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Abstract

Let Γ be a group generated by a finite set S. We give a sufficient
condition for Γ to have Kazhdan’s property (T). This condition is
easy to check and gives Kazhdan constants. We give examples of
groups to which this method applies. We prove that in some setting
generic presentations define groups which satisfy this condition and
thus have property (T). Moreover we prove that small changes in the
presentation of a group satisfying this condition do not change the
fact that the group has property (T).

1 Introduction

Let Γ be a group generated by a finite set S. Let π : Γ → U(Hπ) be a unitary
representation of Γ. We say that π almost has invariant vectors if for every
ε > 0 there exists a non-zero vector uε ∈ Hπ such that ‖π(s)uε − uε‖ <
ε‖uε‖ for every s ∈ S. In [K], Kazhdan defined property (T); namely, we say
that the group Γ has Kazhdan’s property (T) if every unitary representation
of Γ which almost has invariant vectors has a non-zero invariant vector.
The fact that a given group has property (T) does not depend on a set of
generators.

One knows (see for example [HV]) that the group Γ generated by the
set S has property (T) if and only if there exists ε(S) > 0 (which sometimes
cannot be taken independently of S – see [GeZ]) such that for every unitary
representation π : Γ → U(Hπ) without non-zero invariant vectors one has

max
s∈S

∥
∥π(s)ξ − ξ

∥
∥ ≥ ε(S)‖ξ‖ (1)

for every ξ ∈ Hπ.
A positive ε(S) for which the inequality (1) is satisfied is called a Kazh-

dan constant for Γ with respect to S.

One can also define property (T) without supposing that a given group
is finitely generated. Namely, one says that such a group has property
(T) if every unitary representation which almost has invariant vectors for
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every finite subset S, has invariant vectors. But it can be shown that
groups with property (T) are necessarily finitely generated. This was an
idea of Kazhdan, who introduced property (T) in order to prove Siegel’s
conjecture which states that lattices in semi-simple Lie groups are finitely
generated [K]. For lattices, property (T) is inherited from Lie groups and
Kazhdan proved that lattices in simple Lie groups of rank at least 2 have
property (T) (see [K], [DK], [V]). Since then, property (T) was used to
solve several other problems. In the context of this paper, an important
application of property (T) is due to Margulis who in [M1] used residually
finite groups with property (T) to give the first explicit examples of ex-
panding graphs. Here we present a result which enables one to show that
a given group has property (T) if a certain graph is an expander.

The question concerning Kazhdan constants was asked by Serre (for ex-
amples of the computation see [BH], [BeCJ], [BeM], [Bu], [CMS], [Co], [O],
[Sh1]). Explicit Kazhdan constants are useful for several applications. For
instance, they can be used to estimate isoperimetric constants of expanding
graphs (see [HV], [L], [S]).

For more information about property (T) see for instance [HV], [L],
[M3], [Z].

Till recently the only known infinite groups with property (T) were
related to lattices in semi-simple Lie groups.

In this paper we obtain a result, which enables one to prove property
(T) and to estimate Kazhdan constants for many discrete groups given by
presentations.

Let Γ be a group generated by a finite set S such that S is symmetric,
i.e. S = S−1, and the identity element e does not belong to S.
Definition 1. We define a finite graph L(S), in the following way:

1. vertices of L(S) = {s; s ∈ S};
2. edges of L(S) = {(s, s′); s, s′, s−1s′ ∈ S}.
Let us suppose that the graph L(S) is connected. This condition is not

restrictive, because for a finitely generated group Γ one can always find
a finite, symmetric generating set S, not containing e, such that L(S) is
connected (for instance S ∪ S2 \ e will do). For a vertex s ∈ L(S) let
deg(s) denote its degree, i.e. the number of edges adjacent to s. Let ∆ be
a discrete Laplace operator acting on functions defined on vertices of L(S),
i.e. for f ∈ l2(L(S),deg)

∆f(s) = f(s) − 1
deg(s)

∑

s′∼s

f(s′) ,
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where s′ ∼ s means that the vertex s′ is adjacent to the vertex s.
The operator ∆ is a non-negative, self-adjoint operator on l2(L(S),deg).

If L(S) is connected then zero is a simple eigenvalue of ∆. Let λ1(L(S))
be the smallest non-zero eigenvalue of ∆ acting on l2(L(S),deg).

Theorem 1. Let Γ be a group generated by a finite subset S, such that
S is symmetric and e �∈ S. If the graph L(S) is connected and

λ1(L(S)) > 1
2 (2)

then Γ has Kazhdan’s property (T). Moreover

2√
3

(

2 − 1
λ1(L(S))

)

is a Kazhdan constant with respect to the set S.

Remark. The condition stated in Theorem 1 is optimal. In order to see
this, let us consider the group Γ = Z

2 with the set of generators

S =
{

(1, 0), (−1, 0), (0, 1), (0,−1), (1, 1), (−1,−1)
}

.

Then the graph L(S) consists of vertices and edges of the hexagon. One
can compute that for such a graph the spectrum of ∆ consists of 0, 1

2 , 11
2

and 2. Thus λ1(L(S)) = 1/2 and the group Z
2 does not have property (T).

The condition stated in Theorem 1 involves only finitely many relations
in the presentation of the group Γ. On the other hand groups which are
homomorphic images of groups with property (T) have this property as
well. Thus it is natural to ask: Is every discrete group with property
(T) a homomorphic image of a group with property (T) which is finitely
presented? (This question was answered positively by Shalom [Sh2].)

The condition (2) in Theorem 1 is elementary and easy to check. In
order to prove property (T) for a group Γ, using Theorem 1, we do not
need to know anything about unitary representations of Γ. This is the
reason why Theorem 1 enables one to find infinitely many new groups
with property (T), to prove that generic presentations define groups have
property (T) (see section 7) and to show that if a given group satisfies
condition (2) and therefore has property (T) then groups which do not
differ too much from Γ also have property (T) (see section 8).

A condition similar to the one given in Theorem 1 was established
in [Żu1] and enabled one to find infinitely many new groups with prop-
erty (T) (see [BaS], [Bar], [Bou], [GP]).

The result presented in [Żu1] used a cohomological definition of prop-
erty (T) (see [De], [Gu]) and was related to the work of Garland [Ga] (see
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also [Pa]). Results presented here do not rely on the cohomological defini-
tion of property (T).

One can also prove some geometric versions of Theorem 1, concerning
configurations of vectors in finite dimensional Euclidean spaces R

n. Let us
be more precise.

Definition 2. Let P (S) be the set of vectors vs1, . . . , vsn ∈ R
n where

n = |S| and s1, . . . , sn are different elements of S such that

1. ‖vs − vs′‖ = ‖vs−1s′‖ if s, s′, s−1s′ ∈ S,

2. ‖vs‖ = ‖vs−1‖ for s ∈ S.

We define the constant K(S):

K(S) =
4√
3|T | min

vs1 ,...,vsn∈P (S)

‖∑

s∈S vs deg(s)‖2

∑

s∈S ‖vs‖2 deg(s)
.

In section 4 we prove

Theorem 2. Let S be a finite, symmetric set of generators for a group Γ,
which does not contain the identity. If K(S) > 0 then Γ has property (T)
and K(S) is a Kazhdan constant with respect to S.

