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ON THE SPECTRAL SIDE OF THE ARTHUR TRACE
FORMULA

W. MULLER

0 Introduction

Let G be a connected reductive algebraic group defined over Q and let
G(A) be the group of points of G with values in the ring of adeles of Q.
Then G(Q) embeds diagonally as a discrete subgroup of G(A). Let G(A)*
be the intersection of the kernels of the maps x — |x(z)|, x € G(A), where
X ranges over the group X (G)qg of characters of G defined over Q. Then
the (noninvariant) trace formula of Arthur is an identity

D)= (). FECEGA),

IS XE€X
between distributions on G(A)!. The left-hand side is the geometric side
and the right-hand side the spectral side of the trace formula. The distribu-
tions J, are parametrized by semisimple conjugacy in G(Q) and are closely
related to weighted orbital integrals on G(A)?!.

In this paper we are concerned with the spectral side of the trace for-
mula. The distribution J, are defined in terms of truncated Eisenstein
series. They are parametrized by the set of cuspidal data X which consists
of the Weyl group orbits of pairs (Mp,rp), where Mp is the Levi compo-
nent of a standard parabolic subgroup and rp is an irreducible cuspidal
automorphic representation of Mp(A)l. In [A4], Arthur has derived an
explicit formula for the distributions .J, which expresses them in terms of
generalized logarithmic derivatives of intertwining operators. So far, the
resulting integral-series is only known to converge conditionally. This suf-
fices, for example, for the comparison of trace formulas which, at present,
is the main application of the trace formula. However, with regard to po-
tential applications of the trace formula in spectral theory and geometry
it would be highly desirable to know that the spectral side of the trace
formula is absolutely convergent. This would also simplify the applications
of the trace formula in the theory of automorphic forms [L].

The problem of the absolute convergence of the spectral side of the
trace formula is the main issue of the present paper. We will not settle the
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problem, but we shall reduce it to a question about local components of
automorphic representations.

To describe the results in more detail we have to introduce some no-
tation. We fix a Levi component My of a minimal parabolic subgroup Py
of GG. Let P be a parabolic subgroup of G, defined over QQ, with unipotent
radical Np. Let Mp be the unique Levi component of P which contains M.
We denote the split component of the center of Mp by Ap and its Lie al-
gebra by ap. For parabolic groups P C @ there is a natural surjective
map ap — ag whose kernel we will denote by an;- Let A2(P) be the space
of square integrable automorphic forms on Np(A)Mp(Q)\G(A). Let Q
be another parabolic subgroup of G, defined over QQ, with Levi component
Mg, split component Ag and corresponding Lie algebra ag. Let W (ap, ag)
be the set of all linear isomorphisms from ap to ag which are restrictions
of elements of the Weyl group W(Ay). The theory of Eisenstein series
associates to each s € W(ap,ag) an intertwining operator

Mgip(s,A) : A2(P) — A%(@Q), A€ ape,
which, for Re(\) in a certain chamber, can be defined by an absolutely

convergent integral and admits an analytic continuation to a meromorphic
function of A € ap . Set
MQ|p()\) = MQ|p(1, A) .

Let TI(Mp(A)') be the set of equivalence classes of irreducible unitary rep-
resentations of Mp(A)l. Let x € X and 7 € II(Mp(A)'). Then (x,n)
singles out a certain subspace A2 (P) of A?(P) (see §1.6). Let Zim(P) be
the Hilbert space completion of A;W(P) with respect to the canonical inner
product. For each A € c1’1‘37(C we have an induced representation py (P, \)
of G(A) in A .(P).

For each Levi subgroup L let P(L) be the set of all parabolic subgroups
with Levi component L. If P is a parabolic subgroup, let Ap denote the set
of simple roots of (P, Ap). Let L be a Levi subgroup which contains Mp.

Set
. _ MQ‘p()\ +A)

M (P, A) = lim < vol aGl/Z(Avl) Moip(N) 1—),
A0 Q1§3:(L) ( ¢ ¢ ) o HO‘GAQ1 A(av)

where X and A are constrained to lie in a7, and for each Q1 € P(L), @ is a
group in P(Mp) which is contained in Q1. Then 97, (P, A) is an unbounded
operator which acts on the Hilbert space Z;W(P). In the special case that
L = M and dima§ = 1, the operator 9 (P, \) has a simple description.
Let P be a parabolic subgroup with Levi component M. Let o be the
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unique simple root of (P, Ap) and let & be the element in (a$;)* such that

@(aY) = 1. Let P be the opposite parabolic group of P. Then
ML (P, 20) = — VOI(G%/ZQV)Mﬁ‘P(Z@)_l : d%Mﬁ‘P(zJ)).
Let f € C°(G(A)!). Then Arthur [A4, Theorem 8.2] proved that J (f)

equals the sum over Levi subgroups M containing M, over L containing M,
over m € II(M(A)!), and over s € W¥(aps),eq, a certain subset of the Weyl
group, of the product of

W || Wo| | det(s — 1)gr |~ [P(M)] 7,

a factor to which we need not pay too much attention , and of

/ S (MU Mpp(s, 0 (P )N, (0.1)
9L/18G pep(M)
So far, it is only known that » . o5 [Jx(f)| < oo and the goal is to show that
the integral-sum obtained by summing (0.1) over xy € X and m € II(M(A)')
is absolutely convergent with respect to the trace norm.

Given m € II(M(A)) with 7 = ®,m,, let Jgp(my, ) be the local
intertwining operator between the induced representations Ig(ﬂ'v)\) and
Ig(m,A). By [CLL, §15] and [A7] there exist normalizing factors r¢|p(7,, A)
such that the normalized intertwining operators

Rop(my, A) = 1gp(T0, A)_le‘p(ﬂ'U, A)
satisfy the conditions of Theorem 2.1 of [AT7].

If v < o0, let K, C G(Q,) be an open compact subgroup. Denote
by Rgp(mv, Ak, the restriction of Ry p(my, A) to the subspace Hp(my)
of K,-invariant vectors in the Hilbert space Hp(m,) of the induced repre-
sentation. If v = oo, let Koo C G(R) be a maximal compact subgroup.
Given 7 € II(M(R)) and o € II(K), let Rg|p(T,\), be the restriction of
Rg|p(m, A) to the o-isotypical subspace of Hp(7). Let Ar and A, denote
the Casimir eigenvalues of m and o, respectively.

For a given place v, let I4i.(M(Q,)) be the subset consisting of all
representations m, € II(M(Q,)) such that there exists an automorphic
representation 7 in the discrete spectrum of M (A) whose local component
at the place v is 7,. Finally, let C'(G(A)') be the space of integrable rapidly
decreasing functions on G(A)! (see §1.3 for its definition). Then our main
result is the following theorem, which reduces the problem of the absolute
convergence of the spectral side of the Arthur trace formula to a problem
about local components of automorphic representations.
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Theorem 0.1. Suppose that for every M € L(My), Q,P € P(M) and
every place v the following holds.

1) If v < oo, then for every open compact subgroup K, C G(Q,) and
every invariant differential operator Dy on ia}, there exists C' > 0
such that

[ DxRg (7m0, N,
for all A € ia}, and all m, € Ilgis.(M(Q,)).

2) Ifv = oo, then for all invariant differential operators Dy on ia}, there
exist C > 0 and N € N such that

IDARGp(m Nall < C(L+ AL+ sl + M) (03)
for all A € ia},;, 0 € [I(K) and m € g5 (M (R)).
Then for every f € CH(G(A)!), the spectral side of the trace formula is
absolutely convergent.

<C (0.2)

We add some comments about the assumptions 1) and 2). It follows
from results of Arthur [A5, p.51] and [A8, Lemma 2.1] that (0.2) and
(0.3) hold uniformly for tempered representations m,. On the other hand,
to establish (0.2), (0.3) or (0.4) is not a problem of pure local harmonic
analysis. One cannot expect that these estimations will hold uniformly
for all m, € II(M(Q,)). Let, for example, dimays/ag = 1 and suppose
that for each € > 0 there exists m, € II(M(Q,)) such that the normalized
intertwining operator Rﬁ‘P(ﬂ'v, A) has a pole A\g with |[Re(A\g)| < e. Then
it is certainly not possible to obtain uniform estimates for derivatives of
Rpl p(my, A) along the imaginary axis. An example where this actually
occurs is GL,,.

Especially the uniformity in ¢ in (0.3) seems to be difficult to achieve.
Of course, this condition can be relaxed in various ways. If we relax (0.3)
by not requesting uniformity in o, we get the following weaker version
of Theorem 0.1 which suffices for many purposes. Let K = [], K, be a
maximal compact subgroup of G(A) which is admissible relative to My (see

§1.2).
Theorem 0.2. Suppose that in Theorem 0.1 in place of condition 2) the
following condition holds:

2') If v = oo, then for all invariant differential operators D) on ia%, and
all 0 € TI(K ) there exist C > 0 and N € N such that

IDARGp(m, No| < C(1+ A + M) ™
for all X € ia}; and w € Iy (M (R)).

(0.4)
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Then for every K-finite f € C*(G(A)'), the spectral side of the trace for-
mula is absolutely convergent.

At the moment we don’t know how to prove any of the conditions (0.2),
(0.3) and (0.4) in general. However, for G = GL,,, considered as an alge-
braic group over a number field, we are able to prove (0.2) and (0.4). The
method relies on work of Luo, Rudnick and Sarnak [LuRS] who established
nontrivial bounds towards the generalized Ramanujan conjecture. For GL,
any local component of a cuspidal automorphic representation is equivalent
to a full induced representation Ig(T, s) where 7 is tempered and the pa-
rameters s = (s1,...,5,) satisfy s > so > -+ > s, and |s;] < 1/2. If m,
is unramified, it follows from Theorem 2 of [LuRS] that the s;’s satisfy the

nontrivial bound
1 1

2 n241’7
Using the method of [LuRS], one can show that (0.5) holds also for the ram-
ified components. Furthermore, using the work of Meeglin and Waldspurger
[MW] on the residual spectrum, one can show that similar nontrivial bounds
exist for the continuous parameters of any local component of an automor-
phic representation in the discrete spectrum of GL;,(A). These bounds are
the essential ingredients in the proof of (0.2) and (0.4) in the case of GL,,.
Details will appear in a forthcoming paper with B. Speh [MiS].

Now we shall explain the main steps of the proof of Theorem 0.1. First
observe that Mp, p(s,0) is unitary. Therefore, in order to estimate the trace
norm of (0.1), it suffices to estimate the integral

/ |9 (P, \)pyer (P, A, )| A (0.6)
iaj /iag,

To deal with this integral, we introduce a certain normalization of in-
tertwining operators. For 7 € TI(M(A)) let A2(P) be the space of square
integrable automorphic forms of type 7 (see §1). Let Mg p(m, A) denote the
restriction of the intertwining operator Mg p()) to AZ(P). Let 7 = ®,m,
and let rg|p(my, A) be the normalizing factor for the local intertwining op-
erator considered above. Suppose m = ®m, occurs in the discrete spectrum
of M(A), which is equivalent to A2(P) # 0, then the Euler product

TQ‘p(?T, )\) = HUTQ“:J(TI'U, )\)
converges absolutely in some chamber and g p(m, ) admits a meromorphic
continuation to ahc. Using this meromorphic function, we introduce the
normalized global intertwining operator by

NQ‘P(TF, )\) == T‘le(ﬂ', A)ilMQ‘P(TF, )\) . (07)

Isi] < i=1,...r. (0.5)



674 W. MULLER GAFA

By definition, the operator Ng p(m,A) is equivalent to the direct sum
of finitely many copies of @, Rg|p(my, A).

Let My (P, 7, \) be the restriction of My (P, \) to the subspace A2(P).
It follows from Arthur’s theory of (G, M) families [A4, p. 1329] that

ML(P,m,A) = Ne(P,m, i (P, A),
S

where the sum runs over all parabolic subgroups S containing L, the op-
erator My (P, 7, \) is built out of normalized intertwining operators on the
local groups G(Q,) and v7 (P, T, A) is a scalar valued function which is de-
fined in terms of normalizing factors. This reduces the estimation of the
integral (0.6) to two separate problems, one involving (P, 7, A) and the
other one v7 (P, , ).

First we are dealing with vy (P,m,)\). By Proposition 7.5 of [A4],
Vf (P,m,\) can be expressed in terms of logarithmic derivatives of nor-
malizing factors associated with maximal parabolic subgroups in certain
Levi subgroups. Therefore we may assume that dim(ap/ag) = 1. Let a be
the unique simple root of (P, A). Then there exists a meromorphic func-
tion 7 p(7, 2) of one variable such that rp p(m,A) = rp p(m, A(@Y)), and
our problem is to derive estimates, which are uniform with respect to m, of
integrals of the form

/R ‘Fﬂp(ﬂa i) " T p () | (1 + u?) N du. (0-8)

To deal with this integral, we note that ?p| p(m, z) is a meromorphic
function of order n = 16 dim G + 2. This follows from (0.7), since by The-
orem 0.1 of [Mii3], the matrix coefficients of Mg p(m, \) are meromorphic
functions of order < n and by Theorem 2.1 of [A7], the normalized local in-

tertwining operators RQ‘p(ﬂ'v, A) are rational functions of q;A(av), ifv < oo,
and of ("), if v = co. Thus there exist entire functions r;(m, 2), i = 1,2,
of order < n such that ?p‘P(ﬂ', z) = ri(m, z)/ra2(m, z). Using the represen-
tation of r;(m, z) as a Weierstrafl product, we reduce the estimation of the
integral (0.8) to the the estimation of the number of poles, counted with
their order, of ?ﬁlp(ﬂ, z) in a circle of radius R > 0. By (0.7), this problem
is closely related to the estimation of the number of poles, counted with
their order, of matrix coefficients of Mg p(7, A) in a circle of radius R > 0.
The latter problem has been settled in [Mii3, Proposition 6.6]. Together
with Proposition 7.5 of [A4], these estimates imply estimates for the cor-
responding integrals involving Vf (P,m,A). In this way we get Theorem 5.4
which is our main technical result.
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Next consider Mg(P,m, A). Given an open compact subgroup Ky of
G(Ay)and o € II(K), let A?T(P)Kﬁg be the subspace of A2 (P) consisting
of all automorphic forms which are K y-invariant and transform under K,
according to 0. Let Mg(P, 7, \)k, , be the restriction of Mg (P, m,\) to
the subspace AZ(P)g, ,. Now observe that for any h € C*(G(A)') there
exists an open compact subgroup Ky of G(A y) such that h is left and right
invariant under K;. Then the estimation of | W(P,m, A)py» (P A, k)|
can be reduced to the estimation of || (P, 7, \)k, | where o runs over
II(K). By Arthur’s theory of (G, M )-families, the estimation of the norm
of the finite rank operators Mg(P, m, \)x 0 can be reduced to the estima-
tion of derivatives of finitely many normalized local intertwining operators
Ro|p(my, Nk, v < 00, and Rg|p(Teo; A)o. Combined with Theorem 5.4
this implies Theorem 0.1. The proof of Theorem 0.2 is similar.

