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ON K-STABILITY OF REDUCTIVE VARIETIES
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Abstract. G. Tian and S.K. Donaldson formulated a conjecture relating
GIT stability of a polarized algebraic variety to the existence of a Kähler
metric of constant scalar curvature. In [D3] Donaldson partially confirmed
it in the case of projective toric varieties. In this paper we extend Donald-
son’s results and computations to a new case, that of reductive varieties.

Introduction

Around 1997 G. Tian and S.K. Donaldson formulated a conjecture relating
GIT stability of a polarized algebraic variety to the existence of a Kähler
metric of constant scalar curvature, see [T1,2,3] and [D1,2,3]. The general
idea of such a relationship has been known as a “folklore conjecture” for a
long time. It comes naturally from earlier works of Yau and Tian.

Here, we will refer to the Donaldson’s version of the conjecture (1.1
below), since we will make a strong use of notation and results developed
in [D3]. In this beautiful paper Donaldson partially confirmed Conjec-
ture 1.1 in the case of projective toric varieties, where his arguments are
based on the following foundation blocks:

(1) A very well-known correspondence between projective toric varieties
and lattice polytopes (see e.g. [F], [O]);

(2) A somewhat lesser-known correspondence between convex piecewise
linear functions on polytopes and equivariant degenerations of pro-
jective toric varieties (see e.g. [KSZ] or [Al]); and

(3) The general framework developed by Guillemin and Abreu [G], [A],
which relates invariant Kähler metrics on projective toric varieties to
convex functions on the corresponding polytopes.

Now let G be a complex reductive group with Weyl group W . Then to
every W -invariant maximal-dimensional lattice polytope P in the weight
lattice of a maximal subtorus of G one can, in a rather elementary way,
associate an equivariant projective normal compactification VP of G, gen-
eralizing the correspondence (1) above.



298 V. ALEXEEV AND L. KATZARKOV GAFA

On the other hand, in [AlB1,2] the first author and M. Brion built a
theory of degenerations parallel to (2), and obtained an answer that is
formally very similar: Any W -invariant rational convex PL function on P
defines a W -invariant subdivision of P and a degenerating family V → C

in which every fiber Vt with t �= 0 is isomorphic to V and the special fiber
V0 is a stable reductive variety in the sense of [AlB1,2].

The purpose of this paper is to extend the Guillemin–Abreu–Donaldson
theory and results and computations of [D3] to this new and much larger
class of projective G-compactifications and reductive varieties. In particu-
lar, our Theorem 3.7 is a generalization of one of the main results of [D3].
We use Theorem 3.7 together with Donaldson’s examples [D3] of polarized
toric surfaces that do not admit metrics of constant scalar curvature to pro-
duce new non-toric examples. Instead of 2-dimensional toric, our examples
are 8-dimensional reductive varieties.

The paper is organized as follows: In section 2 we review the relevant
definitions and results from [D3]. In section 3 we recall some results about
reductive varieties from [AlB1,2]. In section 4 we extend several of Donald-
son’s results from [D3] to the case of reductive varieties. Section 5 contains
examples of reductive varieties which do not admit Kähler metrics of con-
stant scalar curvature.

Acknowledgements. We are very grateful to M. Brion, S.K. Donaldson
and W. Graham for many helpful discussions, and to G. Tian and the
referee for useful suggestions. The second author also would like to thank
V. Apostolov for explaining Abreu’s work. S. Donaldson informed us that
his student A. Raza has studied some differential geometric aspects of the
constant scalar curvature problem for reductive varieties.

It is our pleasure to thank IHES, where a large part of this work was
done for wonderful working conditions. The first author’s work was par-
tially supported by NSF grant 0101280.

Throughout the paper, we will use the following:
Notation 0.1. K will denote a compact real reductive group of dimension
n with a maximal subtorus T of dimension r. We will denote by G = KC

and H = TC their complexifications. We choose a Borel subgroup B of G
and an opposite Borel subgroup B− so that B ∩B− = H.