Theorem 2 is stronger than Theorem 1. Other geometric versions of
Theorem 1 are presented in section 4 (Theorems 7 and 8).

The condition (2) in Theorem 1 is easy to be satisfied and can be applied
to groups given by generic presentations. Let us be more precise.

We consider the following model M for random groups, which is related
to Gromov’s model ([Gr2]). Let us consider presentations with relations
of length 3. Let d (called density as before) be between 0 and 1. Let
PM(m,d) be a set of presentations with m generators, relations of length 3
and density d, i.e. the number of relations is between c−1(2m − 1)3d and
c(2m − 1)3d, where c > 1 is any fixed constant. For simplicity, we will
suppose in the proofs that the number of relations is equal to (2m − 1)3d.

In [Gr2, p. 273] Gromov proves that in his model a generic presentation
with density less than 1/2 defines an infinite hyperbolic group and that a
generic presentation with density greater than 1/2 defines a trivial group.
In our model M we have the analogue:

Theorem 3. For d < 1/2 one has

lim
m→∞

#{P ∈ PM(m,d); Γ(P ) is infinite, hyperbolic group}
#PM(m,d)

= 1 .

We prove that a generic presentation in the model M with density
greater than 1/3 defines a group with property (T), i.e.
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Theorem 4. For d > 1/3 one has

lim
m→+∞

# {P ∈ PM(m,d); Γ(P ) has property (T)}
#PM(m,d)

= 1 .

Theorems 3 and 4 imply that a generic presentation in the model M
with density between 1/3 and 1/2 defines an infinite hyperbolic group with
property (T), i.e.
Corollary 1. For 1/3 < d < 1/2 one has

lim
m→∞

#{P∈PM(m,d); Γ(P ) is infinite, hyperbolic with property (T)}
#PM(m,d)

= 1 .

Results about genericity of property (T) are related to the results con-
cerning genericity of expanding graphs [Bo2], [Żu2]. The proof of hyper-
bolicity of random groups follows [Gr2].

In order to analyze the situation when d = 1/3 we introduce another
model F which more precisely describes the number of relations we put in
the presentation. It corresponds to the density 1/3 but it has an additional
parameter v. We show (Theorem 10) that for v sufficiently large, a random
group in this model has property (T).

One has to suppose that d ≥ 1/3 because for d < 1/3 generic groups do
not have property (T). More precisely, if F2 denotes a free group of rank
two, then
Theorem 5. For d < 1/3 one has

lim
m→+∞

# {P ∈ PM(m,d); Γ(P ) has a quotient F2}
#PM(m,d)

= 1 .

We will also show that small changes in the presentations of a group
satisfying the condition (2) do not change the fact that the group has
property (T).

We know that if we add any relation to a presentation of a group with
property (T), we still obtain a group with property (T). This is because any
homomorphic image of a group with property (T) still has this property.

Now, let us analyze the situation, when we remove a relation from the
presentation of a Kazhdan group Γ.

Let us denote by deg(S) the minimal degree of vertices in L(S), i.e.
deg(S) = min

{

deg(s); s ∈ L(S)
}

.

Theorem 6. Let Γ be a group generated by a finite, symmetric set S, such
that e �∈ S and L(S) is connected. Let us suppose that λ1 = λ1(L(S)) >
1/2, i.e. Γ has property (T). Then for any t ∈ N such that

t ≤ 1
11

(

λ1 − 1
2

)

deg(S)
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after removing any t relations of length three from any presentation of Γ
with generators S, we obtain a group with Kazhdan’s property (T).

Theorem 6 shows that if λ1(L(S)) is sufficiently greater than 1/2 and if
the number of neighbors of each vertex in L(S) is sufficiently large we can
remove several relations and still obtain groups with property (T). This is
for instance the case of groups discussed in section 5.1, for which λ1(L(S))
can be arbitrarily close to 1 and the degree of vertices in L(S) can be
arbitrarily large.

The paper is organized as follows. In section 2 we introduce the ingredi-
ents of the proof of Theorem 1, which is given in section 3. In section 4 we
present other conditions implying property (T) (Theorems 2, 7 and 8). Ex-
amples of some groups to which these theorems apply are given in section 5.
In section 6 and section 7 we give proofs concerning properties of random
groups, in particular we show that generic presentations provide groups
which have property (T) (Theorem 4). Finally, in section 8 we show that
if a given group satisfies condition (2) in Theorem 1 the groups obtained
by small changes in the presentation of this group, still have property (T).

Acknowledgments. First of all I would like to thank Misha Gromov
for the long conversations we had concerning my work on property (T)
(Theorem 1). In particular I am grateful to Misha Gromov for telling me
to find in this way many, many groups with property (T). Indeed, in a
setting related to Gromov’s beautiful random groups we provide groups
which have property (T). I would also like to thank Etienne Ghys, Pierre
de la Harpe, Alexander Lubotzky, Gregory Margulis, Yann Ollivier, Pierre
Pansu, Yehuda Shalom and Alain Valette with whom I had enlightening
conversations about property (T) and random groups.

2 Conditions Implying Property (T)

In this section we present the ingredients of the proof of Theorem 1.

2.1 The operators d and d�. Let T be a subset of S × S defined as
follows:

T =
{

(s, s′); s, s′, s−1s′ ∈ S
}

.

For r = 0, 1 and 2 let Cr be the spaces defined as follows:
C0 = {u;u ∈ Hπ} ,

C1 =
{

f : S → Hπ; f(s−1) = −π(s−1)f(s) for all s ∈ S
}

,

C2 = {g : T → Hπ} .
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Let us define linear operators d : C0 → C1 and d : C1 → C2 as follows:
du(s) = π(s)u − u for all u ∈ C0,

df((s, s′)) = f(s)− f(s′) + π(s)f(s−1s′) for all f ∈ C1.

For any u ∈ C0 and (s, s′) ∈ T one has
ddu((s, s′)) = du(s) − du(s′) + π(s)du(s−1s′)

=
(

π(s)u − u
) − (

π(s′)u − u
)

+ π(s)
(

π(s−1s′)u − u
)

= 0 .

Thus
dd = 0 .

For s ∈ S we define a number n(s) in the following way
n(s) = #

{

s′ ∈ S; (s, s′) ∈ T
}

.

We suppose that the graph L(S) is connected. This implies in particular
that n(s) > 0 for every s ∈ S.

We remark that n(s) = n(s−1) ,
∑

s∈S

n(s) = |T | .

Let 〈 · , · 〉Hπ be the scalar product in the Hilbert space Hπ. We define
the scalar products on C0, C1 and C2 in the following way:

〈u,w〉C0 = 〈u,w〉Hπ |T | for u,w ∈ C0,

〈f, g〉C1 =
∑

s∈S

〈

f(s), g(s)
〉

Hπ
· n(s) for f, g ∈ C1,

〈h, g〉C2 =
∑

t∈T

〈

h(t), g(t)
〉

Hπ
for h, g ∈ C2.

When it is clear to which scalar product we are referring we will omit
the subscript for simplicity.

Let d∗ : C1 → C0 be the adjoint operator of d : C0 → C1, i.e.
〈du, f〉C1 = 〈u, d∗f〉C0 for u ∈ C0 and f ∈ C1.

