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1 Introduction

The purpose of this paper is to consider the symplectic manifold S2 × S2

with the direct sum symplectic form ω = ω0 ⊕ω0, where ω0 is the standard
area form on S2. Then the antidiagonal ∆ = {(x,−x)|x ∈ S2} ⊂ S2 × S2

is a Lagrangian submanifold, that is, ω|L = 0. It is the aim of this paper
to demonstrate that any Lagrangian sphere L in S2 × S2 must actually be
isotopic to ∆ through Lagrangian spheres (or, in other words, Lagrangian
isotopic to ∆). That is, we will show the following.

Theorem 1. Let L be a Lagrangian sphere in S2 × S2. Then there exists
a Hamiltonian diffeomorphism of S2 × S2 mapping L onto ∆.

We note that any such Lagrangian sphere in S2×S2 is certainly homol-
ogous to ∆ since, by A. Weinstein’s Lagrangian neighborhood theorem, all
Lagrangian spheres have self-intersection number −2 .

The problem of studying Lagrangian knots in symplectic manifolds was
first proposed by V.I. Arnold in [A] and some results are already known
in this direction, see for example the survey [EP2]. We observe that ∆ =
{(x, x)|x ∈ S2} ⊂ S2 × S2 is a symplectic submanifold and S2 × S2 \ ∆ is
symplectomorphic to a neighbourhood of the zero-section in T ∗S2, mapping
∆ to the zero-section. Y. Eliashberg and L. Polterovich have shown in
[EP1] that any Lagrangian submanifold in T ∗S2 must be smoothly isotopic
to the zero-section. On the other hand, P. Seidel in [S] has given examples
of Lagrangain spheres in symplectic manifolds which are smoothly isotopic
but not Lagrangian isotopic.

The main point of our proof will be to construct two transverse folia-
tions of S2×S2 by spheres in the classes [point×S2] and [S2×point]. These
spheres should be holomorphic with respect to some almost-complex struc-
ture compatible with ω and each sphere should intersect L transversally at
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a single point. Of course, without the condition of intersecting L transver-
sally we could take the standard foliation by spheres which are holomorphic
with respect to a split complex structure CP 1×CP 1. To obtain our required
foliations we will start with this complex structure but then deform it in a
neighborhood of a contact hypersurface. As the almost-complex structure
is deformed, Gromov showed in [G] that transverse foliations of holomor-
phic curves will continue to exist, but they will also be deformed and we
will show that they eventually become transverse to L. The deformation of
the almost-complex structure that we use is known as stretching-the-neck.

Taking a limit as the neck is stretched to infinite length is possible by
some recent results due to F. Bourgeois, Y. Eliashberg, H. Hofer,
K. Wysocki and E. Zehnder, see [BEHWZ], one obtains finite energy holo-
morphic curves in symplectic manifolds with cylindrical ends. One of these
manifolds is T ∗L = T ∗S2 and we describe in section 3 the resulting folia-
tion of this manifold by holomorphic curves. In section 4 we discuss the
behaviour of holomorphic curves as we deform the almost-complex structure
(stretching-the-neck) and in section 5 use the accumulated information to
reach our conclusion on the Lagrangian isotopy class. Various facts about
finite energy holomorphic curves in symplectic manifolds with cylindrical
ends and the relevant compactness theorem are gathered together first in
section 2.

It is the author’s pleasure to thank Yasha Eliashberg for various en-
lightening conversations on these topics and also to thank the IAS for their
hospitality while some of this work was done.

2 Holomorphic Curves in Symplectic Manfolds with
Cylindrical Ends

In this section we will state some theorems about holomorphic curves in
open symplectic manifolds with cylindrical ends. The definitions and most
of the proofs can be found in the series of papers by Hofer, Wysocki and
Zehnder, [HoWZ2-5]. The generalizations to the slightly degenerate situ-
ation which we will study are taken from the paper of F. Bourgeois, [B1],
see also [B2] for the proofs. Such a theory of holomorphic curves forms the
basis of symplectic field theory, see [EGH].

We are interested in symplectic manifolds (W,ω) with noncompact ends
symplectomorphic to either ((0,∞)×M,d(etα)) or ((−∞, 0)×M,d(etα)).
Here M is a contact 3-manifold with α a contact form. Let X be the
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corresponding Reeb vectorfield (which is uniquely defined by X�dα = 0
and α(X) = 1) and ξ = {α = 0}. The two types of ends are called convex
or concave respectively.

