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0 Introduction

Let G be a connected reductive algebraic group defined over Q and let
G(A) be the group of points of G with values in the ring of adèles of Q.
Then G(Q) embeds diagonally as a discrete subgroup of G(A). Let G(A)1

be the intersection of the kernels of the maps x �→ |χ(x)|, x ∈ G(A), where
χ ranges over the group X(G)Q of characters of G defined over Q. Then
the (noninvariant) trace formula of Arthur is an identity∑

o∈O
Jo(f) =

∑
χ∈X

Jχ(f) , f ∈ C∞
0 (G(A)

1) ,

between distributions on G(A)1. The left-hand side is the geometric side
and the right-hand side the spectral side of the trace formula. The distribu-
tions Jo are parametrized by semisimple conjugacy in G(Q) and are closely
related to weighted orbital integrals on G(A)1.
In this paper we are concerned with the spectral side of the trace for-

mula. The distribution Jχ are defined in terms of truncated Eisenstein
series. They are parametrized by the set of cuspidal data X which consists
of the Weyl group orbits of pairs (MB , rB), where MB is the Levi compo-
nent of a standard parabolic subgroup and rB is an irreducible cuspidal
automorphic representation of MB(A)1. In [A4], Arthur has derived an
explicit formula for the distributions Jχ which expresses them in terms of
generalized logarithmic derivatives of intertwining operators. So far, the
resulting integral-series is only known to converge conditionally. This suf-
fices, for example, for the comparison of trace formulas which, at present,
is the main application of the trace formula. However, with regard to po-
tential applications of the trace formula in spectral theory and geometry
it would be highly desirable to know that the spectral side of the trace
formula is absolutely convergent. This would also simplify the applications
of the trace formula in the theory of automorphic forms [L].
The problem of the absolute convergence of the spectral side of the

trace formula is the main issue of the present paper. We will not settle the
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problem, but we shall reduce it to a question about local components of
automorphic representations.
To describe the results in more detail we have to introduce some no-

tation. We fix a Levi component M0 of a minimal parabolic subgroup P0
of G. Let P be a parabolic subgroup of G, defined over Q, with unipotent
radical NP . LetMP be the unique Levi component of P which contains M0.
We denote the split component of the center of MP by AP and its Lie al-
gebra by aP . For parabolic groups P ⊂ Q there is a natural surjective
map aP → aQ whose kernel we will denote by a

Q
P . Let A2(P ) be the space

of square integrable automorphic forms on NP (A)MP (Q)\G(A). Let Q
be another parabolic subgroup of G, defined over Q, with Levi component
MQ, split component AQ and corresponding Lie algebra aQ. LetW (aP , aQ)
be the set of all linear isomorphisms from aP to aQ which are restrictions
of elements of the Weyl group W (A0). The theory of Eisenstein series
associates to each s ∈W (aP , aQ) an intertwining operator

MQ|P (s, λ) : A2(P )→ A2(Q) , λ ∈ a∗P,C ,

which, for Re(λ) in a certain chamber, can be defined by an absolutely
convergent integral and admits an analytic continuation to a meromorphic
function of λ ∈ a∗P,C . Set

MQ|P (λ) :=MQ|P (1, λ) .
Let Π(MP (A)1) be the set of equivalence classes of irreducible unitary rep-
resentations of MP (A)1. Let χ ∈ X and π ∈ Π(MP (A)1). Then (χ, π)
singles out a certain subspace A2

χ,π(P ) of A2(P ) (see §1.6). Let A2
χ,π(P ) be

the Hilbert space completion of A2
χ,π(P ) with respect to the canonical inner

product. For each λ ∈ a∗P,C we have an induced representation ρχ,π(P, λ)

of G(A) in A2
χ,π(P ).

For each Levi subgroup L let P(L) be the set of all parabolic subgroups
with Levi component L. If P is a parabolic subgroup, let ∆P denote the set
of simple roots of (P,AP ). Let L be a Levi subgroup which contains MP .
Set

ML(P, λ) = lim
Λ→0

( ∑
Q1∈P(L)

vol
(
aGQ1
/Z(∆∨

Q1
)
)
MQ|P (λ)−1 MQ|P (λ+ Λ)∏

α∈∆Q1
Λ(α∨)

)
,

where λ and Λ are constrained to lie in ia∗L, and for each Q1 ∈ P(L), Q is a
group in P(MP ) which is contained in Q1. ThenML(P, λ) is an unbounded
operator which acts on the Hilbert space A2

χ,π(P ). In the special case that
L = M and dim aGL = 1, the operator ML(P, λ) has a simple description.
Let P be a parabolic subgroup with Levi component M . Let α be the
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unique simple root of (P,AP ) and let ω̃ be the element in (aGM )
∗ such that

ω̃(α∨) = 1. Let P be the opposite parabolic group of P . Then

ML(P, zω̃) = − vol(aGM/Zα∨)MP |P (zω̃)
−1 · d

dzMP |P (zω̃) .

Let f ∈ C∞
c (G(A)

1). Then Arthur [A4, Theorem 8.2] proved that Jχ(f)
equals the sum over Levi subgroupsM containingM0, over L containing M ,
over π ∈ Π(M(A)1), and over s ∈WL(aM )reg, a certain subset of the Weyl
group, of the product of

|WM
0 ||W0|−1

∣∣ det(s− 1)
a

L
M

∣∣−1|P(M)|−1,

a factor to which we need not pay too much attention , and of∫
ia∗L/ia∗G

∑
P∈P(M)

tr
(
ML(P, λ)MP |P (s, 0)ρχ,π(P, λ, f)

)
dλ . (0.1)

So far, it is only known that
∑

χ∈X |Jχ(f)| <∞ and the goal is to show that
the integral-sum obtained by summing (0.1) over χ ∈ X and π ∈ Π(M(A)1)
is absolutely convergent with respect to the trace norm.

Given π ∈ Π(M(A)) with π = ⊗vπv, let JQ|P (πv, λ) be the local
intertwining operator between the induced representations IGP (πv,λ) and
IGQ(πv,λ). By [CLL, §15] and [A7] there exist normalizing factors rQ|P (πv, λ)
such that the normalized intertwining operators

RQ|P (πv, λ) = rQ|P (πv, λ)−1JQ|P (πv, λ)

satisfy the conditions of Theorem 2.1 of [A7].
If v < ∞, let Kv ⊂ G(Qv) be an open compact subgroup. Denote

by RQ|P (πv , λ)Kv the restriction of RQ|P (πv, λ) to the subspace HP (πv)Kv

of Kv-invariant vectors in the Hilbert space HP (πv) of the induced repre-
sentation. If v = ∞, let K∞ ⊂ G(R) be a maximal compact subgroup.
Given π ∈ Π(M(R)) and σ ∈ Π(K∞), let RQ|P (π, λ)σ be the restriction of
RQ|P (π, λ) to the σ-isotypical subspace of HP (π). Let λπ and λσ denote
the Casimir eigenvalues of π and σ, respectively.
For a given place v, let Πdisc(M(Qv)) be the subset consisting of all

representations πv ∈ Π(M(Qv)) such that there exists an automorphic
representation π in the discrete spectrum of M(A) whose local component
at the place v is πv. Finally, let C1(G(A)1) be the space of integrable rapidly
decreasing functions on G(A)1 (see §1.3 for its definition). Then our main
result is the following theorem, which reduces the problem of the absolute
convergence of the spectral side of the Arthur trace formula to a problem
about local components of automorphic representations.



672 W. MÜLLER GAFA

Theorem 0.1. Suppose that for every M ∈ L(M0), Q,P ∈ P(M) and
every place v the following holds.

1) If v < ∞, then for every open compact subgroup Kv ⊂ G(Qv) and
every invariant differential operator Dλ on ia∗M there exists C > 0
such that ∥∥DλRQ|P (πv, λ)Kv

∥∥ ≤ C (0.2)

for all λ ∈ ia∗M and all πv ∈ Πdisc(M(Qv)).
2) If v =∞, then for all invariant differential operators Dλ on ia∗M there

exist C > 0 and N ∈ N such that∥∥DλRQ|P (π, λ)σ
∥∥ ≤ C(1 + ‖λ‖+ |λπ|+ |λσ |)N (0.3)

for all λ ∈ ia∗M , σ ∈ Π(K∞) and π ∈ Πdisc(M(R)).

Then for every f ∈ C1(G(A)1), the spectral side of the trace formula is
absolutely convergent.

We add some comments about the assumptions 1) and 2). It follows
from results of Arthur [A5, p. 51] and [A8, Lemma 2.1] that (0.2) and
(0.3) hold uniformly for tempered representations πv. On the other hand,
to establish (0.2), (0.3) or (0.4) is not a problem of pure local harmonic
analysis. One cannot expect that these estimations will hold uniformly
for all πv ∈ Π(M(Qv)). Let, for example, dim aM/aG = 1 and suppose
that for each ε > 0 there exists πv ∈ Π(M(Qv)) such that the normalized
intertwining operator RP |P (πv, λ) has a pole λ0 with |Re(λ0)| ≤ ε. Then
it is certainly not possible to obtain uniform estimates for derivatives of
RP |P (πv, λ) along the imaginary axis. An example where this actually
occurs is GLn.
Especially the uniformity in σ in (0.3) seems to be difficult to achieve.

Of course, this condition can be relaxed in various ways. If we relax (0.3)
by not requesting uniformity in σ, we get the following weaker version
of Theorem 0.1 which suffices for many purposes. Let K =

∏
vKv be a

maximal compact subgroup of G(A) which is admissible relative toM0 (see
§1.2).
Theorem 0.2. Suppose that in Theorem 0.1 in place of condition 2) the
following condition holds:

2′) If v =∞, then for all invariant differential operators Dλ on ia∗M and
all σ ∈ Π(K∞) there exist C > 0 and N ∈ N such that∥∥DλRQ|P (π, λ)σ

∥∥ ≤ C(1 + ‖λ‖ + |λπ|)N (0.4)

for all λ ∈ ia∗M and π ∈ Πdisc(M(R)).
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Then for every K-finite f ∈ C1(G(A)1), the spectral side of the trace for-
mula is absolutely convergent.

At the moment we don’t know how to prove any of the conditions (0.2),
(0.3) and (0.4) in general. However, for G = GLn, considered as an alge-
braic group over a number field, we are able to prove (0.2) and (0.4). The
method relies on work of Luo, Rudnick and Sarnak [LuRS] who established
nontrivial bounds towards the generalized Ramanujan conjecture. For GLn

any local component of a cuspidal automorphic representation is equivalent
to a full induced representation IGP (τ, s) where τ is tempered and the pa-
rameters s = (s1, . . . , sr) satisfy s1 > s2 > · · · > sr and |si| < 1/2. If πv
is unramified, it follows from Theorem 2 of [LuRS] that the si’s satisfy the
nontrivial bound

|si| < 12 −
1

n2 + 1
, i = 1, . . . , r . (0.5)

Using the method of [LuRS], one can show that (0.5) holds also for the ram-
ified components. Furthermore, using the work of Mœglin and Waldspurger
[MW] on the residual spectrum, one can show that similar nontrivial bounds
exist for the continuous parameters of any local component of an automor-
phic representation in the discrete spectrum of GLm(A). These bounds are
the essential ingredients in the proof of (0.2) and (0.4) in the case of GLn.
Details will appear in a forthcoming paper with B. Speh [MüS].
Now we shall explain the main steps of the proof of Theorem 0.1. First

observe thatMP |P (s, 0) is unitary. Therefore, in order to estimate the trace
norm of (0.1), it suffices to estimate the integral∫

ia∗L/ia∗G

∥∥ML(P, λ)ρχ,π(P, λ, f)
∥∥dλ . (0.6)

To deal with this integral, we introduce a certain normalization of in-
tertwining operators. For π ∈ Π(M(A)) let A2

π(P ) be the space of square
integrable automorphic forms of type π (see §1). LetMQ|P (π, λ) denote the
restriction of the intertwining operator MQ|P (λ) to A2

π(P ). Let π = ⊗vπv
and let rQ|P (πv, λ) be the normalizing factor for the local intertwining op-
erator considered above. Suppose π = ⊗πv occurs in the discrete spectrum
of M(A), which is equivalent to A2

π(P ) �= 0, then the Euler product
rQ|P (π, λ) = ΠvrQ|P (πv, λ)

converges absolutely in some chamber and rQ|P (π, λ) admits a meromorphic
continuation to a∗M,C . Using this meromorphic function, we introduce the
normalized global intertwining operator by

NQ|P (π, λ) = rQ|P (π, λ)−1MQ|P (π, λ) . (0.7)
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By definition, the operator NQ|P (π, λ) is equivalent to the direct sum
of finitely many copies of ⊗vRQ|P (πv, λ).
Let ML(P, π, λ) be the restriction of ML(P, λ) to the subspace A2

π(P ).
It follows from Arthur’s theory of (G,M) families [A4, p. 1329] that

ML(P, π, λ) =
∑
S

N′
S(P, π, λ)ν

S
L(P, π, λ) ,

where the sum runs over all parabolic subgroups S containing L, the op-
erator N′

S(P, π, λ) is built out of normalized intertwining operators on the
local groups G(Qv) and νSL(P, π, λ) is a scalar valued function which is de-
fined in terms of normalizing factors. This reduces the estimation of the
integral (0.6) to two separate problems, one involving N′

S(P, π, λ) and the
other one νSL(P, π, λ).
First we are dealing with νSL(P, π, λ). By Proposition 7.5 of [A4],

νSL(P, π, λ) can be expressed in terms of logarithmic derivatives of nor-
malizing factors associated with maximal parabolic subgroups in certain
Levi subgroups. Therefore we may assume that dim(aP /aG) = 1. Let α be
the unique simple root of (P,A). Then there exists a meromorphic func-
tion r̃P |P (π, z) of one variable such that rP |P (π, λ) = r̃P |P (π, λ(α

∨)), and
our problem is to derive estimates, which are uniform with respect to π, of
integrals of the form∫

R

∣∣∣r̃P |P (π, iu)
−1 d

du r̃P |P (π, iu)
∣∣∣ (1 + u2)−Ndu . (0.8)

To deal with this integral, we note that r̃P |P (π, z) is a meromorphic
function of order n = 16dimG+ 2. This follows from (0.7), since by The-
orem 0.1 of [Mü3], the matrix coefficients of MQ|P (π, λ) are meromorphic
functions of order ≤ n and by Theorem 2.1 of [A7], the normalized local in-
tertwining operators RQ|P (πv, λ) are rational functions of q

−λ(α∨)
v , if v <∞,

and of λ(α∨), if v =∞. Thus there exist entire functions ri(π, z), i = 1, 2,
of order ≤ n such that r̃P |P (π, z) = r1(π, z)/r2(π, z). Using the represen-
tation of ri(π, z) as a Weierstraß product, we reduce the estimation of the
integral (0.8) to the the estimation of the number of poles, counted with
their order, of r̃P |P (π, z) in a circle of radius R > 0. By (0.7), this problem
is closely related to the estimation of the number of poles, counted with
their order, of matrix coefficients of MQ|P (π, λ) in a circle of radius R > 0.
The latter problem has been settled in [Mü3, Proposition 6.6]. Together
with Proposition 7.5 of [A4], these estimates imply estimates for the cor-
responding integrals involving νSL(P, π, λ). In this way we get Theorem 5.4
which is our main technical result.
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Next consider N′
S(P, π, λ). Given an open compact subgroup Kf of

G(Af ) and σ ∈ Π(K∞), let A2
π(P )Kf ,σ be the subspace of A2

π(P ) consisting
of all automorphic forms which are Kf -invariant and transform under K∞
according to σ. Let N′

S(P, π, λ)Kf ,σ be the restriction of N′
S(P, π, λ) to

the subspace A2
π(P )Kf ,σ. Now observe that for any h ∈ C1(G(A)1) there

exists an open compact subgroup Kf of G(Af ) such that h is left and right
invariant under Kf . Then the estimation of ‖N′

S(P, π, λ)ρχ,π(P, λ, h)‖1
can be reduced to the estimation of ‖N′

S(P, π, λ)Kf ,σ‖ where σ runs over
Π(K∞). By Arthur’s theory of (G,M)-families, the estimation of the norm
of the finite rank operators N′

S(P, π, λ)Kf ,σ can be reduced to the estima-
tion of derivatives of finitely many normalized local intertwining operators
RQ|P (πv, λ)Kv , v < ∞, and RQ|P (π∞, λ)σ. Combined with Theorem 5.4
this implies Theorem 0.1. The proof of Theorem 0.2 is similar.
The paper is organized as follows. In §1 we collect some preliminary

facts. In §2 we discuss briefly normalized local and global intertwining
operators. The local normalizing factors are studied in some detail in §3.
We recall the definition of the normalizing factors and we prove some results
that we need in the next section. In §4 we investigate the poles of the global
normalizing factors. This section is mainly based on results obtained in
[Mü3]. In §5 we establish Theorem 5.4 which is the main result about
generalized logarithmic derivatives of global normalizing factors. In §6 we
study the absolute convergence of the spectral side of the trace formula and
we prove our main results, Theorem 0.1 and Theorem 0.2. In §7 we discuss
the example of GLn and we sketch a method to prove (0.2) and (0.4).
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stay at the Institute for Advanced Study in Princeton. The author is very
grateful to the IAS for hospitality and financial support by a grant from the
Ellentuck Fund. He also would like to thank J. Cogdell, D. Ramakrishnan
and F. Shahidi for some very useful discussions. Especially he is very
grateful to W. Hoffmann and the referee for their comments, suggestions
and corrections which helped to improve the paper considerably.