One has the following explicit expression for d∗:
Lemma 1. For f ∈ C1 we have

d∗f = −2
∑

s∈S

f(s)
n(s)
|T | .

Proof. The expression for d∗ : C1 → C0 is a consequence of the following
equalities:

〈du, f〉C1 =
∑

s∈S

〈

du(s), f(s)
〉

Hπ
n(s) =

∑

s∈S

〈

π(s)u − u, f(s)
〉

Hπ
n(s)
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=
∑

s∈S

(〈u, π(s−1)f(s)〉Hπn(s) − 〈u, f(s)〉Hπn(s)
)

=
∑

s∈S

( − 〈u, f(s−1)〉Hπn(s−1) − 〈u, f(s)〉Hπn(s)
)

= −2
∑

s∈S

〈

u, f(s)
〉

Hπ
n(s) =

〈

u,−2
∑

s∈S

f(s)n(s)
|T |

〉

Hπ

|T |

=
〈

u,−2
∑

s∈S

f(s)n(s)
|T |

〉

C0

. �

We need an estimation on the norm of the operator d∗ : C1 → C0.
Lemma 2. The norm ‖d∗‖C1→C0 of the operator d∗ : C1 → C0 is bounded
by 2, i.e.

‖d∗‖C1→C0 ≤ 2 .

Proof. Let f ∈ C1 be such that ‖f‖C1 = 1. Then we have

‖d∗f‖2
C0 =

∥
∥
∥
∥
− 2

∑

s∈S

f(s)
n(s)
|T |

∥
∥
∥
∥

2

Hπ

|T |

≤ 4
(

∑

s∈S

‖f(s)‖2
Hπ

· n(s)
)(

∑

s∈S

n(s)
|T |2

)

|T |

= 4‖f‖2
C1

(
∑

s∈S

n(s)
|T |

)

= 4 ,

which ends the proof of Lemma 2. �

2.2 Property (T) The operators d and d∗ are related to Kazhdan’s
property (T) and their spectral analysis enables one to estimate Kazhdan
constants as shown in Theorem 1.

Let B1 be the kernel of d : C1 → C2, i.e.
B1 = {f ∈ C1; df = 0} .

We will need an estimation on the norm of the operator d∗ : B1 → C0.
Lemma 3. The norm ‖d∗‖B1→C0 of the operator d∗ : B1 → C0 is bounded
by

√
3, i.e.

‖d∗‖B1→C0 ≤
√

3 .

Proof. First of all for f ∈ B1 we have
〈f, f〉 =

∑

s∈S

〈

f(s), f(s)
〉

n(s) =
∑

(s,s′)∈T

〈

f(s−1s′), f(s−1s′)
〉

=
∑

(s,s′)∈T

〈

π(s)f(s−1s′), π(s)f(s−1s′)
〉
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=
∑

(s,s′)∈T

〈

f(s) − f(s′), f(s) − f(s′)
〉

=
∑

(s,s′)∈T

(〈f(s), f(s)〉 + 〈f(s′), f(s′)〉 − 2〈f(s), f(s′)〉)

= 2〈f, f〉 − 2
∑

(s,s′)∈T

〈

f(s), f(s′)
〉

,

which gives
2

∑

(s,s′)∈T

〈

f(s), f(s′)
〉

= 〈f, f〉 .

Thus we get

‖d∗f‖2
C0 =

∥
∥
∥
∥
− 2

∑

s∈S

f(s)
n(s)
|T |

∥
∥
∥
∥

2

|T | =
∥
∥
∥

∑

(s,s′)∈T

(

f(s) + f(s′)
)
∥
∥
∥

2 1
|T |

≤
∑

(s,s′)∈T

∥
∥f(s) + f(s′)

∥
∥2

=
∑

(s,s′)∈T

(‖f(s)‖2 + ‖f(s′)‖2 + 2〈f(s), f(s′)〉)

= 2〈f, f〉 + 〈f, f〉 = 3〈f, f〉 ,

which ends the proof of Lemma 3. �

The following proposition expresses the relation between spectral prop-
erties of the operators d and d∗ and Kazhdan’s property (T).

Proposition 1. If there exists c > 0 such that for every f ∈ B1

〈dd∗f, f〉 ≥ c〈f, f〉 (3)
then c

/√
3 is a Kazhdan constant.

Proof. First of all we prove that the inequality (3) implies that the operator
dd∗ : B1 → B1 has a bounded inverse. By (3) the image dd∗(B1) is closed
in B1. If dd∗(B1) were different from B1, there would exist a non-zero
vector u ∈ B1 which would be orthogonal to the image of B1 by dd∗. Then
we would have, by (3),

0 =
〈

u, dd∗(u)
〉 ≥ c〈u, u〉

which is a contradiction.
Thus dd∗ : B1 → B1 has a bounded inverse (dd∗)−1 : B1 → B1 and

‖(dd∗)−1‖B1→B1 ≤ c−1.

Now, suppose that c
/√

3 is not a Kazhdan constant. Let us consider
a unitary representation π without non-zero invariant vectors, such that
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for some 0 < ε < c
/√

3 there exists u ∈ Hπ such that ‖u‖Hπ = 1 and
‖π(s)u − u‖Hπ ≤ ε for every s ∈ S. Then
‖du‖2

B1 =
∑

s∈S

∥
∥du(s)

∥
∥2

Hπ
n(s) =

∑

s∈S

∥
∥π(s)u−u

∥
∥2

Hπ
n(s) ≤

∑

s∈S

ε2n(s) = ε2|T |

which gives ‖du‖B1 ≤ ε
√|T |. Let us consider d∗(dd∗)−1du ∈ C0. We have

∥
∥d∗(dd∗)−1du

∥
∥

C0 ≤ ‖d∗‖B1→C0 · ∥∥(dd∗)−1
∥
∥

B1→B1 · ‖du‖B1

≤
√

3 · c−1 · ε
√

|T | <
√

|T | .
By definition of the norm in C0 one has then d∗(dd∗)−1du = u′ where
‖u′‖Hπ < 1. So the vector u − u′ is non-zero. Finally

d(u − u′) = du − d
(

d∗(dd∗)−1
)

du = du − du = 0
which means that for every s ∈ S

π(s)(u − u′) − (u − u′) = 0 .

Thus u − u′ is a non-zero invariant vector, which leads to a contradiction
and ends the proof of Proposition 1. �

3 Proof of Theorem 1

Let us define the operator D : C1 → C2 as follows:
Df

(

(s1, s2)
)

= f(s1) − f(s2) ,

where f ∈ C1 and (s1, s2) ∈ T .

3.1 Relation between the operators d and D. The advantage of
the operator D over the operator d is the fact that the definition of D does
not involve the representation π. The following statement expresses the
relation between the operators D and d, which is essential for the proof of
Theorem 1.
Proposition 2. For every f ∈ C1 one has

1
3 〈df, df〉 = 〈Df,Df〉 − 〈f, f〉 .