Given such a (W,ω), we equip it with a compatible almost-complex
structure J . The compatibility condition means that ω(V, JV ) > 0 for
all non-zero tangent vectors V , and at the point (a,m) ∈ (0,∞) ×M or
(−∞, 0) ×M , the almost-complex structure is defined by

J(a,m)(h, k) =
( − α(m)(k), J ′(m)πk + hX(m)

)
(1)

for (h, k) ∈ T(a,m)((−∞,∞) ×M), where π : TM → ξ denotes the projec-
tion along X, and J ′ is a fixed complex structure on ξ.

Finite energy holomorphic spheres are defined as follows.
Suppose u : S2 \ Γ → W is a proper map, where S2 \ Γ denotes the

Riemann sphere minus a finite set Γ of punctures.
The energy of u can be defined by

E(u) = sup
φ

∫

C

u∗ωφ

where the supremum is taken over all smooth, increasing functions φ :
(−∞,∞) → (0, 2) such that φ = et for t close to 0 and ωφ is defined to
be d(φα) on (0,∞) × M and (−∞, 0) × M and equal to the original ω
elsewhere.

A finite energy holomorphic curve is then defined to be a J-holomorphic
map u with E(u) <∞.

Let ηt be the flow of the Reeb vectorfield X on M associated to α.
Suppose that x is a periodic orbit of X of period T . Since η∗t α = α, the
differential DηT induces a linear map L : ξx(0) → ξx(0), and x is called
nondegenerate if L does not contain 1 in its spectrum. The contact forms
we will use do not have nondegenerate periodic orbits. In fact our contact
manifold M will actually be foliated by periodic orbits, all with the same
period, of the corresponding Reeb vectorfield. This is a special case of a
Reeb flow of Morse–Bott type.

The following theorem is proven by Hofer, Wysocki and Zehnder in
[HoWZ2, Theorems 1.2 and 1.4] in the nondegenerate case, and in [HoWZ5]
in the Morse–Bott situation.

Theorem 2. Let u be a finite energy holomorphic sphere from a Riemann
surface with a noncompact end identified with C\D. We may assume that
u(C \D) ⊂ (−∞, 0) ×M or (0,∞) ×M . Let u denote the projection of u
to M . Then there exists a periodic orbit x of the Reeb vectorfield X, say
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of period T , and a sequence Rk → ∞ such that

u(Rke
±2πit/T ) → x(t)

in C∞(R). If x is nondegenerate or of Morse–Bott type then this limit
exists for R→ ∞ and the asymptotic approach is exponential.

Punctures of a finite energy holomorphic sphere can be either positive or
negative depending upon whether the image of the curve lies in (−∞, 0)×M
or (0,∞) ×M near the puncture. In Theorem 2 the sign in the exponent
is +1 in the case of a convex end and −1 in the case of a concave end.

There is also a Fredholm theory for such curves. This was done in
[HoWZ4] in the nondegenerate case and in our degenerate situation the
result is again discussed in [B1], with the proofs given in [B2].

Let u be an embedded finite energy holomorphic sphere with positive
ends asymptotic to Reeb orbits γ+

1 , . . . , γ
+
s+ and negative ends asymptotic

to Reeb orbits γ−1 , . . . , γ
−
s− . We are interested in the virtual dimension of

the moduli space of finite energy spheres containing u, modulo reparame-
terizations. This is the index, index(u), of a certain Fredholm operator.

For generic choices of almost-complex structure J satisfying equation
(1) near the open ends, this index does indeed give the dimension of the
moduli space of finite energy holomorphic spheres in a neighborhood of an
embedded curve. As usual, virtual cycle techniques must be employed to
deal with multiply covered curves, see the discussion in [B2]. In this paper,
all of the finite energy curves we encounter will turn out to be embedded.
The theorem below can be found in [B1] or [B2].

Theorem 3. With u as above, the deformation index of u is given by

index(u) = −(2 − s+ − s−) + 2c1(TW )[u]

+
s+∑

i=1

(
µ(γ+

i ) + 1
2dim(γ+

i )
) −

s−∑

i=1

(
µ(γ−i ) − 1

2dim(γ−i )
)

where µ(γ±i ) is a generalized Conley–Zehnder index defined in [RS] and
dim(γ±i ) is the dimension of the manifold of Reeb orbits containing γ±i .

