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1 Introduction

The pioneers of dynamical systems theory were interested primarily in
physical systems, for example planetary motion, and began by studying
the asymptotic behavior of typical trajectories. In recent developments,
researchers motivated by classical problems in pure mathematics were led
to consider dynamical systems on various parameterizing spaces, and to
questions about special trajectories. Two outstanding developments with
these features are the study of dynamics of Lie group actions on homo-
geneous spaces, with applications to classical questions in number theory,
and the study of dynamics of the SL(2,R)-action on the moduli space of
quadratic differentials with applications to interval exchange transforma-
tions and polygonal billiards. We refer to [KlSS] and [MaT] for recent,
detailed accounts. We also refer to [W2] for a survey highlighting the par-
allels between these theories.

The parameter spaces which are studied from this point of view, for
example the space of lattices SL(n,R)/SL(n,Z) or the space of unit area
quadratic differentials over complex structures on a surface, are often non-
compact orbifolds which carry a smooth finite invariant measure. Hence by
Poincaré recurrence, a typical orbit returns along an unbounded sequence
of times to any neighborhood of its starting point. At the opposite extreme
are the divergent trajectories, that is, trajectories which eventually escape
any compact subset of the space. Such atypical trajectories are very inter-
esting for applications: for actions on homogeneous spaces, through work
of Dani [D], they are related to singular systems of linear forms which had
been previously studied in the theory of diophantine approximation, and
for actions on spaces of quadratic differentials, they are related, by work of
Masur [Ma2], to the unique ergodicity of interval exchange transformations.

Our goal in this paper is a systematic study of divergent trajectories on
noncompact parameter spaces. We begin with an abstract approach, which
is well adapted to study both homogeneous spaces and spaces of quadratic
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differentials, and to study actions of one-parameter groups as well as multi-
dimensional groups and semigroups. We then specialize to specific spaces
and specific actions. Let us first state the three problems which we address.

A. Existence. Do divergent trajectories exist?
B. Obvious vs. non-obvious reasons to escape. In the parameter

spaces we consider, there are certain easily described divergent trajecto-
ries which we call ‘obvious’ (the terms ‘degenerate’ and ‘spiraling’ have
also appeared in the literature). Consider for example the space of lat-
tices SL(n,R)/SL(n,Z) with the action of a one-parameter diagonalizable
subgroup {a(t) : t ∈ R}. It follows easily from Mahler’s compactness
criterion that the trajectory {a(t)π(x) : t ≥ 0} (where π : SL(n,R) →
SL(n,R)/SL(n,Z) is the quotient map) is divergent if there is 0 �= v ∈ Zn

such that ∥
∥a(t)x · v∥

∥→t→+∞0 .

Similarly a trajectory of a quadratic differential is divergent if some nontriv-
ial element of the surface’s fundamental group has a representative which is
a vertical loop, that is, lies entirely in the leaves of the vertical foliation as-
sociated to the quadratic differential. Precise definitions will appear later;
loosely speaking, a divergent trajectory is obvious if there is a finite set of
explicit algebraic data which account for the divergence of the trajectory.

The non-obvious divergent trajectories are the interesting ones for the
applications. In the homogeneous space setting they have been associated
with irrational singular forms, and in quadratic differential spaces, with
minimal but non-uniquely-ergodic interval exchanges. In each context, one
would like to know whether non-obvious divergent trajectories exist, or
whether all divergent trajectories are obvious.

C. Rates of divergence. Fixing a natural metric on the space, and a
basepoint, it is natural to ask how quickly a divergent trajectory escapes,
that is, what is the rate of growth of the distance from a point on the
trajectory at time t to the basepoint, as a function of t. For the obvious
divergent trajectories, it is simple to compute the rate of escape, and it
remains to describe the possible rates for non-obvious trajectories. Specif-
ically, it is interesting to know whether they may escape as quickly as the
obvious ones do, and whether they may escape arbitrarily slowly.

In this paper, answers to the above questions are given in many spe-
cific contexts, for both homogeneous spaces and quadratic differentials. It
turns out that for homogeneous spaces a greater variety of cases arise,
and they occupy us for most of the paper. Let us informally describe our
main results.
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In §2 we expose a scheme for constructing non-obvious divergent tra-
jectories. The construction is based on ideas of Khintchine [K], introduced
in the context of diophantine approximation. These ideas were later de-
veloped by Cassels [C] and adapted by Dani [D] for flows on homogeneous
spaces. We abstract and refine the scheme further, obtaining results which
are general enough to treat the problems described above.

In §§3–5 we study flows on homogeneous spaces. First, in section 3 we
study problems A and B for one-parameter flows, improving some results
of Dani (Proposition 3.5 and Theorem 3.9). In §4 we study problems A and
B for actions of multi-dimensional groups and semigroups. The situation
for cones in the maximal diagonalizable subgroups turns out to be quite
interesting. We show (Theorem 4.5) that actions of many cones, includ-
ing the Weyl chamber, admit non-obvious divergent trajectories, but other
cones (Theorem 4.8) do not. See Figure 1.
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Figure 1: Although the semigroup on the left appears ‘smaller’, it does not admit
non-obvious divergent trajectories, while the one on the right does.

It is known through previous work of G. Tomanov and the author [TW]
that the action of the full R-diagonalizable subgroup (e.g. the full diagonal
group in SL(n,R)) does not admit non-obvious divergent trajectories, and
only admits divergent trajectories when rankQG = rankRG. We formulate
a general conjecture (Conjecture 4.11) describing what we think are the
answers to problems A and B for all multidimensional R-diagonalizable
subgroups, and prove partial results (Proposition 4.12 and Corollary 4.14)
supporting the conjecture.

In §5 we study rates of escape on homogeneous spaces. For the im-
portant special case SL(n,R)/SL(n,Z) we give in Theorem 5.2 a complete
description of the fastest possible rates of escape for non-obvious divergent
trajectories. We then generalize the analysis to general one-parameter
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semigroups on a general homogeneous space (Theorem 5.9). The obvi-
ous divergent trajectories escape with linear speed and our analysis shows
that non-obvious divergent trajectories may also escape with linear speed.
On the other hand it is possible (Theorem 5.4) to construct non-obvious
divergent trajectories which diverge arbitrarily slowly on an unbounded
subsequence of times.

In §6 we discuss quadratic differential spaces. Divergent trajectories in
this context have been studied quite extensively by many authors, especially
Masur. However the question of rates of escape has not been studied. We
give a complete description (Theorem 6.4) of the fastest possible rates for
non-obvious divergent trajectories. Then we describe a stronger type of
non-obvious divergent trajectory, in which not one but many disjoint simple
closed curves are being pinched. In Theorem 6.6 we show the existence of
such trajectories and analyze their possible speed of escape.

To conclude this introduction we mention two additional general prob-
lems we have not addressed in this paper. Specific additional questions are
raised throughout the paper.

The first problem is to work out the significance of our dynamical re-
sults, for both diophantine approximation and interval exchange transfor-
mations. This work is currently in progress. The second problem is the
prevalence of divergent trajectories, e.g. to compute the Hausdorff dimen-
sion of points whose trajectory is divergent and to consider the intersection
of the divergent set with various subsets of the space under consideration,
such as curves, submanifolds, or fractal subsets. These topics have been
extensively studied for quadratic differentials, see [Ma2] for a survey, and
also [W2]. For homogeneous spaces, a solution in a specific case is contained
in [Ch].

Acknowledgements. I would like to thank Dmitry Kleinbock, Gregory
Margulis, Yair Minsky, Alex Starkov and George Tomanov for inspiring
discussions while work on this paper was in progress. I am also grateful to
the referee for helpful remarks.

2 A Scheme of Khintchine, Cassels and Dani

We present a scheme for constructing divergent trajectories. As mentioned
in the introduction, this scheme originated in the diophantine approximation
literature, in a proof of Khintchine [K], which was later discussed in [C, The-
orem 14]. Dani generalized the construction and adapted it to a dynamical
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framework in his proof of [D, Theorem 7.3]. The version presented here is
an abstraction of Dani’s.

Let Y be a locally compact Hausdorff space on which a noncompact
locally compact topological group or semigroup A acts.

A trajectory Ay ⊂ Y is divergent if for any compact subset K ⊂ Y
there is a compact C ⊂ A such that

a ∈ A� C =⇒ ay /∈ K

(equivalently, if the map a �→ ay is proper).
Now suppose that the action lifts to a covering X of Y , i.e. there is

an action of A on a locally compact Hausdorff space X and a surjective
equivariant map π : X → Y :

A×X

Id×π
��

�� X

π

��
A× Y �� Y

Theorem 2.1. Let X1,X2, . . . be a sequence of subsets of X such that
Aπ(x) is divergent for every x ∈ ⋃

Xi. Assume the following:

1. Density: For every j,

Xj = Xj ∩
⋃

i�=j

Xi .

2. Transversality: For every i �= j, Xi �Xj = Xi.
3. Local Uniformity: For any i, any x ∈ Xi, and any compact K ⊂ Y

there is a compact C ⊂ A and a neighborhood U of x such that for
every a ∈ A� C and every z ∈ U ∩Xi, we have aπ(z) /∈ K.

Then there is x0 ∈ X �
⋃

i Xi such that the trajectory Aπ(x0) is divergent.

Proof. The required point x0 is obtained as follows. Let us fix an increasing
sequence of compact sets Kk ⊂ Y , with Y =

⋃
Kk and Kk ⊂ int(Kk+1). We

will construct a sequence of open sets with compact closure Ω0,Ω1,Ω2, . . .
in X , an increasing sequence of indices i1, i2, . . . , and an increasing collec-
tion of compact sets C0, C1, C2, · · · ⊂ A such that the following hold for
k = 1, 2, . . . :

a. Ωk ⊂ Ωk−1.
b. For every j < ik, Xj ∩ Ωk = ∅.
c. Xik∩Ωk is nonempty and for every z ∈ Xik∩Ωk and every a ∈ A�Ck

we have aπ(z) /∈ Kk.

d. For every z ∈ Ωk and every a ∈ Ck � int(Ck−1), aπ(z) /∈ Kk−1.
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First let us show why such sequences suffice. The intersection
⋂

k Ωk is
nonempty by condition a. For x0 ∈

⋂

k Ωk, we have by condition b that
x0 /∈ ⋃

Xi and by condition d that Aπ(x0) is divergent.
Now let us construct the sequences inductively. Choose C0 = ∅, i1 = 1.

Let x ∈ X1 and let Ω1 be a small enough open neighborhood of x, and
C1 ⊂ A a large enough compact set so that for all z ∈ X1 ∩ Ω1 and all
a ∈ A � C1, we have aπ(z) /∈ K1. This is possible by the local uniformity
assumption. In addition let Ω1 have compact closure. Now defining K0 = ∅
and Ω0 any open set with compact closure such that Ω1 ⊂ Ω0, we see that
conditions a, b, and d are vacuous for k = 1 and condition c is satisfied by
our choice of Ω1 and C1.

Suppose we have chosen is, Ωs, Cs for s = 1, . . . , k. By the density
assumption there are � �= ik such that

X� ∩Ωk ∩Xik �= ∅ . (1)
Choose ik+1 to be any such �. Note that by condition b, ik+1 > ik. Let
x ∈ Xik ∩ Ωk ∩ Xik+1

. By the local uniformity assumption, there is a
small enough open neighborhood U around x and a large enough compact
Ck+1 ⊂ A such that for all z ∈ U ∩Xik+1

and all a ∈ A � Ck+1, we have
aπ(z) /∈ Kk+1. In addition let U be small enough so that U ⊂ Ωk. Since
Kk ⊂ int(Kk+1) and Ck+1 � int(Ck) is compact, by continuity there is a
neighborhood Ω̃ of x, contained in U , such that

z ∈ Ω̃ , a ∈ Ck+1 � Ck =⇒ aπ(z) /∈ Kk . (2)
Now let

Ωk+1 = Ω̃�
⋃

j<ik+1

Xj . (3)

Let us verify that ik+1, Ωk+1, Ck+1 satisfy the required conditions. Con-
dition a is satisfied by our choice of U . Condition b is satisfied by our defi-
nition of Ωk+1. In condition c, Ωk+1∩Xik+1

�= ∅ because x ∈ Ω̃∩Xik+1
, and

because of the transversality assumption. The second assertion in condition
c holds because of the choice of Ck+1 and U . Condition d holds because of
the choice of Ω̃. �

Modifying the argument, we now obtain three refinements of the above
result. The first two of these involve the rate of escape of a divergent
trajectory. Since we will only be discussing rates for the action of one-
dimensional groups and semigroups, let us assume that A = {a(t) : t ≥ 0}.
Let us first explain what we mean by a rate of escape.
Definition 2.2. A rate of growth is a collection {K(t) : t ≥ 0} of subsets
of Y , satisfying
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• Any compact subset of Y is contained in K(t) for some t ≥ 0.
• If t1 < t2 then K(t1) ⊂ int(K(t2)).
• Continuity of {K(t)}: For any 0 ≤ a ≤ b ≤ ∞, the set {(t, x) : x∈K(t),

a ≤ t ≤ b} is closed in R × Y .

Definition 2.3. We say that a trajectory {a(t)y : t ≥ 0} is divergent
with rate given by {K(t)} if there is t0 such that for every t ≥ t0 we have
a(t)y /∈ K(t).

Theorem 2.4. Let a rate of growth {K(t)} be given. Let Xi, i = 1, 2, . . .
be a sequence of subsets of X such that every x ∈ ⋃

i Xi is divergent with
rate given by {K(t)}. Assume also that the Xi satisfy the density and
transversality hypotheses, and the following:

Local uniformity w.r.t. {K(t)}: for every i and every x ∈ Xi there exists
a neighborhood U of x and t0 such that for every z ∈ U ∩ Xi and every
t > t0, a(t)π(z) /∈ K(t).

Then there exists x0 ∈ X �
⋃

i Xi such that Aπ(x0) is divergent with
rate given by {K(t)}.
Proof. We follow an inductive procedure similar to that of the preceding
proof, constructing open sets with compact closure Ω0,Ω1,Ω2, . . . in X, an
unbounded sequence T1 < T2 < · · · of positive numbers and an increasing
sequence of indices i1, i2, . . . such that for k = 1, 2, . . . , the following hold:

a.,b. As in the proof of Theorem 2.1.
c′. Xik ∩ Ωk is nonempty and for every z ∈ Xik ∩ Ωk and every t ≥ Tk

we have a(t)π(z) /∈ K(t).
d′. For k = 2, 3, . . . , for every z ∈ Ωk and every t ∈ [Tk−1, Tk] we have

a(t)π(z) /∈ K(t).

The sequences are constructed inductively. We start with i1 = 1 and
choose, using the local uniformity assumption, Ω1 with compact closure
small enough and T1 big enough so that X1 ∩Ω1 �= ∅ and for every t ≥ T1

and every z ∈ Ω1 ∩X1, a(t)π(z) /∈ K(t). Then conditions a, b, and c′ are
satisfied for k = 1.

Now suppose we have constructed is,Ωs, Ts for s ≤ k. Again let ik+1

be any � for which (1) holds, and let x ∈ Xik ∩ Ωk ∩ Xik+1
. By the local

uniformity with respect to {K(t)} there is Tk+1 and a neighborhood U of
x such that U ⊂ Ωk and for all t ≥ Tk+1 and all z ∈ U ∩ Xik+1

we have
a(t)π(z) /∈ K(t). Since x ∈ Xik , the subsets

{

(t, a(t)π(x)) : t ∈ [Tk, Tk+1]
}
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and {

(t, z) : z ∈ K(t) , t ∈ [Tk, Tk+1]
}

of R × Y are disjoint, and by the continuity of {K(t)}, they are closed.
Hence by the continuity of the action and the compactness of [Tk, Tk+1], a
small enough neighborhood Ω̃ of x contained in U can be chosen so that

z ∈ Ω̃ t ∈ [Tk−1, Tk] =⇒ a(t)π(z) /∈ K(t) .

Now we can define Ωk+1 by (3) and check that a, b, c′ and d′ are satisfied
for k + 1. This completes the construction.

Now for x0 ∈
⋂

Ωi we will have x0 /∈ ⋃
Xi and a(t)π(x0) /∈ K(t) for all

t ≥ T1. �

The second modification of the above scheme is useful for finding diver-
gent trajectories which do not diverge too quickly, that is, for a given rate
of growth {K(t) : t ≥ 0}, we will construct divergent trajectories which do
not diverge with rate given by {K(t)}. We need the following definition.