Proof. First of all we need the following:
Lemma 4. For every f ∈ C1 one has

〈f, f〉 =
∑

(s,s′)∈T

〈

f(s−1s′), f(s−1s′)
〉

, (4)

df
(

(s, s′)
)

= −df(
(

s′, s)
)

, (5)

df
(

(s, s′)
)

= −π(s)df
(

(s−1, s−1s′)
)

= π(s′)df
(

((s′)−1, (s′)−1s)
)

, (6)
1
3〈df, df〉 =

∑

(s,s′)∈T

〈

df((s, s′)), π(s)f(s−1s′)
〉

. (7)
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Proof. First we have
∑

(s,s′)∈T

〈

f(s−1s′), f(s−1s′)
〉

=
∑

s′′∈S

∑

(s,s′)∈T ;s−1s′=s′′

〈

f(s′′), f(s′′)
〉

=
∑

s′′∈S

〈

f(s′′), f(s′′)
〉

n(s′′) = 〈f, f〉 ,

which proves (4). Secondly

df
(

(s, s′)
)

= f(s) − f(s′) + π(s)f(s−1s′)

= −(

f(s′) − f(s) + π(s)π(s−1s′)f((s′)−1s)
)

= −(

f(s′) − f(s) + π(s′)f((s′)−1s)
)

= −df
(

(s′, s)
)

,

which shows (5). Now the following equalities

df
(

(s, s′)
)

= f(s) − f(s′) + π(s)f(s−1s′)

= −π(s)
( − π(s−1)f(s) + π(s−1)f(s′) − f(s−1s′)

)

= −π(s)
(

f(s−1) − f(s−1s′) + π(s−1)f(s(s−1s′))
)

= −π(s)df
(

(s−1, s−1s′)
)

,

prove the first part of (6). The second part of (6) follows from

df
(

(s, s′)
)

= −df
(

(s′, s)
)

= −( − π(s′)df(((s′)−1, (s′)−1s))
)

.

Finally, the equality (7) will be a consequence of the following equalities.
Because of (6) we have

∑

(s,s′)∈T

〈

df((s, s′)), π(s)f(s−1s′)
〉

= 1
3

∑

(s,s′)∈T

(〈df((s, s′)), π(s)f(s−1s′)〉

+ 〈−π(s)df((s−1, s−1s′)), π(s)f(s−1s′)〉
+ 〈π(s′)df(((s′)−1, (s′)−1s)), π(s)f(s−1s′)〉)

= 1
3

∑

(s,s′)∈T

(〈df((s, s′)), π(s)f(s−1s′)〉 + 〈df((s−1, s−1s′)),−f(s−1s′)〉

+ 〈df(((s′)−1, (s′)−1s)), π((s′)−1s)f(s−1s′)〉)

= 1
3

∑

(s,s′)∈T

(〈df((s, s′)), π(s)f(s−1s′)〉.

+ 〈df((s, s′)),−f(s′)〉 + 〈df((s, s′)), f(s)〉)

= 1
3

∑

(s,s′)∈T

〈

df((s, s′)), f(s) − f(s′) + π(s)f(s−1s′)
〉
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= 1
3

∑

(s,s′)∈T

〈

df((s, s′)), df((s, s′))
〉

= 1
3〈df, df〉 ,

which shows (7) and ends the proof of Lemma 4. �

Now, by definitions of d and D we have
df

(

(s, s′)
)

= Df
(

(s, s′)
)

+ π(s)f(s−1s′) .

Thus by (7) we get the following equalities

〈Df,Df〉 =
∑

(s,s′)∈T

〈

df((s, s′)) − π(s)f(s−1s′), df((s, s′)) − π(s)f(s−1s′)
〉

=
∑

(s,s′)∈T

〈

df((s, s′)), df((s, s′))
〉

+
∑

(s,s′)∈T

〈

f(s−1s′), f(s−1s′)
〉

− 2
∑

(s,s′)∈T

〈

df((s, s′)), π(s)f(s−1s′)
〉

= 〈df, df〉 + 〈f, f〉 − 2
3〈df, df〉 = 1

3 〈df, df〉 + 〈f, f〉 ,

which ends the proof of Proposition 2. �

3.2 Reduction to the graph L(S). The operators d and d∗ act on
infinite dimensional spaces in general. But we will show that their spectral
analysis can be reduced to the finite dimensional case, namely to the spec-
tral analysis of the operator ∆ acting on l2(L(S),deg). More precisely we
have
Proposition 3. For every f ∈ C1 one has

1
3 〈df, df〉 + 1

2λ1(L(S))〈d∗f, d∗f〉 ≥ 2
(

λ1(L(S)) − 1
2

) 〈f, f〉 .

Proof. By definition every f ∈ C1 is a function on the graph L(S), which
we will denote by f as well. We have then

〈f, f〉C1 = 〈f, f〉L(S) ,

〈Df,Df〉C2 =
∑

(s,s′)∈T

〈

f(s) − f(s′), f(s) − f(s′)
〉

= 2〈∆f, f〉L(S) .

We need the following:
Lemma 5. For every f ∈ C1 the function F : L(S) → Hπ, defined as

F (s) = f(s) +
d∗f
2

for s ∈ S ,

is orthogonal to the constant functions on L(S).

Proof. Let us consider any u ∈ Hπ. Then

〈F, u〉L(S) =
∑

s∈S

〈

f(s) +
d∗f
2

, u

〉

Hπ

n(s)
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=
〈∑

s∈S

f(s)n(s), u
〉

Hπ

+ 〈d∗f, u〉Hπ

∑

s∈S

n(s)
2

=
〈

− d∗f · |T |
2

, u

〉

Hπ

+ 〈d∗f, u〉Hπ · |T |
2

= 0 ,

which ends the proof of Lemma 5. �

Now by definition of λ1 = λ1(L(S)) we have

〈∆f, f〉L(S) =
〈

∆
(

f +
d∗f
2

)

, f +
d∗f
2

〉

L(S)

≥ λ1

〈

f +
d∗f
2

, f +
d∗f
2

〉

L(S)

= λ1〈f, f〉L(S) +
λ1

2
〈f, d∗f〉L(S)

= λ1〈f, f〉L(S) +
λ1

2

〈
∑

s∈S

f(s)n(s)
|T | , d∗f

〉

|T |

= λ1〈f, f〉C1 − λ1

4
〈d∗f, d∗f〉C0 .

So finally,
2λ1〈f, f〉C1 − 〈f, f〉C1 ≤ 2〈∆f, f〉L(S) − 〈f, f〉C1 + λ1

2 〈d∗f, d∗f〉C0

= 〈Df,Df〉C2 − 〈f, f〉C1 + λ1
2 〈d∗f, d∗f〉C0

= 1
3〈df, df〉C2 + λ1

2 〈d∗f, d∗f〉C0 ,

which ends the proof of Proposition 3 by applying Proposition 2. �

Now we are in a position to prove Theorem 1. If f ∈ B1, one has df = 0
and Proposition 3 gives the inequality:

〈dd∗f, f〉 ≥ 2
(

2 − 1
λ1(L(S))

)

〈f, f〉 .

By Proposition 1 this implies Theorem 1.

4 Geometric Conditions

Theorem 1 required the analysis of the spectrum of ∆ acting on l2(L(S),deg).
This section is devoted to the study of geometric conditions concerning the
configurations of vectors in finite dimensional Euclidean spaces which imply
property (T).
Proof of Theorem 2. By Proposition 1,

C(S) =
1√
3

min
f∈B1

〈d∗f, d∗f〉
〈f, f〉 ,
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is a Kazhdan constant with respect to S. The function f can be represented
by n = |S| vectors vs1, . . . , vsn ∈ Hπ, where vsi = f(si).