The moduli space containing a sphere u will in general contain spheres
asymptotic to a different set of Reeb orbits. The definitions of the Conley–
Zehnder index and Chern class here are given with respect to a fixed trivi-
alization along the Reeb orbits. More precisely, for each i we choose a sym-
plectic trivialization of ξ along γi. With respect to this trivialization the
Reeb flow gives a family of symplectic matrices dηt ∈ Sp(2,R) for 0 ≤ t ≤ T
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where T is the period of γi. We associate the index µ(γi) to this family
following [RS]. Now, our trivialization along the γi naturally induces one
of TW |γi (thinking of γi here as lying in (0,∞)×M or (−∞, 0)×M) since
Tγi(t)W = ξγi(t)⊕R ∂

∂t⊕RX and so of the complex line bundle
∧2 TW along

the γi. This can be used to define c1(TW )[u] = c1
( ∧2 TW

)
[u] as follows.

We choose a section of u∗
∧2 TW which coincides with our trivialization

near the punctures and then count the numbers of zeros with multiplicity.
Finally we state a compactness theorem which will be needed in the

course of our proof. Now let (W,ω, J) be a closed symplectic manifold with
a compatible almost-complex structure J . The particular situation in which
we will be interested is taking a limit when we deform the almost-complex
structure in the neighbourhood of a contact-type hypersurface Σ ⊂ W ,
called stretching-the-neck.

A contact type hypersurface Σ ⊂ W is an embedded contact manifold
with a contact form α such that ω|Σ = dα. This condition allows us to find
a symplectic embedding of ((−ε, ε) × Σ, d(etα)) to a neighbourhood V of
Σ taking {0} × Σ onto Σ. By perturbing J near V we may assume that it
coincides with the push-forward of an almost-complex structure given by
formula (1) on (−ε, ε) × Σ.

We suppose that Σ divides W into two symplectic manifolds W1 and
W2 such that Σ is a convex boundary for W1 and a concave boundary
for W2. This means that the above embedding maps (−ε, 0) × Σ into W1

and (0, ε) × Σ into W2.
Following [EGH] and [HoWZ6], we remove the tubular neighbourhood

V of Σ fromW and for each N replace it by gluing in a copy of (−N,N)×Σ.
We call the resulting manifold AN and define an almost-complex structure
JN on AN by again using formula (1) on (−N,N)×Σ and letting JN = J
elsewhere. This almost-complex structure is compatible with a symplec-
tic form ωN on AN and (AN , ωN ) is symplectomorphic to (W,ω) via a
symplectomorphism equal to the identity away from V .

We will need to study finite energy holomorphic spheres in three asso-
ciated noncompact symplectic manifolds with cylindrical ends. Let W̃1

be a completion of W1 formed by gluing an end symplectomorphic to
((0,∞)×Σ, d(etα)) and equipped with a compatible almost-complex struc-
ture agreeing with J on the contact planes ξ ⊂ TΣ. Similarly define W̃2 to
be a completion of W2 with end symplectomorphic to ((−∞, 0)×Σ, d(etα))
and equipped with a corresponding compatible almost-complex structure.
Third we have the symplectization SΣ = (R × Σ, d(etα)) which also has a
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compatible almost-complex structure agreeing with J on the contact planes.
The following definitions and results are extracted from a more detailed

discussion in [EGH], see also [B1]. For a proof see [BEHWZ] or [B2].

Definition 4. Let (S, j) be a genus 0 Riemann surface with nodes. Then
a level k holomorphic map will consist of the following data:

(i) A labelling of the components of S \ {nodes} by integers {1, . . . , k}
called levels such that two components sharing a node have levels
differing at most by 1. Let Sr be the union of components of level r.

(ii) Finite energy holomorphic spheres v1 : S1 → W̃1, vr : Sr → SΣ,
2 ≤ r ≤ k − 1, and vk : Sk → W̃2. We require that each node
shared by Sr and Sr+1 is a positive puncture for vr asymptotic to a
Reeb orbit γ and a negative puncture for vr+1 asymptotic to the same
Reeb orbit γ. Further vr should extend continuously across each node
within Sr.

Suppose that uN : S2 → (AN , JN ) are a sequence of JN holomorphic
curves where S2 is the Riemann sphere with its complex structure i. We
suppose that the curves in the sequence have bounded symplectic area.
This is guaranteed if for instance they lie in a fixed homology class, the
situation we encounter in this paper.

