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Abstract

We prove that if f is a real entire function of infinite order, then ff ′′

has infinitely many non-real zeros. In conjunction with the result of
Sheil-Small for functions of finite order this implies that if f is a real
entire function such that ff ′′ has only real zeros, then f is in the
Laguerre–Pólya class, the closure of the set of real polynomials with
real zeros. This result completes a long line of development originating
from a conjecture of Wiman of 1911.

1 Introduction

An entire function is called real if it maps the real line into itself. We recall
that the Laguerre–Pólya class (LP ) consists of entire functions which can
be approximated by real polynomials with only real zeros, uniformly on
compact subsets of the plane. It is easy to see that LP is closed under
differentiation; in particular, all derivatives of a function of the class LP
have only real zeros.

Theorem 1.1. If f is a real entire function and ff ′′ has only real zeros
then f belongs to the class LP .

Here one cannot replace ff ′′ by ff ′ as the example f(z) = exp(sin z)
shows. Further, the hypothesis that f is real is essential, because of the
example f(z) = exp(eiz) which is due to Edrei [E]. For real entire functions
with finitely many zeros, all of them real, Theorem 1.1 was proved in [BF].

Theorem 1.1 confirms a conjecture going back to Wiman (1911). Ålander
[Å2, p. 2] seems to state Wiman’s conjecture only for functions of finite
genus, but in the later statements of the conjecture by Levin and Ostrovskii
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[LeO, first footnote on p. 324] and by Hellerstein and Williamson [HeW1,
footnote on p. 229], [HeW2] and [CCH, Probl. 2.64] there is no restriction
on the genus. For functions of finite genus, Wiman made a more precise
conjecture [Å1], which was proved by Sheil-Small (Theorem A below).

A weaker conjecture by Pólya [Pó2] that if a real entire function f and
all its derivatives have only real zeros then f ∈ LP , was confirmed by
Hellerstein and Williamson [HeW1,2]. They proved that for a real entire
function f the condition that ff ′f ′′ has only real zeros implies that f ∈ LP .
Theorem 1.1 shows that one can drop the assumption on the zeros of f ′ in
this result.

For every integer p ≥ 0 denote by V2p the set of entire functions of the
form

f(z) = exp(−az2p+2)g(z) ,
where a ≥ 0 and g is a real entire function with only real zeros of genus
at most 2p + 1, and set U0 = V0 and U2p = V2p\V2p−2 for p ≥ 1. Thus
the class of all real entire functions of finite order with real zeros is repre-
sented as a union of disjoint subclasses U2p, p = 0, 1, . . . . According to a
theorem of Laguerre [L] and Pólya [Pó1], LP = U0. The following result
was conjectured by Wiman [Å1,2] and proved by Sheil-Small [S]:

Theorem A (Sheil-Small). If f ∈ U2p then f ′′ has at least 2p non-real
zeros.

In particular, if f is a real entire function of finite order and all zeros
of ff ′′ are real then f ∈ U0 = LP . In a recent paper [EdH] Edwards
and Hellerstein extended Theorem A to real entire functions with finitely
many non-real zeros. In particular they proved [EdH, Corollary 5.2] that
if f = gh, where h ∈ U2p and g is a real polynomial, then f (k) has at least
2p non-real zeros, for each k ≥ 2.

The main result of this paper can be considered as an extension of
Theorem A to functions of infinite order:
Theorem 1.2. For every real entire function f of infinite order, ff ′′ has
infinitely many non-real zeros.

Theorem 1.1 is a corollary of Theorem A and Theorem 1.2.
Applying Theorem 1.2 to functions of the form

f(z) = exp
∫ z

0
g(ζ) dζ

we obtain
Corollary 1.1. For every real transcendental entire function g, the
function g′ + g2 has infinitely many non-real zeros.
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For polynomials g the corresponding result was conjectured in [CCH,
Probl. 2.64 and 4.28] and proved in [S]: If g is a real polynomial then g′+g2

has at least deg g − 1 non-real zeros. With the additional assumption that
all zeros of the polynomial g are real, this was proved by Prüfer [PóS, Ch.V,
Problem 182]. Corollary 1.1 also follows from the result of Bergweiler and
Fuchs [BF].

For the early history of results on the conjectures of Wiman and Pólya
we refer to [HeW1], [LeO], which contain ample bibliography. The main
result of Levin and Ostrovskii [LeO] is

Theorem B. If f is a real entire function and all zeros of ff ′′ are real then

log+ log+ |f(z)| = O
(|z| log |z|) , z → ∞ . (1)

This shows that a function satisfying the assumptions of Theorem 1.1
cannot grow too fast, but there is a gap between Theorem B and Theorem A.
Our Theorem 1.2 bridges this gap.

