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Abstract

Recently Wolff [W3] obtained a sharp L2 bilinear restriction theorem
for bounded subsets of the cone in general dimension. Here we adapt
the argument of Wolff to also handle subsets of “elliptic surfaces” such
as paraboloids. Except for an endpoint, this answers a conjecture
of Machedon and Klainerman, and also improves upon the known
restriction theory for the paraboloid and sphere.

1 Introduction

Let n ≥ 1 be a fixed integer, and let S be a smooth compact hypersurface
with boundary in the space R × Rn := {(τ, ξ) : τ ∈ R, ξ ∈ Rn}, which we
shall interpret as the spacetime frequency space. If 0 < p, q ≤ ∞, we say
that the linear adjoint restriction estimate R∗

S(p → q) holds if one has an
estimate of the form

‖f̂ dσ‖Lq(R×Rn) ≤ Cp,q,S‖f‖Lp(S,dσ) (1)

for all test functions f on S, where

F̂ (t, x) :=
∫

F (τ, ξ)e2πi(tτ+x·ξ)

is the spacetime Fourier transform. The restriction problem for S is to
determine for which p, q the estimate R∗

S(p → q) holds. (Historically, the
restriction problem asks for which exponents q′ is it true that the Fourier
transform of an Lq′(R×Rn) function can be meaningfully restricted to S.
This is essentially the adjoint of the above problem; see [St2] for further
discussion.) This problem was posed by Stein [St1], and is related to other
outstanding problems in harmonic analysis such as the Bochner–Riesz con-
jecture, local smoothing conjecture, and Kakeya conjecture; see e.g. [B5],
[W2], [T1] for further discussion. In one spatial dimension n = 1, the prob-
lem is mostly solved, but in two and higher spatial dimensions the problem
remains far from settled (except in special cases such as p = 2), despite
much recent progress.
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It has been known for several decades that one can attack this conjecture
in the special case q = 4 by squaring both sides of the linear estimate (1) and
studying the resulting bilinear L2 estimate; see e.g. [F], [S], etc. Variants of
this idea have also been very useful for nonlinear dispersive equations, see
e.g. [B1], [KM], etc. More recently, the same idea has been applied to more
general values of q, see [B4], [TVV], [TV1,2], [W3,4]. More precisely, for
any two smooth compact hypersurfaces S1, S2 with boundary in R × Rn,
with Lebesgue measure dσ1 and dσ2 respectively, we say that the bilinear
adjoint restriction estimate R∗

S1,S2
(2 × 2 → q) holds if one has

‖f̂1dσ1f̂2dσ2‖Lq(R×Rn) ≤ Cq,S1,S2‖f1‖L2(S1,dσ1)‖f2‖L2(S2,dσ1) .

for all test functions f1, f2 supported on S1, S2 respectively. (One can of
course place f1 and f2 in Lebesgue spaces other than L2 (see e.g. [TVV]),
but we shall not need to do so within this paper.)

The linear and bilinear estimates are closely related; for instance when
S1 = S2 = S, then R∗

S1,S2
(2 × 2 → q) is clearly equivalent to R∗

S(2 → 2q).
However, it was observed in [B4], [TVV] that further estimates are available
if S1 and S2 are not equal, and in particular if they satisfy some sort of
transversality condition. For instance, if the normals of S1 and of S2 are
separated by at least some fixed angle c > 0, then one can easily obtain the
bilinear estimate R∗

S1,S2
(2×2 → 2) by Plancherel’s inequality and Cauchy–

Schwarz, even in cases where the linear estimates R∗
S1

(2 → 4), R∗
S2

(2 → 4)
fail. Furthermore, these bilinear restriction estimates can then be used (via
some rescaling and interpolation arguments) to obtain new linear restriction
estimates; see [TVV], [TV1], [W3] for some examples of this.

Two important examples of surfaces S1, S2 are: (a) compact, transverse
subsets of the light cone

{
(τ, ξ) ∈ R × Rn : |τ | = |ξ|} ;

and (b) compact, transverse (i.e. disjoint) subsets of the paraboloid

S :=
{
(τ, ξ) ∈ R× Rn : τ = −1

2 |ξ|2
}
. (2)

(The choice of normalization factor −1/2 may appear odd, but this is to
ensure that waves of frequency ξ travel at group velocity ξ.) Apart from
being model examples for the bilinear restriction problem, they also have
direct application to nonlinear wave and Schrödinger equations respectively.
In 1997, Machedon and Klainerman observed that in these two cases, the
estimate R∗

S1,S2
(2 × 2 → q) can only hold when q ≥ n+3

n+1 , and conjectured
that this necessary condition was in fact sufficient (see [TVV], [W3] for
further discussion). The paraboloid (2) also serves as models for other
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surfaces with non-vanishing Gaussian curvature, such as the sphere; see
the remarks section for further discussion.

Of the two cases (a) and (b), the cone problem was generally thought
to the more difficult of the two (compare for instance [B4] with [B3]). It
was thus a surprise when Wolff [W3] established the Machedon–Klainerman
conjecture for the cone in all non-endpoint cases q > n+3

n+1 (with the end-
point case being attained shortly afterward in [T3]). A key geometrical
observation was that if one took the union of all the lines through a fixed
origin x0 which were normal to S2, then any line normal to S1 could only
intersect this union in at most one point; this is ultimately due to the sin-
gle vanishing principal curvature on the cone, which forces all of the above
lines to be light rays. The analogous statement for the paraboloid however
is false, so one cannot directly apply Wolff’s argument to case (b). Even in
two spatial dimensions n = 2, the Machedon–Klainerman conjecture had
only been verified in this case for q > 2 − 2

17 (see [TV1]), instead of the
conjectured q ≥ 2 − 1

3 .
In this paper we adapt Wolff’s argument in [W3] to overcome this geo-

metric obstruction:

Theorem 1.1. Let S1 and S2 be any disjoint compact subsets of the
paraboloid S defined in (2). Then we have R∗

S1,S2
(2 × 2 → q) for any

q > n+3
n+1 . In particular, the Machedon–Klainerman conjecture is true up to

endpoints for the paraboloid.

By the general theory of linear and bilinear restriction theorems (see
[TVV], [TV1]), Theorem 1.1 implies some new progress on the restriction
conjecture for paraboloids [St1]. This conjecture asserts that R∗(p → q)
holds whenever q = n+2

n p′ and q > 2(n+ 1)/n, where 1/p+ 1/p′ = 1; these
conditions are known to be necessary. (The numerology is shifted by one
from that in [St1] because we are working in R× Rn instead of Rn.)

Corollary 1.2. The restriction conjecture for paraboloids is true for
q > 2(n + 3)/(n + 1).

Proof. This follows directly from Theorem 1.1 in this paper and Theo-
rem 2.2 in [TVV], together with the observation that one can freely raise
the exponents p, q in the estimate R∗

S1,S2
(p× p→ q). See [TVV], [TV1] for

more examples of this type of argument. �

In [Str] this conjecture was verified for q ≥ 2(n + 2)/n; in the special
case n = 2, the best known previous result was q > 4 − 8

31 (see [TV1]);
the above corollary improves this to q > 4 − 2

3 . (It is conjectured that this
bound holds in fact for all q > 3).
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A similar result holds for all other positively curved surfaces, such as
the sphere; we discuss this in section 9.

