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Abstract

A construction as a growth process for sampling of the uniform in-
finite planar triangulation (UIPT), defined in [AnS], is given. The
construction is algorithmic in nature, and is an efficient method of
sampling a portion of the UIPT.

By analyzing the progress rate of the growth process we show
that a.s. the UIPT has growth rate r4 up to polylogarithmic factors,
in accordance with heuristic results from the physics literature. Ad-
ditionally, the boundary component of the ball of radius r separating
it from infinity a.s. has growth rate r2 up to polylogarithmic factors.
It is also shown that the properly scaled size of a variant of the free
triangulation of an m-gon (also defined in [AnS]) converges in distri-
bution to an asymmetric stable random variable of type 1/2.

By combining Bernoulli site percolation with the growth process
for the UIPT, it is shown that a.s. the critical probability pc = 1/2
and that at pc percolation does not occur.

1 Introduction

Since the 1960’s there has been a combinatorial study of the properties of
random finite planar maps chosen uniformly among members of one of a
number of classes of planar maps. Many of their statistical properties have
been studied. For example, Tutte [T2] has shown that almost all members
of a certain class of planar maps have no non-trivial symmetries. Later
by other means this result was extended to many other classes of planar
structures [RW2].

Such planar classes include the class of general planar maps as well as
the classes of triangulations (where all faces are triangles), quadrangula-
tions and maps with other possible faces, and others. Members of a class
may also have restrictions on degrees of vertices or on their connectivity.
While understanding each particular class involves different techniques for
handling the particular difficulties the class presents, many results appear
to hold universally for any class of planar structures examined. It generally
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appears that there is a single universality class describing all (sufficiently
unconstrained) classes of planar structures.

Another aspect common to many of the statistical results regarding uni-
formly chosen planar structures is dealing with asymptotics of the struc-
ture’s properties as the size tends to infinity. Thus there are results about
the distribution of degrees in a uniformly chosen triangulation [GR], the
size of 3-connected and 4-connected components (or more general cores)
[BeRW], [BFSS], [GW], and probabilistic 0-1 laws [BeCR]. Many of these
results may be viewed as a finite version of corresponding results regarding
an infinite planar structure of the same class. Considering infinite versions
of such results may make the results more concise, though some of the pre-
cision of the finite case may be lost. For example, asymmetry of all but an
exponentially small portion of planar maps translates to the simple (but no
longer quantitative) fact that the infinite object a.s. has no symmetries.

The uniform infinite planar triangulation (UIPT) is one case of such an
infinite object. It is defined by considering the uniform measure on rooted
planar triangulations with n vertices and taking a weak limit as n tends
to infinity. This gives rise to a probability measure supported on infinite
planar triangulations, with the UIPT denoting a sample. The UIPT was
suggested in [BenS] and shown to exist in [AnS] where some of its properties
are studied. Of course a similar limit may be taken for any class of planar
structures.

In this paper we consider triangulations only because the techniques
presented in this paper apply to them more easily. However, there is no
deep reason to prefer triangulations to other classes of planar maps, and the
techniques may be extended to other classes as well. While local properties
such as degree distribution are dependent on the class, large scale properties
appear to be independent of local definitions. This is demonstrated in the
infinite setting in [AnS] where two types of triangulations are studied –
with or without double edges – and a simple relation between them is
given. This relation implies that on a large scale the two objects have the
same properties.

Schaeffer [Sc] found a bijection between certain types planar maps and
labeled trees. Chassaing and Schaeffer [CS] recently used this bijection to
show a connection between the asymptotic distribution of the radius of a
random map and the integrated super-Brownian excursion. They deduce
from this connection that the diameter of such a map of size n scales as n1/4.
The results presented here on the volume growth of the UIPT are a kind
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of infinite version of their result. While they work with planar quadran-
gulations and we with triangulations, it appears that such local differences
are insignificant when large scale observations such as diameter, growth,
separation, etc. are concerned. These are consequences of having a single
universality class.

Physicists study similar random planar structures under the title of
2-dimensional quantum gravity. The essential idea here is to develop a
quantum theory of gravity by extending to higher dimensions the concept
of Feynman integrals for one-dimensional paths. Triangulations (or other
classes of maps) are viewed as discretized versions of 2-dimensional man-
ifolds. In two dimensions this gives rise to a rich theory, much of which
appears to be missing for higher dimensions. More often physicists are
interested not in the discretized planar triangulation but in a continuous
scaling limit of it which is believed to exist.

Once the basic structure is defined, models of statistical physics may be
introduced on it and in many cases solved (e.g. [BoK] and others). Physi-
cists applied here the methods of random matrix models [DiGZ]. Through
these methods and other heuristics many conjectures were made on the
structure of such triangulations. In particular, it is believed that the Haus-
dorff dimension of the scaling limit of 2-dimensional quantum gravity is 4
[AW]. This is a continuous form of the volume growth results of sections
5 and 6. For a good general exposition of quantum gravity see [ADJ], as
well as [A], [D].

A further important motivation for understanding random triangula-
tions (and random planar structures in general) stems from the KPZ rela-
tion [KPZ]. On a random surface many models of statistical physics become
easier to analyze than in the Euclidean plane, as some of the geometric as-
pects of the problem disappear or can be disregarded. The KPZ relation,
while not rigorously understood, is a relation between critical exponents of
models on a random planar surface and the corresponding exponents in the
plane.

For example non-intersection exponents for Brownian motion in the
Euclidean plane or half plane correspond to asymptotic non-intersection
exponents for random walks on a random surface. Similar relations hold
for exponents governing behavior of self avoiding or loop erased random
walks, boundary geometry of clusters in percolation, Ising or Potts model,
and more. Using this relation the values of Brownian motion intersection
exponents were calculated [Du1,2]. Later a rigorous derivation of the same
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values was found using the SLE process [LSW1,2,3].
The general structure of this paper is as follows: In section 2 a process

for sampling the UIPT is presented – the peeling process. The UIPT is
produced as the output of a growth process with relatively simple steps.
This makes possible the analysis of the following sections. In section 3 a
key aspect of the sampling process is considered – the boundary size of the
finite triangulation generated after a number of steps. This boundary size,
apart from being of independent interest in connection with the question
of separation, proves to be essential for understanding the growth of the
UIPT and (to a lesser extent) Bernoulli percolation. In sections 4, 5, 6
respectively asymptotic results on the boundary size of the ball, the hull’s
volume and the ball’s volume are proved. Finally, in section 7, percolation
of the UIPT is studied. The analysis here is based on a significant simplifi-
cation of Bernoulli percolation derived from the construction of section 2,
and depends only weakly on results in other parts of the paper.

We now proceed to state the main results of the paper, followed by some
needed background and results (both general and specific).

We use the following notation: Xn ∼ Yn will mean that Xn/Yn → 1,
while Xn ≈ Yn will mean that log Xn/log Yn → 1.

1.1 Main results. We consider in this paper only type II triangula-
tions, i.e. planar triangulations with possibly double edges but no loops.
The results on growth and percolation may be translated to type III trian-
gulations through the relation between the two UIPT laws [AnS], and to
type I triangulations through a similar decomposition. Precise definitions
of these classes appear in [AnS].

The UIPT is the law of a measure on infinite rooted planar maps. Let
Br be the ball of radius r (w.r.t. the graph metric) around the root in the
UIPT, thus Br is a finite sub-triangulation of the UIPT. The complement
of the ball is generally not connected. Denote by Br the hull of the ball
consisting of Br together with all finite components of the complement. If
|T | is the number of vertices in a triangulation T , then we prove
Theorem 1.1. For any ε > 0, a.s.

lim sup
r→∞

|Br|
r4 log6+ε r

< ∞ ,

and a.s.

lim
r→∞

|Br| log32/3+ε r

r4
= ∞ .

We also prove for the ball itself:
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Theorem 1.2. A.s.

lim sup
r→∞

|Br|
r4 log6+ε r

< ∞ ,

and for any ε > 0

lim
r→∞

|Br| log33/2+ε r

r4
= ∞ .

Analyzing |BR| is a step in the analysis of |Br|. Since |Br| ≤ |BR|,
the upper bounds are the same. The lower bound on |Br| does not follow
immediately, and further estimates are needed. This causes the lower bound
on |Br| to be slightly weaker, however, this is of little significance as in the
above (and following) results the powers of the logarithms are probably
not the best possible. In proving these theorems the quantities in question
are expressed as cumulative sums of random variables which are neither
independent nor identically distributed, but are independent enough for
some methods. Thus the above results are a sort of law of iterated logarithm
(LIL) for these sums. The proof as well as other recent results [CS] suggest
Conjecture 1.3. The random variables r−4|Br| and r−4|Br| converge in
distribution.

This is roughly a converse of the result of [CS], stating that the radius
of a uniform planar quadrangulation of size N scales as N1/4.

While it is the ball growth rate of graphs which historically was the
focus of more extensive research, the hull is also of independent interest
(even apart from its submission to analysis). For one thing, there are
questions regarding separation properties and the isoperimetric inequality
in random planar maps. Hulls of balls (not necessarily around the root
vertex) are candidates for having small boundary sizes compared to their
volume.

Let ∂Br denote the outer boundary of Br, i.e. the vertices with neigh-
bors in the infinite component of the complement. For ∂Br we prove the
following:
Theorem 1.4. A.s. the size of the outer boundary of the ball of radius r,
satisfies

lim sup
r→∞

|∂Br|
r2 log3 r

< ∞ ,

and for any ε > 0

lim
r→∞

|∂Br| log6+ε r

r2
= ∞ .