One important tool brought by Levin and Ostrovskii to the subject was
a factorization of the logarithmic derivative of a real entire function f with
only real zeros:

f ′
f = ψφ ,

where φ is a real entire function, and ψ is either identically 1 or a meromor-
phic function which maps the upper half-plane H = {z ∈ C : Im z > 0} into
itself. This factorization was used in all subsequent work in the subject.
A standard estimate for analytic functions mapping the upper half-plane
into itself shows that ψ is neither too large nor too small away from the
real axis, so the asymptotic behaviour of f ′/f mostly depends on that of φ.
One can show that f is of finite order if and only if φ is a polynomial.

The second major contribution of Levin and Ostrovskii was the applica-
tion of ideas from the value distribution theory of meromorphic functions in
a half-plane [GO]. (An earlier application of the value distribution theory
to these questions is due to Edrei [E]). Using Nevanlinna theory, Hayman
[H1] proved that for an entire function f , the condition f(z)f ′′(z) �= 0,
z ∈ C, implies that f ′/f is constant. The assumptions of Theorem B mean
that f(z)f ′′(z) �= 0 in H. Levin and Ostrovskii adapted Hayman’s argu-
ment to functions in a half-plane to produce an estimate for the logarithmic
derivative. An integration of this estimate gives (1). To estimate the log-
arithmic derivative using Hayman’s argument they applied a counterpart
of the Nevanlinna characteristic for meromorphic functions in a half-plane,
and proved an analogue of the main technical result of Nevanlinna theory,
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the lemma on the logarithmic derivative. This characteristic has two inde-
pendent origins, [Le1] and [T1], and the name “Tsuji characteristic” was
introduced in [LeO].

In this paper we use both main ingredients of the work of Levin and
Ostrovskii, the factorization of f ′/f and the Tsuji characteristic.

Another important tool comes from Sheil-Small’s proof of Theorem A.
His key idea was the study of topological properties of the auxiliary function

F (z) = z − f(z)
f ′(z)

.

In the last section of his paper, Sheil-Small discusses the possibility of
extension of his method to functions of infinite order, and proves the fact
which turns out to be crucial: if f is a real entire function, ff ′′ has only
real zeros, and f ′ has a non-real zero, then F has a non-real asymptotic
value. In §4 we prove a generalization of this fact needed in our argument.

The auxiliary function F appears when one solves the equation f(z) = 0
by Newton’s method. This suggests the idea of iterating F and using
the Fatou–Julia theory of iteration of meromorphic functions. This was
explored by Eremenko and Hinkkanen (see, for example, [Hi]).

Theorem 1.2 will be proved by establishing a more general result con-
jectured by Sheil-Small [S]. Let L be a meromorphic function in the plane,
real on the real axis, such that all but finitely many poles of L are real
and simple and have positive residues. Then L has a Levin–Ostrovskii
representation [HeW1], [LeO], [S]

L = ψφ (2)

in which:

(a) ψ and φ are meromorphic in the plane and real on the real axis;
(b) ψ maps the upper half-plane into itself, or ψ ≡ 1;
(c) every pole of ψ is real and simple and is a simple pole of L;
(d) φ has finitely many poles.

We outline how such a factorization (2) is obtained. If L has finitely many
poles, set ψ = 1. Assuming next that L has infinitely many poles, let

. . . < ak−1 < ak < ak+1 < . . .

be the sequence of real poles of L enumerated in increasing order. Then for
|k| large, ak and ak+1 are real and of the same sign, and are both simple
poles of L with positive residue, so that there is at least one zero of L in
the interval (ak, ak+1). We choose one such zero in each such interval and
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denote it by bk. Then we set, for some large k0,

ψ(z) =
∏

|k|≥k0

1 − z/bk
1 − z/ak

,

and the product converges since the series∑
|k|≥k0

(
1
ak

− 1
bk

)

converges by the alternating series test. For Im z > 0 we then have 0 <∑
|k|≥k0

arg bk−z
ak−z < π and so Imψ(z) > 0. Finally, we define φ by (2), and

properties (a)–(d) follow (for the details see [HeW1], [LeO], [S]).
Theorem 1.3. Let L be a function meromorphic in the plane, real on
the real axis, such that all but finitely many poles of L are real and simple
and have positive residues. Let ψ, φ be as in (2) and (a), (b), (c), (d). If φ
is transcendental then L+ L′/L has infinitely many non-real zeros.

Theorem 1.3 is proved in §3 and §4, while Theorem 1.2 is deduced from
Theorem 1.3 in §5.