Let Λ � Z
r denote the group of characters of H. It comes with an

action of the Weyl group W and with a decomposition of ΛR into Weyl
chambers. Λ+

R
will denote the positive chamber, and ri ∈ Λ the simple

roots.
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1 Basic Definitions and Results from [D3]

The precise formulation of the conjecture relating K-stability and exis-
tence of Kähler metric of constant scalar curvature was given by Donaldson
in [D3]:

Conjecture 1.1. A smooth polarized projective variety (V,L) admits
a Kähler metric of constant scalar curvature in c1(L) if and only if it is
K-stable.

The definition of K-stability [D3, Def.2.1.2] involves another space V0

which is allowed to be a general scheme. Let F be an ample line bundle
over a projective scheme W , and suppose one has a fixed C

∗-action on the
pair (W,F). For each positive integer k one has a vector space

Hk = H0(W,Fk)

with a C
∗-action. From this, one obtains integers dk = dim Hk and wk,

the weight of the induced action on the highest exterior power of Hk. The
integers dk, wk are, for large k, given by polynomial functions of k, with
rational coefficients dk = Q(k), wk = P (k), say. Define F (k) = wk/kdk.
For large enough k one has an expansion

F (k) = F0 + F1k
−1 + F2k

−2 + . . . ,

with rational coefficients Fi. The Futaki invariant of the C
∗-action on

(W,F) is defined to be the coefficient F1.

Definition 1.2. A test configuration or test family for (V,L) of exponent
r consists of

1. a scheme V with a C
∗-action;

2. a C
∗-equivariant line bundle L → V;

3. a flat C
∗-equivariant map π : V → C, where C

∗ acts on C by multi-
plication in the standard way;

such that any fiber Vt = π−1(t) for t �= 0 is isomorphic to V and the pair
(V,Lr) is isomorphic to (Vt,L|Vt).

Definition 1.3. The pair (V,L) is K-stable if for each test configuration
for (V,L) the Futaki invariant of the induced action on (V0,L|V0) is less
than or equal to zero, with equality if and only if the configuration is a
product configuration.

The pair (V,L) is equivariantly K-stable if one restricts oneself only to
equivariant test configurations. For a toric variety this means H-invariant
families, and in our case this will mean G×G-equivariant families.
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See also the discussion in [D3] showing that K-stability is closely related
to asymptotic GIT stability.

Following [D3] we briefly recall some facts about Mabuchi functional.
It is a real-valued function M on the set of Kähler metrics in the same
Kähler class [ω0], defined up to the addition of an overall constant. The
metrics of constant scalar curvature are critical for the Mabuchi functional.
The functional is defined through the formula for its variation at a metric
ω = ω0 + i∂̄∂ψ with respect to an infinitesimal change δψ in the Kähler
potential:

δM =
∫

V
(S − a)δψ

ωn

n!
.

Here, S is the scalar curvature of ω and a is the average value of the
scalar curvature. Therefore δM is not changed if one adds a constant to
δψ, and so depends only on the variation of the metric.

Definition 1.4. A functional IV on the set of Kähler potentials is defined
by the formula

δIV = 2
∫

V
δψ
ωn

n!
.

Assume that D =
∑
Di is an effective divisor on V representing c1(V ),

with smooth components Di (such D exists for any smooth toric variety V ).
Let χ be a meromorphic form with (χ) = −D and let ν = |χ|−2.

Proposition 1.5 [D3, 3.2.4]. For any metric ω = ω0 + 2i∂̄∂ψ on V

M(ω) = La(ω) +
∫

V
log ν

ωn

n!
where La(ω) = −ID(ψ) + aIV (ψ)

is the linear part of the Mabuchi functional.

Now, let (V,L) be a polarized projective toric variety with a moment
polytope P . Via the Guillemin–Abreu theory, an equivariant Kähler po-
tential on V corresponds to a convex function u on the interior of P with
a logarithmic asymptotic behavior near the boundary. Namely, if faces are
defined by linear inequalities δk(x) ≥ 0 then

u =
∑

δk(x) log δk(x) + a smooth function .