In particular this demonstrates that the hull’s boundary is roughly
the square root of their volume. While generally a large set with a small
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boundary size will not be a ball centered at the root vertex, it is plausible
that it is not very different from a ball around some vertex. This sug-
gests an anchored isoperimetric inequality, saying that the minimal bound-
ary size for a connected set S in the UIPT of size n containing the root
min0∈S,|S|=n |∂S| scales as

√
n.

This is in contrast to the finite case where a heuristic argument suggests
a possible scaling of n1/4. The argument is that in a uniform map of size
n typical distances are on the order of n1/4 (see [CS] and the argument of
section 6). Hence it is likely that to separate such a map into two roughly
equal parts one needs a cycle of length of order n1/4. Of course, there is no
need for the two exponents to coincide, as the finite version of the anchored
isoperimetric inequality for the UIPT is to find the minimal boundary of
a set of fixed size containing the root, and not of a set of roughly half the
vertices.

When the UIPT is sampled using the growth process it is easy to add
random colors to the vertices. This results in a sample of Bernoulli site
percolation on the UIPT. Hence, percolation on the UIPT is effectively
reduced to a simple Markov chain. Using this approach we see that as far
as percolation goes the UIPT is similar to the triangular lattice in R

2:
Theorem 1.5. On the UIPT, the critical probability for site percolation
is a.s. 1/2. Moreover, at p = 1/2 a.s. there are no infinite clusters.

The transition bertween the annealed and quenched versions of this
theorem is made with a 0-1 result for the UIPT and for percolation on it
that is a consequence of the peeling construction. Percolation on the UIPT
will be studied further in a future paper [An].

1.2 Further background. The results in this section either appear in
[AnS] and are repeated here for completeness or are general facts needed.

1.2.1 Counting triangulations. Many of the results derived about
the UIPT are in essence consequences of the asymptotics of the formula for
the number of triangulations of a given size. These asymptotics are com-
mon to many other classes of planar structures. The following enumerative
result due to Mullin [M], is derived using the techniques introduced by
Tutte [T1], [GoJ].
Proposition 1.6. For n,m ≥ 0, not both 0, the number of rooted type II
triangulations of a disc with m+2 boundary vertices and n internal vertices
is

ϕn,m =
2n+1(2m + 1)!(2m + 3n)!

m!2n!(2m + 2n + 2)!
.
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The case n = m = 0 for type II triangulations warrants special atten-
tion. A triangulation of a 2-gon must have at least one internal vertex so
there are no triangulations with n = m = 0, yet the above formula gives
ϕ0,0 = 1. It will be convenient to use this value rather than 0 for the fol-
lowing reason: Typically a triangulation of an m-gon is used not in itself
but is used to close an external face of size m of some other triangulation
by “gluing” it in. When the external face is a 2-gon, there is a further
possibility of closing the hole by gluing the two edges to each other with
no additional vertices. Setting ϕ0,0 = 1 takes this possibility into account.
The formula will therefore be used also for n = m = 0.

Using Stirling’s formula, the asymptotics of this are found to be

ϕn,m ∼ Cmαnn−5/2,

where α = 27/2 and

Cm =
√

3(2m + 1)!
4
√

πm!2
(9/4)m ∼ C9mm1/2.

The power terms n−5/2 and m1/2 are common to many classes of planar
structures, and are the first symptoms of universality. They arise from
the common observation that a cycle partitions the plane into two parts
(Jordan’s curve theorem) and that the two parts may generally be triangu-
lated (or for other classes, filled) independently of each other. This leads
to a similar recursion formula for the number of maps which are translated
to a quadratic equation for the number of maps. The similar form of the
equations leads to algebraic singularities of the same order, and hence the
asymptotics (see [GoJ], [BFSS]).

We also define and use the partition function for triangulations of an
(m + 2)-gon:

Zm(t) =
∑

ϕn,mtn.

The following appears (up to a reparametrization) in [GoJ, §2.9] as an
intermediate step in the derivation of Proposition 1.6.

Proposition 1.7. If t = θ(1 − 2θ)2 with θ ∈ [0, 1/6], then

Zm(t) =
(2m)!((1 − 6θ)m + 2 − 6θ)

m!(m + 2)!
(1 − 2θ)−(2m+2).

As a corollary, by setting θ = 1/6 and t = 2/27 = α−1 we get

Zm = Zm(α−1) =
(2m)!

m!(m + 2)!

(
9
4

)m+1

.
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1.2.2 Locality. The free (Boltzmann) triangulation of a disc is de-
fined in [AnS]:

Definition 1.8. The free distribution on rooted triangulations of an
(m + 2)-gon, denoted µm, is the probability measure that assigns weight

α−n/Zm(α−1)

to each rooted triangulation of the (m + 2)-gon having n internal vertices.

One more distribution on triangulations of a disc is given by the UIPT
of a disc. The limit of uniform distributions on triangulations of the sphere
with N vertices as N → ∞ exists. By conditioning on the root having m
distinct neighbors with a single edge to each, and removing the triangles
incident on the root (and choosing a new root) an immediate corollary is
that there also exists a uniform distribution on infinite triangulations of
an m-gon. The UIPT of a disc may be embedded in the disc having a
single accumulation point. Since any point of the Riemann sphere may be
mapped to infinity, by applying an inversion of the plane, a locally finite
embedding on the outside of a disc is found.

Definition 1.9. A rooted triangulation A is rigid if no triangulation
includes two distinct sub-triangulations with coinciding roots, both iso-
morphic to A.

Note that for a sub-triangulation T to be isomorphic to A, it is not
enough that the graph of T is the same as A’s, but it is needed that the
two embeddings are equivalent and that the triangles of T are exactly the
triangles of A. A simple case is when the triangles of a triangulation form a
connected set in the dual graph of the triangulation, and then the triangu-
lation is rigid. This is not a necessary condition, but it suffices for current
needs.

For a finite rooted triangulation A with k external faces, define the
event Ri(A) as the set of all infinite rooted triangulations T of the plane
that include A as a sub-triangulation with the roots coinciding, and such
that the component of T in the i’th face of A is infinite. As for an infinite
triangulation of a disc, the infinite part of the triangulation in such an
embedding is generally located in some finite region of the plane with some
accumulation point, and the infinite face is just another triangle.

The basic tools for the construction of the next section are the following
results (see Proposition 4.10 and Theorem 5.1 of [AnS]).

Theorem 1.10. Let A be a rigid rooted triangulation, with n ver-
tices, some of which are on k external boundary components of sizes
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m1 + 2, . . . ,mk + 2. The events Ri(A) are almost disjoint (i.e.
τ(Ri(A) ∩ Rj(A)) = 0 for i 
= j), and the probability that the i’th face
is the infinite one is

α3−n

C1
Cmi

∏

j �=i

Zmj .

Theorem 1.11. Let A be a finite rigid triangulation, and assume A has k
external faces of sizes m1 +2, . . . ,mk +2. Conditioned on the event Ri(A),
let Tj denote the component of the UIPT in the j’th face. Then,

1. The triangulations Tj are independent.

2. Ti has the same law as the UIPT of an (mi + 2)-gon.

3. For j 
= i, Tj has the same law as the free triangulation of an (mj +2)-
gon.

1.2.3 Stable random variables. For any α ∈ (0, 2) a completely
asymmetric stable random variable of type α will be denoted by Sα. These
are real random variables with the property that the sum of n i.i.d. copies
of Sα is distributed like n1/αSα. The completely asymmetric stable ran-
dom variables are characterized by having density functions with super-
polynomial decay on the left (as in the last three properties below). We
will need the following facts about stable random variables (see [ST], [Z]):

Fact 1.12. 1. As t → ∞, P(Sα > t) ∼ ct−α.

2. For 0 < α < 1, a.s. Sα > 0.
3. For 0 < α < 1 there exists c > 0 such that for small positive t,

P(Sα < t) < exp
(−ctα/(α−1)

)
.

4. For 1 < α < 2 there exists c > 0 such that for t > 0, P(Sα < −t) <
exp

(−ctα/(α−1)
)
.

Of particular interest is S3/2 having the Airy distribution, with noted
connections to random planar structures [BFSS], and S1/2 having the Levi
distribution.

2 A Growth Process

A possible method of sampling the UIPT is by adding one triangle at a
time to a finite sub-triangulation, each time adding a triangle with the
appropriate distribution conditioned on the sub-triangulations sampled so
far. This has some advantages over adding all the vertices a given distance
from the root at once. Primarily, this method has simple steps with a
(relatively) simple distribution which can be written explicitly. However,
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the number of steps it takes to reach a given distance from the root is not
fixed and has to be estimated.

The idea behind this construction and the heuristics for the Hausdorff
dimension of the scaling limit of 2-dimensional quantum gravity may be
found in section 4.7 of [ADJ]. Following them, we call the process “peeling”,
as it is similar to peeling an apple by cutting a thin strip going around the
apple in circles. The name is especially appropriate when the peeling is
made in an ordered manner, as in the sections regarding growth estimates,
however, we use the name also in the context of section 7 where the process
advances in a more chaotic manner.