Functions of the form u := f̂ dσ, where dσ is surface measure on S, can
easily be seen to solve the free Schrödinger equation

4πiut − ∆u = 0 . (3)
The factor 4π is an artifact of our conventions and should be ignored. We
shall call solutions to (3) free Schrödinger waves. For any free Schrödinger
wave, the quantity ‖u(t)‖2

L2
x(Rn) is an invariant of time, and shall be referred

to as the total probability P (u) of the wave. (This quantity plays the role
of the energy for solutions to the wave equation, see [T3].) Observe that

P (f̂jdσj) ∼ ‖fj‖2
2 (4)

for any compact subset Sj of S.
Corollary 1.3. Let N > 0, and let u1, u2 be two solutions to the
Schrödinger equation (3), such that uj(t) has Fourier transform supported
in the region |ξj| ≤ N for j = 1, 2. Suppose also that the Fourier supports
of uj(t) are separated by at least ≥ cN . Then for any q > n+3

n+1 we have the
spacetime estimate

‖u1u2‖Lq
x,t

≤ C(c)Nn−n+2
q P (u1)1/2P (u2)1/2.

Proof. By scale invariance one can take N = 1. The claim then follows
directly from Theorem 1.1 and (4). �

Such a statement implies various bilinear estimates for Xs,b norms for
Schrödinger and wave equations, see e.g. [T3] for a discussion. It is also
likely that this sort of estimate has application to nonlinear Schrödinger
equations; for instance, one can combine this estimate with the argu-
ments in [P] to obtain new well-posedness results for certain non-linear
Schrödinger equations in Besov spaces.

Another application to Schrödinger equations was noted in [TV2]. In-
deed, from Theorem 2.1 in [TV2] and Theorem 1.1 of this paper we see
immediately that Hs solutions to (3) converge pointwise to the initial data
as t→ 0 for n = 2 and s > 2/5; this improves upon the result of s > 15/32
given in that paper, but does not reach the conjectured level of s ≥ 1/4. In
higher dimensions n ≥ 2, a direct modification of the arguments in [TV2]
gives convergence for s > n/(n + 3).

The author is a Clay Prize Fellow and is supported by the Packard Foun-
dation. The author also thanks Fabrice Planchon for helpful comments, and
the anonymous referee for careful reading of the paper and many cogent
suggestions (which have since been incorporated into the paper).
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2 Notation

If X is a finite set, we use #X to denote its cardinality; if X is a measurable
set, we use |X| to denote its Lebesgue measure.

If (t, x) ∈ R ×Rn is a point in spacetime, we use B((t, x), r) to denote
the spacetime ball

B
(
(t, x), r

)
:=

{
(t′, x′) ∈ R × Rn : |(t′, x′) − (t, x)| < r

}

and D(x, r) to denote the spatial disk

D(x, r) :=
{
x′ ∈ Rn : |x′ − x| < r

}
.

We use A � B or A = O(B) to denote the estimate |A| ≤ CB, where
C is a constant depending only on n.

Very shortly, our estimates shall involve a large parameter R � 1. We
shall use A � B to denote the estimate A ≤ CεR

εB for all ε > 0; in
particular we note that (logR)C � 1 for any C.

3 Reduction to Localized Restriction Estimates

We now begin the proof of Theorem 1.1. Our arguments closely follow that
of Wolff [W3], but with one additional twist near the end. The argument is
organized as follows. In this section we make a preliminary reduction to the
problem of obtaining sufficiently good localized restriction estimates, and
then set up the induction argument we will use to obtain such estimates.
In the next section we recall the wave packet decomposition of Schrödinger
waves, which has been fundamental to all of the recent developments in
restriction theory for these waves. Then, in section 5, we use the inductive
hypothesis to strip away a certain “localized” component of the estimate,
and reduce ourselves to considering only the “global” portion. To estimate
this global expression we perform a standard fine scale decomposition of
space in section 6, splitting the problem into obtaining a fine-scale esti-
mate and then a coarse-scale estimate. The fine-scale estimate is purely
Fourier-analytic and is estimated using Plancherel’s theorem in section 7;
our innovation here is to exploit an additional constraint on frequencies
arising from the codimension 1 nature of the frequency space hypersur-
face S. The coarse-scale estimate is a geometric combinatorics estimate of
Kakeya type, and is proven by the standard Bourgain–Wolff “bush” count-
ing argument; the key point is that the constraint on frequencies from the
fine-scale analysis translates to a constraint on directions in the coarse-
scale estimate, thus restricting the bush to a hypersurface. (The linkage
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between fine scales and coarse scales is provided (heuristically, at least)
by the dispersion relation, which asserts that the frequency of a wave at
fine scales determines the (group) velocity of that wave at coarse scales;
in the physical interpretation of the Schrödinger equation, this relation is
codified by de Broglie’s law p = �ξ. To make this heuristic mathematically
rigorous, the wave packet decomposition is an ideal tool.) This puts us in
the situation to apply Wolff’s counting argument from [W3], which then
concludes the proof.

We now turn to the details. Fix S1, S2. By a finite partition of S1

and S2, exploiting the compactness hypothesis, we may assume that
diam(S1),diam(S2) 	 dist(S1, S2). After a suitable rotation, scaling, and
Galilean transformation (the latter effectively translates ξ by an arbitrary
amount while keeping S invariant), one may thus assume that

S1 :=
{
(τ, ξ) ∈ S : |ξ − e1| ≤ 1

100n

}

and
S2 :=

{
(τ, ξ) ∈ S ≤ 1

100n

}
,

where e1 is a standard unit basis vector. We shall also need the slight
enlargements

S̃1 :=
{
(τ, ξ) ∈ S : |ξ − e1| ≤ 1

50n

}

and
S̃2 :=

{
(τ, ξ) ∈ S ≤ 1

50n

}
,

Following Wolff [W3], our first step is to reduce matters to proving
a localized restriction estimate in which we are permitted to lose epsilon
powers of the localization scale R.
Definition 3.1. We use R∗

S1×S2
(2 × 2 → q, α) to denote the estimate

‖f̂1dσ1f̂2dσ2‖Lq(B((t0 ,x0),R) ≤ Cq,S1,S2,αR
α‖f1‖L2(S1,dσ1)‖f2‖L2(S2,dσ1)

for all smooth f1,f2 on S1,S2, all R ≥ 1, and all spacetime balls B((t0,x0),R)
of radius R.

To prove Theorem 1.1, it suffices by standard “epsilon-removal” lemmas
to prove the local estimate

R∗
S1×S2

(

2 × 2 → n+ 3
n+ 1

, α

)

. (5)

for all α > 0. (For instance, one can apply Lemma 2.4 from [TV1]; see also
Section 4 of [B4], or Section 8 of [KRT]. In all of these arguments (which
are of Tomas–Stein type) the key fact is that the surface measures on S1

and S2 has a Fourier transform which decays at infinity; this is ultimately
a consequence of the non-vanishing curvature of these surfaces.)
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To prove (5) we use Wolff’s induction on scale argument. It is easy
to see that the above estimate must be true for sufficiently large α; for
instance, one can use the crude bound ‖f̂jdσj‖∞ ≤ C‖fj‖2 to obtain (5)
for some large α. The claim will then follow (as in Wolff [W3]) from the
following inductive statement.

Proposition 3.2. Suppose α > 0 is such that (5) holds. Then we have

R∗
S1×S2

(

2 × 2 → n+ 3
n+ 1

, max
(
(1 − δ)α,Cδ

)
+ Cε

)

for all 0 < δ, ε	 1, where the constants C are independent of δ and ε.