1 Preliminaries

We shall follow partially the notation introduced by Arthur [A1-4].

1.1 Let G be a reductive algebraic group defined over Q. As in [A4,5],
we shall fix a subgroupM0 of G, defined over Q, which is a Levi component
of some minimal parabolic subgroup of G defined over Q. In this paper,
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a parabolic subgroup will mean a parabolic subgroup of G, defined over Q,
and a Levi subgroup of G will mean a subgroup of G which containsM0 and
is the Levi component of some parabolic subgroup of G. It is a reductive
subgroup of G which is defined over Q. If M ⊂ L are Levi subgroups,
we denote the set of Levi subgroups of L which contain M by LL(M).
Furthermore, let FL(M) denote the set of parabolic subgroups of L defined
over Q which contain M , and let PL(M) be the set of groups in FL(M)
for which M is a Levi component. If L = G, we shall denote these sets by
L(M), F(M) and P(M), respectively. Suppose that P ∈ FL(M). Then

P = NPMP ,

where NP is the unipotent radical of P and MP is the unique Levi compo-
nent of P which contains M .
Suppose thatM ⊂M1 ⊂ L are Levi subgroups ofG. IfQ ∈ PL(M1) and

R ∈ PM1(M), there is a unique group Q(R) ∈ PL(M) which is contained
in Q and whose intersection with M1 is R.
Let AP be the split component of the center of MP . AP is defined

over Q. Let X(MP )Q be the group of characters of MP defined over Q.
Then

aP = Hom
(
X(MP )Q ,R

)
is a real vector space whose dimension equals that of AP . Its dual space is

a∗P = X(MP )Q ⊗R .
We shall often denote AP , aP and a∗P by AM , aM and a∗M , respectively,
since they depend only on M . Also, we shall write A0 = AM0 , a0 = aM0

and a∗0 = a∗M0
.

Let P ∈ F(M0). We shall denote the roots of (P,AP ) by ΦP , the
reduced roots by Σr

P , and the simple roots by ∆P . They are elements in
X(AP )Q and are canonically embedded in a∗P .
Let P and Q be groups in F(M0) with P ⊂ Q. Then there is a canonical

surjection aP → aQ and a canonical injection a∗Q ↪→ a∗P . The kernel of the
first map will be denoted by a

Q
P . Then a

Q
P is dual to a∗P /a

∗
Q.

The groupMQ∩P is a parabolic subgroup ofMQ with unipotent radical

NQ
P = NP ∩MQ .

Let ∆Q
P be the set of simple roots of (MQ ∩ P,AP ). Then ∆

Q
P is a subset

of ∆P . We may identify aQ with the subspace{
H ∈ aP | α(H) = 0, α ∈ ∆Q

P

}
.

Furthermore, to ∆Q
P one can associate a basis {α∨ | α ∈ ∆Q

P } of a
Q
P and

∆̂Q
P is defined to be the corresponding dual basis of (a

Q
P )

∗ [A2]. Then ∆Q
P
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and ∆̂Q
P are naturally embedded subsets of a∗0. Let

a+P =
{
H ∈ aP

∣∣ α(H) > 0 for all α ∈ ∆P

}
,

and
(a∗P )

+ =
{
Λ ∈ a∗P | Λ(α∨) > 0 for all α ∈ ∆P

}
.

We shall denote the restricted Weyl group of (G,A0) by W0. It acts on
a0 and a∗0 in the usual way. For every s ∈ W0 we shall fix a representative
ws in the intersection of G(Q) with the normalizer of A0. ws is determined
modulo M0(Q). If P1 and P2 are parabolic subgroups, let W (aP1 , aP2)
denote the set of distinct isomorphisms from aP1 onto aP2 obtained by
restricting elements of W0 to aP1 . P1 and P2 are said to be associated if
W (aP1 , aP2) is not empty.

1.2 We fix an embedding of G into GLn, defined over Q. For a given
place v of Q, let G(Qv) be the group of Qv-rational points of G. Let
A be the ring of adèles of Q and let G(A) be the corresponding adèle-
valued group. If f stands for the set of finite places of Q and Af is the
corresponding ring of finite adèles, then

G(A) = G(R)×G(Af ) .
For any prime p, let

G(Zp) = GLn(Zp) ∩G(Qp) .
This is an open compact subgroup of G(Qp). We shall fix a maximal
compact subgroup

K =
∏
v

Kv

of G(A) which is admissible relative to M0 in the sense of [A5]. For any
such K the following properties hold:
1) For almost all primes p, one has Kp = G(Zp).
2) For every finite p, Kp is a special maximal compact subgroup. This
implies that G(Qp) = P0(Qp) ·Kp for all P0 ∈ F(M0).

3) The Lie algebras of KR and A0(R) are orthogonal with respect to the
Killing form.

Given P ∈ F(M0), let

MP (A)1 =
⋂

χ∈X(MP )Q

ker(|χ|) .

This is a closed subgroup of MP (A), and MP (A) is the direct product
of MP (A)1 and AP (R)0. By the assumptions on K, G(A) = P (A)K.
Therefore, any x ∈ G(A) can be written as

x = namk , n ∈ NP (A) , m ∈M(A)1 , a ∈ AP (R)0 , k ∈ K . (1.1)
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Let
HP : G(A)→ aP

be the associated height function as defined in [A2]. Then HP (x) is the
image of a ∈ AP (R)0 in the decomposition (1.1) with respect to the iso-
morphism AP (R)0 ∼= aP .
We shall fix a Euclidean norm ‖ · ‖ on a0 which is invariant under the

action of the Weyl group of (G,A0). On each space a
Q
P , P ⊂ Q, we take as

Haar measure the Euclidean measure associated to the restriction of ‖ · ‖
to a

Q
P .We then normalize the Haar measures on K, G(A), NP (A), MP (A),

AP (R)0, MP (A)1, etc. as in [A2].

1.3 Let Ξ and σ be the functions that enter the definition of Harish-
Chandra’s Schwartz space on G(R) [W2, p. 156] and extend them to func-
tions on G(A) in the obvious way. For any place v, let G(Qv)1 denote
the intersection of G(Qv) with G(A)1. Let U(g(R)1 ⊗ C) be the universal
enveloping algebra of the complexification of the Lie algebra of G(R)1. Let
Kf be an open compact subgroup of G(Af )1. Then the double coset space
Kf\G(A)1/Kf is a discrete union of countably many copies of G(R)1. In
particular it is a differentiable manifold. Suppose that Ω is a subset of
G(A)1 such that Kf · Ω · Kf = Ω and Kf\Ω/Kf is the disjoint union of
finitely many copies of G(R)1. Let C1(G(A)1; Ω,Kf ) be the space of all
functions h : G(A)1 → C satisfying the following conditions:

1. h is bi-invariant under Kf , supph ⊂ Ω, and h : Kv\Ω/Kf → C is a
smooth function.

2. For all D1,D2 ∈ U(g(R)1 ⊗ C) and all r ∈ N, we have

‖h‖D1,D2,r := sup
x∈G(A )1

(
(1 + σ(x))rΞ−2(x)|D1 ∗ h ∗D2(x)|

)
<∞ .

Let C1(G(A)1; Ω,Kf ) be equipped with the topology defined by the semi-
norms ‖ · ‖D1,D2,r. Let C1(G(A)1) be the topological direct limit over all
pairs (Ω,Kf ) of the spaces C1(G(A)1; Ω,Kf ).

1.4 Let H be any algebraic group over Q and let F be a local field. We
shall denote by Π(H(A)) (resp. Π(H(F )), Π(K), etc.) the set of equivalence
classes of irreducible unitary representations of H(A) (resp.H(F ), K, etc.).

1.5 Given a unitary character ξ of AP (R)0, let L2(MP (Q)\MP (A))ξ
be the space of all measurable functions φ on MP (Q)\MP (A) such that
φ(xm) = ξ(x)φ(m) for all x ∈ AP (R)0, m ∈ MP (A), and φ is square
integrable on MP (Q)\MP (A)1. Let Πdisc(MP (A))ξ denote the subspace
of all π ∈ Π(MP (A)) which are equivalent to a subrepresentation of the



Vol. 12, 2002 TRACE FORMULA 679

regular representation of MP (A) on L2(MP (Q)\MP (A))ξ . Set

Πdisc(MP (A)) =
⋃

ξ∈Π(AP (R)0)

Πdisc(MP (A))ξ .

Recall that Π(MP (A)1) can be canonically identified with the set of orbits
under the action of ia∗P defined by

π → πλ = eλ(HP (·))π , π ∈ Π(MP (A)) , λ ∈ ia∗P .
Since MP (A) is the direct product of MP (A)1 and AP (R)0, any repre-
sentation of MP (A)1 corresponds to a representation of MP (A) which is
trivial on AP (R)0. We identify these two representations and in this way
we obtain an embedding of Π(MP (A)1) in Π(MP (A)).
Given π ∈ Π(MP (A)) with π = ⊗vπv, set πf = ⊗v<∞πv. For an open

compact subgroup Kf ⊂ G(Af ), let
KM,f =MP (Af ) ∩Kf .

Set
Πdisc

(
MP (A);Kf

)
=
{
π ∈ Πdisc(MP (A))

∣∣ πKM,f

f �= {0}} . (1.2)

Let Πdisc(MP (A)1;Kf ) be the intersection of Πdisc(MP (A);Kf ) with the
subspace Πdisc(MP (A)1) of Πdisc(MP (A)).

1.6 Let P = NM be a parabolic subgroup and let φ be a measurable,
locally integrable function on N(Q)\G(A). Then the constant term φP of
φ along P is defined for almost every g by

φP (g) =
∫
N(Q )\N(A )

φ(ng)dn . (1.3)

This is a measurable, locally integrable function on N(A)\G(A).
1.7 Let P be a parabolic subgroup. Then we denote byA2(P ) the space
of automorphic forms on NP (A)MP (Q)\G(A) which are square integrable
on MP (Q)\MP (A)1 ×K. This is the space of smooth functions

φ : NP (A)MP (Q)\G(A)→ C
which satisfy the following conditions:
i) The span of the set of functions

x �→ (zφ)(xk) , x ∈ G(A) ,
indexed by k ∈ K and z ∈ Z(gC ), is finite dimensional.

ii)
‖φ‖2 =

∫
K

∫
MP (Q )\MP (A )1

|φ(mk)|2dmdk <∞ .

Furthermore, an automorphic form φ ∈ A2(P ) is called cuspidal, if the
following additional condition holds:
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iii) For all standard parabolic subgroups Q � P , φQ = 0.

The subspace of all cuspidal automorphic forms in A2(P ) will be de-
noted by A2

0(P ).

1.8 Given π ∈ Πdisc(MP (A))ξ, let A2
π(P ) be the subspace of A2(P )

consisting of all functions φ such that for every x ∈ G(A), the function
φx(m) = φ(mx) m ∈MP (A) ,

belongs to the π-isotypical subspace of L2(MP (Q)\MP (A))ξ. If π ∈
Π(MP (A)) is not contained in Πdisc(MP (A)), we putA2

π(P ) = 0. Let Kf be
an open compact subgroup of G(Af ). Then we denote by A2

π(P )Kf
the sub-

space of all Kf -invariant functions in A2
π(P ). Furthermore, if σ ∈ Π(K∞),

then we denote by A2
π(P )Kf ,σ the σ-isotypical subspace of A2

π(P )Kf
.

1.9 Let X be the set of W0 conjugacy classes of pairs (MB , rB), where
B is a parabolic subgroup and rB is an irreducible cuspidal automorphic
representation of MB(A)1. Let

L2
(
MP (Q)\MP (A)1

)
=
⊕
χ∈X

L2
(
MP (Q)\MP (A)1

)
χ

be the decomposition of L2(MP (Q)\MP (A)1) introduced by Arthur in [A2,
Section 3]. Given χ ∈ X, let A2

χ,π(P ) be the subspace of A2
π(P ) consisting

of all function φ such that for each x ∈ G(A), the restriction of φx to
MP (A)1 belongs to L2(MP (Q)\MP (A)1)χ.
If we identify Π(MP (A)1) with a subset of Π(MP (A)), then A2

χ,π(P )
is well defined for any π ∈ Π(MP (A)1). This is a space of functions on
NP (A)MP (A)AP (R)0\G(A). The direct sum⊕

π∈Π(MP (A )1)

A2
χ(P, π)

is the space that was denoted by A2(P,χ) in [Mü3].

1.10 Let A2(P ) be the Hilbert space completion of A2(P ). For any
λ ∈ a∗P,C we have an induced representation ρ(P, λ) of G(A) on A

2(P )
which is defined by(

ρ(P, λ, y)φ
)
(x) = φ(xy)e(λ+ρP )(HP (xy))e−(λ+ρP )(HP (x)), (1.4)

for elements x, y ∈ G(A) and φ ∈ A2(P ). The Hilbert space completions
A2

π(P ) and A2
χ,π(P ) of the subspaces A2

π(P ) and A2
χ,π(P ), respectively, are

invariant under ρ(P, λ) and we shall denote the restriction of ρ(P, λ) to
A2

π(P ) (resp. A2
χ,π(P )) by ρπ(P, λ) (resp. ρχ,π(P, λ)).
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1.11 Given any irreducible unitary representation π of MB(A)1, let
λπ be the eigenvalue of the Casimir operator of MB(R), acting in the
G̊arding space H∞

π∞ of the Archimedean constituent π∞ of π. For χ ∈ X

and (MB , rB) ∈ χ, the Casimir eigenvalue λrB
depends only on the class χ

and we denote it by λχ.

2 Normalized Intertwining Operators

Let M,M1∈L(M0), P∈P(M) and P1∈P(M1). For each s∈W (aM , aM1),
φ ∈ A2(P ), and λ ∈ a∗P,C such that Re(λ) ∈ (a∗P )+ + ρP , let MP1|P (s, λ)φ
be defined by

MP1|P (s, λ)φ(x) = e
−(sλ+ρP1

)(HP1
(x))

·
∫
N1(A )∩wsN(A )w−1

s \N1(A )
φ(w−1

s n1x)e
(λ+ρP )(HP (w−1

s n1x))dn1 (2.1)

for x ∈ G(A). The integral is absolutely convergent for λ as above and
admits an analytic continuation to a meromorphic function of λ ∈ a∗P,C

with values in the space of linear operators from A2(P ) to A2(P1). This
operator is the global intertwining operator

MP1|P (s, λ) : A2(P )→ A2(P1) .
Let π ∈ Πdisc(M(A)) and χ ∈ X. Then MP1|P (s, λ) maps the subspace
A2

π(P ) (resp. A2
χ,π(P )) to A2

sπ(P1) (resp. A2
χ,sπ(P1)). The main functional

equations are
MP2|P (ts, λ) =MP2|P1

(t, sλ)MP1|P (s, λ) (2.2)
for t ∈W (a1, a2) and s ∈W (a, a1).
By (1.4) and (1.5) of [A4], most of the considerations concerning in-

tertwining operators can be reduced to the case where P1 and P have the
same Levi component M , and s = 1.
Thus, from now on we shall assume that P,Q ∈ P(M) and we put

MQ|P (λ) :=MQ|P (1, λ) , λ ∈ a∗M,C .

Given π ∈ Π(M(A)), let
MQ|P (π, λ) : A2

π(P )→ A2
π(Q)

be the restriction ofMQ|P (λ) to A2
π(P ). We shall now express this operator

in terms of local intertwining operators. Let πλ be the representation of
P (A) which is defined by

πλ(nm) = eλ(HM (m))π(m) , n ∈ NP (A) , m ∈MP (A) .
Let (IGP (πλ),HP (π)) be the induced representation of G(A). Similarly let
(IGQ (πλ),HQ(π)) be the representation of G(A) induced from Q(A). Let ξ
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be a unitary character of AM (R)0 and suppose that π ∈ Πdisc(M(A))ξ . We
extend ξ by 1 to a character of M(Q)AM (R)0. Then there is a canonical
isomorphism

jP : HP (π)⊗HomM(A )

(
π, I

M(A )
M(Q )AM (R)0

(ξ)
)→ A2

π(P ) (2.3)

of G(A)-modules where G(A) acts on the left by IGP (πλ) ⊗ Id. A similar
isomorphism jQ exists with respect to Q. Let H0

P (π) (resp. H0
Q(π)) be the

subspace of elements which are right K-finite and left Z(gC )-finite. Using
(2.3), it follows that MQ|P (π, λ) induces an intertwining operator

JQ|P (π, λ) : H0
P (π)→H0

Q(π)

such that
jQ ◦

(
JQ|P (π, λ) ⊗ Id

)
=MQ|P (π, λ) ◦ jP .