Consider first the case of a free triangulation T of an (m + 2)-gon.
Call the boundary vertices x0, . . . , xm+1. There is a single triangle t ∈ T
containing the edge (xm+1, x0). (This edge is chosen for simplicity; by
symmetry the following discussion holds for any other boundary edge as
well.) Denote the third vertex of t by y. There are two possibilities: either y
is an internal vertex of the triangulation, or else y = xi for some 1 ∈ [1,m].
In the former case, the rest of the triangulation is a triangulation of an
(m + 3)-gon, hence the sum of the weights of all such triangulations is
α−1Zm+1 (the factor α−1 accounts for y). Thus,

µm

(
y 
∈ {x0, . . . , xm+1}

)
=

Zm+1

αZm
. (2.1)

Similarly, if y = xi, then we have the triangle (xm+1, x0, xi) and two
triangulations of an (i + 1)-gon and an (m − i + 2)-gon. The weight of
a triangulation, α−|T |, is multiplicative, and since any pair of triangula-
tions for the two components is possible, the total weight is Zi−1Zm−i (see
Figure 2.1). Therefore

µm(y = xi) =
Zi−1Zm−i

Zm
, (2.2)

and conditioned on y = xi the two components are filled with independent
free triangulations.

The case y = x1 is especially interesting, for then we have the triangle
(xm+1, x0, x1). If this is also the triangle supported on the boundary edge
(x0, x1), then after adding it the vertex x0 is no longer on the boundary
of the remaining triangulation. Otherwise we still need to triangulate the
2-gon (x0, x1). This was accounted for in the above formula since we set
ϕ0,0 = 1 and not 0. The triangulation of a 2-gon with no internal vertices
has no internal triangles and so the edges are glued together.

The same thing may happen in the case y = xm with the edge
(xm, xm+1). In the case that m = 1 and y = x1 = xm there is a possibility
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α−1Zm+1

Zm−i

Zi−1

Figure 2.1: The two possibilities when a triangle is added in a free triangulation.

that both 2-gons are glued, in which case there are no discs left to triangu-
late and hence no additional triangles.

Equations (2.1) and (2.2) allow us to sample a free triangulation of any
disc by adding triangles one at a time. If the disc is separated then the
process is split into two independent processes for the resulting discs. Since
we know that the free triangulation is finite, the process a.s. terminates at
some time. Note that we can choose which boundary edge to build on
at each iteration in any way we want to without effecting the resulting
distribution.

A similar construction allows us to sample the UIPT. Suppose we wish
to sample the UIPT of an (m + 2)-gon, with external boundary vertices
x0, . . . , xm+1. Heuristically, the same notion of the total weight for each
possibility appears as before, with Cm being the total weight of infinite
triangulations of an (m + 2)-gon. This is so since the weight for triangula-
tions of size N is roughly CmN−5/2, and the power term will cancel with
an identical term in the denominator when N → ∞.

To be precise, we consider as before the triangle (xm+1, x0, y) containing
the edge (xm+1, x0). The UIPT is the limit of finite uniform measures, and
for the measure with N additional vertices, the probability that y is a new
vertex is a simple ratio. Taking the limit we find that

P
(
y 
∈ {x0, . . . , xm+1}

)
= lim

N→∞
ϕm+1,N−1

ϕm,N

=
Cm+1

αCm
. (2.3)

The case y = xi is similar. Then we have two sub-triangulations: T1

with boundary size i+1 and T2 with boundary size m− i+2. One of them
is infinite, and by Theorem 1.11 the infinite one is a UIPT and the finite is
a free triangulation. We have two more possibilities, as in Figure 2.2, with
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probabilities (from Theorem 1.10):

P
(
(y = xi) ∩ T1 is infinite

)
=

Zm−iCi−1

Cm

P
(
(y = xi) ∩ T2 is infinite

)
=

Cm−iZi−1

Cm
. (2.4)

α−1Cm+1

Cm−i

Zi−1

Zm−i

Ci−1

Figure 2.2: The possibilities when a triangle is added in the UIPT.

We can use (2.3),(2.4) to sample a neighborhood of the root in the UIPT,
as follows: Start with the root triangle, and proceed to add new triangles
to the triangulation. When the added triangle partitions the triangulation
to a finite and infinite part, fill the finite part with a free triangulation. In
either case the remaining triangulation is now a UIPT of some polygon.

To sample a ball of radius r, proceed as above as long as there are any
vertices on the boundary that are at distance less than r from the root,
and add triangles incident on such vertices. Since the ball is a.s. finite
(from the tightness of its size, Corollary 4.5 of [AnS]), this process will a.s.
terminate, giving a sample of the ball of radius r. Termination can also
be deduced directly from the stated process by induction on r: Suppose
that a.s. at some time all vertices at distance less than r from the root are
in the interior, then the boundary contains only vertices at distance r or
greater, so any new vertex we add is at distance at least r + 1. Hence the
set of boundary vertices at distance r can only decrease. If we extend our
triangulation at the boundary edge (u, v), then with probability bounded
away from 0, v will not be in the new boundary. Thus a.s. after some finite
number of iterations all vertices at distance r will also be in the interior.
Since we have shown a process that a.s. terminates in a finite time and
outputs a neighborhood of the root in the UIPT, this gives an alternative
proof of the existence of the UIPT probability measure.

Note. In the construction above there is at each step complete freedom
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in the choice of which edge to build on. Typically, especially for analyzing
the growth rate of the UIPT, we will go around the triangulation in a
fixed direction. This means that we take a vertex v, on the boundary,
and add the triangle incident on the edge to its right as long as v remains
on the outer boundary. Whenever a hole is formed we fill it with a free
triangulation. As soon as v leaves the boundary we look along the old
boundary counterclockwise from v to the first vertex that is in the new
boundary. This will guarantee that we find all vertices at distance r from
the root before proceeding to r + 1.

For other uses we may choose the edge to build on differently. Thus
for analyzing percolation the edge we choose will depend on the colors of
vertices previously visited. The results of the next section do not depend
on the choice of the edge at each step.

The peeling method is somewhat flexible, and lends itself to sampling
from a number of classes of planar objects. For example, in order to sample
a type I triangulation, where looped edges are allowed, one only needs to
find the appropriate values of Zm, Cm and to include the possibility that
the third vertex of the added triangle coincides with one of the other two. If
the values of Cm, Zm have the same asymptotics, then the peeling process
will proceed in much the same way and the following results may apply to
that class as well.

α−2Cm+2 α−1Cm+1−i Cm−i−j

Figure 2.3: Some possibilities when sampling an infinite quadrangulation of the
plane.

To sample a uniform infinite quadrangulation of the plane, a structure
which may be defined and proved to exist in much the same way as the
UIPT, the peeling process adds a quadrangle each time. The number of
possibilities now grows as there may be two, one or no new vertices, as
in Figure 2.3. In each case also the infinite face needs to be distinguished
from the others. However, the process stays essentially the same, and using
formulas for the asymptotic number of quadrangulations of a disc and for
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the partition function of the same, the process may be analyzed similarly.

3 Markov Chain

To study the growth rate of the UIPT we will analyze the peeling process
for constructing the UIPT. At first we will focus only on the evolution of the
outer boundary of the generated sub-triangulations as triangles are added.

Suppose we have a finite sub-triangulation with outer boundary of size
m + 2. We add to it the triangle on the outer face containing a given
boundary edge e. Two of the vertices of this triangle are given by the ends
of e. The probability that the third vertex is not in the sub-triangulation
is given by (2.3), and on this event the size of the boundary increases
by 1. The probability that the third vertex is some vertex on the outer
boundary is given by (2.4). In this case the triangulation of the outer face
is partitioned to a finite part with boundary of size i+1 for some i ≥ 1, and
an infinite part with boundary of size m− i + 2. Thus the size of the outer
boundary decreases by i. The probability of that is 2Cm−iZi−1

Cm
. (The factor

of 2 comes from the fact that there are 2 vertices at distance i from e).
Let Mn be the size of the outer boundary after n such triangles have

been added. We see that the evolution of Mn can be described as a Markov
chain satisfying Mn+1 = Mn + Xn where the distribution of Xn is given by

P(Xn = 1|Mn = m) =
Cm+1

αCm
=

2m + 3
3m + 3

,

P(Xn = −k|Mn = m) =
2Cm−kZk−1

Cm
,

=
2(2k − 2)!

(k − 1)!(k + 1)!
· m!2(2m − 2k + 1)!
(m − k)!2(2m + 1)!

,

(3.1)

for k ∈ N.
Denote these probabilities by p−1,m and pk,m respectively. When m is

large these probabilities converge to a limit distribution. Denote by p−1

(resp. pk) the limit of the probability of having X = 1 (resp. X = −k),
then

p−1 = lim
m→∞ p−1,m = 2

3 ,

pk = lim
m→∞ pk,m =

2(2k − 2)!
(k − 1)!(k + 1)!4k

. (3.2)

Note. It is worthwhile observing the relation,

pk,m = pk
(m)k

(m + 1/2)k
,
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where
(x)k = x(x − 1) . . . (x − k + 1) =

Γ(x + 1)
Γ(X − k + 1)

is the descending factorial notation. This implies that for k > 0, the prob-
abilities pk,m are increasing in m and converge to pk. From this it follows
that if m1 < m2 then the step distribution from m1 (i.e. the law of Xn

conditioned on Mn = m1) stochastically dominates the step distribution
from m2.

Another consequence is that for any a < 1 there is a c = c(a) > 0, such
that k < am implies pk,m > cpk. In other terms, the probability of steps of
size up to a constant fraction of m is within a constant factor of the limit
probability. Of course for steps larger than m the probability is 0. Hence
the step distribution from m is similar to the limit distribution conditioned
to be at most m.

In light of the convergence of the step distributions, the states of the
Markov chain, Mn, can be viewed as a random walk on the integers, with
step distribution depending slightly on the location. The Markov chain will
be shown to be transient, and so the step distributions indeed converge. A
central difficulty arises from the fact that the limit distribution has infinite
variation (indeed Var(X|M = m) ∼ c

√
m).