The lattice determines standard measures dµ on the polytope P and dσ
on faces of P . In [D3, 3.2.6] Donaldson establishes the following formula
for the linear part of Mabuchi functional:

La = (2π)n
(∫

∂P
u dσ − a

∫
P
u dµ

)
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On the other hand, in [D3, 4.2.1] Donaldson shows that Futaki invariant
of an equivariant test configuration defined by a rational PL function f is
given by a very similar formula

−F1 =
1

2VolP

(∫
∂P
f dσ − a

∫
P
f dµ

)
.

Thus, one obtains an ingenious connection between two seemingly very
different invariants. Donaldson uses this connection to prove, among other
things, the following:

Proposition 1.6 [D3, Prop. 7.1.2]. Suppose there is a function f ∈ C1

with La(f) < 0. Then the Mabuchi functional is not bounded below on the
invariant metrics, and the manifold V does not admit any Kähler metric of
constant scalar curvature in the given cohomology class.

Our aim will be to generalize these results to the reductive case.

2 Overview of Reductive Varieties

2.1 Complexes of polytopes and (stable) reductive varieties. We
recall some of the results and constructions of [AlB2].

Lattice points λ ∈ Λ+ are in bijection with irreducible G-representation
Eλ. The algebra of regular functions on G can be written canonically as

C[G] = ⊕λ∈Λ EndEλ and EndEλ · EndEµ ⊂ ⊕EndEλ+µ−∑
ni≥0 niri

.

Let P ⊂ Λ be a maximal-dimensional W -invariant polytope with ver-
tices in Λ. Let P+ = P ∩Λ+

R
be the part of P lying in the positive chamber,

and Cone∆+ ⊂ R ⊕ ΛR be the cone over (1, P+). The vector space

RP = ⊕λ∈Z⊕Λ∩Cone ∆+ EndEλ

has a natural structure of a subalgebra in C[C∗×G]. It is finitely generated
e.g. by [AlB1, 4.8].

One defines VP = ProjRP and LP = O(1). Then VP is a normal
projective equivariant G × G-compactification of group G (with G × G
acting on G by left and right multiplication: (g1, g2).g = g−1

1 gg2), and LP

is a G×G-linearized ample sheaf on VP .
The fixed point set (V diag H , Ldiag H) is a toric variety with aH-linearized

ample line bundle. It corresponds to the same polytope P , and it comes
with an action by WH, a semidirect product of W and H. The G × G-
orbits of V are in bijection with WH-orbits of V diag H and with W -orbits
of faces of the polytope P .
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Example 2.1. Take G = PGLn embedded into V = PMatn×n = P
n2−1.

In this case, ΛR is R
n−1 divided into n! Weyl chambers. The polytope P

is a simplex with a vertex on one of the rays of the positive chamber Λ+
R
,

and the other n− 1 vertices are its reflections under W = Sn.

Example 2.2. In the previous example, take n = 2. The polytope P is an
interval symmetric about the origin. The variety V = P

3 is the wonderful
compactification of De Concini–Procesi for PGL2.

Example 2.3. For any semisimple group G, consider a point in the interior
of Λ+

R
and let P be the convex hull of its W -reflections. The corresponding

variety VP is called a wonderful compactification of G.
For G = PGL3 and W = S3, P is a hexagon and P+ is a 4-gon. Note

that the wonderful compactification of PGL3 is not toric.

[AlB1, Sec.5] and [AlB2, Sec.2] generalize this picture to the case of
a W -invariant complex of polytopes, i.e. a finite W -invariant collection
∆ = {Pi} of lattice polytopes in ΛR such that the intersection Pi ∩ Pj of
any two polytopes is a union of faces of both. Note that the polytopes need
not be maximal-dimensional and that reductive varieties in general do not
contain G.