Let us check that conditions 1 and 2 in Definition 2 are satisfied. The
condition that f ∈ B1 means that df = 0, i.e.

0 = f(s) − f(s′) + π(s)f(s−1s′) if s, s′, s−1s′ ∈ S .

In particular
‖vs − vs′‖ = ‖vs−1s′‖ .

Secondly
‖vs‖ =

∥
∥f(s)

∥
∥ =

∥
∥π(s)f(s−1)

∥
∥ =

∥
∥f(s−1)

∥
∥ = ‖vs−1‖ .

Now

〈d∗f, d∗f〉 =
〈

− 2
∑

s∈S

f(s)
n(s)
|T | ,−2

∑

s∈S

f(s)
n(s)
|T |

〉

|T |

= 4
∥
∥
∥

∑

s∈S

vs deg(s)
∥
∥
∥

2 1
|T |

and
〈f, f〉 =

∑

s∈S

‖f(s)‖2n(s) =
∑

s∈S

‖vs‖2 deg(s) .

Finally, we can suppose that the vectors vs1 , . . . , vsn are in some R
n. Thus

K(S) ≤ C(S) ,

which by Proposition 1 ends the proof of Theorem 2. �

In cases of a large symmetry of the generating set, one can obtain better
results concerning sufficient conditions for property (T) presented here and
estimates of Kazhdan constants. Such symmetries were used in [PZ] to
improve estimates of Kazhdan constants for SL(n, Z).

In certain situations we can impose further conditions on the set of
vectors in P (S) which was used to define the constant K(S) in Theorem 2.
Namely let us suppose that there exists a finite subgroup H ⊂ Γ such that

hSh−1 = S (8)
for every h ∈ H.

We define
degH(s) = #{s′; s−1s′ ∈ SH} .

Definition 3. Let PH(S) be the set of vectors vs1 , . . . , vsn ∈ R
n where

n = |S| and s1, . . . , sn are different elements of S such that

1. ‖vs − vs′‖ = ‖vs−1s′‖ if s, s′, s−1s′ ∈ S,

2. ‖vs1 − vs2‖ = ‖vs3‖ if for s1, s2, s3 ∈ S and for some h0 ∈ H we have
s−1
1 s2 = s3h0,
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3. ‖vs‖ = ‖vs−1‖ for s ∈ S,
4. vs = vs′ if s−1s′ ∈ H,
5.

∑

s∈S vs degH(s) = 0.
Theorem 7. If the set PH(S) can consist only of zero vectors then Γ has
property (T).

The proof of Theorem 7 is similar to the proof of Theorem 2.
In the case of a very symmetric set of generators S as above, we can con-

sider a modified version of the graph L(S) which will be denoted L(S,H).
We consider the situation when Γ is a group generated by a finite,

symmetric subset S, such that e �∈ S. Let H ⊂ Γ be a finite subgroup such
that hSh−1 = S for every h ∈ H and S ∩ H = ∅.
Definition 4. We define a finite graph L(S,H) as follows:

1. vertices of L(S,H) = {s; s ∈ S},
2. edges of L(S,H) = {(s, s′); s, s′ ∈ S and s−1s′ ∈ SH}.
As a corollary of Theorem 7 we get

Theorem 8. Let Γ be a group generated by a finite symmetric subset S,
such that e �∈ S. Let H ⊂ Γ be a finite subgroup such that hSh−1 = S for
every h ∈ H and S ∩ H = ∅. If the graph L(S,H) is connected and

λ1

(

L(S,H)
)

> 1
2

then Γ has property (T ).

5 Examples

5.1 Ã2-groups. In [CMS], the family of groups acting co-compactly on
buildings of type Ã2 was constructed. These groups are parameterized by
an integer q which is a power of a prime number. They admit a presentation
such that L(S) is the incidence graph of the projective plane P

2(Fq) over
the finite field Fq, i.e.

vertices of L(S) =
{

points p and lines l such that p, l ∈ P
2(Fq)

}

,

edges of L(S) =
{

(p, l); p ∈ l
}

.

5.1.1 Kazhdan constants. In [CMS], the best possible Kazhdan
constants for these groups were computed:

Kazhdan constant =
√

2εq ,

where
εq = 1 − q

q2 + q + 1

((√
q +

√

q−1
)

+ 1
)

.
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5.1.2 Computations by Feit and Higman. In [FH], Feit and
Higman computed the spectrum of the Laplace operator on graphs which
are incidence graphs of finite projective planes.
Proposition 4 (Feit, Higman). Let L be the incidence graph of P

2(Fq).
Then

λ1(L) = 1 −
√

q

q + 1
.

Proof. Let f be an eigenfunction of ∆ acting on l2(L,deg) corresponding
to an eigenvalue λ. Let v be a vertex of L such that f(v) �= 0. Because of
the duality between the points and the lines in P

2(Fq) we can suppose that
v corresponds to a point p in P

2(Fq). We can also suppose that f(v) = 1.
The group of automorphisms of P

2(Fq) fixing the point p acts transitively
on the lines containing p, the points different from p and finally on the
lines which do not contain p. Thus there are a, b, c ∈ R such that in
the space of the eigenfunctions of ∆ on l2(L,deg) with the eigenvalue λ
there is a function f such that f(v) = 1, and which is equal to a, b and c
on the vertices corresponding respectively to the lines containing p, to the
points different from p and to the lines which do not contain p. As f is an
eigenfunction of ∆ with the eigenvalue λ we have the following relations:

λ = 1 − a ,

λa = a − 1
q + 1

(qb + 1) ,

λb = b − 1
q + 1

(qc + b) ,

λc = c − b .

This implies that λ ∈ {

0, 1 −
√

q
q+1 , 1 +

√
q

q+1 , 2
}

. �

By Theorem 1 this gives the following estimation for Kazhdan constants:
2√
3

(

2 − 1
λ1(L)

)

=
2√
3

(

2 − q + 1
(q + 1 −√

q)

)

.

6 Generic Hyperbolic Groups

In this section we prove a result concerning genericity of hyperbolic groups.
One of the possible definitions of the hyperbolicity is that all Dehn di-

agrams satisfy a linear isoperimetric inequality (for the relevant definitions
and statements see [A et al.], [GhH], [Gr1] and [LyS]). But in order to prove
that a given group is hyperbolic it is enough to prove the linear isoperimet-
ric inequality for a finite number of Dehn diagrams (see [Gr1] and [Pap]).
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Let us be more precise. We consider a group Γ given by a finite presentation
〈S;R〉 where S = {s1, . . . , ss}, R = {r1, . . . , rr}. A Dehn diagram D over
the group Γ is a finite, planar, connected and simply connected 2-complex
such that every 2-cell is labeled with a cyclic permutation of some relation
r±1
i ∈ R. A word w in the alphabet S represents the identity in Γ if and

only if there is a Dehn diagram D over Γ such that w is the boundary of D.
The area of D is the number of faces of D and the area of the word w rep-
resenting the trivial element is the minimal area of the Dehn diagram with
the boundary w. The area A(w) of the word w is also equal to the smallest
n such that w =

∏n
i=1 uir

±1
i u−1

i where ui are words in the free group F (S)
on S, ri ∈ R and the equality is in F (S). The group Γ is hyperbolic if
there exists a positive constant c such that for every word w ∈ F (S) which
represents the trivial element in Γ we have A(w) ≤ c|w|. But in fact it is
enough to check this inequality for finitely many w ∈ F (S). More precisely
we have:
Proposition 5 (Gromov [Gr1], Papasoglu [Pap]). Let 〈S;R〉 be a triangu-
lar presentation of the group Γ. Assume that for some integer K > 0 every
diagram A with the area K2/2 ≤ |A| ≤ 240K2 satisfies |A| ≤ 1

20000 |∂A|2,
where |∂A| is the length of the boundary ∂A with respect to S. Then every
diagram A over Γ satisfies A ≤ K2|∂A|.
Proof. For a fixed d < 1

2 let K = 20000
25( 1

2
−d)

, ε = 1
2(1

2 − d) and C = 240K2.