It follows from (2.1) that for Re(λ) ∈ (a∗P )+ + ρP , this operator is defined
by the following convergent integral

JQ|P (π, λ)φ(x) = e−(λ+ρQ)(HQ(x))

·
∫
NQ(A )∩NP (A )\NQ(A )

φ(nx)e(λ+ρP )(HP (nx))dn . (2.4)

where x ∈ G(A) and φ ∈ H0
P (π).

Let v be any place of Q and let (πv, Vv) ∈ Π(M(Qv)). Given λ ∈ a∗M,C ,
let πv,λ be the representation of P (Qv) on Vv defined by

πv,λ(nvmv) = πv(mv)eλ(HM (mv)), nv ∈ N(Qv) , mv ∈M(Qv) .

Let (IGP (πv,λ),HP (πv)) denote induced representation. The Hilbert
space is the space of measurable functions

φv : N(Qv) \G(Qv)→ Vv

such that

1. φv(mvxv) = π(mv)φv(xv), mv ∈M(Qv), xv ∈ G(Qv);
2. ‖φv‖2 =

∫
Kv
‖φv(k)‖2Vv

dk <∞.
Let H0

P (πv) ⊂ HP (πv) be the subspace of Kv-finite functions. Then the
local intertwining operator

JQ|P (πv, λ) : H0
P (πv)→H0

Q(πv)

is defined by

JQ|P (πv, λ)φv(xv) = e−(λ+ρQ)(HQ(xv))

·
∫
NQ(Qv)∩NP (Qv)\NQ(Q v)

φv(nvxv)e(λ+ρP )(HP (nvxv))dnv . (2.5)
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The integral converges absolutely for Re(λ) ∈ (a∗P )+ + ρP and can be
continued to a meromorphic function of λ ∈ a∗M,C with values in the space
of linear operators from H0

P (πv) to H0
Q(πv) [Sh1].

Now let π ∈ Π(M(A)). Then π is a restricted tensor product
π = ⊗vπv

where almost all (πv, Vv) are unramified, i.e. dimV
Kv∩M(Qv)
v = 1 for almost

all v. Moreover, we have(
IGP (πλ),HP (π)

) ∼= (⊗v I
G
P (πv,λ),⊗vHP (πv)

)
.

Let φ ∈ H0
P (π) and suppose that φ = ⊗vφv. Observe that each φv belongs

to H0
P (πv) and for almost all v, φv is Kv–invariant. Comparing (2.4) and

(2.5), it follows that
JQ|P (π, λ)φ = ⊗v

(
JQ|P (πv, λ)φv

)
(2.6)

whenever the product on the right converges.
It is possible to normalize local intertwining operators. Let v be any

valuation of Q and let πv ∈ Π(M(Qv)). It is proved in [A7], [CLL] that
there exist scalar valued meromorphic functions rQ|P (πv, λ) of λ ∈ a∗P,C

such that the normalized intertwining operators

RQ|P (πv, λ) = rQ|P (πv, λ)−1JQ|P (πv, λ) (2.7)
satisfy the conditions (R1)–(R8) of Theorem 2.1 of [A7]. We recall some of
the properties satisfied by the normalized intertwining operators.

(R.1) If S ∈ P(M), then
RS|P (πv, λ) = RS|Q(πv, λ)RQ|P (πv, λ) . (2.8)

(R.2)
RQ|P (πv, λ)∗ = RP |Q(πv,−λ) . (2.9)

(R.3) Let L ∈ L(M), S ∈ P(L), and Q,Q′ ∈ PL(M). Then(
RS(Q′)|S(Q)(πv, λ)φ

)
k
= RQ′|Q(πv, λ)φk (2.10)

for any φ ∈ H0
P (S(R)(Qv)) and k ∈ Kv.

(R.4) Let v be a finite place. Suppose that πv is unramified, and that Kv

is very special. Let φv ∈ HP (πv) be a function such that φv(k) =
φv(1) for all k ∈ Kv. Then in the compact picture of the induced
representation, one has

RQ|P (πv, λ)φv = φv . (2.11)

The functions rQ|P (πv, λ) are called normalizing factors. They satisfy
similar properties. We recall some of them. Given P ∈ P(M), let Σr

P be
the set of reduced roots of (P,AM ).
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(r.1) For β ∈ Σr
P , let Mβ ∈ L(M) be such that

aMβ
=
{
H ∈ aM

∣∣ β(H) = 0}
and let Pβ be the unique group in PMβ (M) whose simple root is β.
Then

rQ|P (πv , λ) =
∏

β∈Σr
Q∩Σr

P

rPβ |Pβ
(πv, λ) , (2.12)

Note that each rPβ |Pβ
(πv , λ) depends only on the projection λ(β∨).

(r.2) If πv is an irreducible constituent of an induced representation IMR (σv),
where σv ∈ Π2(M1(Qv)), R ∈ PM (M1), and M1 ⊂M , then

rQ|P (πv, λ) = rQ(R)|P (R)(σv, λ) . (2.13)
(r.3)

rQ|P (πv, λ)rP |Q(πv, λ) = JQ|P (πv, λ)JP |Q(πv, λ) . (2.14)
(r.4)

rQ|P (πv, λ) = rP |Q(πv,−λ) . (2.15)
(r.5) If v is a finite place of Q, then rQ|P (πv, λ) is a rational function in

the variables {q−λ(eβ)
v | β ∈ Σr

Q ∩Σr
P
}, where the β̃’s are suitably nor-

malized “coroots”. If v = ∞, then rQ|P (πv, λ) is a rational function
in the variables {λ(β∨) | β ∈ Σr

Q ∩ Σr
P
}.

Now we return to global intertwining operators. Let π ∈ Πdisc(M(A)).
For φ ∈ H0

P (π) with φ = ⊗vφv set
RQ|P (π, λ)φ = ⊗v

(
RQ|P (πv, λ)φv

)
. (2.16)

Since φv is Kv- invariant for almost all v, it follows from (2.11) that the
right-hand side is actually a finite product and therefore, it converges for
all λ ∈ a∗M,C which are not poles of the local intertwining operators. In this
way we get a a meromorphic operator valued function

RQ|P (π, λ) : H0
P (π)→ H0

Q(π)
of λ ∈ a∗M,C . Using the isomorphism (2.3) and the corresponding one for Q,
we obtain a meromorphic operator valued function

NQ|P (π, λ) : A2
π(P )→ A2

π(Q)
of λ ∈ a∗M,C such that

jQ ◦NQ|P (π, λ) =
(
RQ|P (π, λ) ⊗ Id

) ◦ jP . (2.17)
Furthermore, put

rQ|P (π, λ) =
∏
v

rQ|P (πv , λ) . (2.18)

By (R.4) it follows that for φ as above, we have
JQ|P (πv, λ)φv = rQ|P (πv , λ)φv
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for almost all v. Therefore, the infinite product (2.18) converges in the
domain of absolute convergence of the infinite product (2.6) and for λ in
this domain we have

MQ|P (π, λ) = rQ|P (π, λ)NQ|P (π, λ) . (2.19)

Since both MQ|P (π, λ) and NQ|P (π, λ) are meromorphic functions of
λ ∈ a∗M,C , it follows that rQ|P (π, λ) admits a meromorphic continuation
to a∗M,C . The meromorphic function rQ|P (π, λ) is the global normalizing
factor and NQ|P (π, λ) is the normalized global intertwining operator.
Using (2.12), (2.14), (2.15) and the functional equations (2.2), it follows

that rQ|P (π, λ) has the following properties

1.
rQ|P (π, λ)rP |Q(π, λ) = 1 . (2.20)

2.
rQ|P (π, λ) = rP |Q(π,−λ) . (2.21)

3. For each β ∈ Σr
Q ∩ Σr

P
let Pβ be as in (2.12). Then

rQ|P (π, λ) =
∏

β∈Σr
Q∩Σr

P

rPβ |Pβ
(π, λ) . (2.22)

Note that rPβ |Pβ
(π, λ) depends only on the projection λ(β∨).

3 Local Normalizing Factors

In this section we shall investigate the local normalizing factors in more
detail. In particular, we shall study their logarithmic derivatives. To begin
with, we recall the construction of the normalizing factors.
First assume that v is a finite valuation. Then the existence of nor-

malizing factors such that Theorem 2.1 of [A7] holds has been verified by
Langlands in [CLL, Lecture 15]. Let πv ∈ Π(M(Qv)). The local normal-
izing factors rQ|P (πv, λ) have to satisfy (2.1)–(2.3) in [A7]. Therefore, it
suffices to define them when dim(aM/aG) = 1 and πv is square integrable
modulo AG. Assume for the moment that these conditions are satisfied.
Let P ∈ P(M) and let α be the unique simple root of (P,AM ). Then
Langlands has shown that there exists a rational function VP (πv, z) of one
variable such that

rP |P (πv, λ) = VP (πv, q
−λ(eα)
v ) , (3.1)

where α̃ ∈ aM is independent of πv. We recall the definition of VP (πv, z).
Suppose that Pv is a parabolic subgroup of G defined over Qv and let Mv
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be a Levi component of Pv over Qv. Denote by AMv the split component
of the center of Mv. Set

aMv = Hom
(
X(Mv)Qv

,R
)

and
a∗Mv

= X(Mv)Qv
⊗ R .

Let
HMv :Mv(Qv)→ aMv

be defined by
q
〈HMv (mv),χ〉
v = |χ(mv)|v , χ ∈ X(Mv)Q v

, mv ∈Mv(Qv) .
Given π ∈ Π(Mv(Qv)) and λ ∈ ia∗Mv

, let πλ denote the representation
defined by

πλ(mv) = π(mv)eλ(HMv (mv)) , mv ∈Mv(Qv) .
Let

a∨Mv ,π = {λ ∈ ia∗Mv
| πλ ∼= π}

denote the stabilizer of π with respect to this action of ia∗Mv
. Then a∨Mv,π

is a lattice in ia∗Mv
and the orbit oπ of π is equal to ia∗Mv

/a∨Mv ,π
. Let

aMv,Qv
= HMv(Mv(Qv)) , ãMv ,Qv

= HMv(AMv (Qv)) .
Then aMv,Qv

and ãMv,Qv
are lattices in aMv . Given a real vector space V

and a closed subgroup V1 of V , let us agree to set
V ∨
1 = Hom(V1, 2πiZ) ⊂ iV ∗.

Let aMv,π ⊂ aMv be the dual lattice to a∨Mv,π
. Then

ãMv,Qv
⊂ aMv ,π ⊂ aMv ,Qv

.

Set
LMv = (aMv ,Qv

+ aGv )/aGv , L̃Mv = (ãMv ,Qv
+ aGv )/aGv ,

and
L(π) = (aMv,π + aGv )/aGv .

Then LMv , L̃Mv , and L(π) are lattices in aGv
Mv
= aMv/aGv .

Suppose that Pv is a maximal parabolic subgroup, that is dim aGv
Mv
= 1.

Then there exists α(π) ∈ aMv such that

L(π) =
log q
2π

Z(α(π)) .

In [Si1] Silberger has shown that for a supercuspidal representation π
there exists a rational function ŨPv(π, z) such that the Plancherel measure
µ(π, λ) satisfies

µ(π, λ) = ŨPv

(
π, q−λ(α(π))

)
. (3.2)

Let α̃ ∈ aMv be such that

LMv =
log q
2π

Z(α̃) .
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Since L(π) ⊂ LMv , there exists k(π) ∈ Z such that α(π) = k(π)α̃. Let
UPv(π, z) = ŨPv

(
π, zk(π)

)
. (3.3)

Then
µ(π, λ) = UPv

(
π, q−λ(eα)

)
.

Now suppose that Pv is arbitrary, but π is still supercuspidal. For each
reduced root α ∈ Σr(Pv , Av) let Aα denote the largest subtorus of Av

which lies in the kernel of the root character of α. Let Mα denote the
centralizer of Aα. Let ∗Pα = Pv ∩Mα. Then ∗Pα = MvNα. Let µα(π, λ)
be the Plancherel measure with respect to (Mα,

∗Pα). According to [H3,
Theorem 24], there exist constants γ = γ(G/M) and γα = γ(Mα/M),
α ∈ Σr(Pv , Av), such that

γ−2µ(π, λ) =
∏

α∈Σr(Pv ,Av)

γ−2
α µα(π, λ) , (3.4)

Hence if {α̃ | α ∈ ∆Pv} is a set of generators of the lattice LMv , then
µ(π, λ) is a rational function in the variables {q−λ(eα) | α ∈ ∆Pv}. Finally, by
Theorem 1 of [Si2], this can be extended to all discrete series representations
of Mv(Qv).
Now let P =MN be a maximal parabolic subgroup ofG defined over Q.

Then X(M)Q ⊂ X(M)Q v
induces an embedding a∗M ⊂ a∗Mv

and by the
above, it follows that there exists α̃ ∈ aM and a rational function UP (π, z)
such that

µ(π, λ) = UP (π, q−λ(eα)) , (3.5)
for all π ∈ Π2(M(Qv)), λ ∈ a∗M,C . As shown by Langlands [CLL], the
rational function UP (π, z) has the form

UP (π, z) = a
∏r

i=1(1− αiz)(1− α−1
i z)∏r

i=1(1− βiz)(1 − β
−1
i z)

,

where the αi’s and βi’s satisfy |αi| ≤ 1, |βi| ≤ 1, i = 1, . . . , r, and a is a
certain constant. Then the rational function VP (π, z) in (3.1) is defined by

VP (π, z) = b
∏r

i=1(1− βiz)∏r
i=1(1− αiz)

(3.6)

for a suitable constant b. In particular, it follows that 2r is the number of
poles of UP (π, z). For our applications we need a bound for r. This is done
in the following lemma.

Lemma 3.1. Let M ∈ L(M0) be such that dim(aM/aG) = 1. There exists
C > 0 such that for all P ∈ P(M) and all π ∈ Π2(M(Qv)) the number of
poles of the rational function VP (π, z) is less than or equal to C.
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Proof. Let Pv be a maximal parabolic subgroup of G defined over Qv

and let π ∈ Π(Mv(Qv)) be supercuspidal. By Theorem 1.6 of [Si1], the
rational function ŨPv(π, z) in (3.2) has at most 4 poles. Now observe that
L̃Mv ⊂ L(π) ⊂ LMv and LMv/L̃Mv is finite. This implies that the number
of poles of the rational function UPv(π, z) defined by (3.3) is bounded by
a constant which is independent of π. The general case is reduced to this
one using the product formula (3.4) and Theorem 1 of [Si2]. ✷

Using (2.1)–(2.3) of [A7], the local normalizing factors can be defined
for all M ∈ L(M0), P,Q ∈ P(M) and πv ∈ Π(M(Qv)).
Next suppose that v = ∞. In this case the existence of normalizing

factors such that Theorem 2.1 in [A7] holds has been established by Arthur
[A7]. The definition is as follows. Let LM be the L-group of M and let
ρ = ρ̃Q|P be the contragredient representation of the adjoint representation
ρQ|P of LM on the complex vector space LnQ ∩ LnP\LnQ. Let L(s, π, ρ) be
the L-factor attached to π and ρ = ρ̃Q|P . Then Arthur has shown in [A7]
that the functions

rQ|P (π, λ) :=
L(0, πλ, ρ)
L(1, πλ, ρ)

(3.7)

satisfy all properties required by normalizing factors. We briefly recall the
definition of the L-function and refer to [A7, p. 33–35] for more details.
To any π ∈ Π(M(R)) and λ ∈ a∗P,C , there corresponds a map

φλ :WR → LM

from theWeil group of R to the L-group ofM , which is uniquely determined
by πλ up to conjugation by LM0 [La3]. Let

ρ · φλ =
⊕
τ

τλ (3.8)

be the decomposition of ρ ·φλ into irreducible representations of WR . Then
by definition

L(s, πλ, ρ) = L(s, ρ · φλ) =
∏
τ

L(s, τλ) .

