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Abstract

We prove that the Poisson boundary of any spread out non-degenerate
symmetric random walk on an arbitrary locally compact second count-
able group G is doubly Msep-ergodic with respect to the class Msep

of separable coefficient Banach G-modules. The proof is direct and
based on an analogous property of the bilateral Bernoulli shift in the
space of increments of the random walk. As a corollary we obtain
that any locally compact σ-compact group G admits a measure class
preserving action which is both amenable and doubly Msep-ergodic.
This generalizes an earlier result of Burger and Monod obtained un-
der the assumption that G is compactly generated and allows one to
dispose of this assumption in numerous applications to the theory of
bounded cohomology.

1 Introduction and Statement of the Results

Given a group G, a Banach G-module (E, π) is a Banach space E endowed
with an isometric linear G-representation π. For a topological group G
the module (E, π) is called continuous if the action of G on E is norm
continuous. A coefficient G-module (E, π) is the contragredient module of a
separable continuous Banach G-module, i.e., E is the dual of some separable
Banach space E�, and π consists of operators adjoint to a continuous action
of G on E�, see [BuM, Definition 1.1.2], [M, Definition 1.2.1]. Denote by
Msep the class of all separable coefficient modules. Note that if G is locally
compact, then any separable coefficient module is automatically continuous
[BuM, Proposition 1.1.4], [M, Proposition 3.3.2].

Definition 1 ([BuM, Definition 5], [M, Definition 11.1.1]). Let G be
a locally compact group, and (X,λ) be a Lebesgue space endowed with a
measure class preserving action of G. Given a coefficient G-module (E, π),
the space (X,λ) is called (E, π)-ergodic if any G-equivariant weak∗ mea-
surable function f : X → E is a.e. constant. The space (X,λ) is doubly
(E, π)-ergodic if its square is (E, π)-ergodic with respect to the diagonal
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action. IfM is a class of coefficient Banach modules, then the space (X,λ)
is called M-ergodic (resp. doubly M-ergodic) if it is (E, π)-ergodic (resp.
doubly (E, π)-ergodic) for any coefficient module (E, π) ∈M.

If E is a coefficient module with trivial G-action π, then (E, π)-ergodicity
obviously coincides with the usual ergodicity (absence of non-trivial G-
invariant subsets inX), but in general (E, π)- andM-ergodicity are stronger,
see [M, Example 11.4.3]

Definition 2 ([MS1, Definition 2.3]). A Lebesgue space (X,λ) endowed
with a measure class preserving action of a locally compact groupG is called
a strong G-boundary if this action is amenable and doublyMsep-ergodic.

Burger and Monod [BuM, Theorem 6] (also see [M, Theorem 11.1.3])
proved that for any compactly generated locally compact group G there
exists a finite index open subgroup G∗ which has a strong boundary; if G
is either connected or totally disconnected, then G∗ = G. This result plays
a fundamental role in the theory of continuous bounded cohomology and
its applications to rigidity problems [BuM], [M], [MS1,2].

The proof of Burger and Monod is rather involved. Namely, they first
establish this property for a semi-simple Lie group (acting on the asso-
ciated Furstenberg boundary) and for the group of automorphisms of a
homogeneous tree (acting on the geometric boundary of the tree) by using
the classical Mautner lemma and its discrete counterpart [LM], and then
apply the solution of Hilbert’s 5th problem in order to pass to the general
case. As follows from [K5, Theorem 2], the strong boundary of the group
G∗ in the theorem of Burger and Monod can actually be chosen to be the
Poisson boundary of a certain absolutely continuous probability measure
on G∗ [BuM, Remark 3.5.1].

The aim of the present paper is to give a direct proof of the following
general result:

Theorem 3. The Poisson boundary of any spread out non-degenerate sym-
metric probability measure on a locally compact second countable group G
is a strong G-boundary.