By choosing δ and ε suitably we may make max((1 − δ)α,Cδ) + Cε
equal to α− cα2 for some small absolute constant c. Iterating this we thus
see that the infimum of all α > 0 for which (5) holds is zero, and the claim
follows.

It remains to prove Proposition 3.2. This will occupy the rest of the
paper.

4 The Wave Packet Decomposition

As in the arguments of Bourgain [B3,4], Wolff [W3], and others, the next
step is to decompose the functions f̂1dσ1 and f̂2dσ2 into wave packets con-
centrated on R×√

R tubes. (The basic idea of using wave packet decom-
positions to attack restriction and Bochner–Riesz type problems goes back
to Fefferman and Córdoba.)

Fix R� 1 (the case R ∼ 1 being trivial), and let j = 1, 2. Let Zn be the
standard integer lattice in Rn. We shall need a spatial grid X := R1/2Zn

and a velocity grid V := R−1/2Zn. We let Vj be those velocities v ∈ V
such that (1, v) is normal to S̃j , i.e.

( − 1
2 |v|2, v

) ∈ S̃j. (Note that because
of our normalization of the paraboloid (2), the group velocity v is exactly
equal to the spatial frequency ξ; physically, this is just de Broglie’s relation
mv = p = �ξ under the normalization m = � = 1. Thus we will not
bother to make much of a distinction between velocity and frequency in
this argument.)

We shall work on the spacetime slab [R/2, R]×Rn. We define a S̃j-tube
to be any set of the form

T :=
{
(t, x) : R/2 ≤ t ≤ R ; |x− (x(T ) + tv(T ))| ≤ R1/2

}
,

where x(T ) ∈ X is the initial position of T and v(T ) ∈ Vj is the velocity.
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We shall need the following standard wave packet decomposition (this
is the parabola analogue of the cone decompositions in [W3], [T3], [KRT],
and is also implicit in [B3], [TVV]):

Lemma 4.1. Let j = 1, 2, and let fj be a smooth function on Sj . Then
there exists a decomposition

f̂jdσj =
∑

Tj

cTjφTj (6)

where Tj ranges over all S̃j-tubes, the complex-valued co-efficients cTj obey
the l2 bound ( ∑

Tj

|cTj |2
)1/2

� ‖fj‖2 , (7)

and for each Tj , the wave packets φTj are free Schrodinger waves, where for
each R/2 ≤ t ≤ R, the function φTj (t) has Fourier transform supported on
the set {

ξ ∈ Rn : ξ = v(Tj) +O(R−1/2)
}

(8)

(informally, φTj has frequency v(Tj) + O(R−1/2)) and obeys the pointwise
estimates

∣
∣φTj (t, x)

∣
∣ ≤ CNR

−n/4

(

1 +
|x− (x(Tj) + tv(Tj))|

R1/2

)−N

(9)

for all x ∈ Rn, and any N > 0. In particular, outside of the tube

RδTj :=
{
(t, x) : R/2 ≤ t ≤ R ; |x− (x(Tj) + tv(Tj))| ≤ R1/2+δ

}
,

we have the estimate ∣
∣φTj(t, x)

∣
∣ � R−100n. (10)

Finally, any collection Tj of S̃j-tubes, we have the probability estimate

P
( ∑

Tj∈Tj

φTj

)

� #Tj . (11)

Proof. We first prove the lemma under the assumption that fj is supported
on a cap of the form

{
(τ, ξ) ∈ Sj : ξ = v +O(R−1/2)

}
(12)

for some fixed v ∈ Vj; this assumption will be removed at the end of this
proof.

From the Poisson summation formula we may find a Schwartz func-
tion η whose Fourier transform is supported in a disk D(0, C) ⊂ Rn such
that

∑

k∈Zn η(x − k) ≡ 1. Let F (x) := f̂jdσj(0, x) denote the initial data
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of f̂jdσj. We thus have the decomposition

F (x) =
∑

x0∈Xj

η

(
x− x0

R1/2

)

F (x) .

Observe that the spatial Fourier transform of η
(

x−x0

R1/2

)
F (x) is supported on

a disk {ξ ∈ Rn : ξ = v + O(R−1/2)}. Thus if we let ux0 be the unique
Schrödinger wave with initial data ux0(0, x) := η

(
x−x0

R1/2

)
f̂jdσj(0, x), then

we have the decomposition

f̂jdσj(t, x) =
∑

x0∈Xj

ux0(t, x) .

Now let Tj be a S̃j-tube with v(Tj) = v. We write cTj := Rn/4MF (x(Tj)),
where

MF (x) := sup
r>0

1
|D(x, r)|

∫

D(x,r)
|F |

is the Hardy–Littlewood maximal function of F , and write φTj := ux(Tj)/cTj .
Thus we have

f̂jdσj =
∑

Tj :v(Tj)=v

cTjφTj ,

thus giving a decomposition (6) (setting cTj = φTj = 0 for v(Tj)=v). Since
F has Fourier transform supported in the disk (8), it enjoys a reproducing
formula of the form F = F ∗ ψ where the reproducing kernel ψ = ψv has
Fourier support in a (slight enlargement of) the disk (8), and obeys the
pointwise bounds

|ψ(x)| ≤ CNR
−n/2

(
1 + |x|/R1/2

)−N

for any N ≥ 0. From this it is easy to see that MF (x) ∼MF (x′) whenever
|x− x′| � R1/2. Thus

∑

Tj :v(Tj)=v

|cTj |2 �
∫

∣
∣MF (x)

∣
∣2dx � ‖F‖2

2 � ‖fj‖2
2

by the Hardy–Littlewood maximal inequality and Plancherel’s theorem;
this gives (7).

By construction, the Fourier transform of φTj (0) (and hence φTj (t) for
any t) is supported in the set (8). Now we prove (9). By construction, it
suffices to show the pointwise estimate

∣
∣ux0(t, x)

∣
∣ ≤ CN

(

1 +
|x− (x0 + tv)|

R1/2

)−N

MF (x0) (13)

for all x0 ∈ X and t ∼ R. By translation invariance we may take x0 = 0.
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There are several ways to prove this estimate; for instance, one can
observe that (12) is contained in an O(R−1) ×O(R−1/2) disk with normal
(1, v) and use some form of the uncertainty principle. Another way to
argue is as follows. From the fundamental solution of the free Schrödinger
equation we have an integral representation of the form

u0(t, x) = Ct−n/2

∫

eiC|x−y|2/tη
(

y
R1/2

)

F (y)dy .

Recall the reproducing formula u0 = u0 ∗ ψv. Thus we have

u0(t, x) = Ct−n/2

∫

Kv(x− y)η
(

y
R1/2

)

F (y)dy

where Kv is the kernel

Kv(x) :=
∫ ∫

eiC|x−y|2/tφv(y)dy .

A routine stationary phase computation, using the decay and Fourier sup-
port properties of φv, gives the bounds

∣
∣Kv(x)

∣
∣ ≤ CNR

−n/2

(

1 +
x− vt

R1/2

)−N

for all N ≥ 0. (The reader may wish to simplify the calculation by first
taking advantage of Galilean invariance to reduce to the case v = 0, and
then using the scale invariance of the Schrödinger equation to reduce to the
case R = 1.) The claim then follows (13) from a direct computation.