So it remains to describe the L-factors L(0, τλ)L(1, τλ)−1. To this end let
T ⊂M be a maximal torus over R whose real split component is AM . Let
〈λ, λ∨〉 denote the canonical pairing X∗(T )×X∗(T )→ Z between the space
X∗(T ) of characters and the space X∗(T ) of one-parameter subgroups of T .
Let ΣP (G,T ) be the set of roots of (G,T ) which restrict to roots of (P,AM ).
The Galois group Gal(C/R) acts on ΣP (G,T ). Let σ be the action of the
nontrivial element of Gal(C/R). The eigenspaces of ρ̃Q|P (φλ(C∗)) are the
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root spaces of {−α∨|α ∈ ΣP (G,T )} and the irreducible constituents τλ of
ρ̃Q|P · φλ correspond to orbits of σ in ΣP (G,T ). Furthermore, the map
φ : WR → LM determines elements µ, ν ∈ X∗(T )⊗C with µ− ν ∈ X∗(T ).
Let

ΓC (z) := 2(2π)−zΓ(z) and ΓR(z) = π−z/2Γ(z/2) .
If a two-dimensional constituent τλ corresponds to a pair {α, σα} of complex
roots, then τλ is induced from the quasi-character

z �→ z〈µ+λ,α∨〉z〈ν+λ,α∨〉

of C∗. Replacing α∨ by σα∨ if necessary, we can assume that 〈σµ− µ, α∨〉
is a nonpositive integer. Then

L(0, τλ)
L(1, τλ)

=
ΓC (〈µ+ λ, α∨〉)

ΓC (〈µ+ λ, α∨〉+ 1) . (3.9)

The one-dimensional constituents τλ correspond to real roots α0 inΣP (G,T ).
There is at most one of these. If α0 exists, then τλ is induced from the
quasi-character of R∗

x �→ (
x
|x|
)−N0|x|〈µ+λ,α∨

0 〉 ,

where N0 ∈ {0, 1}. In this case
L(0, τλ)
L(1, τλ)

=
ΓR(〈µ+ λ, α∨0 〉+N0)

ΓR(〈µ+ λ, α∨0 〉+N0 + 1)
. (3.10)

Remark. It has been conjectured by Langlands [La1, p. 282] that for
any local field, intertwining operators can be normalized by L-functions.
For GL(n) this was proved by Shahidi [Sh2]. Namely, let P be a stan-
dard maximal parabolic subgroup of GL(n). Then a∗P,C

∼= C2 and MP =
GL(n1) × GL(n2) for some decomposition n = n1 + n2. Let F be a lo-
cal non-Archimedean field and let ψ be a non-trivial additive character
of F . Let π1 ⊗ π2 be an irreducible unitary representation of MP (F ) =
GL(n1, F )×GL(n2, F ). Let L(z, π1×π̌2) and ε(z, π1×π̌2, ψ) be the Rankin–
Selberg L-function and the ε-factor defined by Jacquet, Piatetski-Shapiro
and Shalika [JPS]. Then the normalizing factor rP |P (π, s), s = (s1, s2), can
be chosen to be

rP |P (π, s) =
L(s1 − s2, π1 × π̌2)

ε(s1 − s2, π1 × π̌2, ψ)L(1 + s1 − s2, π1 × π̌2) .
In [Sh4], this has been generalized to quasi-split groups and generic repre-
sentations π.

We can now estimate the logarithmic derivatives of the normalizing
factors. First we consider the case of a finite place v. Let qv be the number
of elements of the residue field of Qv (which in our case is a prime number).
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Lemma 3.2. Let α ∈ (a∗M )+. There exist C, c > 0 such that for every
finite valuation v and every πv ∈ Π(M(Qv)) we have∣∣rQ|P (πv , zα)−1 · d

dz rQ|P (πv, zα)
∣∣ ≤ Cq−2

v (3.11)
for Re(z) ≥ c.
Proof. First we assume that dim aM/aG = 1 and πv ∈ Π(M(Qv)) is square
integrable modulo AM (Qv). Let α be the unique simple root of (P,A).
Then rP |P (πv, λ) is given by (3.1). Let λ = zα, z ∈ C. Then λ(α∨) = z
and by (3.6), it follows that

rP |P (πv, zα)
−1 d

dz
rP |P (πv, zα) = log(qv) q

−z
v ·

r∑
i=1

{
βi

1− βiq−z
v
− αi

1− αiq−z
v

}
.

Recall that the αi’s and βi’s satisfy |αi| ≤ 1, |βi| ≤ 1, i = 1, . . . , r.
Moreover, by Lemma 3.1 there exists C1 ≥ 0, which is independent of
πv ∈ Π(M(Qv)), such that r ≤ C1. Therefore, for Re(z) > 3 we obtain∣∣∣∣rP |P (πv, zα)

−1 d

dz
rP |P (πv, zα)

∣∣∣∣ ≤ C1
log(qv)q

−Re(z)
v

1− q−Re(z)
v

< C2q
−2
v . (3.12)

Now let M ∈ L(M0) be arbitrary, but still assume that πv is square in-
tegrable modulo AM (Qv). Let P,Q ∈ P(M). For each β ∈ Σr

P let
Mβ ∈ L(M) be such that

aMβ
=
{
H ∈ aM

∣∣ β(H) = 0} .
Then dim aM/aMβ

= 1. Let Pβ be the unique group in PMβ (M) whose
simple root is β. Furthermore, let α ∈ (a∗M )+, ν ∈ a∗M,C and z ∈ C. Then
by (2.12) we get

rQ|P (πv, zα+ ν)−1 · d
dz rQ|P (πv, zα+ ν)

=
∑

β∈Σr
P ∩Σr

Q

rPβ |Pβ

(
πv, 〈zα + ν, β∨〉β

)−1 · d
dz rPβ |Pβ

(
πv, 〈zα + ν, β∨〉β

)
.

By assumption we have 〈α, β∨〉 ≥ 0 for every β ∈ Σr
P . If 〈α, β∨〉 = 0,

then the corresponding logarithmic derivative vanishes. Suppose that a :=
〈α, β∨〉 > 0. Let c0 > 0 be such that ‖β‖ ≤ c0 for all β ∈ Σr

P . Then
Re
(
z〈α, β∨〉+ 〈ν, β∨〉) ≥ aRe(z)− c0‖ν‖

and it follows from (3.7) that there exist C, c > 0, depending on α, c0 and
‖ν‖, such that∣∣rQ|P (πv, zα+ ν)−1 · d

dz rQ|P (πv, zα+ ν)
∣∣ ≤ Cq−2

v (3.13)
for all πv ∈ Π2(M(Qv)) and Re(z) ≥ c.
Next assume that πv is tempered. Then πv is an irreducible constituent

of an induced representation IMR (τv), where R ∈ PM (M1), M1 ⊂ M and
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τv ∈ Π2(MR(Qv)). Then IGP (πv,λ) is canonically isomorphic to a subrepre-
sentation of IGP (R)(τv,λ) and by (2.13) we have

rQ|P (πv, λ) = rQ(R)|P (R)(τv, λ) ,
where P (R) ⊂ P , Q(R) ⊂ Q. Now recall that there is a canonical inclusion
a∗P ⊂ a∗P (R) and with respect to this inclusion, we have (a

∗
P )

+ ⊂ (a∗P (R))
+.

Thus α can be identified with an element of (a∗P (R))
+. Hence (3.11) holds

for all tempered πv ∈ Π(M(Qv)).
Now let πv be an arbitrary representation in Π(M(Qv)). Then πv is the

Langlands quotient JM
R (τv, µ) of a representation I

M
R (τv, µ), where MR is

an admissible Levi subgroup of M , τv ∈ Π(MR(Qv)) is a tempered repre-
sentation, and µ is a point in the chamber of (aMR )

∗ = a∗R/a
∗
M attached to

R [Si3]. Set Λ = µ+ λ. Then, as explained in [A7, p. 30], we have
rQ|P (πv, λ) = rQ(R)|P (R)(τv,Λ) . (3.14)

Let ρv ∈ a∗M be defined by
δP (a)1/2 = qρv(H(a))

v , a ∈ AM .

Then it follows from Theorem 3.3 of Chapter XI of [BW] that
〈µ, β∨〉 ≤ 〈ρv, β∨〉 , β ∈ Φ(R,AR) .

Since µ belongs to a∗R/a
∗
M , it follows that ‖µ‖ ≤ ‖ρv‖. Let α ∈ (a∗P )+. As

observed above, α can be identified with an element of (a∗
P (R)

)+. Hence,
combining (3.13) and (3.14) the desired estimation (3.11) follows. ✷

Next we consider the infinite place. Let π ∈ Π(M(R)) and let φ : WR →
LM be the map associated to π. Let µ, ν ∈ X∗(T )⊗C be the elements de-
termined by the map φ (see [La3], [A7, p. 34]). To indicate the dependence
on π, we shall write µπ and νπ. We note that there is a canonical injection
of the space

a∗M,C = X
∗(M)Q ⊗ C

into X∗(T )⊗ C.
Lemma 3.3. Let β ∈ (a∗M )+. There exist C, c > 0 such that∣∣rQ|P (π, zβ)−1 · d

dz rQ|P (π, zβ)
∣∣ ≤ C (3.15)

for all π ∈ Π(M(R)) and all z ∈ C with Re(z) ≥ c.
Proof. First assume that π ∈ Π(M(R)) is tempered. As explained above,
the normalizing factor rQ|P (π, λ) is a product of finitely many meromorphic
functions each of which is either of the form (3.9) or (3.10). So it suffices
to consider the logarithmic derivative of the Gamma factors. Recall that
for Re(z) > 0 the following formula holds

Γ′(z + 1)
Γ(z + 1)

=
1
2z
+ log z −

∫ ∞

0

{
1
2
− 1
u
+

1
eu − 1

}
e−uz du
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[Wh, p. 248]. Let 0 ≤ a ≤ 1 and Re(z) > 2. Then we get∣∣∣∣Γ′(z)Γ(z)
− Γ

′(z + a)
Γ(z + a)

∣∣∣∣ ≤ 2
Re(z)

+ log
∣∣∣∣1 + a

z − 1
∣∣∣∣+ π2

+ 2
∫ ∞

0

∣∣∣∣12 − 1u + 1
eu − 1

∣∣∣∣e−uRe(z)/2du .

Hence there exists C > 0 such that∣∣∣∣Γ′(z)Γ(z)
− Γ

′(z + a)
Γ(z + a)

∣∣∣∣ ≤ C for Re(z) > 2 . (3.16)

Let β ∈ (a∗M )+, ν ∈ a∗M,C and α ∈ ΣP (G,T ). Since α � aM is a root
of (P,A), it follows that 〈β, α∨〉 > 0. Let α ∈ ΣP (G,T ) be such that
〈σµπ − µπ, α∨〉 ≤ 0. Then we have Re〈µπ, α∨〉 ≥ 0. Hence

Re〈µπ + zβ + ν, α∨〉 ≥ 〈β, α∨〉Re(z)− ‖α‖ · ‖ν‖ .
Using (3.16) together with (3.9) and (3.10), it follows that there exist con-
stants C, c > 0 such that∣∣∣∣L(1, τzβ+ν)

L(0, τzβ+ν)
· d
dz

(
L(0, τzβ+ν)
L(1, τzβ+ν)

) ∣∣∣∣ ≤ C (3.17)

for Re(z) ≥ c(1 + ‖ν‖) and all π ∈ Π(M(R)), where τλ and πλ are related
by (3.8).
Now let π be an arbitrary representation in Π(M(R)). Then there exist

a parabolic subgroup R of M , a tempered representation τ of MR(R) and
a point ξ in the positive chamber of (a∗R/a

∗
M ) attached to R such that π is

equivalent to the Langlands quotient JR(τ, ξ) [La3]. Set Λ = ξ + λ. Then,
as explained in [A7, p. 30], we have

rQ|P (π, λ) = rQ(R)|P (R)(τ,Λ) .
Moreover, by Theorem 5.2 of Chapter IV of [BW] it follows that∣∣Re〈ξ, α∨〉∣∣ ≤ 4‖ρP ‖ for all α ∈ ∆P .

Together with (3.17) this implies the claimed result. ✷

4 Poles of Global Normalizing Factors

Let M ∈ L(M0) and P,Q ∈ P(M). Let π ∈ Πdisc(M(A)) with π = ⊗vπv.
Then by §2 the infinite product

rQ|P (π, λ) =
∏
v

rQ|P (πv, λ)

is absolutely convergent in some chamber and admits an analytic extension
to a meromorphic function of λ ∈ a∗M,C . In this section we shall study the
poles of rQ|P (π, λ).
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Recall that a function f : CN → C is called a meromorphic function
of order p ≥ 0, if f can be written as a quotient f = g1/g2 of two entire
functions gi : CN → C, i = 1, 2, satisfying

|gi(z)| ≤ Cec‖z‖p
, z ∈ CN , i = 1, 2 ,

for certain constants C, c > 0. With this definition we have the following
proposition.
Proposition 4.1. Let n = dimG(R)/K∞. For all π ∈ Πdisc(M(A)),
the normalizing factor rQ|P (π, λ) is a meromorphic function of λ ∈ a∗M,C of
order ≤ n+ 2.
Proof. By (2.22) we may assume that dim(aM/aG) = 1. Let P ∈ P(M) and
let α be the unique simple root of (P,AM ). Let π ∈ Πdisc(M(A)). Then
A2

π(P ) �= {0} and we have to consider the intertwining operatorMP |P (π, λ).
Recall that MP |P (π, λ) is unitary for λ ∈ ia∗M . In particular, MP |P (π, λ) is
regular at λ = 0. Put

M(π, λ) =MP |P (π, 0)MP |P (π, λ) , λ ∈ a∗M,C .

Next consider the normalized intertwining operator NP |P (π, λ) which is
defined by (2.19). It follows from (2.8), (2.9), (2.16) and (2.17) that

NP |P (π, 0)
∗NP |P (π, 0) = Id .

Hence NP |P (π, λ) is regular at λ = 0 and NP |P (π, 0) is invertible. Put
N(π, λ) = NP |P (π, 0)NP |P (π, λ) , λ ∈ a∗M,C .

Furthermore by (2.20) and (2.21) we get∣∣rP |P (π, λ)
∣∣ = 1 , λ ∈ ia∗M . (4.1)

Thus rP |P (π, λ) is also regular at λ = 0 and rP |P (π, 0) �= 0. By (2.19) we
get

M(π, λ) = rP |P (π, 0)rP |P (π, λ)N(π, λ) . (4.2)

Now observe that there exists an open compact subgroup Kf ⊂ G(Af )
such that A2

π(P )Kf
�= {0}. Hence there exists σ ∈ Π(K∞) such that

A2
π(P )Kf ,σ �= {0} (cf. section 1.8 for the definition). Put

d = dimA2
π(P )Kf ,σ

and
c(π, σ) = rP |P (π, 0)

−d.

Then |c(π, σ)| = 1. Let M(π, λ)Kf ,σ (resp. N(π, λ)Kf ,σ) denote the restric-
tion of M(π, λ) (resp. N(π, λ)) to the subspace A2

π(P )Kf ,σ. Then we have
detN(π, λ)Kf ,σ �≡ 0 and by (4.2) we get

rP |P (π, λ)
d = c(π, σ)

detM(π, λ)Kf ,σ

detN(π, λ)Kf ,σ
. (4.3)
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Thus it suffices to prove that both the numerator and the denominator on
the right-hand side are meromorphic functions of order ≤ n+2. As for the
numerator, it follows from Theorem 0.1 of [Mü3] that detM(π, λ)Kf ,σ is a
meromorphic function of λ ∈ a∗M,C of order ≤ n + 2. In fact, in [Mü3] we
only dealt with the case of the trivial character ξ. However, all the results
of [Mü3] can be extend without any difficulty to the case of a nontrivial
character ξ. It remains to consider the denominator. By (2.11), (2.16) and
(2.17) there exists a finite set Sπ of finite places of Q such that

detN(π, λ)Kf ,σ = det
(
RP |P (π∞, 0)σRP |P (π∞, λ)σ

)
·
∏
v∈Sπ

det
(
RP |P (πv, 0)KvRP |P (πv, λ)Kv

)
, (4.4)

where RP |P (π∞, λ)σ denotes the restriction of RP |P (π∞, λ) to the σ-isotypi-
cal subspace HP (π∞)σ of HP (π∞) and RP |P (πv, λ)Kv denotes the restric-
tion of RP |P (πv, λ) to the subspace HP (πv)Kv of Kv-invariant functions.
By Theorem 2.1 of [A7], RP |P (π∞, λ) is a rational function of λ(α

∨) and

for each finite place v, RP |P (πv, λ) is a rational function of q
−λ(α∨)
v . There-

fore det(RP |P (π∞, 0)σRP |P (π∞, λ)σ) is a rational functions of λ(α
∨) and

for each v < ∞, det(RP |P (πv, 0)KvRP |P (πv, λ)Kv ) is a rational function

of q−λ(α∨)
v . Since the function z ∈ C �→ q−z is entire and of order 1, it

follows that detN(π, λ)σ,Kf
is a meromorphic function of λ ∈ a∗M,C of or-

der ≤ 1. By (4.3) it follows that rP |P (π, λ)
d and hence rP |P (π, λ) is a

meromorphic function of λ ∈ a∗M,C of order ≤ n+ 2. ✷

Remark. Assume that G is a quasi-split connected reductive group over
a number field F with ring of adèles AF . Let P = MN be a maximal
parabolic subgroup of G. Let π be a globally generic cuspidal representa-
tion of M(AF ). Then it follows from [Sh4] that the intertwining operator
MP |P (π, λ) can be normalized by automorphic L-functions. Furthermore
in [GS], Gelbart and Shahidi proved that the L-functions occurring in the
normalizing factor are meromorphic functions of order 1. Therefore, one
should expect that the normalizing factor rQ|P (π, λ) is of order 1 in general.
Now assume that dim aM/aG = 1. Our next goal is to estimate the

number of poles of rP |P (π, λ) in a circle of radius R > 0. For this purpose
we have to introduce some notation.
Let Πdisc(M(A);Kf ) be the space of representations defined by (1.2).