We thank Iosif Ostrovskii, Terry Sheil-Small and Misha Sodin for their
valuable comments.

2 Preliminaries

We will require the following well-known consequence of Carleman’s esti-
mate for harmonic measure.
Lemma 2.1. Let u be a non-constant continuous subharmonic function
in the plane. For r > 0 let B(r, u) = max{u(z) : |z| = r}, and let θ(r) be
the angular measure of that subset of the circle C(0, r) = {z ∈ C : |z| = r}
on which u(z) > 0. Define θ∗(r) by θ∗(r) = θ(r), except that θ∗(r) = ∞ if
u(z) > 0 on the whole circle C(0, r). Then if r > 2r0 and B(r0, u) > 1 we
have

log
∥∥u+(4reiθ)

∥∥ ≥ logB(2r, u) − c1 ≥
∫ r

2r0

πdt

tθ∗(t)
− c2 ,

in which c1 and c2 are absolute constants, and∥∥u+(reiθ)
∥∥ =

1
2π

∫ π

−π
max

{
u(reiθ), 0

}
dθ .

The first inequality follows from Poisson’s formula, and for the second
we refer to [T2, Thm. III.68]. Note that in the case that u = log |f | where
f is an entire function, ‖u+(reiθ)‖ coincides with the Nevanlinna charac-
teristic T (r, f).
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Next, we need the characteristic function in a half-plane as developed by
Tsuji [T1] and Levin and Ostrovskii [LeO] (see also [GO] for a comprehen-
sive treatment). Let g be a meromorphic function in a domain containing
the closed upper half-plane H = {z ∈ C : Im z ≥ 0} (this hypothesis can be
weakened [LeO]). For t ≥ 1 let n(t, g) be the number of poles of g, counting
multiplicity, in {z : |z − it/2| ≤ t/2, |z| ≥ 1}, and set

N(r, g) =
∫ r

1

n(t, g)
t2

dt , r ≥ 1 .

The Tsuji characteristic is defined as
T(r, g) = m(r, g) + N(r, g) ,

where

m(r, g) =
1
2π

∫ π−sin−1(1/r)

sin−1(1/r)

log+ |g(r sin θeiθ)|
r sin2 θ

dθ .

The upper half-plane is thus exhausted by circles of diameter r ≥ 1 tangent
to the real axis at 0. For non-constant g and any a ∈ C the first fundamental
theorem then reads [GO], [T1]

T(r, g) = T
(
r, 1/(g − a)

)
+O(1) , r → ∞ , (3)

and the lemma on the logarithmic derivative [LeO, p. 332], [GO, Theo-
rem 5.4] gives

m(r, g′/g) = O
(
log r + log+ T(r, g)

)
(4)

as r → ∞ outside a set of finite measure. Further, T(r, g) differs from a non-
decreasing function by a bounded additive term [T1]. Standard inequalities
give
T(r, g1 + g2) ≤ T(r, g1) + T(r, g2) + log 2 , T(r, g1g2) ≤ T(r, g1) + T(r, g2) ,

(5)
whenever g1, g2 are meromorphic inH. Using the obvious fact that T(r, 1/z)
= 0 for r ≥ 1 we easily derive from (3) and (5) that T(r, g) is bounded if
g is a rational function. (A more general result from [T1] is that T(r, g) is
bounded if and only if g is a ratio of two bounded holomorphic functions
in H.)

A key role will be played by the following two results from [LeO]. The
first is obtained by a change of variables in a double integral [LeO, p. 332].
Lemma 2.2. Let Q(z) be meromorphic in H, and for r ≥ 1 set

m0π(r,Q) =
1
2π

∫ π

0
log+

∣∣Q(reiθ)
∣∣dθ . (6)

Then for R ≥ 1 we have∫ ∞

R

m0π(r,Q)
r3

dr ≤
∫ ∞

R

m(r,Q)
r2

dr . (7)
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The second result from [LeO] is the analogue for the half-plane of Hay-
man’s Theorem 3.5 from [H2].

Lemma 2.3. Let k ∈ N and let g be meromorphic in H, with g(k) �≡ 1.
Then

T(r, g) ≤
(

2 +
1
k

)
N

(
r,

1
g

)
+

(
2 +

2
k

)
N

(
r,

1
g(k) − 1

)

+O(log r + log+ T(r, g))

as r → ∞ outside a set of finite measure.

Lemma 2.3 is established by following Hayman’s proof exactly, but using
the Tsuji characteristic and the lemma on the logarithmic derivative (4).