Definition 5. The sequence uN converges to a level k holomorphic map
from a Riemann surface with nodes (S, j) if there exist maps φN : S2 → S
and sequences trN ∈ R, r = 2, . . . , k − 1, such that

(i) the φN are diffeomorphisms except that they may collapse circles in
S2 to nodes in S, and φN∗i→ j away from the nodes of S;

(ii) the sequences of maps uN ◦φ−1
N : S1 → W̃1, uN ◦φ−1

N + trN : Sr → SΣ,
2 ≤ r ≤ k− 1, and uN ◦ φ−1

N : Sk → W̃2 converge in the C∞ topology
to the corresponding maps vr on compact subsets of Sr.

In the above definition, as is necessary we are identifying (−N,N)×Σ⊂AN

with an increasing sequence of domains in SΣ, W1 ∪ (−N,N) × Σ ⊂ AN

with an increasing sequence of domains in W̃1 and W2∪(−N,N)×Σ ⊂ AN

with an increasing sequence of domains in W̃2.

Theorem 6. There exists a subsequence N(i) of N and a k such that the
sequence uN(i) converges to a level k holomorphic map.
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3 Holomorphic Curves in T ∗S2

Using the round metric on S2, we can identify T ∗S2 with TS2. The aim
of this section is to construct on TS2 a convenient symplectic form and
almost-complex structure and describe possible foliations by finite energy
curves.

We will write T rS2 for the collection of tangent vectors of length r. The
pullback λ of the Liouville form pdq from T ∗S2 restricts to a contact form
α on T 1S2. The contact plane at v ∈ T 1S2 is spanned by horizontal and
vertical vectors orthogonal to v and the corresponding Reeb flow coincides
with the geodesic flow. In particular, it is periodic with period 2π. We will
call a periodic orbit simple if its period is 2π.

Denote by π : TS2 \S2 → T 1S2 the projection along the fibers from the
complement of the zero-section to the unit tangent bundle. Let φ : TS2 →
[0,∞) be a smooth increasing function such that φ|T rS2 = r for r ≤ 1 and
φ|T rS2 = er for r large. Then the 2-form defined by ω = d(φπ∗α) extends
to a symplectic form on TS2 equal to dλ near the zero-section. Globally,
(TS2, ω) is symplectomorphic to (T ∗S2, d(pdq)) via a symplectomorphism
fixing the zero-section.

We can think of (TS2, ω) as one of our open symplectic manifolds with
a cylindrical end. Observe that SO(3) ≡ Isom(S2) acts by differentials
on TS2. This action is by symplectomorphisms preserving each T rS2.

We equip (TS2, ω) with a compatible almost-complex structure J0 sat-
isfying the following conditions. The almost-complex structure J0 should
be invariant under the action of SO(3) on TS2; the contact planes ξ =
ker(π∗α) on T rS2 should be invariant under J0; for r sufficiently large J0

should be invariant under translation in the r direction and J0(∂/∂r) = Xr.
Here Xr is the Reeb vector field on T rS2 corresponding to the contact form
π∗α. For example, on the unit tangent bundle J0 could be taken to be
the standard almost-complex structure mapping vertical tangent vectors to
their corresponding horizontal tangent vectors. For r large, J0 coincides
with one of the standard almost-complex structures on cylindrical ends
given by formula (1).

We can now study finite energy holomorphic spheres in TS2. For the
moment we will assume that the almost-complex structure J0 is suitably
perturbed to an almost-complex structure J such that the linearization of
the Fredholm operator from Theorem 3 is surjective and so its index gives
the dimension of the corresponding moduli space of finite energy spheres.

In the case of TS2 there are no negative ends, so a finite energy sphere
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u has only positive asymptotic limits, γ1, . . . , γs. Suppose that γi covers a
simple closed orbit cov(γi) times. We suppose that u is embedded.

Lemma 7. The dimension of the moduli space of finite energy planes
containing u is given by

index(u) = 2(s − 1) +
s∑

i=1

2 cov(γi) .

Proof. We choose a global trivialization of ξ over T 1S2 of horizontal and
vertical tangent vectors in TS2. The induced trivialization of