Let us estimate the number of presentations of density d with m gen-
erators, for which there exists a Dehn diagram D of a given combinatorial
type which consists of c cells, where c ≤ C. By a given combinatorial type
we mean that we prescribe which cells have common edges. Suppose that
the lengths of words over which the cells meet sum up to L.

Suppose that in the given diagram there are n1 relators r1, n2 relators
r2, . . . , nk relators rk and that n1 ≥ n2 ≥ . . . ≥ nk. Thus n1 + . . .+nk = c.

First we put in the diagram n1 relators r1. If they have some edges
in common, denote by l1 the length of the longest common sequence, i.e.
0 ≤ l1 ≤ 3. Then let us put in the diagram n2 relators r2. And let l2 denote
the longest sequence that the relation r2 has in common with the relations
which are in the diagram so far, i.e. the relators r1 and r2. We continue
the process and in the same manner we define l3, . . . , lk. In particular

L ≤ n1l1 + . . . + nklk .

If we consider the first i relators r1, . . . , ri the number of choices of such
i relators is equal to

(2m − 1)3i−(l1+...+li)
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As we consider the presentations with (2m − 1)3d relations for the other
relations we have (

(2m − 1)3
)(2m−1)3d−i

choices.
Our i relations do not have to be the first ones so we have to include the

number of possible permutations of these i relations among all (2m − 1)3d

relations, which can be bounded by
(

(2m − 1)3d
)i

.

Thus the number of presentations which give such a diagram can be bounded
by

(2m − 1)3di
(

(2m − 1)3
)(2m−1)3d−i(2m − 1)3i−(l1+...+li)

= (2m − 1)3di−(l1+...+li)+3(2m−1)3d
.

If we divide it by the number of all presentations we get
(2m − 1)3di−(l1+...+li)

which tends to zero when m tends to infinity if 3di− (l1 + . . .+ li) < −ε/C.
In our considerations the number of diagrams we consider is finite. Thus

when m tends to infinity for most presentations, for the diagrams we con-
sider, we have for every 1 ≤ i ≤ k

3di − (l1 + . . . + li) ≥ − ε
C .

If we sum the above inequalities with the i-th inequality multiplied by the
positive coefficient ni − ni+1 for i = 1, . . . , k − 1 and the coefficient nk for
i = k we get

3dc − (n1l1 + . . . + nklk) ≥ −ε.

This implies that most presentations will give rise to diagrams such that
3dc − L ≥ −ε .

By the above, when m tends to infinity for almost all presentations with
relations of length 3 and density d, all diagrams D with at most C = 240K2

cells satisfy
3dc − L > −ε = 1

2

(

d − 1
2

)

.

But
3c − 2L = |∂D|

where |∂D| is the sum of the lengths of edges in the boundary ∂D of D.
As c = |D| this implies
|∂D| = 3c−2L > 3|D|−2ε−6|D|d = 6|D| ( 1

2 − d
)−(

1
2 − d

) ≥ 5|D| (1
2 − d

)

which gives for |D| ≥ K2/2
1

20000
|∂D|2 ≥ 1

20000
25|D|2

(
1
2
− d

)

≥ |D| 1
20000

25|K|
(

1
2
− d

)

= |D|.
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By Proposition 5 this implies that Γ is hyperbolic and infinite because we
considered all and not only minimal diagrams. �

7 Property (T ) and Generic Presentations

In this section we show that a simple combinatorial condition which implies
property (T) (see Proposition 6) is satisfied for generic groups for d > 1/3.
We start by analyzing the situation for d < 1/3.

Proof of Theorem 5. The number of presentations without two last gen-
erators from m generators is equal to

(

(2m − 5)3
)m3d

.

The probability that we will get such a presentation is equal to

((2m − 5)3)m
3d

((2m − 1)3)3d
≥

(
2m − 5
2m − 1

)3m3d

and the last term tends to 1 when m tends to infinity as 3d < 1. �

The rest of this section concerns the proof of Theorem 4.

7.1 Property (T ) and presentations. Let Γ be a group given by a
presentation

Γ =
〈

s1, . . . , sk;R1, . . . , Rn, R′
1, R

′
2, . . .

〉

(9)

where s1, . . . , sk are generators, the relations R1, . . . , Rn are words with
s1, . . . , sk, s

−1
1 , . . . , s−1

k of length 3 and the relations R′
1, R

′
2, . . . are arbitrary

words with s1, . . . , sk, s
−1
1 , . . . , s−1

k and their number does not have to be
finite. We define the graph L′(S) as follows. The vertices of the graph L′(S)
are generators s1, . . . , sk and their inverses s−1

1 , . . . , s−1
k . For every relation

R ∈ {R1, . . . , Rn}, say R = sxsysz, we add to the graph the edges (s−1
x , sy),

(s−1
y , sz) and (s−1

z , sx). Thus in the graph L′(S) we can have multiple edges.
The definition of the graph L′(S) is slightly different from the definition of
the graph L(S). Still we can prove an analogue of Theorem 1.

Proposition 6. Let Γ be a group given by a presentation (9). If the
graph L′(S) is connected and

λ1(L′(S)) > 1
2

then Γ has property (T ).

Proof. For a unitary representation π : Γ → U(Hπ) of Γ let us consider a
self-adjoint operator M : Hπ → Hπ defined as follows
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Mv =
1

DEG(S)
(

π(s1)v · deg(s1) + . . . + π(sk)v · deg(sk)

+ π(s−1
1 )v · deg(s−1

1 ) + . . . π(s−1
k )v · deg(s−1

k )
)

where DEG(S) = deg(s1) + . . . + deg(sk) + deg(s−1
1 ) + . . . + deg(s−1

k ). Let
us suppose that the representation π almost has invariant vectors but does
not have any non-zero invariant vector.