We also need the following result of Yong Xing Gu (Ku Yung-hsing,
[Ku]).

Lemma 2.4. For every k ∈ N, the meromorphic functions g in an arbitrary
domain with the properties that g(z) �= 0 and g(k)(z) �= 1 form a normal
family.

A simplified proof of this result is now available [Z]. It is based on a
rescaling lemma of Zalcman–Pang [P] which permits an easy derivation of
Lemma 2.4 from the following result of Hayman: Let k ∈ N and let g be a
meromorphic function in the plane such that g(z) �= 0 and g(k)(z) �= 1 for
z ∈ C. Then g = const, see [H1] or [H2, Corollary of Thm. 3.5].

3 Proof of Theorem 1.3

Let L,ψ, φ be as in the hypotheses, and assume that φ is transcendental
but L+ L′/L has only finitely many non-real zeros. Condition (b) implies
the Carathéodory inequality:

1
5
|ψ(i)|sin θ

r
<

∣∣ψ(reiθ)
∣∣ < 5|ψ(i)| r

sin θ
, r ≥ 1 , θ ∈ (0, π) , (8)

see, for example, [Le2, Ch. I.6, Thm. 8′].
Lemma 3.1. The Tsuji characteristic of L satisfies T(r, L) = O(log r) as
r → ∞.

Proof. We apply Lemma 2.3 almost exactly as in [LeO, p. 334]. Let g1 =
1/L. Then

g′1 = −L′/L2 .

Since L has finitely many non-real poles and since L+L′/L has by assump-
tion finitely many non-real zeros it follows that g1 and g′1 − 1 have finitely
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many zeros in H. Lemma 2.3 with k = 1 now gives T(r, g1) = O(log r)
initially outside a set of finite measure, and hence without exceptional set
since T(r, g1) differs from a non-decreasing function by a bounded term.
Now apply (3). �

Remark. The condition that L has finitely many non-real poles in
Lemma 3.1 can be replaced by a weaker condition that N(r, L) = O(log r),
r → ∞, without changing the statement of the lemma or its proof.

Since φ has finitely many poles and is real on the real axis there exist a
real entire function φ1 and a rational function R1 with

φ = φ1 +R1 , R1(∞) = 0 . (9)
Lemma 3.2. The entire function φ1 has order at most 1.

Proof. Again, this proof is almost identical to the corresponding argument
in [LeO]. Lemmas 2.2 and 3.1 give∫ ∞

R

m0π(r, L)
r3

dr ≤
∫ ∞

R

m(r, L)
r2

dr = O(R−1 logR) , R→ ∞ .

Since m0π(r, 1/ψ) = O(log r) by (8), we obtain using (2)∫ ∞

R

m0π(r, φ)
r3

dr = O(R−1 logR) , R→ ∞ .

But φ1 is entire and real on the real axis and so∥∥ log+ |φ1(reiθ)|
∥∥ = 2m0π(r, φ1) ≤ 2m0π(r, φ) +O(1) ,

using (9). Since ‖ log+ |φ1(reiθ)|‖ is a non-decreasing function of r we de-
duce that ∥∥ log+ |φ1(Reiθ)|

∥∥ = O(R logR) , R→ ∞ ,

which proves the lemma. �

Lemma 3.3. Let δ1 > 0 and K > 1. Then we have∣∣wL(w)
∣∣ > K , |w| = r , δ1 ≤ argw ≤ π − δ1 , (10)

for all r outside a set E1 of zero logarithmic density.

Proof. Choose δ2 with 0 < δ2 < δ1. Let

Ω0 =
{
z ∈ C : 1

2 < |z| < 2 , δ2
2 < arg z < π − δ2

2

}
.

For r ≥ r0, with r0 large, let gr(z) = 1/(rL(rz)). Then gr(z) �= 0 on Ω0,
provided r0 is large enough, since all but finitely many poles of L are real.
Further,

g′r(z) = −L′(rz)/L(rz)2.
Since L has finitely many poles in H and L+L′/L has finitely many zeros
in H it follows that provided r0 is large enough the equation g′r(z) = 1 has
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no solutions in Ω0. Thus the functions gr(z) form a normal family on Ω0,
by Lemma 2.4 with k = 1.