The paper is organized as follows. In §1 we collect some preliminary
facts. In §2 we discuss briefly normalized local and global intertwining
operators. The local normalizing factors are studied in some detail in §3.
We recall the definition of the normalizing factors and we prove some results
that we need in the next section. In §4 we investigate the poles of the global
normalizing factors. This section is mainly based on results obtained in
[Mii3]. In §5 we establish Theorem 5.4 which is the main result about
generalized logarithmic derivatives of global normalizing factors. In §6 we
study the absolute convergence of the spectral side of the trace formula and
we prove our main results, Theorem 0.1 and Theorem 0.2. In §7 we discuss
the example of GL,, and we sketch a method to prove (0.2) and (0.4).
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grateful to W. Hoffmann and the referee for their comments, suggestions
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1 Preliminaries

We shall follow partially the notation introduced by Arthur [A1-4].

1.1 Let G be a reductive algebraic group defined over Q. As in [A4,5],
we shall fix a subgroup My of G, defined over Q, which is a Levi component
of some minimal parabolic subgroup of G defined over Q. In this paper,
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a parabolic subgroup will mean a parabolic subgroup of G, defined over Q,
and a Levi subgroup of G will mean a subgroup of G which contains My and
is the Levi component of some parabolic subgroup of G. It is a reductive
subgroup of G which is defined over Q. If M C L are Levi subgroups,
we denote the set of Levi subgroups of L which contain M by L£F(M).
Furthermore, let 7% (M) denote the set of parabolic subgroups of L defined
over Q which contain M, and let P*(M) be the set of groups in F=(M)
for which M is a Levi component. If L = G, we shall denote these sets by
L(M), F(M) and P(M), respectively. Suppose that P € FL(M). Then
P =NpMp,

where Np is the unipotent radical of P and Mp is the unique Levi compo-
nent of P which contains M.

Suppose that M C M; C L are Levi subgroups of G. If Q € P*(My) and
R € PMi(M), there is a unique group Q(R) € P*(M) which is contained
in @ and whose intersection with M; is R.

Let Ap be the split component of the center of Mp. Ap is defined
over Q. Let X(Mp)g be the group of characters of Mp defined over Q.
Then

ap = Hom(X(Mp)Q, ]R)
is a real vector space whose dimension equals that of Ap. Its dual space is
ap =X(Mp)g®@R.
We shall often denote Ap, ap and ap by Ay, ap and aj,, respectively,
since they depend only on M. Also, we shall write Ay = A, ap = ang,
and ag = ay, .

Let P € F(My). We shall denote the roots of (P,Ap) by ®p, the
reduced roots by ¥'5, and the simple roots by Ap. They are elements in
X (Ap)g and are canonically embedded in a}.

Let P and @ be groups in F(My) with P C Q. Then there is a canonical
surjection ap — ag and a canonical injection ag, < ap. The kernel of the

first map will be denoted by ag. Then ag is dual to a}/ag).
The group MgNP is a parabolic subgroup of Mg with unipotent radical

NY=NpnMg.
Let Ag be the set of simple roots of (Mg N P, Ap). Then A% is a subset
of Ap. We may identify ag with the subspace
{Heap|a(H) =0, ac AD}.
Furthermore, to Ag one can associate a basis {a" | a € A%} of ag and
Ag is defined to be the corresponding dual basis of (ag)* [A2]. Then A%
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and AiQD are naturally embedded subsets of aj. Let
a,={Hecap|a(H)>0 forallacAp},
and
(ap)t ={A€ap|A(a”)>0 forallwecAp}.

We shall denote the restricted Weyl group of (G, Ag) by Wy. It acts on
ap and afj in the usual way. For every s € Wy we shall fix a representative
ws in the intersection of G(Q) with the normalizer of Ag. wy is determined
modulo My(Q). If P, and P, are parabolic subgroups, let W(ap,,ap,)
denote the set of distinct isomorphisms from ap, onto ap, obtained by
restricting elements of Wy to ap,. P; and P, are said to be associated if
W (ap,,ap,) is not empty.

1.2 We fix an embedding of G into GL,,, defined over Q. For a given
place v of Q, let G(Q,) be the group of Q,-rational points of G. Let
A be the ring of adeles of Q and let G(A) be the corresponding adéle-
valued group. If f stands for the set of finite places of Q and Ay is the
corresponding ring of finite adeéles, then
G(A) =G(R) x G(Ay).
For any prime p, let
G(Zyp) = GLn(Zy) N G(Q,) .
This is an open compact subgroup of G(Q,). We shall fix a maximal
compact subgroup
K =]]K.

of G(A) which is admissible relative to My in the sense of [A5]. For any
such K the following properties hold:
1) For almost all primes p, one has K, = G(Z,).
2) For every finite p, K, is a special maximal compact subgroup. This
implies that G(Q,) = Py(Q,) - K, for all Py € F(Mp).
3) The Lie algebras of K and Ag(R) are orthogonal with respect to the
Killing form.

Given P € F(My), let
Mp(A) = (] ker(lxl).
XEX(Mp)q
This is a closed subgroup of Mp(A), and Mp(A) is the direct product
of Mp(A)' and Ap(R)°. By the assumptions on K, G(A) = P(A)K.
Therefore, any = € G(A) can be written as
x =mnamk, n € Np(A), me M(A)', a € ApR)", ke K. (1.1)
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Let

Hp: G(A) — ap
be the associated height function as defined in [A2]. Then Hp(x) is the
image of a € Ap(R)? in the decomposition (1.1) with respect to the iso-
morphism Ap(R)? = ap.

We shall fix a Euclidean norm || - || on ag which is invariant under the
action of the Weyl group of (G, Ag). On each space ag , P C Q, we take as
Haar measure the Euclidean measure associated to the restriction of || - ||
to ag. We then normalize the Haar measures on K, G(A), Np(A), Mp(A),
Ap(R)°, Mp(A)L, etc. as in [A2].

1.3 Let = and o be the functions that enter the definition of Harish-
Chandra’s Schwartz space on G(R) [W2, p.156] and extend them to func-
tions on G(A) in the obvious way. For any place v, let G(Q,)" denote
the intersection of G(Q,) with G(A)!. Let U(g(R)! ® C) be the universal
enveloping algebra of the complexification of the Lie algebra of G(R)!. Let
K¢ be an open compact subgroup of G(A f)l. Then the double coset space
K \G(A)'/Ky is a discrete union of countably many copies of G(R)!. In
particular it is a differentiable manifold. Suppose that € is a subset of
G(A)! such that K;- Q- Ky = Q and K;\Q/K; is the disjoint union of
finitely many copies of G(R)'. Let C'(G(A)';Q, K;) be the space of all
functions h: G(A)! — C satisfying the following conditions:

1. h is bi-invariant under Ky, supph C Q, and h : K,\Q2/Ky — Cis a

smooth function.
2. For all D1, Dy € U(g(R)! ® C) and all € N, we have
12|y, Dy = sup  ((1+0(2))"E%(z)| Dy * hx Da()]) < o0.
zeG(A)!

Let C1(G(A)Y;Q, Ky) be equipped with the topology defined by the semi-
norms || - ||p,.py.r- Let CH(G(A)!) be the topological direct limit over all
pairs (€2, K) of the spaces C1(G(A)Y;Q, Ky).
1.4 Let H be any algebraic group over Q and let F' be a local field. We
shall denote by II(H (A)) (resp. II(H(F)), II(K), etc.) the set of equivalence
classes of irreducible unitary representations of H(A) (resp. H(F), K, etc.).

1.5 Given a unitary character & of Ap(R)?, let L*(Mp(Q)\Mp(A))¢
be the space of all measurable functions ¢ on Mp(Q)\Mp(A) such that
d(xm) = &(z)p(m) for all z € Ap(R)?, m € Mp(A), and ¢ is square
integrable on Mp(Q)\Mp(A)'. Let Ily.(Mp(A))e denote the subspace
of all 7 € II(Mp(A)) which are equivalent to a subrepresentation of the
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regular representation of Mp(A) on L*(Mp(Q)\Mp(A))e. Set
Hdisc(MP(A)) — U Hdisc(MP(A))f .
€el(Ap(R)%)
Recall that TI(Mp(A)') can be canonically identified with the set of orbits
under the action of ¢a} defined by
T —my = POl e I(Mp(A)), Xeidh.
Since Mp(A) is the direct product of Mp(A)! and Ap(R)°, any repre-
sentation of Mp(A)! corresponds to a representation of Mp(A) which is
trivial on Ap(R)°?. We identify these two representations and in this way
we obtain an embedding of TI(Mp(A)!) in TI(Mp(A)).
Given 7 € II(Mp(A)) with 7 = ®,7y, set Tf = ®y<oomy. For an open
compact subgroup Ky C G(Ay), let
KM’f = Mp(Af) ﬂKf.
Set
K
HdiSC(Mp(A); Kf) = {7‘( S HdisC(MP(A)) ‘ 7Tf M. 7é {O}} . (1.2)
Let yisc(Mp(A)'; Ky) be the intersection of Il (Mp(A); Kf) with the
subspace Ilgie(Mp(A)Y) of Tlaie(Mp(A)).
1.6 Let P = NM be a parabolic subgroup and let ¢ be a measurable,

locally integrable function on N(Q)\G(A). Then the constant term ¢p of
¢ along P is defined for almost every g by

op(g) = / $(ng)dn. (1.3)
N(Q)\N(A)

This is a measurable, locally integrable function on N(A)\G(A).

1.7 Let P be a parabolic subgroup. Then we denote by .A2(P) the space
of automorphic forms on Np(A)Mp(Q)\G(A) which are square integrable
on Mp(Q)\Mp(A)! x K. This is the space of smooth functions

¢: Np(A)Mp(Q\G(A) — C
which satisfy the following conditions:
i) The span of the set of functions
v (20)(ak), @€ G(A),
indexed by k € K and z € Z(gc), is finite dimensional.

16]? = / / G (mk) P dk < oo
K JMp(@)\Mp(a)!

Furthermore, an automorphic form ¢ € A2(P) is called cuspidal, if the
following additional condition holds:

ii)
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iii) For all standard parabolic subgroups @ ; P, ¢g = 0.

The subspace of all cuspidal automorphic forms in A%(P) will be de-
noted by A3(P).

1.8 Given 7 € Igise(Mp(A))e, let A2(P) be the subspace of A%*(P)
consisting of all functions ¢ such that for every = € G(A), the function
¢x(m) = qﬁ(mx) m e MP(A)7

belongs to the 7-isotypical subspace of L*(Mp(Q)\Mp(A))e. If © €
II(Mp(A)) is not contained in . (Mp(A)), we put AZ(P) = 0. Let K be
an open compact subgroup of G(A ;). Then we denote by A2 (P)k, the sub-
space of all K g-invariant functions in AZ2(P). Furthermore, if o € II(K),
then we denote by A?T(P)Kf,o the o-isotypical subspace of A%(P)Kf.

1.9 Let X be the set of Wy conjugacy classes of pairs (Mp,rp), where
B is a parabolic subgroup and rp is an irreducible cuspidal automorphic
representation of Mp(A)!l. Let

L*(Mp(Q)\Mp(A)') = D L*(Mp(Q)\Mp(A)'),
xeX
be the decomposition of L?(Mp(Q)\Mp(A)') introduced by Arthur in [A2,
Section 3]. Given y € X, let Afmr(P) be the subspace of A2 (P) consisting
of all function ¢ such that for each x € G(A), the restriction of ¢, to
Mp(A)! belongs to L(Mp(Q)\Mp(A)}),.

If we identify II(Mp(A)') with a subset of TI(Mp(A)), then Aim(P)
is well defined for any m € II[(Mp(A)'). This is a space of functions on
Np(A)YMp(A)Ap(R)O\G(A). The direct sum

D Arm
rell(Mp(A))
is the space that was denoted by A%(P,y) in [Mii3].

1.10 Let zZ(P) be the Hilbert space completion of A?(P). For any
A € apc we have an induced representation p(P,\) of G(A) on .712(13)
which is defined by

(p(p, )\,y)qg) (z) = ¢($y)e(k+pp)(Hp(:cy))6—(A+pp)(Hp(z))’ (1.4)

for elements z,y € G(A) and ¢ € 12(P). The Hilbert space completions
2

A-(P) and Xim(P) of the subspaces A2 (P) and Afmr(P), respectively, are
invariant under p(P,A) and we shall denote the restriction of p(P, ) to

AZ(P) (resp. A £(P)) by pr(P,A) (vesp. pyx(P, N)).
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1.11 Given any irreducible unitary representation 7 of Mp(A)!, let
Ar be the eigenvalue of the Casimir operator of Mp(R), acting in the
Garding space H7°  of the Archimedean constituent 7o, of w. For x € X
and (Mp,rp) € x, the Casimir eigenvalue \,, depends only on the class x
and we denote it by A,.

2 Normalized Intertwining Operators

Let M, M,eL(My), PEP(M) and P,eP(M;). For each seW (ay,an;),
¢ € A%(P), and \ € ap such that Re()) € (ap)t + pp, let Mp|p(s,\)é
be defined by

MP1 \P(S7 )‘)(b(x) = 67(SA+pP1)(HP1 (x))

. / b ny ) AR Hp (i ma) g (2.1)
N1 (A)Nws N(A)wz '\Ny1(A)

for z € G(A). The integral is absolutely convergent for A as above and
admits an analytic continuation to a meromorphic function of A € ap¢
with values in the space of linear operators from A?(P) to A%(P;). This
operator is the global intertwining operator
MPl‘P(S,)\): .A2(P) — A2(P1) .

