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EIGENVALUES AND HOMOLOGY OF FLAG
COMPLEXES AND VECTOR REPRESENTATIONS OF

GRAPHS

R. Aharoni, E. Berger and R. Meshulam

Abstract. The flag complex of a graph G = (V,E) is the simplicial com-
plex X(G) on the vertex set V whose simplices are subsets of V which span
complete subgraphs of G. We study relations between the first eigenvalues
of successive higher Laplacians of X(G). One consequence is the following:

Theorem: Let λ2(G) denote the second smallest eigenvalue of the Lapla-
cian of G. If λ2(G) > k

k+1 |V | then H̃k(X(G); R) = 0.

Applications include a lower bound on the homological connectivity of
the independent sets complex I(G), in terms of a new graph domination
parameter Γ(G) defined via certain vector representations of G. This in
turns implies Hall type theorems for systems of disjoint representatives in
hypergraphs.

1 Introduction

Let G = (V,E) be a graph with |V | = n vertices. The Laplacian of G is
the V × V positive semidefinite matrix LG given by

LG(u, v) =






deg(u) u = v ,

−1 uv ∈ E ,

0 otherwise .

Let 0 = λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G) denote the eigenvalues of LG. The
second smallest eigenvalue λ2(G), called the spectral gap, is a parameter
of central importance in a variety of problems. In particular it controls
the expansion properties of G and the convergence rate of a random walk
on G (see e.g. [Bo]). The flag complex of G is the simplicial complex X(G)
on the vertex set V whose simplices are all subsets σ ⊂ V which form a
complete subgraph of G. Topological properties of X(G) play key roles in
recent results in matching theory (see below).

In this paper we study relations between λ2(G), the cohomology of
X(G), and a new graph domination parameter Γ(G) which is defined via
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certain vector representations of G. As an application we obtain Hall type
theorems for systems of disjoint representatives in families of hypergraphs.

For k ≥ −1 let Ck(X(G)) denote the space of real valued simplicial
k-cochains of X(G) and let dk : Ck(X(G)) → Ck+1(X(G)) denote the
coboundary operator. For k ≥ 0 define the reduced k-dimensional Lapla-
cian of X(G) by ∆k = dk−1d

∗
k−1 + d∗kdk (see section 2 for details). Let

µk(G) denote the minimal eigenvalue of ∆k. Note that µ0(G) = λ2(G).
Our main result is the following:

Theorem 1.1. For k ≥ 1,

kµk(G) ≥ (k + 1)µk−1(G) − n . (1)

As a direct consequence of Theorem 1.1 we obtain

Theorem 1.2. If λ2(G) > kn
k+1 then H̃k(X(G),R) = 0.

Remarks. 1. Theorem 1.2 is related to a well-known result of Garland
(Theorem 5.9 in [G]) and its extended version by Ballmann and Świa̧tkowski
(Theorem 2.5 in [BS]). Roughly speaking, these results (in their simplest
untwisted form) guarantee the vanishing of H̃k(X; R) provided that for
each (k − 1)-simplex τ in X, the spectral gap of the 1-skeleton of the link
of τ is sufficiently large. Theorem 1.2 is, in a sense, a global counterpart of
this statement for flag complexes.

2. Let n = r�, where r ≥ 1, � ≥ 2, and let G be the Turán graph Tr(n),
i.e. the complete r-partite graph on n vertices with all sides equal to �.
The flag complex X(Tr(n)) is homotopy equivalent to the wedge of (�−1)r

(r−1)-dimensional spheres. It can be checked that µk(Tr(n)) = �(r−k−1)
for all 0 ≤ k ≤ r − 1, hence (1) is satisfied with equality. Furthermore,
λ2(G) = �(r−1) = r−1

r n while H̃r−1(X(G)) �= 0. Therefore the assumption
in Theorem 1.2 cannot be replaced by λ2(G) ≥ kn

k+1 .