Suppose that |w0| = r ≥ r0, and δ1 ≤ argw0 ≤ π − δ1, and that∣∣w0L(w0)
∣∣ ≤ K . (11)

Then ∣∣gr(z0)
∣∣ ≥ 1/K , z0 = w0

r ,

and so since the gr are zero-free and form a normal family we have∣∣gr(z)
∣∣ ≥ 1/K1 , |z| = 1 , δ2 ≤ arg z ≤ π − δ2 , (12)

for some positive constant K1 = K1(r0, δ1, δ2,K), independent of r. We
may assume that r0 is so large that |R1(z)| ≤ 1 for |z| ≥ r0, in which the
rational function R1 is as defined in (9). By (2), (8), (9) and (12) we have,
for |w| = r, δ2 ≤ argw ≤ π − δ2, the estimates∣∣wL(w)

∣∣ =
∣∣wψ(w)φ(w)

∣∣ ≤ K1 ,∣∣φ1(w)
∣∣ ≤ 1 +

∣∣φ(w)
∣∣ ≤ K2 = 1 +

5K1

|ψ(i)| sin δ2 .
(13)

Thus (11) implies (13). For t ≥ r0 let
E2(t) =

{
w ∈ C : |w| = t , |φ1(w)| > K2

}
.

Further, let θ(t) be the angular measure of E2(t), and as in Lemma 2.1 let
θ∗(t) = θ(t), except that θ∗(t) = ∞ if E2(t) = C(0, t). Let

E3 =
{
t ∈ [r0,∞) : θ(t) ≤ 4δ2

}
.

Since (11) implies (13), we have (10) for t ∈ [r0,∞) \ E3. Applying
Lemma 2.1 we obtain, since φ1 has order at most 1 by Lemma 3.2,

(
1 + o(1)

)
log r ≥

∫ r

r0

π dt

tθ∗(t)
≥

∫
[r0,r]∩E3

π dt

4δ2t
,

from which it follows that E3 has upper logarithmic density at most 4δ2/π.
Since δ2 may be chosen arbitrarily small, the lemma is proved. �

The estimates (8) and (10) and the fact that φ is real now give

|φ(z)| > K sin δ1
5|ψ(i)|r2 , δ1 ≤ | arg z| ≤ π − δ1 ,

for |z| = r in a set of logarithmic density 1. Since φ has order at most 1
by (9) and Lemma 3.2, but is transcendental with finitely many poles, we
deduce:
Lemma 3.4. The function φ has infinitely many zeros. �

Lemma 3.5. There exist infinitely many zeros η ∈ H ∪ R of L which
satisfy at least one of the following conditions:
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(I) η ∈ H,
(II) L′(η) = 0,

(III) η ∈ R and L′(η) > 0.
Proof. By Lemma 3.4 φ has infinitely many zeros; by the hypotheses (2)
and (c) these must be zeros of L. We assume that there are only finitely
many zeros of L satisfying (I) or (II) and deduce that there are infinitely
many zeros with the property (III).

Let {ak} be the real poles of L, in increasing order. By (2) and (d) all
but finitely many of these are poles of ψ. Then there are two possibilities.

The first is that there exist infinitely many intervals (ak, ak+1) each
containing at least one zero xk of φ. Then we may assume that ak and
ak+1 are poles of ψ, with negative residues using (b). Hence there must be
a zero yk of ψ in (ak, ak+1), and we may assume that yk �= xk, since L has
by assumption finitely many multiple zeros. But then the graph of L must
cut the real axis at least twice in (ak, ak+1), and so there exists a zero η of
L in (ak, ak+1) with L′(η) > 0. Thus we obtain (III).

The second possibility is that we have infinitely many pairs of zeros a, b
of φ such that L has no poles on [a, b]. In this case we again obtain a zero
η of L with L′(η) > 0, this time in [a, b], and again we have (III). �

Let
F (z) = z − 1

L(z)
, F ′(z) = 1 +

L′(z)
L(z)2

. (14)

Since L has finitely many non-real poles and L + L′/L has finitely many
non-real zeros we obtain at once:
Lemma 3.6. The function F has finitely many critical points over C \ R,
i.e. zeros z of F ′ with F (z) non-real. �

Lemma 3.7. There exists α ∈ H with the property that F (z) → α as
z → ∞ along a path γα in H.

Lemma 3.7 is a refinement of Theorem 4 of [S], and will be proved in §4.
Now set

g(z) = z2L(z) − z =
zF (z)
z − F (z)

, h(z) =
1

F (z) − α
, (15)

in which α is as in Lemma 3.7. Then g has finitely many poles in H and
(5), (14) and Lemma 3.1 give

T(r, g) + T(r, h) = O(log r) , r → ∞ .

Hence Lemma 2.2 leads to∫ ∞

1

m0π(r, g)
r3

dr +
∫ ∞

1

m0π(r, h)
r3

dr <∞ , (16)
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in which m0π(r, g) and m0π(r, h) are as defined in (6).
Lemma 3.8. The function F has at most four finite non-real asymptotic
values.