Let x, x′ ∈ X and let U be a connected open set containing x and x′. We
say that x, x′ ∈ X are connected by {Xj} in U if there is r > 0 and indices
j1, . . . , jr such that x and x′ belong to the same connected component of

U ∩ (Xj1 ∪ · · · ∪Xjr) .

We denote this by x
{Xj},U←→ x′.

Theorem 2.5. Suppose {K(t)} is a rate of growth. Suppose Xi, i =
1, 2, . . . is a sequence of subsets of X such that for every x ∈ ⋃

Xi,
{a(t)π(x)} is divergent with rate given by {K(t)}. Assume that the Xi

satisfy the assumptions of Theorem 2.4, and assume in addition:

• The {a(t)} action on Y is topologically transitive, that is, for any pair
of nonempty open sets A,B ⊂ Y the set

{

t ∈ R+ : a(t)A ∩B �= ∅}

is unbounded.

• Density of connected components: For any i, any x ∈ Xi, and any
neighborhood U of x, the set

{

x′ ∈ U : x
{Xj},U←→ x′}

contains a neighborhood of x.

Then there is x0 ∈ X �
⋃

i Xi such that {a(t)π(x0)} is divergent but not
divergent with rate given by {K(t)}.
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Question 2.6. We do not prove that a(t)x ∈ K(t) for all t ≥ t0, only that
there are arbitrarily large t for which a(t)x ∈ K(t). Is there a trajectory
{a(t)x} for which the stronger statement holds? This seems considerably
more difficult, and would be of interest number-theoretically, see the dis-
cussion in [S, §30.2].
Proof. By definition of a rate of growth, for all large t we have int(K(t)) �= ∅.
With no loss of generality let us assume this holds for all t. For all t ≥ 0
let

K1(t) = K(t/2) .

Then {K1(t)} is a rate of growth, and K1(t) ⊂ int(K(t)) for all t > 0.
We will find x ∈ X such that {a(t)π(x)} is divergent with rate given by
{K1(t)} but not with rate given by {K(t)}.

We construct inductively open sets with compact closure Ω0,Ω1,Ω2, . . .
in X, an unbounded sequence T1 < T2 < · · · of positive numbers and an
increasing sequence of indices i1, i2, . . . satisfying:

a,b. As in the proof of Theorem 2.1.
c′,d′. As in the proof of Theorem 2.4 with {K1(t)} in place of {K(t)}.

e. For k = 2, 3, . . . , there is s ∈ [Tk−1, Tk] such that for every z ∈ Ωk,
a(s)π(z) ∈ int(K(s)).

f. For k = 1, 2, . . . , and any z ∈ Xik ∩ Ωk,
{

z′ : z
{Xj},Ωk←→ z′

}

contains a neighborhood of z.

We choose Ω1, i1 and X1 as in the proof of Theorem 2.4, additionally
making sure that condition f holds for Ω1 by applying the density of con-
nected components hypothesis.

Suppose that for s = 1, . . . , k we have found Ωs, is, Ts satisfying con-
ditions a, b, c’, d’, e and f. Let z ∈ Xik ∩Ωk and, using condition f, let Ω̂k

be an open neighborhood of z contained in {z′ : z
{Xj},Ωk←→ z′}. Using topo-

logical transitivity, we find t0 ≥ Tk for which a(t0)π(Ω̂k)∩ int(K(Tk)) �= ∅.

Let z′ ∈ Ω̂k ∩ π−1(a(−t0)(intK(Tk))) such that z
{Xj},Ωk←→ z′. That is, there

are r, ik = j1, j2, . . . , jr and z, z′ ∈ Ωk satisfying

• a(t0)π(z′) ∈ int(K(Tk)).
• z, z′ ∈ C, where C is a connected component of Ωk∩ (Xj1 ∪· · ·∪Xjr).

By locally uniform escape with respect to {K1(t)}, choose T̃ such that
for all t ≥ T̃ and all z1 ∈ Ωk ∩ (Xj1 ∪ · · · ∪Xjr) we have a(t)π(z1) /∈ K1(t),
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and let
Tk+1 = max{T̃ , t0} .

Let

C1 =
{

y ∈ C : ∀t ∈ [Tk, Tk+1] , a(t)y /∈ int(K(t))
}

,

C2 =
{

y ∈ C : ∃t ∈ [Tk, Tk+1] , a(t)y ∈ K1(t)
}

.

It is easy to check using the continuity of {K1(t)} that C1 and C2 are
closed in C. They are nonempty since z ∈ C1 by property c′ and z′ ∈ C2.
They are disjoint since K1(t) ⊂ int(K(t)) for all t. Since C is connected
there is y ∈ C � (C1 ∪ C2).

That is, for all t ∈ [Tk, Tk+1], a(t)y /∈ K1(t) but for some s ∈ [Tk, Tk+1],
a(s)y ∈ int(K(s)). By condition c′ (for stage k) y /∈ Xik . Since y ∈ C we
have y ∈ Xjt for some t, and we set ik+1 = jt > ik.

Now for a small enough neighborhood Ω̃ of y, conditions a, c′, d′ and e
are satisfied. We guarantee condition b by defining

Ω̃k+1 = Ω̃�
⋃

j<ik+1

Xj ,

and we guarantee condition f by taking for Ωk+1 a connected component of
Ω̃k+1 which intersects Xik+1

and using the density of connected components.
This completes the inductive construction. A point in

⋂

k Ωk will satisfy
the conclusion of the theorem. �

Remark 2.7. The proof of Theorem 2.5 yields a more precise result about
the rate of escape of the trajectory which is constructed. Namely, for
any rate of growth {K(t)}, and any unbounded increasing function φ(t)
satisfying φ(t) < t for all t, let K1(t) = K(φ(t)), and suppose the hypotheses
of the theorem are satisfied for {K(t)}. Then {K1(t)} is a rate of growth,
and the proof constructs a trajectory which is divergent with rate given by
{K1(t)} but not with rate given by {K(t)}.

We now turn to the third variant of Theorem 2.1. To motivate it,
note that in the construction of Theorem 2.1, the sets {Xi} play two roles:
the constructed point x0 is sufficiently close to some of the Xi’s, causing
its trajectory to diverge, and additionally, the {Xi} are avoided, that is
x0 /∈ ⋃

Xi. It is sometimes useful to retain one list of sets {Xi} in order to
make the trajectory Aπ(x0) divergent, and add an additional list of subsets
{X ′

j} which we want to avoid.
Before stating the result we introduce some terminology. Given se-

quences {Xi}i∈N, {X ′
j}j∈N of subsets of X, a level function for ({Xi}, {X ′

j})
is a function L : N × N → N ∪ {∞} such that
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• Xi �⊂ X ′
j if and only if L(i, j) =∞.

• For each j there is M = M(j) ∈ N such that for all i, L(i, j) ∈
{1, . . . ,M,∞}.

Theorem 2.8. Let X1,X2, . . . be a list of subsets of X satisfying the
density, transversality and local uniformity hypotheses. Let X ′

1,X
′
2, . . . be

another list of subsets of X and let L be a level function for ({Xi}, {X ′
j}),

and assume

• Transversality relative to {X ′
j}: For any i, j, if Xi �⊂ X ′

j then Xi =
Xi �X ′

j .
• Density of level-increasing points: For every i, j for which L(i, j) <∞,

Xi = Xi ∩
⋃

{Xk : L(k, j) > L(i, j)} .

Then there is x0 ∈ X � (
⋃

i Xi ∪
⋃

j X ′
j) such that Aπ(x0) is divergent.

Proof. We construct sequences Ωk, Ck, ik as before, and an additional non-
decreasing sequence of positive integers j1, j2, . . . satisfying the following:
a, c, d. As in the proof of Theorem 2.1.

b′. For every i < ik and every j < jk, Xi ∩ Ωk = X ′
j ∩ Ωk = ∅.

e′. For each k, if L(ik, jk) <∞ then L(ik+1, jk) > L(ik, jk).
To construct the sequences, start with j1 = 1 and C1,Ω1, i1 as in the
proof of Theorem 2.1. Supposing Ωs, Cs, is, js have been constructed for
s = 1, . . . , k, let ik+1 be an index � for which (1) holds and, in addition,

L(ik, jk) <∞ =⇒ L(�, jk) > L(ik, jk) .

Such indices � exist by the hypothesis on density of level-increasing points.
Necessarily ik+1 > ik. Now define Ck+1, Ω̃ as in the proof of Theorem 2.1,
and, in case L(ik+1, jk) < ∞ define jk+1 = jk and Ωk+1 by (3). In case
L(ik+1, jk) =∞ define jk+1 = jk + 1 and

Ωk+1 = Ω̃�
(

X ′
jk
∪

⋃

j<ik+1

Xj

)

.

We verify that the required conditions hold for Ωk+1, Ck+1, ik+1, jk+1.
For c, in case L(ik+1, jk) =∞ we have Xik+1

�⊂ X ′
jk

and hence, by transver-
sality and transferability relative to {X ′

j}, we obtain that Ωk+1∩Xik+1
�= ∅.

The case L(ik+1, jk) < ∞, as well as the second assertion in c and condi-
tions a and d, follow as in the proof of Theorem 2.1. b′ (resp. e′) follows
from the definition of Ωk+1 (resp. jk+1).

A construction satisfying these conditions suffices because by e′, and
the fact that L is a level function for ({Xi}, {X ′

j}), we have jk → ∞ and
hence, by b′, a point x0 ∈

⋂

k Ωk will not be contained in
⋃

i Xi∪
⋃

j X ′
j . �
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Remark 2.9. By combining the proofs of Theorems 2.4 and 2.8 in an
obvious way, we see that if X1,X2, . . . ,X

′
1,X

′
2, . . . satisfy the hypotheses

of Theorem 2.8 and Theorem 2.4 then there is x ∈ G � (
⋃

Xi ∪
⋃

X ′
j)

satisfying the conclusion of Theorem 2.4.

The details are left to the reader.

3 Divergence on Homogeneous Spaces

In this section we consider the space Y = G/Γ, where G is a semisimple
real algebraic group and Γ is a non-uniform arithmetic lattice, and the flow
is induced by a one-parameter subgroup. We define obvious divergent tra-
jectories, which are an a-priori wider class than Dani’s degenerate divergent
trajectories. We apply the results of the previous section to prove the exis-
tence of non-obvious divergent trajectories. This strengthens [D, Thm. 7.3].
We also show, generalizing [D, Prop. 4.5] that obvious divergent trajectories
exist on any noncompact homogeneous space if the acting semigroup is not
quasi-unipotent.

3.1 Terminology. We will freely use terminology and standard results
about the structure of real algebraic groups, homogeneous spaces, and lat-
tices. We refer the reader to [R], [B2] or [S] for more details.

Let G denote a semisimple real algebraic group defined over Q, let Γ be
an arithmetic subgroup of G (that is, Γ is commensurable with G(Z)) and
let π : G→ G/Γ be the natural quotient map. G and any of its subgroups
acts on G/Γ by the rule

g · π(h) = π(gh) .

Recall that Γ is a lattice in G, that is, the Haar measure on G descends to
a finite G-invariant measure on G/Γ. Recall that G is said to be Q-simple
if it has no proper normal infinite Q-algebraic subgroups. In this case Γ is
irreducible.

Let D (resp. S) denote a maximal R-split (resp. Q-split) subtorus in G.
Since there is a conjugate (in G) of D which contains S (see [BT1]) we
may replace D with such a conjugate and assume S ⊂ D. The dimension
of D (resp. S) is denoted by rankRG (resp. rankQG). We denote by X(D)
the group of R-characters of D, and by X(S) the group of Q-characters
of S (which coincides with the group of R-characters on S). Characters
are written additively and are identified with their derivatives, that is, we
think of a character as a linear functional on Lie(D) or Lie(S). Given a
representation � : G→ GL(V ), a nonzero (Q-) character χ is a (Q-) weight
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for � or a weight appearing in � if there is a nonzero vector v ∈ V such that
for all d = exp(X) in D (resp. in S) we have

�(d)v = eχ(X)v . (4)

The weight–space corresponding to χ is the subspace Vχ consisting of all
vectors v for which (4) holds for all d. If χ is a Q-root then Vχ is defined
over Q and therefore is spanned by Vχ ∩ V (Q). The set of all (Q-) weights
for � is denoted by Λ� (resp. ΛQ(�)). Given a ∈ D, we write

Λ−
� (a) =

{

λ ∈ Λ� : λ(a) < 0
}

and
V −

� (a) =
⊕

λ∈Λ−
� (a)

Vλ .

If � is clear from context we omit it from the notation. Also, if a ∈ Lie(D)
we write V −(a) (resp. Λ−(a)) for V −(exp(a)) (resp. Λ−(exp(a))).

A one-parameter subsemigroup {a(t) : t ≥ 0} of G is called non-quasi-
unipotent, if at least one of the eigenvalues of Ad(a(1)) is not on the unit
circle.

3.2 Remarks about the hypotheses. Note that the questions we
consider make sense in the more general setup in which G is a Lie group, Γ
a closed subgroup, and the acting semigroup is an arbitrary subsemigroup
of G. Using some standard reductions, most (but not all) questions about
divergent trajectories in the general setup can be reduced to the setup
considered here. In particular, it should be noted that:

(i) We have assumed that G is semisimple. Our questions are only of in-
terest in case G/Γ is not compact, but typical orbits are not divergent.
This is the case when G/Γ is non-compact and has finite volume, i.e.
Γ is a non-uniform lattice in G. The case in which G is a general Lie
group and Γ a non-uniform lattice in G reduces to the case in which G
is semisimple, as follows (we are grateful to the referee for indicating
the reduction). Let F be the maximal connected normal amenable
subgroup of G. Then G′ = G/F is semisimple, and it is known that
F/F ∩ Γ is compact. This implies that G/Γ is isomorphic to a fiber
bundle, with compact fiber, over G′/Γ′, where Γ′ is the image of Γ
in G′.

(ii) The assumption that Γ is arithmetic does not entail substantial loss
of generality since, by a result of Dani [D, Theorem 6.1] most of the
questions we will consider are only interesting for groups of real rank
at least two, hence the Margulis arithmeticity theorem can be used.
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(iii) By Margulis’ nondivergence lemma [M] there are no divergent trajec-
tories for unipotent (and also quasi-unipotent) subsemigroups. Thus
we may safely assume that A is non-quasi-unipotent.

(iv) In this section we will restrict our attention to the case that dimA = 1,
that is, A is either a line or a half-line. The higher-dimensional case
presents new phenomena and will be considered in §4.

3.3 The obvious divergent trajectories. Let us describe some ob-
vious reasons to escape to infinity in G/Γ. Let A = {a(t) : t ≥ 0}. Sup-
pose � : G → GL(V ) is a representation defined over Q, and suppose
0 �= v ∈ V (Q). Fix some realization of G as a group of matrices. Since
Γ = G(Z), there is a uniform bound on the denominators of all matrices
in �(Γ), and since v ∈ V (Q), it follows from this that �(Γ)v is a discrete
subset of V . In particular, for any compact subset K ⊂ G the set �(KΓ)v
is closed and does not contain 0.

Now suppose for some x ∈ G that
�
(

a(t)x
)

v →t→+∞ 0 ,

and suppose if possible that there is a compact subset K ′ ⊂ G/Γ and an
infinite unbounded subsequence {tn} such that for all n, a(tn)π(x) ∈ K ′.
Then there is a compact subset K ⊂ G such that a(tn)x ∈ KΓ for all n,
and hence

�
(

a(tn)x
)

v ∈ �(KΓ)v ,

a contradiction. We have proved
Proposition 3.1. Let x ∈ G. If there is a Q-representation � :
G → GL(V ), and a nonzero v ∈ V (Q) such that �(a(t)x)v →t→+∞ 0
then Aπ(x) is divergent.

Definition 3.2. We say that the trajectory Aπ(x) is an obvious divergent
trajectory if the hypotheses of Proposition 3.1 hold.

From the point of view of reduction theory, it is natural to consider a
more restricted class of representations. This results in an a-priori smaller
class of divergent trajectories. We make the following definition (cf. [D,
Def. 5.5]):
Definition 3.3. A trajectory Aπ(x) is a degenerate divergent trajectory
if there is a Q-representation � : G→ GL(V ) and a nonzero v ∈ V (Q) such
that

• �(a(t)x)→t→+∞ 0.
• G[v] = {g ∈ G : �(g)v is a scalar multiple of v} is a parabolic subgroup

of G.
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Question 3.4. Are there obvious divergent trajectories which are not
degenerate?