The estimate (10) follows from (9), so it remains to prove (11). Since
the probability is time-invariant, it suffices to show that

∫ ∣
∣
∣

∑

Tj∈Tj :v(Tj )=v

φTj (0, x)
∣
∣
∣
2
dx � #Tj .

But this follows directly from (9), since the tubes Tj with fixed velocity
v(Tj) = v all have distinct initial positions x(Tj), which are separated by
� R1/2.

Now we remove the hypothesis that fj was supported in a cap (12). For
general fj, we may of course decompose fj =

∑

v∈Vj
fj,v, where each fj,v is

supported in the cap (12) associated to v, and we have the L2 bound
∑

v∈Vj

‖fj,v‖2
2 ∼ ‖fj‖2

2 . (14)

One can then apply the previous arguments to fj,v, obtaining a decompo-
sition

fj,v =
∑

Tj :v(Tj )=v

cTjφTj
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obeying all the above properties. Summing over all v we obtain a decom-
position (6) of fj, which then obeys (7) thanks to (14). The properties (9),
(10), and the Fourier support in (8) have all been proven, so it remains to
show (11). But we have already proven the special case

P
( ∑

Tj∈Tj :v(Tj)=v

φTj

)

� #
{
Tj ∈ Tj : v(Tj) = v

}

for all v ∈ Vj ; the claim then follows by summing in v and exploiting the
frequency space orthogonality (via the support property (8)). �

We can now begin the proof of Proposition 3.2 in earnest. Fix α, and
let QR denote the cylinder

QR :=
{
(t, x) : R/2 ≤ t ≤ R ; |x| ≤ R

}
.

It will suffice to prove the estimate

‖f̂1dσ1f̂2dσ2‖
L

n+3
n+1 (QR)

� (R(1−δ)α +RCδ)‖f1‖2‖f2‖2

for all smooth f1, f2 on S1, S2, since any ball of radius R can be covered by
O(1) translates of QR. Here and in the sequel our implicit constants in �
or � are allowed to depend on δ.

Fix f1, f2; we may normalize ‖f1‖2 = ‖f2‖2 = 1. We apply Lemma 4.1
to both f1 and f2, writing

fj =
∑

Tj

cTjφTj

for j = 1, 2, where Tj ranges over S̃j-tubes. It thus suffices to show that
∥
∥
∥

∑

T1

∑

T2

cT1cT2φT1φT2

∥
∥
∥

L
n+3
n+1 (QR)

� R(1−δ)α +RCδ.

We first remove some minor portions of this sum. Let us first consider the
contribution when T1 and T2 are both disjoint from B(0, CR). In this case
the bound (9) gives bounds of O(R−100n) for both φT1 and φT2 , with the
bound improving even more as T1 and T2 move away from B(0, CR). Since
the coefficients cT1 , cT2 are bounded by (7), the contribution of this case is
easily seen to be acceptable.

A similar argument disposes of the case where T1 is disjoint from
B(0, CR) and T2 intersects B(0, CR), as in this case there are only O(R2n)
possible values of T2. Similarly when T2 is disjoint from B(0, CR) and T1

intersects B(0, CR). Thus we may henceforth restrict ourselves to tubes
which intersect B(0, CR). In particular, the number of tubes T1 under
consideration is now only O(R2n), and similarly for T2.
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We can now eliminate the contribution of the terms where cT1 =
O(R−100n) or cT2 = O(R−100n), since those terms can be easily controlled
just by using L∞ bounds on φT1 , φT2 (from e.g. (9)). Thus we only need
to restrict ourselves to the tubes T1 where R−100n � cT1 � 1, and similarly
for T2.

By pigeonholing the interval [R−100n, 1] dyadically into O(logR) groups,
and noting that logR ≈ 1, we may thus restrict the T1 summation to the
tubes where cT1 ∼ γ1 for some fixed R−100n � γ1 � 1. Let T1 denote the
set of all tubes T1 of this form; from (7) we have (#T1)1/2 � γ−1

1 . We may
as well assume that cT1 = γ1 for these tubes T1 ∈ T1, since we can absorb
the factor cT1/γ1 harmlessly into φT1 . Similarly, we may restrict the tubes
T2 to a collection T2 with (#T2)1/2 � γ−1

2 and cT2 = γ2 for all T2 ∈ T2,
for some R−100n � γ2 � 1. It thus suffices to prove

Proposition 4.2. We have the estimate
∥
∥
∥

∑

T1∈T1

∑

T2∈T2

φT1φT2

∥
∥
∥

L
n+3
n+1 (QR)

� (R(1−δ)α +RCδ)(#T1)1/2(#T2)1/2 (15)

for all collections T1,T2 of S̃1-tubes and S̃2-tubes respectively, such that
all the tubes intersect B(0, CR).

It remains to prove this proposition. This will be done in the next few
sections.

5 Localization of Tubes, and the Inductive Argument

We now utilize the inductive hypothesis (5). The idea (due to Wolff [W3])
is to give each wave packet φT1 and φT2 a slightly smaller ball of radius R1−δ

which it can “exclude” via the inductive hypothesis; it will then suffice to
verify the Lp estimate on the exterior of these balls. This is similar to the
“two-ends” reduction used in the Kakeya problem, see e.g. [W1].

We turn to the details. We may cover the cylinder QR by about O(RCδ)
finitely overlapping spacetime balls B of radius R1−δ; let B denote the
collection of such balls. We can thus estimate the left-hand side of (15)
extremely crudely by

∑

B∈B

∥
∥
∥

∑

T1∈T1

∑

T2∈T2

φT1φT2

∥
∥
∥

L
n+3
n+1 (B)

. (16)

(Clearly we may improve on this by replacing the l1 summation over balls
B with an l(n+3)/(n+1) summation. This refinement is exploited in the
endpoint theory, see [T3], but is unnecessary for the non-endpoint case.)
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Suppose we have some relation ∼ between the tubes in T1 ∪ T2 and
balls in B; we will specify this relation much later in the argument, but
roughly we will associate T ∼ B if the contribution of φT to the bilinear
expression

∑

T1∈T1

∑

T2∈T2
φT1φT2 is “concentrated” in B. We can then

estimate (16) by the “local part”
∑

B∈B

∥
∥
∥

( ∑

T1∈T1:T1∼B

φT1

)( ∑

T2∈T2:T2∼B

φT2

)∥
∥
∥

L
n+3
n+1 (B)

(17)

and the “global part”
∑

B∈B

∥
∥
∥

∑

T1∈T1,T2∈T2:T1 �∼B or T2 �∼B

φT1φT2

∥
∥
∥

L
n+3
n+1 (B)

. (18)

Consider the contribution of the local portion (17). From the probability
estimate (11) we see that for each B ∈ B and j = 1, 2,

∑

Tj∈Tj :Tj∼B φTj is
a free Schrödinger wave with probability

P
( ∑

Tj∈Tj :Tj∼B

φTj

)

� #{Tj ∈ Tj : Tj ∼ B} .

By applying the induction hypothesis (5), we may thus bound (17) by

(17) �
∑

B∈B
R(1−δ)α

(
#{T1 ∈ T1 : T1 ∼ B})1/2(#{T2 ∈ T2 : T2 ∼ B})1/2

,

which by Cauchy–Schwarz becomes

(17) � R(1−δ)α
( ∑

B∈B

∑

T1∈T1:T1∼B

1
)1/2( ∑

B∈B

∑

T2∈T2:T2∼B

1
)1/2

.