Amenability of the action on the Poisson boundary being well known [Z],
the main point in Theorem 3 is in establishing the double ergodicity. The
proof relies on the same idea as the proof of the usual double ergodicity
of the Poisson boundary for symmetric random walks [G] (also see [BL],
[K2,4] which consists of reducing the problem to the ergodicity of the bi-
lateral Bernoulli shift on the space of increments of the random walk.
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If G is σ-compact but not second countable, then the Poisson boundary
is, generally speaking, not well-defined. However, in this situation G has
a second countable quotient G/K by a compact normal subgroup K ⊂ G.
Due to this fact Theorem 3 implies

Theorem 4. Any locally compact σ-compact group has a strong boundary.

Theorem 4 generalizes the aforementioned result of Burger and Monod,
and, by superseding it in the corresponding arguments, allows one to elim-
inate the assumption of being compactly generated in numerous applica-
tions (see [BuM], [M], [MS1,2]). For instance, the higher degree Lyndon–
Hochschild–Serre exact sequence from [BuM, Theorem 13] (also see [M,
Theorem 12.0.3]) now holds without this assumption, which leads to the
following product formula (of Künneth type) for continuous bounded co-
homology in degree 2 with separable coefficient modules in full generality
(cf. [BuM, Theorem 14] and [M, Corollary 12.0.4]):

Theorem 5. Let G = G1 × · · · × Gn be a product of locally compact
second countable groups Gi, and E be a separable coefficient G-module.
Write G′

i =
∏

j �=iGj , and let EG′
i denote the submodule of E consisting of

G′
i-invariant elements. Then there is a natural isomorphism of topological

vector spaces

H2
cb(G,E) ∼= H2

cb

(

G,

n∑

i=1

EG′
i

)
∼=

n⊕

i=1

H2
cb(Gi, E

G′
i) .

In section 2 we establish an ergodicity result for the Bernoulli shift
(Theorem 6), which is then used in section 3 for proving Msep-ergodicity
of the product of the Poisson boundaries of a given measure µ and the
reflected measure µ̌ (Theorem 17). Finally, the proofs of Theorem 3 and
Theorem 4 are completed in section 4 at the end of the paper.

Acknowledgement. I would like to thank Nicolas Monod for several
useful comments.

2 Ergodicity of the Bernoulli Shift

Let (X,λ) be a probability measure space. Denote by X = X� the space
of sequences x = (xi), xi ∈ X indexed by integers i ∈ Z, and let λ = λ�

be the associated product measure on X. The shift T acting on X by the
formula (Tx)i = xi+1 preserves the measure λ and is called the (bilateral)
Bernoulli shift over the space (X,λ). The Bernoulli shift is ergodic in the
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usual sense, i.e., X contains no non-trivial T -invariant sets. The following
result is a generalization of this property.

Theorem 6. Let T : (X,λ) ←↩ be the bilateral Bernoulli shift over a
probability space (X,λ). If E is a separable Banach space, and f : X → E,
π : X → Iso(E) are measurable maps such that a.e.

f(Tx) = π(x1)f(x) , (7)
then f is a.e. constant.

In the course of the proof we shall need the space L1(X ,λ, E) of classes
(mod 0) of measurable functions ϕ : X → E endowed with the norm

|||ϕ||| =
∫

‖ϕ(x)‖ dλ(x) ,

where ‖ · ‖ is the norm in E (note that the Borel structures on a separa-
ble dual Banach space induced by the norm topology, the weak topology,
and the weak∗ topology all coincide, see [M, Lemma 3.3.3]). A function
ϕ ∈ L1(X,λ, E) is called a cylinder function if it can be factored through
the finite product space

∏n
i=−n(X,λ) for a certain n > 0.