3.4 Existence of divergent trajectories. It was proved by Margulis
[M] that a unipotent subgroup has no divergent trajectories on G/Γ, and
his argument also shows that a quasi-unipotent subsemigroup has no di-
vergent trajectories. Recall also that G/Γ is non-compact if and only if
rankQG ≥ 1. The proposition below shows that these are the only ob-
structions to the existence of divergent trajectories.

Proposition 3.5. Let G be a semisimple Q-algebraic group and let
Γ = G(Z). Let A = {h(t) : t ∈ R} be a one-parameter subgroup, and
suppose there is a Q-simple factor G1 of G such that rankQG1 ≥ 1 and the
projection of A onto G1 is not quasi-unipotent. Then there is x ∈ G such
that Aπ(x) is divergent.

Remark 3.6. This answers a question of Starkov [S, §25.1]. Dani proved
the result in [D, Prop. 4.5] under the additional hypothesis that either A is
diagonalizable over C or rankQG = rankRG.

We collect some facts about one-parameter subgroups and parabolic
subgroups of algebraic groups.

Proposition 3.7 (Jordan decomposition over R). Given a one param-
eter subgroup {h(t)} of an algebraic group G, there are one-parameter
subgroups {k(t)}, {a(t)}, {u(t)} satisfying

• For all t, u(t) is unipotent, k(t)a(t) is diagonalizable over C, a(t) is
diagonalizable over R, and h(t) = k(t)a(t)u(t).

• {k(t) : t ∈ R} is bounded in G.

• For all t, k(t), a(t) and u(t) commute.

Proof. This may be deduced from [B2, Thm. 4.4 and Prop. 8.15]. �

Proposition 3.8. Let G be an algebraic group defined over a field
k of characteristic zero which is almost k-simple (has no proper normal k-
subgroups of positive dimension), let B be a minimal k-parabolic subgroup,
and let P1, P2 be two proper k-parabolic subgroups containing B, with
unipotent radicals U1, U2. Then dimU1 ∩ U2 ≥ 1.

Proof. Let D be a maximal k-split torus contained in B, and choose an
order on Xk(D) corresponding to the minimal parabolic subgroup B. Since
G is almost k-simple the k-root system is irreducible [B2, Thm. 22.10]. Let
λ be a dominant root with respect to this order. It follows from [H, §10.4,
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Lemma A] and the description of standard parabolic subgroups [BT2, §5]
that Gλ ⊂ Lie(U1 ∩ U2). �

Proof of Proposition 3.5. We first reduce the problem to the case that
G = G1 is Q-simple. Let π1 : G→ G1 be the quotient map. After replacing
Γ with a commensurable lattice, we have G = G1G2, Γ = Γ1Γ2, where the
Gi are commuting semisimple Q-algebraic subgroups, Γi = Gi(Z), and Γ1

is commensurable with π1(Γ). Define A1 = π1(A) and π1(gΓ) = π1(g)Γ1.
The map π1 is well-defined and intertwines the action of A on G/Γ with
the action of A1 on G1/Γ1. By assumption rankQG1 ≥ 1 and A1 is not
quasi-unipotent. If we can find x1 ∈ G1/Γ1 for which A1x1 is divergent
then Ax is divergent for any x ∈ π−1

1 (x1).
Since rankQG ≥ 1 there is a properQ-parabolic subgroup P with unipo-

tent radical U . We claim that U intersects any almost R-simple factor of
G nontrivially. Since U is normalized by a maximal R-split torus, its Lie
algebra is a sum of root spaces and in particular its intersection with any
almost R-simple factor coincides with its projection on that factor. Thus it
suffices to show that U1 projects nontrivially on any almost R-simple factor
of G. Let G0 be the smallest normal subgroup of G containing U . Since
U is defined over Q, so is G0. Since G is almost Q-simple, G = G0. On
the other hand G0 is the product of the almost R-simple factors of G onto
which U projects nontrivially. The claim follows.

Let d = dim U and let pU ∈ V =
∧d G be a corresponding vector. Let

� : G → GL(V ) be the d-th exterior power of the adjoint representation.
This is a representation defined over Q, and pU can be chosen in V (Q).

For χ ∈ Λ� we have

Vχ = span{v1 ∧ · · · ∧ vd : vi ∈ Gαi , α1 + · · ·+ αd = χ} . (5)

Let {k(t)}, {a(t)}, {u(t)} be as in Prop. 3.7. Let

P− =
{

g ∈ G : {a(t)ga(−t) : t ≥ 0} is bounded in G
}

. (6)

The unipotent radical of P− is

U− =
{

g ∈ G : a(t)ga(−t)→t→+∞ e
}

,

the contracting horospherical subgroup of {a(t)}.
We have

Lie(P−) =
⊕

χ∈Φ, χ(a(1))≤0

Gχ and Lie(U−) =
⊕

χ∈Φ, χ(a(1))<0

Gχ . (7)

Since {h(t)} is not quasi-unipotent, {a(t)} is nontrivial, and hence P−

is a proper R-parabolic subgroup of G, and U− is nontrivial. Let G1 be
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an almost R-simple factor of G such that P− ∩G1 is a proper R-parabolic
subgroup of G1. Let U1 = G1 ∩U , which is nontrivial in view of the above
claim.

Let B− be a minimal R-parabolic subgroup of G which is contained in
P− and let B be a minimal R-parabolic subgroup of P containing U . Since
all minimal R-parabolic subgroups are conjugate in G [B2, Thm. 20.9], there
is g0 ∈ G such that B− = g0Bg−1

0 . We then have

g0Ug−1
0 ⊂ P− (8)

and, applying Proposition 3.8 to G1 ∩ P− and G1 ∩ g0Pg−1
0 ,

dimU− ∩ g0Ug−1
0 ≥ 1 . (9)

From this it follows, using (5), (7), (8) and (9), that

�(g0)pU ∈ V −(a(1)) . (10)

In particular, t �→ ‖�(a(t)g0)pU‖ decreases exponentially. Since the norm
of k(t) is uniformly bounded and the norm of u(t) increases polynomially
in t, we obtain that

�(h(t)g0)pU →t→+∞ 0 . (11)

Repeating the same argument with a(−t) in place of a(t) we obtain
g′ ∈ G such that

�(g′)pU ∈ V −(a(−1))

and hence
�(h(t)g′)pU →t→−∞ 0 .

Let Q− (resp. Q+) denote the largest subgroup of G leaving V −(a(1))
(resp. V −(a(−1))) invariant. Note that Q− and Q+ contain opposite Borel
subgroups, and hence Q+Q− contains an open (and in fact dense) subset
of G. Therefore there is g ∈ G(Q) such that g′gg−1

0 = (q+)−1q− ∈ Q+Q−.
Now letting x = q+g′g = q−g0 and p = �(g−1)pU ∈ V (Q) we obtain

�
(

h(t)x
) · pU →t→+∞ 0 and �

(

h(t)x
)

p→t→−∞ 0 .

Hence, by Proposition 3.1, the orbit Aπ(x) is divergent. �

3.5 Existence of non-obvious divergent trajectories. In this sub-
section we apply the results of §2 to prove the following:
Theorem 3.9. Let G be a semisimple Q-algebraic group and let Γ be
an arithmetic subgroup. Let {h(t) : t ∈ R} be a one-parameter subgroup
of G and let A = {h(t) : t ≥ 0}. Let G1 be the product of all the almost
Q-simple factors G0 of G such that the projection of h(1) onto G0 is non-
quasi-unipotent, and suppose rankQG1 ≥ 2.

Then there are non-obvious divergent trajectories for A.
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Remark 3.10. 1. This improves [D, Thm. 7.3], where the existence of non-
degenerate divergent trajectories is proved, under the additional hypotheses
that rankQG = rankRG and G is Q-simple.

2. Using arguments as in the proof of Prop. 3.5 one can obtain the same
result for A a one-dimensional subgroup (rather than subsemigroup) of D.

3. The condition rankQG1 ≥ 2 is a necessary one, since by [D, §6], any
divergent trajectory is obvious (even degenerate) when rankQG1 = 1.

Example. Let G1 = G2 = SL(2,R), Γ1 = Γ2 = SL(2,Z), πi : Gi → Gi/Γi,
G = G1×G2, Γ = Γ1×Γ2, π(x, y) = (π1(x), π2(y)), gt = diag(et, e−t) ∈ Gi,
h(t) = (gt, gt). It can be easily shown that a divergent trajectory
{h(t)π(x1, x2) : t ≥ 0} is obvious in this case if and only if there is i ∈ {1, 2}
such that {gtπi(xi) : t ≥ 0} is divergent in SL(2,R)/SL(2,Z). Our theorem
applies to show the existence of non-obvious divergent trajectories. In re-
cent work, Y. Cheung [Ch] explicitly describes these trajectories in terms
of continued fraction expansions, and computes their Hausdorff dimension.

We list some facts we will need for the proof.
Proposition 3.11. If P is a Q-parabolic subgroup of a semisimple real
algebraic Q-group G then P = P (Q), that is, the Q-points are dense in the
R-points, w.r.t. the topology of G as a Lie group.

Proof. See e.g. [PR, Chapter 6]. �

Let h(t) = k(t)a(t)u(t) where {k(t)}, {a(t)}, {u(t)} are as in Proposi-
tion 3.7. We fix a maximal R-diagonalizable torus D containing {a(t)},
and applying a conjugation if necessary, assume D is defined over Q.

Given a Q-irreducible Q-representation � : G→ GL(V ) and v ∈ V (Q),
define

X�,v =
{

g ∈ G : �(h(t)g)v →t→+∞ 0
}

. (12)

Note that the set of obvious divergent trajectories is Aπ(x) for all
x ∈ ⋃

�,v X�,v.
Proposition 3.12. With the above notation, we have

X�,v =
{

g ∈ G : �(g)v ∈ V −(a(1))
}

.

Proof. Denote the set on the right-hand side by X̂. To see that X̂ ⊂ X�,v,
repeat the argument for obtaining (11) from (10). Now let x ∈ X�,v. The
values

{

χ(a(1)) : χ ∈ Λ(�) , �(x)v projects nontrivially onto Vχ

}

are all real numbers. If at least one of them is positive then t �→ ‖�(a(t)x)v‖
increases exponentially in t and hence x /∈ X�,v, a contradiction. If at least
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one of them is equal to 0, consider the projection v′ of �(x)v onto the
corresponding eigenspace. We have �(a(t))v′ = v′ for all t and hence

�
(

k(t)u(t)
)

v′ = �(h(t))v′ →t→+∞ 0 .

Since the {k(t)} are in a bounded subset of G we must have �(u(t))v′ → 0
but in view of [B2, Prop. 4.10], this implies that v′ = 0, a contradiction. So
all the eigenvalues are less than 0, and x ∈ X̂ . �

Proof of Theorem 3.9. Arguing as in the first paragraph of the proof
of Proposition 3.5, we may assume that G = G1, that is assume that the
projection of h(1) onto any Q-simple factor of G is non-quasi-unipotent.

Let B− be a minimal R-parabolic subgroup containing D, such that
B− ⊂ P−, where P− is defined by (6). Let P1, P2 be two distinct maximal
Q-parabolic subgroups containing B−. Two such parabolics exist because
rankQG ≥ 2. We have

Radu(Pi) ⊂ B− ⊂ P−, i = 1, 2 . (13)
By the reduction above to the case G = G1, for every almost Q-simple

factor G0 of G we have that G0 ∩P− is a proper parabolic subgroup of G0.
There are noncompact almost Q-simple factors Gi of G such that the pro-
jection of Pi onto Gi is a proper Q-parabolic subgroup of Gi. Arguing as
in the proof of Proposition 3.5 we obtain that the projection of Radu(Pi)
onto any almost R-simple factor of Gi is nontrivial. Using Proposition 3.8,

dim Radu(Pi) ∩ Radu(P−) ≥ 1 . (14)
It follows using (5), (7), (13), and (14) that for all g ∈ Pi,

a(t)g · pi →t→+∞ 0 ,

where di = dim Radu(Pi) and pi ∈ V =
∧di G is a Q-vector representing

Radu(Pi), and where g · v denotes the natural action by the di-th exterior
power of the adjoint representation.

Let {X1,X2, · · · } be an enumeration of the distinct elements of
{

Pig : i = 1, 2 , g ∈ G(Q)
}

.

Let us verify that the Xi satisfy the hypotheses of density, transver-
sality, and locally uniformity as in §2. Below we let Xi = Qigi, where
Qi ∈ {P1, P2} and gi ∈ G(Q).
• Density. By Proposition 3.11, Xi = Xi ∩G(Q) for each i. Since each

Xi = Qigi is a coset, for each g0 ∈ Xi ∩ G(Q) we have Xi = Qig0.
Take Q ∈ {P1, P2}, Q �= Qi and let Xj = Qg0. Then Xj �= Xi, and
we have shown that

Xi ∩G(Q) ⊂
⋃

i�=j

Xj .
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• Transversality. Suppose that for some i, j, Xi ∩ Xj contains a rela-
tively open subset of Xi. Since both Xi and Xj are connected alge-
braic varieties, we must have Xi ⊂ Xj . Since Xi,Xj are cosets for
Qi, Qj respectively, we must have Qi ⊂ Qj , and since P1 and P2 are
maximal Q-parabolics, Qi = Qj. This implies that Xi = Xj, hence
i = j.

• Local uniformity. Given a compact K ⊂ Y and x ∈ Xi = Qigi let
p = g−1

i · pj , with j ∈ {1, 2} such that Qi = Pj . By an argument as
in the proof of Proposition 3.1, there is ε > 0 such that if ‖g · p‖ < ε
then g /∈ π−1(K). For all g ∈ Xi we have a(t)g · p→t→+∞ 0, that is

g · p ∈ V −(a(1)) .

By continuity of the G-action there is a small enough neighborhood
U of x such that for all z ∈ U ∩Xi, z ·p ∈ V − and ‖z ·p‖ < 2‖x ·p‖.
Let ‖a(t)‖ denote the operator norm of a(t). Then

‖a(t)‖ ≤ ceαt , where α = max
χ∈Λ−

χ(a(1)) < 0

and c is a constant. Let t0 > 1
α log ε

2c‖x·p‖ , then for t ≥ t0 and
z ∈ U ∩Xi we have

∥
∥a(t)z · p∥

∥ ≤ ‖a(t)‖‖z · p‖ < ε .

This proves the required statement (taking C = {a(t) : t ∈ [0, t0]}).
We now let X ′

1,X
′
2, . . . be an enumeration of the sets X�,v defined

by (12), for all Q-representations � : G → GL(V ) which are irreducible
over Q and all v ∈ V (Q). For each w ∈ V write w =

∑

λ∈Λ�
wλ, where

wλ ∈ Vλ for all λ, and let

Π(w) = {λ ∈ Λ� : wλ �= 0} , Π(z) = Π
(

�(z)v
)

. (15)

By Proposition 3.12 we have

λ ∈ Π(z) , z ∈ X ′
j =⇒ λ(a(1)) < 0 . (16)

Now define L(i, j) as follows. If Xi �⊂ X ′
j then L(i, j) = ∞, and if

Xi ⊂ X ′
j = X�,v then

L(i, j) = max
z∈Xi

#Π(z) .

Taking M(j) = dim V we see that L is a level function for ({Xi}, {X ′
j}).

We will complete the proof of the theorem by showing that the conditions
of Theorem 2.8 are satisfied. The hypothesis of transversality relative to
{X ′

j} follows automatically from the fact that both the Xi and the X ′
j are

real algebraic varieties, with Xi connected.
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We now verify the density of level-increasing points. Assume (exchang-
ing P1 and P2 if necessary) that Xi = P1gi ⊂ X ′

j = X�,v, where gi ∈ G(Q),
and let

X̃i =
{

g ∈ Xi ∩G(Q) : L(i, j) = #Π(g)
}

.