Let X be a sample of the limit distribution. Because pk ∼ ck−5/2, X
has a finite α’th moment iff α < 3/2. Since EX = 0 and X is bounded
by 1, the theory of stable random variables (see [ST], [Z]) tells us that if
X0,X1, . . . were i.i.d. copies of X, then n−2/3

∑
i<n Xi would have con-

verged in distribution to a totally asymmetric stable random variable of
type 3/2. Of course, in our case, the steps Xi are neither independent
nor are they equally distributed. Instead their distribution depends on the
sum of their predecessors. Still, this gives an indication that Mn should be
studied at the scale of n2/3. In fact, the sequence Mn with proper scaling
appears to converge to a stable process conditioned to remain positive.

Since Mn is finite, the expectation of Xn is not 0, but rather the ran-
dom walk has some drift. A straightforward calculation using generating
functions leads to the following result:

Lemma 3.1.

E(Xn|Mn = m) =
4mm!2

(2m + 1)!
∼

√
π

2m
.

Sketch of proof. In view of the distribution of Xn, calculating the
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expectation involves substituting x = 1 and finding the coefficient of ym in∑

k,m

ymCm−kZk−1kxk .

This may be re-written as∑

k

kZk−1(xy)k
∑

m≥k

Cm−ky
m−k.

However, using the binomial formula we have
∑

Cly
l =

√
3

4
√

π
(1 − 9y)−3/2,

and ∑
kZk−1(xy)k =

2 − (2 + 9xy)
√

1 − 9xy

54xy
.

Combining these identities, gives a closed form for the above double sum,
from which coefficients may be extracted. �

This leads us to believe that the rate of growth of Mn is roughly equal
to M

−1/2
n . This corresponds (again) to a growth rate of n2/3. In fact, a

lower bound on EMn follows from the convexity of x → x−1/2:
EXn ≥ cE(M−1/2

n ) ≥ c(EMn)−1/2,

EMn+1 = E(Mn + Xn) ≥ EMn + c(EMn)−1/2,

and therefore EMn ≥ c′n2/3.
This rate of growth is indeed correct and we prove the following variation

on the LIL for Mn:

Theorem 3.2. A.s.

lim sup
Mn

n2/3 log n
< ∞ .

The proof is similar to the proof of the law of iterated logarithms,
with some modifications to accommodate the positive expectation and un-
bounded variation of the steps. While a better upper bound with an iter-
ated logarithm may hold, we will not attempt to prove such an upper bound
here, since it is the power term we are primarily interested in. Addition-
ally, in evaluating the growth rate of the UIPT, other steps add logarithmic
factors, so the end result will not improve significantly by having a tighter
bound here.

Let Fn denote the σ-field generated by the random variables M0, . . . ,Mn.
Thus F0 is the trivial σ-field. EFn will denote expectation w.r.t. Fn, i.e.,
expectation conditioned on the past. Lemma 3.1 may therefore be stated
as EFnXn ∼ cM

−1/2
n .
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Proof. We use the fact that for any λ0 there is an absolute constant c1,
such that for t < λ0

et < 1 + t + c1|t|3/2.

Denote by Xn the normalized steps: Xn = Xn − EFnXn. Using the
bounds 0 < EFnXn ≤ 1, the 3/2th moment of Xn is estimated.

EFn |Xn|3/2 = p−1,Mn(1 − EFnXn)3/2 +
Mn∑

k=1

pk,Mn(k + EFnXn)3/2

< 1 +
Mn∑

k=1

pk(k + 1)3/2

< c2

Mn∑

k=1

k−1

< c3 log Mn

< c3 log n .

A lower bound with a different constant also holds hence this is best pos-
sible.

For any small λ > 0 we have

EFneλXn ≤ EFn

(
1 + λXn + c1(λ|Xn|)3/2

)

≤ 1 + c4λ
3/2 log n

< exp
(
c4λ

3/2 log n
)
.

While the Xn are not independent, the last bound is deterministic (in-
dependent of the history). Therefore we may multiply for m ≤ i < n to
get

E exp
(

λ
n−1∑

i=m

Xi

)
< exp

(
c4λ

3/2(n − m) log n
)
,

and so

P

( n−1∑

i=m

X i > t

)
< exp

(−tλ + c4λ
3/2(n − m) log n

)
.

For small enough λ, this is a bound on the probability that the sum of
the steps over an interval [m,n) is much bigger than the sum of their
expectations. λ will be chosen to minimize this bound w.r.t. t,m, n. The
optimal λ is such that

√
λ =

2t
3c4(n − m) log n

,
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and then the bound becomes

P

( n−1∑

i=m

Xi > t

)
< exp

(
−c5

t3

(n − m)2 log2 n

)
.

If t is such that t3 = (3/c5)(n−m)2 log3 n, then λ = O((n−m)−2/3) tends
to 0 as the size of the interval is large. Substituting the given values for t
and λ we get, for sufficiently large intervals,

P

( n−1∑

i=m

Xi > c6(n − m)2/3 log n

)
< n−3.

For small intervals this can be made to hold as well by increasing c6.
Since the sum over all intervals [m,n) with m < n of n−3 is finite, by

Borel–Cantelli, all but finitely many intervals satisfy
n−1∑

i=m

Xi < c6(n − m)2/3 log n . (3.3)

Take c7 = c6+1+a. To conclude the proof of the theorem it is sufficient
to show that for each n where Mn > c7n

2/3 log n there is an interval [m,n)
where the above bound is violated. For this we use an upper bound on
EFnXn: There is an a > 0 such that EFnXn < aM

−1/2
n .

Suppose n is such that Mn > c7n
2/3 log n. Take

m = 1 + max{m < n | Mm ≤ n2/3} .

By the choice of m, for each i ∈ [m,n) we have Mi > n2/3 and therefore
EFiXi < an−1/3. We then have

n−1∑

m

EFiXi < (n − m)an−1/3 < an2/3.

On the other hand,
n−1∑

m

Xi = Mn − Mm −
n−1∑

m

EFiXi

> c7n
2/3 log n − n2/3 − an2/3

> c6n
2/3 log n ,

contradicting (3.3), thus we found an interval [m,n) as claimed. �

Next, we consider the hitting probabilities of the Markov chain. Those
will later be used in establishing a lower bound. The proof is another
straightforward use of generating functions, similar to the proof of
Lemma 3.1.
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Claim 3.3. Starting the Markov chain at n, the probability of it ever
hitting m is given by

P(n → m) = 1 − (n)m+1

(n + 1/2)m+1
.

Sketch of proof. Fix m and assume the probability in question is an, with
am = 1. For any n 
= m we must have

an,m =
n∑

k=−1

pn,kan−k,m

=
Cn+1

αCn
an+1,m +

n∑

k=1

2Cn−kZk−1

Cn
an−k,m .

If g(t) = (tα)−1 − 1 + 2
∑

Zk−1t
k, and f(t) =

∑
Cnantn, the above trans-

lates to
f(t)g(t) = C0

αt + βtm,

where β is determined by boundary conditions. Since g(t) = 2(1−9t)3/2/27t
is known, we can find f(t), express it as a power series and divide the
coefficients by Cn to get an. �

Note. In particular, the probability of returning to 0 from n is 1
2n+1 and

thus the Markov chain is transient. This formula also holds for m ≥ n, since
the numerator vanishes. For n � m the hitting probability is m+1

2n +O(n−2).
As a simple consequence, the probability of never returning to n when

starting from n is found. The only way to avoid returning to n is by having
X = 1 and afterward not hitting n from n + 1. Since every number is
visited at least once, we get

Claim 3.4. The number of visits to n when the Markov chain is started
from 0, is a geometric random variable with mean

3n + 3
2n + 3

(n + 3/2)n+1

(n + 1)!
∼ c

√
n .

Theorem 3.5. For any ε > 0, a.s.

lim
n→∞

Mn log2+ε n

n2/3
= ∞ .

Proof. Consider the time Tn when the Markov chain first hits 2n. Fix
some ε > 0 and set an = 2nn−(1+ε). We consider the behavior of the
Markov chain from time Tn until it leaves the interval In = [an, 2n+1]. For
this we consider the probability of the Markov chain taking a step from
In into the interval Jn = [an/2, an]. The probability of taking a step from



954 O. ANGEL GAFA

M to M ′ < M is monotone increasing in M ′ and monotone decreasing
in M , hence among all steps from M ∈ In to M ′ ∈ Jn the step from
2n+1 to �an/2 has the smallest probability. Using Stirling’s formula, the
probability of such a step is

P(M ′ = an/2 | M = 2n+1) = P(X = an/2 − 2n+1 | M = 2n+1)

> c1
(2n)−5/2

n(1+ε)/2
.

It follows that the probability of taking a step into Jn from any M ∈ In is
at least

c1
(2n)−5/2

n(1+ε)/2
|Jn| = c2

(2n)−3/2

n3(1+ε)/2
.

Therefore for any k,
P(visiting Jn after Tn) ≥ P(Tn+1 − Tn > k)·

P(visiting Jn after Tn|Tn+1 − Tn > k)

≥
(

1 −
(

1 − c2
(2n)−3/2

n3(1+ε)/2

)k)
P(Tn+1 − Tn > k) .

Setting k = n3(1+ε)/223n/2 so that the first factor is roughly constant, gives
P(Tn+1 − Tn > n3(1+ε)/223n/2) ≤ c3P(visiting Jn after Tn) .

However, by Claim 3.3 the probability that after time Tn the Markov
chain visits �an� is approximately n−1−ε/2. Since the Markov chain can
increase by at most 1 at each step, if Jn is visited after time Tn, then so
is �an�. Therefore

P(Tn+1 − Tn > n3(1+ε)/223n/2) ≤ c4

n1+ε
.