Theorem 2.4 [AlB2, Thm. 2.8]. (1) A complex of polytopes ∆ defines a
family of polarized stable reductive varieties {(V∆,t, L∆,t)} parameterized
by a certain cohomology group H1(∆/W,Aut). The choice t = 1 gives a
distinguished “untwisted” member of this family.

(2) V diag H
∆,t is a stable toric variety, a union of ordinary toric varieties

corresponding to polytopes Pi in ∆, together with a W -action.

(3) TheG×G-orbits of V∆,t are in a bijection withWH-orbits of V diag H
∆,t

and with the set ∆/W .

(4) Variety V∆,t is irreducible iff ∆/W contains a unique maximal poly-
tope. In this case, H1(∆/W,Aut) = {1}. Variety V∆ is aG-compactification
iff ∆ consists of one W -invariant polytope P of maximal dimension plus its
faces.

Note that here we use the notion of stable reductive varieties as defined
in [AlB2] and not the notion of K-stability.

2.2 Nonsingular reductive varieties. In toric geometry, a lattice
polytope P corresponds to a projective toric variety VP together with a
linearized ample sheaf LP . It is well known that the variety VP is non-
singular if and only if P is a Delzant polytope, i.e. at every vertex precisely
dimP edges meet and the integral generators of these edges form a basis
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of the lattice. We will need the following generalization of this result to
the case of reductive varieties, which we will use in the case of a single
W -invariant polytope.

Proposition 2.5. Let ∆ = {Pi} be a W -invariant complex of polytopes,
and V = V∆ be the corresponding (stable) reductive variety.

(1) If V is nonsingular, then ∆ is a disjoint union of Delzant polytopes
plus its faces.

(2) If ∆ is a disjoint union of Delzant polytopes none of whose vertices
lie on the supporting hyperplanes of Λ+

R
, plus its faces, then V is

nonsingular.

Proof. If H is a torus acting on a smooth variety Z, then the fixed point set
ZH is also nonsingular. By Theorem 2.4, V diag H is a stable toric variety,
a union of ordinary toric varieties corresponding to Pi ∈ ∆. It is non-
singular if and only if the maximal polytopes are disjoint and each of them
is Delzant.

In the opposite direction, if none of the polytopes Pi contain vertices
on the supporting hyperplanes of the positive chamber, then the variety V
is toroidal, i.e. locally analytically it is isomorphic to A

N times the toric
variety corresponding to the polytopes Pi. Hence, it is nonsingular if Pi are
Delzant. �

2.3 Canonical class. According to [B2], the anticanonical divisor of
any spherical variety for group G can be written as

−KV = ∂GV + ∂BG .

Here ∂GV =
∑
Dv is the reduced sum of G-invariant divisors, and ∂BG =∑

nρDρ is the union of B-invariant, non-G-invariant divisors (“colors”),
with uniquely defined positive coefficients nρ. For spherical varieties in
general the coefficients nρ can be arbitrary, and [B2] provides the precise
formula. However, for reductive varieties, which are spherical for the group
G×G, all coefficients nρ = 2, see [AlB2, Sec.5.2]. We will call ∂G×GV the
vertical and ∂B×B−V the horizontal parts of the anticanonical divisor (this
notation comes from the behavior of these boundaries under the moment
map). The above formula then becomes

−KV = Dvert +Dhor .

If ∆ is a complex of polytopes satisfying the conditions of Proposi-
tion 2.5 (2) then all codimension one faces also satisfy 2.5(2). Hence, every
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Dv is a smooth reductive variety. In addition, since V is toroidal, the lin-
ear system |Dhor| is basepoint-free. Hence, there exists a smooth divisor
representing Dhor.

2.4 One-parameter degenerations. Let f be a convex rational W -
invariant PL function on P . In the same fashion as in the toric case, f
defines a (dimV + 1)-dimensional “test” family V → C such that every
fiber Vt for t �= 0 is isomorphic to V . The construction, contained in [AlB2,
Sec. 4.2], is as follows.