We first claim that X̃i is dense in Xi. For each λ ∈ Λ�, the set

Zλ =
{

g ∈ G : λ ∈ Π(g)
}

=
{

g ∈ G : �(g)v has nonzero Vλ−component
}

is Zariski open in G and hence its intersection with Xi is Zariski open in Xi.
In particular, setting

Π0 = {λ ∈ Λ� : Xi ∩ Zλ �= ∅} and Z(Π0) =
⋂

λ∈Π0

Zλ , (17)

we have that L(i, j) = #Π0, and, since P1, hence Xi, is connected, that
Z(Π0) is Zariski open and dense in Xi. Also

X̃i = Z(Π0) ∩G(Q) ,

so by Proposition 3.11, X̃i is dense in Xi.
For each z ∈ X̃i, P2z is one of the X�’s, and is different from Xi = P1z.

Thus the density of level-increasing points, and hence the theorem, follow
from the following:

Claim 3.1. For each z ∈ X̃i, there is p ∈ P2 such that Π0 = Π(z) � Π(pz).

Proof of Claim 3.1. By a Zariski density argument similar to the one
above (replacing Xi with P2z), for all p in a Zariski dense subset of P2 we
have Π0 ⊂ Π(pz). Thus if the claim does not hold then for any p in a
Zariski dense subset of P2, Π(pz) = Π0, and hence

p ∈ P2 =⇒ Π(pz) ⊂ Π0 .

Also, by (17),
p ∈ P1 =⇒ Π(pz) ⊂ Π0 .

Write

Lie(Pi) = Lie
(

ZG(D)
) ⊕

⊕

χ∈Ψi⊂Φ

Gχ , i = 1, 2 .

We now show

α ∈ Ψ1 ∪Ψ2 , χ ∈ Π0 =⇒ χ + α ∈ Π0 . (18)

Write d� : Lie(G) → End(G) for the derivative of �. Clearly, for
all β ∈ Λ� and k ≥ 0, d�k(Gα)Vβ ⊂ Vβ+kα. Moreover (this follows
from the standard fact that for a C-root α and a C-weight β we have
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d�(Gα)(Vβ) = Vα+β ), for any nonzero v ∈ Vχ, if α ∈ Φ and χ + α ∈ Λ�

there is a ∈ Gα such that d�(a)(v) �= 0. Thus, writing

�(z)v =
∑

λ∈Π0

wλ , ∀λ ∈ Π0 , wλ �= 0 ,

there is a ∈ Gα and nonzero w′
χ+α ∈ Vχ+α such that d�(a)wχ = w′

χ+α.
Writing a0 = d�(a) ∈ End(V ) and using the fact that �(exp) = exp(d�),

we obtain

�
(

exp(ta)z
)

v = exp(ta0)
∑

λ∈Π0

wλ

=
∑

k≥0

tkak
0

k!

∑

λ∈Π0

wλ

=
∑

λ∈Π0

∑

k≥0

tkak
0(wλ)
k!

.

The χ + α component in this sum is
∑

k≥0

tk

k!a
k
0(wχ+(1−k)α) = tw′

χ+α +
∑

k≥0, k �=1

tk

k!a
k
0(wχ+(1−k)α) .

Since Vχ+(1−k)α = {0} for all large k, this is a finite sum, which defines
a polynomial in t. Since w′

χ+α �= 0, it is nonconstant, so vanishes for only
finitely many t. For all other t we have χ + α ∈ Π(exp(ta)z) ⊂ Π0, and
(18) follows.

From (18) we obtain that the subspace

V 0 =
⊕

λ∈Π0

Vλ

is d�(Lie(Pi))-invariant, and hence �(Pi)-invariant, for i = 1, 2. Since P1, P2

generate G, V 0 is �(G)-invariant, and since � is irreducible over R, we
obtain that V 0 = V . In particular, Π0 = Λ�, so by (16), for every λ ∈ Λ�,
λ(a(1)) < 0. However, since G is semisimple Λ� = −Λ�, a contradiction.
This proves the claim and completes the proof of the theorem. �

4 Higher-dimensional Semigroups

As a special case of Theorem 3.9 we obtain that if rankQG ≥ 2, Γ is
irreducible and A is a one-parameter subsemigroup of D, then there are
non-obvious divergent trajectories for the action of A. On the other hand,
in [TW, Thm. 1.1] it is proved that if rankQG < rankRG then there are no
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divergent trajectories for the action of D on G/Γ, and if rankQG = rankRG
then the divergent trajectories of D on G/Γ admit a simple algebraic de-
scription. This leaves open the question of describing divergent trajectories
for intermediate subgroups or subsemigroups of D.

In this section we define obvious divergent trajectories for an action
of a subsemigroup A of D on a homogeneous space. The definition co-
incides with Definition 3.2 for one-parameter semigroups and is satisfied
for the algebraic construction of divergent trajectories described in [TW].
We obtain two main results. First we apply the Khintchine–Cassels–Dani
scheme to obtain non-obvious divergent trajectories for some semigroups.
As a consequence we show that non-obvious divergent trajectories do ex-
ist when the semigroup is a Weyl chamber. Then, in the special case
G/Γ = SL(3,R)/SL(3,Z) we apply an elementary geometric argument
to show that for certain semigroups, the only divergent trajectories are
obvious. We conclude the section with some results about subgroups of
intermediate dimension, that is A ⊂ D with 1 < dimA < dimD.

4.1 Obvious divergent trajectories (multidimensional case). We
preserve the notation of §3. Let A be a subsemigroup of D. We say that
A is a closed affine cone if there is a connected subgroup D0 of D, finitely
many linear functionals λ1, . . . , λr ∈ Lie(D)∗ and non-negative m1, . . . ,mr

such that
A =

{

exp(a) : a ∈ Lie(D0) , ∀i , λi(a) ≥ mi

}

.

Definition 4.1. We say that a trajectory Aπ(x) ⊂ G/Γ is an obvious
divergent trajectory if for any unbounded sequence {an} ⊂ A there is a
subsequence {a′n} ⊂ {an}, a Q-representation � : G → GL(V ), and a
nonzero v ∈ V (Q) such that �(a′nx)v →n→∞ 0.

It is clear (see the proof of Proposition 3.1) that an obvious divergent
trajectory is divergent. This definition may involve infinitely many repre-
sentations. However, if A is a closed affine cone then only finitely many are
needed.

Proposition 4.2. Suppose A is a closed affine cone, and x ∈ G. Then
Aπ(x) is an obvious divergent trajectory if and only if for i = 1, . . . , � there
is a Q-representation �i : G → GL(Vi), 0 �= vi ∈ Vi(Q), and subsemigroup
Ai of A such that

(i) A ⊂ ⋃
Ai.

(ii) For i = 1, . . . , �, and for any divergent (in G) sequence {an} ⊂ Ai,
�i(anx)vi →n→∞ 0.
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Remark 4.3. Proposition 4.2 shows that Definitions 3.2 and 4.1 coincide
in case A is a one-dimensional closed affine cone.

Proof. It is clear that if (i) and (ii) hold then Aπ(x) is an obvious divergent
trajectory. Conversely, suppose Aπ(x) is an obvious divergent trajectory.
Let λ1, . . . , λr be the functionals as in the definition of a closed linear cone,
let ‖ · ‖ be a norm on Lie(D0), and let

B =
{

d ∈ Lie(D0) : ‖d‖ = 1 ,∀i , λi(d) ≥ 0
}

. (19)

Fix some a ∈ Lie(D0) with exp(a) ∈ A and d ∈ B. Then

an = exp(a + nd) ∈ A

for all n ∈ N so, by the definition of an obvious divergent trajectory, there is
a Q-representation � = �d : G→ GL(Vd), vd ∈ Vd(Q) and indices nk →∞
such that �(ank

x)vd →k→∞ 0. This implies that

�d(x)vd ∈ V −
�d

(d) .

The set

B(d) =
{

d′ ∈ Lie(D0) : ∀χ ∈ Λ−
�d

(d) , χ(d′) < χ(d)/2
}

is open and contains d, so by compactness of B there are d1, . . . ,d� for
which B ⊂ ⋃�

i=1 B(di). It is simple to verify that (i) and (ii) are satisfied
with �i = �di

and with

Ai =
{

exp(td′) : d′ ∈ B(di) , t ≥ 0
}

. �

Example. Let G,D,Γ be as above and suppose rankRG = rankQG. We
claim that for any g ∈ G(Q), Dπ(g) is an obvious divergent trajectory.
Note first that for any Q-representation � : G → GL(V ), the action of
�(g−1) preserves V (Q). Using this we may assume that g = e. Now let
� : G → GL(V ) be any Q-representation such that v ∈ V (Q) is a weight-
vector for χ ∈ X(D) (for example we could take � = Ad and for v and
Q-vector in Gα for any α ∈ Φ). Let

A− =
{

d ∈ D : χ(d) < 0
}

.

Let w1, . . . , wr ∈ G(Q) be representatives of the Weyl group NG(D)/CG(D)
(such representatives exist because rankQG = rankRG, see e.g. [BT1, §5]).
For i = 1, . . . , r let �i = �, vi = �(wi)v, Ai = w−1

i A−wi. It is now easy
to obtain (i) and (ii) of the proposition using the fact that the Weyl group
acts transitively on the Weyl chambers of D.

Note that these obvious divergent trajectories Dπ(g),g ∈ G(Q) are the
only divergent trajectories for the action of D, by [TW, Thm. 1.1].
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Question 4.4. In analogy with Definition 3.3 one could also define de-
generate divergent trajectories for actions of closed affine cones, and ask
whether an obvious divergent trajectory is necessarily degenerate.

4.2 Existence results for cones.

Theorem 4.5. Suppose G is a semisimple Q-algebraic group, Γ = G(Z),
and A ⊂ G is a closed affine cone. Suppose that for � = 1, 2 there are
Q-representations �� : G→ GL(V�) and v� ∈ V�(Q) such that the following
hold:

1. For any divergent (in G) sequence {an} ⊂ A we have ��(an)v� →n→∞ 0
for both �.

2. The groups P� = {g ∈ G : ��(g)v� ∈ Rv�}, � = 1, 2 are Q-parabolic
subgroups of G and P1, P2 generate G.

Then there is x ∈ G such that Aπ(x) is divergent, but for any one-
parameter semigroup {a(t) = exp(ta) : t ≥ 0} ⊂ A, any Q-representation
� : G→ GL(V ) and any v ∈ V (Q) we have

�
(

a(t)x
)

v �→t→+∞ 0 .

In particular there are non-obvious divergent trajectories for A.

Proof. Let B be as in (19), let d1,d2, . . . , such that {dk : k ≥ 1} is dense
in B, and let ak(t) = exp(tdk). We claim that it is enough to find x ∈ G
such that Aπ(x) is divergent, but for any k ≥ 1, any Q-representation
� : G→ GL(V ), and any v ∈ V (Q) we have

�
(

ak(t)x
)

v �→t→+∞ 0 .

Indeed, suppose we have found such an x and suppose by contradiction
that for some one-parameter subgroup {a(t) = exp(ta) : t ≥ 0} ⊂ A, some
Q-representation � : G→ GL(V ) and some v ∈ V (Q) we have

�
(

a(t)x
)

v →t→+∞ 0 .

Normalize a so that ‖a‖ = 1, i.e. a ∈ B. Then we have

�(x)v ∈ V −
a .

For dk sufficiently close to a we have

λ ∈ Λ� , λ(a) < 0 =⇒ λ(dk) < 0 .

This implies
�
(

ak(t)x
)

v →t→+∞ 0 ,

a contradiction.
Let X1,X2, . . . be an enumeration of the sets {Pig : i = 1, 2, g ∈ G(Q)}.

Repeating the arguments of the proof of Theorem 3.9, one obtains that the
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conditions of density and transversality hold for the Xi. To verify local
uniformity, let B be as in (19) and let Π(w) be defined as in (15). It follows
from the hypothesis that for � = 1, 2,

v� ∈ V −(A) =
⋂

d∈B

V −(d)

and moreover, using compactness of B, there is c > 0 such that for � = 1, 2,

d ∈ B, χ ∈ Π(v�) =⇒ χ(d) < −c. (20)

Exchanging P1 and P2 if necessary, suppose x ∈ Xi = P1g, g ∈ G(Q),
and let ṽ = �1(g−1)v1 ∈ V1(Q). Given a compact K ⊂ G/Γ, from the proof
of Proposition 3.1 there is ε > 0 small enough so that if ‖�1(z)ṽ‖ < ε then
π(z) /∈ K. Now using (20) and the fact that �(x)ṽ is a scalar multiple of v1

we find t0 and a neighborhood U of x such that for all t ≥ t0, all d ∈ B,
and all z ∈ U ∩Xi, �(exp(td)z)ṽ < ε. Thus

C = A ∩ {

exp(td) : d ∈ B , t ∈ [0, t0]
}

satisfies the local uniformity requirement.
Now, for any k ≥ 1, any Q-representation � : G → GL(V ) and any

v ∈ V (Q), let

X�,v,k =
{

g ∈ G : �(ak(t)g)v →t→+∞ 0
}

, (21)

and let X ′
1,X

′
2, . . . be an enumeration of all the sets {X�,v,k : �, v, k}.

With these choices we apply Theorem 2.8; verifying the hypotheses of this
theorem is done exactly as in the proof of Theorem 3.9, and is omitted. �

4.3 The Weyl chamber and some other cones. We illustrate the
use of Theorem 4.5 by exhibiting some closed affine cones which admit
non-obvious divergent trajectories. Preserve the notation of the previous
sections. In particular, D is a maximal R-split torus, Φ ⊂ X(D) is the set
of R-roots, and ∆ ⊂ Φ a set of positive simple roots. The R-Weyl chamber
determined by ∆ is by definition

{

exp(d) ∈ D : ∀λ ∈ ∆ , λ(d) ≥ 0
}

.

Corollary 4.6. Let G be an almost Q-simple semisimple algebraic
group, with rankQG ≥ 2, and let A be an R-Weyl chamber in G. Then
there are non-obvious divergent trajectories for A.

Proof. Replacing ∆ with −∆, suppose that

A =
{

exp(d) ∈ D : ∀λ ∈ ∆ , λ(d) ≤ 0
}

.

Let P0 be a minimal R-parabolic subgroup of G corresponding to the
choice of ∆, let P1 and P2 be two maximal Q-parabolic subgroups of G
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containing P0, let U1, U2 be the respective unipotent radicals, let Ψi ⊂ Φ
be the roots appearing in Lie(Ui), let �i be the dim Ui-th exterior power of
the adjoint representation of G on Vi =

∧dimUi G, and let 0 �= vi ∈ Vi(Q)
represent Ui. Such a vector exists because Ui is defined over Q. It is clear
that condition (2) of Theorem 4.5 is satisfied, and to conclude the proof we
verify condition (1).

Let G0 be any R-almost simple factor of G, with roots Φ0 and sim-
ple roots ∆0. Arguing as in the proof of Proposition 3.5, we see that
dim G0 ∩ Ui ≥ 1. Moreover, by the proof of Proposition 3.8, if αmax ∈ Φ0

is a dominant root then
Gαmax ⊂ Lie(Ui ∩G0) .

Also, by [H, §10.4, Lemma A],

αmax =
∑

λ∈∆0

aλλ , where ∀λ ∈ Λ0 , aλ > 0 . (22)

Now let χi ∈ Λ�i be the weight associated to vi. Calculating using (5)
and (22) we obtain that

χi =
∑

λ∈∆

bλλ , where ∀λ ∈ Λ , bλ > 0 .

For any unbounded sequence {an} ⊂ A, we have λ(an) ≤ 0 for all
λ ∈ ∆, and, passing to a subsequence, there is at least one λ ∈ ∆ such that
λ(an)→n→∞ −∞. Hence for any divergent (in G) sequence {an} ⊂ Lie(A)
we have

χi(an)→ −∞ , i = 1, 2 .

Therefore
�(an)vi = �

(

exp(an)
)

vi

= eχi(an)vi →n→∞ 0 ,

proving (1). �

Corollary 4.7. Let G = SL(3,R), Γ = SL(3,Z) and let

A =
{

diag(ea, eb, ec) : a + b + c = 0 , εa + c ≤ 0 , a + εc ≥ 0 , a ≤ 0
}

,

where ε > 0 (see the right-hand side of Figure 1). Then there are non-
obvious divergent trajectories for A.

Proof. Let V1 = R3, let v1 = e1 be the first vector in the standard basis
of R3, and let �1 : G → GL(V1) be the standard action (i.e. the given
representation G = SL(3,R)). Let V2 =

∧2
R

3, let �2 =
∧2 �1, and let

v2 = e1 ∧ e2. Then it is easy to verify that all conditions of Theorem 4.5
hold. �
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4.4 A cone admitting obvious divergence only.
Theorem 4.8. Let G = SL(3,R), Γ = SL(3,Z), and let

A+ =
{

diag(ed1 , ed2 , ed3) :
∑

di = 0 , d2, d3 ≥ 0
}

(see the left-hand side of Figure 1).
Then there are no non-obvious divergent trajectories for the action of

A+ on G/Γ.

