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Abstract. We give explicit formulae for the local normal zeta functions
of torsion-free, class-2-nilpotent groups, subject to conditions on the asso-
ciated Pfaffian hypersurface which are generically satisfied by groups with
small centre and sufficiently large abelianization. We show how the func-
tional equations of two types of zeta functions – the Weil zeta function
associated to an algebraic variety and zeta functions of algebraic groups
introduced by Igusa – match up to give a functional equation for local
normal zeta functions of groups. We also give explicit formulae and de-
rive functional equations for an infinite family of class-2-nilpotent groups
known as Grenham groups, confirming conjectures of du Sautoy.

1 Introduction

In [GrSS] Grunewald, Segal and Smith introduced the concept of a zeta
function of an infinite, finitely generated, torsion-free nilpotent group G (a
T-group, in short). To any family X of subgroups of G they associate the
abstract Dirichlet series

ζX (s) =
∑

H∈X
|G : H|−s =

∞∑

n=1

an(X )n−s,

where
an(X ) =

∣∣{H ∈ X | |G : H| = n}∣∣
(and ∞−s = 0). Among the families whose study was initiated in [GrSS]
are

S(G) = {all subgroups of finite index in G} ,
N (G) = {all normal subgroups of finite index in G} ,
H(G) =

{
H ∈ S(G)

∣∣ Ĥ ∼= Ĝ
}
,

where Ĝ denotes the profinite completion of the group G. These give rise
to the zeta functions
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ζ≤G (s) = ζS(G)(s) ,

ζ�G(s) = ζN (G)(s) ,

ζ̂G(s) = ζH(G)(s) .

All these zeta functions satisfy an Euler product decomposition

ζ∗G(s) =
∏

p prime

ζ∗G,p(s) , ∗ ∈ {≤, �, }̂ ,

into a product of local zeta functions, where

ζ∗G,p(s) =
∞∑

n=0

a∗pnp−ns

and
a≤pn = apn(S) , a�pn = apn(N ) , a∧pn = apn(H) .

It is the local normal zeta functions ζ�G,p(s) we will concentrate on in this
paper.

One of the main results of [GrSS] establishes the rationality of the local
zeta functions in p−s. It relies on the presentation of local zeta functions as
p-adic integrals (recall that the Hirsch length of a T-group G is the number
of infinite cyclic factors in a decomposition series for G):
Theorem 1 [GrSS, Prop. 3.1 and Thm. 4.1]. Given a T-group G of Hirsch
length h(G) = n. For ∗ ∈ {≤, �, }̂ and almost all primes p

ζ∗G,p(s) = (1− p−s)−n
∫

V ∗
p

|m11|s−1 . . . |mnn|s−n|dx| ,

where |m| = p−vp(m), vp is the valuation on Zp, |dx| is the normalized ad-

ditive Haar measure on Z
d(d+1)/2
p ≡ Trn(Zp), the triangular n×n-matrices

over Zp with diagonal entries mii and suitable subsets V ∗
p ⊆ Trn(Zp).

Rationality is a consequence of the observation that the subsets V ∗
p are

definable in the language of fields. In this situation, a theorem of Denef’s
[D1] is applicable which in turn relies on an application of Macintyre’s
quantifier elimination for the theory of Qp [M] and on Hironaka’s theorem
[H] on resolution of singularities in characteristic zero.

A major challenge in the field is to understand how the local zeta func-
tions vary with the prime p. The zeta function ζ∗G(s) is called finitely
uniform if there are finitely many rational functions Vi(X,Y ) ∈ Q(X,Y ),
1 ≤ i ≤ r, such that for each prime p there exists an i such that

ζ∗G,p(s) = Vi(p, p−s) , (1)

and uniform if r = 1.
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(Finite) uniformity is not typical for zeta functions of nilpotent groups,
however: du Sautoy and Grunewald linked the question of the local factors’
dependence on the prime p to the classical problem of counting points
on varieties mod p. In [GrS1] they identify local zeta functions of groups
as special cases of a more general class of p-adic integrals they call cone
integrals:

Definition 1 [GrS1, Def. 1.2]. Let fi, gi, i ∈ {0, 1, . . . , l}, be polynomials
over Q in n variables. The condition

ψ(x) : vp
(
fi(x)

) ≤ vp
(
gi(x)

)
for i ∈ {1, . . . , l} (2)

is called a cone condition. A p-adic integral of the form

Z(f ,g)(s, p) =
∫

{x∈Z
n
p |ψ(x) holds}

∣∣f0(x)
∣∣s∣∣g0(x)

∣∣|dx|

is called a cone integral. The vector (f ,g) is called cone integral data.

If the condition (2) is trivial (and g0 ≡ 1) we recover Igusa’s local
zeta function (cf. [I1, Appendix], [D2]) as a special case of a cone integral.
Writing local zeta functions of nilpotent groups as cone integrals not only
allowed the authors of [GrS1] to dispense with the – in general mysterious
– model-theoretic black box of quantifier elimination. It also enabled them
to give an – in principal – very explicit expression for these functions.

Theorem 2 [GrS1, Thm. 1.6]. Let G be a T-group, and ∗ ∈ {≤, �, }̂.
There exists an algebraic variety Y ∗ defined over Q, with irreducible com-
ponents E∗

i , i ∈ T ∗ := {1, . . . , t∗}, all of which are smooth and intersect
normally, and rational functions P ∗

I (X,Y ) ∈ Q(X,Y ), I ⊆ T ∗ such that,
for almost all primes p,

ζ∗G,p(s) =
∑

I⊆T ∗
c∗p,IP

∗
I (p, p−s) , (3)

where
c∗p,I =

∣∣{a ∈ Y ∗(Fp) : a ∈ E∗
i if and only if i ∈ I}∣∣ ,

and Y means the reduction modp of the variety Y .