For every π ∈ Πdisc(M(A);Kf ) we have A2
π(P )Kf �= {0}.

Let π be an irreducible unitary representation of M(R) and let IGP (π)
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be the induced representation of G(R). Recall that among all K∞-types τΛ′

occurring in IGP (π), the minimal K∞-types of IGP (π) are those τΛ for which
|Λ′ + 2ρK |2 is minimizing at Λ′ = Λ. Let WP (π) be the set of minimal
K∞-types of IGP (π). Then WP (π) is a non empty finite subset of Π(K∞).
Let λπ be the Casimir eigenvalues of π and for any τ ∈ Π(K∞), let λτ be
the Casimir eigenvalue of τ . Put

Λπ := min
τ∈WP (π)

√
λ2π + λ2τ . (4.5)

If π ∈ Π(M(A)), put
Λπ := Λπ∞.

For a given pole η of rP |P (π, λ), let m(η) denote its order. Set

nP (π,R) =
∑
|η|≤R

m(η) ,

where the sum runs over all poles of rP |P (π, λ).

Proposition 4.2. Let m = dimG and let Kf be an open compact
subgroup of G(Af ). There exists C > 0 such that for all R > 0 and all
π ∈ Πdisc(M(A);Kf ) we have

nP (π,R) ≤ C(1 +R2 + Λ2
π)

8m.

Proof. Let π ∈ Πdisc(M(A);Kf ). Then there exists σ ∈ Π(K∞) such that
A2

π(P )Kf ,σ �= {0}. Put
N(π, λ) := NP |P (π, λ)NP |P (π, 0) , λ ∈ a∗M,C .

Then
N(π, λ)N(π, λ) = Id

and by (4.3) we get

rP |P (π, λ)
d = c(π, σ) det

(
M(π, λ)Kf ,σ

) · det (N(π, λ)Kf ,σ

)
. (4.6)

Thus it suffices to estimate the number of poles of the functions occurring
on the right. It follows from Proposition 6.6 and Lemma 6.1 of [Mü3], that
the number of poles, counted with their order, of detM(π, λ)Kf ,σ in the
disc |λ| ≤ R is bounded by

C(1 +R2 + λ2π + λ
2
σ)

8m,

where C > 0 is independent of π and σ. As noted above, in [Mü3] we only
dealt with the case of the trivial character ξ. However, everything can be
extended to a nontrivial character ξ without any difficulty.
It remains to consider detN(π, λ)Kf ,σ. For any place v let

R(πv, λ) = RP |P (πv, λ)RP |P (πv, 0) .
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By (2.16) and (2.17) we have
N(π, λ) ◦ jP = jP ◦

(
(⊗vR(πv, λ))⊗ Id

)
and there exists a finite set Sπ of finite places, which depends only on π
and Kf , such that

R(πv, λ)Kv = Id
for all v /∈ Sπ ∪ {∞}. Thus

det
(
N(π, λ)Kf ,σ

)
= det

(
R(π∞, λ)σ

) · ∏
v∈Sπ

det
(
R(πv, λ)Kv

)
. (4.7)

Let nP (πv , R), v < ∞, (resp. nP (π∞, R)) denote the number of poles,
counted with the order, of det(R(πv, λ)Kv ) (resp. det(R(π∞, λ)σ)) in the
disc |λ| < R. Then we have to estimate nP (πv, R) for any v ≤ ∞.
Let v < ∞ and let πv be any irreducible unitary representation of

M(Qv). Let α̃ ∈ aM be as (3.5). By Theorem 2.2.2 of [Sh1] there exists a
polynomial Qv(z), Qv(0) = 1, such that

Qv(q−λ(eα)
v )JP |P (πv , λ)

is a holomorphic and non-zero operator. Moreover, the degree of the poly-
nomial Qv is independent of πv. Let

dv = dimHP (πv)Kv .

Then it follows from (2.7) and the definition of R(πv , λ) that
rP |P (πv, λ)

dvQv(q−λ(eα)
v )dv det

(
R(πv , λ)Kv

)
is a holomorphic function on a∗M,C . By (r.5) there exist polynomials P1(z)
and P2(z) such that

rP |P (πv, λ) =
P1(q

−λ(eα)
v )

P2(q
−λ(eα)
v )

.

Thus it suffices to estimate the number of zeros of P1(q
−λ(eα)
v ) andQv(q

−λ(eα)
v ),

respectively, in a circle of radius R > 0. First observe that for every
z ∈ C the number of solutions of q−s

v = z in the disc |s| ≤ R is bounded
by 1 + (2π)−1 log(qv)R. Furthermore, the degree of the polynomial Qv

is bounded by some constant cv > 0 which is independent of πv. Using
Lemma 3.1 and (2.1)–(2.3) of [A7], it follows that the degree of the polyno-
mial P1(z) is also bounded by a constant which is independent of πv. This
implies that there exists Cv > 0 such that

nP (πv, R) ≤ Cv dim
(HP (πv)Kv

)
(1 +R)

for all πv ∈ Π(M(Qv)) and R > 0. It remains to estimate the dimension
of HP (πv)Kv . Suppose that πv is the component at v of a representa-
tion π ∈ Πdisc(M(A));Kf ). Then there exists ξ ∈ Π(AM (R)0) such that
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π ∈ Πdisc(M(A))ξ . Let HP (π)
Kf
σ be the σ-isotypical subspace of HP (π)Kf .

By (2.3) it follows that

HP (π)
Kf
σ ⊗HomM(A )

(
π, I

M(A )
M(Q )AM(R)0

(ξ)
) ∼= A2

π(P )Kf ,σ .

Moreover we have
HP (π)

Kf
σ
∼= HP (π∞)σ ⊗

⊗
v<∞

HP (πv)Kv

and dimHP (πv)Kv = 1 for v /∈ Sπ. Thus it follows that
dimHP (πv)Kv ≤ dimA2

π(P )Kf ,σ .

The right-hand side can be estimated by Lemma 6.1 of [Mü3]. It follows
that

nP (πv, R) ≤ Cv(1 + λ2π + λ
2
σ)

3m(1 +R) . (4.8)
Now let v =∞ and let π∞ ∈ Π(M(R)). Set

J(π∞, λ) = JP |P (π∞, λ)JP |P (π∞, 0) .
Then

R(π∞, λ) =
(
rP |P (π∞, λ)rP |P (π∞, 0)

)−1
J(π∞, λ) . (4.9)

Let KM,∞ = K∞ ∩M(R) and let
σ|KM,∞ =

⊕
τ∈Π(KM,∞)

nττ .

Set
[σ : π∞] =

∑
τ∈Π(KM,∞)

nτ [τ : π∞|KM,∞] .

By Corollary 4.7 of [VW], there exist complex numbers ai(π∞), i = 1, . . . , r,
and bi(π∞, σ), i = 1, . . . , r[σ : π∞], with r = r(π∞) depending only on π∞,
and a constant C ∈ C, such that

det J(π∞, λ) = C
∏r(π∞)

i=1 Γ(〈λ, α∨〉/(4〈ρP , α∨〉)− ai(π∞))[σ:π∞]∏r(π∞)[σ:π∞]
i=1 Γ(〈λ, α∨〉/(4〈ρP , α∨〉)− bi(π∞))

. (4.10)

Lemma 4.3. There exists c > 0 such that r(τ) ≤ c for all τ ∈ Π(M(R)).
Proof. Let bτ be the polynomial which is associated to τ by Theorem 1.5 of
[VW]. Then r(τ) is the degree of bτ [VW, p. 228]. So we have to estimate
the degree of bτ . The polynomial bτ is obtained from a more general poly-
nomial bτ,λ occurring in Theorem 2.2 of [VW] by choosing λ = 4ρP . The
polynomial bτ,λ is associated to τ and a finite dimensional representation
(η, F ) of G satisfying the conditions (1)–(3) in [VW, p. 210]. Then λ is
the action of aM on F n. It follows from the constructions on p. 217–219 in
[VW], that the polynomial bτ,λ is the product of the denominator of β and
the denominator of the element žν , defined on p. 219. Let Ω ∈ Z(gC ) be
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the Casimir element, and let χΛ be the infinitesimal character of τ . Then
it follows that bτ,λ equals

bτ,λ(ν) =
∏

µ∈Π(F )−{λ}

(
χΛ+ν(Ω)− χΛ+ν+λ−µ(Ω)

)r(µ)
·

∏
µ∈Π(F )−{λ}

(
χΛ+ν+λ(Ω)− χΛ+ν+µ(Ω)

)r(µ)
.

Here Π(F ) denotes the set of weights of F with respect to a fixed Cartan
subalgebra h of g and r(µ) is the multiplicity of a given weight µ. From
this description of bτ,λ it follows that

r(τ) ≤ 2(dimF − 1) .
Finally, bτ is obtained by choosing F to be the representation described in
example 2.1 of [VW]. ✷

Now recall that the poles of the Gamma function Γ(z) are simple poles at
z = 0,−1,−2, . . . and 1/Γ(z) is entire. Then it follows from (4.10) together
with Lemma 4.3 that there exists a constant C1 > 0, independent of π∞,
such that the number of zeros, counted with their order, of det J(π∞, λ) in
the disc |λ| ≤ R is bounded by

C1[σ : π∞](1 +R) . (4.11)
By Theorem 8.1 of [K] and remark 1 following Theorem 8.4 in [K], we

have
[σ : π∞] ≤

∑
τ∈Π(KM,∞)

nτ dim τ ≤ dimσ .

Furthermore, by Weyl’s dimension formula, there exists C2 > 0 such that
dimσ ≤ C2(1 + λ2σ)p, where p = 1/2 dimK. Thus (4.11) is bounded by

C2(1 + λ2σ)
p(1 +R) .

It remains to consider the normalizing factor rP |P (π∞, λ). It is given
by formula (3.7). Let φλ :WR → LM be the map associated to (π∞)λ. Let
q be the number of irreducible constituents occurring in the decomposition
(3.8) of ρ · φλ. Then q is bounded independently of π and it follows from
the description of the L-factors in §3 that rP |P (π∞, λ) is a product of q
meromorphic functions of the form (3.9) or (3.10). From the form of these
functions it follows immediately that the number of poles, counted with
their order, of rP |P (π∞, λ) in the disc |λ| ≤ R is bounded by C(1 + R).
Putting our estimated together, we have proved that there exists C > 0,
depending on Kf , such that

nP (π,R) ≤ C(1 +R2 + λ2π + λ
2
σ)

8m (4.12)
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for all R ≥ 0, and all π ∈ Πdisc(M(A)) and σ ∈ Π(K∞) such that A2
π(P )Kf ,σ

�= {0}.
Let π ∈ Πdisc(M(A);Kf ). Let τ be a minimal K∞-type of IGP (π∞).

Choose σ ∈ Π(K∞) such that σ = τ . Then (4.12) applied to σ together
with the definition of Λπ implies the proposition. ✷

Corollary 4.4. Let m = dimG and n = 16m + 2. There exists C > 0,
depending on Kf , such that for each π ∈ Πdisc(M(A);Kf ) we have∑

ρ�=0

m(ρ)
|ρ|n ≤ C(1 + Λ2

π)
8m ,

where ρ runs over the poles of rP |P (π, λ).

5 Logarithmic Derivatives of Global Normalizing Factors

In this section we shall study generalized logarithmic derivatives of the
global normalizing factors. First we assume that M ∈ L(M0) is such that
dim aM/dim aG = 1. Let P ∈ P(M) and let α be the unique simple root of
(P,A). Let π ∈ Πdisc(M(A)) with π = ⊗vπv. By property (r.5) satisfied by
the local normalizing factors, it follows that for each place v, there exists a
meromorphic function r̃P |P (πv, z) of one complex variable z such that the
local normalizing factor rP |P (πv, λ) is given by

rP |P (πv, λ) = r̃P |P
(
πv, λ(α∨)

)
.

Let
r̃P |P (π, z) :=

∏
v

r̃P |P (πv, z) .

The infinite product is absolutely convergent in the half-plane Re(z) >
ρP (α∨), admits a meromorphic continuation to C and the global normalizing
factor is given by

rP |P (π, λ) = r̃P |P
(
π, λ(α∨)

)
, λ ∈ a∗M,C .

Our present goal is to estimate the logarithmic derivative of r̃P |P (π, z) along
the imaginary axis.
To begin with, observe that by Lemma 3.2 and Lemma 3.3 there exist

C, c > 0 such that∣∣∣r̃P |P (π, z)
−1 d

dz r̃P |P (π, z)
∣∣∣ ≤ ∑

v≤∞

∣∣∣r̃P |P (πv, z)
−1 d

dz r̃P |P (πv, z)
∣∣∣ ≤ C (5.1)

for all π ∈ Πdisc(M(A)) and Re(z) ≥ c. Using (2.20) and (2.21), it follows
that the function r̃P |P (π, z) satisfies

r̃P |P (π, z)r̃P |P (π,−z) = 1 . (5.2)
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Hence we get∣∣∣∣r̃P |P (π, z)
−1 d

dz
r̃P |P (π, z)

∣∣∣∣ = ∣∣∣∣r̃P |P (π,−z)−1

(
dr̃P |P
dz

)
(π,−z)

∣∣∣∣ ,
and together with (5.1) we obtain the following proposition.

Proposition 5.1. There exist C, c > 0 such that∣∣r̃P |P (π, z)
−1 d

dz r̃P |P (π, z)
∣∣ ≤ C

for all π ∈ Πdisc(M(A)) and all z ∈ C with |Re(z)| ≥ c.
In order to get estimates for the logarithmic derivative on the imaginary

axis, we shall use the partial fraction decomposition of the meromorphic
function r̃P |P (π, z)

−1(d/dz)(r̃P |P (π, z)), which allows us to treat the sum
of the principal parts separately. Let n = 16dimG + 2. Then it follows
from Corollary 4.4 that r̃P |P (π, z) is a meromorphic function of order ≤ n.
Thus there exist entire functions r1(π, z) and r2(π, z) of order ≤ n such
that

r̃P |P (π, z) =
r1(π, z)
r2(π, z)

.

Furthermore, observe that by (5.2) a complex number η is a zero of
r̃P |P (π, z) if and only if −η is a pole of r̃P |P (π, z). Thus by Hadamard’s
factorization theorem there exists a polynomial Q(z) of degree ≤ n such
that

r̃P |P (π, z) = e
Q(z)

∏
η

[
(1− z

η ) exp
(∑n

k=1
1
k

(
z
η

)k )]a(η)
∏

η

[
(1 + z

η ) exp
(∑n

k=1
1
k

(
− z

η

)k )]a(η) , (5.3)

where η runs over all zeros of r̃P |P (π, z) and a(η) denotes the order of the
zero η.
Let D(π) denote the set of all poles and zeros of r̃P |P (π, z). Given

η ∈ D(π), we denote by m(η) the order of η, i.e. m(η) is the integer such
that (z−η)−m(η) r̃P |P (π, z) is holomorphic in a neighborhood of η and does
not vanish at z = η. For η ∈ C× we define the function hη(z) by

hη(z) = −1
η

n−1∑
k=0

(
z

η

)k

, z ∈ C .

Then it follows from Corollary 4.4 that the series

f(π, z) =
∑

η∈D(π)
|η|≤1

m(η)
z − η +

∑
η∈D(π)
|η|>1

m(η)
{

1
z − η − hη(z)

}
(5.4)
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is absolutely convergent on compact subsets of C \D(π) and the resulting
function f(π, z) is a meromorphic function on C whose set of poles equals
D(π). Differentiating (5.3), we get

r̃P |P (π, z)
−1 d

dz r̃P |P (π, z) = f(π, z)−
∑

η∈D(π)
|η|≤1

m(η)hη(z) +Q′(z) .