This means that for any ε > 0 there exists a positive λ such that
1 > λ > (1 − ε) and there exist vectors u and uλ ∈ Hπ such that

Mu = λu + uλ

where ‖uλ‖ < 1
2 (1 − λ) ‖u‖. On the vertices of the graph L′(S) let us define

a function f : L′(S) → Hπ as follows:

f(s±1
i ) = π(s±1

i )u − u

for every generator s±1
i . Then we have

〈∆f, f〉l2(L′(S),deg) =
∑

(s,s′)∈ oriented edges in L′(S)

〈

f(s′) − f(s), f(s′) − f(s)
〉

=
n∑

i=1;Ri=sxisyiszi

(〈f(s−1
xi

) − f(syi), f(s−1
xi

) − f(syi)〉

+ 〈f(s−1
yi

) − f(szi), f(s−1
yi

) − f(szi)〉
+ 〈f(s−1

zi
) − f(sxi), f(s−1

zi
) − f(sxi)〉

)

=
n∑

i=1;Ri=sxisyiszi

(〈π(s−1
xi

)u−u−(π(syi)u−u), π(s−1
xi

)u−u−(π(syi)u−u)〉

+ 〈π(s−1
yi

)u − u − (π(szi)u − u), π(s−1
yi

)u − u − (π(szi)u − u)〉
+ 〈π(s−1

zi
)u−u−(π(sxi)u−u), π(s−1

zi
)u−u−(π(sxi)u−u)〉)

=
n∑

i=1;Ri=sxi
syi

szi

(〈π(s−1
yi

s−1
xi

)u − u, π(s−1
yi

s−1
xi

)u − u〉

+ 〈π(s−1
zi

s−1
yi

)u − u, π(s−1
zi

s−1
yi

)u − u〉
+ 〈π(s−1

xi
s−1
zi

)u − u, π(s−1
xi

s−1
zi

)u − u〉)

=
n∑

i=1;Ri=sxisyiszi

(〈π(szi)u − u, π(szi)u − u〉

+ 〈π(sxi)u − u, π(sxi)u − u〉 + 〈π(syi)u − u, π(syi)u − u〉)
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=
n∑

i=1;Ri=sxsysz

(〈f(szi), f(szi)〉 + 〈f(sxi), f(sxi)〉 + 〈f(syi), f(syi)〉
)

= 1
2

n∑

i=1;Ri=sxsysz

(〈f(szi), f(szi)〉 + 〈f(s−1
zi

), f(s−1
zi

)〉

+ 〈f(sxi), f(sxi)〉 + 〈f(s−1
xi

), f(s−1
xi

)〉
+ 〈f(syi), f(syi)〉 + 〈f(s−1

yi
), f(s−1

yi
)〉) = 1

2〈f, f〉l2(L′(S),deg) .

On the other hand we have
∣
∣〈f, 1〉l2(L′(S),deg)

∣
∣ =

∣
∣
∣

∑

s=s1,...,sk,s−1
1 ,...,s−1

k

〈π(s)u − u, 1〉Hπ deg(s)
∣
∣
∣

=
∣
∣〈DEG(S)(Mu − u), 1〉Hπ

∣
∣

= DEG(S)
∣
∣〈(λ − 1)u + uλ, 1〉Hπ

∣
∣

≤ DEG(S)
(|λ − 1|‖u‖ + ‖uλ‖

)

≤ DEG(S)2|λ − 1|‖u‖ .

This implies

‖f‖l2(L′(S),deg) =
√ ∑

s=s1,...,sk,s−1
1 ,...,s−1

k

〈f(s), f(s)〉deg(s)

=
√ ∑

s=s1,...,sk,s−1
1 ,...,s−1

k

〈π(s)u − u, π(s)u − u〉deg(s)

=
√ ∑

s=s1,...,sk,s−1
1 ,...,s−1

k

2〈u, u〉deg(s) − 2
〈

u, π(s)u
〉

deg(s)

=
√

2〈u, u − Mu〉DEG(S)

=
√

2
〈

u, (1 − λ)u + uλ

〉

DEG(S)

=
√

2(1 − λ)〈u, u〉DEG(S) + 2〈u, uλ〉DEG(S)

≥
√

2(1 − λ)〈u, u〉DEG(S) − 21
2 (1 − λ)〈u, u〉DEG(S)

=
√

1 − λ
√

DEG(S)‖u‖
≥ √

1 − λ
√

DEG(S)
|〈f, 1〉|

DEG(S)2(1 − λ)

= 〈f, 1〉 1
2
√

λ − 1
√

DEG(S)
.
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Because 〈

f − 〈f, 1〉
DEG(S)

, 1
〉

= 0 ,

by definition of λ1 we have

λ1(L′(S)) ≤ 〈∆f, f〉
〈

f − 〈f,1〉
DEG(S) , f − 〈f,1〉

DEG(S)

〉

≤ 〈∆f, f〉
(‖f‖ − ∥

∥ 〈f,1〉
DEG(S)

∥
∥
)2

=
〈∆f, f〉

(‖f‖ − |〈f, 1〉|)2

≤
1
2‖f‖2

(‖f‖ − 2
√

(1 − λ)DEG(S)‖f‖)2 ≤ 1
2

1
1 − 2

√

εDEG(S)
.

As ε can be arbitrary small this implies that

λ1(L′(S)) ≤ 1
2 .

This gives us a desired contradiction and finishes the proof of Proposi-
tion 6. �

7.2 Random graphs. Let L(n, k) be the set of finite graphs of degree
k = 2d with n vertices. We consider the following model for L(n, k) [Bo2],
[Fr]. We take d permutations π1, . . . , πd on n letters. These permutations
give rise to the graph with vertices V = {1, . . . , n} and the unoriented edges
E = {(i, πj(i))} for i = 1, . . . , n, j = 1, . . . , d. Two graphs are considered in
this model to be different if the corresponding permutations are different.

In [Fr], it was proven that

Proposition 7 [Fr]. There exists a positive constant c, independent of k,
such that

lim
n→+∞

#
{

L ∈ L(n, k); λ1(L) ≥ 1 − (√
2k−1
k + log(k)

k + c
k

)}

#L(n, k)
= 1 . (10)

7.3 Random groups. We consider the following model F for random
groups. Let v be a natural number and let {π1

1, π
1
2}, . . . , {πv

1 , πv
2} be v cou-

ples of permutations on 2m letters s1, . . . , sm, s−1
1 , . . . , s−1

m . These couples
of permutations give rise to the following 2mv relations for i = 1, . . . , v,
j = 1, . . . ,m

s±1
j πi

1(s
±1
j )πi

2(s
±1
j ) .

Let PF (m, v) be the set of presentations with m generators s1, . . . , sm and
the above relations given by v couples of permutations. Two presentations
are different if the permutations are different.
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Theorem 9. For any fixed v ≥ 1 one has

lim
m→+∞

# {P ∈ PF (m, v); Γ(P ) is infinite and hyperbolic}
#PF (m, v)

= 1 .

Theorem 9 can be proved in the same way as Theorem 3.

Theorem 10. For a fixed v which is sufficiently large one has

lim
m→+∞

# {P ∈ PF (m, v); Γ(P ) has property (T)}
#PF (m, v)

= 1 .

The density of relations in the model F is 1/3. In particular for d > 1/3
the groups in the model M are quotients of groups in the model F and
Theorem 4 follows from Theorem 10.
Proof of Theorem 10. Let us consider a presentation P ∈ PF (m, v). Let Γ
be a group defined by P . The graph L′ associated to P has 2m vertices. The
relation s±1

j πi
1(s

±1
j )πi

2(s
±1
j ) corresponds to the edges ((s±1

j )−1, πi
1(s

±1
j )),

((πi
1(s

±1
j ))−1, πi

2(s
±1
j )) and ((πi

2(s
±1
j ))−1, s±1

j ) in L′. Let us denote by L′
1,

L′
2 and L′

3 the graphs with the same vertices as L′ and such that for a
relation s±1

j πi
1(s

±1
j )πi

2(s
±1
j ) we put the edge ((s±1

j )−1, πi
1(s

±1
j )) in L′

1, the
edge ((πi

1(s
±1
j ))−1, πi

2(s
±1
j )) in L′

2 and the edge ((πi
2(s

±1
j ))−1, s±1

j ) in the
graph L′

3. The graph L′ has degree 6v and the graphs L′
1, L′

2 and L′
3 have

degree 2v. According to Proposition 6 in order to show that Γ has property
(T) we need to show that λ1(L′) > 1/2.
Lemma 6. If for i = 1, 2, 3 λ1(L′

i) > 1/2 then

λ1(L′) > 1
2 .