Let m € Haise(M(A)) and x € X. Then Mp p(s,\) maps the subspace
AZ(P) (resp. A2 (P)) to AZ (Py) (resp. A} . (P1)). The main functional
equations are

Mp,p(ts,A) = Mp,|p, (t, sA\)Mp,|p(s, A) (2.2)
for t € W(ay,a2) and s € W(a,ay).

By (1.4) and (1.5) of [A4], most of the considerations concerning in-
tertwining operators can be reduced to the case where P; and P have the
same Levi component M, and s = 1.

Thus, from now on we shall assume that P,Q € P(M) and we put

MQ\P(A) = MQ\P(L )\) s A S a}ﬁ\/l’c .
Given 7 € II(M(A)), let
Mg p(m, A): AZ(P) — A2(Q)
be the restriction of Mg p()) to A2 (P). We shall now express this operator
in terms of local intertwining operators. Let m) be the representation of
P(A) which is defined by
7r)\(nm) :eA(HM(m))ﬂ'(m), TLENP(A), mEMp(A).

Let (I§(m), Hp(m)) be the induced representation of G(A). Similarly let
(Ig(m\), Hq(m)) be the representation of G(A) induced from Q(A). Let &
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be a unitary character of Ap/(R)? and suppose that 7 € Iy (M(A))e. We
extend & by 1 to a character of M(Q)A/(R)?. Then there is a canonical
isomorphism
. M(a) —2
jp:Hp(m) ® HomM(A) (F’IM(Q)A]w(R)O (f)) — A (P) (2.3)
of G(A)-modules where G(A) acts on the left by I§(my) ® Id. A similar
isomorphism j exists with respect to Q. Let H% () (resp. HOQ(TF)) be the
subspace of elements which are right K-finite and left Z(gc)-finite. Using
(2.3), it follows that Mg p(m, \) induces an intertwining operator
Taip(m \): H(m) = H(r)
such that
jg o (Joip(m,A) ®Id) = Mg p(m, \) o jp .
It follows from (2.1) that for Re()\) € (a%)™ + pp, this operator is defined
by the following convergent integral
Torplm, o) = e~ +9a) o)
. / P(nx)ePM PRI HPD) g (2 4)
Nq(A)NNp(A)\Ng(A)
where z € G(A) and ¢ € H%(n).
Let v be any place of Q and let (my, V) € II(M(Q,)). Given A € a}, ¢,
let m,  be the representation of P(Q,) on V,, defined by
T\ (M) = Wy(my)e)‘(HM(m”)), ny € N(Q,), m, € M(Q,).
Let (I§(my2), Hp(my)) denote induced representation. The Hilbert
space is the space of measurable functions
¢o: N(Qy) \ G(Q,) = Vo
such that
L. gu(muyzy) = m(my)du(20), my € M(Q,), 2y € G(Qy);
2. lgoll? = [, oo (R)I}, dk < co.
Let H%(m,) C Hp(m,) be the subspace of K,-finite functions. Then the
local intertwining operator
Joip(m, A) : Hp () — HG ()
is defined by

JQ‘P(TFM )\)gbv ($v) = 6_(>‘+pQ)(HQ(zv))

/ P (nyx, ) eATPPIHEP(MT)) g - (2.5)
NQ(QU)HNP(QU)\NQ(QU)



Vol. 12, 2002 TRACE FORMULA 683

The integral converges absolutely for Re()\) € (a)™ + pp and can be
continued to a meromorphic function of A € aj; ~ with values in the space
of linear operators from H%(m,) to HOQ(ﬂ'U) [Sh1].

Now let 7 € II(M(A)). Then 7 is a restricted tensor product

T = QpTy

»NM(Q,)

where almost all (m,, V) are unramified, i.e. dim V; = 1 for almost

all v. Moreover, we have

(IICD;(WA% HP(F)) = ( Dy IICDTV(W@,A)’ ®UHP(7TU)) :
Let ¢ € H%(w) and suppose that ¢ = ®,¢,. Observe that each ¢, belongs
to H%(m,) and for almost all v, ¢, is K,—invariant. Comparing (2.4) and
(2.5), it follows that

JQ\P(Wa >‘)¢ = By (JQ|P(7rva A)st) (2'6)
whenever the product on the right converges.

It is possible to normalize local intertwining operators. Let v be any
valuation of Q and let m, € II(M(Q,)). It is proved in [AT7], [CLL] that
there exist scalar valued meromorphic functions rg|p(my,A) of A € apc
such that the normalized intertwining operators

R p(me, A) = rg p(m0, A) g p (70, A) (2.7)
satisfy the conditions (R;)—(Rg) of Theorem 2.1 of [A7]. We recall some of
the properties satisfied by the normalized intertwining operators.

(R.1) If S € P(M), then

RS|P(7T1)’)‘) = RS|Q(7Tv7)\)RQ|P(7Tv7)\)- (28)
(R.2) _
RQ\P(T‘-W )‘)* = RP\Q(WW _>‘) : (29)
(R.3) Let L € L(M), S € P(L), and Q,Q" € PX(M). Then
(Rs(@1s(@) (T ), = Ry (7o, Ao (2.10)

for any ¢ € H%(S(R)(Q,)) and k € K,.

(R.4) Let v be a finite place. Suppose that 7, is unramified, and that K,
is very special. Let ¢, € Hp(m,) be a function such that ¢, (k) =
¢y(1) for all k € K,. Then in the compact picture of the induced
representation, one has

RQ\P(FU7)\)¢U = (251). (211)
The functions rg p(my, A) are called normalizing factors. They satisfy

similar properties. We recall some of them. Given P € P(M), let ¥ be
the set of reduced roots of (P, Ar).
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(r.1) For g € ¥, let Mg € L(M) be such that
an, = {H € ay | B(H) =0}
and let Pg be the unique group in PMs (M) whose simple root is 3.

Then
TQ|P(7T1)’)‘): H Tﬁmp,@(”v’)‘)? (212)
BETHNEL,

Note that each rp | Pﬁ(ﬂ'v, A) depends only on the projection A\(3Y).

(r.2) If m, is an irreducible constituent of an induced representation I (o),

where o, € Ha(M1(Q,)), R € PM (M), and My C M, then

TQ|p(7TU,)\) :TQ(R)|P(R)(UW)‘)' (213)
(r.3)
TQ‘p(ﬂ'v, )\)TP‘Q(TFU, )\) = JQ‘p(ﬂ'v, )\)JP|Q(7TU7 )\) . (2.14)
(r4) - B
7QP(Tus A) = 1pjo(Tw, —A) . (2.15)

(r.5) If v is a finite place of Q, then rgp(my, A) is a rational function in

the variables {q;A(ﬂ) | B € £ NES}, where the s are suitably nor-
malized “coroots”. If v = oo, then 7¢g|p(my, A) is a rational function
in the variables {\(8") | 8 € ¥, N X%}

Now we return to global intertwining operators. Let 7 € s (M (A)).
For ¢ € H% () with ¢ = ®,¢, set
Rop(m,N)¢ = @y (R p(mo, N)dy) - (2.16)
Since ¢, is K,- invariant for almost all v, it follows from (2.11) that the
right-hand side is actually a finite product and therefore, it converges for
all A € a}*wc which are not poles of the local intertwining operators. In this
way we get a a meromorphic operator valued function
Rq|p(m,A) : Hp(r) — H(m)
of A € a}; . Using the isomorphism (2.3) and the corresponding one for @,
we obtain a meromorphic operator valued function
Nojp(m,\): AZ(P) = A7(Q)
of A € aj; ¢ such that
jq © Noip(m,A) = (Rg|p(m,A) @ 1d ) o jp. (2.17)
Furthermore, put

74Q|P(7Ta )‘) = HTQ\P(TQM )\) . (218)

By (R.4) it follows that for ¢ as above, we have
JQ|P(7TU? )‘)¢U = TQ\P(WW )\)va
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for almost all v. Therefore, the infinite product (2.18) converges in the
domain of absolute convergence of the infinite product (2.6) and for A in
this domain we have

MQ\P(Wa )\) = T‘Q|p(7T,>\)NQ‘P(7T,>\). (219)
Since both Mgp(m,A) and Ngp(m,A) are meromorphic functions of
A€ a*MC, it follows that rg p(m,A) admits a meromorphic continuation
to aM(C The meromorphic function rg p(m,A) is the global normalizing
factor and N, p(m, A) is the normalized global intertwining operator.
Using (2.12), (2.14), (2.15) and the functional equations (2.2), it follows
that 7o p(m, A) has the following properties

1.
TQ‘P(T(, )\)TP‘Q(T(, )\) =1. (2.20)
2. - _
TQ‘p(ﬂ', )\) = TP‘Q(T(',—)\). (2.21)
3. For each 8 € ¥f) N X% let Pg be as in (2.12). Then
rop(mN) = ] 1Py (T A) - (2.22)
BexyNTr

Note that TFB‘PB(T(, A) depends only on the projection A(3).

3 Local Normalizing Factors

In this section we shall investigate the local normalizing factors in more
detail. In particular, we shall study their logarithmic derivatives. To begin
with, we recall the construction of the normalizing factors.

First assume that v is a finite valuation. Then the existence of nor-
malizing factors such that Theorem 2.1 of [A7] holds has been verified by
Langlands in [CLL, Lecture 15]. Let m, € II(M(Q,)). The local normal-
izing factors rgp(my, A) have to satisfy (2.1)-(2.3) in [A7]. Therefore, it
suffices to define them when dim(ays/ag) = 1 and 7, is square integrable
modulo Ag. Assume for the moment that these conditions are satisfied.
Let P € P(M) and let o be the unique simple root of (P, Apr). Then
Langlands has shown that there exists a rational function Vp(m,, z) of one
variable such that B

rpip (o, A) = Ve(my, g, @), (3.1)
where a € aj is independent of m,. We recall the definition of Vp(m,, 2).
Suppose that P, is a parabolic subgroup of G defined over Q,, and let M,
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be a Levi component of P, over Q,. Denote by Ay, the split component
of the center of M,. Set
ays, = Hom (X (My)g,,R)
and
ay, = X(My)g, ®R .
Let
Hyy, : Mv(@v) — am,

be defined by

H my ),
g8 ™M I = [y (my)le, x € X(My)g, s my € My(Q,).

Given 7 € II(M,(Q,)) and A € ia}, , let m\ denote the representation
defined by
ma(my) = m(my)e M) = e ML(Q,).
Let
aj\\//lvm ={eciay, | m\ =}
denote the stabilizer of m with respect to this action of ia}, . Then aVMU -
is a lattice in iaj, and the orbit o, of 7 is equal to ia}, / aX%Jr. Let

ar,Q, = Hu, (Mo(Qy)),  an,0, = Hi, (An, (Qy)) -
Then ay,,p, and ayy, @, are lattices in apy,. Given a real vector space V'
and a closed subgroup V; of V, let us agree to set
V)Y = Hom(Vy, 2miZ) C iV*.
Let apr, - C apg, be the dual lattice to aVMvm. Then

ar,,Q, C aM,x C aM,,Q,-
Set ~
Ly, = (an, 0, + 0¢,)/0c, , Ly, = (am,0, +96,)/96,;
and
L(m) = (am,» + ag,)/ac, -
Then Lys,, Ly, and L(r) are lattices in a% = ap, /ag, -
Suppose that P, is a maximal parabolic subgroup, that is dim a% =1.
Then there exists a(m) € apz, such that

L(r) = l(;iqZ(a(ﬂ')).

In [Sil] Silberger has shown that for a supercuspidal representation 7
there exists a rational function Up, (7, z) such that the Plancherel measure
wu(m, \) satisfies

p(m, A) = Up, (m, g M) . (3.2)
Let a € aypy, be such that

lo -
L, = 2iqZ(a).
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Since L(m) C Lyy,, there exists k(m) € Z such that a(n) = k(7). Let
Up,(m,2) = Up, (m, 2™ . (3.3)
Then
w(m, ) = Up, (w,q_k(a)) )
Now suppose that P, is arbitrary, but = is still supercuspidal. For each
reduced root a € %,(P,, A,) let A, denote the largest subtorus of A,
which lies in the kernel of the root character of o. Let M, denote the
centralizer of A,. Let *P, = P, N M,. Then *P, = M,N,. Let p(m,\)
be the Plancherel measure with respect to (My,*P,). According to [H3,
Theorem 24|, there exist constants v = v(G/M) and v, = y(My/M),
a € X,(P,, Ay), such that

I N = [ altalm ), (3.4)
a€Xy (Py,Ay)
Hence if {a | o € Ap,} is a set of generators of the lattice Ljy,, then
(7, \) is a rational function in the variables {g~M® | o € Ap,}. Finally, by
Theorem 1 of [Si2], this can be extended to all discrete series representations
of M,(Q,)-

Now let P = M N be a maximal parabolic subgroup of G defined over Q.
Then X(M)q C X(M)g, induces an embedding a3, C aj, and by the
above, it follows that there exists a € ays and a rational function Up(m, 2)
such that

p(m,A) = Up(m, q—A(&)) ) (3.5)
for all 7 € IIo(M(Q,)), A € aj;¢. As shown by Langlands [CLL], the
rational function Up(m, z) has the form
[T (1 - aiz)(1 — a7 '2)

—1

[[io (1= Bi2)(1 = 5; "2)
where the o;’s and ;s satisfy |o;] < 1, |5;] < 1,i=1,...,r, and a is a
certain constant. Then the rational function Vp(m,z) in (3.1) is defined by

Up(m,z) =a

[[;-1(1— Biz)

Vp(ﬂ', Z) bH;:1(1 — aiz) (36)
for a suitable constant b. In particular, it follows that 2r is the number of
poles of Up(, z). For our applications we need a bound for r. This is done
in the following lemma.

LEMMA 3.1. Let M € L(My) be such that dim(aps/ag) = 1. There exists
C > 0 such that for all P € P(M) and all 7 € IIo(M(Q,)) the number of
poles of the rational function Vp(m,z) is less than or equal to C.
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Proof. Let P, be a maximal parabolic subgroup of G defined over Q,
and let 7 € II(M,(Q,)) be supercuspidal. By Theorem 1.6 of [Sil], the
rational function Up, (7, z) in (3.2) has at most 4 poles. Now observe that
Ly, C L(m) € Lag, and Ly, /Ly, is finite. This implies that the number
of poles of the rational function Up, (7, z) defined by (3.3) is bounded by
a constant which is independent of w. The general case is reduced to this

one using the product formula (3.4) and Theorem 1 of [Si2]. o

Using (2.1)—(2.3) of [AT7], the local normalizing factors can be defined
for all M € L(M)y), P,Q € P(M) and m, € II(M(Q,)).