Proof. Assume the contrary. Since F (z) is real on the real axis we may take
distinct finite non-real α0, . . . , αn, n ≥ 2, such that F (z) → αj as z → ∞
along a simple path γj : [0,∞) → H ∪{0}. Here we assume that γj(0) = 0,
that γj(t) ∈ H for t > 0, and that γj(t) → ∞ as t → ∞. We may further
assume that γj(t) �= γj′(t′) for t > 0, t′ > 0, j �= j′.

Re-labelling if necessary, we obtain n pairwise disjoint simply connected
domains D1, . . . ,Dn in H, with Dj bounded by γj−1 and γj, and for t > 0
we let θj(t) be the angular measure of the intersection of Dj with the
circle C(0, t). Since g has finitely many poles in H there exists a rational
function R2, with R2(∞) = 0, such that g2 = g−R2 is analytic in H ∪{0}.
By (15), the function g2(z) tends to αj as z → ∞ on γj. Thus g2(z) is
unbounded on each Dj but bounded on the finite boundary ∂Dj of each Dj .

Let c be large and positive, and for each j define
uj(z) = log+

∣∣g2(z)/c∣∣ , z ∈ Dj . (17)
Set uj(z) = 0 for z �∈ Dj . Then uj is continuous, and subharmonic in the
plane since g2 is analytic in H ∪ {0}.

Lemma 2.1 gives, for some R > 0 and for each j,∫ r

R

π dt

tθj(t)
≤ log

∥∥uj(4reiθ)
∥∥ +O(1)

as r → ∞. Since uj vanishes outside Dj we deduce using (17) that∫ r

R

πdt

tθj(t)
≤ logm0π(4r, g2) +O(1) ≤ logm0π(4r, g) +O(1) , r → ∞ ,

(18)
for all j ∈ {1, . . . , n}. However, the Cauchy–Schwarz inequality gives

n2 ≤
n∑

j=1

θj(t)
n∑

j=1

1
θj(t)

≤
n∑

j=1

π

θj(t)

which on combination with (18) leads to, for some positive constant c3,
n log r ≤ logm0π(4r, g) +O(1) , m0π(r, g) ≥ c3r

n , r → ∞ .

Since n ≥ 2 this contradicts (16), and Lemma 3.8 is proved. �

From Lemmas 3.6 and 3.8 we deduce that the inverse function F−1

has finitely many non-real singular values. Using Lemma 3.7, take α ∈ H
such that F (z) → α along a path γα tending to infinity in H, and take
ε0 with 0 < ε0 < Imα such that F has no critical or asymptotic values in



986 W. BERGWEILER, A. EREMENKO AND J.K. LANGLEY GAFA

0 < |w−α| ≤ ε0. Take a component C0 of the set {z ∈ C : |F (z)−α| < ε0}
containing an unbounded subpath of γα. Then by a standard argument
[N, XI.1.242] involving a logarithmic change of variables the inverse func-
tion F−1 has a logarithmic singularity over α, the component C0 is simply
connected, and F (z) �= α on C0. Further, the boundary of C0 consists of
a single simple curve going to infinity in both directions. Thus we may
define a continuous, non-negative, non-constant subharmonic function in
the plane by

u(z) = log
∣∣∣∣ ε0
F (z) − α

∣∣∣∣ = log
∣∣ε0h(z)∣∣ (z ∈ C0) , u(z) = 0 (z �∈ C0) , (19)

using (15).
The next lemma follows from (14) and (19).

Lemma 3.9. For large z with |zL(z)| > 3 we have |F (z) − α| > |z|/2 and
u(z) = 0. �

Lemma 3.10. We have

lim
r→∞

log ‖u(reiθ)‖
log r

= ∞. (20)

Proof. Apply Lemma 3.3, with K = 3 and δ1 small and positive. By
Lemma 3.9 we have u(z) = 0 if δ1 ≤ | arg z| ≤ π − δ1 and |z| is large but
not in E1. For large t let σ(t) be the angular measure of that subset of
C(0, t) on which u(z) > 0. Since u vanishes on the real axis Lemma 2.1
and Lemma 3.3 give, for some R > 0,

log
∥∥u(4reiθ)∥∥ +O(1) ≥

∫ r

R

πdt

tσ(t)
≥

∫
[R,r]\E1

πdt

4δ1t
≥ π

4δ1

(
1 − o(1)

)
log r

as r → ∞. Since δ1 may be chosen arbitrarily small the lemma follows. �

Now (19) gives ∥∥u(reiθ)∥∥ ≤ m0π(r, h) +O(1) ,
from which we deduce using (20) that

lim
r→∞

logm0π(r, h)
log r

= ∞ .