The varieties Y ∗ arise as resolutions of singularities of the hypersurfaces
(
∏l
i=0 f

∗
i g

∗
i = 0), where (f∗,g∗) is the cone integral data for the respective

cone integrals. Theorem 2 suggests that finite uniformity should be the
exception rather than the rule for zeta functions of nilpotent groups. But
the question what varieties may appear in (3) in general remains wide
open. Only recently du Sautoy presented the first example of a T-group G
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for which neither ζ≤G(s) nor ζ�G(s) are finitely uniform, but depend on the
number of Fp-points of an elliptic curve [S2,3].

The first explicit formulae for non-uniform normal zeta functions, in-
cluding du Sautoy’s examples, appeared in [V3]. (By abuse of language we
will say ‘non-uniform’ for ‘not finitely uniform’.) Rather than evaluating
cone integrals we introduced in this paper a much less coordinate-dependent
calculus to compute local normal zeta functions of T-groups of nilpotency
class 2. It is based on an enumeration of vertices in the affine Bruhat–Tits
buildings associated to Sln(Qp). In section 3 we will recall from [V3] what
is necessary to make the current paper self-contained.

The examples computed in [V3] suggested that non-uniform zeta func-
tions, too, might satisfy certain local functional equations. The (finitely
uniform) examples computed before had all featured a functional equation
of the form

Vi(X−1, Y −1) = (−1)li XmiY ni Vi(X,Y ) (4)

for integers li,mi, ni and Vi(X,Y ) as in (1) above, which defied explanation
for ∗ ∈ {≤, �}. In the non-uniform examples given in [V3], the uniform
components showed symmetries like (4), too, matching with the functional
equation of the Weil zeta function counting the number of Fq-points of
algebraic varieties to give a functional equation for the local zeta functions.
But the nature of these uniform components and their functional equations
remained poorly understood. In this paper we try to shed some light onto
this phenomenon.

2 Statement of Results

Let now G be a T-group of nilpotency class 2 (a T2-group, in short) with
derived group G′ := [G,G] and centre Z(G). Only for simplicity we make
the following

Assumption 1. G/G′ and G′ are torsion-free abelian of rank d and d′,
respectively, and G = Z(G).

Indeed, in general both Z(G)/G′ andG/G′ are finitely generated abelian
groups. But as we are only looking to prove results about all but finitely
many of the local zeta functions ζ�G,p(s) we loose nothing by restricting
ourselves to primes p not dividing the orders of the respective torsion parts.
And as one checks with no difficulty that

ζ�G×Z
r(s) = ζ�G(s) · ζ(s− n)ζ

(
s− (n+ 1)

)
. . . ζ

(
s− (n+ r − 1)

)
,
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where h(G) = n and ζ(s) =
∑∞

k=1 k
−s is the Riemann zeta function, we

may indeed assume that Z(G) = G′. Under Assumption 1 the group G has
a presentation

G =
〈
x1, . . . , xd, y1, . . . , yd′

∣∣ [xi, xj ] = M(y)ij
〉
, (5)

where M(y) is an anti-symmetric d × d-matrix of Z-linear forms in y =
(y1, . . . , yd′), and all other commutators are trivial. Note that we adopted
additive notation for words in Z(G). Conversely, of course, every such
matrix M(y) defines a T2-group via (5).

If the polynomial Pf(M(y)) :=
√

det(M(y)) is not identical zero we call
the hypersurface PG in Pd

′−1 defined over the integers by Pf(M(y)) = 0
the Pfaffian hypersurface associated to G. Given a fixed prime number p
we then denote by PG its reduction modulo p. Our main result is
Theorem 3. Assume that Pf(M(y)) ∈ Z[y] is non-zero and irreducible.
Assume that the Pfaffian hypersurface PG is smooth and contains no lines.
For a prime p let

nPG
(p) =

∣∣PG(Fp)
∣∣

denote the number of Fp-rational points of PG. Then there are (explicitly
determined) rational functions W0(X,Y ),W1(X,Y ) ∈ Q(X,Y ) such that
if PG has good reduction mod p

ζ�G,p(s) = W0(p, p−s) + nPG
(p) ·W1(p, p−s) . (6)

Corollary 1. The following functional equation holds:

ζ�G,p(s)|p→p−1 = (−1)d+d
′
p(

d+d′
2 )−(2d+d′)sζ�G,p(s) . (7)

We would like to remark that the conditions of Theorem 3 on the T2-
group G are generically satisfied for small d′ and large d (= 2r, say): A
presentation as in (5) specifies a Z-linear embedding of a Pd

′−1 into the
projective space P(S) over the vector space S of anti-symmetric (d × d)-
matrices. The Pfaffian hypersurface PG is just the intersection of this Pd

′−1

with the universal Pfaffian hypersurface Xr ⊂ P(S) of singular matrices.
The singular locus of the latter consists of matrices of rank ≤ 2r − 4 and
has codimension 6. A generic Pd

′−1 ⊂ P(S) therefore intersects Xr along
a smooth hypersurface in Pd

′−1 of degree r if d′ ≤ 6 (this is remark (8.3)
in [B]).

More work is required to see that for all d′ and for d > 4d′−10 a generic
Pfaffian hypersurface PG will not contain lines. This follows immediately
from the following proposition. It is due to Arnaud Beauville and we cor-
dially thank him for his contribution of its proof as an Appendix to this
paper.
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Proposition 1. A generic Pfaffian hypersurface of degree r > 2n − 3 in
Pn contains no lines.

In view of this remark it seems to us as if smoothness of the Pfaffian
PG was the most restrictive condition on the T2-group G in Theorem 3.
In [V2] we examine examples showing that for singular Pfaffians PG the
expressions for the zeta functions of G will reflect the rank-stratification of
the determinantal variety PG. In section 3 we shall comment briefly on the
technical reasons for the condition on the Pfaffian hypersurface to contain
no lines. The first inroads in overcoming these obstacles were made by
Pirita Paajanen, a student of du Sautoy, who derived the following explicit
formula for the local normal zeta functions of F2,4, the free class-2-nilpotent
group on four generators. In this example the Pfaffian hypersurface PG is
a smooth quadric fourfold.