∧2 T (TS2)
over T 1S2 extends over all of TS2 because of the existence of a global split-
ting of T (TS2) into Lagrangian vertical and horizontal subspaces. Thus in
the formula of Theorem 3 the Chern class term will always be zero. Further,
dim(γi) = 2 for all i since we have only one family of Reeb orbits. Thus to
apply Theorem 3 it remains to compute the Conley–Zehnder index of an or-
bit γ with respect to this trivialization, say {H,V } where H and V are unit
horizontal and vertical vectors in ξ respectively. Given a vector v ∈ ξγ(0),
the image under the Reeb flow dηt(v) = d

ds |s=0γs(t) where γs is a family
of closed orbits with d

ds |s=0γs(0) = v. Write dηt(v) = utH + wtV ∈ ξγ(t).
Since all Reeb orbits c in T 1S2 correspond to geodesics c in S2 we observe
that (ut, wt) = (J(t), J ′(t)) where J(t) is the component of the Jacobi field
along γ corresponding to the variation γs. This Jacobi field is perpen-
dicular to γ since dηt(v) ∈ ξγ(t). The Jacobi equation for the sphere is
J ′′ +J = 0 and hence (ut, wt) = (cos(t)u0 +sin(t)w0,− sin(t)u0 +cos(t)w0)
or equivalently

dηt =
(

cos(t) sin(t)
− sin(t) cos(t)

)
∈ Sp(2,R) , 0 ≤ t ≤ 2π cov(γ) .

But this path has Conley–Zehnder index 2 cov(γ) and the result follows. �

Actually we can note that there are general formulas relating Conley–
Zehnder indices of closed Reeb orbits in unit tangent bundles with Morse
indices of the corresponding geodesics, see the discussion in [Mo].

From the lemma we see that index(u) ≥ 2 with equality if and only if u
has a single puncture and simply covers a Reeb orbit at that puncture.

Now, there are various possible foliations of TS2 by finite energy holo-
morphic spheres. For example, there exists a foliation by finite energy
planes in which all curves are asymptotic to a cover of the same Reeb orbit
(this was done in [H] in a nondegenerate situation but the same foliation
exists here). We will obtain a foliation by a stretching-the-neck procedure.
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This is described in section 4 and we prove there that the foliation is by fi-
nite energy planes asymptotic to simple Reeb orbits. Lemma 10 proves this
and that there is a single plane asymptotic to each such orbit. Meanwhile
in this section we derive some properties of such a foliation.
Lemma 8. Suppose that TS2 is foliated by finite energy planes with a
single plane asymptotic to each simple Reeb orbit. Then the intersection
number of each plane with the zero-section is ±1.

Proof. Think of TS2 as a neighborhood U of ∆ in S2 × S2 with smooth
boundary Σ = T 1S2. Then S2 × S2 \ U is a disk bundle over ∆ and
the boundaries of the disks are the Reeb orbits in Σ. The asymptotic
behaviour of our finite energy planes allows us to compactify them to maps
(D,∂D) → (TS2 = U,Σ), and we can glue the boundaries to the disks in
the complement of TS2 to obtain a foliation of S2 × S2, smooth at least
away from Σ. As the spheres in the foliation intersect ∆ in a single point
each and necessarily have self-intersection number 0, they lie in one of the
classes [S2 × pt] or [pt× S2]. In particular, the finite energy planes in TS2

intersect ∆ with intersection number ±1. �

Such a foliation of finite energy planes will be shown to exist with respect
to any regular almost-complex structure J on TS2. We now consider a
sequence of regular almost-complex structures converging smoothly to the
SO(3) invariant structure J0. The author does not know whether or not
this structure can be assumed regular, that is, whether or not our index
formula is still valid.

In any case, following [HoWZ6], by a similar procedure by which we will
later stretch-the-neck, using the compactness theorem we can take a limit of
a subsequence and find a J0-holomorphic finite energy plane through any
point in TS2. Taking a diagonal sequence of almost-complex structures
we can find disjoint and embedded planes through a dense set of points.
There is no bubbling here since simple orbits already have minimal period
and TS2 contains no closed holomorphic curves. The planes stay disjoint
and embedded in the limit by an application of positivity of intersections,
see [M]. Since the limiting planes are still asymptotic to simple Reeb orbits
they are not multiply covered. By a further limiting process we can include
these planes in a foliation of TS2, and, again by positivity of intersections,
planes in this foliation exhaust the possible limits of our finite energy planes
in this subsequence up to reparameterization.
Lemma 9. The J0-holomorphic foliation of TS2 is by finite energy planes
asymptotic to distinct simple orbits of the Reeb flow. Each plane intersects
the zero-section transversally in a single point.
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Proof. Let C be a plane in our foliation asymptotic to a Reeb orbit γ corre-
sponding to a geodesic γ, and letK be the S1 subgroup of SO(3) = Isom(S2)
which preserves γ, that is, the group of rotations about a perpendicular
axis. For the first part, we choose L ⊂ SO(3) to be a small disk through
the identity which is transverse to K. Then by the SO(3) invariance of J0,
for any l ∈ L the plane l.C is also a finite energy plane asymptotic to
a Reeb orbit close to γ. Similarly to the argument in Lemma 8, we de-
duce that all such finite energy planes are disjoint. To see this, we observe
that as the asymptotic limits are disjoint, so are the disks we can glue in
S2×S2\U to obtain spheres in S2×S2 as in Lemma 8. These spheres have
intersection number +1 with ∆ and nonnegative self-intersection number
by the positivity of intersections (the spheres corresponding to C and l.C
intersect only in U). Together this implies a self-intersection number of 0
and that the planes are disjoint. Therefore the planes form a foliation of a
neighborhood of C. Now, any other finite energy plane C ′ in our foliation
asymptotic to γ but disjoint from C must intersect some of the curves l.C.
But this contradicts positivity of intersections since C ′ must be homotopic
to C (fixing γ in a suitable compactification).

