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Abstract. We show that any embedding of the level k diamond graph of
Newman and Rabinovich [NR] into Lp, 1 < p ≤ 2, requires distortion at
least

√
k(p − 1) + 1. An immediate corollary is that there exist arbitrarily

large n-point sets X ⊆ L1 such that any D-embedding of X into �d1 requires
d ≥ nΩ(1/D2). This gives a simple proof of a recent result of Brinkman
and Charikar [BrC] which settles the long standing question of whether
there is an L1 analogue of the Johnson–Lindenstrauss dimension reduction
lemma [JL].

1 The Diamond Graphs, Distortion, and Dimension

We recall the definition of the diamond graphs {Gk}∞k=0 whose shortest path
metrics are known to be uniformly bi-lipschitz equivalent to a subset of L1

(see [GNRS] for the L1 embeddability of general series-parallel graphs). The
diamond graphs were used in [NR] to obtain lower bounds for the Euclidean
distortion of planar graphs and similar arguments were previously used in
a different context by Laakso [L].

G0 consists of a single edge of length 1. Gi is obtained from Gi−1 as
follows. Given an edge (u, v) ∈ E(Gi−1), it is replaced by a quadrilateral
u, a, v, b with edge lengths 2−i. In what follows, (u, v) is called an edge of
level i − 1, and (a, b) is called the level i anti-edge corresponding to (u, v).
Our main result is a lower bound on the distortion necessary to embed Gk

into Lp, for 1 < p ≤ 2.
Theorem 1.1. For every 1 < p ≤ 2, any embedding of Gk into Lp incurs
distortion at least

√
1 + (p − 1)k.

The following corollary shows that the diamond graphs cannot be well
embedded into low-dimensional �1 spaces. In particular, an L1 analogue
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of the Johnson–Lindenstrauss dimension reduction lemma does not exist.
The same graphs were used in [BrC] as an example which shows the impos-
sibility of dimension reduction in L1. Our proof is different and, unlike the
linear programming based argument appearing there, relies on geometric
intuition. We proceed by observing that a lower bound on the rate of decay
of the distortion as p → 1 yields a lower bound on the required dimension
in �1.
Corollary 1.2. For every n ∈ N, there exists an n-point subset X ⊆ L1

such that for every D > 1, if X D-embeds into �d
1, then d ≥ nΩ(1/D2).

Proof. Since �d
1 is O(1)-isomorphic to �d

p when p = 1+ 1
log d and Gk is O(1)-

equivalent to a subset X ⊆ L1, it follows that
√

1 + k
log d = O(D). Noting

that k = Ω(log n) completes the proof. �

2 Proof

The proof is based on the following inequality. The case p = 2 is the well
known “short diagonals lemma” which was central to the argument in [L],
[NR].
Lemma 2.1. Fix 1 < p ≤ 2 and x, y, z, w ∈ Lp. Then,

‖y − z‖2
p + (p− 1)‖x −w‖2

p ≤ ‖x− y‖2
p + ‖y −w‖2

p + ‖w − z‖2
p + ‖z − x‖2

pi .

Proof. For every a, b ∈ Lp, ‖a + b‖2
p + (p − 1)‖a − b‖2

p ≤ 2(‖a‖2
p + ‖b‖2

p).
A simple proof of this classical fact can be found, for example, in [LXX],
[BCL]. Now,

‖y − z‖2
p + (p − 1)‖y − 2x + z‖2

p ≤ 2‖y − x‖2
p + 2‖x − z‖2

p

and
‖y − z‖2

p + (p − 1)‖y − 2w + z‖2
p ≤ 2‖y − w‖2

p + 2‖w − z‖2
p .

Averaging these two inequalities yields

‖y − z‖2
p + (p − 1)

‖y − 2x + z‖2
p + ‖y − 2w + z‖2

p

2
≤ ‖x − y‖2

p + ‖y − w‖2
p + ‖w − z‖2

p + ‖z − x‖2
p .

The required inequality follows by convexity. �

Lemma 2.2. Let Ai denote the set of anti-edges at level i and let {s, t} =
V (G0), then for 1 < p ≤ 2 and any f : Gk → Lp,

∥∥f(s)−f(t)
∥∥2

p
+(p−1)

k∑

i=1

∑

(x,y)∈Ai

∥∥f(x)−f(y)
∥∥2

p
≤

∑

(x,y)∈E(Gk)

∥∥f(x)−f(y)
∥∥2

p
.
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Proof. Let (a, b) be an edge of level i and (c, d) its corresponding anti-
edge. By Lemma 2.1, ‖f(a) − f(b)‖2

p + (p − 1)‖f(c) − f(d)‖2
p ≤

‖f(a)−f(c)‖2
p +‖f(b)−f(c)‖2

p +‖f(d)−f(a)‖2
p +‖f(d)−f(b)‖2

p. Summing
over all such edges and all i = 0, . . . , k−1 yields the desired result by noting
that the terms ‖f(x) − f(y)‖2

p corresponding to (x, y) ∈ E(Gi) cancel for
i = 1, . . . , k − 1. �

The main theorem now follows easily.
Proof of Theorem 1.1. Let f : Gk → Lp be a non-expansive D-embedding.
Since |Ai| = 4i−1 and the length of a level i anti-edge is 21−i, applying
Lemma 2.2 yields 1+(p−1)k

D2 ≤ 1. �
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