Thus a.s. Tn+1 − Tn < n3(1+ε)/223n/2 for all but finitely many n. Sum-
ming, we get that for some c5, a.s. for all but finitely many n, Tn <
c5n

3(1+ε)/2(2n)3/2.
This gives a sequence of points lying below the graph of Mn. By in-

terpolating this translates to the lower bound on Mn for any n. Formally,
let m be such that Tm ≤ n < Tm+1. Since the Markov chain reached 2m

before time n, necessarily n ≥ 2m, and by the bound on Tm+1, for all but
finitely many n,

n < Tm+1 < c5(m + 1)3(1+ε)/2(2m+1)3/2,

n2/3 < c6m
1+ε2m.

Since Jm is not visited after Tm (for large m),

Mn > 2mm−(1+ε)
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> c−1
6 n2/3m−2(1+ε)

> c7n
2/3 log−2(1+ε) n . �

4 Boundary Growth

Based on Theorems 3.2 and 3.5 we now turn to study the growth rate of
the UIPT. The UIPT is sampled starting with only a root triangle, and
adding triangles in the outer face of the sub-triangulation we have. The
behavior of Mn – the size of the outer boundary after n triangles have been
added – is known. We wish now to relate this to the distance between the
root and the boundary.

Throughout this and the next two sections triangles are added in an
ordered manner, going around the boundary counterclockwise, and adding
all the triangles incident on a vertex before moving to the next. In this
manner we are sure to encounter all vertices at distance r from the root
before moving on to r + 1.

Initially, we investigate the number of steps it takes the above process
to sample the ball of radius r around the root (as well as its hull). This
translates to estimates on the size of the ball’s boundary. Let Tr be the
time (number of triangles added) when we have found the outer boundary
of the ball of radius r around the root. We prove

Theorem 4.1. A.s.

lim sup
r→∞

Tr

r3 log3 r
< ∞ ,

and for any ε > 0

lim
r→∞

Tr log6+ε r

r3
= ∞ .

Let Cn denote the set of vertices on the outer boundary at time n (thus
|Cn| = Mn + 2). Clearly after some number of steps we have gone round a
full circle, and added every triangle incident on a vertex in Cn. Denote the
time it takes to accomplish this by Dn, i.e.,

Dn = inf
{
d|Cn+d ∩ Cn = ∅} .

Clearly Tr+1 = Tr + DTr . It is plausible that the process proceeds in
an approximately fixed rate along the boundary, so that Dn is roughly
linear in Mn. We therefore expect Tr+1 − Tr = DTr to be on the order of
MTr ≈ T

2/3
r , indicating that Tr grows like r3. Together with Theorems 3.2

and 3.5 this implies that |CTr | grows like r2, i.e., the size of the outer
boundary of the ball of radius r is quadratic in r. Note that Tr is not the
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volume of the ball but only the number of steps made. At each step when
Xt < 0, a free triangulation is glued to the sub-triangulation. The bulk of
the volume lies in those.

First we prove the following estimate:
Lemma 4.2. Starting with M boundary vertices, let D denote the number
of steps of the peeling process until every vertex originally on the boundary
is in the interior. For some a, c > 0, P(D > aM) < e−cM .

Note. It is impossible to get an exponential bound for P(D ≤ bM)
for any b, due to the thick tail on the negative side of Xn. In fact, for
every b > 0 there will a.s. be infinitely many n’s for which Dn < bMn.
This is so, since the expected number of visits to m is approximately

√
m

(by Claim 3.4) and the probability of making a single step of size at least
(1 − ε)m is about m−3/2, thus such large jumps are made infinitely often.

Proof of Lemma 4.2. Let Zt be the number of vertices in C0 that are
removed from the boundary at time t. D is just the smallest number such
that

∑D Zt = M , since once a vertex is in the interior of the triangulation
it cannot return to the boundary at a later stage. When building a triangle
on an edge, with probability 1−p−1,Mt the new triangle does not introduce a
new vertex, and some vertices leave the outer boundary. Since an endpoint
of the edge is in C0, with half that probability the vertices leaving the
boundary are from C0. Hence at each step, P(Zt > 0) is bounded away
from 0.

Since vertices are removed from the boundary at a positive rate bounded
from 0, for some a the probability of taking more than aM steps for all
vertices in C0 to be removed decays exponentially in M . �

Proof of Theorem 4.1. By Theorem 3.5, MTr grows like a power of Tr. By
Lemma 4.2, the probability that DTr > aMTr decays exponentially in MTr

so this a.s. fails only for finitely many values of r. Using Theorem 3.2 this
gives for large enough r

DTr < aMTr < c1T
2/3
r log Tr ,

Tr+1 < Tr + c1T
2/3
r log Tr ,

and so
Tr < c2r

3 log3 r .

For the lower bound, note that the vertices are added to the boundary
only one at a time (when Xn = 1). Since all the vertices in CTr+1 have
been added to the boundary after time Tr, it follows that

Tr+1 − Tr > MTr+1 .
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Together with Theorem 3.5 this implies that for any ε > 0, a.s. for all but
finitely many r,

Tr+1 − Tr >
T

2/3
r+1

log2+ε Tr+1
>

T
2/3
r

log2+ε Tr
.

And so for any ε > 0, for large enough r,
Tr > r3 log−(6+ε) r . �

Combining this theorem with Theorems 3.2 and 3.5 gives
Corollary 4.3. The size of the boundary of the Br’s hull, given by MTr ,
a.s. satisfies

lim sup
r→∞

MTr

r2 log3 r
< ∞ ,

and for any ε > 0

lim
r→∞

MTr log6+ε r

r2
= ∞ .

5 Hull Volume Growth

Knowing how long it takes to sample Br in the UIPT, we turn our attention
to the distribution of its hull’s volume. So far, new vertices were added at
times when Xt = 1. Since P(Xt = 1) remains away from 0, the number of
vertices added that way is linear in Tr. This shows a volume growth of at
least r3 (up to logarithmic factors).

There are many additional vertices that are added whenever Xt < 0.
At those times a portion of the boundary is closed off and filled with a free
triangulation of an (|Xt|+1)-gon. Using Proposition 1.7 and the derivative
of Zm(t) we find
Proposition 5.1. The expected number of internal vertices in a free
triangulation of an (m + 2)-gon is

(Zm)−1
∑

nϕn,mα−n =
(m + 1)(2m + 1)

3
.

Roughly, the idea is to estimate Yt, the number of vertices added at
time t. By the above, E(Yt|Xt) ∼ cX2

t . Since P(Xt = −k) ≈ ck−5/2 for
k < Mt, and the probability is 0 for k > Mt, the expected number of
vertices added at time t is (up to multiplicative constants)

E(Yt|Mt) ≈
∑

P(Xt = −k)E(Yt|Kt = −k) ≈
Mt∑

ck−1/2 ≈ cM
1/2
t .

Now, Mt ≈ t2/3 and therefore the expected number of vertices added at
time t is roughly t1/3. Summing that up to time Tr, the number of vertices
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added is roughly T
4/3
r ≈ r4. This implies a growth of r4 as was suggested

in the physics literature ([AW], [ADJ] and others).
Note that in the above discussion it was convenient to consider instead

of Br, its hull. This enables us to add a free triangulation which may include
vertices further away from the root. To estimate the ball volume growth
the distance of vertices in such free triangulations needs to be considered
as well.

For the steps Xt of the Markov chain with distribution given by (3.1),
define

VT (γ) =
T∑

|Xt|γ .

Lemma 5.2. Let VT (γ) be as above. For γ > 3/2, and for any ε > 0, a.s.

lim sup
VT (γ)

T 2γ/3 log2γ/3+ε T
< ∞ .

Proof. Since the distribution of |Xt| is stochastically increasing w.r.t. Mt,
and since the limit distribution (3.2) satisfies P(|X| > λ) = O(λ−3/2),

P
(|Xt|γ > λ|Mt

)
= O(λ−3/(2γ))

uniformly for all t. It follows that for some constants a, b > 0 (possibly
depending on γ) we have stochastic domination by a stable random variable
|Xt|γ ≺ aS3/(2γ) + b. Since this domination holds even when conditioning
on Mt, the sum is dominated by i.i.d. copies giving

VT (γ) =
T∑

|Xt|γ ≺ aT 2γ/3S3/(2γ) + bT .

Therefore as T → ∞
P
(
VT (γ) > T 2γ/3 log2γ/3+ε T

)
< P

(
aS3/(2γ) > log2γ/3+ε T − o(1)

)

= O(log−(1+3ε/(2γ)) T ) .

Restricting our attention to times Tn = 2n, we see that a.s. for only
finitely many such times VT (γ) > T (2γ)/3 log2γ/3+ε T . By the monotonicity
in T of VT (γ), the desired result holds for all T . �

While the log T term might be replaceable by an iterated logarithm, the
exponent of T is the correct one, as is evident from the following lemma.

Lemma 5.3. Let Xt be the steps of the Markov chain with distribution
described by (3.1). Then for any ε > 0, a.s. for all but finitely many n

∣∣{t ∈ [2n, 2n+1) s.t. |Xt| > (2n)2/3n−(2+ε)}∣∣ > n2.
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Proof. First, estimate the probability that |Xt| is very large. As long as
γ < Mt/3

P
(|Xt| ≥ γ|Mt

)
=

Mt∑

k=γ

P(Xt = −k|Mt)

>

Mt/2∑

γ

c1pk

>

Mt/2∑

γ

c1k
−5/2

> c2γ
−3/2.

