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POSITIVE MASS THEOREM FOR
THE YAMABE PROBLEM ON SPIN MANIFOLDS

B. Ammann and E. Humbert

Abstract. Let (M, g) be a compact connected spin manifold of dimension
n ≥ 3 whose Yamabe invariant is positive. We assume that (M, g) is locally
conformally flat or that n ∈ {3, 4, 5}. According to a positive mass theorem
by Schoen and Yau the constant term in the asymptotic development of
the Green’s function of the conformal Laplacian is positive if (M, g) is not
conformally equivalent to the sphere. The proof was simplified by Witten
with the help of spinors. In our article we will give a proof which is even
considerably shorter. Our proof is a modification of Witten’s argument,
but no analysis on asymptotically flat spaces is needed.

1 Introduction

The positive mass conjecture is a famous and difficult problem which origi-
nated in physics. The mass is a Riemannian invariant of an asymptotically
flat manifold of dimension n ≥ 3 and of order τ > n−2

2 . The problem is
to prove that the mass is positive if the manifold is not conformally diffeo-
morphic to (Rn, can). Two good references on this subject are [LP], [H].

Schoen and Yau [S2], [SY1] gave a proof if the dimension is at most 7
and Witten [W], [B] proved the result if the manifold is spin. The positivity
of the mass has been proved in several other particular cases (see, e.g. [S1]),
but the conjecture in its full generality still remains open.

This problem played an important role in geometry because its solution
led to the solution of the Yamabe problem. Namely, let (M,g) be a com-
pact connected Riemannian manifold of dimension n ≥ 3. In [Y] Yamabe
attempted to show that there is a metric g̃ conformal to g such that the
scalar curvature Scalg̃ of g̃ is constant. However, Trudinger realized that
Yamabe’s proof contained a serious gap. It was the achievement of many
mathematicians to finally solve the problem of finding a conformal metric g̃
with constant scalar curvature. The problem of finding a conformal g̃ with
constant scalar curvature is called the Yamabe problem. As a first step,
Trudinger [T] was able to repair the gap if a conformal invariant named
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the Yamabe invariant is non-positive. The problem is much more difficult
if the Yamabe invariant is positive, which is equivalent to the existence of
a metric of positive scalar curvature in the conformal class of g. Aubin
[Au] solved the problem when n ≥ 6 and M is not locally conformally flat.
Then, in [S1], Schoen completed the proof that a solution to the Yamabe
problem exists by using the positive mass theorem in the remaining cases.
Namely, assume that (M,g) is locally conformally flat or n ∈ {3, 4, 5}. Let

Lg =
4(n − 1)
n− 2

∆g + Scalg

be the conformal Laplacian of the metric g and P ∈ M . There exists a
smooth function Γ, the so-called Green’s function of Lg, which is defined
on M − {P} such that LgΓ = δP in the sense of distributions (see for
example [LP] ). Moreover, if we let r = dg( . , P ), then in conformal normal
coordinates Γ has the following expansion at P :

Γ(x) =
1

4(n − 1)ωn−1rn−2
+A+ α(x) , ωn−1 = vol(Sn−1) ,

where A ∈ R. In addition, α is a function defined on a neighborhood of
P and α(0) = 0. On this neighborhood of P , the function α is smooth
if (M,g) is locally conformally flat, and it is a Lipschitz function for n =
3, 4, 5. Hence, in both cases α = O(r). Schoen has shown in [S1] that
the positivity of A would imply the solution of the Yamabe problem. He
also proved that A is a positive multiple of the mass of the asymptotically
flat manifold (M,Γ

4
n−2 g). Hence, in these special cases the solution of the

Yamabe problem follows from the positive mass theorem, which was proven
by Schoen and Yau in [SY1,2].

In our article, we will give a short proof for the positivity of the constant
term A in the development of the Green’s function in case that M is spin
and locally conformally flat. The statement of this paper is weaker than
the results of Witten [W] and Schoen and Yau [S2], [SY1]. The proof
in our paper is inspired by Witten’s reasoning, but we have considerably
simplified many of the analytic arguments. Witten’s argument is based on
the construction of a test spinor on the stereographic blowup which is both
harmonic and asymptotically constant. We show that the Green’s function
for the Dirac operator on M can be used to construct such a test spinor.
In this way, we obtain a very short solution of the Yamabe problem using
only elementary and well-known facts from analysis on compact manifolds.