This obviously contradicts (16), and Theorem 1.3 is proved. �

4 Proof of Lemma 3.7

The proof is based essentially on Lemmas 1 and 5 and Theorem 4 of [S].
Assume that there is no α ∈ H such that F (z) tends to α along a path
tending to infinity in H.
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Let
W =

{
z ∈ H : F (z) ∈ H

}
, Y =

{
z ∈ H : L(z) ∈ H

}
.

Then Y ⊆ W , by (14), so that each component C of Y is contained in a
component A of W .
Lemma 4.1. All but finitely many components C of Y are unbounded
and satisfy

lim sup
z→∞, z∈C

ImL(z) > 0 . (21)

Proof. Suppose first that C is a component of Y such that ∂C contains
no pole of L. Then ImL(z) is harmonic and positive in C, and vanishes
on ∂C. Thus C satisfies both conclusions of the lemma by the maximum
principle.

Since each pole of L belongs to the closure of at most finitely many
components C of Y , it suffices therefore to show that L has at most finitely
many poles in the closure of Y . To see this, let x0 be a pole of L, with
|x0| large. Then x0 is real, and is a simple pole of L with positive residue.
Hence limy→0+ ImL(x0+iy) = −∞ and since L is univalent on an open disc
N0 = B(x0, R0) it follows that ImL(z) < 0 on N0∩H. Thus N0 ∩ Y = ∅. �

Lemma 4.2. To each component A of W corresponds a finite number
v(A) such that F takes every value at most v(A) times in A and has at
most v(A) distinct poles on ∂A. Moreover, v(A) = 1 for all but finitely
many components A of W .

Proof. By Lemma 3.6, F has finitely many critical points in W , so only
finitely many components A of the set W can contain critical points of F .
Further, the assumption made in the beginning of this section implies that
there is no α ∈ H such that F (z) tends to α along a path tending to infinity
in W .

Suppose first that A is a component of W which contains no critical
points of F . Then every branch of F−1 with values in A can be analytically
continued along every path in H. This implies that F maps A univalently
onto H, and we set v(A) = 1 in this case.

Now consider a component A of W on which F is not univalent. Then
A contains finitely many critical points of F , which we denote by z1, . . . , zp.
We connect the points 0, F (z1), . . . , F (zp) by a simple polygonal curve
Γ ⊂ H ∪ {0}, so that the region D = H\Γ is simply connected. Let
X = {z ∈ A : F (z) ∈ D}. Then every branch of F−1 with values in X can
be analytically continued along every curve in D, so every component B of
X is conformally equivalent to D via F .
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If ∂B ∩A contains no critical points of F then the inverse branch F−1
B

which maps D onto B can be analytically continued into H, so in this case
F : A → H is a conformal equivalence which contradicts our assumption
that F is not univalent in A.

As every critical point of F can belong to the boundaries of only finitely
many conponents B, we conclude that the set X has finitely many com-
ponents. Denoting the number of these components by v(A) we conclude
from the open mapping theorem that F takes every value at most v(A)
times in A.

To show that F has at most v(A) poles on ∂A, it is enough to note that
if z0 ∈ ∂A is a pole of F , then for every neighbourhood N of z0, F assumes
in N ∩A all sufficiently large values in H. �

Remark. Once it is established that F takes every value finitely many
times in A, the Riemann–Hurwitz formula shows that one can take v(A) =
p + 1, where p is the number of critical points of F in A, counting multi-
plicity, but we don’t use this observation.

Lemma 4.3. There are infinitely many components A of W which satisfy
all of the following conditions: (i) A contains a component C of Y ; (ii)
∂A∩∂C contains a zero of L; (iii) F is univalent on A; (iv) C is unbounded
and satisfies (21).

Proof. We recall from Lemma 3.5 that L has infinitely many zeros η,
satisfying one of the conditions (I), (II) or (III) of Lemma 3.5. Fix such a
zero η. We are going to show that there exists a component C of Y such
that η ∈ ∂C. We write

L(z) = (z − η)m
(
aeiθ +O(|z − η|)) , z → η , a > 0 , θ ∈ [−π, π) . (22)

Let t0 be small and positive, and set

ζ(t) = η + t exp
{

i
m

(
π
2 − θ

)}
, t ∈ (0, t0] .