Proposition 2 (Paajanen [P]). Let G = F2,4. Then for all primes p

ζ�G,p(s) = W0(p, p−s) + n
(1)
PG

(p)W1(p, p−s)

+ n
(2)
PG

(p)W2(p, p−s) + n
(3)
PG

(p)W3(p, p−s) ,

where

n
(1)
PG

(p) = (p2 + 1)(p2 + p+ 1) ,

n
(2)
PG

(p) = (p + 1)(p2 + 1)(p2 + p+ 1) ,

n
(3)
PG

(p) = 2(p2 + 1)(p + 1) ,

denotes the number of Fp-rational points of the Fano varieties of (i − 1)-
dimensional subspaces on PG, and Wi(X,Y ) are rational functions. The
functional equation (7) holds.

Note added in proof. For explicit formulae for the normal zeta functions
of all free class-2-nilpotent groups F2,d, d ≥ 2, see [V5].

The proof of Theorem 3 will be given in two steps: First we prove it
in the case nPG

(p) = 0 to obtain the rational function W0(p, p−s). Note
that there are T2-groups for which nPG

(p) = 0 for infinitely many primes p.
(Indeed, if G = H(oK) is the Heisenberg group over the ring of integers
of an algebraic number field K, these are exactly the inert primes. The
remaining primes are harder to deal with as the associated Pfaffian will
not be smooth.) Loosely speaking, if p is a prime for which PG defines a
smooth non-empty hypersurface in projective (d′−1)-space over Fp without
lines we will need to ‘correct’ the rational function W0(p, p−s) along the
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nPG
(p) Fp-points of PG by the function W1(p, p−s) to obtain the p-th local

normal zeta function. This will constitute the second step in the proof of
Theorem 3.

To prove Corollary 1 we shall demonstrate that the functional equation
(7) is due to the interplay of two phenomena: We will firstly recall how
the functional equation of the Hasse–Weil zeta function associated to the
hypersurface PG gives rise to a symmetry of the expression nPG

(p) as a
function of p (and how this zeta function’s rationality gives sense to the
symbol nPG

(p−1) in the left-hand side of (7) in the first place). Secondly
we shall show that the uniform components Wi(X,Y ), i ∈ {0, 1}, in (6)
satisfy a symmetry of the form (4). Our main tool to achieve this will be
Theorem 4 below, which is essentially due to Igusa [I2]. It establishes such
a symmetry for a single rational function (8) which is defined in terms of
flag varieties.

Theorem 4. Let n ≥ 2 be an integer, X1, . . . ,Xn−1 independent in-
determinates and q a prime power. For I ⊆ {1, . . . , n − 1} let bI(q) =
|FI(Fq)| ∈ Z[q] denote the number of Fq-points of the projective variety of
flags in Fnq of type I. Set

Fn(q,X) :=
∑

I⊆{1,...,n−1}
bI(q)

∏

i∈I

Xi

1−Xi
. (8)

Then
Fn(q−1,X−1) = (−1)n−1q−(n

2)Fn(q,X) . (9)

(See section 3 for the definition of ‘flag of type I’.)
We will show how (the crucial factors of) the rational functionsWi(p,p−s)

in (6) may be derived from functions of type (8) by suitable substitutions
of variables. The Wi(p, p−s) ‘inherit’ the functional equation (9) as the
quotient Fn(q−1,X−1)/Fn(q,X) is independent of the ‘numerical data’ X.

The zeta functions introduced by Igusa [I2] are defined in terms of root
systems of algebraic groups. In fact we only need the most basic of these,
the one associated to Gln. Our formulation (and our elementary proof) of
Theorem 4 in the language of flag varieties seems natural from the point
of view taken in [GrS1], whereas a connection to algebraic groups seems
elusive in the context of normal zeta functions of groups.

In [SL], however, du Sautoy and Lubotzky interpret the zeta functions
ζ̂(s) (where G is again a general T-group) as p-adic integrals over the
algebraic automorphism group of the Lie algebra associated to G. A gen-
eralisation of Igusa’s work [I2] allows them to derive uniformity as well
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as local functional equations of these zeta functions for certain classes of
T-groups.

In [DM] Denef and Meuser prove a functional equation for the Igusa
local zeta function associated to a homogeneous polynomial. These zeta
functions also have an expression of the form (3). However, the ‘uniform
components’ occurring in this context show rather less structure than the
rational functions Wi(X,Y ) in Theorem 3 of the current paper.

As another application of Theorem 4 we derive both explicit formulae
and local functional equations for the normal zeta functions of another
infinite family of T2-groups known as ‘Grenham groups’ (cf. [S1, Chap. 5.8],
or [GrS2, Chap. 6.3]). For n ≥ 2 let

Gn :=
〈
x1,...,xn, y1,...,yn−1

∣∣ [xi, xn] = yi , 1 ≤ i ≤ n , all other [ , ] trivial
〉
.

The group Gn may be thought of as n− 1 copies of the discrete Heisenberg
group – the group of 3×3-upper uni-triangular matrices with integer entries
– with one off-diagonal entry identified in each copy.
Theorem 5. For all primes p

ζ�Gn,p(s) = ζZ
n
p
(s)ζp

(
(2n − 1)s− n(n− 1)

)
Fn−1(p−1,X) ,

where X = (X1, . . . ,Xn−2) and

Xi = p−(2(n−i)−1)s+(n+i)(n−i−1) for i ∈ {1, . . . , n− 2} .
In particular, the following functional equation holds:

ζ�Gn,p(s)|p→p−1 = −p(2n−1
2 )−(3n−1)sζ�Gn,p(s) . (10)

In the forthcoming paper [V1] we use our method to compute explicitly
all the subgroup zeta functions ζ≤Gn

(s) and prove that

ζ≤Gn,p
(s)|p→p−1 = −p(2n−1

2 )−(2n−1)sζ≤Gn,p
(s) . (11)

The functional equations (10) and (11) were conjectured by du Sautoy
(Conjecture 5.41 in [S1]).