Lemma 8. Cylinder functions are dense in L1(X ,λ, E)

Proof. Fix ε > 0, cover the space E with a countable family of Borel sets
Ei of diameters not exceeding ε, and take a point ei in each of these sets.
For a function ϕ ∈ L1(X,λ, E) let Zi = ϕ−1(Ei), and put

ψ1 =
∞∑

i=1

1Ziei ,

so that

|||ϕ − ψ1||| ≤ ε , |||ψ1||| =
∞∑

i=1

λ(Zi) ‖ei‖ <∞ .

Further, take an integer N in such a way that

|||ψ1 − ψ2||| < ε , where ψ2 =
N∑

i=1

1Ziei ,

and approximate each of the sets Zi, 1 ≤ i ≤ N , by a cylinder set Z ′
i with

λ(Zi	Z ′
i) <

ε

N‖ei‖ .
Then

|||ψ2 − ψ3||| < ε for ψ3 =
N∑

i=1

1Z′
i
ei ,

whence |||ϕ − ψ3||| < 3ε. �
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Proof of Theorem 6. It follows the same idea as the famous Hopf’s proof
of the ergodicity of the geodesic flow on negatively curved manifolds (e.g.,
see [K2]). Namely, we show that f must be a.e. constant on the elements
of both the “strongly stable” and the “strongly unstable” partitions of the
space X (actually, one could just show that f must be constant on the
elements of any coordinate partition of X; our proof is, however, more
ostensive).

Let us denote by X− and X+ the spaces of sequences of elements of
X indexed by integers i ≤ 0 and i > 0, respectively, and denote by λ−
(resp. λ+) the corresponding product measures obtained from the mea-
sure λ. Clearly, the concatenation map (x−,x+) 
→ x−x+ establishes an
isomorphism of the product (X− ×X+,λ− ⊗ λ+) and the space (X ,λ).
Denote by η± the preimage partitions of the space X determined by its co-
ordinate projections onto the spaces X±, so that two sequences x,x′ ∈X
are η−-equivalent (resp. η+-equivalent), i.e., they belong to the same ele-
ment of the partition η− (resp. η+), if and only if xi = x′i for all i ≤ 0 (resp.
for all i > 0).

The partitions η± have the following obvious property: if ϕ is a cylin-
der function, and x,x′ ∈ X are η−-equivalent (resp. η+-equivalent), then
ϕ(T−nx) = ϕ(T−nx′) (resp. ϕ(T nx) = ϕ(T nx′)) for all sufficiently large
n > 0. Therefore, η− (resp. η+) can be considered as a counterpart of the
strongly unstable (resp. strongly stable) foliation of the geodesic flow on a
negatively curved manifold.

We shall prove that f is a.e. constant on the elements of both partitions
η− and η+, which would then imply the claim of the theorem.

For a function ϕ ∈ L1(X ,λ, E) denote by

I+(ϕ) =
∫

∥
∥ϕ(x−x+)− ϕ(x′

−x+)
∥
∥dλ−(x−)dλ−(x′

−)dλ+(x+)

its mean oscillation along the elements of the partition η+, so that I+(ϕ) = 0
if and only if the function ϕ is a.e. constant on the elements of η+. If ϕ′ is
another function from L1(X,λ, E), then

∥
∥ϕ(x−x+)− ϕ(x′

−x+)
∥
∥ ≤ ∥

∥ϕ′(x−x+)− ϕ′(x′
−x+)

∥
∥

+
∥
∥ϕ(x−x+)− ϕ′(x−x+)

∥
∥ +

∥
∥ϕ(x′

−x+)− ϕ′(x′
−x+)

∥
∥ ,

whence ∣
∣I+(ϕ)− I+(ϕ′)

∣
∣ ≤ 2|||ϕ − ϕ′||| . (9)

If ϕ is a cylinder function, then I+(ϕ◦T n) = 0 for all sufficiently large n.
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On the other hand, as follows from (7), for any n > 0,

I+(f◦T n) =
∫

∥
∥f(T n(x−x+))−f(T n(x′

−x+))
∥
∥dλ−(x−)dλ−(x′

−)dλ+(x+)