Thus, if we make
Assumption 5.1. For all T ∈ T1 ∪T2, we have

#{B ∈ B : T ∼ B} � 1 , (19)
then we can bound (17) by

(17) � R(1−δ)α(#T1)1/2(#T2)1/2

which is acceptable.

Roughly speaking, Assumption 5.1 asserts that each tube T ∈ T1 ∪ T2

is allowed to exclude � 1 balls B from the summation in (18). It is thus
natural to select ∼ so that each tube T excludes the ball B in which its
“contribution” to (15) is “greatest”; this will become clearer when we define
∼ in section 8.

It remains to estimate (18). It will suffice to show that
∥
∥
∥

∑

T1∈T1,T2∈T2:T1 �∼B or T2 �∼B

φT1φT2

∥
∥
∥

L
n+3
n+1 (B)

� RCδ(#T1)
1
2 (#T2)

1
2 (20)
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for all B ∈ B, since the claim then follows by summing in B. Note that α
no longer plays any role; we will not need the induction hypothesis (5) in
the remainder of the argument. Also, we can now freely lose powers of Rδ

in what follows.
Fix B; it remains to prove (20). By the triangle inequality, it will suffice

to prove that
∥
∥
∥

∑

T1∈T1:T1 �∼B

∑

T2∈T2

φT1φT2

∥
∥
∥

L
n+3
n+1 (B)

� RCδ(#T1)1/2(#T2)1/2 (21)

and∥
∥
∥

∑

T2∈T2:T2 �∼B

∑

T1∈T1:T1∼B

φT1φT2

∥
∥
∥

L
n+3
n+1 (B)

� RCδ(#T1)1/2(#T2)1/2. (22)

The two claims are proven similarly (the expression (22) is slightly smaller,
but the extra constraint T1 ∼ B turns out to play no significant role),
and so we will content ourselves with proving (21). (The definition of the
equivalence relation ∼ will be symmetric with respect to T1 and T2).

We follow Wolff’s strategy of obtaining the bilinear L
n+3
n+1 estimate by in-

terpolating between bilinear L1 and L2 estimates. The bilinear L1 estimate
follows easily from linear L2 estimates:
Lemma 5.2. We have∥

∥
∥

∑

T1∈T1:T1 �∼B

∑

T2∈T2

φT1φT2

∥
∥
∥

L1(B)
� R(#T1)1/2(#T2)1/2.

Proof. By Hölder’s inequality it suffices to show that
∥
∥
∥

∑

T1∈T1:T1 �∼B

φT1

∥
∥
∥

L2(B)
� R1/2(#T1)1/2

and ∥
∥
∥

∑

T2∈T2

φT2‖L2(B) � R1/2(#T2)1/2.

But these follow directly from (11) and an integration in time (since B is
contained in the slab [−R,R] × Rn). �

From Lemma 5.2 and Hölder’s inequality (or the log-convexity of Lp

norms), it will suffice to prove the L2 estimate
∥
∥
∥

∑

T1∈T1:T1 �∼B

∑

T2∈T2

φT1φT2

∥
∥
∥

L2(B)
� RCδR−(n−1)/4(#T1)1/2(#T2)1/2; (23)

note how this uses the choice of exponent n+3
n+1 .

The exponent R−(n−1)/4 is best possible. To see this, let π denote the
spacetime disk

π :=
{
(t, x1e1) : t, x1 = O(R)

}
,
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and consider the example when T1 consists of the O(
√
R) tubes with ve-

locity e1 which intersect π, while T2 similarly consists of the O(
√
R) tubes

with velocity −e1 which also intersect the π plane. By (9), the left-hand
side is essentially of magnitude O(R−n/2) on a O(

√
R)-neighbourhood π

(which thus has volume R(n+3)/2), and the numerology of (23) follows.
(This is of course the same counterexample which shows that the exponent
n+3
n+1 is best possible; see [TVV], [W3]).

6 Fine-scale Decomposition

In the previous part of the argument, we have decomposed the cylinder QR

(which is essentially a spacetime ball of radius R) into slightly smaller balls
B of radius R1−δ in order to utilize the induction hypothesis. To continue
the argument we must decompose B into much smaller balls, namely balls
of radius

√
R, to fully exploit the spatial localization of the tubes T . Specif-

ically, we cover (a slight dilate of) QR by a finitely overlapping collection
q of balls of radius

√
R. Squaring (23), it thus suffices to show that

∑

q∈q:q⊂2B

∥
∥
∥

∑

T1∈T1:T1 �∼B

∑

T2∈T2

φT1φT2

∥
∥
∥

2

L2(q)
� RCδR−n−1

2 (#T1)(#T2) . (24)

First consider the contribution to (24) of the case where T1 ∩Rδq = ∅.
In this case, it is easy to see from (10) and the triangle inequality that this
contribution is certainly acceptable. Thus we only need to consider the
terms in (24) where T1 intersects Rδq. Similarly we only need to consider
the terms where T2 intersects Rδq.

It remains to show
∑

q∈q:q⊂2B

∥
∥
∥

∑

T1∈T �∼B
1 (q)

∑

T2∈T2(q)

φT1φT2

∥
∥
∥

2

L2(q)
� RCδR−n−1

2 (#T1)(#T2) (25)

where
Tj(q) := {Tj ∈ Tj : Tj ∩Rδq =∅} for j = 1, 2

T �∼B
1 (q) := {T1 ∈ T1(q) : T1 ∼ B} .

We now do some dyadic pigeonholing, first on the multiplicity of the
tubes T1, T2 through q, and then on the multiplicity of the balls q within T1.
For any dyadic numbers 1 ≤ µ1, µ2 � R100n, let q(µ1, µ2) ⊂ q denote the
set

q(µ1, µ2) :=
{
q ∈ q : µj ≤ #Tj(q) < 2µj for j = 1, 2

}
,

thus the q(µ1, µ2) cover all the balls q ∈ q for which the summand in (25)
is non-zero. (By dyadic number we mean an integer power of two.) Since
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there are only O(logR)2 ≈ 1 possible values of (µ1, µ2), it thus suffices to
show that

∑

q∈q(µ1,µ2):q⊆2B

∥
∥
∥

∑

T1∈T �∼B
1 (q)

∑

T2∈T2(q)

φT1φT2

∥
∥
∥

2

L2(q)
� RCδR−n−1

2 (#T1)(#T2)

for all µ1, µ2.
Fix µ1, µ2. For any T1 ∈ T1, let λ(T1, µ1, µ2) denote the integer

λ(T1, µ1, µ2) := #
{
q ∈ q(µ1, µ2) : T1 ∩Rδq =∅} ,

and for every dyadic number 1 ≤ λ1 ≤ R100n, let T1[λ1, µ1, µ2] denote the
set

T1[λ1, µ1, µ2] :=
{
T1 ∈ T1 : λ1 ≤ λ(T1, µ1, µ2) < 2λ1

}
. (26)

Since there are only O(logR) ≈ 1 values of λ1, it thus suffices to show that
∑

q∈q(µ1,µ2):q⊂2B

∥
∥
∥

∑

T1∈T �∼B
1 (q)∩T1[λ1,µ1,µ2]

∑

T2∈T2(q)

φT1φT2

∥
∥
∥

2

L2(q)

� RCδR−(n−1)/2(#T1)(#T2) (27)

for all λ1. (We could also pigeonhole the multiplicity of balls in T2 in a
similar manner, but this will turn out to be unnecessary).