After replacing the polytope P by a large divisible multiple NP , i.e.
replacing L by LN , one can assume that the domains of linearity of f are
lattice polytopes Pi.

Consider a bigger polytope P̃ in R ⊕ ΛR which is bounded from below
by (0, P ) and from above by the graph of R − f for some R 	 0. Then,
by the above construction, the variety VP̃ is a projective compactification
of the group C

∗ × G, and it comes with a natural map π to P
1. The test

family V is VP̃ \ π−1(∞). The special fiber π−1(0) is a stable reductive
variety for the complex of polytopes ∆ = {Pi}.

3 Linear Part of Mabuchi Functional and Futaki Invariant

Every symplectic variety V with a Hamiltonian action of a compact Lie
group K admits a moment map m : V → k∗ to the dual of the Lie algebra.
The moment map commutes with theK-action on V and with the coadjoint
action of K on k∗. Therefore, the image is a union of coadjoint orbits.

Let t ⊂ k be the Cartan subalgebra and let t∗ ⊂ k∗ be a splitting of
the projection k∗ → t∗. Since every coadjoint orbit intersects the pos-
itive Weyl chamber (t∗)+ at one point, one obtains a continuous map
π : V → (t∗)+ = Λ+

R
. By a theorem of Guillemin–Sternberg [GS] the image

of V under the moment map mT for a maximal torus T ⊂ K is a poly-
tope, and by a result of Kirwan [Ki] the image π(V ) is a polytope. Both
polytopes live in the space ΛR and both are traditionally called moment
polytopes. For us, π(V ) will be important.

In the case when V is a projective spherical variety for the complexified
Lie group G = KC, some general facts about the moment map were estab-
lished in [B1] via representation theory. In particular, π(V ) identifies with
Brion’s moment polytope of a spherical variety. For a reductive variety
corresponding to a polytope P one thus obtains the moment polytope P+.

Let λ ∈ Λ+
R

be an integral vector. It corresponds to an irreducible



Vol. 15, 2005 ON K-STABILITY OF REDUCTIVE VARIETIES 305

G-representation Eλ. According to the Weyl character formula, dimEλ is
given by a polynomial

h(x) = he(λ) + he−1(λ) + . . .

written as a sum of its homogeneous parts.
Any reductive variety is spherical for the action of G × G. For each

λ ∈ Λ+ the corresponding G×G-representation is EndEλ. Let us write its
dimension as the sum of its homogeneous parts

dim (EndEλ) = H(λ) = h2(λ) = Hd(λ) +Hd−1(λ) + . . .

and extend each Hd to a polynomial function on Λ+
R
.

In the previous section, we wrote −KV and the B × B−-boundary of
V in the form Dvert +Dhor. The vertical part Dvert is a union of G × G-
invariant divisors, each of them is a reductive variety corresponding to a
face of polytope P modulo the W -action. Under the map π, Dvert maps
to a union of faces of P+. As in the toric case, for every face F ⊂ P we
will denote by dσ the Euclidean measure on F induced by the sublattice
ΛF = Λ ∩ RF .

The horizontal part Dhor is not G × G-invariant, and it is easy to see
that under the map π it maps surjectively onto P+.

Lemma 3.1. (1) The push-forward of the Liouville measure on V is

π∗ ωn

n! = (2π)rHd(x)dµ .

(2) Similarly, the push-forward of the Liouville measure on Dvert is

π∗
ωn−1

(n − 1)!
= (2π)rHd(x)dσ .

(3) The push-forward of the Liouville measure on Dhor is

π∗
ωn−1

(n− 1)!
= (2π)r · 2Hd−1(x)dµ .

Proof. This comes out straight from the Riemann–Roch theorem applied
to H0(Ls) on the variety V and on a single coadjoint orbit Oλ for s 	 0.
The push-forward of the Liouville measure is given by integrating ωn/n!.
On the other hand, the Riemann–Roch theorem gives

H0(Ls) =
∫
ch(Ls) · Td(T ) = sn c1(L)n

n!
− sn−1 1

2
K
c1(L)n−1

(n− 1)!
+ . . .