Thus there is a polynomial g(π, z) of degree ≤ n− 1 such that
r̃P |P (π, z)

−1 d
dz r̃P |P (π, z) = f(π, z) + g(π, z) . (5.5)

We begin with the investigation of g(π, z).
Proposition 5.2. Let m = dimG. There exist C, c > 0 such that∣∣g(π, z)∣∣ ≤ C(1 + |z|2 + Λ2

π

)18m
for all π ∈ Πdisc(M(A),Kf ) and all z ∈ C with |Re(z)| ≤ c.
Proof. Let c > 0 be the constant occurring in Proposition 5.1. First
assume that |Re(z)| = c. By Proposition 5.1 it suffices to estimate f(π, z).
Referring again to Proposition 5.1, it follows that D(π) is contained in the
strip |Re(z)| ≤ c. Hence we may assume that c > 0 has been chosen so that
for all π ∈ Πdisc(M(A),Kf ), the zeros and poles of r̃P |P (π, z) are contained
in the strip |Re(z)| < c − δ, where δ > 0 is independent of π. Hence the
poles of f(π, z) are contained in |Re(z)| < c − δ. Let η ∈ C be a pole of
f(π, z). Then for |Re(z)| ≥ c we get

|z − η| ≥ ∣∣Re(z − η)∣∣ ≥ c− ∣∣Re(η)∣∣ ≥ δ . (5.6)
Furthermore, from the definition of f(π, z) it follows that∣∣f(π, z)∣∣ ≤ ∑

|η|≤2|z|

|m(η)|
|z − η| +

∑
1≤|η|≤2|z|

|m(η)||hη(z)|

+
∑

|η|>2|z|
|m(η)|

∣∣∣∣ 1
z − η − hη(z)

∣∣∣∣ .
Using (5.6) and Proposition 4.2, we can estimate the first sum as follows∑

|η|≤2|z|

|m(η)|
|z − η| ≤

1
δ

∑
|η|≤2|z|

|m(η)| ≤ 2
δ
nP
(
π, 2|z|)

≤ C(1 + |z|2 + Λ2
π

)8m
.

Again by Proposition 4.2, we obtain for the second sum∑
1≤|η|≤2|z|

|m(η)||hη(z)| ≤
∑

1≤|η|≤2|z|
|m(η)|

n−1∑
k=0

|z|k
|η|k+1

≤ C|z|n−1nP
(
π, 2|z|)

≤ C1|z|n−1
(
1 + |z|2 + Λ2

π

)8m
.

(5.7)
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Finally, by Corollary 4.4 we get∑
|η|>2|z|

|m(η)|
∣∣∣∣ 1
z − η − hη(z)

∣∣∣∣ ≤ 2|z|n ∑
|η|>2|z|

|m(η)|
|η|n+1

≤ C(1 + Λ2
π)

8m|z|n

≤ C(1 + |z|2 + Λ2
π

)8m
.

(5.8)

Putting our estimates together, it follows that there exists C > 0 such
that ∣∣f(π, z)∣∣ ≤ C(1 + |z|2 + Λ2

π

)18m
for |Re(z)| ≥ c. Hence by Proposition 5.1, there exists C > 0 such that∣∣g(π, z)∣∣ ≤ C(1 + |z|2 + Λ2

π

)18m (5.9)
for all π ∈ Πdisc(M(A),Kf ) and all z ∈ C with |Re(z)| = c. Now the
proposition follows from the Phragmen–Lindelöf theorem. ✷

Note that Proposition 5.2 gives an upper bound for g(π, z) on the imag-
inary axis.
We shall now investigate f(π, z). From the definition of f(π, z) by (5.3)

it is clear that the growth of f(π, z) along the imaginary axis depends
on the distance of the poles and zeros of r̃P |P (π, z) from the imaginary
axis. Therefore, without any further information about the distribution
of the poles and zeros we cannot expect to get any estimates for f(π, iλ)
as |λ| → ∞. However, what we can hope for is to obtain estimates for
integrals involving f(π, iλ).
To this end, we decompose f(π, z) as follows

f(π, z) =
∑

η∈D(π)
|η|≤2|z|

m(η)
1

z − η −
∑

η∈D(π)
1≤|η|≤2|z|

m(η)hη(z)

+
∑

η∈D(π)
|η|>2|z|

m(η)
{

1
z − η − hη(z)

}
.

As for the second and the third sum, we observe that the estimations (5.7)
and (5.8) are uniform in z ∈ C. It remains to consider the first sum which
we denote by f1(π, z). Let

D±(π) =
{
η ∈ D(π) | ±m(η) > 0} .

Then the map η → −η is a bijection of D+(π) onto D−(π), and therefore,
f1(π, z) can be written as

f1(π, z) =
∑

η∈D+(π)

|η|≤2|z|

m(η)
{

1
z − η −

1
z + η

}
.



Vol. 12, 2002 TRACE FORMULA 703

In particular, for λ ∈ R \ {0} we get
f1(π, iλ) = −

∑
η∈D+(π)

|η|≤2|λ|

m(η)
2Re(η)

Re(η)2 + (λ− Im(η))2 .

Let ζ ∈ C∞(R) be such that 0 ≤ ζ ≤ 1, ζ(u) = 0 for |u| ≥ 3 and
ζ(u) = 1 for |u| ≤ 2. Then it follows that∣∣f1(π, iλ)∣∣ ≤ ∑

η∈D+(π)

|η|≤2|λ|

m(η)
2|Re(η)|

Re(η)2 + (λ− Im(η))2

≤
∑

η∈D+(π)

ζ

( |η|
|λ|
)
m(η)

2|Re(η)|
Re(η)2 + (λ− Im(η))2 .

Thus we have proved that for λ ∈ R \ {0} the following inequality holds∣∣f(π, iλ)∣∣ ≤ ∑
η∈D+(π)

ζ

( |η|
|λ|
)
m(η)

2|Re(η)|
Re(η)2 + (λ− Im(η))2

+ C(1 + λ2 + Λ2
π)

8m. (5.10)

Put

F (λ) :=

{∑
η∈D+(π) ζ

( |η|
|λ|
)
m(η) 2|Re(η)|

Re(η)2+(λ−Im(η))2
, λ �= 0 ;

0 , λ = 0 .

Note that 0 /∈ D(π). Therefore, on any finite interval [−a, a], F (λ) is
the sum of finitely many smooth and non-negative functions. Hence F (λ)
is a smooth and non-negative function. We shall now estimate the integral
of F (u) over a finite interval. Using Proposition 4.2 and the properties of ζ,
we obtain∫ λ

0
F (u)du ≤

∑
η∈D+(π)

|η|≤3λ

m(η)
∫ λ

0

2|Re(η)|
Re(η)2 + (u− Im(η))2 du

≤ 2πnP (π, 3λ)
≤ C(1 + λ2 + Λ2

π)
8m. (5.11)

Let N ≥ 8m + 2 and R > 0. Using integration by parts and (5.11), we
obtain∣∣∣∣ ∫ R

−R
F (u)(1 + u2)−Ndu

∣∣∣∣ = ∣∣∣∣ ∫ R

−R

(∫ u

0
F (t) dt

)
d
du(1 + u

2)−Ndu

∣∣∣∣
+
∣∣∣∣ ∫ R

−R
F (t) dt

∣∣∣∣(1 +R2)−N
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≤ C(1 + Λ2
π)

8m

∫
R

(1 + u2)8m
∣∣ d
du(1 + u

2)−N
∣∣ du

≤ CN (1 + Λ2
π)

8m.

Here we have used that by (5.11) the boundary term is bounded by a
constant independent of R. Since F ≥ 0, this inequality implies that F (u) is
integrable with respect to the measure (1+u2)−Ndu. Putting our estimates
together, we obtain the following theorem.

Theorem 5.3. Let M ∈ L(M0) and assume that dim aM/aG = 1. Let
P ∈ P(M) and let m = dimG(R). For every N ≥ 8m + 2 there exists
CN > 0 such that for all π ∈ Πdisc(M(A);Kf ) the following inequality
holds∫

R

∣∣r̃P |P (π, iu)
−1 d

du r̃P |P (π, iu)
∣∣(1 + u2)−Ndu ≤ CN (1 + Λ2

π)
18m.

Now suppose that M ∈ L(M0) is arbitrary. Then we have to consider
the multidimensional logarithmic derivatives of the normalizing factors de-
fined by Arthur in [A4]. For this purpose we will use the notion of a (G,M)
family introduced by Arthur in Section 6 of [A5]. For the convenience of
the reader we recall the definition of a (G,M) family and explain some of
its properties.
For each P ∈ P(M), let cP (λ) be a smooth function on ia∗M . Then the

set {
cP (λ) | P ∈ P(M)

}
is called a (G,M) family if the following holds: Let P,P ′ ∈ P(M) be
adjacent parabolic groups and suppose that λ belongs to the hyperplane
spanned by the common wall of the chambers of P and P ′. Then

cP (λ) = cP ′(λ) .
Let

θP (λ) = vol
(
aGP /Z(∆

∨
P )
)−1

∏
α∈∆P

λ(α∨) , λ ∈ ia∗P , (5.12)

where Z(∆∨
P ) is the lattice in aGP generated by the co-roots

{α∨ | α ∈ ∆P } .
Let {cP (λ)} be a (G,M) family. Then by Lemma 6.2 of [A5], the function

cM (λ) =
∑

P∈P(M)

cP (λ)θP (λ)−1, (5.13)

which is defined on the complement of a finite set of hyperplanes, extends
to a smooth function on ia∗M . The value of cM (λ) at λ = 0 is of particular
importance in connection with the spectral side of the trace formula. It
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can be computed as follows. Let p = dim(AM/AG). Set λ = tΛ, t ∈ R,
Λ ∈ a∗M , and let t tend to 0. Then

cM (0) = 1
p!

∑
P∈P(M)

(
lim
t→0

(
d
dt

)p
cP (tΛ)

)
θP (Λ)−1 (5.14)

[A5, (6.5)]. This expression is of course independent of Λ.
For any (G,M) family {cP (λ) | P ∈ P(M)} and any L ∈ L(M) there is

associated a natural (G,L) family which is defined as follows. LetQ ∈ P(L)
and suppose that P ⊂ Q. The function

λ ∈ ia∗L �→ cP (λ)
depends only on Q. We will denote it by cQ(λ). Then{

cQ(λ) | Q ∈ P(L)
}

is a (G,L) family. We write

cL(λ) =
∑

Q∈P(L)

cQ(λ)θQ(λ)−1

for the corresponding function (5.13).
Let Q ∈ P(L) be fixed. If R ∈ PL(M), then Q(R) is the unique group

in P(M) such that Q(R) ⊂ Q and Q(R) ∩ L = R. Let cQR be the function
on ia∗M which is defined by

cQR(λ) = cQ(R)(λ) .

Then {cQR(λ) | R ∈ PL(M)} is an (L,M) family. Let cQM (λ) be the function
(5.13) associated to this (L,M) family.
We consider now special (G,M) families defined by the global normal-

izing factors. Fix P ∈ P(M), π ∈ Πdisc(M(A)) and λ ∈ ia∗M . Define
νQ(P, π, λ,Λ) := rQ|P (π, λ)−1rQ|P (π, λ+ Λ) , Q ∈ P(M) . (5.15)

This set of functions is a (G,M) family [A4, p. 1317]. It is of a special form.
Given β ∈ Σr

P ∩ Σr
Q
, set

rβ(π, z) = r̃Pβ |Pβ
(π, z) , z ∈ C .

Then by (2.22) we have

νQ(P, π, λ,Λ) =
∏

β∈Σr
Q∩Σr

P

rβ
(
π, λ(β∨)

)−1
rβ
(
π, λ(β∨) + Λ(β∨)

)
.

Suppose that L ∈ L(M), L1 ∈ L(L) and S ∈ P(L1). Let{
νSQ1
(P, π, λ,Λ)

∣∣ Q1 ∈ PL1(L)
}

be the associated (L1, L) family and let νSL(P, π, λ,Λ) be the function (5.13)
defined by this family. Set

νSL(P, π, λ) := ν
S
L(P, π, λ, 0) .
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If β is any root in Σr(G,AM ), let β∨L denote the projection of β
∨ onto aL.

If F is a subset of Σr(G,AM ), let F∨
L be the disjoint union of all the vectors

β∨L , β ∈ F . Then by Proposition 7.5 of [A4] we have
νSL(P, π, λ) =

∑
F

vol
(
aL1
L /Z(F

∨
L )
)

·
( ∏

β∈F
rβ
(
π, λ(β∨)

)−1
r′β(π, λ(β

∨))
)
, (5.16)

where F runs over all subsets of Σr(L1, AM ) such that F∨
L is a basis of a

L1
L .

Let N ∈ N. Then by (5.16) we get∫
ia∗L/a∗G

∣∣νSL(P, π, λ)∣∣(1 + ‖λ‖2)−N
dλ ≤

∑
F

vol
(
aL1
L /Z(F

∨
L )
)

·
∫
ia∗L/a∗G

∏
β∈F

∣∣rβ(π, λ(β∨))−1r′β(π, λ(β
∨))
∣∣(1 + ‖λ‖2)−N

dλ .

Here F runs over all subsets of Σr(L1, AM ) such that F∨
L is a basis of aL1

L .
Fix such a subset F . Let

{ω̃β | β ∈ F}
be the basis of (aL1

L )
∗ which is dual to FL1

L . We can write λ ∈ ia∗L/ia∗G as
λ =

∑
β∈F

zβω̃β + λ1 , zβ ∈ iR , λ1 ∈ ia∗L1
/ia∗G .

Observe that λ(β∨) = zβ . Suppose that N > 2 dim(AL1/AG) + 2. Then
there exists CN > 0, independent of π, such that∫

ia∗L/a∗G

∏
β∈F

∣∣rβ(π, λ(β∨))−1r′β(π, λ(β
∨))
∣∣(1 + ‖λ‖2)−N

dλ

≤ CN

∏
β∈F

∫
iR

∣∣rβ(π, zβ)−1r′β(π, zβ)
∣∣(1 + |zβ|2)−N/2

dzβ .

Combined with Theorem 5.3 we obtain

Theorem 5.4. Let M ∈ L(M0), L ∈ L(M), L1 ∈ L(L) and S ∈ P(L1).
Let m = dimG(R)/K∞. For every N ≥ 8m + 2 there exists CN > 0 such
that ∫

ia∗L/a∗G

∣∣νSL(P, π, λ)∣∣(1 + ‖λ‖2)−N
dλ ≤ CN (1 + λ2π + λ

2
σ)

8m2

for all π ∈ Πdisc(M(A),Kf ) and any minimal K∞-type σ of IGP (π∞).
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6 Absolute Convergence of the Spectral Side

In this section we prove Theorem 0.1 and Theorem 0.2. For this purpose
we have to study the multidimensional logarithmic derivatives of the global
intertwining operators that are the main ingredients of the spectral side.
First we explain the structure of the spectral side in more detail. Let
M ∈ L(M0). Fix P ∈ P(M) and λ ∈ ia∗M . For Q ∈ P(M) and Λ ∈ ia∗M
define

MQ(P, λ,Λ) =MQ|P (λ)−1MQ|P (λ+ Λ) .
Then {

MQ(P, λ,Λ)
∣∣ Λ ∈ ia∗M , Q ∈ P(M)} (6.1)

is a (G,M) family with values in the space of operators on A2(P ) [A4,
p. 1310].
Let L ∈ L(M). Then as above, the (G,M) family (6.1) has an associated

(G,L) family {
MQ1(P, λ,Λ)

∣∣ Λ ∈ ia∗L , Q1 ∈ P(L)
}

and
ML(P, λ,Λ) =

∑
Q1∈P(L)

MQ1(P, λ,Λ)θQ1(Λ)
−1

extends to a smooth function on ia∗L. Put
ML(P, λ) = ML(P, λ, 0) .

For s ∈W (a∗M ) let
M(P, s) =MP |P (s, 0) .

The spectral side is a sum of distributions∑
χ∈X

Jχ

on G(A)1. By Theorem 8.2 of [A4], the distribution Jχ can be described
as follows. Let χ ∈ X, π ∈ Π(M(A)1) and h ∈ C∞

c (G(A)1). Note that
ML(P, λ) and ρχ,π(P, λ, h) both act in the Hilbert space HP (π)χ. Let
WL(aM )reg be the set of elements s ∈W (aM ) such that {H ∈ aM | sH = H}
= aL. Then Jχ(f) equals the sum over M∈L(M0), L∈L(M), π∈Π(M(A)1)
and s ∈WL(aM )reg of the product of

|WM
0 | |W0|−1|det(s− 1)

a
L
M
|−1

with ∫
ia∗L/ia∗G

|P(M)|−1
∑

P∈P(M)

tr
(
ML(P, λ)M(P, s)ρχ,π(P, λ, h)

)
dλ .