Then argL(ζ(t)) → π/2 as t → 0, and so L(ζ(t)) ∈ H for t ∈ (0, t0] if t0 is
small enough. We claim that ζ(t) ∈ H for t ∈ (0, t0], provided t0 is small
enough. In case (I) this evidently holds if t0 < Im η. In case (II) we have
m ≥ 2 in (22) and, furthermore, we may assume in this case that η ∈ R

(otherwise we have case (I) again) and thus θ ∈ {0,−π} since L is a real
function. Then arg(ζ(t) − η) ∈ (0, 3π/4], and so ζ(t) ∈ H. Finally, in case
(III) we have m = 1 and θ = 0, and so arg(ζ(t) − η) = π/2. This proves
our claim, and thus ζ((0, t0]) ⊂ Y . Let C be that component of Y which
contains the curve ζ((0, t0]). Then η ∈ ∂C since ζ(t) → η as t→ 0.
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Thus there are infinitely many zeros η of L that belong to the boundaries
of components C of the set Y . As F (η) = ∞, by (14), and Y ⊆ W , we
have η ∈ ∂C ∩ ∂A, where A is a component of the set W containing C.
Lemma 4.2 implies that infinitely many zeros η of L cannot belong to the
boundary of the same component A, and thus there are infinitely many
such components A. Finally, (iii) follows from Lemma 4.2 and (iv) from
Lemma 4.1. �

We now complete the proof of Lemma 3.7. Applying Lemma 4.3 we
obtain at least one zero η of L, with η ∈ ∂A ∩ ∂C, in which A,C are
components of W,Y respectively, satisfying C ⊆ A and conditions (iii) and
(iv) of Lemma 4.3. Since F (η) = ∞ by (14), it follows that for an arbitrarily
small neighbourhood N of η, all values w of positive imaginary part and
sufficiently large modulus are taken by F in A ∩N . Using (iii) we deduce
that F (z) is bounded as z → ∞ in A. Now (14) gives L(z) → 0 as z → ∞
in A, and hence as z → ∞ in C. This contradicts (21). �

5 Proof of Theorem 1.2

Suppose that f is a real entire function, and that f has finitely many non-
real zeros. Then L = f ′/f has finitely many non-real poles, and all poles of
L are simple and have positive residues. Thus L has a representation (2).
Lemma 5.1. Suppose that φ is a rational function. Then f has finite
order.

Proof. Lemma 5.1 may be proved by modifying arguments of Levin–
Ostrovskii [LeO, pp. 336–337] or of Hellerstein and Williamson [HeW2,
pp. 500–501] based on the residues of ψ, or by the following argument using
the Wiman–Valiron theory [H3]. Denote by N(r) the central index of f .
By [H3, Theorems 10 and 12], provided r lies outside a set E4 of finite log-
arithmic measure and |z0| = r, |f(z0)| = M(r, f) = max{|f(z)| : |z| = r},
we have

f ′(z)
f(z)

=
N(r)
z

(
1 + o(1)

)
, z = z0e

it , t ∈ [−N(r)−2/3, N(r)−2/3] .

This leads to∫ 2π

0

∣∣f ′(reit)/f(reit)
∣∣5/6

dt ≥ N(r)1/6r−5/6 , r → ∞ , r �∈ E4 .

Since φ is by assumption a rational function, (2) and (8) give∫ 2π

0

∣∣f ′(reit)/f(reit)
∣∣5/6

dt = O(rM ) , r → ∞ ,
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for some positiveM . We deduce thatN(r) = O(r6M+5) as r → ∞, and thus
f has finite order [H3, (1.8) and Theorem 6]. This proves Lemma 5.1. �

Since L + L′/L = f ′′/f ′, Theorem 1.2 now follows from Theorem 1.3
and Lemma 5.1.
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Sci. Paris 95 (1882); Oevres, t. 1, 174–177.
[Le1] B.Ja. Levin, On functions holomorphic in a halfplane, Trudy Odessa Inst.

3 (1941), 5–14 (in Russian).
[Le2] B.Ja. Levin, Distribution of Zeros of Entire Functions, GITTL, Moscow,

1956; 2-nd English transl., AMS, Providence RI, 1980.



Vol. 13, 2003 REAL ENTIRE FUNCTIONS AND WIMAN’S CONJECTURE 991

[LeO] B.Ja. Levin, I.V. Ostrovskii, The dependence of the growth of an entire
function on the distribution of zeros of its derivatives, Sibirsk. Mat. Zh. 1
(1960), 427–455; English transl., AMS Transl. (2) 32 (1963), 323–357.

[N] R. Nevanlinna, Eindeutige analytische Funktionen, 2te Aufl., Springer,
Berlin, 1953.

[P] Xue Cheng Pang, Bloch’s principle and normal criterion, Sci. China Ser.
A 32 (1989), 782–791.
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