Remark 4.9. Let A1, . . . , A6 be the 6 closed affine cones obtained by
rotating A+ by multiples of π/3. Then the group of automorphisms of the
root system, which is naturally isomorphic to {X ∈ Aut(G) : X(D) = D}
acts transitively on the Ai (but the Weyl group doesn’t!), and hence the
theorem holds for any of the Ai in place of A+.

Question 4.10. Our argument essentially uses the two-dimensionality
of D. It would be interesting to see if this result could be extended to
groups of rankQG ≥ 3.

Proof. We first note that for a sequence {exp(dn)} ⊂ A+,
dn = diag(dn

1 , dn
2 , dn

3 ) is divergent in G ⇐⇒ dn
1 → −∞ . (23)

This follows from the fact that dn
1 = −(dn

2 + dn
3 ), dn

2 , dn
3 ≥ 0 for all n. Also,

if {exp(dn)} ⊂ A+ is divergent (in G) then, along a subsequence, either
dn
2 → +∞ or dn

3 → +∞.
Suppose A+π(g) is divergent. Let e1, e2, e3 be the standard basis of R3,

and let
eij = ei ∧ ej , 1 ≤ i < j ≤ 3 .

Let �1(g)v denote the standard (given) representation of G on R3, and let
�2 = �1∧�1 be the representation of G on

∧2
R

3. Equip R3 and
∧2
R

3 with
the sup-norms

∥
∥
∥
∥

3∑

1

aiei

∥
∥
∥
∥

= max |ai| ,
∥
∥
∥
∥

∑

1≤i<j≤3

bijeij

∥
∥
∥
∥

= max |bij | .

Let ̂
Z

3 denote the primitive vectors in Z3; that is, the nonzero vectors
in Z3 which are not a multiple of a shorter vector in Z3. Let

L1 = �1(g)̂Z3, L2 = {v1 ∧ v2 : vi ∈ L1, v1 ∧ v2 �= 0} .
For v =

∑
aiei ∈ L1 (resp. v =

∑
bijeij ∈ L2), and ε > 0, let

Z(v) = {j : aj = 0} , (resp. Z(v) = {i, j : 1 ≤ i < j ≤ 3, bij = 0})
and

Dε,v =
{

d ∈ D : ‖�i(d)v‖ < ε
}

, dε,v = log(Dε,v) .



122 B. WEISS GAFA

In case v =
∑

aiei ∈ L1 we have

diag(d1, d2, d3) ∈ dε,v ⇐⇒ |ai|edi < ε , i = 1, 2, 3
⇐⇒ dj < log ε

|aj | whenever j /∈ Z(v) .
(24)

Similarly, in case v =
∑

bijeij ∈ L2, writing k = k(ij) such that
{i, j, k} = {1, 2, 3}, we have

diag(d1, d2, d3) ∈ dε,v ⇐⇒ dk > log ε
|bij | whenever i, j /∈ Z(v) . (25)

Possible shapes of dε,v, for various values of #Z(v) are shown in Figure 2.
Note that the shapes are of importance for the argument.
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#Z(v) = 1, v ∈ L1

Z(w) = ∅, w ∈ L2

Z(v) = ∅, v ∈ L1

#Z(v) = 2, v ∈ L2

Figure 2: Shapes of regions dε,v

We now claim that there is ε0 > 0 such that for all 0 < ε < ε0, the
following hold:

a) for all v ∈ L1 ∪ L2, 0 /∈ dε,v.

b) if for v1, v2, v3 ∈ L1 and d ∈ A+ we have d ∈ ⋂
Dε,vi , then the vi-s

are linearly dependent.
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c) if for v1, v2, v3, v4 ∈ L1 and d ∈ A+ we have d ∈ ⋂
Dε,vi and v1∧ v2 �=

0 �= v3 ∧ v4 then v1 ∧ v2 = ±v3 ∧ v4.

Indeed, property a) follows from the discreteness of the Li. Property b)
holds since det(d) = 1 and hence, for a constant C depending only on our
choice of norms,

Z � ‖v1∧v2∧v3‖ =
∥
∥�1(d)v1∧�1(d)v2∧�1(d)v3

∥
∥ ≤ C

3∏

1

∥
∥�1(d)vi

∥
∥ < C2ε

3
0 .

So for small enough ε0 we have v1 ∧ v2 ∧ v3 = 0. Property c) follows imme-
diately from b) and the fact that elements of L1 are primitive.

Now fix a norm ‖ · ‖ on Lie(D), denote
a+ = log(A+) ,

a+(r) =
{

a ∈ a+ : ‖a‖ = r
}

,

a+(r1, r2) =
{

a ∈ a+ : r1 ≤ ‖a‖ ≤ r2

}

,

and let 0 < ε < ε0. Since A+π(g) is divergent, by Mahler’s compactness
criterion [R, Chap.X] there is r > 0 such that for all a ∈ A+ with ‖a‖ ≥ r

there is w ∈ ̂
Z

3 such that ‖�1(ag)w‖ < ε. That is, for all R > r,

a+(r,R) ⊂
⋃

v∈L1

dε,v .

We now claim that at least one of the regions in this covering is un-
bounded, that is

∃v ∈ L1 , dε,v ∩ a+ �= ∅ and Z(v) �= ∅ . (26)
Suppose otherwise; then, by (24), Dε,v is bounded for every v ∈ L1 for

which dε,v ∩ a+ �= ∅. By compactness of a+(r), and discreteness of L1, the
set

S =
{

v ∈ L1 : a+(r) ∩ dε,v �= ∅
}

is finite.
Let

R > max
{‖a‖ : v ∈ S , a ∈ dε,v

}

, (27)

and consider the cover of a+(r,R) by the sets dε,v, v ∈ L1. Again by
compactness of a+(r,R) and discreteness of L1, this is a finite cover, i.e.

#
{

v ∈ L1 : a+(r,R) ∩ dε,v �= ∅
}

<∞ . (28)
For i = 2, 3, let

Ei =
{

d = (d1, d2, d3) ∈ a+(r,R) : di = 0
}

.

Note that a+(r,R) is a quadrilateral, with a+(r), a+(R) (respectively
E2, E3) forming pairs of opposing edges.
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Let
P =

{

d ∈ a+(r,R) : ∃v1, v2 ∈ L1 , d ∈ dε,v1 ∩ dε,v2 , v1 ∧ v2 �= 0
}

.

Suppose first that there is a connected component P0 of P such that
P0 ∩Ei �= ∅ , i = 2, 3 .

For every d ∈ P0 let v1(d), v2(d) ∈ L1 such that v1(d) ∧ v2(d) �= 0
and d ∈ dε,v1(d) ∩ dε,v2(d). By (28) only finitely many pairs v1(d), v2(d)
appear in this way. By fact c) above, and by connectedness of P0, w(d) =
v1(d) ∧ v2(d) ∈ L2 is independent of d ∈ P0. In particular there is w ∈ L2

such that dε,w contains points in both E2 and E3. That is, there are
(d1, 0, d3), (d′1, d

′
2, 0) ∈ dε,w .

Using (25) we obtain

log
ε

|b12| < d′3 = 0 ,

log
ε

|b13| < d2 = 0 ,

log
ε

|b23| < d1 = −d3 < 0 .

Again from (25) if follows that 0 ∈ dε,w, a contradiction to a) above.
Now suppose that there is no connected component of P which extends

from E1 to E2. By the Jordan–Brouwer separation theorem (cf. [G]), there
is a connected component of a+

�P which intersects both a+(r) and a+(R).
The quadrilateral a+(r,R) is covered by the sets dε,v, and the boundary of
each dε,v is contained in P. This implies that there is v ∈ L1 such that
dε,v ∩ a+(r) �= ∅ and dε,v ∩ a+(R) �= ∅, contradicting (27). These two
contradictions together prove (26).

So let v ∈ L1 with Z(v) �= ∅ and a+ ∩ dε,v �= ∅. Using a) above and
(24) one easily sees that 1 /∈ Z(v). If Z(v) = {2, 3} then v is a multiple of
e1, and �1(exp(d)g)v = ed1�1(g)v. By (23), this implies �1(dng)v →n→∞ 0
for every sequence {dn} ⊂ A+ which is divergent in G, and we are done.

So suppose Z(v) = {2} or Z(v) = {3}. Using (24) it is easy to see
that if 0 < ε′ < ε is small enough then a+ ∩ dε′,v = ∅. Therefore, we can
repeat the argument with ε′ in place of ε, and obtain v′ ∈ L1 such that
Z(v′) = {2} or Z(v′) = {3}. If necessary, repeat the argument again and
exchange 3 with 2, to obtain

Z(v) = Z(v′) = {2} , where v, v′ are linearly independent .

Therefore v ∧ v′ is a nonzero multiple of e12. Let w = �(g)−1v,w′ =

�(g)−1v′ ∈ ̂
Z

3. Using the fact that w,w′, e1, e2 are primitive, there is
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γ ∈ Γ such that �1(γ)e1 = w, �1(γ)e2 = w′, so for some a ∈ D we have
�2(agγ)e12 = ±e12.

Let h = agγ,

P =





∗ ∗ ∗
∗ ∗ ∗
0 0 ±1



 = {x ∈ G : �2(x)e12 = ±e12},

G1 =





∗ ∗ 0
∗ ∗ 0
0 0 1



 , U =





1 0 ∗
0 1 ∗
0 0 1



 ,

A+
1 = A+∩P = A+∩G1 =

{

a1(t) : t ≥ 0
}

, where a1(t) = diag(et, e−t, 1) .

Since γ ∈ Γ, π(gγ) = π(g) and a ∈ D commutes with A+, the trajectory
A+π(h) is also divergent. It follows, e.g. from [W1, Prop. 2], that π(P ) is
closed in G/Γ. Hence A+

1 π(h) ⊂ P/P ∩ Γ is divergent in P/(P ∩ Γ).
Again using [W1, Prop. 2], π(G1) is closed in P/P ∩ Γ. Replacing Γ if
necessary with a finite-index subgroup, we get that the homomorphism
P → G1, g1u �→ g1 descends to a well-defined map P/P ∩ Γ→ G1/G1 ∩ Γ,
with compact fiber identified with U/U ∩ Γ.

Write h = g1u, then it follows that A+
1 π(g1) is divergent in G1/G1 ∩ Γ.

Any divergent trajectory for a one-parameter diagonalizable semigroup
in G1 is obvious, as can be seen by elementary arguments (cf. also [D,
Thm. 6.1]). More precisely, it can be proved that there is a vector w ∈ Z2

such that a1(t)g1 ·w →t→+∞ 0, where g ·v denotes the standard (given) rep-
resentation of G1 on R2. Embed this representation as a �1(G1)-invariant
subspace of R3, by identifying R2 with span(e1, e2). In particular
w ∈ Z3 ∩ span(e1, e2) and �(g1)w is a multiple of e1. Since �1(U) fixes ev-
ery vector in span(e1, e2), �(g)w is also a multiple of e1. Again, using (23),
we obtain that A+π(g) is an obvious divergent trajectory. �

4.5 Subgroups of intermediate dimension. Let A be a subgroup
of D. We have shown in Theorem 3.9 that non-obvious divergence occurs
in case dimA = 1 and rankQG > 1. On the other hand [TW], in case
of actions of the full diagonal subgroup D, there are no divergent trajec-
tories at all if rankQG < rankRG and only obvious divergent trajectories
in case rankQG = rankRG. This leaves open questions about divergent
trajectories for a subgroup A of D with 1 < dim A < dim D. At present
the following seems plausible, cf. [TW, §8]:
Conjecture 4.11. A. If dimA > rankQG then there are no divergent
trajectories for A.
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B. If dim A = rankQG then the only divergent trajectories are obvious
ones.

C. If dim A < rankQG then there are non-obvious divergent trajectories.

In this subsection we present some partial results supporting this con-
jecture. We prove part A in case rankQG = 1, and study part C in case
G = SL(n,R), Γ = SL(n,Z), proving that there are non-obvious divergent
trajectories for ‘most’ subgroups A with dimA < n− 1.

The following was announced in [TW, §8]:
Proposition 4.12. Let G be a semisimple Q-almost simple algebraic
group with rankQG = 1 and let Γ = G(Z). Suppose A is a subgroup of D
and dim A > 1. Then there are no divergent trajectories for the action of
A on G/Γ.

Proof. It follows from [B1, Prop. 17.9] that there is a sequence
s1, s2, · · · ∈ G(Q), a sequence W1,W2, . . . of disjoint open subsets of G, a
large enough compact subset K ⊂ G/Γ, a Q-representation � : G→ GL(V )
and 0 �= v ∈ V (Q) such that

• G� π−1(K) =
⋃∞

i=1 Wi (disjoint union).
• For any sequence {gn} ⊂ Wi such that {π(gn)} ⊂ G/Γ is divergent,

we have �(gnsi)v →n→∞ 0.

Now suppose Aπ(g) is divergent and dimA ≥ 2. Then there is a ball
C ⊂ A such that for all a ∈ A � C, aπ(g) /∈ K and hence ag ∈ ⋃

Wi.
Since dim A ≥ 2, A � C is connected and since the Wi are disjoint open
sets we have (A � C)g ⊂ Wi0 for some fixed i0. Now let {a(t) : t ∈ R}
be a one-parameter subgroup of A. For all large enough t, we have both
a(t) /∈ C and a(−t) /∈ C. Therefore

�
(

a(t)gsi0

)

v →t→±∞ 0 ,

hence
0 �= �(gsi0)v ∈ V −(a(1)) ∩ V −(a(−1)) ,

which is clearly impossible. �

We now present some partial results lending credence to part C of Con-
jecture 4.11.

Theorem 4.13. Let G be a semisimple Q-algebraic group and let
Γ = G(Z). Suppose A is a subgroup of D, and for � = 1, 2 there are
subgroups P� and finitely many representations ��

i : G → GL(Vi) and
v�
i ∈ V (Q), such that the following hold for � = 1, 2:
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1. For any unbounded sequence {an} ⊂ A there is a subsequence {a′n}
and i such that ��

i(a
′
n)v�

i →n→∞ 0.
2. For each i, ��

i(P�) leaves the line R · vi invariant.
3. P� = P� ∩G(Q).
4. D ⊂ P�.
5. For any R-root α, if Gα ∩ Lie(P�) �= {0} then Gα ⊂ Lie(P�).
6. P1 and P2 generate G.

Then there is x ∈ G such that Aπ(x) is divergent, but for any one-
parameter semigroup {a(t) = exp(ta) : t ≥ 0} ⊂ A, any Q-representation
� : G→ GL(V ) and any v ∈ V (Q) we have

�(a(t)x)v �→t→+∞ 0.
In particular, Aπ(x) is a non-obvious divergent trajectory.

Proof. The proof is very similar to that of Theorems 3.9 and 4.5. We sketch
the required modifications.

We let X1,X2, . . . be an enumeration of the distinct elements of {P�g :
g ∈ G(Q), � = 1, 2} and let X ′

1,X
′
2, . . . be an enumeration of the distinct

sets of the form (21), for some dense countable set {ak(t) : k = 1, 2, . . . } of
one-parameter semigroups in A. Arguing as in the proof of Theorem 4.5, it
suffices to verify the conditions of Theorems 2.1 and 2.8 for these choices.

Density and transversality follow by repeating verbatim the arguments
given in the proof of Theorem 3.9. Local uniformity is verified using hy-
potheses 1 and 2 of Theorem 4.13, cf. the proofs of Proposition 4.2 and
Theorem 4.5. Transversality relative to {X ′

j} is immediate, and density
of level-increasing points is proved as in the proof of Theorem 3.9. Note
that hypotheses 4 and 5 of Theorem 4.13 are used when carrying out the
arguments of Claim 3.1. �

We now apply Theorem 4.13 and describe some intermediate subgroups
admitting non-obvious divergent trajectories, in a special case.
Corollary 4.14. Let G = SL(n,R), Γ = SL(n,Z), D (as before) the
subgroup of positive diagonal matrices in G. Let χ ∈ X(D) be a rational
character defined by

χ : D → R , χ
(

diag(ed1 , . . . , edn)
)

=
∑

aidi , ai ∈ Z ,

and let A = ker χ.
Suppose there is an index i0 ∈ {1, . . . , n} such that

either ai0 > max
j �=i0

aj or ai0 < min
j �=i0

aj .