Next suppose that v = co. In this case the existence of normalizing
factors such that Theorem 2.1 in [A7] holds has been established by Arthur
[A7]. The definition is as follows. Let “M be the L-group of M and let
p = pg|p be the contragredient representation of the adjoint representation
pg|p of LM on the complex vector space “ng Nnp\Ing. Let L(s,, p) be
the L-factor attached to 7w and p = pg|p. Then Arthur has shown in [AT7]
that the functions

L(0> Y :0)

L(la X :0)
satisfy all properties required by normalizing factors. We briefly recall the
definition of the L-function and refer to [A7, p.33-35] for more details.
To any 7 € II(M(R)) and A € a} ¢, there corresponds a map
or: Wr — M
from the Weil group of R to the L-group of M, which is uniquely determined
by 7 up to conjugation by “MP° [La3]. Let

por=EPm (3.8)

be the decomposition of p- ¢, into irreducible representations of Wgk. Then
by definition

rop(m,A) = (3.7)

L(s,mx,p) = L(s,p- ¢x) = [ [ L(s. ) -

So it remains to describe the L-factors L(0,7y)L(1,7y)~!. To this end let
T C M be a maximal torus over R whose real split component is A,;. Let
(X, \V) denote the canonical pairing X*(T') x X (T') — Z between the space
X*(T) of characters and the space X, (T of one-parameter subgroups of T'.
Let X p(G,T) be the set of roots of (G, T') which restrict to roots of (P, Apr).
The Galois group Gal(C/R) acts on Xp(G,T). Let & be the action of the
nontrivial element of Gal(C/R). The eigenspaces of pgp(¢r(C*)) are the
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root spaces of {—a"|a € ¥p(G,T)} and the irreducible constituents 7 of
po|p - ¢ correspond to orbits of & in ¥ p(G,T). Furthermore, the map
¢: Wg — “M determines elements p,v € X*(T) ® C with u — v € X*(T).
Let

Ic(z) :=227) *T(2) and I'r(2) = 7r7z/21“(z/2).
If a two-dimensional constituent 7, corresponds to a pair {«, 7o} of complex
roots, then 7y is induced from the quasi-character

Vv \
2 — Z<M+>‘7a >E<V+)‘7a >

of C*. Replacing " by a" if necessary, we can assume that (G — p, V)
is a nonpositive integer. Then
LO,7\) _ Tc((u+Ara’))
L(1,7) Tc({p+AaY)+1)"
The one-dimensional constituents 7 correspond to real roots ag inX p(G,T).
There is at most one of these. If g exists, then 7, is induced from the
quasi-character of R*

(3.9)

i () lafoei),
where Ny € {0,1}. In this case

LO,7) _ Tr((z+Aaf) + No)

L(1,7y) Tr({(p+Xog)+No+1)
REMARK. It has been conjectured by Langlands [Lal, p.282] that for
any local field, intertwining operators can be normalized by L-functions.
For GL(n) this was proved by Shahidi [Sh2]. Namely, let P be a stan-
dard maximal parabolic subgroup of GL(n). Then a} . = C? and Mp =
GL(n1) x GL(ng) for some decomposition n = ny + ns. Let F be a lo-
cal non-Archimedean field and let ¥ be a non-trivial additive character
of F. Let m ® mo be an irreducible unitary representation of Mp(F) =
GL(n1, F)xGL(ng, F). Let L(z,m x72) and e(z, w1 X 72, 1) be the Rankin—
Selberg L-function and the e-factor defined by Jacquet, Piatetski-Shapiro
and Shalika [JPS]. Then the normalizing factor rplp(ﬂ, s), s = (s1,52), can
be chosen to be

(3.10)

L(Sl — 89,71 X ﬁ'g)
6(81 — S9,m1 X 7?2,1[))[1(1 + 81 — 89, M X ﬁQ) ’
In [Sh4], this has been generalized to quasi-split groups and generic repre-
sentations .

rplp(ﬂ, s) =

We can now estimate the logarithmic derivatives of the normalizing
factors. First we consider the case of a finite place v. Let ¢, be the number
of elements of the residue field of Q,, (which in our case is a prime number).
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LEMMA 3.2.  Let o € (a},;)". There exist C,c > 0 such that for every
finite valuation v and every m, € II(M(Q,)) we have

|rqp(m, 20) ™t rgip(my, 2a)| < Cg;? (3.11)
for Re(z) > c.

Proof. First we assume that dimay;/ag = 1 and 7w, € II(M(Q,)) is square
integrable modulo A/ (Q,). Let « be the unique simple root of (P, A).
Then rplp(m,,)\) is given by (3.1). Let A = za, z € C. Then A(a¥) = z
and by (3.6), it follows that

d d B; a;
—1 —Zz (2 (]
P ) 5 'p ) =1 : - .
(e )™ o ) = ogta) 7D s — ]
Recall that the «;’s and f;’s satisfy |o;| < 1, |G| < 1,7 = 1,...,r.
Moreover, by Lemma 3.1 there exists Cy > 0, which is independent of
my € H(M(Q,)), such that r < Cy. Therefore, for Re(z) > 3 we obtain
1 los(g)g0 "
75 p(Ty, 20) " —15 p(Ty, 2x) s vome
P|pP\"v dz PIP\"Y 1—q Re(z)
Now let M € L(Mj) be arbitrary, but still assume that m, is square in-
tegrable modulo A/ (Q,). Let P,QQ € P(M). For each § € X} let

Mpg € L(M) be such that
aMﬂ:{HEClM|ﬂ(H):O}.
Then dimay/ap, = 1. Let Pg be the unique group in PMs (M) whose

simple root is 3. Furthermore, let o € (a},)", v € ayrc and 2z € C. Then
by (2.12) we get

<Oy < Coqy %, (3.12)

QP (Tv, 20 + v)7L. diZTQ‘p(ﬂ'v, za+ 1)
—1
= Z TB4IPs (ﬂ'U, (zaw + v, ﬂ\/)B) . dizrﬁg\Pg (77,,, (za+v, ﬂv>ﬁ) .
pespnzy
By assumption we have (o, ") > 0 for every 8 € X%, If (o,8Y) = 0,

then the corresponding logarithmic derivative vanishes. Suppose that a :=
(o, ) > 0. Let ¢y > 0 be such that ||3|| < ¢o for all 3 € ¥%. Then
Re (z(a, 8Y) + (v, 7)) > aRe(z) — co||V||
and it follows from (3.7) that there exist C,c > 0, depending on «, ¢y and
||lv]|, such that
|rqp (T, za + v)~ L. %T‘Q|p(ﬂ'v, zo+v)| < Cq, (3.13)

for all m, € IIo(M(Q,)) and Re(z) > c.

Next assume that m, is tempered. Then 7, is an irreducible constituent
of an induced representation I3 (7,), where R € PM(M;), My C M and
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Ty € Ha(MR(Q,)). Then Ig(ﬂ'u ) is canonically isomorphic to a subrepre-
sentation of Ig(R) (7p,) and by (2.13) we have

74Q|P(7TU’ )‘) = TQ(R)|P(R) (TU’ )‘) ’
where P(R) C P, Q(R) C Q). Now recall that there is a canonical inclusion
ap C appy and with respect to this inclusion, we have (ap)T C (a’I‘D(R))JF.
Thus « can be identified with an element of (a};( R))Jr . Hence (3.11) holds
for all tempered m, € II(M(Q,)).

Now let 7, be an arbitrary representation in II(M (Q,)). Then , is the
Langlands quotient J& (7,, 1) of a representation I3 (7, ), where Mp is
an admissible Levi subgroup of M, 7, € II(Mr(Q,)) is a tempered repre-
sentation, and p is a point in the chamber of (a}f)* = a% /a3, attached to
R [Si3]. Set A = p+ A. Then, as explained in [A7, p. 30], we have

TQ\P(T‘-va)\) :TQ(R)\P(R)(TMA)' (314)
Let p, € aj; be defined by

5P(CL)1/2 = qgu(H(a))’ a€ Ay .
Then it follows from Theorem 3.3 of Chapter XI of [BW] that

<M7ﬁv> < <pv’ﬁ\/>’ B e (I)(Ra AR)

Since p belongs to af,/a},, it follows that ||| < |/py|. Let o € (a%)T. As
observed above, o can be identified with an element of (a*P( R))+. Hence,
combining (3.13) and (3.14) the desired estimation (3.11) follows. o

Next we consider the infinite place. Let 7 € II(M (R)) and let ¢: W —
LM be the map associated to 7. Let u,v € X*(T) ® C be the elements de-
termined by the map ¢ (see [La3], [A7, p.34]). To indicate the dependence
on m, we shall write u, and v,;. We note that there is a canonical injection
of the space

a}k\/“c = X*(M)Q ®C
into X*(T) ® C.
LEMMA 3.3. Let 8 € (a},)". There exist C,c > 0 such that
|TQ|P(7T, 23)7t- C%’I"Q‘p(ﬂ', zﬁ)! <C (3.15)
for all m € II(M(R)) and all z € C with Re(z) > c.

Proof. First assume that 7 € TI(M(R)) is tempered. As explained above,
the normalizing factor rg, p(m, A\) is a product of finitely many meromorphic
functions each of which is either of the form (3.9) or (3.10). So it suffices
to consider the logarithmic derivative of the Gamma factors. Recall that
for Re(z) > 0 the following formula holds

(z+1) 1 <1 1 1
- L = 1 _ - = —uzd
I'(z+1) 5, Tio8” /0 {2 u—i_e“—l}e "
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[Wh, p.248]. Let 0 < a <1 and Re(z) > 2. Then we get
M) T+
I'(z)  T(z+a)

- a +7T
z—1 2

<11 1 1
9 - = —uRe(z)/2d ]
* /0 ‘2 u+e“—1‘€ "

+ log

= Re(z)

Hence there exists C' > 0 such that
'(z) TI'(z+a)
‘r@>‘r@+a>

Let 8 € (aj,)", v € aj;¢ and a € Xp(G,T). Since o [ ayr is a root
of (P, A), it follows that (8,a¥) > 0. Let a € Xp(G,T) be such that

(Gpr — px,@¥) < 0. Then we have Re{ur,a") > 0. Hence

Re(px + 28 +v,0”) > (8,a") Re(2) — [laf - |lv]|.
Using (3.16) together with (3.9) and (3.10), it follows that there exist con-
stants C, ¢ > 0 such that
s 4 (L0 e
L(O’Tzﬁ-i-l/) dz L(I’Tzﬁ-i-l/)
for Re(z) > ¢(1 + ||v]|) and all # € TI(M(R)), where 7), and 7 are related

by (3.8).

Now let 7 be an arbitrary representation in II(M(R)). Then there exist

a parabolic subgroup R of M, a tempered representation 7 of Mg(R) and

a point & in the positive chamber of (a},/a},) attached to R such that 7 is

equivalent to the Langlands quotient Jr(7,§) [La3]. Set A = £ + A. Then,

as explained in [A7, p.30], we have

rqp(m, A) = ror)p(r) (T, A) -
Moreover, by Theorem 5.2 of Chapter IV of [BW] it follows that
|Re(¢,a”)| <4|lpp|| for all a € Ap.
Together with (3.17) this implies the claimed result. o

< C for Re(z) > 2. (3.16)

<C (3.17)

4 Poles of Global Normalizing Factors

Let M € L(Mp) and P,Q € P(M). Let m € Ig.(M(A)) with 7 = ®,7,.
Then by §2 the infinite product
rqip(m A) = [ [ roip(me, )

v
is absolutely convergent in some chamber and admits an analytic extension

to a meromorphic function of A € ajy - In this section we shall study the
poles of 7gp(m, ).
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Recall that a function f: CY — C is called a meromorphic function
of order p > 0, if f can be written as a quotient f = g1/gs of two entire
functions g; : CV — C, i = 1,2, satisfying

lgi(z)| < CelFP 2 eV, i=1,2,
for certain constants C,c > 0. With this definition we have the following
proposition.
PROPOSITION 4.1. Let n = dimG(R)/Ky. For all m € Ig.(M(A)),
the normalizing factor rq p(m, ) is a meromorphic function of \ € ay ¢ of
order < n + 2.