Thus the probability that |Xt| < γ for all t ∈ [2n, 2n+1) satisfies

P

(
max

2n≤t<2n+1
{|Xt|} < γ

)
< (1 − c2γ

−3/2)2
n

< exp
(−c22nγ−3/2

)
.

Set γ = γ(n) = n−(2+ε)(2n)2/3. Theorem 3.5 implies that a.s. for all
but finitely many n and for all t ≥ 2n, Mt > 3γ, and hence the last bound
is valid. Thus

P

(
max

2n≤t<2n+1
{|Xt|} < n−(2+ε)(2n)2/3

)
< exp(−c2n

3+3ε/2) .

Since this is summable, a.s. for all but finitely many n there is a large |Xt|.
Since ε is arbitrary this concludes the proof.

Similarly, the probability that there are at most k times when |Xt| < γ
is at most a binomial coefficient times the previous probability and so is at
most (2n

k

)
(1 − c2γ

−3/2)2
n−k < 2nk exp(−c3n

3+3ε/2) .

For k = n2, this bound too is summable, hence a.s. for all but finitely many
n there are at least n2 large |Xt|’s in the interval [2n, 2n+1). �

Next, we consider the volume of the hulls. At any step in the peeling
construction where Xt < 0, a free triangulation of a (|Xt|+1)-gon is added
to the triangulation. Denote by Yt the number of vertices added to the
triangulation at step t. If Xt = 1, then Yt = 1, otherwise it is the size of
the free triangulation added.

Lemma 5.4. For any ε > 0, a.s.

lim sup
T→∞

∑T Yt

T 4/3 log2+ε T
< ∞ .
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The basic tool used in the proof is the following lemma:

Lemma 5.5. There are constants c1, c2 such that conditioned on Xt = −k,
for any γ there is a coupling of k−2Yt and c1S3/2 + γ such that the latter is
larger with probability at least 1 − e−c2γ . This is written as

k−2Yt ≺ c1S3/2 + γ with prob. 1 − e−c2γ3
.

Proof of Lemma 5.4. Lemma 5.5 may be rephrased as: For each t, condi-
tioned on Xt,

Yt ≺ c1X
2
t S3/2 + γX2

t with prob. 1 − e−c2γ3
.

When conditioning on the whole sequence {Xt}, the Yt’s become inde-
pendent. Summing up to time T , and using the formula for the sum of
independent stable random variables we find that

T∑
Yt ≺ c1VT (3)2/3S3/2 + γVT (2) with prob. 1 − Te−c2γ3

,

and therefore

P

( T∑
Yt>γVT (2)+c1VT (3)2/3 log2/3+ε T

)
< P(S3/2> log2/3+ε T )+Te−c2γ3

.

Set γ = c3 log1/3 T with c3 = (2/c2)1/3. The second term in the RHS is
T−1, and is dominated by the first. Thus

P

( T∑
Yt > c3VT (2) log1/3 T + c1VT (3)2/3 log2/3+ε T

)
< c4 log−(1+3ε/2) T .

Considering only the times T = 2n, these failure probabilities are con-
vergent and so a.s. failure occurs only a finite number of those times. Since∑T Yt is monotone as are VT (2), VT (3), it follows that a.s. for all but finitely
many T

T∑
Yt < c3V2T log1/3 T + c1V2T (3)2/3 log2/3+ε T .

Using Lemma 5.2 to estimate VT (2), VT (3) we get

lim
c3V2T log1/3 T

T 4/3 log2+ε T
< ∞ ,

as well as

lim sup
c1V2T (3)2/3 log2/3+ε T

T 4/3 log2+ε T
< ∞ . �

Proof of Lemma 5.5. By Theorem 1.11, conditioned on Xt = −k, Yt is
distributed as the size of a free triangulation of a (k + 1)-gon. From the
formula for ϕn,k−1 given by Proposition 1.6, it can be seen that

P(k−2Yt > u | Xt = −k) < c3u
−3/2
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for some universal c3. For a real random variable R we use the notation
ΦR(t) = P(R < t). The asymptotics of ΦY (t),ΦS3/2

(t) imply that for some
universal t0, c1, for t > t0

Φc1S3/2
(t) < ΦY (t) .

For t > t0, monotonicity implies
Φc1S3/2

(t − γ) < ΦY (t) ,

while for t ≤ t0

Φc1S3/2
(t − γ) < Φc1S3/2

(t0 − γ) < e−c2γ3
.

Thus for any t
Φc1S3/2

(t − γ) < ΦY (t) + e−c2γ3
,

which is the claimed domination. �

The estimates resulting from comparing Yt to a stable r.v. S3/2 are tight.
For one thing, Yt also stochastically dominates a suitable normalized stable
random variable. A more direct proof that the exponent 4/3 of Lemma 5.4
is correct comes from the following lemma.
Lemma 5.6. Let Yt be the number of vertices added to the triangulation
at time t. For any ε > 0, a.s.

lim
T→∞

n8/3+ε

(2n)4/3
max

2n≤t<2n+1
{Yt} = ∞ .

Proof. Consider only the number of vertices added at times when |Xt| is
large. Fix ε > 0. By Lemma 5.3, a.s. for all but finitely many n there are
at least n2 times in the interval [2n, 2n+1) for which |Xt| > (2n)2/3n−(2+ε).

From the formulas for ϕn,m and Zm it is easily seen (see also Proposi-
tion 6.4) that for large γ, uniformly for all k

P(Yt > γk2|Xt = −k) > c1γ
−3/2,

and so the probability that this fails for the above times when |Xt| is large
is at most

(1 − c1γ
−3/2)n

2
< exp(−c1n

2γ−3/2) .

For γ = n4/3−ε this is finitely summable and so a.s. for all but finitely many
n there is some 2n ≤ tn < 2n+1 with

|Xtn | > (2n)2/3n−(2+ε),

and
Ytn > n4/3−εX2

tn ,

and so
lim Ytn

n8/3+3ε

(2n)4/3
= ∞ . �
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Proof of Theorem 1.1. Since |Br| =
∑

t<Tr
Yt, the first part follows from

Theorem 4.1 and Lemma 5.4, and the second part follows from Theorem 4.1
and Lemma 5.6. �

6 Ball Volume Growth

In order to get a lower bound on the |Br| we need to find (with good
probability) a large number of vertices within a short distance of the root.
When investigating the hull Br we found a number of steps at which a free
triangulation of an m-gon was added to the triangulation. We therefore
wish to estimate not only the number of vertices in a free triangulation of
a disc, but the number of such vertices that are close to the boundary.
Definition 6.1. For a triangulation T of a disc and a vertex v ∈ T , the
height of v, denoted hv, is the distance from v to the boundary.

Typically we expect a free triangulation of an m-gon to have size
roughly m2. We will see that typically, most vertices in such a triangu-
lation have height at most roughly

√
m. This implies that typical distances

in T are on the scale of |T |1/4, conforming with the result of [CS]. The
following methods may also be used to estimate the maximal height in a
free triangulation.
Lemma 6.2. Let T be a free triangulation of an m-gon. For any ε > 0
there are c1, c2 > 0, such that for sufficiently large m

µm(A) > c2 ,

where A is the event consisting of all triangulations, T , of an (m + 2)-gon
with ∣∣{u ∈ T , hu <

√
m log3+ε m}∣∣ > c1m

2 .

Based on this lemma, the proof of Theorem 1.2 is straightforward –
simply find a free triangulation of a large cycle near the root and it will
follow that there are many vertices near the root.
Proof of Theorem 1.2. Fix ε > 0 and let

Lr =
{
t < Tr s.t. |Xt| > r2 log−(6+5ε/3) r

}
.

Using the lower bound on Tr (Theorem 4.1) together with Lemma 5.3
to find times when |Xt| is large, we get that for some c1, a.s. for all but
finitely many r

|Lr| > c1 log2 r .

At each time t ∈ Lr a free triangulation is glued to a cycle, with every
vertex in the cycle at distance at most r from the root. For each such
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t the probability that the event in Lemma 6.2 fails to occur for this free
triangulation is at most c2. Thus the probability of failure at all t ∈ Lr is
at most exp

(−c3 log2 r
)

for some c3 > 0, which is finitely summable. Thus
a.s. for all but finitely many r the event of Lemma 6.2 occurs at some time
t ∈ Lr.

By the definition of Lr and from the lemma, this implies that there
are at least r4 log−(12+10ε/3) r vertices at bounded distance from the cycle,
and thus also at bounded distance from the root. To find this bound, note
that |Xt| < Mt and t < Tr. Theorem 3.2 bounds Mt in terms of t and
Theorem 4.1 bounds Tr in terms of r. Combined they give

|Xt| < c3r
2 log3 r ,

hence the bound on height in Lemma 6.2 is√
|Xt| log3+ε |Xt| < c4r log9/2+ε r .

Summarizing, for all but finitely many r we found r4 log−(12+10ε/3) r
vertices in Br′ with r′ = r + c4r log9/2+ε r. By monotonicity of |Br| this
suffices. �

In proving Lemma 6.2 we make use of the following distribution, closely
related to the free triangulation of a disc.

Definition 6.3. The free marked triangulation of an (m + 2)-gon is a
distribution on triangulations of the (m + 2)-gon with a marked internal
vertex, that assigns a rooted triangulation T marked at v probability

µ̃m(T, v) = Z̃−1
m α−|T |,

where
Z̃m =

∑
nϕn,mα−n.

This may also be defined as the annealed distribution for marking a
random vertex in a free triangulation of the disc. Proposition 5.1 implies

Z̃m = ZmEµm |T | =
1
6

(
2m + 2

m

)(
9
4

)m+1

,

hence the relation between µ̃m and µm may be written as

µ̃m(T ) =
3|T |

(m + 1)(2m + 1)
µm(T ) .