Then there are non-obvious divergent trajectories for the action of A on
G/Γ.
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Proof. Suppose with no loss of generality that a1 > max2≤j≤n aj. Since
A ⊂ D and tr(diag(d1, . . . ,dn)) =

∑
di vanishes on D, we can replace χ

with χ− (a1 − 1)tr to assume that

a1 = 1 and aj ≤ 0, 2 ≤ j ≤ n

or equivalently

Lie(A) =
{

diag(d1,...,dn) : d1 = −
∑

j≥2

ajdj =
∑

j≥2

bjdj

}

where bj=− aj≥0.

We claim that for any sequence {ak} ⊂ A which is divergent in G, ak =
exp(diag(dk

1 , . . . ,d
k
n)), there is at least one i ≥ 2 and one j ≥ 2 such that

along a subsequence, dk
i →k→∞ −∞ and dk

j →k→∞ +∞. Indeed, if the
first statement did not hold we would have that all the dk

i are bounded
below, hence by d1 =

∑

s≥2 bsds that dk
1 is bounded below, hence by d1 =

−∑

s≥2 ds that
∑

s≥2 dk
i is bounded above, hence all the dk

i are bounded,
a contradiction. The second statement is proved by a similar argument.

For � = 1 (resp. � = 2) let �� be the standard action of G on Rn (resp.
on

∧n−1
R

n). For � = 1 take vectors e2, . . . , en and for � = 2 take vectors

fi = e1 ∧ · · · ∧ êi ∧ · · · ∧ en, i ≥ 2

(where êi means that ei is omitted in this expression). Let

P1 =









∗ 0 0 · 0
∗ ∗ 0 · 0
∗ 0 ∗ · 0
· · · · ·
∗ 0 0 · ∗









, P2 =









∗ ∗ ∗ · ∗
0 ∗ 0 · 0
0 0 ∗ · 0
· · · · ·
0 0 0 · ∗









.

Since each ei (resp. fi) is an eigenvector for all elements of D, with corre-
sponding character diag(d1, . . . ,dn) �→ di (resp. diag(d1, . . . ,dn) �→ −di)
the previous paragraph shows that (1) holds for both values of �. State-
ments 2–6 of Theorem 4.13 are easy to verify. �

Corollary 4.15. Retain the previous notation and let d = 4. Then all
proper algebraic subgroups of D admit non-obvious divergent trajectories,
except possibly the subgroup {exp(diag(s,−s, t,−t)) : s, t ∈ R} and its
conjugates.

5 Rates of Escape

In this section we examine the possible rates of escape for divergent tra-
jectories. We use the Khintchine–Cassels–Dani scheme to construct both
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rapidly and slowly escaping non-obvious divergent trajectories. In order
to make the ideas more transparent, and since this is the most interesting
case from the point of view of applications to number theory, we will first
consider the space Y = G/Γ where G = SL(n,R), Γ = SL(n,Z). That is, Y
is the so-called space of lattices – a parametrizing space for all unit-volume
cocompact discrete subgroups of Rn. Further below we will generalize the
results to a more general setup. Throughout this section {a(t) : t ∈ R} is a
one-parameter subgroup of G and A = {a(t) : t ≥ 0}.
5.1 Measuring rates of escape on the space of lattices. A natural
measure of rate of escape of a trajectory is the growth rate of the geodesic
distance of a point on the trajectory to some fixed basepoint. To make this
more precise, fix some inner product on TeG ∼= Lie(G). Right transport of
this inner product gives a right-invariant Riemannian metric on the tangent
space to G, which descends to a well-defined Riemannian metric on G/Γ.
Let distG/Γ( · , · ) denote the associated metric on G/Γ. For a trajectory Ay
and a point y0 ∈ G/Γ define

D1(t) = distG/Γ

(

a(t)y, y0

)

. (29)

Clearly Ay is divergent if and only if D1(t)→t→+∞ +∞.

Recall that a function f : R → R is said to grow linearly if there are
positive constants C1 and C2 and t0 > 0 such that

C1 ≤ f(t)
t
≤ C2

for all t ≥ t0. We will say that a trajectory Aπ(x) diverges with linear
speed if D1(t) grows linearly. We will be interested in the question of
whether there are non-obvious divergent trajectories which diverge with
linear speed.

There is an alternative way to describe rates of divergence which enables
us to make our results more precise. For the remainder of this subsection
let G = SL(n,R), Γ = SL(n,Z), and suppose that A ⊂ D.

We define, for x ∈ G,

δ(x) = inf
0�=v∈Zn

‖x · v‖ ,

where x · v denotes the standard (given) action of G on Rn, ‖ · ‖ is some
norm on Rn, and

D2(t) = − log
(

δ(a(t)x)
)

.

By Mahler’s compactness criterion, Aπ(x) is divergent if and only if
D2(t) →t→+∞ +∞. The following proposition shows that for studying
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trajectories which diverge with linear speed, it makes no difference whether
we consider D1(t) or D2(t).
Proposition 5.1. D1(t) grows linearly if and only if D2(t) grows linearly.

This appears to be well known, see e.g. [KlM, p. 342]. It is a special
case of the more general Proposition 5.7 below.

From now on we will measure rates of divergence with respect to D2.
The reason is that the growth of D2 is simple to estimate for the obvious
divergent trajectories.
Example. Suppose a(t) = diag(eα1t, . . . , eαnt), with α1 ≤ · · · ≤ αn (so
α1 < 0), and suppose for x ∈ G that e1 (the first vector of the standard
basis of Rn) is an eigenvector of x. Then ‖a(t)x ·e1‖ = eα1t‖x ·e1‖, so there
is a constant C > 0 such that

D2(t) ≥ −α1t + C .

Let us prove the opposite inequality. Suppose that along a subse-
quence tk → +∞ we had D2(tk) + α1tk → +∞. Then there are vectors
vk ∈ Zn

� {0} such that
e−α1tk

∥
∥a(t)x · vk

∥
∥→k→∞ 0 .

With no loss of generality we can replace the norm ‖ · ‖ with the sup-norm
on Rn (with respect to the standard basis e1, . . . , en); then the norm of
a(−t) is e−α1t for t > 0. Thus we obtain that x · vk → 0, contradicting the
discreteness of x · Zn. This proves the opposite inequality, and we obtain
that the difference between D2(t) and −α1t is bounded.

Let
a(t) = diag(eα1t, . . . , eαnt) where

∑

αi = 0 .

By conjugation with a permutation matrix, let us assume with no loss of
generality that

α1 ≤ α2 ≤ · · · ≤ αn .

Let
c = −α1 + α2

2
.

Note that c > 0 whenever n ≥ 3.
The following is the main result of this section.

Theorem 5.2. Suppose n ≥ 3.
(a) For any monotonically increasing unbounded function φ : R+ → R+

there is a non-obvious divergent trajectory Aπ(x) and t0 such that
for all t ≥ t0,

D2(t) ≥ ct− φ(t) .
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(b) If x ∈ G/Γ is such that ct−D2(t) is bounded from above then Ax is
an obvious divergent trajectory.

Taking φ(t) = c′t for any 0 < c′ < c and applying (a) we obtain:
Corollary 5.3. There is x ∈ G such that the trajectory Aπ(x) is a
non-obvious divergent trajectory which diverges with linear speed.

Proof of Theorem 5.2. We will deduce part (a) from Theorems 2.4 and
2.8, using Remark 2.9. We first introduce some notation.

For k = 1, 2 let Wk =
∧k
R

n and let �k : G → GL(V ) be the k-th
exterior power of the standard (given) representation of G on Rn. Let
e1, . . . , en be the standard basis of Rn and let eij = ei ∧ ej, 1 ≤ i < j ≤ n
be the resulting basis of W2.

Note that for t > 0, e−2ct is the smallest of the eigenvalues for the action
of a(t) on W2.

By replacing φ(t) if necessary with a function increasing at a slower rate,
we may assume with no loss of generality that t �→ ct−φ(t) is monotonically
increasing and unbounded. Let

K(t) = π
({g ∈ G : δ(g) ≥ e−(ct−φ(t))}) .

It is immediate that {K(t) : t ≥ 0} is a rate of growth. It is also clear that
Aπ(x) is divergent with rate given by {K(t)} if and only if there is t0 such
that D2(t) ≥ ct− φ(t) for all t ≥ t0.

Let

P1 =









∗ ∗ ∗ · ∗
0 ∗ ∗ · ∗
0 ∗ ∗ · ∗
· · · · ·
0 ∗ ∗ · ∗









=
{

g ∈ G : �1(g)e1 ∈ Re1

}

,

P2 =









∗ ∗ ∗ · ∗
∗ ∗ ∗ · ∗
0 0 ∗ · ∗
· · · · ·
0 0 ∗ · ∗









=
{

g ∈ G : �2(g)e12 ∈ Re12

}

.

Let X1,X2, . . . be an enumeration of the distinct elements of {Pig :
g ∈ G(Q), i = 1, 2}. Then it is easy to see, as in the proof of Theorem 3.9
that the hypotheses of density and transversality hold. Let us verify the
hypothesis of local uniformity with respect to {K(t)}. Let x ∈ Xi = Pjg,
where j ∈ {1, 2} and g ∈ G(Q). If j = 1 let e = e1 and if j = 2 let e = e12.
Let v = �j(g−1)e. Then �(g)v is a multiple of e, and the line through
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e is left invariant by �j(Pj). Since e is an eigenvector for �j(a(t)), with
corresponding eigenvalue either eα1t ≤ e−ct (in case j = 1) or e−ct (in case
j = 2), we have

�j

(

a(t)x
)

v ≤ e−ct�(x)v .

Since φ(t)→ +∞, there is t0 such that for all t ≥ t0,
∥
∥�j(a(t)x)v

∥
∥ < e−ct+φ(t) . (30)

Repeating the argument which verified local uniformity in the proof of
Theorem 3.9, we find that there is a neighborhood U of x and t0 such that
for all t ≥ t0 and all z ∈ U ∩Xi we have a(t)π(z) /∈ K(t), as required.

Now define X�,v as in (12), with h(t) = a(t), and let X ′
j be an enu-

meration of all the distinct sets X�,v. Defining the level function L(i, j) as
in the proof of Theorem 3.9 and repeating the arguments given there we
see that the hypotheses of transversality relative to {X ′

j} and density of
level-increasing points hold. Thus all conditions of Theorems 2.4 and 2.5
hold, completing the proof of part (a).

We now prove (b). Let κ be such that D2(t) ≥ ct−κ. Since D2(t)→ +∞
the trajectory Aπ(x) is divergent. We have

δ(a(t)x) = e−D2(t) ≤ eκe−ct.

By the definition of δ, for each large enough t there is a nonzero vector
v = v(t) ∈ Zn such that

∥
∥�1(a(t)x)v

∥
∥ ≤ κ1e

−ct .

Suppose the divergence is non-obvious. Then there is no fixed v0 such
that {

t : v(t) = v0

}

is unbounded. Hence there is an infinite sequence of distinct nonzero vectors
vk ∈ Zn and an unbounded sequence T1 < T2 < · · · such that

t ∈ [Tk, Tk+1] =⇒ ∥
∥�1(a(t)x)vk

∥
∥ ≤ κ1e

−ct.

Replacing if necessary each vk by a shorter primitive vector we get that
all the vk are primitive and hence for each k, vk and vk+1 are linearly
independent, and satisfy, for t = Tk+1,

∥
∥�1(a(t)x)vk

∥
∥ ≤ κ1e

−ct

and ∥
∥�1(a(t)x)vk+1

∥
∥ ≤ κ1e

−ct.

Therefore, for any norm on W2 there is κ2 such that
∥
∥�2(a(t)x)vk ∧ vk+1

∥
∥ ≤ κ2e

−2ct. (31)
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We define a norm on W2 by
∥
∥
∥

∑

1≤i<j≤n

aijeij

∥
∥
∥ = max |aij | .

Since eij are eigenvectors for the action of A on W2, and since the minimal
eigenvalue for the action of a(t) on W2 is e−2ct, we obtain for every w ∈W2,

∥
∥�2(a(t))w

∥
∥ ≥ e−2ct‖w‖ . (32)

From (31) and (32) we obtain that for every k,
∥
∥�2(x)vk ∧ vk+1

∥
∥ ≤ κ2 . (33)

From the discreteness of {u ∧ v : u, v ∈ Zn} we obtain that the set of
elements v = v1 ∧ v2 ∈ W2 satisfying (33) is finite, hence for some k there
is an unbounded sequence {Tj} for which

∥
∥�2(a(Tj)x)vk ∧ vk+1

∥
∥ ≤ κ2e

−2cTj .

Hence ∥
∥�2(a(t)x)vk ∧ vk+1

∥
∥→t→+∞ 0 ,

and Aπ(x) is an obvious divergent trajectory. �

We now apply Theorem 2.5 to prove the existence of divergent trajec-
tories which do not diverge too quickly.

Theorem 5.4. For any rate of growth {K(t)} there is x ∈ G such
that Aπ(x) diverges but does not diverge with rate given by {K(t)}. In
particular Aπ(x) can be chosen to be a non-obvious divergent trajectory.

Proof. We first explain why the second assertion follows from the first. We
can change {K(t)} to a slower rate of growth by defining K1(t) = K(φ(t))
for any monotonically increasing unbounded function φ(t), φ(t) < t. Thus
there is no loss of generality in assuming that a trajectory which does not
diverge with rate given by {K(t)} does not diverge with linear speed. It is
easily seen using Propositions 5.1, 5.7 that any obvious divergent trajectory
diverges with linear speed. Hence the second assertion follows from the first.

Define {Xi} as in the proof of Theorem 5.2. Let us show that the
conditions of Theorem 2.5 hold. Since for any x ∈ ⋃

Xi, the trajectory
Aπ(x) diverges with linear speed, by making {K(t)} slower in the previous
paragraph we may assume that for any x ∈ ⋃

Xi, Aπ(x) diverges with
rate given by {K(t)}. We have verified above that the {Xi} satisfy the
conditions of Theorem 2.4. It is well-known that the action of {a(t)} on G/Γ
is ergodic w.r.t. the natural measure (see e.g. [S, §9]) hence topologically
transitive.
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It remains to verify the hypothesis of density of connected components.
Let P1, P2 be as in the proof of Theorem 5.2. We claim that G is boundedly
generated by P1, P2, that is, there is r such that every g ∈ G can be written
as g = p1q1 · · · prqr with pi ∈ P1, qj ∈ P2. Indeed, let B be a minimal
R-parabolic subgroup contained in P1 ∩ P2 and write

G =
⋃

w∈W

BwB (34)

for the Bruhat decomposition (over R) of G, see [BT1, §5], where w ranges
over a set W of representatives of elements of the R-Weyl group W =
NG(D)/CG(D). The finite set W is generated by elements of P1, P2 since
P1, P2 are both maximal parabolic subgroups and hence generate G. Since
W is finite, there is a bound r on the length of words required to express W ,
and this bound is sufficient for all elements of G by (34).

Thus the r-fold multiplication map
µr : (P1 × P2)r → G , µr(p1, q1, . . . , pr, qr) = p1 · · · qr

is onto. It is also an algebraic morphism, and hence real analytic. Thus for
any neighborhoods U1,U2 of e in P1, P2 respectively, the image of µr|(U1×U2)r

contains a neighborhood of e in G. Given a neighborhood U of x ∈ G we
take U1,U2 small enough connected neighborhoods of the identity so that

µr
(

(U1 × U2)r
) ⊂ Ux−1.

Write Pi(Q) = Pi ∩ G(Q), Ui(Q) = Ui ∩ G(Q). By Proposition 3.11,
Pi(Q) is dense in Pi with respect to the Lie group topology. Therefore
Ui = Ui(Q) for i = 1, 2, and hence the closure of

M = µr
(

(U1(Q)× U2(Q))r
)

contains a neighborhood of the identity. On the other hand it is easily
checked that any two points in Mx are connected by {Xi} in U . Therefore
the density of connected components hypothesis is valid and the proof is
complete. �

5.2 Generalizations. The results of the previous subsection may be
generalized in several directions – e.g. general semisimple algebraic
groups G, groups satisfying the condition rankQG = rankRG, different
ways of measuring rates of escape, and acting semigroups {h(t)} which are
non-quasi-unipotent. Note that Theorem 5.4 generalizes in all the direc-
tions above, all that was used in its proof was that rankQG ≥ 2 and that
G is boundedly generated by any two maximal parabolic subgroups. In or-
der to generalize Theorem 5.2 and Corollary 5.3 we introduce the required
terminology, and then sketch the necessary modifications to our argument.
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5.2.1 Siegel sets and rates of escape. We now let G be a semisim-
ple Q-algebraic group and Γ = G(Z). In order to generalize the results of
the previous subsection, one needs a suitable way to measure the rate of
escape, that is, find a replacement for the function δ used above. We use
reduction theory, referring the reader to [B1] for additional details.