The last section shows how to adapt our proof to arbitrary spin man-
ifolds of dimensions 3, 4 and 5. In dimension 3 the proof is completely
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analogous. However, in dimensions 4 and 5, additional estimates have to
be derived in order to get sufficient control on the Green’s function of the
Dirac operator.

2 The Locally Conformally Flat Case

In this section, we will assume that (M,g) is a compact, connected, locally
conformally flat spin manifold of dimension n ≥ 3. The Dirac operator is
denoted by D. A spinor ψ is called D-harmonic if Dψ ≡ 0. As the solution
of the Yamabe problem in the case of non-negative Yamabe invariant follows
from [T], we will assume that the Yamabe invariant is positive. Hence, the
conformal class contains a positive scalar curvature metric. As dimkerD
is conformally invariant, we see that dimkerD = 0. We fix a point P ∈M .
We can assume that g is flat in a small ball BP (δ) of radius δ about P ,
and that δ is smaller than the injectivity radius. Let (x1, . . . , xn) denote
local coordinates on BP (δ). On BP (δ) we trivialize the spinor bundle via
parallel transport.
Lemma 2.1. Let ψ0 ∈ ΣPM . Then there is a D-harmonic spinor ψ on
M \ {P} satisfying

ψ|BP (δ) = x
rn · ψ0 + θ(x)

where θ(x) is a smooth spinor on BP (δ).
It is not hard to see, that in the sense of distributions

Dψ = ωn−1δPψ0 ,

where δP is the δ-function centered at P . Hence, by definition, ω−1
n−1ψ is

the Green’s function of the Dirac operator.
Proof. Our construction of ψ follows the construction of the Green’s func-
tion G of the Laplacian in [LP, Lemma 6.4]. Namely, we take a cut-off
function η with support in BP (δ) which is equal to 1 on BP (δ/2). We
set Φ = η 1

rn−1
x
r · ψ0 where ψ0 is constant. The spinor Φ is D-harmonic on

BP (δ/2)\{P}. OutsideBP (δ) we extend Φ by zero, and we obtain a smooth
spinor on M \{P}. As DΦ|BP (δ/2) ≡ 0, we see that DΦ extends to a smooth
spinor on M . Using the selfadjointness of D together with kerD = {0} we
know that there is a smooth spinor θ1 such that Dθ1 = −DΦ. Obviously,
ψ = Φ + θ1 is a spinor as claimed. �

We now show that the existence of ψ implies the positivity of A.
Theorem 2.2. Let (M,g) be a compact connected locally conformally
flat manifold of dimension n ≥ 3. Then, the mass A of (M,g) satisfies
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A ≥ 0. Furthermore, equality holds if and only if (M,g) is conformally
equivalent to the standard sphere (Sn, can).

Proof. Let ψ be given by Lemma 2.1. Without loss of generality, we
may assume that |ψ0| = 1. Let Γ be the Green’s function for Lg, and
G = 4(n− 1)ωn−1Γ. Using the maximum principle, it is easy to see that G
is positive [LP, Lemma 6.1]. We set

g̃ = G
4

n−2 g .

Using the transformation formula for Scal under conformal changes, we
obtain Scal

�g = 0. We can identify spinors on (M \ {P},g̃) with spinors
(M \ {P},g) such that the fiber wise scalar product on spinors is preserved
[Hit], [Hi]. Because of the formula for the conformal change of Dirac oper-
ators, the spinor

ψ̃ := G−n−1
n−2ψ

is a D-harmonic spinor on (M \ {P},g̃), i.e. if we write D̃ for the Dirac op-
erator in the metric g̃, we have D̃ψ̃ = 0. By the Schrödinger–Lichnerowicz
formula we have

0 = D̃2ψ̃ = ∇̃∗∇̃ψ̃ +
Scal

�g

4
ψ̃ = ∇̃∗∇̃ψ̃ .

Integration over M \BP (ε), ε > 0 and integration by parts yields

0 =
∫

M\BP (ε)
(∇̃∗∇̃ψ̃, ψ̃)dv

�g =
∫

M\BP (ε)
|∇̃ψ̃|2dv

�g −
∫

SP (ε)
(∇̃

�ν ψ̃, ψ̃)ds
�g .