So, the volume of a single coadjoint orbit Oλ is given by Hd(λ) and the
volume of the restriction of the horizontal part of −KV to m−1(Oλ) by
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2Hd−1(λ). Reductive varieties are spherical for G×G-action, so in the de-
composition of H0(V,Ls) every EndEλ, λ ∈ sP+ appears with multiplicity
one; and the formula follows. �

Proposition 3.2. K×K-invariant Kähler metrics on V are in a bijection
with W -invariant symplectic convex potentials u on P which have the same
behavior near the boundary of P as in the toric case (i.e. u =

∑
li log li+

a smooth function).

Proof. By [GS, Thm. 3.1], ω = i∂∂̄φ for a some potential φ on V . The re-
striction φT of this potential to the toric variety V diag T is W -invariant, and
hence by the toric case, applying the Legendre transform, gives a symplectic
potential u on P+. Clearly, it has to be W -invariant.

Vice versa, every W -invariant symplectic potential u on P gives a W -
invariant potential φT on V diag T . By K ×K-action, it extends to a unique
potential φ on V . Here, we are using the fact that for a spherical variety
the preimages of coadjoint orbits under the moment map are precisely the
K ×K-orbits. �

Theorem 3.3. Let f be a convex rational W -invariant PL function on P .
Then the Futaki invariant of the corresponding test family is given by the
formula

−F1(f) =
1

2
∫
P+ Hd

(∫
∂P+

fHd dσ + 2
∫

P+

fHd−1 dµ− a

∫
P+

fHd dµ

)
,

where

a =

∫
∂P+ Hddσ + 2

∫
P+ Hd−1dµ∫

P+ Hd dµ
.

Proof. Same as the proof of Proposition 4.2.1 of [D3]. The difference is that
this time an integral point λ ∈ P+ represents not a one-dimensional vector
space, as in the toric case, but the vector space EndEλ whose dimension
is H(λ). We use the next lemma to estimate the sum, and get

A =
∫

P+

(R− f)Hddµ

B = 1
2

∫
∂+

(R− f)Hddσ +
∫

P+

(R− f)Hd−1dµ

C =
∫

P+

Hddµ

D = 1
2

∫
∂P+

Hddσ +
∫

P+

Hd−1dµ .

Substituting F1 = (AD −BC)/2C2 gives the formula. �
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Remark 3.4. In the toric case one has Hd = 1, Hd−1 = 0, P+ = P and
the formula reduces to that of [D3, 4.2.1].

Lemma 3.5. Let P ⊂ R
n be a lattice polytope of dimension n and Hd :

R
n → R be a homogeneous polynomial function of degree d. Then for

k 	 0,
∑

λ∈kP∩Zn

Hd(λ) = kn+d

∫
P
Hddµ+

1
2
kn+d−1

∫
∂P
Hddσ +O(kn+d−2) .

Proof. Elementary. For a monomial xa1
1 . . . xan

n the computation easily
reduces to the case of a polytope of dimension n + d and the function
H0 = 1, i.e. to counting integral points in a polytope, where the analogous
formula is well known (cf. [D3, A1]). Alternatively, this is a corollary of a
general formula of Pukhlikov and Khovanski [PK]. �

Theorem 3.6. Let u be a W -invariant symplectic potential on P corre-
sponding to a Kähler form ω. Then the linear part of the Mabuchi func-
tional is given by the formula

La(u) = (2π)r
(∫

∂P+

uHd dσ + 2
∫

P+

uHd−1 dµ− a

∫
P+

uHd dµ

)
,

where

a =

∫
∂P+ Hd dσ + 2

∫
P+ Hd−1dµ∫

P+ Hd dµ
.