Fix λ1. We still have to prove (27). At this point we pause to recall how
the analogous argument of Wolff [W3] proceeded for the cone (for which
the tubes T1, T2 are constrained to point in null directions). Firstly, by a
Plancherel argument (similar to an argument of Mockenhaupt [M]), Wolff
observed the local estimate

∥
∥
∥

∑

T1∈T �∼B
1 (q)∩T1[λ1,µ1,µ2]

∑

T2∈T2(q)

φT1φT2

∥
∥
∥

2

L2(q)

� RCδR−(n−1)/2#
(
T �∼B

1 (q) ∩ T1[λ1, µ1, µ2]
)2(#T2(q)

)
; (28)

this is basically a consequence of the fact that for fixed T1, the functions
φT1φT2 are almost orthogonal on q. From (28) it would then suffice to show
the combinatorial estimate

∑

q∈q(µ1,µ2):q⊂2B

#
(
T �∼B

1 (q) ∩ T1[λ1, µ1, µ2]
)2(#T2(q)

)
� RCδ(#T1)(#T2) .

(29)
This estimate is true in the case of the cone (see the Remarks section) but
does not appear to hold for the paraboloid case. To resolve this difficulty
we need to sharpen the local estimate (28); this is the purpose of the next
section.
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7 An Improved Local Estimate

Before we present our improved version of the local estimate (28), let us
begin with an informal discussion. Suppose we wish to estimate a quantity
of the form ∥

∥
∥

∑

T1∈T1

∑

T2∈T2

φT1φT2

∥
∥
∥

2

L2
t,x

, (30)

where we shall be careless about exactly what region of spacetime we are
integrating over. We can expand this expression as

∑

T1∈T1

∑

T2∈T2

∑

T ′
1∈T1

∑

T ′
2

〈φT1φT2 , φT ′
1
φT ′

2
〉 .

Now if T1 has velocity ξ1, then the spacetime Fourier transform φT1 should
be supported near the point

(
ξ1,−1

2 |ξ1|2
)

in S. Similarly if T2 has velocity
ξ2, T ′

1 has velocity ξ′1, and T2 has velocity ξ′2. From Parseval’s formula, we
thus expect the above inner product to be very small unless ξ1 + ξ2 is close
to ξ′1 + ξ′2 and |ξ1|2 + |ξ2|2 is close to |ξ′1|2 + |ξ′2|2.

Suppose we fix two of the frequencies, say ξ1 and ξ′1. Then the relation
ξ1 + ξ2 = ξ′1 + ξ′2 will correlate ξ2 and ξ′2, in the sense that either of these
two frequencies will determine the other. This basic observation is already
enough to give a bound for (30) which is proportional to (#T1)2(#T2),
and by making these ideas slightly more rigorous one can soon obtain the
bound (28). However, as we will soon see, we can do better by also ex-
ploiting the additional constraint |ξ1|2 + |ξ2|2 = |ξ′1|2 + |ξ′2|2 to remove one
more degree of freedom on the collection T2, which will eventually make
this collection behave sufficiently similar to the collection of tubes in a light
cone that Wolff’s argument will apply.

We need some notation. Let Ω1,Ω2 ⊆ Rn denote the spatial frequency
regions

Ω1 :=
{
ξ ∈ Rn : |ξ − e1| ≤ 1

20n

}

Ω2 :=
{
ξ ∈ Rn : |ξ + e1| ≤ 1

20n

}
;

note these are slightly larger than the spatial frequency supports of S̃1 and
S̃2 respectively. For any ξ1 ∈ Ω1, ξ2 ∈ Ω2, let π(ξ1, ξ′2) ⊆ Ω1 denote the set

π(ξ1, ξ′2) :=
{
ξ′1 ∈ Ω1 : ξ1 + ξ2 = ξ′1 + ξ′2, |ξ1|2 + |ξ2|2 = |ξ′1|2 + |ξ′2|2

for some ξ2 ∈ Ω2

}
; (31)

one can interpret this set as being equivalent to the set of all parallelograms
with two vertices in (a slight enlargement of) S̃1 and two vertices in (a slight
enlargement of) S̃2.
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A little algebra shows that π(ξ1, ξ′2) is contained in the n−1-dimensional
hyperplane in Rn which contains ξ1 and is orthogonal to ξ′2 − ξ1 (cf. the
calculations in [B2], [MoVV1,2], [TVV]), or in other words

〈ξ′1 − ξ1, ξ
′
2 − ξ1〉Rn = 0 whenever ξ′1 ∈ π(ξ1, ξ′2) . (32)

(This orthogonality is not absolutely essential to the argument; what is
important (particularly in the proof of Lemma 8.1) is that the set π(ξ1, ξ′2)
is contained in a hypersurface which is transverse to ξ′2 − ξ1, or indeed to
any vector in Ω2 − Ω1.) Indeed, the points ξ1, ξ′1, ξ2, ξ

′
2 form a rectangle

in Rn.
For any ball q ∈ q(µ1, µ2) and any two frequencies ξ1 ∈ Ω1, ξ′2 ∈ Ω2,

let T �∼B
1 (q, λ1, µ1, µ2, ξ1, ξ

′
2) denote the collection of those tubes

T1 ∈ T �∼B
1 (q) ∩T1[λ1, µ1, µ2] such that the velocity v(T1) of T1 is within

O(RCδR−1/2) of the set π(ξ1, ξ′2). Let ν(q, λ1, µ1, µ2) denote the quantity

ν(q, λ1, µ1, µ2) := sup
ξ1∈Ω1;ξ′2∈Ω2

#T �∼B
1 (q, λ1, µ1, µ2, ξ1, ξ

′
2) . (33)

We now prove the following refinement of (28).
Lemma 7.1. For any q ∈ q(µ1, µ2), we have

∥
∥
∥

∑

T1∈T �∼B
1 (q)∩T1[λ1,µ1,µ2]

∑

T2∈T2(q)

φT1φT2

∥
∥
∥

2

L2(q)

� RCδR−(n−1)/2ν(q, λ1, µ1, µ2)
(
#(T �∼B

1 (q) ∩ T1[λ1, µ1, µ2])
)(

#T2(q)
)
.

Proof. Our arguments here have certain similarities to those in [M], [B2],
[MoVV1,2], [TVV], and can ultimately be traced back to the L4 theory of
Fefferman, Sjölin, and Córdoba.

For brevity, let us write

T′
1 := T �∼B

1 (q) ∩T1[λ1, µ1, µ2]
T′

2 := T2(q)
ν := ν(q, λ1, µ1, µ2) .

Since the L2(q) norm is bounded by the global L2
t,x norm, it suffices to show

that ∥
∥
∥

∑

T1∈T′
1

∑

T2∈T′
2

φT1φT2‖2
L2

t,x
� RCδR−(n−1)/2(#T′

1)(#T′
2)ν . (34)

Note that a straightforward calculation using Plancherel’s theorem shows
that φT1φT2 is globally in L2

t,x. Indeed, from (9) we see that the spacetime

Fourier transform of φT1 is of the form ̂fT1 dσ1, where fT1 is supported on
a cap {(τ, ξ) ∈ S : ξ = v(T1) + O(R−1/2)} and has magnitude O(Rn/4).
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Similarly for φT2 . A computation using the transversality of S1 and S2

thus shows that the spacetime Fourier transform of φT1φT2 is supported on
the spacetime ball

B
((

1
2

∣
∣v(T1)

∣
∣2, v(T1)

)

+
(

−1
2

∣
∣v(T2)

∣
∣2, v(T2)

)

, CR−1/2
)

(35)

and has magnitude O(R1/2). In particular we have

‖φT1φT2‖L2
t,x

� R−(n−1)/4. (36)

We now return to (34). We expand the left-hand side as
∣
∣
∣

∑

T1,T ′
1∈T′

1

∑

T2,T ′
2∈T′

2

〈φT1φT2 , φT ′
1
φT ′

2
〉L2

t,x

∣
∣
∣. (37)

From (36) and Cauchy–Schwarz we see that the inner product is O(R−n−1
2 ).