Clearly, conditioned on the size of T , the triangulation marginal of µ̃m and
µm are equal, and conditioned on the triangulation, each internal vertex
has probability |T |−1 of being the marked one.

The size distribution of the free marked triangulation is interesting, as
is evident from the following proposition.
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Proposition 6.4. The distributions of m−2|T | with respect to µ̃m con-
verge to that of 2/3S1/2, where S1/2 is an asymmetric stable random vari-
able.

S1/2 with the Levi distribution, is one of very few cases of stable random
variables for which there is a (more or less) closed form for the density
function. S1/2 has the same law as g−2 where g is a standard Gaussian
random variable. In particular, for large m, the size of a free marked
triangulation of an m-gon is distributed approximately as 2/3g−2. As a
consequence, the size of a free (unmarked) triangulation of an m-gon also
converge in distribution.
Proof. The probability of a free marked triangulation having size n, namely

µ̃m(|T | = n) =
nϕn,m

Z̃mα−n

may be rewritten as

8n(m + 2)
3(2n + 2m + 1)(2n + 2m + 2)

·
((

4
27

)n (
3n
n

))
·

2m∏

i=1

n + i/3
n + i/2

.

For large n, the second term is roughly
√

3n/4π. For n � m � 1, the first
term is roughly 2m/3n while the last is roughly e−m2/3n. These approxi-
mations are uniform for all n � m � 1. It follows that

µ̃m

(|T | = n
) ∼ mn−3/2

√
3π

e−m2/3n.

And by a change of variable, for any t

lim
m→∞ µ̃m

(|T | > tm2
)

=
1√
3π

∫ ∞

t
x−3/2e−1/3xdx ,

Hence the distribution of m−2|T | with respect to µ̃ converges as m → ∞
to that of 2/3S1/2. �

The free marked triangulation has the advantage over the free triangu-
lation that it may be sampled via a peeling process similar to the peeling
process for the UIPT. As each triangle is added, there are three possibilities,
shown in Figure 6.1. The triangle may partition the disc into two, in which
case there is a marked and unmarked triangulation in both parts, corre-
sponding to the infinite and free parts in the construction of the UIPT. The
second option is that a new vertex is added. The third is that the added
vertex is the marked vertex.

As before, in order to analyze the sampling process, assume that trian-
gles are added to the boundary in order, adding all triangles incident to a
vertex before moving to the next vertex counterclockwise. As before, this
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does not effect the resulting measure or the distribution of the number of
required steps, but will make understanding the height distribution easier.

α−1Z̃m+1 α−1Zm+1

Z̃m−i

Zi−1

Zm−i

Z̃i−1

Figure 6.1: The possibilities when a triangle is added in the free marked trian-
gulation.

As before, we consider the size of the boundary, Mn, after n steps were
taken. M0 = m and at each step we have Mn+1 = Mn + Xn where the
distribution of Xn is as in equations (2.3), (2.4) with Z̃m taking the role
of Cm:

• Xt = 1 and the new vertex is unmarked with probability Z̃m+1/αZ̃m.
• Xt = 1 and the new vertex is marked with probability Zm+1/αZ̃m.
• Xt = −k with probability Z̃m−kZk−1/Z̃m.
It is easy to see that as M → ∞ these converge to the same probabilities

as for the UIPT. However, here the drift is reversed: the small Mn’s are
likelier to give negative X. Here the expectation of the steps is deceiving,
as it is positive. Still, the probabilities for large negative steps are sufficient
to cause the Markov chain to terminate within roughly M

3/2
0 steps. Since

each layer contains roughly M0 vertices, this implies that the height of the
marked vertex is at most in the order of

√
M0.

Lemma 6.5. For Mn as above, for some c > 0
P(maxMn > λM0) < cλ−1.

Proof. By Proposition 6.4, for a free marked triangulation T of an (m+2)-
gon,

µ̃m

(|T | > tm2
)

< c1t
−1/2,

and, for some c2 > 0,
µ̃m

(|T | > m2
)

> c2 .

Let Mn be the sequence observed in the process of sampling a triangula-
tion T of an (M0 +2)-gon. Let A be the event that for some n, Mn > λM0.
Conditioned on A, T includes a free marked triangulation of an (Mn + 2)-
gon, and so

P
(|T | > λ2M2

0 | A
)

> c2 .
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Thus
P(A) <

P(|T | > λ2M2
0 )

c2
<

c1

c2λ
. �

Lemma 6.6. For Mn as above, let s be the smallest n such that either
Mn ≤ M0/2 or the process terminates at time n. For any m ≥ M0 and
ε > 0 there is a c = c(ε) such that

P(s > M
3/2
0 log2+3ε m) < c log−(1+ε) m .

As before, let Fn denote the sigma field generated by the random vari-
ables M0, . . . ,Mn. Expectation with respect to Fn is denoted by EFn (ex-
pectation conditioned on the past).
Proof. This is similar to the proof of Theorem 3.5. To avoid difficulties
arising from the termination of the process, continue the Markov chain
after termination with Xt = −1 after 0 is hit. With this continuation the
following bounds hold universally. If we find that Mn < M0/2, then clearly
s < n whether or not the process terminated.

We show that at each step there is a not too small probability of the
Markov chain taking a step into [0,M0/2), and consequently this happens
after a small number of steps. Direct inspection of the step probabilities
reveals that, for some universal c1,

P(Xn = −k | Mn) > c1(Mn − k)−1/2M1/2
n k−5/2.

Since k < Mn, it follows that the probability of taking a step from Mn to
the interval [0,M0/2) satisfies

P(Mn+1 < M0/2 | Mn) > c2M
1/2
0 M−2

n .

Define the stopping time t as the first time the Markov chain leaves
the interval [M0/2,M0 log1+ε m] (or terminates). As long as Mn is in the
interval the probability of leaving the interval by having Mn+1 < M0/2 is
at least c2M

−3/2
0 log−(2+2ε) m. It follows that

P(t > M
3/2
0 log2+3ε m) < (1 − c2M

−3/2
0 log−(2+2ε) m)M

3/2
0 log2+3ε m

< exp (−c2 logε m) .

Clearly s = t unless the process left the interval with Mt > M0 log1+ε m.
By Lemma 6.5 the probability of that is bounded by c3 log−(1+ε) m, and
therefore

P(s > M
3/2
0 log2+3ε m) < c3 log−(1+ε) m + exp (−c2 logε m)

as claimed. �

Lemma 6.7. Let (T, v) be a free marked triangulation of an (m + 2)-gon.
For any ε > 0, for all large enough m

µ̃m

(
hv >

√
m log3+ε m

)
< 1/2 .
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Proof. Consider for k < log2 m the times Sk defined as the smallest s such
that Ms ≤ 2−km. We show that Sk+1 − Sk is unlikely to be large and
give a bound on the distance between the boundary at time Sk+1 and the
boundary at time Sk.

Using the Lemma 6.6 applied to the process starting at time Sk with
boundary size MSk

≤ 2−km, and with m in the lemma’s formulation being
the boundary size of the original disc, we get the bound

P
(
Sk+1 − Sk > (2−kM0)3/2 log2+ε m

)
< c log−(1+ε/3) m .

Therefore with probability at least 1−c logε/3 m, for all relevant k < log2 m,

Sk+1 − Sk < (2−km)3/2 log2+ε m . (6.1)

For large m this probability is at least 3/4.
As before, let Tr denote the time when the rth layer is complete, i.e.

the smallest t such that the distance from the original boundary to the
boundary at time t is r. At time Tr+1 all vertices on the boundary have
height r + 1 and so they were all added after time Tr. Since vertices are
added at the boundary one at a time, we have Tr+1 − Tr ≥ MTr+1.

If (6.1) holds, then the number of rounds completed between Sk and
Sk+1 is at most

1 +
Sk+1 − Sk

2−(k+1)m
< 1 + 2

√
m log2+ε m ,

and by summing up, with probability at least 3/4, the total number of
rounds completed before the process either terminates or reaches Mn = 0
is at most c1

√
m log3+ε m.

If the process terminated before Mn = 0, then hv < c1
√

m log3+ε m
as required. In the case that the process did not terminate and reached
Mn = 0, in the remaining 2-gon there is a free marked triangulation, and
with probability 3/4 the number of vertices inside is at most 30 and so
P(hv > 30+ c1

√
m log3+ε m) < 1/2. By changing ε the constants c1 and 30

may be disposed of. �

Proof of Lemma 6.2. Let (T, v) be a free marked triangulation of an
m-gon. Define t = |T | and

s =
∣∣{u ∈ T | hu <

√
m log3+ε m}∣∣ .

The probability that hv <
√

m log3+ε m, bounded by Lemma 6.7, is clearly
the expectation of s/t with respect to µ̃m, i.e.

∑

T

s
t µ̃m(T ) > 1

2 .
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Using the relation between µ̃m and µm, this translates to
∑

T

s

t

3t
(m + 1)(2m + 1)

µm(T ) > 1/2 ,

or
Eµms =

∑

T

sµm(T ) > m2

3 .

To finish, note that since s < t and µm(t > γm2) < c1γ
−3/2, the

expectation of s restricted to any event of probability p is bounded by
c2m

2p1/3 for some c2. Therefore, if the probability that s < c3m
2 is p, the

expectation of s is at most

pc3m
2 + c2m

2(1 − p)1/3.