Proof. As in the proof of Proposition 3.2.4 and Lemma 3.2.6 of [D3], we
use the formula from Proposition 1.5 and compute

ID(ψ) − aIV (ψ) = IDvert(ψ) + IDhor
(ψ) − aIV (ψ)

=
∫

Dvert

ψ
ωn−1

(n − 1)!
+

∫
Dhor

ψ
ωn−1

(n− 1)!
− a

∫
Dhor

ψ
ωn

n!
.

Applying Lemma 3.1 completes the computation. �

Therefore, for equivariant compactifications of G, similar to the toric
case, the two seemingly unrelated functions, Futaki invariant of an equivari-
ant test configuration and the linear part of Mabuchi functional, are given
by the same formula. Although they are defined on different sets, convex
PL functions in the first case and convex C∞-functions with a prescribed
boundary behavior in the second, we can approximate one class of functions
by another one freely. Hence, in the cases when the sign of F1, resp. La,
is definite, we get the equivalence between (equivariant) K-stability and
boundedness of Mabuchi functional from below. As a corollary, we obtain
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Theorem 3.7 (cf. [D3, Prop. 7.1.2]). Let V be a smooth equivariant com-
pactification of a complex reductive group G. Suppose there is a function
f ∈ C1 with La(f) < 0. Then the Mabuchi functional is not bounded below
on the invariant metrics and the manifold V does not admit any Kähler
metric of constant scalar curvature in the given cohomology class.

Remark 3.8. This theorem also applies, with the same proof, to a larger
class of smooth reductive varieties described by Proposition 2.5(2).

4 Examples of G-Compactifications without CSC Metrics

We modify the example in [D3, 7.2] appropriately to get a new series of
varieties Vn without a Kähler metric of constant scalar curvature.

Donaldson starts with a triangle (0, 0), (0, 1), (1, 0). Working with
the corner A = (0, 0) first, he considers the part of the first quadrant
bounded by the x- and y-axes and points B = (0, 1/4), C = (1/4, 0) and
Dn = (rn, rn), where (n−2)/4(3n−5). He then smooths out the corners B
and C by adding very short segments of various slopes so that the resulting
polyhedral body is Delzant, i.e. at every vertex the integral generators of
edges form a basis of the standard lattice Z

2.
He then translates this picture symmetrically to the other three corners

of the original triangle, and calls the resulting polytope Pn. It is clear that
Pn is a Delzant polytope which is a “smoothing” of a 9-gon, and that the
corresponding smooth toric variety Vn can be obtained by repeating blow-
ups of the projective plane. The polytope represents an ample sheaf Ln

on Vn. Donaldson shows that Pn does not contain a metric of constant
curvature in the cohomology class c1(Ln).

We take G = PGL3. Then Weyl group is S3 acting on Λ = Z
2 and ΛR

is divided into 6 cones, the chambers. Take a point A far in the interior
of the positive chamber, at the same distance from both sides. Reflect it
symmetrically to obtain vertices of a hexagon. At each of the 6 vertices,
repeat Donaldson’s construction close to the corners.

The resulting polytope Pn is then a Delzant polytope approximating
a polytope with 3 · 6 = 18 vertices. The corresponding polarized variety
Vn is a compactification of G and has dimension 8. It is nonsingular by
Proposition 2.5.

The Weyl character formula gives

Hd = x2y2(x+ y)2, Hd−1 = xy(x+ y)3 + 2x2y2(x+ y) .
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Here, (x, y) are natural coordinates on Λ+
R
∩ Λ � Z

2
≥0.

We claim that Pn does not have a metric of constant curvature in
the cohomology class c1(Ln) by exhibiting a convex function f on it with
La(f) < 0. We use the formula of Theorem 3.6 to compute it.

First, we need to observe that the function 2Hd−1/Hd reaches its min-
imum near the corner A, therefore near the corner Dn of P+ the function
2Hd − aHd is negative.