We will prove Theorem 4 in section 4.1 by an argument using the Schu-
bert cell decomposition of flag varieties. The proofs of Theorem 3 and
Theorem 5 will occupy sections 4.2 and 4.3, respectively. The point of view
taken is the one developed in [V3] (where also the special cases of Theo-
rem 3 for d′ ∈ {2, 3} were proved). There the Cartan decomposition for
lattices in the centre of G was used to interpret the local zeta functions as
generating functions associated to certain weight functions on the vertices
of the Bruhat–Tits building ∆d′ for Sld′(Qp), exhibiting its dependence on
the geometry of the Pfaffian hypersurface PG. We will recall briefly the
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main results of [V3] in section 3 together with some basic definitions and
observations about lattices and flags.

Acknowledgements. We should like to thank Konstanze Rietsch, Fritz
Grunewald and Marcus du Sautoy for helpful and inspiring discussions. The
suggestions made by a referee were a great help in improving the exposition
of this paper. We gratefully acknowledge support by the UK’s Engineering
and Physical Sciences Research Council (EPSRC) in form of a Postdoctoral
Fellowship.

3 Flags and Lattices

In this section we give a brief summary of the method developed in [V3] to
compute local normal zeta functions.

Let G be a T2-group satisfying Assumption 1. For a fixed prime p, the
computation of the p-th normal local zeta function of G comes down to
an enumeration of those lattices in the Zp-Lie algebra (with Lie brackets
induced by taking commutators)

Gp :=
(
G/Z(G) ⊕ Z(G)

)⊗Z Zp ,

which are ideals in Gp. We call a lattice Λ ⊆ Znp maximal (in its homothety
class) if p−1Λ �⊆ Znp . The key observation is the following

Lemma 1 [GrSS, Lemma 6.1]. For each lattice Λ′ ⊆ G′
p put X(Λ′)/Λ′ =

Z(Gp/Λ′). Then

ζ�G,p(s) = ζ
Z

d
p
(s)

∑

Λ′⊆G′
p

|G′
p : Λ′|d−s∣∣Gp : X(Λ′)

∣∣−s

= ζ
Z

d
p
(s)ζp

(
(d+ d′)s− dd′)

∑

Λ′⊆G′
p

Λ′maximal

|G′
p : Λ′|d−s∣∣Gp : X(Λ′)

∣∣−s

︸ ︷︷ ︸
=:A(p,p−s),say

.

Corollary 2.
A(p, p−s)

∣∣
p→p−1 = (−1)d

′−1p(
d′
2 )A(p, p−s)

⇐⇒ ζ�G,p(s)
∣∣
p→p−1 = (−1)d+d

′
p(

d+d′
2 )−(2d+d′)sζ�G,p(s) . �

Recall that (homothety classes defined by) maximal lattices are in one-
to-one correspondence with vertices of the Bruhat–Tits building ∆d′ for
Sld′(Qp) (e.g. [Ga, §19]). (Two lattices Λ,Λ′ ⊆ Qd′

p are called homothetic
if there is a non-zero constant c ∈ Qp such that cΛ = Λ′.) To derive
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an explicit formula for A(p, p−s) requires a quantitative understanding of
two integer-valued functions w and w′ on the vertex set of the simplicial
complex ∆d′ . We write

A(p, p−s) =
∑

[Λ′]

pdw([Λ′])−sw′([Λ′]), (12)

where, for a homothety class [Λ′] of a maximal lattice Λ′ in G′
p

∼= Zd
′
p we

define

w([Λ′]) := logp
(|G′

p : Λ′|) ,
w′([Λ′]) := w([Λ′]) + logp

(|Gp : X(Λ′)|) .
In order to describe the dependence of these functions on the lattice Λ′

we will introduce some notation. For an integer m ∈ N>0 we set [m] :=
{1, . . . ,m}. A maximal lattice Λ′ ⊆ Zd

′
p is said to be of type ν(Λ′) = (I, rI)

if
I = {i1, . . . , il} ⊆ [d′ − 1], rI = (ri1 , . . . , ril), i1 < · · · < il , (13)

and rij ∈ N>0 for j ∈ {1, . . . , l} and Λ′ has elementary divisors
(

1,...,1︸ ︷︷ ︸
i1

, pri1 ,..., pri1︸ ︷︷ ︸
i2−i1

, pri1+ri2 ,..., pri1+ri2
︸ ︷︷ ︸

i3−i2

,..., p
∑l

j=1 rij ,..., p
∑l

j=1 rij
︸ ︷︷ ︸

d′−il

)
=: (pν) .

(14)
By slight abuse of notation we may say that a maximal lattice is of type I
if it is of type (I, rI) for some positive vector rI , and that the homothety
class [Λ′] has type I if its maximal element has type I, in which case we
write ν([Λ′]) = I. For computations it will be advantageous to write

A(p, p−s) =
∑

I⊆[d′−1]

AI(p, p−s), where (15)

AI(p, p−s) :=
∑

ν([Λ′])=I

pdw([Λ′])−sw′([Λ′]).

Notice that the lattice’s index – and thus w([Λ′]) – is given by

|Zd′p : Λ′| = p
∑

i∈I ri(d
′−i) = pw([Λ′]). (16)

We shall explain how the evaluation of w′ may be reduced to solving
linear congruences. The group Γ = Sld′(Zp) acts transitively on the set of
maximal lattices of fixed type. If we choose a basis for the Zp-module G′

p,
represent lattices as the row span of d′ × d′-matrices and denote by Γν the
stabilizer in Γ of the lattice generated by the diagonal matrix whose entries
are given by the vector (14), the orbit-stabiliser theorem gives us a 1–1
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correspondence
{
maximal lattices of type (I, rI)

} 1−1←→ Γ/Γν . (17)

This correspondence allows us to describe |Gp : X(Λ′)| – and thus w′([Λ′])
– for a maximal lattice Λ′ in terms of M(y), the matrix of commutators in
a presentation for G as in (5).
Theorem 6 [V3, §2.2]. Let Λ′ correspond to the coset αΓν under (17),
where α ∈ Γ with column vectors αj , j = 1, . . . , d′. Then |Gp : X(Λ′)|
equals the index of the kernel of the following system of linear congruences
in Gp/G

′
p:

∀i ∈ {1, . . . , d′} gM(αi) ≡ 0 mod (pν)i , (18)

where g = (g1, . . . , gd) ∈ Gp/G′
p

∼= Zdp and (pν)i denotes the i-th entry of
the vector (pν) given in (14).