We next study some graph theoretical consequences of Theorem 1.2.
The independence complex I(G) of G is the simplicial complex on the vertex
set V whose simplices are all independent sets σ ⊂ V . Thus I(G) = X(G)
where G denotes the complement of G. Recent work on hypergraph match-
ing, starting in [AH] with later developments in [A], [ABZ], [ACK], [M1,2],
has utilized topological properties of I(G) to derive new Hall type theo-
rems for hypergraphs. The main ingredient in these developments are lower
bounds on the homological connectivity of I(G). For a simplicial complex Z
let η(Z) = min{i : H̃ i(Z,R) �= 0}+1. It turns out that various domination
parameters of G may be used to provide lower bounds on η(I(G)). For a
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subset of vertices S ⊂ V let N(S) denote all vertices that are adjacent to
at least one vertex of S and let N ′(S) = S ∪N(S). S is a dominating set
if N ′(S) = V . S is a totally dominating set if N(S) = V . Here are a few
domination parameters:

• The domination number γ(G) is the minimal size of a dominating set.
• The total domination number γ̃(G) is the minimal size of a totally

dominating set.
• The independent domination number iγ(G) is the maximum, over all

independent sets I in G, of the minimal size of a set S such that
N(S) ⊃ I.

• The strong fractional domination number γ∗s (G) is the minimum of
∑

v∈V f(v) over all nonnegative functions f : V → R, such that
∑

uv∈E f(u) + deg(v)f(v) ≥ 1 for every vertex v.

Some known lower bounds on η are η(I(G)) ≥ γ̃(G)/2 [M1], η(I(G)) ≥
iγ(G) [AH], η(I(G)) ≥ γ∗s (G) [M2].

Here we introduce a new domination parameter, defined by vector rep-
resentations. It is similar in spirit to the Θ function defined by Lovász [L].
It uses vectors to mimic domination, in a way similar to that in which
the Θ function mimics independence of sets of vertices. It is defined as
follows. A vector representation of a graph G = (V,E) is an assignment
P of a vector P (v) ∈ R� for some fixed � to every vertex v of the graph,
such that the inner product P (u) · P (v) ≥ 1 whenever u, v are adjacent
in G and P (u) · P (v) ≥ 0 if they are not adjacent. We shall identify the
representation with the matrix P whose v-th row is the vector P (v).

Let 1 denote the all 1 vector in RV . A non-negative vector α on V
is said to be dominating for P if

∑
v∈V α(v)P (v) · P (u) ≥ 1 for every

vertex u, namely αPP T ≥ 1. (Note that taking α to be the characteristic
function of some totally dominating set satisfies this condition regardless
of the representation.) The value of P is

|P | = min
{
α · 1 : α ≥ 0 , αPP T ≥ 1

}
.

The supremum of |P | over all vector representations P of G is denoted
by Γ(G). Our main application of Theorem 1.2 is the following

Theorem 1.3. η(I(G)) ≥ Γ(G).

Remark. One natural vector representation of G is obtained by taking
P (v) ∈ RE to be the edge incidence vector of the vertex v. For this repre-
sentation |P | = γ∗s (G) hence Γ(G) ≥ γ∗s (G). The bound η(I(G)) ≥ γ∗s (G)
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was previously obtained in [M2]. Theorem 1.3 is however stronger and of-
ten gives much sharper estimates for η(I(G)), see e.g. the case of cycles
described in section 4.

We next use Theorem 1.3 to derive a new Hall type result for hyper-
graphs. Let F ⊂ 2V be a hypergraph on a finite ground set V . The width
w(F) of F is the minimal t for which there exist F1, . . . , Ft ∈ F such that
for any F ∈ F , Fi ∩ F �= ∅ for some 1 ≤ i ≤ t.

The fractional width w∗(F) of F is the minimum of
∑

E∈F f(E) over
all non-negative functions f : F → R with the property that for every edge
E ∈ F the sum

∑
F∈F f(F )|E ∩ F | is at least 1. A matching in F is a

subhypergraph M ⊂ F such that F ∩ F ′ = ∅ for all F �= F ′ ∈ M. Let
{Fi}m

i=1 be a family of hypergraphs. A system of disjoint representatives
(SDR) of {Fi}m

i=1 is a matching F1, . . . , Fm such that Fi ∈ Fi for 1 ≤ i ≤ m.
Haxell [H] proved the following:
Theorem 1.4 [H]. If {Fi}m

i=1 satisfies w(∪i∈IFi) ≥ 2|I| − 1 for all
∅ �= I ⊂ [m], then {Fi}m

i=1 has an SDR.

Here we use Theorem 1.3 to show
Theorem 1.5. If {Fi}m

i=1 satisfies w∗(∪i∈IFi) > |I|−1 for all ∅ �= I ⊂ [m],
then {Fi}m

i=1 has an SDR.