For any c3 < 1/3 this gives a lower bound on p independent of m. �

7 Percolation on the UIPT

The peeling construction may also be used to understand percolation on
the UIPT. Bernoulli site percolation with parameter p is the probability
measure on colorings of the graph’s vertices where each vertex is colored
black with probability p and white otherwise, independently of all other
vertices. Percolation is defined as the event that the root vertex is in
an infinite connected black component. The resulting measure is denoted
by Pp.

Since the graph in question, namely the UIPT, is a random graph there
is a distinction between annealed and quenched statements about percola-
tion (though since there is no interaction between the percolation and the
underling graph the underlying probability measure is the same). Annealed
statements are averaged on all planar triangulations. Quenched statements
on percolation are about the coloring conditioned on the triangulation. In
particular, the critical probability pc for annealed percolation is the infi-
mum of all p such that Pp(percolation) > 0. This means that in a positive
measure of triangulations (w.r.t. τ) the probability of percolation is posi-
tive. The quenched problem is what is the least p such that on τ -almost
all triangulations there is a positive probability of percolation.

It turns out the the annealed and quenched behaviours are the same,
so Theorem 1.5 is a more general result than the following theorem.

Theorem 7.1. The annealed critical probability for site percolation on
the UIPT is 1/2.
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Proof. Suppose each vertex is colored independently at random, black with
probability p and white otherwise. Assume with out loss of generality that
the root vertex is black. We sample the connected black component con-
taining the root vertex by adding triangles one by one to the triangulation,
as in the peeling construction of the UIPT. As new vertices are added we
color them randomly, independently of all previous events. This samples
site percolation on (a part of) the UIPT.

If at any time all the vertices on the outer boundary of the sampled
sub-triangulation we see are white, then we have found a cycle of white
vertices enclosing the root, and so the black connected cluster containing
the root is necessarily finite. On the other hand, if the process continues
indefinitely and never reaches an all white outer boundary, then the root
is in an infinite connected black component.

Recall that we are free to choose the edge in the outer boundary on
which we attach a triangle at any time. At all times we will choose a
boundary edge that has one black and one white endpoint (unless the outer
boundary of the sub-triangulation is monochromatic). Choosing the edge
in this manner will guarantee two things. First, the black (resp. white)
vertices on the outer boundary lie on a continuous arc along the boundary
as in Figure 7.1(a,b). Second, since each new vertex is connected to existing
vertices of both colors (as long as the boundary is not monochromatic), all
black (resp. white) vertices form a single connected cluster.

(b)

(a) (c)

1

2

3
4

5

6

Figure 7.1: Sampling annealed percolation on the UIPT.

When a new vertex is added, we color it randomly (as in Figure 7.1(a),
showing a segment of the boundary). When the new triangle includes only
old vertices, as in Figure 7.1(b), the event of percolation does not depend
on the finite part of the triangulation (in the shaded region). Thus, to
determine whether percolation occurs we only need to keep track of the
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outer boundary and of the number of black and white vertices in it.
Figure 7.1(c) shows a possible outcome of the first few steps. The

triangles are numbered in the order they are added. After the sixth triangle
is added, we know that the black cluster of the root is finite. Since the part
of the triangulation enclosed in the hole is finite, percolation cannot occur.

Let Bn (resp. Wn) denote the number of black (resp. white) vertices on
the boundary at time n. As before, let Mn + 2 = Bn + Wn denote the
size of the boundary after n steps. Also let Xn denote the step size, with
distribution given by (3.1). If Xn = 1, then the new vertex is colored black
or white with the given bias. Therefore conditioned on (Bn,Wn):

(Bn+1,Wn+1) =
{

(Bn + 1,Wn ) with prob. p
(Bn ,Wn + 1) with prob. 1 − p

if Xn = 1 .

On the other hand, if Xn < 0, then |Xn| vertices from the outer bound-
ary become internal vertices. In this case it is equally likely that the re-
moved vertices are on the left or the right of the new triangle (the triangula-
tion’s geometry is independent of previously chosen colors). Note however,
that if Bn + Xn < 0 and the removed vertices are on the black side, this
does not result in a negative number of black vertices on the boundary.
Instead, all the black vertices, and some “borrowed” white ones will be
removed. Therefore conditioned on (Bn,Wn),

(Bn+1,Wn+1) =
{

f(Bn + Xn,Wn ) with prob. 1/2
f(Bn ,Wn + Xn) with prob. 1/2

if Xn < 0 ,

where f(B,W ) = (B,W ) unless B < 0 or W < 0,

f(B,W ) =






(B,W ) if B,W ≥ 0 ,
(0, B + W ) if B < 0 ,
(B + W, 0) if W < 0 .

We see that if p = 1/2, then Xn is added with equal probabilities to B
or W , but if p 
= 1/2 there is a bias, and since EXn → 0, the less probable
color tends to die out, as we now prove.

Suppose p < 1/2. Consider the Markov chain (B′
n,W ′

n) not limited to
positive values, with evolution

(B′
n+1,W

′
n+1) =

{
(B′

n + 1,W ′
n ) with prob. p

(B′
n ,W ′

n + 1) with prob. 1 − p
if Xn = 1 .

(B′
n+1,W

′
n+1) =

{
(B′

n + Xn,W ′
n ) with prob. 1/2

(B′
n ,W ′

n + Xn) with prob. 1/2
if Xn < 0 ,

coupled in the natural way to (Bn,Wn). The difference B′
n+1 −B′

n is equal
to the Bn+1 − Bn except in two cases:
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• Wn +Xn < 0 and additional black vertices are removed. In this event
B′

n+1 − B′
n > Bn+1 − Bn.

• Bn +Xn < 0 and additional white vertices are removed. In this event
percolation does not occur.

Therefore, conditioned on the event of percolation, Bn ≤ B′
n. We will see

that a.s. for some n, B′
n ≤ 0 and so Pp(percolation) = 0. Denote by Fn

the σ-field generated by the random variables B0,W0, . . . , Bn,Wn. Note
that Mn and B′

n are determined by B,W up to time n, and hence are
Fn-measurable,

EFnB′
n+1 − B′

n ≤ 1/2EFnXn − (1/2 − p)P(Xn = 1|Fn) .

Recall that if m > m′, then the distribution of Xn conditioned on
Mn = m is stochastically dominated by the distribution conditioned on
Mn = m′. Since a.s. Mn → ∞, from some time on Mn is larger than
any fixed M . Since EFnXn ∼ cM

−1/2
n → 0 from some time on B′

n is
dominated by a random walk with steps bounded from above (Xn ≤ 1)
and negative expectation. Such a random walk will a.s. tend to −∞, and
since conditioned on percolation B′

n remains positive, Pp(percolation) = 0.
Moreover, if whenever Bn = 0 we “reset” by setting B′

n = 0, then
Bn ≤ B′

n holds unconditionally, and when B′
n is large enough it still has

negative expected change. With this modification B′
n does not tend to −∞

but has a stationary distribution with exponential decay. By Borel–Cantelli
it follows that Bn ≤ B′

n = O(log n).
When p > 1/2, the roles of Bn and Wn are interchanged, and since

Bn + Wn grows like n2/3 it follows that a.s. Bn → ∞. In particular with
positive probability at all times Bn > 0, i.e., Pp(percolation) > 0. �

Thus, we see that if p < 1/2, then a.s. the black clusters are finite, while
if p > 1/2, then with positive probability there is an infinite black cluster
(since white clusters are all finite, it is unique). To see that this is a.s. the
case we prove the following 0-1 law. A general 0-1 law for triangulations is
proved in [BeCR]. However, we also need a 0-1 law for annealed percolation
on the UIPT.
Theorem 7.2. The probability of any event invariant to finite changes
in the triangulation is 0 or 1. Moreover, the same is true for the annealed
percolation on the UIPT with any p.

Proof of Theorem 1.5. pc = 1/2 is an event independent of finite changes
in the UIPT. Since the annealed pc = 1/2, τ(pc = 1/2) > 0.

For p = 1/2 we see that the probability of having an infinite black
(or, by symmetry, white) cluster is either 0 or 1. Thus, we see that either
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a.s. there are no monochromatic infinite clusters, or a.s. there are infinite
clusters of both colors. To rule out the latter possibility note that there are
a.s. infinitely many times when |Xt| > Mt/2. Conditioned on |Xt| > Mt/2,
with probability at least 1/2 one of the colors is completely removed from
the outer boundary. Thus, a.s. one of the colors dies out infinitely often
and has only finite clusters. By symmetry, P1/2(percolation) ≤ 1/2, and
hence it is 0. �

Proof of Theorem 7.2. We represent the UIPT as a function of an infinite
sequence of independent random variables, such that a.s. changing a finite
number of them will only change a finite sub-triangulation. Since any
event determined by the tail of such a sequence has probability 0 or 1, this
is sufficient.

The basis will be the peeling construction of the UIPT. For each m,n, i
define an independent random variable Zm,n,i, with the appropriate distri-
bution for a step when the boundary size is m. Such a random variable
includes the third vertex of an added triangle as well as a sample of the free
triangulation when appropriate. Zm,n,i is used at time t under 3 conditions:

• Mt = m
• maxs<t Ms = n
• If s is the first time that Ms = n, then t − s = i.
For example, if the observed sequence of M ’s is 1, 2, 3, 1, 2, 3, 1, 2, then

the next step uses Z2,3,5: Mt = 2, the maximal value seen so far is 3, first
reached 5 steps ago.

Since a.s. Mt → ∞, changing a finite number of the Zm,n,i will only
change the evolution of the triangulation in a finite number of steps. Once
Mt is sufficiently large the evolution will not be changed at all.

The exact same proof also works for percolation on the UIPT, adding
the random colors of new vertices to the variables Zm,n,i. �
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