A flag of type I in Pd
′−1(Fp), I ⊆ [d′ − 1] as in (13), is a sequence (Vi)i∈I

of incident vector spaces

Pd
′−1(Fp) > Vi1 > · · · > Vil > {0}

with codimFp(Vi) = i. A flag is called incomplete (or partial) if I �= [d′ − 1],
and complete otherwise. The flags of type I form a projective variety FI ,
whose number of Fp-points is given by bI(p) ∈ Z[p], a polynomial whose
leading term equals pdimFI . These polynomials are easily expressed in
terms of p-binomial coefficients, but we will not make use of this fact here.
It is easy to see that for all I ⊆ [n− 1]

bI(p−1) = p− dimFI bI(p) . (19)

Given ν = (I, rI) as above, let f(I, rI , p) = |Γ/Γν | be the number of maxi-
mal lattices in Zd

′
p of type ν. Using (17) one easily proves

Lemma 2. f(I, rI , p) = bI(p) p
∑

I ri(d
′−i)i−dimFI .

Given α ∈ Γ and I as in (13), let α denote the reduction mod p and
define vector spaces

Vi := 〈αi+1, . . . , αd
′〉 < Pd

′−1(Fp) , i ∈ I .
Clearly codim(Vi) = i. We will call the flag (Vi)i∈I of type I the flag
associated to Λ′ if ν(Λ′) = I and Λ′ corresponds to αΓν under (17). (It is
indeed straightforward to show that this is well defined, i.e. independent
of the coset representative α). Given a fixed point x ∈ Pd

′−1(Fp), we
call a maximal lattice Λ′ a lift of x if its associated flag contains x as
0-dimensional member and we shall write x = P ([Λ′]). Note that then
necessarily d′ − 1 ∈ ν([Λ′]).
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We can now explain why we made the assumption that PG should be
smooth and contain no lines. In the latter case, (18) is equivalent to

g ≡ 0 mod p
∑

i∈I\{d′−1} ri

p−
∑

i∈I\{d′−1} rigM(αd
′
) ≡ 0 mod prd′−1 (20)

(where the congruence (3) is regarded trivial if d′ − 1 �∈ I). This fol-
lows easily from the observation that under this assumption the vectors
α1, . . . , αd

′−1 may always be chosen to lie outside the Pfaffian hypersur-
face, i.e. such that vp(det(M(αi))) = 0 for i ∈ {1, . . . , d′ − 1}. In the
case d′ − 1 ∈ I we are left to analyse the elementary divisors of the matrix
M(αd

′
). But by an easy geometrical argument (cf. [V2, Lemma 1]) one sees

that if the Pfaffian is smooth this matrix always has a (d−2)× (d−2)-unit
minor. (This may or may not be the case if PG is singular (cf. [V2]).) Thus
the challenge to compute the weight function w′([Λ′]) is essentially reduced
to the problem of determining the p-adic valuation vp(det(M(αd

′
))) (cf.

equation (33)).

4 Proofs

4.1 Proof of Theorem 4. Choosing a common denominator for the
sum Fn(q,X) we write

Fn(q,X) =
fn(q,X)

∏n−1
i=1 (1−Xi)

,

where

fn(q,X) =
∑

I⊆[n−1]

bI(q)
∏

i∈I
Xi

∏

j �∈I
(1−Xj) (21)

=
∑

I⊆[n−1]

cI(q)
∏

i∈I
Xi , say .

Then
cI(q) =

∑

J⊆I⊆[n−1]

(−1)|I|−|J |bJ(q) ∈ Z[q] .

For a subset I ⊆ [n− 1] we define Ic := [n− 1] \ I. Theorem 4 will follow
if we can prove

cI(q−1) = q−(n
2)cIc(q) ∀I ⊆ [n− 1]

or, equivalently, if cI(q) =
∑

k ak,Iq
k, that

ak,I = a(n
2)−k,Ic ∀0 ≤ k ≤

(
n

2

)
, I ⊆ [n− 1] . (22)
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We shall prove (22) by showing that ak,I enumerates the k-dimensional
Schubert cells of type I in the complete flag variety F[n−1] and that post-
multiplication by the longest word induces a 1–1-correspondence between
k-dimensional cells of type I and

((n
2

)− k)-dimensional cells of type Ic.
Firstly recall that the variety F[n−1] of complete flags in Fnq has a cell

decomposition into Schubert cells Ωw, labelled by w ∈ Sn, the symmet-
ric group on n letters (e.g. [Ma, Chap. 3]). We write w = (w1 . . . wn) if
w(i) = wi. Let us represent a complete flag by an n×n-matrix over Fq: its
r-th member is generated by the first r rows. For example ([Ma, p. 134])
an element of Ωw, w = (365142) ∈ S6 has a unique matrix representative
of the form 



∗ ∗ 1 0 0 0
∗ ∗ 0 ∗ ∗ 1
∗ ∗ 0 ∗ 1 0
1 0 0 0 0 0
0 ∗ 0 1 0 0
0 1 0 0 0 0





Replacing the ∗’s by independent variables identifies the Schubert cell Ωw

with affine space over Fq of dimension l(w), where l denotes the usual length
function, the number of inversions of w. The flag variety is now just the
disjoint union of these affine spaces Ωw.

The expression (21) involves the cardinalities of the 2n−1 varieties FI ,
I ⊂ [n− 1]. The cell decomposition of F[n−1] will allow us to to accommo-
date all of the FI in one object by identifying them with certain unions of
Schubert cells.

To that end we define the type ν(w) of a permutation w to be the
smallest subset I of [n− 1] such that the natural surjection G/B → G/PI
of complete flags onto flags of type I is a bijection if restricted to Ωw.
Alternatively, given w = (w1 . . . wn), set

ν(w) :=
{
i ∈ [n− 1]

∣∣ wi+1 < wi
}
.