For the second part, we also observe that k.C must coincide with C for
all k ∈ K (for otherwise these planes would intersect some l.C giving a
contradiction as above). The orbits of K on S2 consist of a point p, the
antipodal point q to p, and circles around p. Our plane cannot intersect S2

in a circle for this would imply the existence of a holomorphic disk in TS2

with boundary on S2, a contradiction to Stokes’ theorem since ω is positive
on holomorphic curves whereas its primitive vanishes on the zero-section S2.
Therefore the plane can intersect S2 only at the points p and q. Now, K acts
transitively on TpS

2 ⊂ Tp(TS2) and TqS
2 ⊂ Tq(TS2), so these intersections

must be transversal (otherwise the plane would be tangent to S2 at p or q,
a contradiction since S2 is Lagrangian while embedded holomorphic curves
are symplectic). Thus each intersection is transversal and will contribute
±1 to our intersection number. Since the total intersection number is also
±1 we deduce that our finite energy planes (which are embedded) intersect
S2 transversally in a single point as claimed. �

We close this section by remarking that the transversal intersection
property will remain true for the regular almost-complex structures in our
subsequence which are sufficiently close to J0 by the smooth convergence
ensured by the compactness theorem.
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4 Stretching the Neck

Suppose that L ⊂ S2 × S2 is a Lagrangian submanifold homologous to ∆.
By Weinstein’s theorem, a sufficiently small neighbourhood U of L can
be symplectically embedded into T ∗S2, taking L to the zero-section. Let
T≤RS2 denote the metric tube of radius R inside TS2, R large, and suppose
that as in the previous section we have constructed a symplectic form ω =
d(φπ∗α) on T≤RS2 such that φπ∗α is equal to the standard Liouville form
near the zero-section.

Now, for ε small enough, (T≤RS2, εω) can be symplectically embedded
into U , again sending the zero-section to L.

Let Σ ⊂ U ⊂ S2 × S2 be the boundary of a tubular neighbourhood of
L ⊂ S2 × S2 symplectomorphic to (T≤RS2, εω). We can push forward our
SO(3)-invariant almost-complex structure on (T≤RS2, εω) and extend it to
a compatible almost-complex structure on S2 × S2. If necessary we will
perturb this almost-complex structure slightly such that the index of the
Cauchy–Riemann operator does indeed give the dimension of our moduli
spaces of holomorphic curves in all cases after we stretch the neck.

As described in [G], for any such compatible almost-complex structure
J on S2 × S2 there exist two corresponding foliations F1 and F2 by J-
holomorphic spheres in the classes [point × S2] and [S2 × point]. Each
sphere in F1 intersects each sphere in F2 transversally in a single point.
We will now deform the almost-complex structure in a neighbourhood of Σ,
stretching the neck as described in section 2 to get a sequence JN of almost-
complex structures on S2×S2. We note that our almost-complex structure
is already in the standard form (1) near Σ. For each N we have correspond-
ing JN -holomorphic foliations F1 and F2.