On the other hand, from the Fourier support (35), we see that the inner
product vanishes unless

v(T1) + v(T2) = v(T ′
1) + v(T ′

2) +O(R−1/2) (38)

and ∣
∣v(T1)

∣
∣2 +

∣
∣v(T2)

∣
∣2 =

∣
∣v(T ′

1)
∣
∣2 +

∣
∣v(T ′

2)
∣
∣2 +O(R−1/2) .

In particular, we see (using the separation of Ω1 and Ω2) that for fixed
T1, T

′
2, the velocity v(T ′

1) must lie within O(R−1/2) of the hyperplane
π(v(T1), v(T ′

2)). In particular for fixed T1, T
′
2 there are at most O(ν) choices

for v(T ′
1), and hence O(RCδν) choices of T ′

1 (since by construction of T′
1, T

′
1

must intersect Rδq). For fixed T1, T
′
2, T2 there are at most O(1) choices

of T ′
1 by (38), and hence O(RCδ) choices of T ′

1. Combining all these facts
together, we see that we can bound (37) by

(#T′
1)(#T′

2)R
CδνRCδR−(n−1)/2,

as desired. �

To conclude the proof of Theorem 1.1, it thus remains to prove the
combinatorial (Kakeya-type) estimate

∑

q∈q(µ1,µ2):q⊂2B

ν(q, λ1, µ1, µ2)
(
#(T �∼B

1 (q) ∩ T1[λ1, µ1, µ2])
)(

#T2(q)
)

� RCδ(#T1)(#T2) (39)

for an appropriate choice of equivalence relation ∼ obeying Assumption 5.1.
This will occupy the next section.
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8 The Combinatorial Estimate

We now prove the combinatorial estimate (39). Interestingly, this estimate
is of a comparable level of difficulty to the corresponding combinatorial
estimate in [W3], and in particular does not need any additional Kakeya-
type information. (In our notation, the combinatorial estimate in [W3] is
essentially (29), but with the tubes Tj restricted to light rays. See also
the remarks section. The numerology is similar to the (n + 2)/2 Kakeya
estimate in [W1], but the argument here seems simpler than the “hairbrush”
argument in [W1], though of a somewhat similar flavor).

We first need to define the relation ∼. For each tube T1 ∈ T1[λ1, µ1, µ2],
let B(T1, λ1, µ1, µ2) be the ball in B which maximizes the quantity

#
{
q ∈ q(µ1, µ2) : T1 ∩Rδq =∅ ; q ∩B(T1, λ1, µ1, µ2)=∅} .

From the pigeonhole principle and (26), we observe that

#
{
q ∈ q(µ1, µ2) : T1 ∩Rδq =∅ ; q ∩B(T1, λ1, µ1, µ2)=∅} � R−Cδλ1 . (40)

We define the relation ∼λ1,µ1,µ2 between tubes in T1 and balls in B by
defining T1 ∼λ1,µ1,µ2 B

′ if T1 ∈ T1[λ1, µ1, µ2] and B′ ⊆ 10B(T1, λ1, µ1, µ2);
note that this definition is independent of the ball B which appeared in the
previous section. Clearly for each tube T1 there are at most O(1) balls B′

such that T1 ∼λ1,µ1,µ2 B
′. Then we define T1 ∼ B′ if one has T1 ∼λ1,µ1,µ2 B

′

for some dyadic λ1, µ1, µ2; it is then clear that (19) holds for T ∈ T1. We
then define ∼ between T2 and B by a completely symmetrical procedure
(although we will not need ∼ for T2 here as we are proving (21) instead
of (22)).

Now we prove (39). By definition of q(µ1, µ2), we have

#T2(q) � µ2 (41)

for all q in (39). Also, by Fubini’s theorem and (26), we have
∑

q∈q(µ1,µ2):q⊂2B

#
(
T �∼B

1 (q) ∩ T1[λ1]
) ≤

∑

q∈q(µ1,µ2)

#
(
T1(q) ∩ T1[λ1]

)

=
∑

T1∈T1[λ1]

#
{
q∈q(µ1, µ2) : T1∩Rδq =∅}

�
∑

T1∈T1[λ1,µ1,µ2]

λ1

≤ (#T1)λ1 . (42)

Thus to prove (39) it will suffice to show that

ν(q0, λ1, µ1, µ2) � RCδ #T2

λ1µ2
(43)

for all q0 ∈ q(µ1, µ2) with q0 ⊂ 2B.
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It remains to prove (43), which we shall do using a “bush” argument
centered at q0. Fix q0 ∈ q(µ1, µ2) with q0 ⊂ 2B, and let ξ1 ∈ Ω1, ξ′2 ∈ Ω2

be arbitrary. Let T′
1 denote the set

T′
1 := T �∼B

1 (q0, λ1, µ1, µ2, ξ1, ξ
′
2) (44)

defined in section 7. By (33), it suffices to show that

#T′
1 � RCδ #T2

λ1µ2
. (45)

Let T1∈T′
1. By construction, we have T1∈T �∼B

1 (q0) and T1∈T1[λ1,µ1,µ2].
In particular, we have T1 ∩ Rδq0 =∅, and B ⊂ 10B(T1, λ1, µ1, µ2). In par-
ticular, since q0 ⊂ 2B, we have

dist
(
q0, 2B(T1, λ1, µ1, µ2)

)
� R−CδR .

By (40), we thus have
#

{
q ∈ q(µ1, µ2) : T1 ∩Rδq =∅ ; dist(q0, q) � R−CδR

}
� R−Cδλ1 .

On the other hand, by the definition of q(µ1, µ2), for each q ∈ q(µ1, µ2)
there are � µ2 tubes T2 in T2 which intersect Rδq. Thus we have

#
{
(q, T2) ∈ q(µ1, µ2) × T2 : T1 ∩Rδq, T2 ∩Rδq =∅ ;

dist(q0, q) � R−CδR
}

� R−Cδλ1µ2 .

Summing over all T1 in T′
1, we obtain

#
{
(q, T1, T2) ∈ q × T′

1 × T2 : T1 ∩Rδq, T2 ∩Rδq =∅ ;

dist(q0, q) � R−CδR
}

� R−Cδλ1µ2#T′
1 . (46)

Now we make the following crucial geometric observation, which is analo-
gous to the geometric observation used in [W3] that a light ray can transver-
sally intersect a light cone in at most one point:
Lemma 8.1. For each T2 ∈ T2, we have

#
{
(q, T1) ∈ q× T′

1 : T1 ∩Rδq, T2 ∩Rδq =∅ ; dist(q0, q) � R−CδR
}

� RCδ .

Proof. Let (t0, x0) and (t, x) denote the centers of q0 and q respectively.
Since T1 intersects both Rδq0 and Rδq, and dist(q0, q) � R−CδR, we see
that

R−CδR � |t− t0| � R

and
x− x0 = v(T1)(t− t0) +O(RCδR1/2) .