Let C be a finite subset of G(Q) as in [B1, Thm. 13.1]. Let B be
a minimal Q-parabolic subgroup containing D, let � : G → GL(V ) be
a Q-irreducible representation defined over Q and 0 �= v ∈ V (Q) such
that �(B) leaves invariant the line R · v (in the terminology of [BT1], � is
‘strongly rational’). This means that there is χ̄ ∈ Λ(�) such that for all
d = exp(X) ∈ D, �(d)v = eχ̄(X)v. We denote the restriction of χ̄ to S by χ,
and call (�, v) satisfying these hypotheses a coördinate pair, with χ̄ and χ
the weights associated to v. Fix some norm on V and define

δ̃(g) = δ̃�,v(g) = min
γ∈Γ·C

∥
∥�(gγ)v

∥
∥ .

Note that δ is obtained as a special case by taking for � the standard
(given) representation of G = SL(n,R) on Rn and v = e1, and taking
C = {e}. Note also that functions such as g �→ ‖�(g)v‖ are described in
[B1, §14].

We have the following generalization of Mahler’s compactness criterion:

Proposition 5.5. Let (�, v) be a coördinate pair and let X ⊂ G. Then
π(X) ⊂ G/Γ is precompact if and only if infx∈X δ̃�,v(x) > 0.

Let λ1, . . . , λr be a set of simple Q-roots, let λ̄, . . . , λ̄t be a set of simple
R-roots for a compatible order, and for τ ∈ R let

Sτ =
{

s ∈ S : ∀i , λi(s) ≤ τ
}

.

We will need the following:

Lemma 5.6. Suppose (�, v) is a coördinate pair, with χ̄, χ the weights
associated to v. Then χ =

∑
aiλi where ai > 0 for all i, and χ̄ =

∑
bj λ̄j ,

where bj > 0 for all j. In particular, for each τ, η ∈ R, the set
{

s ∈ Sτ : χ(s) ≥ η
}

is compact.

Proof. It is well-known (see e.g. [H, §10]) that any dominant weight is a
linear combination of the simple roots with all coefficients positive. This
proves the first two assertions. The third assertion follows easily from the
first. �
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Proof of Proposition 5.5. The implication ⇒ is immediate from discrete-
ness of �(Γ · C)v, see the proof of Proposition 3.1.

For the converse, suppose xn ∈ X and {π(xn)} ⊂ G/Γ has no conver-
gent subsequence. Passing to a subsequence and applying [B1, Thm. 13.1,
Lem. 12.2], we may write xn = knsncγn where kn belongs to a compact
subset of G, {sn} ⊂ Sτ has no convergent subsequence, c ∈ C and γn ∈ Γ.
It follows from Lemma 5.6 that χ(sn) → −∞. Therefore, letting un =
�(γ−1

n c)v we have

δ̃(xn) ≤ ∥
∥�(xn)un

∥
∥ =

∥
∥�(knsn)v

∥
∥→ 0 ,

so infx∈X δ̃(x) = 0. �

We define
D̃(t) = D̃�,v(t) = − log

(

δ̃�,v(a(t)x)
)

.

In view of Proposition 5.5, Aπ(x) is divergent if and only if D̃(t)→ +∞.
Let D1(t) be as in (29). We have the following generalization of Propo-

sition 5.1:

Proposition 5.7. Let (�, v) be a coördinate pair. Then D1(t) grows
linearly if and only if D̃�,v(t) grows linearly.

Proof. Let M be any noncompact set. For functions f, g : M → R we will
write f � g if there is a compact subset M0 ⊂ M and a positive constant
C such that

m ∈M �M0 =⇒ 1
C
≤ f(m)

g(m)
≤ C .

For each t, using [B1, Thm. 13.1], let a(t)x = k(t)s(t)γ(t), where k(t)
belongs to a compact subset of G, s(t) ∈ S, γ(t) ∈ C · Γ. Let distG(x, y)
denote the distance in G of two points with respect to some right-invariant
Riemannian metric on G. Let χ be the weight on S corresponding to v.
We have seen in Lemma 5.6 that χ =

∑
aiλ, with ai > 0 for all i.

The proof consists of three steps:

a. D1(t) � distG(s(t)).
b. distG(s(t)) � − log χ(s(t)).
c. − log χ(s(t)) � D̃�,v(t).

Part a follows from work of Siegel (see [A] for a discussion of this and
more delicate questions). Part b can be deduced from [A, §6]. Part c can be
obtained by direct computation using the fact that k(t) is bounded in G. �
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5.2.2 A generalization of Theorem 5.2. Retain the terminology
of the previous subsection. Let {h(t) : t ∈ R} be a one-parameter non-
quasi-unipotent subgroup and let a(t) be the diagonalizable component of
the Jordan decomposition of h(t) (see Proposition 3.7). Applying a conjuga-
tion, assume {a(t)} ⊂ D. By a further conjugation, assume {a(t)} is in the
closed Weyl chamber determined by the choice of some minimal R-parabolic
subgroup whose opposing parabolic is contained in B. In particular, using
the second assertion in Lemma 5.6, this implies that �(a(t))v → 0.

Let (�, v) be a coördinate pair, and for a subspace V ′ ⊂ V let V ′(Q) be
the rational vectors in V ′. Let a = a(1),

Λ = Λ� , Λ(a) =
{

χ(a) : χ ∈ Λ
}

∆ =
{

λ ∈ Λ� : Vλ(Q) �= {0}} , ∆(a) =
{

λ(a) : λ ∈ ∆
}

.

We list the elements of Λ(a) (resp. ∆(a)) by size, with multiplicity. That
is, we write Λ(a) = {α1, . . . , αs}, ∆(a) = {β1, . . . , βt} with

α1 ≤ α2 ≤ · · · ≤ αs and #{i : αi = b} =
∑

χ(a)=b

dim Vχ

β1 ≤ β2 ≤ · · · ≤ βt and #{i : βi = b} =
∑

λ(a)=b

dim Vλ(Q) .

Now let
c1 = −α1 + α2

2
, c2 = −β1 + β2

2
. (35)

We have
Proposition 5.8. c1 ≥ c2 and c1 = c2 if rankQG = rankRG.

If G is almost Q-simple and rankQG ≥ 2 then c2 > 0.

Proof. The first assertion follows immediately from the fact that ∆ ⊂ Λ
with ∆ = Λ when rankQG = rankRG.

Since {a(t)} is in the closed Weyl chamber with respect to an order for
which χ is dominant, χ(a) = α1 = β1. Let W = NG(S)/CG(S), the Q-Weyl
group of G. By [B2, 21.4], NG(D) ∩G(Q) contains representatives for W ,
and it is clear that NG(D)∩G(Q) preserves ∆. W acts on S and hence also
on Lie(S) and Lie(S)∗. Since G is almost Q-simple, ΦQ is an irreducible
root system and hence W acts irreducibly on Lie(S)∗. By considering the
kernel of

∑

w∈W wβ for any β ∈ X(S) we obtain
∑

w∈W wβ = 0. Therefore
∑t

i=1 βi = 0, so to prove the second assertion it suffices to show that t ≥ 3,
and this will follow from the inequality #Wχ̄ ≥ 3.

By the above
∑

w∈W wχ̄ = 0 and by irreducibility, spanWχ̄ = Lie(S)∗.
This means that 0 ∈ int convWχ̄ and hence #Wχ̄ ≥ dimS+1 ≥ 3, proving
the claim. �
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Theorem 5.9. Preserve the above notation, and assume G is almost
Q-simple. Let u(t) be the unipotent part of h(t). We have

(a) Suppose B is a maximal Q-parabolic and u(t) is trivial. Then for any
monotonically increasing unbounded function φ : R+ → R+ there
is a non-obvious divergent trajectory Aπ(x) and t0 such that for all
t ≥ t0,

D̃�,v(t) ≥ c2t− φ(t) .

(b) Suppose that u(t) is trivial. If x ∈ G/Γ is such that c1t− D̃�,v(t) is
bounded from above then Ax is an obvious divergent trajectory.

(c) Suppose B is a maximal Q-parabolic and c < c2. Then there is a non-
obvious divergent trajectory Aπ(x) and t0 such that for all t ≥ t0,

D̃�,v(t) ≥ ct .

Sketch of proof. We repeat the proof of Theorem 5.2, with minor modifi-
cations.

For part (a), let �1 = �, P1 = B, �2 =
∧2 �1. Let v′ ∈ V (Q) be an

eigenvector for the action of �1(D) such that �1(a)v′ = eβ2v′. Let

P2 =
{

g ∈ G : �2(g)v ∧ v′ = Rv ∧ v′
}

.

Then P2 is defined over Q, contains D, and is not contained in P1. Since
P1 is a maximal Q-parabolic subgroup, P1 and P2 generate G. This is all
that is required for the arguments used in proving Theorem 5.2, and we
obtain (a).

For part (b), repeat the argument of Theorem 5.2. Here it is important
that c1 be the smallest eigenvalue for �2(a), which is guaranteed by our
assumption that {u(t)} is trivial.

For part (c), note that the unipotent part u(t) only changes norms by
an amount which is polynomial in t. Hence, using the rate of growth

K(t) =
{

g ∈ G : δ̃�,v(g) ≥ e−ct
}

.

the proof of Theorem 5.2, part (a) still works. �

Corollary 5.10. Suppose G is semisimple and almost Q-simple with
rankRG = rankQG ≥ 2, Γ = G(Z), {a(t) : t ∈ R} a one-parameter R-
diagonalizable subgroup, A = {a(t) : t ≥ 0}, (�, v) a coördinate pair with
B a maximal Q-parabolic. Let c = c1 = c2 be as in (35). Then

(a) For any monotonically increasing unbounded function φ : R+ → R+

there is a non-obvious divergent trajectory Aπ(x) and t0 such that
for all t ≥ t0,

D̃�,v(t) ≥ ct− φ(t) .
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(b) If x ∈ G/Γ is such that ct− D̃�,v(t) is bounded from above then Ax
is an obvious divergent trajectory.

6 Quadratic Differential Spaces

6.1 Obvious divergence. In this section we discuss divergent trajec-
tories for the Teichmüller geodesic flow, which is a flow on the moduli space
of unit area quadratic differentials on a surface of finite type S. We first
briefly introduce terminology and notation. For more details and references
to the literature, the reader is referred to [MaT] and [MiW, §4].

Let S be an orientable surface of genus g ≥ 2, so that S admits a
hyperbolic structure. Let Q̃ be the space of quadratic differentials on S
and let Q̃1 be the subspace of unit-area quadratic differentials. Both are
bundles over Teich(S) (the space of complex structure on S) and the latter
is naturally identified with the unit co-tangent bundle of Teich(S) and in
particular is a fiber bundle over Teich(S) with compact fiber. Let Mod(S)
be the mapping class group, let Q1 = Q̃1/Mod(S) the moduli space of
quadratic differentials, and let π : Q̃1 → Q1 denote the quotient map.
There is a structure of a manifold (resp. orbifold) on Q̃1 (resp. on Q1), of
dimension 12g−13. The group SL(2,R) acts on Q̃1, and the action descends
to a well-defined action on Q1, admitting a finite smooth invariant measure.
The action of matrices

gt =
(

et/2 0
0 e−t/2

)

is called the Teichmüller geodesic flow.
The space Q1 is noncompact. Let ΓS be the set of nontrivial free ho-

motopy classes of unoriented non-peripheral simple closed curves on S, and
for every γ ∈ ΓS, and every q ∈ Q̃1, let lq,γ denote the length of a minimal
representative of γ with respect to the flat metric defined by q. For any
q ∈ Q̃1, the set

{lq,γ : γ ∈ ΓS}
is discrete and hence attains a minimum, which we denote by lmin(q).

The following is an analogue of Mahler’s compactness criterion:

Proposition 6.1 (Compactness criterion). Let X ⊂ Q̃1. Then

π(X) ⊂ Q1 is compact ⇐⇒ inf
{

lmin(q) : q ∈ X
}

> 0 .

In particular, for q ∈ Q̃1, the trajectory {gtπ(q) : t ≥ 0} is divergent if
and only if lmin(gtq)→t→+∞ 0.
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Every q ∈ Q̃1 determines a finite set of singularities Σ = Σ(q) and a
pair of transverse measured foliations on S � Σ, called the horizontal and
vertical foliations of q. For each q there is a natural identification of Σ(q)
with Σ(gq) for any g ∈ SL(2,R). For any t, the horizontal and vertical
foliations for gtq are topologically the same as those for q, but the measure
transverse to the horizontal (resp. vertical) leaves is multiplied by e−t/2

(resp. by et/2). For any x1, x2 ∈ Σ(q) (we allow x1 = x2) and any segment
δ in S � Σ connecting x1 and x2, which is a straight segment with respect
to the Euclidean structure determined by q, the integrals of the measure
transverse to the vertical (resp. horizontal) foliation along δ give a vector

u(δ, q) =
(

x(δ, q)
y(δ, q)

)

,

well-defined up to sign.
It follows from the above that for all t,

u(δ, gtq) =
(

et/2x(δ, q)
e−t/2y(δ, q)

)

. (36)

Each γ ∈ ΓS has a shortest representative, with respect to the flat met-
ric corresponding to q, consisting of finitely many line segments δ1, . . . , δr

joined end to end. A shortest representative is not unique but can only
change by homotopy through a metric cylinder. A representative of γ
which is linear on S �Σ(q), and for which the difference between incoming
and outgoing angle at each visit to Σ(q) is at least π, must be shortest.
This description implies that for any g ∈ SL(2,R), the concatenation of the
δi is also a shortest representative for γ with respect to gq. We then have
lq,γ =

∑r
1 ‖u(δi, q)‖. In particular, if each of the δi’s is contained entirely

in leaves of the vertical foliation of q, then

lmin(gtq) ≤ lgtq,γ

=
r∑

1

∥
∥u(δi, gtq)

∥
∥

= e−t/2
r∑

1

lq,δi
→t→+∞ 0 .

Using Proposition 6.1 we obtain

Proposition 6.2. Suppose q ∈ Q̃1 and suppose there is an element of
ΓS with a representative consisting of line segments contained entirely in
leaves of the vertical foliation of q. Then {gtπ(q) : t ≥ 0} is divergent.



Vol. 14, 2004 DIVERGENT TRAJECTORIES ON NONCOMPACT SPACES 141

Similarly, if there is an element of ΓS with a representative consisting
of line segments contained entirely in leaves of the horizontal foliation of q,
then {gtπ(q) : t ≤ 0} is divergent.

Definition 6.3. The trajectory {gtπ(q)} is called an obvious divergent
trajectory if the hypothesis of Proposition 6.2 holds.

6.2 Remarks. The Teichmüller horocycle flow is obtained by apply-
ing the one-parameter subgroup of upper-triangular unipotent matrices in
SL(2,R), and the circle flow is obtained by applying the one-parameter
subgroup {rθ : θ ∈ R} of rotation matrices in SL(2,R). It was proved by
Veech [V] (see also [MiW]) that there are no divergent trajectories for the
Teichmüller horocycle flow, and the same is true for the disc flow since all
orbits for this flow are periodic. Note that every one-parameter subgroup
of SL(2,R) is conjugate to one of the three subgroups above and that any
two-dimensional subgroup contains a one-parameter unipotent subgroup;
therefore none of the flows arising from the SL(2,R) action on Q1, except
the Teichmüller geodesic flow, admit divergent trajectories.

We will see below that it is easy to construct obvious divergent tra-
jectories for the Teichmüller geodesic flow. Non-obvious divergent trajec-
tories (which have been called spiraling trajectories) also exist. This is a
consequence of work of Masur [Ma1], who shows that there are quadratic
differentials q for which the set of θ for which rθq is divergent has positive
Hausdorff dimension. Since the set of θ for which {gtrθπ(q)} is an obvious
divergent trajectory is countable, the result follows.