The matching number ν(F) of a hypergraph F on the vertex set V is
the cardinality |M| of a largest matching M in F . The fractional matching
number ν∗(F) is the maximum of

∑
E∈F f(E) over all non-negative func-

tions f : F → R such that
∑

F�v f(F ) ≤ 1 for all v ∈ V . A hypergraph
F is r-uniform if |F | = r for all F ∈ F . The following extension of Hall’s
theorem to hypergraphs was conjectured in [AK] and proved by Aharoni
and Haxell [AH].
Theorem 1.6 [AH]. If {Fi}m

i=1 is a family of r-uniform hypergraphs
which satisfies ν(∪i∈IFi) > r(|I| − 1) for all ∅ �= I ⊂ [m], then {Fi}m

i=1 has
an SDR.

Observe that if F is r-uniform then w∗(F) ≥ ν∗(F)/r. Theorem 1.5
thus implies the following improvement of Theorem 1.6:
Theorem 1.7. If {Fi}m

i=1 is a family of r-uniform hypergraphs which
satisfies ν∗(∪i∈IFi) > r(|I| − 1) for all ∅ �= I ⊂ [m], then {Fi}m

i=1 has
an SDR.

The paper is organized as follows. In section 2 we recall some topological
terminology and the simplicial Hodge theorem. Theorems 1.1 and 1.2 are
proved in section 3. The proofs utilize the approach of Garland [G] and
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its exposition by Ballmann and Świa̧tkowski [BS]. In section 4 we relate
the Γ parameter to homological connectivity and prove Theorem 1.3. In
section 5 we recall a homological Hall type condition (Proposition 5.1) for
the existence of colorful simplices in a colored complex. Combining this
condition with Theorem 1.3 then yields the proof of Theorems 1.5.

2 Topological Preliminaries

Let X be a finite simplicial complex on the vertex set V . Let X(k) denote
the set of k-dimensional simplices in X, each taken with an arbitrary but
fixed orientation. A simplicial k-cochain is a real valued skew-symmetric
function on all ordered k-simplices of X. For k ≥ 0 let Ck(X) denote
the space of k-cochains on X. The i-face of an ordered (k + 1)-simplex
σ = [v0, . . . , vk+1] is the ordered k-simplex σi = [v0, . . . , v̂i, . . . , vk+1]. The
coboundary operator dk : Ck(X) → Ck+1(X) is given by

dkφ(σ) =
k+1∑

i=0

(−1)iφ(σi) .

It will be convenient to augment the cochain complex {Ci(X)}∞i=0 with the
(−1)-degree term C−1(X) = R with the coboundary map d−1 : C−1(X) →
C0(X) given by d−1(a)(v) = a for a ∈ R, v ∈ V . Let Zk(X) = ker(dk)
denote the space of k-cocycles and let Bk(X) = Im(dk−1) denote the space
of k-coboundaries. For k ≥ 0 let H̃k(X) = Zk(X)/Bk(X) denote the k-th
reduced cohomology group of X with real coefficients. For each k ≥ −1
endow Ck(X) with the standard inner product (φ,ψ) =

∑
σ∈X(k) φ(σ)ψ(σ)

and the corresponding L2 norm ‖φ‖ =
( ∑

σ∈X(k) φ(σ)2
)1/2.

Let d∗k : Ck+1(X) → Ck(X) denote the adjoint of dk with respect
to these standard inner products. The reduced k-Laplacian of X is the
mapping

∆k = dk−1d
∗
k−1 + d∗kdk : Ck(X) → Ck(X) .

Note that if G denotes the 1-skeleton of X and J is the V × V all-ones
matrix, then the matrix J +LG represents ∆0 with respect to the standard
basis. In particular, the minimal eigenvalue of ∆0 equals λ2(G).

The space of harmonic k-cochains H̃k(X) = ker ∆k consists of all
φ ∈ Ck(X) such that both dkφ and d∗k−1φ are zero. The simplicial ver-
sion of Hodge theorem is the following well-known
Proposition 2.1. H̃k(X) ∼= H̃k(X) for k ≥ 0.

In particular, H̃k(X) = 0 iff the minimal eigenvalue of ∆k is positive.
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3 Eigenvalues of Higher Laplacians

Let X = X(G) be the flag complex of a graph G = (V,E) on |V | = n
vertices. For an i-simplex η ∈ X let deg(η) denote the number of (i + 1)-
simplices in X which contain η. The link of a simplex σ ∈ X is the complex

lk(σ) = {τ ∈ X : σ ∪ τ ∈ X , σ ∩ τ = ∅} .
For two ordered simplices σ ∈ X, τ ∈ lk(σ) let στ denote their ordered
union.