Proof. Suppose that λ1(L′) ≤ 1/2. Then there exists f ∈ l20(L
′,deg)

such that 〈∆f, f〉 ≤ 1
2〈f, f〉. Let fi denote the restriction of the function

f to the graph L′
i. Because the graphs L′ and L′

i are regular, we have
fi ∈ l20(L

′
i,deg). Furthermore

∑

i=1,2,3

〈∆fi, fi〉 =
∑

i=1,2,3

〈dfi, dfi〉 = 〈df, df〉 = 〈∆f, f〉

≤ 1
2〈f, f〉 =

∑

i=1,2,3

1
2〈fi, fi〉 ,

where for an edge (s, s′), df(s, s′) = f(s) − f(s′). Thus for some i we have
〈∆fi, fi〉 ≤ 1

2 〈fi, fi〉. By the definition of λ1 this implies λ1(L′
i) ≤ 1

2 and
gives a desired contradiction. �

The graphs L′
1, L

′
2 and L′

3 were obtained in a similar manner. Thus if
we show that for most presentations λ1(L′

1) > 1/2 the same is true for L′
2

and L′
3.
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The construction of the graph L′
1 corresponds exactly to the model of

random graphs L(n, k) described in section 7.2. For most of these graphs
by Proposition 7 we have

λ1 ≥ 1 −
(√

4v − 1
2v

+
log(2v)

2v
+

c

2v

)

where c is a constant independent of v. Thus for v sufficiently large
λ1 > 1/2, which ends the proof of Theorem 10. �

8 Stability of Property (T)

In this section we prove a result concerning stability of property (T).
Proof of Theorem 6. We have to consider the case when Γ satisfies condi-
tion (2) of Theorem 1. We can suppose that the presentation of Γ consists
of relations of length three. Removing one relation, for instance the rela-
tion s1s2s3 = e, corresponds to removing the edges (s−1

1 , s2), (s−1
2 , s3) and

(s−1
3 , s1) from L(S). Let us see how this can change λ1(L(S)). Suppose

that in the graph (L(S),deg) we removed an edge (sa, sb) and we obtained
the graph (L′(S),deg′). Let us compare λ1(L′(S)) to λ1(L(S)).

For f ∈ l2(L(S),deg) let EL(S)(f) be its Dirichlet form and let varL(S)

be its variation, i.e.
EL(S)(f) = 〈∆f, f〉l2(L(S),deg) =

∑

s,s′∈L(S),s∼s′

∣
∣f(s) − f(s′)

∣
∣2,

varL(S)(f) = min
c

‖f − c‖2
l2(L(S),deg) .

It is not difficult to see that the minimum in the definition of varL(S)(f) is
attained when c is equal to the mean value of f , i.e.

c =
〈f, 1〉l2(L(S),deg)

〈1, 1〉l2(L(S),deg)
.

So λ1(L(S)) can be defined as
λ1(L(S)) = sup

{

r ∈ R; r varL(S)(f) ≤ EL(S)(f) for any f ∈ l2(L(S),deg)
}

.

Thus
varL′(S)(f) = min

c
‖f − c‖2

l2(L′(S),deg′)

≤
∥
∥
∥
∥
∥
f − 〈f, 1〉l2(L(S),deg)

〈1, 1〉l2(L(S),deg)

∥
∥
∥
∥
∥

2

l2(L′(S),deg′)

≤ max
s∈L(S)

{
deg′(s)
deg(s)

}
∥
∥
∥
∥
∥
f − 〈f, 1〉l2(L(S),deg)

〈1, 1〉l2(L(S),deg)

∥
∥
∥
∥
∥

2

l2(L(S),deg)
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≤ varL(S)(f) .

The last inequality follows from the fact that deg′(s) ≤ deg(s) for any
vertex s.

Now
EL′(S)(f) = EL(S)(f) − ∣

∣f(sa) − f(sb)
∣
∣2

≥ λ1(L(S))varL(S)(f) − ∣
∣f(sa) − f(sb)

∣
∣2

≥ λ1(L(S))varL(S)(f) − 2
min{deg(sa),deg(sb)}varL(S)(f) .

As varL(S)(f) ≥ varL′(S)(f) and as EL(S)(f) is positive, we get

EL′(S)(f) ≥
(

λ1(L(S)) − 2
min{deg(sa),deg(sb)}

)

varL(S)(f)

from which follows

λ1(L′(S)) ≥ λ1(L(S)) − 2
min{deg(sa),deg(sb)} .

Let us recall that removing one relation from the presentation of the group
Γ corresponds to removing three edges from the graph L(S). Thus from
the above inequality it follows that if we remove t relations from the pre-
sentation of the group Γ, then for the graph L′′(S) associated to this new
group we have

λ1(L′′(S)) > λ1(L(S)) − 6t
deg(S) − 3t

. (11)

In order to show that the group obtained after removing t relations has
property (T) if suffices by Theorem 1 to show that λ1(L′′(S)) > 1/2.
By (11) this is true for t such that

λ1(L(S)) − 6t
deg(S) − 3t

≥ 1
2

.

The above inequality is satisfied by any t ∈ N such that
t ≤ 1

11

(

λ1(L(S)) − 1
2

)

deg(S) ,

which ends the proof of Theorem 6. �
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groupes agissant sur des espaces symétriques ou des immeubles, Bull. Soc.
Math. France 126:1 (1998), 107–139.

[Pap] P. Papasoglu, An algorithm detecting hyperbolicity, in Geometric and
computational perspectives on infinite groups (Minneapolis, MN and New
Brunswick, NJ, 1994), DIMACS Ser. Discrete Math. Theoret. Comput.
Sci. 25, Amera. Math. Soc., Providence, RI (1996), 193–200.

[Po] S. Popa, Some properties of the symmetric enveloping algebra of a sub-
factor, with applications to amenability and property (T), Doc. Math. 4
(1999), 665–744.

[S] P. Sarnak, Some Applications of Modular Forms, Cambridge Tracts in
Mathematics 99, Cambridge University Press, Cambridge, 1990.

[Sh1] Y. Shalom, Explicit Kazhdan constants for representations of semisimple
and arithmetic groups, Ann. Inst. Fourier (Grenoble) 50:3 (2000), 833–863.

[Sh2] Y. Shalom, Rigidity of commensurators and irreducible lattices, Invent.
Math. 141:1 (2000), 1–54.

[Sh3] Y. Shalom, Bounded generation and Kazhdan’s property (T), Publ. IHES
90 (1999), 145–168.

[Sk] G. Skandalis, Une notion de nucléarité en K-théorie (d’après J. Cuntz),
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