We apply the compactness theorem from section 2 as we take the limit
N → ∞. Different reparameterizations of a suitable subsequence converge
to finite energy holomorphic curves from punctured spheres into one of
three symplectic manifolds, namely TS2 with our almost-complex struc-
ture, the symplectization SΣ of Σ with its translation invariant almost-
complex structure and the complement of U in S2 × S2 completed with a
cylindrical end symplectomorphic to ((−∞, 0) × Σ, d(etα)). The limit of
a sequence of spheres can be thought of as a tree in which the vertices
are finite energy spheres and the edges connect finite energy spheres with
the same Reeb orbits as asymptotic limits. Choosing reparameterizations
of spheres in F1 which pass through a chosen point of U , after taking a
subsequence of N → ∞, in the limit we can find a finite energy sphere
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passing through any point of TS2. Now, taking a diagonal subsequence,
we can find a collection of finite energy spheres in the limit which pass
through a dense set of points in TS2. A second limiting process as in
[HoWZ6] can be used to find a finite energy sphere through every point
of TS2. These punctured spheres actually form a foliation and reparam-
eterizations of any converging sequence of JN -holomorphic spheres must
converge to one of these finite energy spheres. This follows from the na-
ture of the convergence. Any intersections or singular points would also be
seen as intersections amongst JN -holomorphic curves in the corresponding
foliation F1, see for instance [M]. This does not however immediately ex-
clude the possibility of the image of a limiting curve arising as a branched
cover. As is required for section 3, we want to show that this foliation is
by planes asymptotic to simple Reeb orbits.

As a remark, we observe that whether or not such a foliation arises as
a result of this limiting process, such a foliation is necessarily present in
TS2 with our symmetric compatible almost-complex structure. One way of
seeing this would be to replace L with ∆ so that the whole arrangement in
S2×S2 is invariant under the action of SO(3). Then every Reeb orbit must
be an asymptotic limit of a sphere in our foliation and thus the foliation is
by planes invariant under 1-parameter subgroups and asymptotic to simple
Reeb orbits.

Taking further diagonal subsequences, the limiting process also gives
a foliation by finite energy spheres in the (completed) complement of U ,
say W . By studying this foliation and the spheres in the symplectization
SΣ of Σ, we are able to derive some infomation about our foliation of TS2.
Now, fixing the trivialization along the Reeb orbits as before, the Chern
class term c1(T (S2 × S2))[u] in Theorem 3 is now equal to 2 for the com-
ponents of finite energy spheres u mapping to W in our homology class.
This is because c1(T (S2 × S2)) gives 2 when evaluated on spheres in the
foliation F1 but our trivialization on TS2 (and SΣ) is chosen such that it
gives 0 on the punctured spheres in TS2 and SΣ.

We can now observe that the component of the limiting holomorphic
map which has image in W must be connected. For otherwise we could find
such a finite energy sphere v in W with Chern class c1(T (S2 ×S2))[v] < 2.
This is a contradiction since such a sphere could be glued to some planes in
TS2 to produce a symplectic sphere in S2 × S2 of Chern class less than 2.
This also implies immediately that such spheres in W are not multiple
covers and therefore that our index formula is valid (as the almost-complex
structure was chosen generically).
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The spheres u in W have only negative asymptotic ends, say γ1, . . . , γs,
and so we find by Theorem 3 and the computation of the Conley–Zehnder
indices in Lemma 7 that the dimension of the corresponding moduli space
is given by

index(u) = 2(s + 1) −
s∑

i=1

2 cov(γi) .

In particular, it is at most two, and equals two only if all of the asymptotic
limits simply cover the Reeb orbits. Therefore an open dense region of W is
foliated by curves having simple asymptotic limits. Further, generic simple
Reeb orbits appear as negative asymptotic limits for curves in the foliation
of W . (Fixing a set of these limits would necessarily give a moduli space
of dimension less than two.)

In the symplectization SΣ of Σ, the finite energy spheres which appear
in our limits must have a single positive puncture. (The maximum principle
implies that there must be at least one positive puncture.) This follows
because the limit curve has a single component in W , but as we are dealing
only with curves of genus 0, different positive asymptotic limits of curves in
SΣ could not be connected to the same component. If this positive puncture
is asymptotic to a simple Reeb orbit then the curve must actually be a
cylinder R×γ over this orbit. This is because

∫
u∗π∗dα ≥ 0 for all curves in

SΣ, where π denotes the projection onto Σ (in fact the formula u∗π∗dα ≥ 0
holds pointwise), and equality occurs if and only if the curve is a cylinder.
But by the asymptotic convergence to Reeb orbits, this integral is just
the difference between the periods of the positive and negative asymptotic
limits. There is a negative asymptotic limit since γ is noncontractible and
hence, since γ has minimal period, the integral is nonpositive.