Claim 3.1. For φ ∈ Ck(X)

‖dkφ‖2 =
∑

σ∈X(k)

deg(σ)φ(σ)2 − 2
∑

η∈X(k−1)

∑

vw∈lk(η)

φ(vη)φ(wη) .

Proof. Recall that for τ ∈ X(k+1) we denoted by τi the ordered k-simplex
obtained by removing the i-th vertex of τ . Thus

‖dkφ‖2 =
∑

τ∈X(k+1)

dkφ(τ)2 =
∑

τ∈X(k+1)

k+1∑

i=0

(−1)iφ(τi)
k+1∑

j=0

(−1)jφ(τj)

=
∑

τ∈X(k+1)

k+1∑

i=0

φ(τi)2 +
∑

τ∈X(k+1)

∑

i�=j

(−1)i+jφ(τi)φ(τj)

=
∑

σ∈X(k)

deg(σ)φ(σ)2 − 2
∑

η∈X(k−1)

∑

vw∈lk(η)

φ(vη)φ(wη) . �

For φ ∈ Ck(X) and a vertex u ∈ V define φu ∈ Ck−1(X) by

φu(τ) =
{
φ(uτ) u ∈ lk(τ) ,
0 otherwise .

Claim 3.2. For φ ∈ Ck(X)
∑

u∈V

‖dk−1φu‖2

=
∑

σ∈X(k)

( ∑

τ∈σ(k−1)

deg(τ)
)
φ(σ)2 − 2k

∑

τ∈X(k−1)

∑

vw∈lk(τ)

φ(vτ)φ(wτ) .

Proof. Applying Claim 3.1 with φu ∈ Ck−1(X) we obtain

||dk−1φu||2 =
∑

τ∈X(k−1)

deg(τ)φu(τ)2 − 2
∑

η∈X(k−2)

∑

vw∈lk(η)

φu(vη)φu(wη) .
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Hence
∑

u∈V

‖dk−1φu‖2

=
∑

u∈V

∑

τ∈X(k−1)

deg(τ)φu(τ)2 − 2
∑

u∈V

∑

η∈X(k−2)

∑

vw∈lk(η)

φu(vη)φu(wη)

=
∑

σ∈X(k)

( ∑

τ∈σ(k−1)

deg(τ)
)
φ(σ)2

− 2
∑

η∈X(k−2)

∑

vw∈lk(η)

∑

u∈lk(vη)∩lk(wη)

φ(vuη)φ(wuη)

=
∑

σ∈X(k)

( ∑

τ∈σ(k−1)

deg(τ)
)
φ(σ)2 − 2k

∑

τ∈X(k−1)

∑

vw∈lk(τ)

φ(vτ)φ(wτ) .

The last equality follows from the fact that since X is a flag complex, if
η ∈ X(k − 2), vw ∈ lk(η) and u ∈ lk(vη) ∩ lk(wη), then vw ∈ lk(uη). �

Claims 3.1 and 3.2 imply

k
(
‖dkφ‖2 −

∑

σ∈X(k)

deg(σ)φ(σ)2
)

=
∑

u∈V

‖dk−1φu‖2 −
∑

σ∈X(k)

( ∑

τ∈σ(k−1)

deg(τ)
)
φ(σ)2. (2)

Claim 3.3. For φ ∈ Ck(X)
∑

u∈V

‖d∗k−2φu‖2 = k‖d∗k−1φ‖2. (3)

Proof. For τ ∈ X(k − 1)

d∗k−1φ(τ) =
∑

v∈lk(τ)

φ(vτ) .

Therefore

‖d∗k−1φ‖2 =
∑

τ∈X(k−1)

d∗k−1φ(τ)2 =
∑

τ∈X(k−1)

( ∑

v∈lk(τ)

φ(vτ)
)2
. (4)

Substituting φu in (4) we obtain
∑

u∈V

‖d∗k−2φu‖2 =
∑

u∈V

∑

η∈X(k−2)

( ∑

v∈lk(η)

φu(vη)
)2

=
∑

η∈X(k−2)

∑

u∈lk(η)

( ∑

v∈lk(uη)

φ(vuη)
)2
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= k
∑

τ∈X(k−1)

( ∑

v∈lk(τ)

φ(vτ)
)2

= k‖d∗k−1φ‖2. �

Let φ ∈ Ck(X). Summing (2) and (3) we obtain the following key identity:

k(∆kφ, φ)

=
∑

u∈V

(∆k−1φu, φu) −
∑

σ∈X(k)

( ∑

τ∈σ(k−1)

deg(τ) − k deg(σ)
)
φ(σ)2. (5)

To estimate the right-hand side of (5) we need the following:
Claim 3.4. For σ ∈ X(k)

∑

τ∈σ(k−1)

deg(τ) − k deg(σ) ≤ n . (6)

Proof. Recall thatN(v) is the set of neighbors of v inG. Let σ = [v0, . . . , vk]
then for any I ⊂ {0, . . . , k}

deg
(
[vi : i ∈ I]

)
=

∣
∣
∣
⋂

i∈I

N(vi)
∣
∣
∣ .