Our goal is to determine the conditions under which the integral-series
obtained by summing this expression over χ ∈ X, is absolutely convergent.
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Since M(P, s) is unitary, we have to estimate the integral∫
ia∗L/ia∗G

∥∥ML(P, λ)ρχ,π(P, λ, h)
∥∥
1
dλ , (6.2)

where ‖ · ‖1 denotes the trace norm.
We shall now assume that h∈C1(G(A)1). Let NQ|P (π, λ), P,Q∈P(M),

be the normalized intertwining operator which by (2.19) is defined as
NQ|P (π, λ) := rQ|P (π, λ)−1MQ|P (π, λ) , λ ∈ a∗M,C ,

Let P ∈ P(M) and λ ∈ ia∗M be fixed. For Q ∈ P(M) and Λ ∈ ia∗M define
NQ(P, π, λ,Λ) = NQ|P (π, λ)−1NQ|P (π, λ+ Λ) , (6.3)

Then as functions of Λ ∈ ia∗M ,{
NQ(P, π, λ,Λ)

∣∣ Q ∈ P(M)}
is a (G,M) family. The verification is the same as in the case of the
unnormalized intertwining operator [A4, p. 1310]. For L ∈ L(M), let{

NQ1(P, π, λ,Λ)
∣∣ Λ ∈ ia∗L, Q1 ∈ P(L)

}
be the associated (G,L) family.
LetMQ1(P, π, λ,Λ) be the restriction ofMQ1(P, λ,Λ) to HP (π)χ. Then

by (2.19) and (5.15) it follows that
MQ1(P, π, λ,Λ) = NQ1(P, π, λ,Λ)νQ1(P, π, λ,Λ) (6.4)

for all Λ ∈ ia∗L and all Q1 ∈ P(L).
For Q ⊃ P let L̂Q

P ⊂ a
Q
P be the lattice generated by {ω̃∨ | ω̃ ∈ ∆̂Q

P }.
Define

θ̂QP (λ) = vol(a
Q
P /L̂

Q
P )

−1
∏

ω̃∈∆̂Q
P

λ(ω̃∨) .

For S ∈ F(L) put
N′

S(P, π, λ)

= lim
Λ→0

∑
{R|R⊃S}

(−1)dim(AS/AR)θ̂RS (Λ)
−1NR(P, π, λ,Λ)θR(Λ)−1. (6.5)

Let ML(P, π, λ) be the restriction of ML(P, λ) to HP (π)χ. Then by
Lemma 6.3 of [A5] we have

ML(P, π, λ) =
∑

S∈F(L)

N′
S(P, π, λ)ν

S
L(P, π, λ) . (6.6)

Hence the integral (6.2) can be estimated by∑
S∈F(L)

∫
ia∗L/ia∗G

∥∥N′
S(P, π, λ)ρχ,π(P, λ, h)

∥∥
1

∣∣νSL(P, π, λ)∣∣dλ .



Vol. 12, 2002 TRACE FORMULA 709

We shall now study the integral in more detail. Let Ω and ΩK be the
Casimir operators of G(R) and K∞ respectively. Set

∆ = Id−Ω+ 2ΩK .

Then ∆ acts on A2
χ,π(P ) through each of the representations ρχ,π(P, λ).

Let Kf be an open compact subgroup of G(Af ) and let σ ∈ Π(K∞). Then
the operators

ρχ,π(P, λ,∆) , λ ∈ ia∗P ,
have A2

χ,π(P )Kf
and A2

χ,π(P )Kf ,σ as invariant subspaces. We shall denote
the restriction of ρχ,π(P, λ,∆) to A2

χ,π(P )Kf
and A2

χ,π(P )Kf ,σ, respectively,
by ρχ,π(P, λ,∆)Kf

and ρχ,π(P, λ,∆)Kf ,σ, respectively. Recall that by (2.3),
ρχ,π(P, λ) is equivalent to IGP (πλ) ⊗ Id. Let λπ and λσ denote the Casimir
eigenvalues of π∞ and σ, respectively. Then it follows from Proposition 8.22
of [K] that

ρχ,π(P, λ,∆)Kf ,σ =
(
1 + ‖λ‖2 − λπ + 2λσ

)
Id . (6.7)

To estimate the right-hand side we use the following lemma.
Lemma 6.1. For all π ∈ Πdisc(M(A)1;Kf ) and σ ∈ Π(K∞), one has

−λπ + λσ ≥ 0 if dimA2
π(P )Kf ,σ �= {0} . (6.8)

Proof. The lemma is a consequence of a more general result. Let
π∞ ∈ Π(M(R)) and suppose that σ ∈ Π(K∞) occurs in I

G(R)
P (R) (π∞)|K∞ .

Let
π∞|K∞∩M(R) =

∑
ω∈Π(K∞∩M(R))

nωω .

Then [
I
G(R)
P (R) (π∞)|K∞ : σ

]
=

∑
ω∈Π(K∞∩M(R))

nω
[
σ|K∞∩M(R) : ω

]
[K, p. 208]. Hence there exists ω ∈ Π(K∞ ∩M(R)) such that

[σ|K∞∩M(R) : ω] > 0 and [π∞|K∞∩M(R) : ω] > 0 .
By [Mü2, (5.15)], the first condition implies that the Casimir eigenvalues
λω of ω and λσ of σ satisfy λω ≤ λσ∞ . On the other hand, since ω occurs
in π∞|K∞∩M(R) it follows that −λπ∞ + λω ≥ 0 [DH, Lemma 2.6]. This
completes the proof. ✷

Using (6.7) and (6.8), it follows that∥∥ρχ,π(P, λ,∆)Kf ,σ

∥∥2 ≥ (1 + ‖λ‖)2 + (−λπ + 2λσ)2
≥ 1

4

(
1 + ‖λ‖2 + λ2π + λ2σ

)
.

(6.9)

Let S ∈ F(L) be fixed. Given an open compact subgroup Kf of G(Af )
and σ ∈ Π(K∞), let N′

S(P, π, λ)Kf ,σ denote the restriction of N′
S(P, π, λ)

to A2
π(P )Kf ,σ.
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Lemma 6.2. Let Kf be an open compact subgroup of G(Af ) and let
h ∈ C1(G(A)1) be bi-invariant under Kf . Suppose that there exist N ∈ N
and C > 0 such that∥∥N′

S(P, π, λ)Kf ,σ

∥∥ ≤ C(1 + ‖λ‖2 + λ2π + λ2σ)N (6.10)
for all π ∈ Πdisc(M(A),Kf ), σ ∈ Π(K∞) and λ ∈ ia∗L. Then for every
k ∈ N there exists Ck > 0 such that∫

ia∗L/ia∗G

∥∥N′
S(P, π, λ)ρχ,π(P, λ, h)

∥∥
1

∣∣νSL(P, π, λ)∣∣dλ ≤ Ck(1 + Λπ)−k

for all χ ∈ X and π ∈ Π(M(A)1).
Proof. Since h is bi-invariant underKf , ρχ,π(P, λ, h) maps the Hilbert space
A2

χ,π(P ) into the subspace A2
χ,π(P )Kf

. Moreover A2
χ,π(P )Kf

is an invariant
subspace for ρχ,π(P, λ, h). Hence ρχ,π(P, λ, h) = 0, unless π belongs to
Πdisc(M(A),Kf ). So we may assume that π belongs to Πdisc(M(A),Kf ).
Then for each k ∈ N we get∥∥N′

S(P,π, λ)ρχ,π(P, λ, h)
∥∥
1

=
∥∥N′

S(P, π, λ)Kf
ρχ,π(P, λ, h)Kf

∥∥
1

≤ ∥∥N′
S(P, π, λ)Kf

ρχ,π(P, λ,∆2k)−1
Kf

∥∥
1

· ∥∥ρχ,π(P, λ,∆2kh)
∥∥ .

(6.11)

Furthermore, using (6.9) and (6.10) we get∥∥N′
S(P, π, λ)Kf

ρχ,π(P, λ,∆2k)−1
Kf

∥∥
1

≤
∑

σ∈Π(K∞)

∥∥N′
S(P, π, λ)Kf ,σ

∥∥ · ∥∥ρχ,π(P, λ,∆2k)−1
Kf ,σ

∥∥
1

≤ 2C
∑

σ∈Π(K∞)

dimA2
χ,π(P )Kf ,σ

(1 + ‖λ‖2 + λ2π + λ2σ)k−N
.

(6.12)

By Lemma 6.1 of [Mü3] there exist C1 > 0 and N1 ∈ N such that
dimA2

χ(P )Kf ,σ ≤ C1(1 + λ2χ + λ
2
σ)

N1

for all χ ∈ X and σ ∈ Π(K∞). Actually in [Mü3] we considered the space
A2(P,χ, σ), where σ is an irreducible representation of K. The two spaces
are not equal, but they are closely related. Moreover λχ was denoted by µχ
in [Mü3]. If A2

χ,π(P ) �= 0, it follows from Langlands’ construction of A2
χ(P )

in terms of iterated residues of cuspidal Eisenstein series that
|λχ − λπ| ≤ c (6.13)

with c > 0 independent of χ and π (see (4.21) of [Mü3]). Hence there exist
C2 > 0 and N1 ∈ N such that

dimA2
χ,π(P )Kf ,σ ≤ C2(1 + λ2π + λ

2
σ)

N1 (6.14)
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for all χ ∈ X, π ∈ Πdisc(M(A),Kf ) and σ ∈ Π(K∞). Set
N2 = 1

2(N +N1) .
Now observe that there exists n0 ∈ N such that∑

σ∞∈Π(K∞)

(1 + λσ)−n <∞ .

the right-hand side is finite for n ≥ n0. Let Λπ be the number defined by
(4.5). Then by (6.12) and (6.14) it follows that for every k > 2(n0 + N2)
there exists Ck > 0 such that∥∥N′

S(P, π, λ)Kf
ρχ,π(P, λ,∆4k)−1

Kf

∥∥
1

≤ Ck

(
1 + ‖λ‖2 + Λ2

π

)N2−k

≤ Ck

(
1 + ‖λ‖2)(N2−k)/2(1 + Λ2

π)
(N2−k)/2

(6.15)

for all π ∈ Πdisc(M(A),Kf ) and χ ∈ X. Next observe that for λ ∈ ia∗L the
operator ρχ,π(P, λ, g) is unitary. Hence it follows that∥∥ρχ,π(P, λ,∆4kh)

∥∥ ≤ ‖∆4kh‖L1(G(A )1) (6.16)
for all π ∈ Πdisc(M(A),Kf ) and χ ∈ X. Combing (6.11), (6.15) and (6.16),
it follows that for every n ∈ N there exists Cn > 0 such that∥∥N′

S(P, π, λ)ρχ,π(P, λ, h)
∥∥
1
≤ Cn

(
1 + ‖λ‖2)−n(1 + Λ2

π)
−n

for all χ ∈ X and π ∈ Πdisc(M(A),Kf ). Combined with Theorem 5.4 the
claimed estimation of the integral follows. ✷

Proof of Theorem 0.1. Let h ∈ C1(G(A)1) be bi-invariant under Kf . As
observed in the proof of Lemma 6.2, it follows that ρχ,π(P, λ, h) = 0, unless
π ∈ Πdisc(M(A),Kf ). Let L2disc(M(Q)AP (R)0\M(A)) be the largest closed
subspace of the Hilbert space L2(M(Q)AP (R)0\M(A)) which decomposes
discretely under the regular representation of M(A). Then

L2disc

(
M(Q)AP (R)0\M(A)

)
=

⊕
π∈Π(M(A ))

m(π)Hπ ,

and each multiplicity m(π) is finite. Thus, if the assumption (6.10) of
Lemma 6.2 is satisfied, it follows from Lemma 6.2 that for every n ∈ N
there exists Cn > 0 such that∑

χ∈X

∑
π∈Π(M(A )1)

∫
ia∗L/ia∗G

∥∥N′
S(P, π, λ)ρχ,π(P, λ, h)

∥∥
1

∣∣νSL(P, π, λ)∣∣dλ
≤ Cn

∑
π∈Πdisc(M(A )1,Kf)

m(π)(1 + Λπ)−n . (6.17)

It remains to investigate the sum on the right-hand side. Let
KM,f = Kf ∩M(Af ) .



712 W. MÜLLER GAFA

Then there exist arithmetic subgroups ΓM,i ⊂M(R), i = 1, . . . , l, such that

M(Q)\M(A)/KM,f
∼=

l⋃
i=1

(
ΓM,i\M(R)

)
(cf. Section 9 of [Mü1]). Therefore we get

L2
(
AM (R)0M(Q)\M(A)

)KM,f ∼=
l⊕

i=1

L2
(
AM (R)0ΓM,i\M(R)

)
(6.18)

as M(R)-modules. For each i, i = 1, . . . , l, let L2disc(AP (R)0ΓM,i\M(R))
be the discrete subspace of the regular representation of M(R) in
L2(AP (R)0ΓM,i\M(R)). Then it follows from (6.18) that

L2disc

(
AP (R)0M(Q)\M(A)

)KM,f ∼=
l⊕

i=1

L2disc

(
AP (R)0ΓM,i\M(R)

)
(6.19)

as M(R) modules. For i, 1 ≤ i ≤ l, and π∞ ∈ Π(M(R)) denote by
mΓM,i

(π∞) the multiplicity of π∞ in the regular representation of M(R) in
L2disc(AP (R)0ΓM,i\M(R)). Then by (6.19) we get∑

π∈Πdisc(M(A )1,Kf )

m(π)(1 + Λπ)−n

≤
l∑

i=1

∑
π∞∈Π(M(R))

mΓM,i
(π∞)(1 + Λπ∞)

−n (6.20)

Let σ ∈ Π(K∞) be a minimal K∞-type occurring in IGP (π∞) with Casimir
eigenvalue λσ. Let KM,∞ =M(R) ∩K∞. By (5.15) of [Mü2] we have that
λσ ≥ λτ for any irreducible constituent τ ∈ Π(KM,∞) of σ∞|KM,∞. Thus
the right-hand side of (6.20) is bounded by

l∑
i=1

∑
τ∈Π(KM,∞)

∑
π∞∈Π(M(R))

mΓM,i
(π∞)

dim(H(π∞)⊗ Vτ )KM,∞

(1 + λ2π∞ + λ
2
τ )n/2

.

By Corollary 0.3 of [Mü2] this sum is finite for n sufficiently large. Thus
we proved
Proposition 6.3. LetKf be an open compact subgroup of G(Af ) and let
h ∈ C1(G(A)1) be bi-invariant under Kf . Suppose that there exist N ∈ N
and C > 0 such that∥∥N′

S(P, π, λ)Kf ,σ

∥∥ ≤ C(1 + ‖λ‖2 + λ2π + λ2σ)N (6.21)
for all π ∈ Πdisc(M(A),Kf ), σ ∈ Π(K∞) and λ ∈ ia∗L. Then∑

χ∈X

∑
π∈Π(M(A )1)

∫
ia∗L/ia∗G

∥∥ML(P, λ)ρχ,π(P, λ, h)
∥∥
1
dλ <∞ . (6.22)
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Let h ∈ C1(G(A)1). Then there exists an open compact subgroup Kf

of G(Af ) such that h is bi-invariant under Kf . Using the observations
made at the beginning of this section, it follows that (6.22) implies that the
spectral side of the trace formula is absolutely convergent.
We shall now continue by investigating condition (6.21) in detail. To

calculate N′
S(P, π, λ), let Λ ∈ ia∗M . By [A5, p. 37] N′

S(P, π, λ) equals
1
q!

∑
{R|R⊃S}

(−1)q θ̂RS (Λ)−1
(
lim
t→0

(
d
dt

)q
NR(P, π, λ, tΛ)

)
θR(Λ)−1,

where q = dim(AS/AR). Since NQ|P (π, λ) is unitary for λ ∈ ia∗M , it follows
from (6.3) that we have to estimate the norm of

lim
t→0

(
d
dt

)q
NQ|P (π, λ+ tΛ)σ , λ ∈ ia∗M . (6.23)

To this end, we may use (2.16) and (2.17) to replace NQ|P (π, λ) by
RQ|P (π, λ) = ⊗vRQ|P (πv, λ) .

Next note that any compact open subgroup Kf =
∏

v<∞Kv of G(Af ) is
such that Kv is a hyperspecial compact subgroup for almost all v. Hence,
by (2.11) there exists a finite set of places S0, including the Archimedean
one, such that we have

RQ|P (πv, λ)Kv = Id , v /∈ S0 , π ∈ Πdisc

(
M(A),Kf

)
.