So for w as in our example above we have ν(w) = {2, 3, 5}, the type of
the longest word w0 = (nn − 1 . . . 2 1) equals [n− 1], and the type of the
identity element is the empty set. We have a bijection of sets

∐

ν(w)⊆I
Ωw

1−1←→ FI . (23)

From (23) it follows immediately that
∑

ν(w)⊆I
|Ωw| = bI(q) and
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∑

ν(w)=I

|Ωw| = cI(q) .

As the Schubert cells Ωw are identified with some affine l(w)-space, their
cardinalities are just powers of q and ak,I(q), the k-th coefficient of the poly-
nomial cI(q), counts the number of Schubert cells of type I of dimension k.
Theorem 4 will follow from the following

Proposition 3. Let w0 = (nn− 1 . . . 2 1) ∈ Sn be the longest word. The
bijection w �→ ww0 induces bijections

{
Ωw

∣∣ ν(w) = I
} 1−1←→ {

Ωw

∣∣ ν(w) = Ic
}
.

We have l(ww0) =
(
n
2

)− l(w).

Proof. This follows easily from the definition of the type of a permuta-
tion and a comparison of the Schubert cells Ωw and Ωww0 (e.g. as sets of
matrices). �

4.2 Proof of Theorem 3 and Corollary 1.

4.2.1 The case nPG
(p) = 0. First we deal with the case that the

Pfaffian hypersurface PG has no Fp-rational points. Thus det(M(α)) is a
p-adic unit for all α ∈ Zd

′
p \ pZd

′
p (i.e. for all column vectors of matrices in

Sld′(Zp)) and (18) is equivalent to the single congruence

g ≡ 0 mod p
∑l

j=1 rij .

Hence ∣∣Gp : X(Λ′)
∣∣ = pd

∑l
j=1 rij (24)

and
w′([Λ′]) =

∑

i∈ν([Λ′])

ri(d+ d′ − i) .

Thus

A(p, p−s) =
∑

I⊆[d′−1]

AI(p, p−s)

=
∑

I⊆[d′−1]

∑

rI>0

f(I, rI , p) · pd
∑
ri(d

′−i)−s∑ ri(d+d
′−i)

∗=
∑

I⊆[d′−1]

bI(p)
pdimFI

∑

rI>0

p
∑
ri(d+i)(d′−i)−s

∑
ri(d+d′−i)

∗∗=
∑

I⊆[d′−1]

bI(p−1)
∏

i∈I

Xi

1−Xi
r
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=:
∑

I⊆[d′−1]

Fd′(I, p−1,XI) = Fd′(p−1,X) .

Here we used Lemma 2 for equality (∗) and equation (19) to obtain (∗∗).
For 1 ≤ i ≤ d′ − 1, we made the substitutions

Xi := p(d+i)(d′−i)−s(d+d′−i). (25)

Here XI stands for (Xi)i∈I , rI > 0 for rI∈Nl
>0 and

∑
for

∑
i∈I . Theorem 3

and its Corollary 1 follow now from Theorem 4 together with Corollary 2.

4.2.2 The case nPG
(p) > 0. In this case Fd′(p−1,X) fails to rep-

resent the generating function A(p, p−s), as (24) will not hold in general.
We shall see, however, that the two rational functions agree ‘almost ev-
erywhere’ and we will show how to decompose them into summands in a
geometrically meaningful way to see exactly where and how they differ. As
we assume that the Pfaffian contains no lines we have (by (3))

AI(p, p−s) = Fd′(I, p−1,XI) if d′ − 1 �∈ I . (26)

For a point x ∈ Pd
′−1(Fp) and X′ := (Xi)i∈[d′−2] we set

A(x, p, p−s) :=
∑

d′−1∈ν([Λ′])P([Λ′])=x

pw([Λ′])·d−sw′([Λ′]) (27)

Fd′,0(p−1,X′) := Fd′−1(p−1,X′)p−(d′−1) Xd′−1

1−Xd′−1
. (28)

The rational function (27) might be thought of as the generating function
(12) with summation restricted to the maximal lattices lifting a fixed point
x ∈ Pd

′−1(Fp). It agrees with (28) if and only if det(M(x)) �= 0 ∈ Fp, i.e. if
x �∈ PG,

A(x, p, p−s) = Fd′,0(p−1,X′) if x �∈ PG . (29)

If we write

A(p, p−s) =
∑

d′−1�∈I
AI(p, p−s) +

∑

x∈P
d′−1(Fp)

A(x, p, p−s) ,

Fd′(p−1,X) =
∑

d′−1�∈I
Fd′(I, p−1,XI) +

(
d′

1

)

p

Fd′,0(p−1,X′) ,

we see that in order to prove Theorem 3 we are left with the challenge to
prove
Proposition 4. Let x ∈ PG. Then

Ad′(x, p, p−s)−Fd′,0(p−1,X′) = Fd′−1(p−1,X′)p−(d′−1) pY −Xd′−1

(1−Xd′−1)(1−Y )
,

(30)
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where

Xd′−1 := pd+d
′−1T d+1 (in accordance with (25)) and

Y := pd+d
′−2T d−1.

In particular, the function Ad′(x, p, p−s)−Fd′,0(p−1,X′) is independent of x.

Indeed, together with equations (26) and (29) Proposition 4 clearly
implies

A(p, p−s) = Fd′(p−1,X) +
(
A(p, p−s)− Fd′(p−1,X)

)

= Fd′(p−1,X) + nPG
(p)
(
Ad′(x, p, p−s)− Fd′,0(p−1,X′)

)

= Fd′(p−1,X)+nPG
(p)Fd′−1(p−1,X′)p−(d′−1) pY −Xd′−1

(1−Xd′−1)(1−Y )
.