Proof. By (2.22) we may assume that dim(ass/ag) = 1. Let P € P(M) and
let o be the unique simple root of (P, Apr). Let m € Iy (M(A)). Then
A2(P) # {0} and we have to consider the intertwining operator Mp p(m, A).
Recall that Mp p(m, A) is unitary for A € ia},. In particular, Mp p(m,A) is
regular at A = 0. Put
M(m,A) = Mpp(m,0)Mp p(m,A), A€ ayc-
Next consider the normalized intertwining operator Nﬂ p(m,A) which is
defined by (2.19). It follows from (2.8), (2.9), (2.16) and (2.17) that
Npp(m,0)" Npp(r,0) =1d.
Hence Npp(m, A) is regular at A = 0 and Np (7, 0) is invertible. Put
N(m, \) = Np‘p(w,O)Nﬁlp(ﬂ', A, A€ayc-
Furthermore by (2.20) and (2.21) we get
rpp(mA)| =1, Aeiay,. (4.1)

Thus 75 p(7, A) is also regular at A = 0 and rpp(7,0) # 0. By (2.19) we
get

M(m,A) = rpp(m, 0)rp p(m, AN (T, A) . (4.2)
Now observe that there exists an open compact subgroup Ky C G(Ay)
such that A?T(P)Kf # {0}. Hence there exists o € II(Ks) such that
A2(P)k;,0 # {0} (cf. section 1.8 for the definition). Put

d = dim AZ(P)k; o
and
c(myo) = T'Plﬁ(ﬂ', 0)~<

Then |c(m,0)[ = 1. Let M (7, )k, o (resp. N(m,A)k; o) denote the restric-
tion of M (m, \) (resp. N(m, A)) to the subspace A?T(P)Kfﬂ. Then we have
det N(7,\) i, .0 # 0 and by (4.2) we get
det M (7, \) k.0
det N(m, N0

Tﬁ|P(7T, )\)d = ¢(m,0) (4.3)



694 W. MULLER GAFA

Thus it suffices to prove that both the numerator and the denominator on
the right-hand side are meromorphic functions of order < n+ 2. As for the
numerator, it follows from Theorem 0.1 of [Mii3] that det M (m, M)k, - is a
meromorphic function of A € aj, ¢ of order < n+ 2. In fact, in [Mii3] we
only dealt with the case of the trivial character &. However, all the results
of [Mii3] can be extend without any difficulty to the case of a nontrivial
character £. It remains to consider the denominator. By (2.11), (2.16) and
(2.17) there exists a finite set Sy of finite places of Q such that

det N(m,\)k;,0 = det (RP@(WOO, 0)e REP(WOO, No)

H det p‘p 771}) )KvRﬁ\P(Wm)‘)KU) ) (44)
vESK
where Rp, p(Too, A)o denotes the restriction of Rp, p (oo, A) to the o-isotypi-
cal subspace Hp(Too)o 0f Hp(Too) and Rp p(my, Ak, denotes the restric-
tion of Rﬁ‘P(ﬂ'v,)\) to the subspace Hp(m,)X* of K,-invariant functions.
By Theorem 2.1 of [AT], Rﬁ\P(ﬂ'om A) is a rational function of A(a") and

for each finite place v, RF\ p(my, A) is a rational function of g, ), There-
fore det(Rpp(Too; 0)o R p(Too: A)o) is a rational functions of A(a) and
for each v < oo, det(Rpp(my,0)k, Rp p(my, A)k,) is a rational function
—A(aY)

of qy Since the function z € C — ¢7% is entire and of order 1, it
follows that det N (7, A)o,x, is a meromorphic function of A € aj, . of or-
der < 1. By (4.3) it follows that Tﬁ‘P(TF, A4 and hence Tﬁlp(ﬂ',A) is a
meromorphic function of \ € A of order < n + 2. O

z

REMARK. Assume that G is a quasi-split connected reductive group over
a number field ' with ring of adéles Ap. Let P = MN be a maximal
parabolic subgroup of G. Let 7 be a globally generic cuspidal representa-
tion of M (Ar). Then it follows from [Sh4] that the intertwining operator
Mﬁ‘ p(m,A) can be normalized by automorphic L-functions. Furthermore
in [GS], Gelbart and Shahidi proved that the L-functions occurring in the
normalizing factor are meromorphic functions of order 1. Therefore, one
should expect that the normalizing factor rq p(m, A) is of order 1 in general.

Now assume that dimays/ag = 1. Our next goal is to estimate the
number of poles of Tﬁlp(ﬂ', A) in a circle of radius R > 0. For this purpose
we have to introduce some notation.

Let Ilgisc(M(A); Kf) be the space of representations defined by (1.2).
For every 7 € Iy (M(A); K¢) we have A2Z(P)Xs +£ {0}.

Let 7 be an irreducible unitary representation of M(R) and let I§ ()



Vol. 12, 2002 TRACE FORMULA 695

be the induced representation of G(R). Recall that among all K-types 7/
occurring in 1§ (), the minimal K-types of I§(7) are those 75 for which
|A" + 2pk|? is minimizing at A’ = A. Let Wp(w) be the set of minimal
Koo-types of IS (). Then Wp(r) is a non empty finite subset of II(Ky,).
Let A; be the Casimir eigenvalues of m and for any 7 € II(K ), let \; be
the Casimir eigenvalue of 7. Put

Ar:= min /A2 4 )2, (4.5)
TEWP(m)
If m € II(M(A)), put
A=A .
For a given pole n of Tﬁ‘P(ﬂ', A), let m(n) denote its order. Set
np(m,R)= Y m(),
In|<R
where the sum runs over all poles of rp p(m,A).
PROPOSITION 4.2. Let m = dimG and let Ky be an open compact
subgroup of G(Ay). There exists C > 0 such that for all R > 0 and all
7 € Igisc (M (A); Kf) we have
np(m,R) < C(1+ R*+ A2)8™,

Proof. Let 7 € Igio(M(A); K¢). Then there exists o € II(K) such that
AZ(P)k, o # {0}. Put
N(m, ) = Npp(m, A)Npp(m,0), A€ayc-
Then .
N(m,A)N(m,A\) =1d

and by (4.3) we get

rpip(m AT = e(m, 0) det (M (m, A sy o) - det (N (m, N o) - (4.6)
Thus it suffices to estimate the number of poles of the functions occurring
on the right. It follows from Proposition 6.6 and Lemma 6.1 of [M3], that
the number of poles, counted with their order, of det M (m, )\)Kﬁg in the
disc |A| < R is bounded by

C(1+ R?+ 22 + 228,
where C' > 0 is independent of 7 and o. As noted above, in [Mii3] we only
dealt with the case of the trivial character £&. However, everything can be
extended to a nontrivial character £ without any difficulty.
It remains to consider det N (m, A) ;o For any place v let

R(ﬂ'v, )‘) = RP‘?(WM A)Rﬁ‘P(ﬂ-Ua 0) .
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By (2.16) and (2.17) we have
N(m,\)ojp=jpo ((®UR(7Q,,)\)) ® Id)
and there exists a finite set S; of finite places, which depends only on 7
and Ky, such that .
R(my, Nk, =1d
for all v ¢ S U{oo}. Thus

det (N (m, NK;, ) = det (R(moo, A H det (R(my, Nk, ) - (4.7)
vESH
Let np(my, R), v < o0, (resp. np(me, R)) denote the number of poles,
counted with the order, of det(R(m,,\)k,) (resp. det(R(mo0,\)s)) in the
disc |A| < R. Then we have to estimate np(m,, R) for any v < oc.
Let v < oo and let m, be any irreducible unitary representation of
M(Q,). Let @ € aps be as (3.5). By Theorem 2.2.2 of [Shl] there exists a
polynomial Q,(z), @,(0) = 1, such that

Qv( @ )Jp\ﬁ(ﬂ'va A)
is a holomorphic and non-zero operator. Moreover, the degree of the poly-
nomial @), is independent of m,. Let

dy = dim Hp(m,) ">
Then it follows from (2.7) and the definition of R(m,, ) that

rpip(mu, N Qu(g, )% det (R(my, M i, )
is a holomorphic function on a}; . By (r.5) there exist polynomials P;(z)
and Ps(z) such that
Pi(g, ")
Py(gs @)
Thus it suffices to estimate the number of zeros of P; (g, )‘(a)) and Q,(qv /\(a)),
respectively, in a circle of radius R > 0. First observe that for every
z € C the number of solutions of ¢, * = z in the disc |s| < R is bounded
by 1 + (27)"'log(q,)R. Furthermore, the degree of the polynomial Q,
is bounded by some constant ¢, > 0 which is independent of m,. Using
Lemma 3.1 and (2.1)—(2.3) of [A7], it follows that the degree of the polyno-
mial P;(z) is also bounded by a constant which is independent of m,. This
implies that there exists C, > 0 such that
np(my, R) < Cydim (Hp(m,)* ") (1 + R)

for all m, € II(M(Q,)) and R > 0. It remains to estimate the dimension

of Hp(m,)Xv. Suppose that m, is the component at v of a representa-
tion 7 € Mgiee(M(A)); K¢). Then there exists & € II(Ap(R)?) such that

TP|?(7TU7 )\) ==
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7 € Haise(M(A))e. Let Hp(ﬂ')ff be the o-isotypical subspace of Hp(r)%7.
By (2.3) it follows that

K Ia¥)
Hp(m)a! @ Hom ) (w,fﬁ((g))AM(R)o(g)) > A2(P)i, -

Moreover we have

Hp(m)e! = Hp(s)s ® Q) Hp(m,)

V<00
and dim Hp(7,)5v =1 for v ¢ S,. Thus it follows that
dim Hp(m,)Kv < dim A%(P)Kﬁg .
The right-hand side can be estimated by Lemma 6.1 of [Mii3]. It follows

that
np(my, R) < Cv(l—l—)\?TjL)\?,)?’m(l—l—R). (4.8)

Now let v = oo and let mo, € II(M(R)). Set

Then o -

R(Too, A) = (Tp|ﬁ(7r00a>\)rﬁ|p(7roo’0))_ I (Toos A) . (4.9)
Let K00 = Koo N M (R) and let

Ok oo = @ n,T .
TE(K p,00)
Set
[0 TToo] = Z N [T Moo Kagoe) -
TE(K p,00)

By Corollary 4.7 of [VW], there exist complex numbers a;(7y), 1 = 1,...,7,
and b;(70,0), i = 1,...,7[0 : Too|, With r = r(7) depending only on 7,

and a constant C' € C, such that
H:iﬂlo") (A, aV>/(4<pP’ av>) o ai(ﬂ.oo))[a:noo} |

[T (8 0%) /(4{pp. a) = bilmac))
LEMMA 4.3. There exists ¢ > 0 such that r(7) < ¢ for all 7 € II(M(R)).

det J (o0, A) = C (4.10)

Proof. Let b; be the polynomial which is associated to 7 by Theorem 1.5 of
[VW]. Then r(7) is the degree of b, [VW, p.228]. So we have to estimate
the degree of b,. The polynomial b, is obtained from a more general poly-
nomial b; » occurring in Theorem 2.2 of [VW] by choosing A = 4pp. The
polynomial b, is associated to 7 and a finite dimensional representation
(n, F) of G satisfying the conditions (1)—(3) in [VW, p.210]. Then A\ is
the action of aps on F". It follows from the constructions on p.217-219 in
[VW], that the polynomial b, y is the product of the denominator of 5 and
the denominator of the element Z,, defined on p.219. Let Q € Z(gc) be
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the Casimir element, and let ya be the infinitesimal character of 7. Then
it follows that b, ) equals

bea) = II  Geaw(@) - Xasvrn(€2)"
HeIl(F)—{A}

H (XAJrl/Jr)\(Q) - XA-H/-HL(Q))T(M) .
HeII(F)—{A}
Here II(F') denotes the set of weights of F' with respect to a fixed Cartan
subalgebra h of g and r(u) is the multiplicity of a given weight p. From
this description of b, it follows that

r(r) <2(dimF —1).
Finally, b, is obtained by choosing F' to be the representation described in
example 2.1 of [VW]. o

Now recall that the poles of the Gamma function I'(z) are simple poles at
z=0,—-1,-2,... and 1/I'(z) is entire. Then it follows from (4.10) together
with Lemma 4.3 that there exists a constant C; > 0, independent of 7,
such that the number of zeros, counted with their order, of det J (7w, A) in
the disc |A| < R is bounded by

Cilo : To](1 + R). (4.11)
By Theorem 8.1 of [K] and remark 1 following Theorem 8.4 in [K], we
have
[0 Too] < Z nydim7 < dimo.
TE(K p,00)
Furthermore, by Weyl’s dimension formula, there exists Cs > 0 such that
dimo < Cy(1 4+ A2)P, where p = 1/2dim K. Thus (4.11) is bounded by
Co(1+N2P(1+R).

It remains to consider the normalizing factor TP‘F(T(OO, A). It is given
by formula (3.7). Let ¢y : Wg — M be the map associated to (7). Let
g be the number of irreducible constituents occurring in the decomposition
(3.8) of p- ¢x. Then ¢ is bounded independently of 7 and it follows from
the description of the L-factors in §3 that Tp‘p(ﬂ'oo,)\) is a product of ¢
meromorphic functions of the form (3.9) or (3.10). From the form of these
functions it follows immediately that the number of poles, counted with
their order, of Tp‘p(ﬂ'oo,)\) in the disc |A| < R is bounded by C(1 + R).
Putting our estimated together, we have proved that there exists C' > 0,
depending on K, such that

np(m,R) < C(1+ R*4 )2 4+ \2)8m (4.12)
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forall R > 0, and all w € Ilgis. (M (A)) and o € IT(K ) such that A%(P) g, o
£ {0},

Let 7 € Hgie(M(A); Kf). Let 7 be a minimal Koo-type of IS (moo).
Choose o € II(K ) such that 0 = 7. Then (4.12) applied to o together
with the definition of A, implies the proposition. m

COROLLARY 4.4. Let m = dimG and n = 16m + 2. There exists C > 0,
depending on Ky, such that for each m € Ig;s.(M(A); K¢) we have

—”ﬁﬁ) < O(L+A)™,
p#0
where p runs over the poles of rp p(m, A).

5 Logarithmic Derivatives of Global Normalizing Factors

In this section we shall study generalized logarithmic derivatives of the
global normalizing factors. First we assume that M € £(My) is such that
dimays/dimag = 1. Let P € P(M) and let a be the unique simple root of
(P,A). Let 7 € Iy (M(A)) with m = ®,m,. By property (r.5) satisfied by
the local normalizing factors, it follows that for each place v, there exists a
meromorphic function fﬂ p(my, z) of one complex variable z such that the

local normalizing factor rpp(my, A) is given by
rplp(m,, A) = fﬂp(ﬂ'v, )\(av)) .
Let
pp(T, 2) = HTP|P Ty, 2

The infinite product is absolutely convergent in the half-plane Re(z) >
pp(aY), admits a meromorphic continuation to C and the global normalizing
factor is given by
Tﬁ|P(7r’>\) :fﬁlp(ﬂ',A(Oév)) s )\ S 0347(0.

Our present goal is to estimate the logarithmic derivative of fﬂ p(m, ) along
the imaginary axis.

To begin with, observe that by Lemma 3.2 and Lemma 3.3 there exist
C, ¢ > 0 such that

fﬂp(”az) 1 dTP\P T, 2z ‘ Z ‘TP“D Ty 2) %fﬁlp(wv,z) <C (5.1)

for all m € Igise(M(A)) and Re( ) > c¢. Using (2.20) and (2.21), it follows
that the function rp p(m, z) satisfies

?ﬁ‘P(ﬂ', z)?p‘P(ﬂ', -z)=1. (5.2)
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Hence we get

’Fﬁ|P(7raZ)_la’Fﬁ|P(7raZ) )

dz

dip
7pp(m, 7)1 ( P“’) (7, —%)

and together with (5.1) we obtain the following proposition.
PROPOSITION 5.1. There exist C,c > 0 such that

‘fﬂP(T(’ Z)_l %fﬁ\P(Tﬁ Z)‘ <C
for all m € Myi(M(A)) and all z € C with |Re(z)| > c.