Therefore
∑

τ∈σ(k−1)

deg(τ) − k deg(σ) =
k∑

i=0

∣
∣
∣
⋂

j �=i

N(vj)
∣
∣
∣ − k

∣
∣
∣

k⋂

j=0

N(vj)
∣
∣
∣ . (7)

The claim now follows since each v ∈ V is counted at most once on the
right-hand side of (7). �

Proof of Theorem 1.1. Let 0 �= φ ∈ Ck(X) be an eigenvector of ∆k with
eigenvalue µk(G). By double counting

∑

u∈V

‖φu‖2 = (k + 1)‖φ‖2. (8)

Combining (5),(6) and (8) we obtain

kµk(G)‖φ‖2 = k(∆kφ, φ) ≥
∑

u∈V

(∆k−1φu, φu) − n
∑

σ∈X(k)

φ(σ)2

≥ µk−1(G)
∑

u∈V

‖φu‖2−n‖φ‖2 =
(
(k+1)µk−1(G)−n)‖φ‖2. �

Proof of Theorem 1.2. Inequality (1) implies by induction on k that
µk(G) ≥ (k + 1)µ0(G) − kn. Therefore, if µ0(G) = λ2(G) > kn

k+1 then
µk(G) > 0 and H̃k(X(G),R) = 0 follows from the simplicial Hodge theo-
rem. �
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4 Vector Domination and Homology

Let G = (V,E) be a graph with |V | = n. We first reformulate Theorem 1.2
in terms of the independence complex I(G).

Theorem 4.1. η(I(G)) ≥ n/λn(G).

Proof. Let � = 
n/λn(G)�. Since λn(G) = n − λ2(G) it follows that
λ2(G) > �−2

�−1n. Therefore by Theorem 1.2, H̃ i(I(G)) = H̃ i(X(G)) = 0 for
i ≤ �− 2. Hence η(I(G)) ≥ �. �

The proof of Theorem 1.3 depends on Theorem 4.1 and the following

Claim 4.2. Let P be a vector representation of G = (V,E). Then

λn(G) ≤ max
u∈V

P (u) ·
∑

v∈V

P (v) .

Proof. Let x = (x(v) : v ∈ V ) be a vector in RV . Then

xTLGx =
∑

uv∈E

(
x(u) − x(v)

)2

≤ 1
2

∑

(u,v)∈V ×V

(
x(u) − x(v)

)2
P (u) · P (v)

=
∑

u∈V

x(u)2P (u) ·
∑

v∈V

P (v) −
∥
∥
∥

∑

v∈V

x(v)P (v)
∥
∥
∥

2

≤ ‖x‖2 max
u∈V

P (u) ·
∑

v∈V

P (v) .

The claim follows since λn(G) = max{xTLGx/||x||2 : 0 �= x ∈ RV }. �

Let Z+ denote the positive integers and let Q+ denote the positive
rationals. For a vector a = (a(v) : v ∈ V ) ∈ ZV

+ let Ga denote the
graph obtained by replacing each v ∈ V by an independent set of size a(v).
Formally V (Ga) = {(v, i) : v ∈ V, 1 ≤ i ≤ a(v)} and {(u, i), (v, j)} ∈ E(Ga)
if {u, v} ∈ E. The projection (v, i) → v induces a homotopy equivalence
between I(Ga) and I(G). In particular η(I(Ga)) = η(I(G)).

Proof of Theorem 1.3. Let P be a representation of G. By linear pro-
gramming duality

|P | = min{α · 1 : α ≥ 0 , αPP T ≥ 1}
= max{α · 1 : α ≥ 0 , αPP T ≤ 1}
= sup{α · 1 : α ∈ QV

+ , αPP
T ≤ 1} .
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Let α ∈ QV
+ such that αPP T ≤ 1. Write α = a/k where k ∈ Z+ and

a = (a(v) : v ∈ V ) ∈ ZV
+. Let N = |V (Ga)| =

∑
u∈V a(u). Consider the

representation Q of Ga given by Q((u, i)) = P (u) for (u, i) ∈ V (Ga). By
Claim 4.2

λN (Ga) ≤ max
(u,i)∈V (Ga)

Q((u, i)) ·
∑

(v,j)∈V (Ga)

Q((v, j))

= max
u∈V

P (u) ·
∑

v∈V

a(v)P (v) ≤ k .