(31)

Proof of Proposition 4. Let J2 denote the matrix
(

0 1−1 0

)
. Locally around

any of the nPG
(p) points of the Pfaffian mod p, the admissibility conditions

(18) look like

g · diag
((

0 x1

−x1 0

)
, J2, . . . , J2

)
≡ 0 mod p

∑l
j=1 rij (32)

g ≡ 0 mod p
∑l−1

j=1 rij ,

where x = (x1 : · · · : xd′) ∈ Pd
′−1(Zp/(prd′−1)), x ≡ (0 : 1 : · · · : 1) mod p

and we have

w′([Λ′]) =
∑

i∈ν([Λ′])

ri(d+ d′ − i)− 2min
{
rd′−1, vp(x1)

}
. (33)

Therefore

Ad′(x, p, p−s) = B0(p, p−s)Fd′−1(p−1,X′) , (34)

say, where

B0(p, p−s) :=
∑

rd′−1>0

(x)∈P
d′−1(Zp/(p

r
d′−1 ))

x≡(0:1:···:1) mod p

pdrd′−1−s(1+d−2min{rd′−1,vp(x1)}) . (35)

We see that in the present case the weight function w′([Λ′]) given in (33)
depends on more than just the lattice’s type. To get an explicit expression
for the function B0(p, p−s), we must find a way to eliminate the term ‘min’
in the sum (35). In other words, we must answer the following question:
Given (a, b) ∈ N2

>0, how many of the lifts (x1 : · · · : xd′) of the point
(0 : 1 : · · · : 1) ∈ Pd

′−1(Fp) to points mod pa are there with vp(x1) = b?
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Lemma 3. For (a, b) ∈ N := {(x, y) ∈ N2
>0 | x ≥ y ≥ 1} let

λ(a, b) :=
{
x ∈ Pd

′−1(Zp/(pa))
∣∣ x ≡ (0 : 1 : · · · : 1) mod p , vp(x1) = b

}
.

Then

λ(a, b) =

{
p(d′−2)(a−1), if (a, b) ∈ ∆ ,

p(d′−2)(a−1)+a−b(1− p−1) , if (a, b) ∈ N \∆ ,

where ∆ := {(x, y) ∈ N | x = y}.
Proof. This is easy to check in an affine chart. �

Thus

B0(p, p−s) =
∑

(a,b)∈∆

p(d′−2)(a−1)+ad−s(d−1)a

+ (1− p−1)
∑

(a,b)∈N\∆
p(d′−2)(a−1)+a−b+ad−s((d+1)a−2b)

= p−(d′−2)

(
Y

1− Y
(

1 + (1− p−1)
Xd′−1

1−Xd′−1

))

= p−(d′−1) Y (p −Xd′−1)
(1− Y )(1−Xd′−1)

, (36)

where Xd′−1 and Y are defined as in the statement of Proposition 4, which
now follows from routine computations combining the identities (28), (34)
and (36). �

With equation (31) we have given an explicit formula for the generating
function A(p, p−s), which, by Lemma 1, is tantamount to the local normal
zeta function, completing the proof of Theorem 3. The functional equation
also follows swiftly from (31), Theorem 4 and Corollary 2. Indeed, let V
be any non-singular, projective variety over Fp of dimension n. If bV,e,
e ≥ 1, denotes the number of Fpe-rational points of V it is a well-known
consequence of the rationality of the Weil zeta function

ZV (u) = exp
( ∞∑

e=1

bV,eu
e

e

)
,

that there are complex numbers βr,j, r = 0, . . . , 2n, j = 1, . . . , Br, Br ∈ N,
such that

bV,e =
2n∑

r=0

(−1)r
tr∑

j=1

βer,j ,

and that the function

N≥0 → N
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e �→ bV,e

has a unique extension to Z (cf. [DM, Lemma 2]). The functional equation
of the Weil zeta function

ZV (1/pnu) = ±(pn/2u)χZV (u) ,

where χ =
∑2n

i=1(−1)iBi, implies the 1–1-correspondences
{
pn

βr,j

∣∣∣ 1 ≤ j ≤ Br
}

1−1←→ {β2n−r,i | 1 ≤ i ≤ B2n−r} ,
for 0 ≤ j ≤ 2n (cf. [I3, p. 213]. This gives

bV,−e = p−en bV,e

formally. (An instance of which we have also seen in (19) where bV,e was
given as a polynomial in pe.) Corollary 1 now follows immediately if we set
V = PG, e = 1, n = d′ − 2, nPG

(pe) = bV,e.

4.3 Proof of Theorem 5. The proof of Theorem 5 would have been
presented in section 4.2.1 had this not interrupted the proof of Theorem 3.
Here d = n and d′ = n − 1. The essential observation is that again the
weight function w′([Λ′]) only depends on the lattice’s type. It was indeed
explicitly calculated in [V4, Chap. 5.2], as

w′([Λ′]) =
∑

i∈ν([Λ′])

ri
(
2(d′ − i) + 1

)
.

This allows us to write

A(p, p−s) =
∑

I⊆[d′−1]

AI(p, p−s)

=
∑

I⊆[d′−1]

∑

rI>0

f(I, rI , p) · pd
∑
ri(d

′−i)T
∑
ri(2(d

′−i)+1)

=
∑

I⊆[d′−1]

bI(p)
pdimFI

∑

rI>0

p
∑
ri(d+i)(d′−i)T

∑
ri(2(d′−i)+1)

= Fd′(p−1, X̃) .

Here, for 1 ≤ i ≤ d′ − 1, we made the substitutions

X̃i := p(d+i)(d′−i)T 2(d′−i)+1.

Again rI > 0 stands for rI ∈ Nl
>0 and

∑
for

∑
i∈I . The result follows from

Theorem 4 and Corollary 2.
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Appendix: Lines on Pfaffian Hypersurfaces
by A. Beauville

The aim of this appendix is to prove that a general pfaffian hypersurface
of degree r > 2n − 3 in Pn contains no lines (Proposition 1). By a simple
dimension count (see Corollary 4 below), it suffices to show that the variety
of lines contained in the universal pfaffian hypersurface (that is, the hyper-
surface of degenerate forms in the space of all skew-symmetric forms on a
given vector space) has the expected dimension. We will deduce this from
an explicit description of the pencils of degenerate skew-symmetric forms,
which is the content of the proposition below.