Here SP (ε) denotes the boundary ∂BP (ε), ν̃ is the unit normal vector on
SP (ε) with respect to g̃ pointing into the ball, and ds

�g denotes the Rieman-
nian volume element of SP (ε). Hence, we have proved that

∫

M\BP (ε)
|∇̃ψ̃|2dv

�g =
1
2

∫

SP (ε)
∂
�ν |ψ̃|2ds�g . (2.3)

If ε is sufficiently small, we have

ν̃ = −G− 2
n−2 ∂

∂r = −(
ε2 + o(ε2)

)
∂
∂r , (2.4)

ds
�g = G

2(n−1)
n−2 dsg = G

2(n−1)
n−2 εn−1ds =

(
ε−(n−1) + o(ε−(n−1))

)
ds , (2.5)

where ds stands for the volume element of (Sn−1, can), and

|ψ̃|2 = G−2n−1
n−2 |ψ|2

=
(

1
rn−2 + 4(n− 1)ωn−1A+ rα1(r)

)−2n−1
n−2

∣
∣ 1
rn−1

x
r · ψ0 + θ(x)

∣
∣2 ,
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where α1 is a smooth function. This gives

|ψ̃|2 =
(
1 + 4(n− 1)ωn−1Ar

n−2 + rn−1α1(r)
)−2n−1

n−2

×
(

1 + 2rn−1Re
(〈

x
r · ψ0, θ(x)

〉)
+ r2(n−1)|θ(x)|2

)

.

Noting that ∇r(x
rψ0) = 0, we get that on SP (ε) and for ε small,

∂r|ψ̃|2 = −8(n − 1)2ωn−1Aε
n−3 + o(εn−3) . (2.6)

Plugging (2.4), (2.5) and (2.6) into (2.3), we get that, for ε small,

0 ≤
∫

M\BP (ε)
|∇̃ψ̃|2dv

�g = 4(n − 1)2ωn−1A

∫

Sn−1

ds + o(1) (2.7)

= 4(n − 1)2ω2
n−1A+ o(1) . (2.8)

This implies that A ≥ 0.
Now, we assume that A = 0. Then it follows from (2.7) that ∇̃ψ̃ = 0

on M \ {P} and hence, ψ̃ is parallel. Since the choice of ψ0 is arbi-
trary, we obtain in this way a basis of parallel spinors on (M \ {P}, g̃).
This implies that (M \ {P}, g̃) is flat and hence isometric to euclidean
space. Let I : (M \ {P}, g̃) → (Rn, can) be an isometry. We define f(x) =
1 + ‖I(x)‖2/4, x ∈ M . Then M \ {P}, f−2g̃ = f−2G

4
n−2 g is isometric to

(Sn \ {N}, can). The function f−2G
4

n−2 is smooth on M \ {P} and can be
extended continuously to a positive function on M . Hence, M is conformal
to (Sn, can).

3 The Case of Dimensions 3, 4 and 5

Now under the assumption that the dimension of M is 3, 4 or 5 we show how
to adapt the proof from the last section to the case in which M is not con-
formally flat. For simplicity, in this article, we work with the synchronous
trivialization, but the same conclusions work with the Gauduchon–
Bourguignon-trivialization [AHM]. Let us assume that (M,g) is an ar-
bitrary connected spin manifold of dimension n ∈ {3, 4, 5}. We choose any
P ∈ M . After possibly replacing g by a metric conformal to g, we may
assume that Ricg(P ) = 0. Let ρ = (x1, . . . , xn) be a system of normal co-
ordinates defined on U and centered at P . As before, let Γ be the Green’s
function of the conformal Laplacian Lg, G = 4(n− 1)ωn−1Γ.

We trivialize TM and ΣM by synchronous frames ei and αi, i.e. by
frames which are parallel along radial geodesics. We assume ei(P ) = ∂

∂xi (P ).
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Let us introduce a convenient notation for sections in this trivialization.
For v =

∑
viei(P ) : U → TPM ∼= R

n we define v : U → TM , v(q) =
∑
vi(q)ei(q), i.e. v is the coordinate presentation for v. Similarly, for

ψ : U → ΣPM = ΣR
n, ψ =

∑
ψiαi(P ) we write ψ(q) =

∑
ψi(q)αi(q).

In this notation, x is the outward radial vector field whose length is the
radius. Similarly, we write D for the Dirac operator on flat R

n and D for
the Dirac operator on (M,g).

Proposition 3.1. Let (M,g) be a compact connected spin manifold of
dimension n ∈ {3, 4, 5}. Let P ∈M and ψ0 ∈ ΣPM , then there is a spinor
Ψ(ψ0) which is D-harmonic on M \ P , and which has in the synchronous
trivialization defined above the following expansion at P :

Ψ(ψ0) = x̄
rn · ψ0 + Θ1(x) if n = 3 ,

Ψ(ψ0) = x̄
rn · ψ0 + Θ2(x) if n = 4 ,

Ψ(ψ0) = x̄
rn · ψ0 + α(x) + Θ3(x) if n = 5 ,

where Θ1 ∈ C0,a(Rn) for all a ∈ ]0, 1[ , where, for all ε > 0, rεΘ2, r
εΘ3,

r1+ε|∇Θ1|, r1+ε|∇Θ2| and r1+ε|∇Θ3| are continuous on R
n and where α is

homogeneous of order −1 and even near P .

