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Abstract

We prove several results concerning arithmetic progressions in sets of
integers. Suppose, for example, that α and β are positive reals, that
N is a large prime and that C, D ⊆ Z/NZ have sizes γN and δN
respectively. Then the sumset C + D contains an AP of length at
least ec

√
log N , where c > 0 depends only on γ and δ. In deriving these

results we introduce the concept of hereditary non-uniformity (HNU)
for subsets of Z/NZ, and prove a structural result for sets with this
property.

0 Notation

Let ZN = Z/NZ be the group of residues modulo N , where N is an odd
prime. We write ω = e2πi/N ; although this quantity depends on N , there is
no danger of confusion as we will always work with a fixed N . If f : ZN → C

is any function then we define its rth Fourier coefficient, f̂(r), by

f̂(r) =
∑

x

f(x)ωrx.

If A ⊆ ZN then we also use the letter A to denote the characteristic function
of A, defined by A(x) = 1 if x ∈ A and A(x) = 0 if x /∈ A. If A,B are two
sets then we define their convolution A ∗ B by

(A ∗ B)(x) =
∑

y

A(y)B(x − y) .

This is simply the number of solutions to a + b = x. We define the sumset
A + B to be the set containing everything of the form a + b with a ∈ A,
b ∈ B. Observe that the functions (A + B)(x) and (A ∗ B)(x) are very
different in general, although they have the same support.
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Our definitions of Fourier transform and convolution are (perhaps up
to the occasional sign) very standard and so we leave it to the reader to
work out Parseval’s identity and the interaction of Fourier transforms and
convolutions, both of which will feature in what follows.

1 Introduction

Around ten years ago several papers appeared in which the progressive
enrichment of structure resulting from repeated set addition was studied.
Bourgain, for example, proved the following in [Bou1].
Theorem 1 (Bourgain). Let C,D ⊆ Z have cardinalities γN and δN
respectively. Then there is an absolute constant c > 0 such that C + D
contains an AP of length at least

exp
(
c((γδ log N)1/3 − log log N)

)
.

Freiman, Halberstam and Ruzsa [FHR], building on a technique of
Bogolubov [Bo], showed that even longer progressions result when one adds
three or more sets together. For example,
Theorem 2 (Freiman–Halberstam–Ruzsa). Let A ⊆ ZN have |A| = αN .
Then A + A + A contains an AP of length at least cαN cα3

.

In this paper we improve both of these results. First the technically
detailed statements:
Theorem 3. Let C,D ⊆ Z have cardinalities γN and δN respectively.
Then there is an absolute constant c > 0 such that C + D contains an AP
of length at least

exp
(
c((γδ log N)1/2 − log log N)

)
.

Theorem 4. Let A ⊆ ZN have |A| = αN . Then A + A + A contains an
AP of length at least

2−24α5
(
log(1/α)

)−2
Nα2/250 log(1/α). (1)

As we have stated them, Theorems 3 and 4 look rather technical. Stat-
ing the theorems in a weaker form removes this illusion. In Theorem 3,
regard γ and δ as fixed. Then the theorem says that C +D contains a pro-
gression of length ec(log N)1/2

, compared to Bourgain’s ec(log N)1/3
. In The-

orem 4, the quantity (1) looks rather less fearsome when written, crudely,
as Nα2+ε

.
Theorems 3 and 4 may be contrasted with the best known lower bounds

for these questions. Regarding Theorem 3, Ruzsa [Ru] gave an ingenious
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construction of a set A ⊆ ZN with |A| = 1
2 − ε, but with A + A not

containing any APs of length exp(Cε(log N)2/3+ε). As for Theorem 4, a
relatively straightforward construction (see [FHR]) shows that A + A + A
need not contain an AP of length 2N log(1/α). It is conjectured in [FHR]
that this is close to the truth.

It turns out that Theorem 3 gives information about van der Waerden
numbers. If h ≥ 2 and l1, . . . , lh ≥ 3 are integers then write W (h; l1, . . . , lh)
for the smallest integer n such that, however we partition {1, . . . , n} into h
colours C1, . . . , Ch, there is some j such that Cj contains an AP of length lj .
The existence of W is non-trivial, and upper bounds for these numbers are
notoriously difficult to come by (see [G] for example). The most famous
instances of this problem are probably those concerning W (h; 3, 3, . . . , 3)
and W (2; l, l). In this paper we consider the quantity W (2; 3, k), which
seems to have been given rather less attention in the literature. This is a
touch surprising as the study of the corresponding Ramsey number, R(3, k),
has proved to be very fruitful. Perhaps the reason for this neglect is that
the best bounds currently known for W (2; 3, k) follow trivially from Roth’s
theorem, which we state now. (The reader may recognise this result as the
special case k = 3 of Szemerédi’s theorem.)
Theorem 5 (Roth). Let δ > 0 be a real number. Then there is a minimal
N3(δ) with the following property. If N ≥ N3(δ) and if A ⊆ {1, . . . , N} has
size at least δN then A contains an AP of length 3.

