I + (t0 + t1)C)−1, so if we let the eigenvalues of C be α± iβ as
before, we require

(t1 − t0)
α+ (t0 + t1)(α2 + β2)

1 + 2(t0 + t1)α+ (t0 + t1)2(α2 + β2)
< −(1 +

√
2
)
.

It helps to write t1 = 1 − 2ε, t0 = −1 + ε, where ε < 2/3 may be taken as
small as we wish. The inequality becomes

α(1 − εα) − εβ2

(1 − εα)2 + ε2β2
< −1 +

√
2

2 − 3ε
.
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Clearly this is satisfied for small ε and large β: Choosing ε � 1/|α| shows
that β � |α| + 1 will work. Alternatively if α < −1+

√
2

2 then we simply
need to take ε very small. If α > 1+

√
2

2 we simply swap t0 and t1. In
all of these cases, we have in fact found a whole family of solutions for
varying ε so there is no problem with using the argument about varying
the heights of the planes which gave the extra +1 for the dimension bound
in Lemma 16. �

So we get a non-trivial result in some cases, although it is not easy to
give the criteria any geometric interpretation.

However, about the case where C is not invertible, or where C has more
than two eigenvalues or two real ones, we cannot say anything other than
that the above proof will not work.

We have not yet considered using four slices in the Nikodym case. This
is more complicated, because we require X(λ) − X(µ) = T instead of I,
which means that we cannot write this in terms of M and so we must look
at all four variables t0, t1, λ, µ together, rather than in two stages as we did
above. By the methods already used, we can show that if C is diagonal or
invertible then it must satisfy a cubic equation, and that the reciprocals
of the roots (the eigenvalues of C) must have the same sum as minus the
heights of the slices, as we found in section 5.2. As one would expect, it is
difficult to say anything more than that explicitly.

So what hope is there for the use of arithmetic methods? If we still
want to use only four slices for cases not covered above, then we shall have
to prove a new sumset result, that is, find a more flexible condition than
X(λ) −X(µ) = I which guarantees that the difference set is not too much
larger than the two original sets and their X(λ) and X(µ) matrix sumsets.
Or we could instead look at using more slices – the techniques in [KT2]
suggest that relations like

0 = X(λ) −X(µ) +X(ν)−1X(λ)

or 0 = X(λ) −X(µ) +X(ν)−1X(λ) −X(κ)−1X(µ) ,

which are analogues of (26), would suffice. But of course these lead to higher
degree polynomials in more variables which make it harder to compute
sufficient conditions for suitable solutions to exist.
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6 Final Remarks

We have now seen two non-trivial positive results for curves of the form (15)
where C2 = 0, namely the n+2

2 bound for the Nikodym maximal function
(Theorem 12) and the bound of approximately 0.5969n + 0.403 for the
Minkowski dimension of the Nikodym sets (Theorem 19). This condition
on the matrix C has a surprising link with Bourgain’s “worst case” example
for the curved Kakeya problem. That example had C = ( 0 0

1 0 ) which clearly
satisfies the condition. This is no accident; the following converse is also
true:

Proposition 29. If C2 = 0, then the corresponding Kakeya sets can have
dimension as low as n − rank(C). In particular, in odd dimensions, the
“trivial” lower bound of n+1

2 can be attained, while in even dimensions
there can be sets with dimension at least as low as n+2

2 .

Proof. The curves are as in (15) where we may assume that C is in rational
canonical form. Then C2 = 0 if and only if C consists only of 1 × 1 blocks
( 0 ) and 2 × 2 blocks ( 0 1

0 0 ). The rank of B is the number of 2 × 2 blocks,
which can be at most n−1

2 if n is odd, and n−2
2 if n is even. We can now

imitate the proof on page 1327 in each block, and the result follows. �

So it seems that the same curves that allow no good bound in the Kakeya
case are particularly amenable to proving good bounds in the Nikodym case.
This is rather curious, and may reveal a kind of duality between the Kakeya
and Nikodym problems. Up until now Restriction/Kakeya and Bochner–
Riesz/Nikodym have been thought of as essentially the same [C2], [T], but
the above suggests they might be better described as dual in some way,
or even opposite. This idea is not so strange when one remembers that
curvature of the surface in question is good when considering Restriction
(since it causes decay of the Fourier transform) but bad for Bochner–Riesz
(Bochner–Riesz for squares is trivial).

This also shows the importance of Carbery’s transformation

(x′, xn) �→ (x′/xn, 1/xn)

which relates the two classes of problems. This does not preserve parabolas;
rather it maps them to hyperbolas. Another way of phrasing the above
is that if for a given matrix, the parabolas can be tightly packed, then
the hyperbolas cannot. This would leave straight lines as an overlapping
middle case, the only family that this transformation leaves unchanged.
These ideas will be explored further in [CW].
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