Let DΛ denote the directional derivative on ia∗M in the direction of Λ. Then
it follows that there exists C > 0 such that∥∥N′

S(P, π, λ)Kf ,σ

∥∥ ≤ C( ∑
v∈S0\{∞}

q∑
k=1

∥∥Dk
ΛRQ|P (πv, λ)Kv

∥∥
+

q∑
k=1

∥∥Dk
ΛRQ|P (π∞, λ)σ

∥∥) (6.24)

for all λ ∈ ia∗M , σ ∈ Π(K∞) and π ∈ Π(M(A)). Together with Proposi-
tion 6.3 this implies Theorem 0.1. ✷

Proof of Theorem 0.2. The proof of Theorem 0.2 is similar to the proof
of Theorem 0.1. We only have to modify some of the arguments. Given
an open compact subgroup Kf of G(Af ) and σ ∈ Π(K∞), let ΠKf ,σ de-

note the orthogonal projection of the Hilbert space A2
χ,π(P ) onto the finite

dimensional subspace A2
χ,π(P )Kf ,σ. Let h ∈ C1(G(A)1) be K-finite. Then

there exists an open compact subgroup Kf of G(Af ) such that h is left and
right invariant under Kf . Furthermore, there exist σ1, . . . , σm ∈ Π(K∞)
such that

ρχ,π(P, λ, h) =
m∑

i,j=1

ΠKf ,σi ◦ ρχ,π(P, λ, h) ◦ ΠKf ,σj (6.25)
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for all π ∈ Π(M(A)1) and χ ∈ X. Let k ∈ N. Then by (6.25) we get∥∥N′
S(P, π, λ)ρχ,π(P, λ, h)

∥∥
1

≤
m∑
i=1

∥∥N′
S(P, π, λ)Kf ,σi

∥∥ · ∥∥ρχ,π(P, λ,∆2k)i−1
Kf ,σi

∥∥
1

· ∥∥ρχ,π(P, λ,∆2kh)
∥∥ . (6.26)

Here we assume, of course, that A2
χ,π(P )Kf ,σi �= 0, i = 1, . . . ,m. Then it

follows from (6.9) that∥∥ρχ,π(P, λ,∆2k)−1
Kf ,σi

∥∥
1
≤ C dimA

2
χ,π(P )Kf ,σi

(1 + ‖λ‖2 + λ2π)k
(6.27)

for i = 1, . . . ,m. Given σ ∈ Π(K∞), let
Πdisc(M(A)1)Kf ,σ =

{
π ∈ Πdisc(M(A)1;Kf )

∣∣ [IGP (π∞)|K∞ : σ] > 0
}
.

Then we proceed as above to show that for every n ∈ N there exists
Cn > 0 such that∑

χ∈X

∑
π∈Π(M(A )1)

∫
ia∗L/ia∗G

∥∥N′
S(P, π, λ)ρχ,π(P, λ, h)

∥∥
1

∣∣νSL(P, π, λ)∣∣dλ
≤ Cn

m∑
i=1

∑
π∈Πdisc(M(A )1)Kf ,σi

m(π)(1 + λ2π)
−n. (6.28)

To estimate the right-hand side, we fix σ ∈ Π(K∞). Then as in (6.20) we
get ∑

π∈Πdisc(M(A )1)Kf ,σ

m(π)
(1 + λ2π)n

≤
l∑

i=1

∑
π∞∈Π(M(R))

mΓM,i
(π∞)

dim(H(π∞)⊗ Vσ)KM,∞

(1 + λ2π∞)
n

.

It follows from Theorem 0.1 of [Mü1] that for sufficiently large n, this series
is convergent. This completes the proof of Theorem 0.2. ✷

We observe that for tempered representations, the existence of estimates
like (0.2), (0.3) and (0.4) follows from results of Arthur [A5, p. 51] and
[A8, Lemma 2.1]. Let Πtemp(M(A)1) be the subspace of all π in Π(M(A)1)
such that the local constituents πv of π are tempered for all v. Then we
obtain

Proposition 6.4. For every M ∈ L(M0), L ∈ L(M) and P ∈ P(M) we
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have ∑
χ∈X

∑
π∈Πtemp(M(A )1)

∫
ia∗L/ia∗G

∥∥ML(P, π, λ)ρχ,π(P, λ, h)
∥∥
1
dλ <∞ .

7 The Example of GLn

In this section we shall briefly discuss the case where G = GLn. Let P0
be the subgroup of upper triangular matrices of G. This is the minimal
standard parabolic subgroup of G. Its Levi subgroup M0 is the group of
diagonal matrices. Let P be a parabolic subgroup of G defined over Q, and
let M be the unique Levi component of P which contains M0. Then

M ∼= GLn1 × · · · ×GLnr .

We shall identify aM with Rr. Let e1, . . . , er denote the standard basis of
(Rr)∗. Then the roots ΣP are given by

ΣP = {ei − ej | 1 ≤ i < j ≤ r} .
Let v be a place of Q. Fix a nontrivial continuous character ψv of the
additive group Q+

v of Qv and equip Qv with the Haar measure which is
selfdual with respect to ψv. Given irreducible unitary representations π1,v
and π2,v of GLn1(Qv) and GLn2(Qv), respectively, let L(s, π1,v × π2,v) and
ε(s, π1,v × π2,v, ψv) denote the Rankin–Selberg L-factor and the ε-factor
defined by Jacquet, Piatetski-Shapiro, and Shalika [JPS], [JS1].
Let P1, P2 ∈ P(M). Then there exist permutations σ1, σ2 ∈ Sr such

that the set of roots of (Pi, Ai) is given by
ΣPk

=
{
ei − ej

∣∣ σk(i) < σk(j)} .
Put

I(σ1, σ2) =
{
(i, j)

∣∣ 1 ≤ i, j ≤ r , σ1(i) < σ1(j) , σ2(i) > σ2(j)} .
Then

ΣP1 ∩ ΣP 2
=
{
ei − ej

∣∣ (i, j) ∈ I(σ1, σ2)} .
Let πv = π1,v ⊗ · · · ⊗ πr,v, where πi,v ∈ Π(GLni(Qv)), i = 1, . . . , r. Given
s = (s1, . . . , sr) ∈ Cr, set

rP2|P1
(πv, s) :=

∏
(i,j)∈I(σ1,σ2)

L(si − sj, πi,v × π̃j,v)
L(1+si−sj, πi,v×π̃j,v)ε(si−sj, πi,v×π̃j,v, ψv)

.

As explained in [AC, p. 87], the meromorphic functions rP2|P1
(π, s) satisfy

all the properties of Theorem 2.1 of [A7] and they are the natural choice of
normalizing factors in the case of GLn. We note that they do not coincide
with the normalizing factors used in the previous sections. They differ,
however, only by a factor which can be expressed in terms of the ε-factors.
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Now let π1 and π2 be automorphic representations of GLn1(A) and
GLn2(A), respectively. Then the global Rankin–Selberg L-function
L(s, π1 × π2) is defined by

L(s, π1 × π2) =
∏
v

L(s, π1,v × π2,v) ,

where the product is over all places v of Q and πi = ⊗iπi,v. The product
converges absolutely in a half-plane Re(s)$ 0. If π1 and π2 belong to the
discrete spectrum of GLn1(A) and GLn2(A), respectively, then L(s, π1×π2)
admits a meromorphic extension to the whole complex plane.
To define the global ε-factor ε(s, π1 × π2) one has to pick a non-trivial

continuous character ψ : A+ → C× of the additive group A+ of A. Then
ψ = ⊗vψv and ε(s, π1,v × π2,v, ψv) = 1 for almost all places v. Hence the
product

ε(s, π1 × π2, ψ) =
∏
v

ε(s, π1,v × π2,v, ψv)

exists for all s ∈ C and defines an entire function. The global ε-factor is
independent of ψ and therefore, will be denoted by ε(s, π1 × π2).
Let π ∈ Πdisc(M(A)). Then π = π1⊗ · · · ⊗ πr with πi ∈ Πdisc(GLni(A))

and for s ∈ Cr, the global normalizing factor is defined by

rP2|P1
(π, s) :=

∏
(i,j)∈I(σ1,σ2)

L(si − sj, πi × π̃j)
L(1 + si − sj, πi × π̃j)ε(si − sj, πi × π̃j) .

Theorem 5.3 is closely related to the estimation of the winding numbers∫ λ

1

L′(1 + it, π1 × π̃2)
L(1 + it, π1 × π̃2) dt

with upper bounds depending on the Casimir eigenvalues of π1,∞ and π2,∞
in the same way as in Theorem 5.3. In the present case, such estimates can
be obtained using standard methods of analytic number theory. In fact,
the bounds can be improved considerably.
Next we discuss the conditions (0.2) and (0.4). As mentioned in the

introduction, for GLn it is possible to prove that (0.2) and (0.4) hold. We
shall briefly indicate the main steps of the proof. Let ρ be a representation
of GLm(Qv) and s ∈ C. Then we denote by ρ[s] the representation of
GLm(Qv) defined by

ρ[s](g) = |det g|sρ(g) , g ∈ GLm(Qv) .
Let π be a cuspidal automorphic representation of GLm(A). Then it is
known that each local component πv of π is generic [Sha] and therefore, by
[JS2] it follows that πv is equivalent to a full induced representation, i.e.

πv ∼= IGLm
P

(
τ1[t1]⊗ · · · ⊗ τr[tr]

)
, (7.1)
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where P is a standard parabolic subgroup of GLm with Levi component
GLm1 × · · · ×GLmr , τi is a tempered representation of GLmi(Qv) and the
ti’s are real numbers satisfying

t1 > t2 > · · · > tr , |ti| < 1/2 , i = 1, . . . , r .
For πv unramified, Luo, Rudnick and Sarnak [LuRS] proved that the pa-
rameters ti satisfy the following nontrivial bound:

max
i
|ti| < 12 −

1
m2 + 1

. (7.2)

Using the same method, one can show that (7.2) holds at all places. Now
let P be a standard parabolic subgroup of GLn with Levi component
GLn1 × · · · ×GLnr and let πv be the local v-component of a cuspidal auto-
morphic representation of M(A). Then πv = ⊗iπi,v and each πi,v is a full
induced representation of the form (7.1) with parameters tij satisfying (7.2).
Using induction in stages, it follows that for each i there exist a parabolic
subgroup Ri of GLni(Qv) of type (ni1, . . . , nili), a discrete series represen-
tation δi,v of MRi(Qv) and ti = (ti1, . . . , tili) ∈ Rli satisfying

max
i
|tij | < 12 −

1
n2i + 1

, (7.3)

such that πi,v ∼= IMRi
(δi,v, ti). Put l = l1 + · · ·+ lr,

δv = ⊗iδi,v , t = (t11, . . . , t1l1 , . . . , tr1, . . . , trlr) .

Generalizing property (R.2) of [A8, p. 172], we get
RQ|P (πv, s) = RQ(R)|P (R)(δv, s+ t) , s ∈ C l , (7.4)

where s is identified with an element in Cl with respect to the embedding
which corresponds to the canonical embedding a∗M ⊂ a∗P (R). This leads to
an immediate reduction of the problem. We can assume that πv is square
integrable. However, now we have to estimate the norm of the derivatives
of RQ|P (πv, s)Kv (resp. RQ|P (πv, s)σv ) in the domain{

s ∈ C r
∣∣ |Re(si)| < 1/2− 1/(n2 + 1) , i = 1, . . . , r} .

The important point is that for πv square integrable, RQ|P (πv, s) is holo-
morphic in the domain{

s ∈ Cr
∣∣ Re(si − sj) > −1 , 1 ≤ i < j ≤ r}

[MW]. Using the product formula for normalized intertwining operators,
the above problem can be further reduced to the case where P is maximal
parabolic and Q = P . Then M = GLn1 ×GLn2, πv = π1,v ⊗ π2,v, and
we may regard the intertwining operator as a function RP |P (πv, s) of one
complex variable. Now we distinguish two cases.
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1. v <∞.
Let Kv ⊂ GLn(Qv) be an open compact subgroup. We may assume

that Kv is a congruence subgroup. Then we have to estimate the norm of
derivatives of RP |P (πv, s)Kv in the strip |Re(s)| < 1− 2/(n2 + 1). Let

KM,v = Kv ∩M(Qv) .
Then KM,v is an open compact subgroup of M(Qv). Let 1 denote the
trivial representation of KM,v and let Π2(M(Qv);KM,v) be the set of all
πv ∈ Π2(M(Qv)) such that [πv|KM,v

: 1] > 0. By Theorem 10 of [H2],
Π2(M(Qv);KM,v) is a compact subset of Π2(M(Qv)). Furthermore, a∗M ∼=
R2 acts on Π2(M(Qv)) by

π1,v ⊗ π2,v �→ π1,v[iu1]⊗ π2,v[iu2] , (u1, u2) ∈ R2 .

The stabilizer of a given representation πv is a lattice L ⊂ R2 so that the
orbit oπv of πv is a compact torus R2/L. Thus there exist δ1, . . . , δl ∈
Π2(M(Qv);KM,v) such that

Π2

(
M(Qv);KM,v

)
= oδ1 % · · · % oδl

.

Since
RP |P

(
π1,v[iu1]⊗ π2,v[iu2], s

)
= RP |P

(
π1,v ⊗ π2,v, s + i(u1 + u2)

)
,

it suffices to consider a fixed discrete series representation πv. Now recall
that RP |P (πv, s) is holomorphic in the strip |Re(s)| < 1. Furthermore by
Theorem 2.1 of [A7], RP |P (πv, s)Kv is a finite rank matrix whose entries are
rational functions of p−s

v . Hence for every u ∈ R, RP |P (πv, u + iw)Kv is a
periodic function of w ∈ R. From these observations it follows immediately
that for every k ∈ N0 there exists C > 0 such that∥∥Dk

sRP |P (πv, s)Kv

∥∥ ≤ C (7.5)

for all s ∈ C in the strip |Re(s)| ≤ 1− 2/(n2 + 1).
2. v =∞.
Let σv ∈ Π(O(n)). Then we have to estimate the norm of derivatives of

RP |P (πv, s)σv in the strip |Re(s)| < 1− 2/(n2 + 1). First note that
M(R) ∼= (R∗)2 × ( SLn1(R)× SLn2(R)

)
.

Furthermore, the set of discrete series representations of SLni(R) contain-
ing a fixed SO(ni)-type is finite [W2, p. 398]. Hence in the same way as
above, it follows that we can fix the discrete series representation πv. Again
RP |P (πv, s) is holomorphic in the strip |Re(s)| < 1 and by Theorem 2.1
of [A7], RP |P (πv, s)σv is a rational function of s ∈ C. This implies that for
every k ∈ N0 there exist C > 0 and N ∈ N such that∥∥Dk

sRP |P (πv, s)σv

∥∥ ≤ C(1 + |s|)N (7.6)
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for all s ∈ C with |Re(s)| < 1− 2/(n2 + 1).
Combining (7.5) and (7.6) with the various steps of the reduction it

follows that (0.2) and (0.4) hold for all local components πv of cuspidal
automorphic representations.
It remains to deal with local components of automorphic forms in the

residual spectrum. For this purpose we use the description of the residual
spectrum given by Mœglin and Waldspurger [MW]. First we recall the
notion of a Speh representation [MW, I.5]. Let k|m, d = m/k and R a
standard parabolic subgroup of GLm of type (d, . . . , d). Let δ be a discrete
series representation of GLd(Qv). Then the induced representation

IGLm
R

(
δ[(k − 1)/2] ⊗ δ[(k − 3)/2 ⊗ · · · ⊗ δ[(1 − k)/2])

has a unique irreducible quotient which we denote by J(δ, k). It follows from
Theorem D of [T] and [V] that for every πv ∈ Π(GLm(Qv)) there exist a
standard parabolic subgroup P of type (m1, . . . ,mr), ki|mi, discrete series
representations δi of GLdi

(Qv), di = mi/ki, and real numbers t1, . . . , tr
satisfying |ti| < 1/2 such that

πv ∼= IGLm
P

(
J(δ1, k1)[t1]⊗ · · · ⊗ J(δr, kr)[tr]

)
.

Now suppose that πv is a local component of an automorphic repre-
sentation π in the residual spectrum of GLm(A). By [MW] there exist
a standard parabolic subgroup Q of GLm of type (d, . . . , d) and a cusp-
idal automorphic representation µ of GLd(A) such that πv is the unique
irreducible quotient of the induced representation

IGLm
Q

(
µv[(k − 1)/2] ⊗ µv[(k − 3)/2] ⊗ · · · ⊗ µv[(1 − k)/2]

)
,

where µv is the v-component of µ. As explained above, µv is equivalent to
an induced representation of the form (7.1) with parameters ti satisfying
(7.2). Using induction in stages, it follows that

µv ∼= IGLd
R

(
δ1[t1]⊗ · · · ⊗ δr[tr]

)
,

where R is a standard parabolic subgroup of GLd of type (d1, . . . , dr), δi is a
discrete series representations of GLdi

(Qv), i = 1, . . . , r, and the parameters
ti satisfy t1 ≥ t2 ≥ · · · ≥ tr and (7.2). Then it follows from Proposition I.9
and Lemma I.8 of [MW] that there is a standard parabolic subgroup P of
GLm of type (kd1, . . . , kdr) such that

πv ∼= IGLm
P

(
J(δ1, k)[t1]⊗ · · · ⊗ J(δr, k)[tr]

)
(7.7)

and
max

i
|ti| < 12 −

1
m2 + 1

. (7.8)

This is the extension of the results of [LuRS] to local components of auto-
morphic representations in the discrete spectrum.
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Now we can proceed in the same way as in the cuspidal case. The
only difference is that we have to deal with the slightly more general Speh
representations in place of the discrete series representations. In this way
one can establish (0.2) and (0.4). This implies that for GLn the spectral side
of the Arthur trace formula is absolutely convergent. Details will appear
in [MüS].
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