=
∫

∥
∥π(xn) . . . π(x2)π(x1)(f(x−x+)

− f(x′
−x+))

∥
∥dλ−(x−)dλ−(x′

−)dλ+(x+)

=
∫

∥
∥f(x−x+)−f(x′

−x+)
∥
∥dλ−(x−)dλ−(x′

−)dλ+(x+) = I+(f),

where xi ∈ X are the coordinates of x+. Therefore, by (9)
I+(f) = I+(f ◦ T n) ≤ I+(ϕ ◦ T n) + 2|||f ◦ T n − ϕ ◦ T n|||

= I+(ϕ ◦ T n) + 2|||f − ϕ||| ,
because T preserves the measure λ. Then Lemma 8 implies that I+(f) = 0.
In the same way I−(f) also vanishes, therefore f is a.e. constant. �

Remark 10. For a general map π : (X ,λ) → Iso(E) one can only claim
that ‖f(x)‖ is a.e. constant (which follows from the usual ergodicity of the
Bernoulli shift) as shown in the simplest example of the space E ∼= R

2.
In this situation for an arbitrary function f : X → E with a.e. constant
‖f(x)‖ one can satisfy the formula f(Tx) = π(x)f(x) by defining π(x) as
the rotation which moves the vector f(x) to f(Tx).

3 The Poisson Boundary

Let us first briefly recall the basic definitions and facts connected with the
Poisson boundary of random walks on groups, see [K3] and the references
therein.

Let G be a locally compact group, and µ a Borel probability measure
on G. The measure µ is called spread out (étalée in the French terminology)
if there exists a convolution power µ∗n which is not singular with respect
to the Haar measure class on G. The measure µ is non-degenerate if the
minimal closed semigroup S ⊂ G with µ(S) = 1 is G.

The (right) random walk determined by the measure µ is the Markov
chain on G with the transition probabilities πg = gµ. Denote by G�+

the space of sample paths g = (g0, g1, . . . ) of the random walk, and by P
the probability measure on G�+ corresponding to the initial distribution
concentrated at the identity e of the group. The map

Φ+ : h+ 
→ g = (g0, g1, g2, . . . ) ,

{
g0 = e ,

gn=gn−1hn=h1h2 · · ·hn , n > 0
(11)
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establishes an isomorphism of the space (G�+,P) and the space G+ of
sequences h+ = (h1, h2, . . . ) of increments hn endowed with the product
measure µ+ (we use for product spaces the notation introduced in the proof
of Theorem 6).

The path space G�+ is endowed with the coordinate-wise action of G,
and for an arbitrary (σ-finite) initial distribution θ on G the associated
measure on the path space is the convolution

Pθ = θP =
∫

gP dθ(g) .

The right Haar measure m on G is preserved by the random walk, so that
the measure Pm on G�+ is shift-invariant.

Any Borel measure on a second countable group G turns it into a
Lebesgue space (see [R], [CFS] for a definition; any Polish space with a
Borel probability measure on it is a Lebesgue space). Then the path space
(G�+,Pm) is also a Lebesgue space, so that the following definition makes
sense:
Definition 12. The Poisson boundary Γ = Γ(G,µ) of the random
walk (G,µ) on a locally compact second countable group G is the space of
ergodic components of the time shift in the space of sample paths (G�+,Pm).
The Poisson boundary is endowed with the harmonic measure class [νm]
which is the image of the class of the measure Pm under the canonical
projection bnd : G�+ → Γ (NB: the projection bnd is defined in the
measure category only!). For any probability measure θ on G absolutely
continuous with respect to the Haar measure m (notation: θ ≺ m) the
harmonic measure νθ = bnd(Pθ) is absolutely continuous with respect to
the measure class [νm].

The time shift on the path space G�+ commutes with the coordinate-
wise action of the group G, so that the latter action descends to an action of
G on Γ which preserves the harmonic measure class, and νgθ = gνθ for any
g ∈ G and θ ≺ m. Below we shall always consider the Poisson boundary Γ
as a G-space endowed with the G-invariant measure class [νm].