The best bound currently known is N3(δ) ≤ eCδ−2 log(1/δ), due to Bour-
gain [Bou2]. It is rather easy to see that W (2; 3, k) ≤ N3

(
k−1

)
. Indeed

colour {1, . . . , N} red and blue. Then either the set of red numbers has
density at least k−1, guaranteeing a red AP of length 3, or else the set
of blue numbers has density at least 1 − k−1, guaranteeing a blue AP of
length k for trivial reasons. Thus we have
Theorem 6 (Bourgain). W (2; 3, k) ≤ eCk2 log k.

Our arguments constitute a much simpler proof of a statement which is
weaker than this only in the power of log k. Furthermore this seems to be
the first occasion on which a strong bound for a series of van der Waerden
numbers has been given without establishing a bound for the corresponding
density problem.

We close this section with a brief outline of the rest of the paper. In
§2 we introduce the concept of hereditary non-uniformity for subsets of
Z/NZ. We state a result about such sets, Theorem 7, the proof of which
forms the main substance of this paper. In §3 we show how this implies
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Theorem 3. The next two sections are devoted to proofs. In §4 we assemble
some important tools. In §5, which may be regarded as the heart of the
paper, we prove Theorem 7. In §6 we introduce the concept of restricted
hereditary non-uniformity. We state and prove a structure theorem for sets
with this property, and show how it implies Theorem 4. In §7 we deduce
the bound for W (2; 3, k).

2 HNU Sets and Their Structure

Let A ⊆ ZN and let α ∈ (0, 1) be a real number. We say that A is α-
hereditarily non-uniform, which we shall abbreviate as α-HNU, if for every
subset S ⊆ A one has

sup
r �=0

|Ŝ(r)| ≥ α|S| .

The main result of this paper is the following theorem about HNU sets.

Theorem 7. Suppose that α ≥ 4000 log log N/(log N)1/2 and that A is
α-HNU. Then Ac, the complement of A, contains an AP of length at least
eα

√
log N/32.

We will prove this in a short while, but our first priority is to motivate
the definition of HNU.

3 Sumsets

Theorem 3 follows immediately from Theorem 7 and the following.

Proposition 8. Let C,D ⊆ ZN have |C| = γN and |D| = δN . Let A be
the complement of C + D. Then A is

√
γδ-HNU.

Proof. If S ⊆ A then
∑

x S(x)(C ∗ D)(x) = 0. Writing this in terms of
Fourier coefficients gives ∑

r

Ŝ(r)Ĉ(r)D̂(r) = 0 ,

from which we get ∑
r �=0

|Ŝ(r)||Ĉ(r)||D̂(r)| ≥ |S||C||D|

by the triangle inequality. From this we get

|S||C||D| ≤ sup
r �=0

|Ŝ(r)|
∑

r

|Ĉ(r)||D̂(r)|
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≤ sup
r �=0

|Ŝ(r)|
( ∑

r

|Ĉ(r)|2
)1/2(∑

r

|D̂(r)|2
)1/2

= sup
r �=0

|Ŝ(r)| · (γδ)1/2N2 .

The claim follows immediately. �

4 Tools

One of the most important ingredients of our arguments is the following
large deviation inequality of Bernstein. The original paper [B] of Bernstein
dates from 1924, and the result has been discussed in many other works
since then. The reader may find a proof of the following variant in [Gr1].
Lemma 9. Let X1, . . . ,Xn be independent complex-valued random vari-
ables with EXi = 0 and E |Xj |2 = σ2

j . Write σ2 = σ2
1 + · · · + σ2

n, and

suppose that |Xj | ≤ 1 uniformly in j. Suppose that σ2 ≥ 6nt. Then we
have the inequality

P
(|X| ≥ t

) ≤ 4e−n2t2/8σ2
.

Our second prerequisite concerns so-called Bohr neighbourhoods. De-
fine a function |.| : ZN→R as follows. Select a residue x′ in {−N/2, . . . , N/2}
which is congruent to x modulo N and define |x| to be |x′/N |. Now let
Γ ⊆ ZN and let ε > 0 be a real number. We write B(Γ, ε) for the set of all
x ∈ ZN for which |γx| ≤ ε for all γ ∈ Γ. The letter B is for H. Bohr; we call
such an object a Bohr neighbourhood. The following lemma may be proved
by a straightforward application of the pigeonhole principle:
Lemma 10. Suppose that |Γ| = d. Then B(Γ, ε) contains an AP of length
at least εN1/d.