In order to get estimates for the logarithmic derivative on the imaginary
axis, we shall use the partial fraction decomposition of the meromorphic
function ?p‘P(mz)_l(d/dz)(?plp(w, z)), which allows us to treat the sum
of the principal parts separately. Let n = 16dim G + 2. Then it follows
from Corollary 4.4 that ?ﬁl p(m, z) is a meromorphic function of order < n.
Thus there exist entire functions 7 (7, z) and ra(m, 2z) of order < n such

that
. 7"1(7'(',2)

72 (ﬂ'a Z) .
Furthermore, observe that by (5.2) a complex number 7 is a zero of
?plp(ﬂ, z) if and only if —7 is a pole of ?ﬁ‘P(ﬂ', z). Thus by Hadamard’s

?F|P(7T’ Z) =

factorization theorem there exists a polynomial Q(z) of degree < n such
that

I, (1= %)exp (S 4 (%)k)]“(n)
I, [+ e (2 4 (-2) )]

where 7) runs over all zeros of 7p p(m, z) and a(n) denotes the order of the

; (5.3)

?plp(ﬂ, z) = Q)

Z€ero 1).

Let D(m) denote the set of all poles and zeros of ?plp(ﬂ,z). Given
n € D(w), we denote by m(n) the order of n, i.e. m(n) is the integer such
that (z —n)~" FP‘P(T(', z) is holomorphic in a neighborhood of  and does
not vanish at z = 7. For n € C* we define the function h,(z) by

182 /2\F
hy(z) = —— -], zeC.
GREPNE)
Then it follows from Corollary 4.4 that the series

frmay= 3 m<n>{ ! —hn<z>} (5.4)

z — z —
neD(m) n neD(m) n
[nl<1 n|>1
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is absolutely convergent on compact subsets of C \ D(7) and the resulting
function f(m,z) is a meromorphic function on C whose set of poles equals
D(r). Differentiating (5.3), we get

?ﬁlp(ﬂ,z)flﬁ?ﬁu}(w, 2) = f(m,2) — Z m(n)h,(z) + Q'(2) .

neD(m)
[nl<1
Thus there is a polynomial g(, z) of degree < n — 1 such that
?ﬁ\P(ﬂ-az)_ldiz?ﬁ|P(7raZ) = f(ﬂ-a Z) —I—g(7r,z) . (55)

We begin with the investigation of g(, z).
PROPOSITION 5.2. Let m = dim G. There exist C,c > 0 such that
‘g(w, z)! < C’(l + |2|? + Ai)lSm
for all m € Ilgis(M(A), K¢) and all z € C with |Re(z)| < c.

Proof. Let ¢ > 0 be the constant occurring in Proposition 5.1. First
assume that |Re(z)| = ¢. By Proposition 5.1 it suffices to estimate f(m,2).
Referring again to Proposition 5.1, it follows that D(7) is contained in the
strip | Re(z)| < ¢. Hence we may assume that ¢ > 0 has been chosen so that
for all 7 € Iy (M (A), K¢), the zeros and poles of ?plp(ﬂ, z) are contained
in the strip |Re(z)| < ¢ — J, where § > 0 is independent of 7. Hence the
poles of f(m,z) are contained in |Re(z)| < ¢ — 4. Let n € C be a pole of
f(m,z). Then for |Re(z)| > ¢ we get

|z—n| > |Re(z —n)| = c— |Re(n)| > 6. (5.6)

Furthermore, from the definition of f(m,2) it follows that

o< 3 POl S )i e)

nial 17 1o
1
+ Y Im(n)
Z=
In[>2]z]
Using (5.6) and Proposition 4.2, we can estimate the first sum as follows

Z Im(n)| <1 Z Im(n)| < %np(w,2|z|)

lz—m| =6
In|<2|| In|<2lz|

= hy(2)

< O(1+ |22 + A2)™™.
Again by Proposition 4.2, we obtain for the second sum

n—1
|2
Y Immlihy()l < Y |m(77)|z|m7+1
1<n|<2]2| 1<n|<2]| k=0

< C|z|"_1np(7r,2|z|)

< O+ |22 4+ A2)™
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Finally, by Corollary 4.4 we get
1
—— —h
> Il 2 o2

In[>2]z]

§2|Z|n Z ‘m(ﬁ)|

|n‘n+1

n[>2|z]
< C(1+A2)" 2"
< O(1+4 |22 + A2)%™.
Putting our estimates together, it follows that there exists C' > 0 such
that

(5.8)

)] <O+ P +43)""
for |Re(z)| > ¢. Hence by Proposition 5.1, there exists C' > 0 such that

lg(m2)| < C(1+ |2 + A7) " (5.9)
for all 7 € Igisc(M(A),Ky) and all z € C with |Re(z)| = ¢. Now the
proposition follows from the Phragmen—Lindel6f theorem. O

Note that Proposition 5.2 gives an upper bound for ¢g(m, z) on the imag-
inary axis.

We shall now investigate f(m,z). From the definition of f(m, z) by (5.3)
it is clear that the growth of f(m,z) along the imaginary axis depends
on the distance of the poles and zeros of TP p(m, z) from the imaginary
axis. Therefore, without any further information about the distribution
of the poles and zeros we cannot expect to get any estimates for f(m,i\)
as |A\| — oo. However, what we can hope for is to obtain estimates for
integrals involving f(m,i\).

To this end, we decompose f(, z) as follows

1
flmz)= Y, m—— > m)hy(z)
neD(r) T wépm
Inl<2]z| 1<[n[<2]2|
1
+ Z m(n) {z— - hn(z)} .

n€D(m) N
Inl>2|2]

As for the second and the third sum, we observe that the estimations (5.7)
and (5.8) are uniform in z € C. It remains to consider the first sum which
we denote by fi(m, z). Let

Dy(m) = {n € D(r) | £m(n) > 0} .
Then the map n — —7 is a bijection of D (7) onto D_(7), and therefore,
fi(m, z) can be written as

hms = ¥ m{ - )

n€D ()
Inl<2z|
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In particular, for A € R\ {0} we get

' 2Re(n)
film) == ne;m o Re(n)? + (A —Im(n))?
[nl<2|A]|

Let ¢ € C*°(R) be such that 0 < ¢ < 1, {(u) = 0 for |u| > 3 and
C(u) =1 for |u] <2. Then it follows that

‘ 2| Re(n)|
[falm 0] < neDZ;(ﬂ) ") Re + O~ Im(n)?
[n|<2|A|
| 2| Re(n)]
- ne; ‘ <\A\> " Relnp? + (n— ()

Thus we have proved that for A € R \ {0} the following inequality holds

Gl 2| Re(n)|
Jm i3 Z C<|A|> ) Rt + (n — tm(m))?

nED

+ (1 + N2 4 A2)¥m (5.10)
Put

Inl 2| Re(n)] .
F()\) — {ZWED+(7r) ¢ <| ‘> m(77) Re(n)2+(—Im(n))2 ° A 7'é 0;
0, A=0.

Note that 0 ¢ D(w). Therefore, on any finite interval [—a,a], F(\) is
the sum of finitely many smooth and non-negative functions. Hence F'(\)
is a smooth and non-negative function. We shall now estimate the integral
of F'(u) over a finite interval. Using Proposition 4.2 and the properties of ¢,
we obtain

g 2| Re(n)|
F(u)du < m(n / du
/ 2" ), R+ (a- WG
[n]<3XA
< 2mnp(m,3)\)
< C(1+ N2+ A28, (5.11)

Let N > 8nm + 2 and R > 0. Using integration by parts and (5.11), we

obtain
/_};F(U)(l +u?)Nu| = l/_}; </Ou F(t) dt) (] 1 o2) Ny
- /zF(t) dt|(1 + RN
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< C(1+ A2)8m / (1 + u?)8m ‘%(1 + u2)*N‘ du
R

< Cn(1+ A2)8m

Here we have used that by (5.11) the boundary term is bounded by a
constant independent of R. Since F' > 0, this inequality implies that F'(u) is
integrable with respect to the measure (14-u?)~"du. Putting our estimates
together, we obtain the following theorem.

Theorem 5.3. Let M € L(My) and assume that dimays/ag = 1. Let
P € P(M) and let m = dimG(R). For every N > 8m + 2 there exists
Cn > 0 such that for all m € Ilgis.(M(A); K¢) the following inequality
holds

/ ‘fﬁ‘P(ﬂ,iu)—l %fﬂp(miuﬂ(l + u2)_Ndu <Cn(1+ A72T)18m.
R

Now suppose that M € L(My) is arbitrary. Then we have to consider
the multidimensional logarithmic derivatives of the normalizing factors de-
fined by Arthur in [A4]. For this purpose we will use the notion of a (G, M)
family introduced by Arthur in Section 6 of [A5]. For the convenience of
the reader we recall the definition of a (G, M) family and explain some of
its properties.

For each P € P(M), let cp(X) be a smooth function on ia},. Then the
set

{ep(N) | P e P(M)}
is called a (G, M) family if the following holds: Let P, P’ € P(M) be
adjacent parabolic groups and suppose that A belongs to the hyperplane
spanned by the common wall of the chambers of P and P’. Then

Cp()\) = Cp/()\) .
Let
Op(\) = vol (aB/Z(AY)) H MaY), Neidp, (5.12)
aEAp
where Z(A}) is the lattice in a% generated by the co-roots
{aV | a € Ap}.
Let {cp(A)} be a (G, M) family. Then by Lemma 6.2 of [A5], the function
(V) = > ep(Nop(N) 7, (5.13)
PeP(M)
which is defined on the complement of a finite set of hyperplanes, extends

to a smooth function on ia},. The value of cjr(A\) at A = 0 is of particular
importance in connection with the spectral side of the trace formula. It
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can be computed as follows. Let p = dim(Ay/Ag). Set A = tA, t € R,
A € a};, and let ¢ tend to 0. Then
en(0) =% D0 (lim (§)" ep(th)) op(A) (5.14)
PEP(M)

[A5, (6.5)]. This expression is of course independent of A.

For any (G, M) family {cp(\) | P € P(M)} and any L € L(M) there is
associated a natural (G, L) family which is defined as follows. Let Q € P(L)
and suppose that P C ). The function

A E iaz — Cp()\)
depends only on Q. We will denote it by cg(A). Then
{cV) 1 Q e P(L)}
is a (G, L) family. We write
(V) = Y NN
QeP(L)
for the corresponding function (5.13).

Let Q € P(L) be fixed. If R € PL(M), then Q(R) is the unique group
in P(M) such that Q(R) C @Q and Q(R) N L = R. Let cg be the function
on iaj, which is defined by
Then {cg()\) | R € PE(M)} is an (L, M) family. Let CJ\Q/I()\) be the function
(5.13) associated to this (L, M) family.

We consider now special (G, M) families defined by the global normal-
izing factors. Fix P € P(M), 7 € Ilgisc(M(A)) and A € ia},. Define

v(P,m, A\ A) == rgp(, )\)71TQ|P(7T, A+A), QeP(M). (5.15)
This set of functions is a (G, M) family [A4, p.1317]. It is of a special form.
Given g € ¥'p N E%, set

rg(m, z) = fﬁmpﬁ(ﬂ,z), zeC.
Then by (2.22) we have

I/Q(P, 71'7)\,/\) = H Tﬁ(ﬂ',)\(ﬁv))ing(ﬂ',)\(ﬂv) +A(ﬂv)) .
pesy s

Suppose that L € L(M), L1 € L(L) and S € P(Lq). Let

{v8,(P,m, A A) | Qi e PM(L)}
be the associated (L1, L) family and let v7? (P, m, A, A) be the function (5.13)
defined by this family. Set

vy (P,m,\) == vi (P,m,\,0).
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If 3 is any root in X"(G, Anr), let 8] denote the projection of 3¥ onto ar,.
If F is a subset of X"(G, Apr), let F} be the disjoint union of all the vectors
By, p € F. Then by Proposition 7.5 of [A4] we have

vy (P,m,\) Zvol 1/Z (FY))

(TT rs(mABY) " r(m A8Y)), - (5.16)

BEF

where F runs over all subsets of ¥ (L, Apr) such that F}’ is a basis of aél.
Let N € N. Then by (5.16) we get

/ V2 (P, )| (14 A7)~ d)\<Zv01 Lyjz(FY))
iay /ag

/ IT [t ABY)) " r(m, AGBY))| (1 + [IA2) ™ .

’laL/aG ﬂEF

Here I runs over all subsets of X"(L1, Apr) such that F} is a basis of aﬁl.
Fix such a subset F'. Let
{ws | B eF}
be the basis of (afl)* which is dual to FLLI. We can write A € ia] /iaj, as
)\:ZZﬁ(:}g—i-)\l, ZﬂEiR, Aleia*Ll/iaE.
BeF

Observe that A(3Y) = z3. Suppose that N > 2dim(Ayr, /Ag) + 2. Then
there exists Cy > 0, independent of 7, such that

/ IT 170w, ABY)) " (m, ABY)) | (1 + IA12) Y dx

ZaL/aG ﬂEF

< Cy H !rﬁ T, 23) 1r'ﬁ(7r, zﬁ)|(1 + |zg|2)7N/2d25.
per ViR
Combined with Theorem 5.3 we obtain
Theorem 5.4. Let M € L(My), L € L(M), Ly € L(L) and S € P(Ly).
Let m = dim G(R)/ K. For every N > 8m + 2 there exists Cy > 0 such
that

/ P (Pm )| (1+ HAH?)*NdA < COn(14 A2 4 )\2)8m
iay /ag

for all m € Myiee(M(A), K¢) and any minimal Koo-type o of IS (moo).
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6 Absolute Convergence of the Spectral Side

In this section we prove Theorem 0.1 and Theorem 0.2. For this purpose
we have to study the multidimensional logarithmic derivatives of the global
intertwining operators that are the main ingredients of the spectral side.
First we explain the structure of the spectral side in more detail. Let
M € L(My). Fix P € P(M) and X € ia},. For Q € P(M) and A € iay,
define
WIQ(P, A, A) = MQ‘p(}\)_lMQ‘p(A + A) .
Then
{Mo(P,XA) | A€iay,, QeP(M)} (6.1)
is a (G, M) family with values in the space of operators on A%(P) [A4,
p. 1310)].
Let L € L(M). Then as above, the (G, M) family (6.1) has an associated
(G, L) family
{le (P,)\,A) ‘ A e z‘a’i, Ql € P(L)}
and
ML(P,AA) = Z Ma, (P, A, A)bo, (A)_l
Q1€P(L)
extends to a smooth function on ¢aj. Put
My (P, X)) =Mp(P,A,0).
For s € W (a3,) let
M(P,s) = Mp|p(s,0).
The spectral side is a sum of distributions
>
XEX
on G(A)!. By Theorem 8.2 of [A4], the distribution J, can be described
as follows. Let y € X, 7 € I(M(A)!) and h € C°(G(A)!). Note that
M (P,A\) and py (P, A\, h) both act in the Hilbert space Hp(m),. Let
WL (ans)reg be the set of elements s € W (ays) such that {H € aps | sH = H}
= ar,. Then J,(f) equals the sum over MeL(My), LEL(M), mell(M(A)!)
and s € W (apy)eq of the product of

(Wa| [Wo| | det(s — 1)qr |7
with
/ PADIT Dt (ML(P,A)M(P, 8)py (P, A, 1)) dA.
w fing PeP(M)

Our goal is to determine the conditions under which the integral-series
obtained by summing this expression over y € X, is absolutely convergent.
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Since M (P, s) is unitary, we have to estimate the integral
[ P P dn, (6.2)
ia} /iaf,

where || - ||; denotes the trace norm.
We shall now assume that heC*(G(A)'). Let Ngp(m, A), P,QeP(M),
be the normalized intertwining operator which by (2.19) is defined as

Noip(m,A) == rgp(T, A)_lMQ‘p(TF, A, A€ayc,

Let P € P(M) and X € ia}, be fixed. For Q € P(M) and A € ia}, define

N(P,m, A\, A) = Noip(m, \) "' Ngp(m, A+ A), (6.3)
Then as functions of A € iaj,,

{No(P,m,\A) | Q e P(M)}
is a (G, M) family. The verification is the same as in the case of the
unnormalized intertwining operator [A4, p.1310]. For L € L(M), let
{le(P, F,)\,A) ‘ A€ z‘az, Q€ P(L)}

be the associated (G, L) family.