On the other hand, since T1 ∈ T′
1, we see from (44) that v(T1) lies within

O(RCδR−1/2) of π(ξ1, ξ′2). Thus we have

dist
(
x− x0

t− t0
, π(ξ1, ξ′2)

)

� RCδR−1/2.
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On the other hand, if we let e := ξ′2 − ξ1, then from (32) we see that

〈ξ′1 − ξ1, e〉Rn = 0 for all ξ′1 ∈ π(ξ1, ξ2) ,

and hence 〈
x− x0

t− t0
− ξ1, e

〉

Rn

� RCδR−1/2.

We may rearrange this as
〈
(t− t0, x− x0), (−〈ξ1, e〉Rn , e)

〉

R×Rn � RCδR1/2 .

Thus (t, x) lies within O(RCδR1/2) of the n-dimensional hyperplane Π in
R×Rn−1 which passes through (t0,x0) and which is normal to (−〈ξ1,e〉Rn ,e).
But since ξ1 ∈ Ω1, ξ′2 ∈ Ω2, we see that e is within 1/5n of −2e1, and
−〈ξ1, e〉 is within 1/5n of +2. Since v(T2) is within 1/5n of −e1, we thus
see that T2 makes an angle of ∼ 1 with respect to Π. Since dist((t, x), T2) �
RCδR1/2, we thus see that (t, x) is thus constrained to lie within a ball of
radius RCδR1/2. This means that there are only at most O(RCδ) choices
for q. For each fixed q there are at most O(RCδ) choices for T1, and the
claim follows. �

Combining this lemma with (46) we see that

RCδ#T2 � R−Cδλ1µ2#T′
1

and (45) follows. This concludes the proof of Theorem 1.1. �

9 Remarks

• The proof of Theorem 1.1 is very similar to the argument in [W3].
Indeed, one can compare the arguments as follows. For the cone, the
passage to localized restriction estimates, wave packet decomposition,
induction on scales, and fine scale decomposition works almost exactly
the same as with the parabola, the only major difference being that
the tubes are now oriented along light rays . (Also, the tubes have
a more interesting internal structure, being composed of somewhat
thinner 1×R1/2×R “plates”, but this ends up not being very relevant
to the argument which follows. See [W3], [T3] for further discussion.)
For the localized estimate, (28) is used instead of Lemma 7.1. This
requires us to prove (29). Using (42) and (41) as in section 8, one
reduces to showing that

#
(
T �∼B

1 (q0) ∩ T1[λ1, µ1, µ2]
)

� RCδ #T2

λ1µ2
.
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Arguing as in section 8, this reduces to showing the estimate

#
{
(q, T1) ∈ q×T1 : T1∩Rδq, T2∩Rδq =∅; dist(q0, q) � R−CδR

}
� RCδ

(compare with Lemma 8.1). But this follows in the cone case since the
tubes T1 which intersect Rδq are contained in a R1/2+δ-neighborhood
of a light cone; since the tube T2 is concentrated around a light ray,
intersects T1 transversally and at a distance � R−CδR from the vertex
of this light cone, the claim then follows from elementary geometry.

• It may well be possible to eliminate much of the pigeonholing in
the above argument, and perhaps even eradicate the epsilon loss in
Theorem 1.1. (See for instance [T2] for a non-pigeonholed version of
the argument for the cone in [W3], and [T3] for the endpoint result).
However, it seems difficult to access the ν parameter without this
pigeonholing, and we do not know how to remove the epsilons in the
paraboloid case.

• The geometric properties of the paraboloid which were used in the
above argument (and especially in Lemma 8.1) are easily seen to be
robust under small perturbations of the paraboloid. In particular,
one can easily obtain Theorem 1.1 for all disjoint compact subsets
of a compact hypersurface of elliptic type as defined in [MoVV2],
[TVV], providing that the parameter ε used to define elliptic type is
sufficiently small. We sketch this as follows. Let S be a surface of
elliptic type; after some linear transformations, this means that S is
of the form

S :=
{
(τ, ξ) ∈ R × Rn : τ = −1

2 |ξ|2 + εf(ξ)
}

where the error function f(ξ) is smooth, and ε is a sufficiently small
parameter (depending on the smooth norms of f and on the size and
separation of S1, S2). In other words, S is a small perturbation of
the paraboloid (2). This means that the dispersion relation v = h(ξ)
between the group velocity v and the frequency ξ is not quite the
identity (in fact, it is given by h(ξ) := ξ− ε∇f(ξ)), but it will still be
a homeomorphism and a small perturbation of the identity on S1∪S2

if ε is small enough. Aside from making this distinction between
velocity and frequency, the arguments in sections 3–6 are essentially
unchanged. In section 7, the set π(ξ1, ξ′2) must be replaced by

πS(ξ1, ξ′2) :=
{
ξ′1 ∈ Ω1 : ξ1 + ξ2 = ξ′1 + ξ′2, |ξ1|2 + |ξ2|2

= |ξ′1|2+|ξ′2|2+2ε(f(ξ1)+f(ξ2)−f(ξ′1)−f(ξ′2)) for some ξ2 ∈ Ω2

}
,
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but this is easily seen to be a small smooth perturbation of π(ξ1, ξ′2).
Actually, because the dispersion relation v = h(ξ) is no longer the
identity, the relevant set is not πS(ξ1, ξ′2) but rather h(πS(ξ1, ξ′2)),
but this is still a small smooth perturbation of π(ξ1, ξ′2), and in par-
ticular retains the key property of lying in a hypersurface transverse
to Ω2 − Ω1.
Now the remainder of the argument continues as before, with the
obvious modifications, until we reach Lemma 8.1. Now (t, x) will not
lie withinO(RCδR1/2) of a hyperplane in spacetime, but instead it will
lie within O(RCδR1/2) of a conic manifold consisting of the union of
the lines through vertex (t0, x0) which have velocity in h(πS(ξ1, ξ′2)).
(In the special case when S is a sphere, then this conic manifold is
in fact a circular cone, although the aperture and orientation of this
cone depends on ξ1 and ξ′2.) If ε is sufficiently small, this manifold is
still transverse to T2, and the remainder of the argument proceeds as
before.

• Once we have the above bilinear restriction theorems for arbitrary
disjoint compact subsets of surfaces of elliptic type, we can use the
machinery of [TVV] to derive the analogue of Corollary 1.2 for all
compact hypersurfaces of elliptic type. After some finite partitions
of unity and some affine linear transformations, we may thus obtain
Corollary 1.2 for all compact surfaces for which all the principal cur-
vatures strictly positive. In particular, the restriction conjecture for
the sphere Sn in R× Rn is true for all q > 2(n + 3)/(n + 1).

• It is also extremely likely that the same argument works when some
of the principal curvatures are strictly negative; indeed, by combining
this argument with the argument for the cone, it seems plausible that
one should be able to obtain good restriction estimates for all surfaces
in which at most one principal curvature vanishes at any given point.
In particular, one should be able to obtain bilinear restriction theo-
rems for all non-degenerate conic sections when q > 2(n+ 3)/(n+ 1)
(thus providing a bilinear analogue of the linear theory in [Str]). If
so, this would likely give near-optimal bilinear Lp null form estimates
for the wave equation (see [T3] for a discussion).

• It seems likely that these arguments also give some new progress on
the Bochner–Riesz problem for paraboloids and spheres (see e.g. [B3]
for a discussion), but we have not pursued this question.
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