The final result to be discussed in this section is the following theorem
of Chang [C] concerning the structure of the points at which a set can have
large Fourier coefficients.
Lemma 11 (Chang). Let B ⊆ ZN have cardinality βN and let R be
the set of all r ∈ ZN for which |B̂(r)| ≥ ρ|B|. Then there is a set Λ,
|Λ| ≤ 250ρ−2 log(1/β), such that R ⊆ E(Λ).

The notation E(Λ) refers to the set of all {−1, 0, 1}-linear combinations
of elements of Λ. That is, if Λ = {λ1, . . . , λm} then E(Λ) consists of every-
thing of the form

∑
j εjλj with εj ∈ {−1, 0, 1} for all j.

In [C] this lemma is derived from an inequality of Rudin [R]. A full
proof of Lemma 11 including all necessary background may be found in
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[Gr2], and in [Gr3] examples are given which show that it is sharp.

5 The Structure of HNU Sets

Our aim is to prove Theorem 7, which states that if A is α-HNU then Ac

contains a long AP.
The basic method of attack will be roughly as follows. Let β be a

parameter to be chosen later. Let B ⊂ A be such that supr �=0 |B̂(r)| is
minimised subject to |B| = βN . We will attempt to produce a “better”
set B′ by removing t random elements of B and adding t random elements
of ZN . In general this will not be a subset of A but we give a procedure
for “deforming” B′ so that B′ ⊆ A. It turns out that such a deformation
is possible unless Ac contains a long AP.

Let, then, B ⊆ A have supr �=0 |B̂(r)| minimal subject to |B| = βN . Let
the value of this minimum be η|B| and observe that η ≥ α because A is
α-HNU.

Let
R =

{
r : |B̂(r)| ≥ η|B|/2} .

Lemma 12. The Bohr neighbourhood B(R, η/64) contains an AP, P , of
length at least

η3

214 log(1/β)
Nη2/250 log(1/β).

Proof. By Lemma 11 every element of R is in the ±1-linear span of a set
Λ of size at most m = 250η−2 log(1/β). Therefore

B(Λ, η/64m) ⊆ B(R, η/64) ,

so the result follows from Lemma 10. �

Lemma 13. For at least (1 − η/16)N values of x we have∣∣(x + P ) ∩ B
∣∣ ≤ 16β

η |P | .
Proof. Suppose not. Then we would have

|P ||B| =
∑

x

∣∣(x + P ) ∩ B
∣∣

> ηN
16 · 16β

η |P |
= |P ||B| ,

a contradiction. �
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Call the set C of such x good ; the above lemma tells us that |C| ≥
(1 − η/16)N . As C is very large, it cannot have any really huge Fourier
coefficients. Indeed if r 
= 0 then

|Ĉ(r)| = |Ĉc(r)|
≤ |Cc|
≤ ηN/16
≤ η|C|/8 . (2)

We are now going to choose a subset D ⊆ C of size t (where t, as with
so many other variables, will be chosen later). We will do this by picking
elements of C at random with probability t/|C|. It turns out that, provided
t is large enough, D inherits from C the property of not having any really
large Fourier coefficients.
Lemma 14. Let t ≥ 214η−2 log N . Then there is a subset D ⊆ C with size
t such that supr �=0 |D̂(r)| ≤ ηt/4.

Proof. As promised, choose a set E ⊆ C by letting each x ∈ C be
in E with probability p = t/|C|, these choices being independent. The
Fourier coefficient Ê(r) is then a sum of |C| independent random variables
X

(r)
j = E(x)ωrx with means pĈ(r) and variances at most p. It follows from

Lemma 9 and (2) that

P
(|Ê(r)| ≥ ηt/6

) ≤ P
(|Ê(r) − EÊ(r)| ≥ ηt/24

)
< 4e−η2t/5000.

By the same token

P
(||E| − t| ≥ ηt/24

)
< 4e−η2t/5000 .

If t ≥ 214η−2 log N , then, there is a positive probability of all the above
events happening. By adding or deleting at most ηt/12 elements from E
we get a set D satisfying the conclusion of the lemma. �

An almost identical argument proves the following.
Lemma 15. Let βN ≥ t ≥ 214η−2 log N . Then there is a subset X ⊆ B
with |X| = t and ∣∣∣X̂(r) − tB̂(r)

|B|
∣∣∣ ≤ ηt/12

for all r 
= 0.

Lemma 16. Let S be the (multi)set (B \ X) ∪ D. Then

sup
r∈R

|Ŝ(r)| ≤ η|S| − ηt/6 ,
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whilst
|Ŝ(r)| ≤ η|S|

2 + ηt
3

for all other r 
= 0.