Let Mg, (P, 7, A, A) be the restriction of Mg, (P, A, A) to Hp(m),. Then
by (2.19) and (5.15) it follows that

le (Paﬂ-v)\aA) = le (Paﬂ-a AaA)VQl (Paﬂ—v)\aA) (64)
for all A € iaj and all @ € 73( )-
For Q D P let f/Q C aP be the lattice generated by {&" | @ € A% I3

Define -0 .
620 = vol(aZ/LE) ™ T r@"
eAY
For S € F(L) put
Ny (P, 7, \)
= lim > () UASIARGE(N) I NG (P, A, A)fR(A) . (6.5)
{R|RDS}

Let 9y (P,m,A) be the restriction of My (P,\) to Hp(n)y. Then by
Lemma 6.3 of [A5] we have
ML(P,m )= Y Ng(Pm, N (P, ). (6.6)
SeF(L)
Hence the integral (6.2) can be estimated by

> / [ (P, 70, X) pyr (P B || [VE (P, 7, A)[dA
SeF(L) ia} /iaf,
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We shall now study the integral in more detail. Let 2 and Qx be the
Casimir operators of G(R) and K, respectively. Set
A=1d-Q+ 20k .
Then A acts on Afmr(P) through each of the representations py (P, \).
Let K be an open compact subgroup of G(A) and let o € II(K). Then
the operators
Py (P A A),  X€dap,
have A2 _(P)k , and A2 (P)k 1,0 as invariant subspaces. We shall denote
the restriction of p, (P, A, A) to A;W(P)Kf and .Afm(P)Kfﬁ7 respectively,
by px.r (P, A A) i, and py »(P, A, A) i, o, Tespectively. Recall that by (2.3),
pyx(P,A) is equivalent to 1§ (7)) ® Id. Let A, and A, denote the Casimir
eigenvalues of 7, and o, respectively. Then it follows from Proposition 8.22
of [K] that
P (PN A) iy o = (L4 AP = Ax +2X5) Id . (6.7)
To estimate the right-hand side we use the following lemma.
LEMMA 6.1. For all w € Igie.(M(A)'; Kf) and o € II(Ko), one has
“Ar+ A >0 if dimAZ(P)g; . # {0} (6.8)
Proof. The lemma is a consequence of a more general result. Let

Too € II(M(R)) and suppose that o € II(K) occurs in Ig((]]g))(ﬂoo)h(oo.
Let

7TOO|KOOHM(R) = Z NW .
wEI(KooNM (R))
Then
G(R
[IP((R))(FOO)‘KOO to] = Z Ny [U\KoomM(R) L w]
WETI(KooNM(R))

[K, p.208]. Hence there exists w € II(Ks N M(R)) such that

[0l Koorm@) tw] >0 and  [Too| ko ormrr) 1 w] > 0.
By [Mii2, (5.15)], the first condition implies that the Casimir eigenvalues
Aw of w and A, of o satisfy A\, < As.. On the other hand, since w occurs
in Too|gonm(w) it follows that —Ar + A, > 0 [DH, Lemma 2.6]. This
completes the proof. O

Using (6.7) and (6.8), it follows that
[oxr (PAA) i o2 = (1A + (< Ar +22)2
> L1+ AP+ 22 +22).

Let S € F(L) be fixed. Given an open compact subgroup Ky of G(Ay)
and o € T(Kx), let N (P, 7, Nk, » denote the restriction of Mg (P, 7, \)
to A%(P)K

(6.9)

9
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LEMMA 6.2. Let Ky be an open compact subgroup of G(Ay) and let
h € CL(G(A)') be bi-invariant under K. Suppose that there exist N € N
and C > 0 such that

M (P, N iy o|| < C (14 A2+ A2 4+ 22)7 (6.10)
for all m € Mao(M(A),Ky), 0 € II(Ky) and A € iaj. Then for every
k € N there exists Cy, > 0 such that

/ ng(Paﬂ-a A)pXﬂT(P¢)\a h)Hllyf(Paﬂ—v )‘)‘dA < Ck(l + Aﬂ)ik
ia} /iaf,

for all x € X and 7 € TI(M (A)!).

Proof. Since h is bi-invariant under Ky, py (P, A, h) maps the Hilbert space
Xi,w(P) into the subspace Zi,ﬂ(P)Kf' Moreover Z;W(P)Kf is an invariant
subspace for py (P, A, h). Hence py (P,\,h) = 0, unless m belongs to
Maise (M (A), Kf). So we may assume that 7 belongs to Il (M(A), Kf).
Then for each k € N we get

[ (P,m, Mpyr (P B

= Hmfg(P7 ﬂﬂA)KprJT(P? Aﬂh)Kle

6.11
< (P N pn (P AL, O
' HpX,TF(Pﬂ A, AQkh)H :
Furthermore, using (6.9) and (6.10) we get
[ (P, 70, ) iy o (P A AP )

< D P Nrpoll - loxa(PA A

oell(Koo) (6.12)
dimAi’ﬂ-(P)Kf7o'
20 2 TEP+ R

o€ell(Ko)

By Lemma 6.1 of [Mii3] there exist C1 > 0 and N; € N such that

dim A2 (P)g,.0 < Cr(1 4+ A2+ A2)M
for all x € X and o € II(K). Actually in [Mii3] we considered the space
A2(P, x,0), where ¢ is an irreducible representation of K. The two spaces
are not equal, but they are closely related. Moreover A, was denoted by
in [Mu3]. If A2 (P) # 0, it follows from Langlands’ construction of A2 (P)
in terms of iterated residues of cuspidal Eisenstein series that

Ay — Asl < e (6.13)

with ¢ > 0 independent of x and 7 (see (4.21) of [Mii3]). Hence there exist
C9 > 0 and N7 € N such that

dim A2 [ (P)k, .o < Ca(1+ A2+ AZ)M (6.14)



Vol. 12, 2002 TRACE FORMULA 711

for all x € X, m € Hgie(M(A), Ky) and o € II(K4). Set
Ny = %(N + Nyp).
Now observe that there exists ng € N such that
> (1+X) "< 0.
0o €K o)
the right-hand side is finite for n > ng. Let A, be the number defined by
(4.5). Then by (6.12) and (6.14) it follows that for every k > 2(ng + N2)
there exists C > 0 such that

|9V (P, 7, A) ke oy (P A ARy Hl

< Cr(1+ A2 +A3)N2"“ (6.15)

< Cr(L+ NP1 4 a2y

for all m € Iys(M(A), Kf) and x € X. Next observe that for A € iaj the
operator py (P, A, g) is unitary. Hence it follows that

| e (P A, A R)|| < AR L1 qay (6.16)
for all 7 € Hgise(M(A), Kf) and x € X. Combing (6.11), (6.15) and (6.16),
it follows that for every n € N there exists C}, > 0 such that

[90(P, 7, Mpyen (P A B)| < O (14 [IA2) " (1 + AZ) ™"

for all x € X and 7 € Hgo(M(A), Kf). Combined with Theorem 5.4 the
claimed estimation of the integral follows. m

Proof of Theorem 0.1. Let h € C}(G(A)') be bi-invariant under Ky. As
observed in the proof of Lemma 6.2, it follows that py (P, A, h) = 0, unless
7 € Haiee (M (A), Ky). Let L3, (M(Q)Ap(R)°\M(A)) be the largest closed
subspace of the Hilbert space L?(M(Q)Ap(R)*\M(A)) which decomposes
discretely under the regular representation of M (A). Then
Li. (M@QApR)\M(A)) = B  m(n)Hx,
rell(M(A))

and each multiplicity m(m) is finite. Thus, if the assumption (6.10) of
Lemma 6.2 is satisfied, it follows from Lemma 6.2 that for every n € N
there exists C, > 0 such that

>z / [P, Npaer (P AR |15 (P, e, 1)
ia} /iag,

XEX well(M
< Cy > m(m) (1 +Ag)"™. (6.17)
7|—EHdisc(]M(A)l’[(f)
It remains to investigate the sum on the right-hand side. Let
KMJ = Kf ﬂM(Af) .
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Then there exist arithmetic subgroups I'ys; € M(R), i =1,...,1, such that
!

MQ\M(&)/ Ky = | (Pari\M(R))
(cf. Section 9 of [Miil]). Therefore we gét_ 1

l
L (A (R)PM(Q\M (A)) " = B L (Ay(R)Tar\M(R))  (6.18)
i=1
as M(R)-modules. For each i, i = 1,...,1, let L%  (Ap(R)°Tp;\M(R))
be the discrete subspace of the regular representation of M(R) in
L*(Ap(R)°Tp;\M(R)). Then it follows from (6.18) that

L2, (Ap(R)°M(Q)\M (A KMM@LM R)Tp \M(R)) (6.19)

as M(R) modules. For i, 1 < i § l, and mo, € II(M(R)) denote by
mr,, ;(Teo) the multiplicity of 7, in the regular representation of M(R) in
L3 .(Ap(R)T'p;\M(R)). Then by (6.19) we get

> m(m)(1+Ay)™™

T gisc(M(A), Ky)

l
< Z Z mFA{,i(ﬂ-OO)(l + Az )" (6.20)
i=1 T TI(M(R))
Let o € TI(K+) be a minimal K.-type occurring in I§ (s, ) with Casimir
eigenvalue \,. Let Ky 0o = M(R) N K. By (5.15) of [Mii2] we have that
Ao > A; for any irreducible constituent 7 € II(Kpf,00) Of 0oo|Kpr00. Thus
the right-hand side of (6.20) is bounded by
l

>, 2 S iy (o) S oc) © Vi)
Car,i\ oo 2 2\n/2
=1 7€lI(Kp,00) Too ETI(M (R)) (1 t )\m’o t )\T)
By Corollary 0.3 of [Mii2] this sum is finite for n sufficiently large. Thus

we proved

PROPOSITION 6.3. Let Ky be an open compact subgroup of G(A ) and let
h € CL(G(A)') be bi-invariant under K. Suppose that there exist N € N
and C > 0 such that

(P, 0, M, 0| < C(L+ I+ 22+ 22)Y (6.21)
for all m € Tlgisc(M(A), Kf), 0 € II(K) and A € ia}. Then

D / IML(P N pn(PAR| AN < 0. (6:22)
ia} /iag,

XEX mell(M(A)!
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Let h € C'(G(A)'). Then there exists an open compact subgroup K
of G(Ay) such that h is bi-invariant under Ky. Using the observations
made at the beginning of this section, it follows that (6.22) implies that the
spectral side of the trace formula is absolutely convergent.

We shall now continue by investigating condition (6.21) in detail. To
calculate Mg(P,m, N), let A € ia},. By [A5, p.37] My(P, 7, ) equals

B (1mEW) ! (lim ()" Ma(P,m A tA) ) 0r(A)
{RIR>S}
where ¢ = dim(Ag/AR). Since Ng|p(7, A) is unitary for A € ia},, it follows
from (6.3) that we have to estimate the norm of
lim ( ) Noip(m A +tA)y, A€ id}, . (6.23)

To this end, we may use (2.16) and (2.17) to replace Ny p(m, A) by
RQ|p(7T, A) = ®URQ\P(771)7 )\) .

Next note that any compact open subgroup Ky = [], .., Ky of G(Ay) is
such that K, is a hyperspecial compact subgroup for almost all v. Hence,
by (2.11) there exists a finite set of places Sy, including the Archimedean
one, such that we have

RQ|P(7TU,/\)KU =1d, 'UglfSo, FEHdiSC(M(A),Kf).
Let Dy denote the directional derivative on ia}, in the direction of A. Then
it follows that there exists C' > 0 such that

q
s Nl < X3 IDkRap(m Vi,
vESH\{oo} k=1

+ 3 [Pkl ) (620
k=1

for all A € ia},;, 0 € II(K) and 7 € II(M(A)). Together with Proposi-
tion 6.3 this implies Theorem 0.1. O

Proof of Theorem 0.2. The proof of Theorem 0.2 is similar to the proof
of Theorem 0.1. We only have to modify some of the arguments. Given
an open compact subgroup Ky of G(Ay) and o € II(Ky), let Ik, , de-
note the orthogonal projection of the Hilbert space x «(P) onto the finite
dimensional subspace A} (P)k;o. Let h € Cl(G(A;{) be K-finite. Then
there exists an open compact subgroup Ky of G(A ) such that h is left and
right invariant under Ky. Furthermore, there exist o1,...,0., € II(K)
such that

m
prx(PAR) =D Tk, 5,0 pye(PoAR) 0Tk, o) (6.25)
ij=1



714 W. MULLER GAFA
for all 7 € TI(M(A)!) and x € X. Let k € N. Then by (6.25) we get

ng‘(Pa , )\)pXJT(P? A, h)Hl

< Z Hmfs‘(Pa T, )\)Kf,ai
i=1

: HpXJT(P’ )‘7 AZk)?fl,gi 1

o (P A, AR . (6.26)
Here we assume, of course, that A;W(P)Kﬁgi #0,i=1,...,m. Then it
follows from (6.9) that
: 2
dlmAx,ﬂ(P)KﬁJi
(1+ [AI2 + AZ)*

[oxr(PAA) el < C (6.27)

fori=1,...,m. Given o € II(K), let
Maise (M (8) ;.0 = {7 € Maise (M (A)'; K) | [TB (7o0) |50 2 0] > 0}

Then we proceed as above to show that for every n € N there exists
Cy, > 0 such that

> Z / [9(P, 7, X) pyer (PN ) || [VE (P, A)|dA
ia} /iag,

XEX well(M
Z > m(m)(1+A2)™™. (6.28)

eHdlsc(M(A)l)Kfyffi

To estimate the right-hand side, we fix o € TI(K). Then as in (6.20) we
get

Z m(r)
14+ \2)n
T€gisc(M(A) )k o 1+

l .
dim(H(mee) @ Vi ) K00
< Z Z mry,, (Too) (o) ) .