Remark. As before, the spinor ω−1
n−1Ψ(ψ0) is the Green’s function for the

Dirac operator on M . The expansion of Ψ(ψ0) could be improved but the
statement of Proposition 3.1 is sufficient to adapt the proof of Theorem 2.2.

Proof of positive mass theorem. Using this proposition, the proof of
Theorem 2.2 can easily be adapted with ψ = Ψ(ψ0). As one can check,
equation (2.7) is still available in dimensions 3, 4 and 5. This is easy to see
in dimensions 3 and 4. In dimension 5, we note that since α is even near
P and since x/r is an odd vector field, we have

Re

∫

Sn−1

∂

∂r

(〈x

r
· ψ0, α(x)

〉)

ds =
∫

Sn−1

Re
(〈x

r
· ψ0, ∂rα(x)

〉)

ds = 0 .

Equation (2.7) easily follows. This proves the positive mass Theorem 2.2. �

We will now prove Proposition 3.1.

Definition. Let α ∈ Γ(Σ(Rn \ {0})) be a smooth spinor defined on
R

n \ {0}. For k ∈ R, we say that α is homogeneous of order k if α(sx) =
skα(x) for all x ∈ R

n \ {0} and all s > 0. This is equivalent to ∂rα = kα.

Proposition 3.2. Let α be a spinor homogeneous of order k ∈ (−n,−1).
Then there is a spinor β, homogeneous of order k+ 1, such that D(β) = α.
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Proof. Let α be a homogeneous spinor of order k. Recall that ΓD := x
ωn−1rn ·

is the Green’s function for the Dirac operator on R
n. We define β := ΓD∗α,

i.e.

β(x) =
1

ωn−1
lim
ρ→0

∫

Rn\(Bx(ρ)∪B0(ρ))

x− y

|x− y|n · α(y)dy , x 
= 0 .

The integral converges for |y| → ∞ as k < −1. The limit for ρ→ 0 exists as
k > −n. Similarly one sees that β is smooth, and one calculates D(β) = α.
A simple change of variables shows that β is homogeneous of order k + 1.

Lemma 3.3 (Regularity lemma). Let α be a smooth spinor on R
n \ {0}.

We assume that D(α) = O(1/r) and ∂iD(α) = O(1/r2) as r → 0. Then,
for all ε > 0, rεα and r1+ε|∇α| extend continuously to R

n.

Proof. As the statement is local, we can assume for simplicity that α
vanishes outside a ball B0(R) about 0. Since D(α) ∈ Lq(Rn) for all q < n,
from regularity theory we get that α ∈ Hq

1(Rn) for all q < n. The Sobolev
embedding theorem then implies that α ∈ Lq(Rn) for all q > 1. Moreover,
we have ∣

∣D(rεα)
∣
∣ ≤ εrε−1|α| +O(rε−1) .

Using Hölder’s inequality, we see that D(rεα) ∈ Lq(Rn) for some q > n. By
regularity theory, we have rεα ∈ Hq

1(Rn) and by the Sobolev embedding
theorem, rεα ∈ C0(Rn). This proves the first part of Lemma 3.3. For the
second part, we apply the same argument twice: a calculation on R

n \ {0}
yields ∣

∣D(r1+ε∂iα)
∣
∣ ≤ (1 + ε)rε|∂iα| +O(rε−1) . (3.4)

In the same way, we have
∣
∣D(rε∂iα)

∣
∣ ≤ εrε−1|∂iα| +O(rε−2) . (3.5)

For all i = 1, . . . , n we haveD(∂iα) = ∂iDα = O(r−2) andD(∂iα) ∈ Lq(Rn)
for all q < n/2. Using the regularity theory and then the Sobolev em-
bedding theorem, we get that ∂iα ∈ Hq