Theorem 13 [Z]. If µ is a spread out probability measure on a locally
compact second countable group G, then the action of G on the Poisson
boundary Γ(G,µ) is amenable.

If the measure µ is spread out, then the harmonic measure νθ is well de-
fined and absolutely continuous with respect to the harmonic measure class
[νm] for an arbitrary initial probability distribution θ. If, in addition, µ is
non-degenerate, then all the harmonic measures νθ actually belong to the
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class [νm]. In particular, in this situation the harmonic measure class is rep-
resented by the canonical probability measure ν = bnd(P) corresponding
to the initial distribution concentrated at the group identity.

The reflected measure µ̌ is the image of the measure µ under the map
g 
→ g−1. We shall use for various objects associated with the measure µ̌
the same notation as for the measure µ adding to them the “check” sign .̌
It will be convenient for what follows to identify the path space (G�+, P̌)
with the product space (G−,µ−) via the map

Φ− : h− 
→ ǧ=(ǧ0, ǧ1, ǧ2, . . . ) ,

{
ǧn = e , n = 0 ;
ǧn = h−1

0 h−1
−1 · · ·h−1

−n+1 , n > 0 .
(14)

Since the space of bilateral sequences (G,µ) is the product
(G− ×G+,µ− ⊗ µ+), we obtain the isomorphism

h 
→ (h−,h+) 
→ (ǧ,g)
of the space (G,µ) and the product (G�+, P̌)× (G�+,P). Now put

Ψ(h) =
( ˇbnd ◦ Φ−(h−),bnd ◦Φ+(h+)

) ∈ Γ̌× Γ , (15)
so that Ψ(µ) = ν̌ ⊗ ν. As follows from (11) and (14), a.e.

Ψ(Th) = h−1
1 Ψ(h) (16)

(see [K4] for more details).
Now we are ready to prove

Theorem 17. Let µ be a non-degenerate spread out measure on a lo-
cally compact second countable group G. Then the product of the Poisson
boundaries Γ̌ and Γ of the measures µ̌ and µ, respectively, isMsep-ergodic
with respect to the diagonal action of G.

Proof. Let (E, π) be a separable coefficient Banach G-module, and f :
Γ̌ × Γ → E be a G-equivariant weak∗ measurable function. By using the
map Ψ (15) define a E-valued measurable function F on the space (G,µ)
as

F (h) = f ◦Ψ(h) .
Then by (16), a.e.

F (Th) = f
(
h−1

1 Ψ(h)
)

= π(h−1
1 )f(Ψ(h)) = π(h−1

1 )F (h) ,
which in view of Theorem 6 implies that f is a.e. constant. �

Remark 18. The assumption that the measure µ is non-degenerate is
essential in Theorem 17 as it guarantees that the measure ν̌ ⊗ ν belongs
to the product of harmonic measure classes on the Poisson boundaries Γ̌
and Γ. The simplest example when µ = δe on a countable group G shows
that Theorem 17 fails without this assumption.
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4 Proofs of Main Theorems

Proof of Theorem 3. This is an immediate consequence of Theorem 13
and Theorem 17 in the particular case when the measure µ is symmetric,
i.e., µ̌ = µ. �

Proof of Theorem 4. For any locally compact σ-compact group G there
exists a compact normal subgroup K such that the quotient group G/K
is second countable, see [KaK] and [M, Scholium 5.3.11]. Now, if (X,λ)
is a strong G/K-boundary (which exists by Theorem 3), then it is also a
strongG-boundary for theG-action defined using the projection G→ G/K.
Indeed, both amenability and double ergodicity are preserved under passing
to compact extensions, see the discussion of the notion of an amenable
action for groups which are not second countable at the end of [M, Section
5.3] and [M, Lemma 11.1.9], respectively. �
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