Define the function f = fε,n ≥ 0 to be a convex function which is equal
to zero on the inside of Pn and has a simple crease at the distance ε to the
point Dn. Define it at other corners by symmetry, to be W -invariant. We
claim that for n 	 1/ε 	 0 one has La(f) < 0, as required. Indeed, the
expressions

∫
P+

Hd dµ ,

∫
∂P+

Hd dσ ,

∫
P+

Hd−1 dµ ,

all have finite positive limits near Dn. The contribution of ∂P+ to La(f)
in Theorem 3.6 is O(ε/n), as Donaldson’s computation shows, and is pos-
itive. Finally, the contribution of the integral over P+ is approximately
ε2(2Hd−1−aHd) dµ. As we observed, this is negative and grows as const ·ε2.
Since ε2 	 ε/n, we get La(f) < 0. We note that the varieties Vn are not
toric. They are, however, reductive varieties.

In conclusion, we note that Donaldson [D3] includes a number of con-
jectures and tentative results in the toric case. Using Theorems 3.3 and 3.6
we can generalize them to our situation. Once they are established in the
toric case, we expect that they can be proved in the reductive case, as well.
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Dubreil et Marie-Paule Malliavin (Paris, 1986), Springer Lecture Notes in
Math. 1296 (1987), 177–192.



310 V. ALEXEEV AND L. KATZARKOV GAFA

[B2] M. Brion, Curves and divisors in spherical varieties, in “Algebraic groups
and Lie groups” (G. Lehrer, ed.), Australian Math. Soc. Lecture Series 9,
Cambridge Univ. Press, Cambridge (1997), 21–34.

[D1] S.K. Donaldson, Remarks on gauge theory, complex geometry and 4-
manifold topology, Fields Medallists’ Lectures, World Sci. Ser. 20th Cen-
tury Math. 5, World Sci. Publishing, River Edge, NJ (1997), 384–403.

[D2] S.K. Donaldson, Talk at the Arbeitstagung, Bonn, 1997.
[D3] S.K. Donaldson, Scalar curvature and stability of toric varieties, J. Dif-

ferential Geom. 62:2 (2002), 289–349.
[F] W. Fulton, Introduction to Toric Varieties, The William H. Roever Lec-

tures in Geometry, Annals of Mathematics Studies 131, Princeton Univer-
sity Press, Princeton, NJ, 1993,

[G] V. Guillemin, Kaehler structures on toric varieties, J. Differential Geom.
40:2 (1994), 285–309.

[GS] V. Guillemin, S. Sternberg, Convexity properties of the moment map-
ping. II, Invent. Math. 77:3 (1984), 533–546.

[KSZ] M.M. Kapranov, B. Sturmfels, A.V. Zelevinsky, Chow polytopes
and general resultants, Duke Math. J. 67:1 (1992), 189–218.

[Ki] F. Kirwan, Convexity properties of the moment mapping. III, Invent.
Math. 77:3 (1984), 547–552.

[O] T. Oda, Convex Bodies and Algebraic Geometry, Ergebnisse der Mathe-
matik und ihrer Grenzgebiete (3) 15, Springer-Verlag, Berlin, 1988.

[PK] A.V. Pukhlikov, A.G. Khovanski, The Riemann–Roch theorem for
integrals and sums of quasipolynomials on virtual polytopes, St. Petersburg
Math. J. 4:4 (1993), 789–812.

[T1] G. Tian, Kähler–Einstein metrics with positive scalar curvature, Invent.
Math. 130:1 (1997), 1–37.

[T2] G. Tian, Bott–Chern forms and geometric stability, Discrete Contin. Dy-
nam. Systems 6:1 (2000), 211–220.

[T3] G. Tian, Extremal metrics and geometric stability, Special Issue for S.S.
Chern, Houston J. Math. 28:2 (2002), 411–432.

Valery Alexeev, Department of Mathematics, University of Georgia, Athens,
GA 30602, USA valery@math.uga.edu

Ludmil Katzarkov, Department of Mathematics, UC Irvine, Irvine, CA 92612,
USA lkatzark@math.uci.edu

Received: November 2003
Revision: January 2004
Accepted: January 2004