1(Rn) for all q < n/2 and that
∂iα ∈ Lq(Rn) for all q < n. The Hölder inequality implies that there
is a q > n/2, close to n/2, such that rε−1|∂iα| ∈ Lq(Rn). Together
with (3.5), this shows that D(rε∂iα) ∈ Lq(Rn) for some q > n/2. By
the regularity and Sobolev theorems, we obtain that rε∂iα ∈ Lq(Rn) for
some q > n. Now using (3.4), we obtain |D(r1+ε∂iα)| ∈ Lq(Rn) for some
q > n. Applying regularity theory and the Sobolev theorems again, we get
that r1+ε∂iα ∈ C0(Rn). This proves that r1+ε|∇α| ∈ C0(Rn). �
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Proof of Proposition 3.1. For any spinor ψ, standard formulas in normal
coordinates yield

D(ψ) = Dψ + 1
4

∑

ijk

Γk
ijei · ej · ek · ψ , (3.6)

with Γk
ij = g(∇eiej , ek) =

∑

l
1
2 x

lg(R(el, ei)ej , ek) + O(r2). Note that Γk
ij

denotes the Christoffel symbols of the second kind, which are, in general,
not symmetric in i and j. The Bianchi identity implies that

∑

i,j,k
i�=j �=k �=i

Γk
ijei · ej · ek ∈ O(r2) .

Hence,
∑

ijk

Γk
ijei · ej · ek =

∑

l

xlRiclk(P )ek +O(r2) = O(r2) . (3.7)

Let η be a cut-off function equal to 1 in a neighborhood V of P = 0 in M ,
and supported in the normal neighborhood U . Let ψ0 be a constant spinor
on R

n. We define ψ on U \ {0} by

ψ =
η

rn−1

x

r
· ψ0 ,

and extend it with zero on M \ U . Then, ψ is smooth on M \ {P} and
is D-harmonic near P (see the locally conformally flat case) and by (3.6),
near P we have

D(ψ) =
1

4rn−1

∑

ijk

Γk
ijei · ej · ek · x

r
· ψ0 .

Writing the Taylor development of
∑

ijk Γk
ijei·ej ·ek to order 3 at 0, we see by

(3.7) that we can writeD(ψ) as a sum of a spinor γ which is homogeneous of
order 3−n and a spinor γ′, smooth on U \{0}, which satisfies γ′ = 0(r4−n)
and |∇γ′| = 0(r3−n),

D(ψ) = γ + γ′ .

If n = 3, γ + γ′ ∈ Lq(U) for all q > 1. Let η be a cut-off function as above,
then η(γ+γ′) can be viewed as a spinor on R

n\{0}, and Θ := ΓD∗(η(γ+γ′))
is a smooth spinor on R

n\{0} such that D(Θ) = γ+γ′ near 0. By regularity
theory and the Sobolev embedding theorem, we get that Θ ∈ Hq

1(Rn) for
all q > 1, and hence Θ ∈ C0,a(Rn) for all a ∈ (0, 1). Lemma 3.3 implies
r1+ε|∇Θ| ∈ C0(Rn).

If n = 4, we have γ + γ′ = 0(1/r) and |∇(γ + γ′)| = 0(1/r2). As
in dimension 3, we can find Θ, a smooth spinor on R

n \ {0} such that
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D(Θ) = γ + γ′ near 0. We fix ε ∈ (0, 1). By the regularity Lemma 3.3 we
get rεΘ ∈ C0(Rn) and r1+ε|∇Θ| ∈ C0(Rn).

If n = 5, by Proposition 3.2, we can find a spinor α homogeneous of
order −1 such that D(α) = γ. Moreover, γ′ = 0(1

r ) and |∇γ′| = 0(1/r2).
Proceeding as in dimension 3 and using Lemma 3.3, we can find a spinor
f smooth on R

n \ {0} such that D(f) = γ′ near 0, such that rεf ∈ C0(Rn)
and such that r1+ε|∇f | ∈ C0(Rn). We set Θ := (α+ f).

Now, for all dimensions, we set

ϕ = ψ − ηΘ .

By (3.6), we have on V

Dϕ = D(ψ) −DΘ − 1
4

∑

ijk

Γk
ijei · ej · ek · Θ .

Using (3.7) and the fact that D(ψ) − DΘ = 0, we get that Dϕ = O(r)
and hence is of class C∞(M \ {P}) ∩ C0,1(M). As a consequence, there
exists ϕ′ ∈ Γ(ΣM) of class C∞(M \ {P}) ∩ C1,a(M), a ∈ (0, 1) such that
Dϕ′ = Dϕ. We now set Ψ(ψ0) = ϕ− ϕ′. Proposition 3.1 follows. �
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Vandoeuvre-lès -Nancy Cedex, France humbert@iecn.u-nancy.fr

Received: March 2004
Revised: June 2004

Accepted: June 2004