Hence by Theorem 4.1

α · 1 =
1
k

∑

v∈V

a(v) =
N

k
≤ N

λN (Ga)
≤ η(I(Ga)) = η(I(G)) . �

Remarks. 1. Let Cn denote the n-cycle on the vertex set V = {0,...,n−1}.
For ε > 0 and i ∈ V let

aε(i) =






ε i ≡ 0 mod 3 ,
1 i ≡ 1 mod 3 ,
ε−1 i ≡ 2 mod 3 .

Consider the representation Pε of Cn given by

Pε(i) = aε(i)ei + aε(i+ 1)−1ei+1

where e0, . . . , en−1 are orthogonal unit vectors and the indices are cyclic
modulo n. Let α ∈ RV be given by

α(i) =
{ 1

2+ε2 i ≡ 0, 1 mod 3 and i < n− 1 ,
0 otherwise .

Then αPεP
T
ε ≤ 1. Hence by linear programming duality

|Pε| ≥
n−1∑

i=0

α(i) =

{
2k

2+ε2
n = 3k, 3k + 1 ,

2k−1
2+ε2

n = 3k − 1 .

Thus
Γ(Cn) ≥ sup

ε>0
|Pε| ≥

{
k n = 3k, 3k + 1 ,
k − 1

2 n = 3k − 1 .

Theorem 1.3 now implies

η
(
I(Cn)

) ≥ ⌈
Γ(Cn)

⌉
=

⌊
n+ 1

3

⌋

. (9)

This lower bound is in fact tight for all n (see Claim 3.3 in [M2]). Note
that for Cn the bound η(I(G)) ≥ γ∗s (G) is weaker since γ∗s (Cn) = n/4.
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2. It can be shown that for any graph Γ(G) ≥ sup{γ∗s (Ga) : a ∈ ZV
+}.

We do not know of examples with strict inequality.

5 A Hall Type Theorem for Fractional Width

Let Z be a simplicial complex on the vertex set W and let
⋃m

i=1Wi be
a partition of W . A simplex τ ∈ Z is colorful if |τ ∩ Wi| = 1 for all
1 ≤ i ≤ m. For W ′ ⊂W let Z[W ′] denote the induced subcomplex on W ′.
The following Hall’s type sufficient condition for the existence of colorful
simplices appears in [AH] and in [M1].

Proposition 5.1. If for all ∅ �= I ⊂ [m]

η
(
Z

[ ⋃

i∈I

Wi

])
≥ |I|

then Z contains a colorful simplex.

Let G be a graph on the vertex set W with a partition W =
⋃m

i=1Wi.
A set S ⊂ W is colorful if S ∩Wi �= ∅ for all 1 ≤ i ≤ m. The induced
subgraph on W ′ ⊂ W is denoted by G[W ′]. Combining Theorem 1.3 and
Proposition 5.1 we obtain the following:

Theorem 5.2. If Γ
(
G

[⋃
i∈I Wi

])
> |I| − 1 for all ∅ �= I ⊂ [m] then G

contains a colorful independent set.

Let F ⊂ 2V be a hypergraph, possibly with multiple edges. The line
graph GF = (W,E) associated with F has vertex set W = F and edge set
E consisting of all {F,F ′} ⊂ F such that F ∩ F ′ �= ∅. A matching in F
corresponds to an independent set in GF . For each F ∈ F let P (F ) ∈ RV

denote the incidence vector of F . P is clearly a vector representation of
GF and satisfies |P | = w∗(F). Thus Γ(GF ) ≥ w∗(F).

Proof of Theorem 1.5. Let F denote the disjoint union of the Fi’s, and
consider the graph GF = (W,E) with the partition W = ∪m

i=1Wi where
Wi = Fi. Then for any ∅ �= I ⊂ [m],

Γ
(
GF [∪i∈IWi]

)
= Γ(G∪i∈IFi) ≥ w∗(∪i∈IFi) > |I| − 1 .

Theorem 5.2 implies that GF contains a colorful independent set, hence
{Fi}m

i=1 contains an SDR. �
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