Much of the interest in divergent trajectories for the Teichmüller geodesic
flow is due to their connection with minimal non-uniquely ergodic interval
exchange transformations and rational billiards. See [Ma2] and [MaT] for
surveys.

The terminology of §6.1, and the results of §6.3–6.4, generalize to the
case that S has n punctures and 3g − 3 + n ≥ 2. We have chosen to
omit this case as it requires some additional arguments in the proofs. If
3g − 3 + n = 1, that is for the punctured torus or the sphere with four
punctures, the Teichmüller geodesic flow on Q1 coincides with the action
of the diagonal subgroup on SL(2,R)/Γ, where Γ is a non-uniform lattice,
and in these cases, as remarked in §4, only obvious divergent trajectories
exist.

6.3 Rates of escape. There are a number of different ways to define
rates of escape of divergent trajectories on quadratic differential spaces.
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In order to obtain precise results, we make a definition compatible with
Proposition 6.1. That is, we define

D(t) = − log
(

lmin(gtq)
)

.

It follows from Proposition 6.1 that {gtπ(q) : t ≥ 0} is divergent if and only
if D(t)→t→+∞ +∞.

The main result of this section follows:
Theorem 6.4. (a) For any monotonically increasing unbounded function
φ : R+ → R+ there is a non-obvious divergent trajectory {gtπ(q) : t ≥ 0}
and t0 such that for all t ≥ t0,

D(t) ≥ t/2− φ(t) .

(b) If q ∈ Q̃1 is such that t/2−D(t) is bounded from above then {gtπ(q)}
is an obvious divergent trajectory.

We first introduce some terminology which will be used in the proof.
We again refer the reader to [MiW, §4] for definitions and references. Let
ML(S) be the space of measured laminations on S, and let PML(S) be
its projectivization. Recall that ML(S) is the space of measured geodesic
laminations on S with respect to some (any) complete hyperbolic struc-
ture on S. We identify PML(S) with a subset of ML(S) as follows.
Fix σ0, a hyperbolic structure on S, and identify PML(S) with the set
of λ ∈ML(S) for which �(λ, σ0) = 1, where � denotes the length. This
amounts to choosing a section to the map ML(S) → PML(S). When
there is no risk of confusion, λ will also denote the underlying topological
lamination, and for γ ∈ ΓS, γ will also denote the corresponding measured
lamination.

Let MF(S) denote the space of measured foliations on S and let
PMF(S) denote its projectivization. Hubbard and Masur showed that Q̃
can be identified with Teich(S)×MF(S). The projection Q̃1 → PMF(S)
maps q to the equivalence class of its vertical foliation. Note that in the
original Hubbard–Masur construction, q is mapped to its horizontal foli-
ation but this is merely a convention. There is “leaf-straightening” map
τ : MF(S) → ML(S) which was defined and shown to be a homeomor-
phism by Thurston. The composition gives a homeomorphism I : Q̃ →
Teich(S) ×ML(S), which intertwines the Mod(S)-action on Q̃ with the
product of the natural Mod(S)-actions on each factor. If t > 0 and q ∈ Q̃
then I(q) and I(tq) differ by multiplication by t, and hence I(Q̃1) is iden-
tified with Teich(S)× PML(S).

Let i : ML(S) × ML(S) → R denote the geometric intersec-
tion number. Via the section chosen above we can and will write
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i : PML(S)×PML(S)→R. Although the number i(λ1, λ2), λi∈PML(S)
depends on the section, the condition i(λ1, λ2) = 0 is well-defined. For each
γ ∈ ΓS , let Xγ ⊂ Q̃1 denote the set of all q for which γ has a representative
contained in the vertical foliation corresponding to q. We use the maps of
Hubbard–Masur and Thurston defined above to describe Xγ .

Lemma 6.5. For each γ ∈ ΓS ,

I(Xγ) = Teich(S)× {

λ ∈ PML(S) : i(λ, γ) = 0
}

.

In particular, each Xγ is a submanifold of Q̃1, with boundary, of codimen-
sion 1.

Proof. Since the condition q ∈ Xγ depends only on the vertical foliation F
determined by q, we need only prove that γ has a representative contained
in the leaves of F ∈ MF(S) if and only if i(τ(F), γ) = 0. The latter
condition is equivalent to the assertion that γ is either disjoint from, or
contained in, supp τ(F).

A leaf of F is called regular if it does not pass through the singularity set
Σ and singular otherwise. From our description of length-minimizing curves
it follows that if γ has a representative in F then it has a representative
which is contained in a singular leaf. In [L], the leaves of τ(F) are explicitly
described, and it is shown that two leaves in F intersect essentially if and
only if the corresponding leaves in F do. Moreover the leaves of τ(F)
correspond to either regular leaves of F , or singular leaves which may be
homotoped off of the singular leaves and in particular have no essential
intersection with any singular leaves. Thus γ has a representative contained
in the singular leaves of F if and only if the corresponding geodesic on S
is either contained in τ(F) or does not essentially intersect any of the
geodesics in τ(F). The first assertion of the lemma follows.

For the second assertion, let S′ = S�γ. Then S′ is a surface with bound-
ary (possibly disconnected), and Xγ is homeomorphic toML(S′)× [0,∞).
The homeomorphism is defined by sending λ to (λ′, c), where λ′ is the
restriction of λ to S′, and c is the weight on γ. The dimension of the
Teichmüller space of a surface of genus g with n boundary components is
known to be 6g − 6 + 2n, so a dimension count completes the proof of the
assertion. �

Proof of Theorem 6.4. We will deduce part (a) from Theorem 2.4. By
replacing φ(t) if necessary with a function increasing at a slower rate, we
may assume with no loss of generality that t �→ t/2− φ(t) is monotonically
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increasing and unbounded. Let

K(t) = π
({q ∈ Q̃1 : lmin(q) ≥ e−(t/2−φ(t))}) .

It is immediate that {K(t) : t ≥ 0} is a rate of growth. It is also clear that
{gtπ(q) : t ≥ 0} is divergent with rate given by {K(t)} if and only if there
is t0 such that D(t) ≥ t/2− φ(t) for all t ≥ t0.

Let X1,X2, . . . be an enumeration of the sets {Xγ : γ ∈ ΓS}. We verify
the hypotheses of Theorem 2.4:

• Density. Let Xi = Xγ for γ ∈ ΓS and let

X̃γ =
{

λ ∈ PML(S) : i(λ, γ) = 0
}

.

By Lemma 6.5 it is enough to prove that
⋃

η �=γ

X̃γ ∩ X̃η

is dense in X̃γ . Let S′ = S � γ. Let λ0 ∈ X̃γ , and recall that by the
section we have chosen, we have λ0 ∈ ML(S). Let λ = λ0|S′ and let
c be the weight of γ. Note that λ can be thought of as a measured
geodesic lamination on S′. Since the maximal number of disjoint
simple closed curves on S is 3g − 3 + n, which by assumption is at
least 3, there are simple closed curves on S′, soML(S′) is nontrivial.
Weighted simple closed curves are dense inML(S′), and any weighted
simple closed curve η′ on S′ can be transformed into η ∈ X̃γ ∩ X̃η′ ,
by assigning the transverse measure given by η′ to paths in S�γ and
assigning weight c to γ. Thus λ0 can be approximated arbitrarily well
by laminations in X̃γ ∩ X̃η′ , as required.

• Transversality. If γ, γ′ are disjoint then X̃γ∩X̃γ′={λ ∈ PML(S) :
i(λ, γ) = i(λ, γ′) = 0} – a codimension one submanifold of X̃γ . Hence
Xγ ∩Xγ′ is a codimension one submanifold of Xγ .
Suppose γ and γ′ intersect, and suppose that λ ∈ Xγ . If γ is con-
tained in the support of λ then λ /∈ Xγ′ , and if γ is not contained in
the support of λ then λ may be perturbed slightly to a lamination
supported on supp λ ∪ γ, by adding a small weight to γ. This gives
laminations in Xγ �Xγ′ arbitrarily close to λ, proving the assertion.

• Local uniformity with respect to {K(t)}. Let q ∈ Xγ . By
continuity of the length function, for all q′ in a sufficiently small
neighborhood U of q, we have

lq′,γ < 2lq,γ .
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The calculation given in the proof of Proposition 6.2 shows that for
all q′ ∈ Xγ ,

lgtq′,γ = e−t/2lq′,γ .

Since φ(t)→ +∞ there is therefore t0 be large enough so that for all
t ≥ t0,

lgtq,γ = e−t/2lq,γ ≤ e−(t/2−φ(t))/2 ,

hence for all q′ ∈ U ∩Xγ we have

lmin(gtq
′) ≤ lgtq′,γ ≤ e−(t/2−φ(t)).

We now prove (b). Let q ∈ Q̃1 and let κ be such that D(t) > t/2 − κ
for all t. Then D(t)→ +∞ so {g(t)π(q)} is a divergent trajectory.

We have
lmin(gtq) = e−D(t) < eκe−t/2,

so for each t > 0 there is γ = γ(t) ∈ ΓS such that

lgtq,γ < κ1e
−t/2.

Suppose the divergence is non-obvious. For each γ ∈ ΓS take a finite
concatenation of line segments δi = δi(γ), i = 1, . . . , r(γ) which form a
shortest representative of γ with respect to q. This concatenation forms a
shortest representative of γ with respect to gtq for all t. Since the diver-
gence is non-obvious, at least one of the δi is not contained in the leaves of
the vertical foliation, and hence lgtq,γ →t→+∞ +∞. Therefore there is an
infinite sequence of distinct γk ∈ ΓS and a sequence t1, t2, . . . such that

lgtk
q,γk

=
r(γk)
∑

i=1

lgtk
q,δi(γk) < κ1e

−t/2.

Applying the element g−tk and using (36) we obtain that for each i

lq,δi
≤
√

2 max
(

etk/2|x(δi, gtkq)| , e−tk/2|y(δi, gtkq)|) ≤
√

2etk/2lgtk
q,δi

.

Hence

lq,γk
=

r∑

i=1

lq,δi
≤
√

2etk/2
r∑

i=1

lgtk
q,δi

<
√

2κ1 .

This contradicts the discreteness of

{lq,γ : γ ∈ ΓS} . �

6.4 Pinching several disjoint geodesics. In this section we produce
divergent trajectories in which more than one geodesic is being pinched.
Say that two elements of ΓS are disjoint if they have disjoint represen-
tatives. Equivalently, their shortest representatives with respect to some
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(any) hyperbolic structure σ0 are disjoint. For r ≤ 3g−3, let Er denote the
collection of sets of r disjoint elements of ΓS. For M ∈ Er, let

lrq,M = max
γ∈M

lq,γ , lrmin(q) = min
M∈Er

lrq,M .

For a trajectory {gtπ(q) : t ≥ 0}, let
Dr(t) = − log

(

lrmin(gtq)
)

.

Let us say that {gtπ(q)} is an r-divergent trajectory if Dr(t)→ +∞.
Thus {gtπ(q)} is r-divergent if and only if for any ε > 0 and any large

enough t there are r disjoint curves on S of length less than ε. The case r = 1
was discussed in the previous section, namely lq,γ = l1q,{γ}, l1min(q) = lmin(q)
and D1(t) = D(t). In particular an r-divergent trajectory is divergent.

Repeating the computation of Proposition 6.2 we obtain that if there
are r disjoint curves all contained in the vertical foliation corresponding
to q, then {gtπ(q)} is an r-divergent trajectory. We will now show that
the scheme presented in §2 is useful for producing r-divergent trajectories
which are not obvious. Furthermore we will control the rate of escape,
generalizing part (a) of Theorem 6.4.
Theorem 6.6. Suppose r + 1 ≤ 3g− 3. For any monotonically increasing
unbounded function φ : R+ → R+ there is a trajectory {gtπ(q) : t ≥ 0}
and t0 such that for all t ≥ t0,

Dr(t) ≥ t/2− φ(t)
and {gtπ(q)} is not an obvious divergent trajectory.

Proof. We will deduce the result from Theorems 2.4, 2.8 and Remark 2.9.
By replacing φ(t) if necessary with a function increasing at a slower rate, we
may assume with no loss of generality that t �→ t/2− φ(t) is monotonically
increasing and unbounded. Let

K(t) = π
({q ∈ Q̃1 : lrmin(q) ≥ e−(t/2−φ(t))}) .

It is immediate that {K(t) : t ≥ 0} is a rate of growth. Note however
that K(t) is not compact if r ≥ 2. It is also clear that {gtπ(q) : t ≥ 0}
is divergent with rate given by {K(t)} if and only if there is t0 such that
Dr(t) ≥ t/2− φ(t) for all t ≥ t0.

For any M ∈ Er we let
XM = {q ∈ Q̃1 : ∀γ ∈M, γ is contained in the vertical foliation of q} .

It follows from Lemma 6.5 that
I(XM ) = I(

⋂

γ∈M

Xγ) =
⋂

γ∈M

I(Xγ)

= Teich(S)× {

λ ∈ PML(S) : ∀γ ∈M, i(λ, γ) = 0
}

.

(37)
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It follows from arguments as in the proof of Lemma 6.5 that each
XM is a submanifold of Q̃1 of codimension r, and that if M = M ′ ∪M ′′,
M ′ ∩M ′′ = ∅ then XM ′ ∩ XM ′′ is a submanifold of XM ′ of codimension
#M ′′. Moreover XM ⊂ Xγ if and only if γ ∈M .

Let M1,M2, . . . be an enumeration of Er, let Xi = XMi , let γ1, γ2, . . .
be an enumeration of ΓS, and let X ′

j = Xγj .
We define a level function L(i, j) as follows:

L(i, j) =

{

∞ γj /∈Mi ,

0 γj ∈Mi .

It is clear that L is a level function for ({Xi}, {X ′
j}). Let us first verify

the hypotheses of Theorem 2.8.
• Transversality with respect to {X ′

j}. If Xi �⊂ X ′
j then γ =

γj /∈M = Mi. Suppose first that γ is disjoint from all elements of M .
Then the argument of Lemma 6.5 applies to show that Xγ ∩XM is a
codimension one submanifold of XM .
Now suppose γ intersects a curve γ′ ∈ M . Using Lemma 6.5, let
X̃γ , X̃M ⊂ PML(S) such that Xγ (resp. XM ) is identified with
Teich(S) × X̃γ (resp. Teich(S) × X̃M ). We continue to identify
PML(S) with a subset of ML(S). We need to show that X̃M =
X̃M � X̃γ . Let λ ∈ X̃M , so λ is a lamination on S whose intersec-
tion with all elements of M is trivial. If γ′ ⊂ supp λ then λ /∈ Xγ .
If γ �⊂ supp λ then arguing as in the proof of transversality above
we obtain that λ is arbitrarily close to elements of X̃M � Xγ . The
assertion is proved.

• Density of level increasing points. Suppose Xi ⊂ X ′
j . Write

M = Mi, γ = γj , so γ ∈ M . Let X̃M , X̃γ be as above. Suppose
λ0 ∈ X̃M , and let S′ = S �M . By assumption on r, the dimen-
sion of ML(S′) is positive, hence by Thurston’s theorem there is
λ ∈ML(S′) arbitrarily close to λ0|S′ in ML(S′) which is supported
on a simple closed curve η on S′. Let M ′ = M ∪{η}�{γ}, M ′ = Mk,
and let λ̃ be a measured lamination on S such that λ̃|S′ = λ and
λ̃ and λ0 have the same transverse measures on curves of M . Such
a λ̃ can be chosen arbitrarily close to λ0. By construction λ̃ is in
X̃M ∩ X̃M ′ = X̃i ∩ X̃k and γ /∈ M ′, so that L(k, j) = ∞. The asser-
tion follows.

We now have to verify the hypotheses of Theorem 2.4. For this, note
that density (resp. transversality) follows immediately from density of level
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increasing points (resp. transversality w.r.t. {X ′
j}), and local uniformity

w.r.t. {K(t)} is proved just as in the proof of Theorem 6.4 above. �

Question 6.7. We have not shown the existence of geodesic trajectories
which diverge arbitrarily slowly. Using Theorem 2.5, it is sufficient to verify
the hypothesis of density of connected components.

Question 6.8. The space Q1 is stratified according to the cardinality and
structure of Σ(q) for q ∈ Q1. It would be interesting to see whether the
results of the two previous subsections remain valid if one is only interested
in divergent trajectories on a fixed stratum.
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