We work over an algebraically closed field k. We will need an elementary
lemma:

Lemma 4. Given a pencil of skew-symmetric forms on a n-dimensional
vector space, there exists a subspace of dimension

[
n+1

2

]
which is isotropic

for all forms of the pencil.

Proof. By induction on n, the cases n = 0 and n = 1 being trivial. Let
ϕ+ tψ be our pencil; we can assume that ϕ is degenerate. Let D be a line
contained in the kernel of ϕ, and let D⊥ be its orthogonal with respect
to ψ. Then ϕ and ψ induce skew-symmetric forms ϕ̄ and ψ̄ on D⊥/D;
by the induction hypothesis there exists a subspace of dimension

[
n−1

2

]
in

D⊥/D which is isotropic for ϕ̄ and ψ̄. The pull-back of this subspace in D⊥

has dimension
[
n+1

2

]
and is isotropic for ϕ and ψ. �

The following result must be well known, but I have not been able to
find a reference:

Proposition 5. Let V be a vector space of dimension 2r, and (ϕt)t∈P
1 a

pencil of degenerate skew-symmetric forms on V . There exists a subspace
L ⊂ V of dimension r + 1 which is isotropic for ϕt for all t ∈ P1.

Proof. Again we prove the proposition by induction on r, the case r = 1 be-
ing trivial. The associated maps Φt : V → V ∗ form a pencil of singular linear
maps. By a classical result in linear algebra (see [G, Chap.XII, Thm. 4]),
there exist subspaces K ∈ V and L′ ∈ V ∗, with dimK = dimL′ + 1, such
that Φt(K) ⊂ L′ for all t; equivalently, there exist subspaces K and L of V ,
with dimK + dimL = 2r+ 1, which are orthogonal for each ϕt. Replacing
(K,L) by (K ∩L,K+L) we may assume K ⊂ L; the pencil (ϕt) restricted
to L is singular on K, hence induces a pencil (ϕ̄t) on L/K. Put dimK = p,
so that dim(L/K) = 2r + 1− 2p. By the above lemma there is a subspace
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of L/K, of dimension r+ 1− p, which is isotropic for each ϕ̄t. Its pull-back
in L has dimension r + 1 and is isotropic for each ϕt. �

Let us give a few consequences of Proposition 5. We keep our vector
space V of dimension 2r; we denote by Sr the space of skew-symmetric
forms on V , and by Xr the hypersurface of degenerate forms in P(Sr).
Corollary 3. The variety of lines contained in Xr is irreducible, of codi-
mension r + 1 in the Grassmannian of lines of P(Sr).
Proof. The (r + 1)-planes of V are parametrized by a Grassmannian G
of dimension r2 − 1. For such a plane L the space Sr,L of forms ϕ ∈ Sr
vanishing on L has dimension

dimSr,L = dim Λ2V ∗ − dim Λ2L∗ = r(2r − 1)− r(r + 1)
2

=
3r(r − 1)

2
.

Let P be the Grassmannian of lines in P(Sr) (that is, the variety of pen-
cils of skew-symmetric forms). Consider the locus Z ∈ P × G of pairs
(
, L) with 
 ∈ Sr,L. The projection Z → G is a smooth fibration; its fi-
bre above a point L ∈ G is the Grassmannian of lines in P(Sr,L), which
has dimension 2 dimSr,L − 4. Thus Z is smooth, irreducible, of dimension
r2 − 1 + 2dimSL − 4 = 4r2 − 3r − 5.

Let Psing be the subvariety of P consisting of lines contained in Xr (that
is, the subvariety of singular pencils). The content of Proposition 5 is that
Psing is the image of Z under the projection to P. Thus Psing is irreducible,
of dimension ≤ 4r2 − 3r − 5, or equivalently, since dimP = 2dimSr − 4 =
4r2 − 2r − 4, of codimension ≥ r + 1. On the other hand, Psing is defined
locally by (r+1) equations in P, given by the coefficients of the polynomial
Pf(ϕt) of degree r. The corollary follows. �

Observe that r + 1 is the number of conditions that the requirement
to contain a given line imposes on a hypersurface of degree r in projective
space. In other words, Corollary 3 says that the hypersurface Xr behaves
like a general hypersurface of degree r as far as the dimension of its variety
of lines is concerned.

Let L be a vector space, of dimension n+1, and 
 = (
ij) a (2r×2r)-skew-
symmetric matrix of linear forms on L. The hypersurfaceX� in P(L) (= Pn)
defined by Pf(
ij) = 0 is called a pfaffian hypersurface. It is defined by the
equation Pf(
ij) = 0, of degree r.

Corollary 4. If r > 2n − 3 and the forms 
ij are general enough, X�

contains no lines.
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Proof. The matrix (
ij) defines a linear map u : L→ Sr, which is injective
when the forms 
ij are general enough (observe that dimL < dimSr). Thus
we can identify L to its image in Sr, and X� to the hypersurface Xr ∩P(L)
in P(L).

Let G be the Grassmann variety of (n+1)-dimensional vector subspaces
of S, and F the variety of lines contained in Xr. Consider the incidence
variety Z ∈ F ×G of pairs (
, L) with 
 ∈ P(L). The fibre of the projection
Z → G at a point L ∈ G is the variety of lines contained in Xr∩P(L) = X�.

Put N := dimSr. We have dimF = 2N −4− (r+1) by Corollary 3; the
projection Z → F is a fibration of relative dimension (n − 1)(N − n − 1).
This gives dimZ = 2N − 4− (r + 1) + (n− 1)(N − n− 1), while dimG =
(n+ 1)(N − n− 1). Thus

dimZ − dimG = 2n− 3− r < 0 ,

hence the general fibre of the projection Z → G is empty. �

Note that ‘(
ij) general enough’ means ‘for (
ij) in a certain Zariski
open subset of (L∗)N ’. In particular, suppose that our vector space L comes
from a vector space L0 over an infinite subfield k0 of k; then the matrices
(
ij) ∈ (L∗

0)
N such that X� contains no lines are Zariski dense in the pa-

rameter space (L∗)N for r > 2n− 3.
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