Similarly, the components of our limiting curve in TS2 must have a
single positive asymptotic limit. Since for a generic curve (that is, its
component in W passes through an open dense subset in W ) its component
in W has only simple negative asymptotic limits and any components in
SΣ are cylinders, the components of the curve in TS2 are planes with a
simple asymptotic limit (and in particular are not multiple covers). We find
such finite energy planes asymptotic to an open dense set of Reeb orbits
and use this infomation to deduce our final lemma as claimed in section 3.
Lemma 10. The asymptotic limits of the curves in our foliation of TS2

are simple Reeb orbits, and there is a single curve asymptotic to each Reeb
orbit.

Proof. The moduli space of finite energy planes in TS2 asymptotic to simple
Reeb orbits does indeed have dimension 2 by the formula of Lemma 7,
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and the part of the moduli space close to a given plane consists of planes
asymptotic to the nearby Reeb orbits (since our almost-complex structure is
assumed regular). Again, such nearby planes are automatically disjoint and
as in Lemma 9 we see that there is a single plane asymptotic to each simple
orbit. The moduli space of such planes is compact since their asymptotic
limits have minimal period and no further bubbling is possible. Thus,
including planes asymptotic to the remaining Reeb orbits gives a foliation
of TS2 which is our foliation as required. �

Hence we can now apply the results of section 3 to deduce that if our
almost-complex structure is chosen sufficiently close to J0 each plane will
intersect the zero-section S2 transversally in a single point. Thus, after
taking the subsequence, for N sufficiently large the JN -holomorphic spheres
in the foliation F1 must also intersect L transversally in a single point.
Taking a further subsequence, we can assume that the same is true for
spheres in the foliation F2.

In conclusion, we have shown the existence of an almost-complex struc-
ture JN on S2 ×S2, tamed by the standard symplectic form, such that the
transverse foliations F1 and F2 by holomorphic spheres have the property
that each leaf in each foliation intersects L transversally in a single point.

5 Conclusion of Proof

We want to construct a Lagrangian isotopy between L and ∆. In fact, since
the group of symplectomorphisms of S2×S2 which act trivially on homology
is connected (by a result of Gromov [G] it is homotopic to SO(3)×SO(3)),
it will suffice to construct a symplectomorphism taking L to ∆.

Corresponding to L we have an almost-complex structure J such that
the holomorphic curves in the corresponding foliations F1 and F2 intersect
L transversally in single points. Similarly, the standard foliations point×S2

and S2 × point are holomorphic for the standard split complex structure
J0 and each curve intersects ∆ in a single point.

Now, there is a unique extension of any diffeomorphism L → ∆ to a
diffeomorphism φ of S2×S2 sending the transverse foliations corresponding
to J onto those corresponding to J0. Provided that our initial diffeomor-
phism is chosen to be orientation preserving, φ will preserve the complex
orientation on the leaves and act trivially on homology. Both φ−1∗ω and ω
itself are compatible with the almost complex structure φ∗J (in the second
case because φ∗J preserves the foliations point × S2 and S2 × point which
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are orthogonal with respect to ω) and so ωt = (1− t)φ−1∗ω+ tω is a family
of cohomologous symplectic forms on S2 × S2 with respect to which ∆ is
Lagrangian (the forms are clearly closed and they are nondegenerate since
each is compatible with φ∗J).

Using Moser’s method, we write ωt = φ−1∗ω + dβt. Then dβt|∆ = 0
which implies that βt|∆ = dht for some function ht : ∆ → R. We can
extend the ht smoothly to functions on S2 × S2, replace our βt by βt − dht

and therefore assume that βt|∆ = 0 for all t.

Now let Xt be the unique solution of Xt�ωt = dβt

dt . Then LXtωt =
d(dβt

dt ) = dωt
dt and since dβt

dt |∆ = 0 we deduce that Xt must be tangent to
∆ along ∆. It follows that the time-1 flow ψ of the time-dependent vector
field Xt is a diffeomorphism preserving ∆ and such that ψ∗ω = φ−1∗ω.
Hence ψ ◦ φ is our required symplectomorphism.
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Anal. Non Lineaire 13:3 (1996), 337–379.

[HoWZ3] H. Hofer, K. Wysocki, E. Zehnder, Properties of pseudoholomor-
phic curves in symplectisations II: Embedding controls and algebraic in-
variants, GAFA, Geom. funct. anal. 5:2 (1995), 337–379.

[HoWZ4] H. Hofer, K. Wysocki, E. Zehnder, Properties of pseudoholomor-
phic curves in symplectisations III: Fredholm theory, Topics in Nonlin-
ear Analysis, Prog. Nonlinear Differential Equations Appl. 35, Birkhäuser,
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