2 n
i=1 meo €I(M(R)) (1+ )‘“w)

It follows from Theorem 0.1 of [Miil] that for sufficiently large n, this series
is convergent. This completes the proof of Theorem 0.2. m

We observe that for tempered representations, the existence of estimates
like (0.2), (0.3) and (0.4) follows from results of Arthur [A5, p.51] and
[A8, Lemma 2.1]. Let I, (M (A)!) be the subspace of all 7 in TI(M(A)')
such that the local constituents m, of m are tempered for all v. Then we
obtain

PROPOSITION 6.4. For every M € L(My), L € L(M) and P € P(M) we
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have

2 > / 9Py N pyr (P A B || dX < oo
XEX wETliomp(M(A)L) * L/19G

7 The Example of GL,

In this section we shall briefly discuss the case where G = GL,,. Let Py
be the subgroup of upper triangular matrices of G. This is the minimal
standard parabolic subgroup of G. Its Levi subgroup My is the group of
diagonal matrices. Let P be a parabolic subgroup of G defined over Q, and
let M be the unique Levi component of P which contains My. Then
M = GL,, x--- x GL,, .
We shall identify ap; with R". Let eq,..., e, denote the standard basis of
(R™)*. Then the roots X p are given by
Yp={ei—¢j|1<i<j<r}.

Let v be a place of Q. Fix a nontrivial continuous character v, of the
additive group Q. of Q, and equip Q, with the Haar measure which is
selfdual with respect to 1,. Given irreducible unitary representations 7y,
and mg, of GLy, (Q,) and GL,,(Q,), respectively, let L(s,m, X m2,) and
€(s, T, X T, 1y) denote the Rankin-Selberg L-factor and the e-factor
defined by Jacquet, Piatetski-Shapiro, and Shalika [JPS], [JS1].

Let P, P, € P(M). Then there exist permutations 01,09 € S, such
that the set of roots of (P;, A;) is given by

Sp, = {ei— e | oni) <on(h)}-
Put
I(o1,02) = {(i,7) | 1 <i,j <r, 01(i) < 01(j), 02(i) > 02(j)} -
Then
Epl N Eﬁ2 = {62‘ — € | (Z,]) c I(O’l,Ug)} .
Let m, = M ® - -+ @ Ty, where m;, € II(GL,,(Q,)), i = 1,...,7. Given
s=(s1,...,8) € CT, set
H L(SZ — S5, Tiw X 7~rj,v)
L(l—i—si—S]’, v X%jﬂ,)e(si—sj, v X%jﬂ,, 1/JU) ’

7“P2\P1(7Tvas) =
(i,j)€l(o1,02)

As explained in [AC, p.87], the meromorphic functions rp,|p, (7,s) satisfy
all the properties of Theorem 2.1 of [A7] and they are the natural choice of
normalizing factors in the case of GL,. We note that they do not coincide
with the normalizing factors used in the previous sections. They differ,
however, only by a factor which can be expressed in terms of the e-factors.
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Now let m; and me be automorphic representations of GL,, (A) and
GL,,(A), respectively. ~ Then the global Rankin-Selberg L-function
L(s,m % my) is defined by

L(S,ﬂ'l X Tg) = HL(S,FLU X 7T2,v)7

where the product is over all places v of Q and m; = ®;m;,. The product
converges absolutely in a half-plane Re(s) > 0. If m; and 72 belong to the
discrete spectrum of GL,,, (A) and GL,,(A), respectively, then L(s,m; X 72)
admits a meromorphic extension to the whole complex plane.

To define the global e-factor €(s, 7 x m2) one has to pick a non-trivial
continuous character ¢ : AT — C* of the additive group A" of A. Then
1 = ®y1hy and €(s, T4 X Ty, YPy) = 1 for almost all places v. Hence the
product

(s, m X m, 1)) = He(s, T X T2, UVy)

v
exists for all s € C and defines an entire function. The global e-factor is

independent of ¥ and therefore, will be denoted by €(s,m X 72).

Let m € gisc (M (A)). Then 7 =m ® - - - @ m, with m; € gise (GLy, (A))
and for s € C", the global normalizing factor is defined by
H L(Si—Sj,ﬂ'i X%j)

L(l + 8; — Sj, T X %j)e(si — S5, T X %]) '

TPy Py (m,s) =

(4.9)€l(o1,02)

Theorem 5.3 is closely related to the estimation of the winding numbers

A L/(l + it, T X %2)

/1 L(l +it,m X 7?2)

with upper bounds depending on the Casimir eigenvalues of 71 o, and 72 oo

in the same way as in Theorem 5.3. In the present case, such estimates can

be obtained using standard methods of analytic number theory. In fact,
the bounds can be improved considerably.

Next we discuss the conditions (0.2) and (0.4). As mentioned in the
introduction, for GL,, it is possible to prove that (0.2) and (0.4) hold. We
shall briefly indicate the main steps of the proof. Let p be a representation
of GL,(Q,) and s € C. Then we denote by p[s] the representation of
GL,,(Q,) defined by

plsl(g) = |detgl’p(g), g€ GLn(Q,).
Let m be a cuspidal automorphic representation of GL,,(A). Then it is

known that each local component 7, of 7 is generic [Sha] and therefore, by
[JS2] it follows that m, is equivalent to a full induced representation, i.e.

Ty =2 Ing (7'1 tL]®--® Tr[tr]) , (7.1)

dt
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where P is a standard parabolic subgroup of GL,, with Levi component
GLy,, X -+ X GLyy,,, 7 is a tempered representation of GL,,,(Q,) and the
t;’s are real numbers satisfying
ty >ty>-->t., |t|<1/2,i=1,...,r.
For 7, unramified, Luo, Rudnick and Sarnak [LuRS] proved that the pa-
rameters t; satisfy the following nontrivial bound:
1 1
mzax\ti\ STl
Using the same method, one can show that (7.2) holds at all places. Now
let P be a standard parabolic subgroup of GL, with Levi component
GL,, x--- x GL,, and let 7, be the local v-component of a cuspidal auto-
morphic representation of M(A). Then m, = ®;m;, and each m; , is a full
induced representation of the form (7.1) with parameters ¢;; satisfying (7.2).
Using induction in stages, it follows that for each i there exist a parabolic
subgroup R; of GLy,(Q,) of type (n;1,...,n4,), a discrete series represen-
tation d;, of Mg,(Q,) and t; = (ti1,...,ty,) € RY satisfying
1 1
such that 7; , = I%_(éi,v,ti). Puwl=10+ +1I,
Oy = ®i5i,va t = (tu,... AT PP 7 B atrl,«)-
Generalizing property (R.2) of [A8, p.172], we get
RQ‘P(TFU,S) = RQ(R)\P(R)(5U7S +t), se€ ct , (7.4)

where s is identified with an element in C' with respect to the embedding
which corresponds to the canonical embedding a3, C a};( R) This leads to
an immediate reduction of the problem. We can assume that m, is square
integrable. However, now we have to estimate the norm of the derivatives
of Rg|p(my,8)Kk, (resp. Rgp(my,s)s,) in the domain

{s € C" | |Re(si)| < 1/2-1/(n*+1), i=1,...,7}.
The important point is that for 7, square integrable, R p(my,s) is holo-
morphic in the domain

{s€eC"|Re(si—s;) >—1,1<i<j<r}

[MW]. Using the product formula for normalized intertwining operators,
the above problem can be further reduced to the case where P is maximal
parabolic and Q = P. Then M = GL,, x GLp,, my = 714 ® 72,4, and
we may regard the intertwining operator as a function RF| p(my, 8) of one
complex variable. Now we distinguish two cases.

(7.2)

(7.3)
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1. v < oco.

Let K, € GL,(Q,) be an open compact subgroup. We may assume
that K, is a congruence subgroup. Then we have to estimate the norm of
derivatives of Rﬂp(ﬂv, )k, in the strip |Re(s)] <1 —2/(n? +1). Let

Kyp=K,NM(@Q,).
Then Ky, is an open compact subgroup of M(Q,). Let 1 denote the
trivial representation of Ky, and let (M (Q,); Kar) be the set of all
m, € Io(M(Q,)) such that [my|k,,, : 1] > 0. By Theorem 10 of [H2],
I (M(Q,); Knr,v) is a compact subset of I (M(Q,)). Furthermore, a}, =
R? acts on Iy (M(Q,)) by

Tiw ® Tow = T1[iun] @ mapliug],  (u1,us) € R2.
The stabilizer of a given representation 7, is a lattice L C R? so that the
orbit o, of m, is a compact torus R? /L. Thus there exist 61,...,0; €
IIo(M(Q,); Kar,p) such that
H2 (M(Qv)v KM,U) = 04, u---u 0s, -
Since
Rﬁ|p(ﬂl,o[iu1] ® Mo pling, s) = Rﬁ|p(7T1,u ® Mo, s +i(ur + u2)) ,

it suffices to consider a fixed discrete series representation m,. Now recall
that Rp p(my, s) is holomorphic in the strip |Re(s)| < 1. Furthermore by
Theorem 2.1 of [AT7], Rp, p(7y, 8) K, is a finite rank matrix whose entries are
rational functions of p,*. Hence for every u € R, Rp, p(Ty,u +iw)gk, is a
periodic function of w € R. From these observations it follows immediately
that for every k € Ny there exists C' > 0 such that

| DERpyp (w0, 8)x, || < C (7.5)
for all s € C in the strip |Re(s)| <1 —2/(n? +1).
2. v =o00.

Let o, € II(O(n)). Then we have to estimate the norm of derivatives of

Rp|p(my,5)s, in the strip |Re(s)| <1 - 2/(n? 4+ 1). First note that

M(R) 2 (R*)* x (SLy, (R) x SLy, (R)) .
Furthermore, the set of discrete series representations of SLy,(R) contain-
ing a fixed SO(n;)-type is finite [W2, p.398|. Hence in the same way as
above, it follows that we can fix the discrete series representation m,. Again
Rplp(m,,s) is holomorphic in the strip |Re(s)| < 1 and by Theorem 2.1

of [AT], Rp, p(my,8)g, is a rational function of s € C. This implies that for
every k € Ny there exist C > 0 and N € N such that

|DERp (7, 8)ar, || < C (14 |s])™ (7.6)
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for all s € C with |Re(s)| <1 —2/(n?+1).

Combining (7.5) and (7.6) with the various steps of the reduction it
follows that (0.2) and (0.4) hold for all local components m, of cuspidal
automorphic representations.

It remains to deal with local components of automorphic forms in the
residual spectrum. For this purpose we use the description of the residual
spectrum given by Mceeglin and Waldspurger [MW]. First we recall the
notion of a Speh representation [MW, L1.5]. Let k|m, d = m/k and R a
standard parabolic subgroup of GL,, of type (d,...,d). Let § be a discrete
series representation of GL4(Q,). Then the induced representation

I8 (8[(k — 1) /21 @ 6[(k — 3)/2® - @ d[(1 — k) /2])
has a unique irreducible quotient which we denote by J (4, k). It follows from
Theorem D of [T] and [V] that for every m, € II(GL,,(Q,)) there exist a
standard parabolic subgroup P of type (mq,...,m,), k;i|m;, discrete series
representations 0; of GLg4,(Q,), d; = m;/k;, and real numbers ti,...,t,
satisfying |t;] < 1/2 such that
o 2 TN (J (61, k1) [t1] @ -+ @ T (8, Ky )[Er]) -

Now suppose that m, is a local component of an automorphic repre-
sentation 7 in the residual spectrum of GL,,(A). By [MW] there exist
a standard parabolic subgroup @ of GL,, of type (d,...,d) and a cusp-
idal automorphic representation p of GLg(A) such that m, is the unique
irreducible quotient of the induced representation

IG" ™ (ol (k = 1)/2] @ po[(k = 3) /2 @ - @ w[(1 = k)/2]) ,
where p, is the v-component of . As explained above, pu, is equivalent to
an induced representation of the form (7.1) with parameters t; satisfying
(7.2). Using induction in stages, it follows that
My = Ing (51 [tl] Q- 6r[tr]) )

where R is a standard parabolic subgroup of GLg of type (dy, ..., d;), d; is a
discrete series representations of GL4,(Q,), 7 = 1,...,r, and the parameters
t; satisfy t1 > t9 > -+ > t, and (7.2). Then it follows from Proposition 1.9

and Lemma 1.8 of [MW] that there is a standard parabolic subgroup P of
GL,, of type (kdy,...,kd,) such that

Tp 2 IREm (J (61, k)] © - - @ J (6, k)[t,]) (7.7)
and

(7.8)

1
max |t < = — —5——.
axltl < 3= 0 +1
This is the extension of the results of [LuRS] to local components of auto-
morphic representations in the discrete spectrum.
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Now we can proceed in the same way as in the cuspidal case. The
only difference is that we have to deal with the slightly more general Speh
representations in place of the discrete series representations. In this way
one can establish (0.2) and (0.4). This implies that for GL,, the spectral side
of the Arthur trace formula is absolutely convergent. Details will appear
in [MiS].
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