Proof. We have

Ŝ(r) = B̂(r) − X̂(r) + D̂(r)

=
(
1 − t

|B|
)

B̂(r) + Q ,

where |Q| ≤ ηt/3 by the previous two lemmas. If r ∈ R then |B̂(r)|/|B| ≥
η/2 by definition, and the first part of the result follows easily. For the
second part of the result observe that if r /∈ R then

|Ŝ(r)| ≤
∣∣∣1 − t

|B|
∣∣∣ |B̂(r)| + |Q|

≤ η|S|
2 + ηt

3 .

This proves the lemma. �

Now let D = {d1, . . . , dt}. Let D′ be any set obtained by replacing dj

(j = 1, . . . , t) with dj +xj, where xj ∈ P (now might be a good opportunity
for the reader to recall the definition of P ).
Lemma 17. Suppose that t ≤ ηβN/10. Let S′ be the (multi)set
(B \ X) ∪ D′. Then supr �=0 |Ŝ′(r)| < η|S′|.
Proof. We deal first with the easy case r /∈ R. However we change the
elements of D the contribution to Ŝ(r) cannot vary by more than 2t. It
follows from Lemma 16 that, for r /∈ R,

|Ŝ′(r)| ≤ η|S′|
2 + 5t < η|S′| .

Now suppose that r ∈ R, and recall that P ⊆ B(R, η/64). We have that

∣∣Ŝ′(r) − Ŝ(r)
∣∣ ≤

t∑
j=1

∣∣ωr(dj+xj) − ωrdj
∣∣

≤ t sup
j

|ωrxj − 1|

≤ ηt/8 .

The result follows immediately from Lemma 16. �

If we could choose x1, . . . , xt so that S′ was actually a set (as opposed
to a multiset) and also so that S′ ⊆ A then we would have a contradiction
of our earlier assumption about the minimality of B. It follows that there
is no such choice of x1, . . . , xt.
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Lemma 18. There is some j such that dj + P is contained in B ∪ Ac,
except for at most t elements, which could lie in A \ B.

Proof. Suppose not. Choose x1 ∈ P so that d1 + x1 ∈ A \ B. Choose
x2 ∈ P so that d2 + x2 ∈ A \ (B ∪ {d1 + x1}). Continue in this way; at the
last stage we will still be able to choose xt ∈ P so that

dt + xt ∈ A
∖(

B ∪
t−1⋃
j=1

{dj + xj}
)

.

This gives us an S′ of the type that we argued couldn’t exist. The lemma
follows. �

Let j ∈ [t] be such that the conclusion of this lemma holds. We are now
closing in on a structure theorem for Ac. There is one crucial fact that we
have yet to use – the fact that dj lies in C, so that∣∣(dj + P ) ∩ B

∣∣ ≤ 16β
η |P | .

Lemma 18 now tells us that Ac contains a proportion at least
(
1− 16β

η

)
of

dj + P , minus a possible t points. If we choose parameters so that

t ≤ 16β
η |P | (3)

then Ac will in fact contain a proportion
(
1 − 32β

η

)
of dj + P . Recall that

at earlier stages we also required

t ≥ 214η−2 log N (4)

and
t ≤ ηβN/10 . (5)

Let us suppose that parameters have also been chosen so that

|P | ≥ η
32β . (6)

Then it is very easy to see that any set, such as Ac, which contains more
than

(
1− 32β

η

)
of P must in fact contain a progression of length at least η

64β .
Before we actually do our big choosing of parameters, there is one very

important remark to be made. This is the remark that if |A| < βN then it is
impossible to even define B. However in this case Ac contains a progression
of length at least 1/β > η/64β anyhow. Summarising then, we have

Proposition 19. Suppose that (3), (4), (5) and (6) are all satisfied.
Then Ac contains an AP of length at least η/64β.
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A tedious calculation using Lemma 12 shows that one can take t =
214η−2 log N and

β = e−η
√

log N/16,

and a further tedious calculation (recalling that η ≥ α) shows that this
implies Theorem 7. Although we would not wish such calculations on any-
one, we should like to draw the reader’s attention the fact that it is not
difficult to verify a bound of the correct form. Assigning explicit values to
the constants is tedious.

6 RHNU Sets and Their Structure. Progressions in
A + A + A

In this section we introduce the concept of restricted hereditary non-
uniformity (RHNU) and prove a structure theorem for sets with this prop-
erty. Despite appearing rather technical, the RHNU condition turns out to
be substantially easier to work with than HNU.

Let A ⊆ ZN , let α ∈ (0, 1) be a real number and let F,G ⊆ ZN \ {0}.
We say that A is (α,F,G)-restricted HNU, which we shall abbreviate as
(α,F,G)-RHNU, if G ⊆ E(F ) and for every subset S ⊆ A one has

sup
r∈G

|Ŝ(r)| ≥ α|S| .

Theorem 20. Suppose that A is (α,F,G)-RHNU. Then

(i) Ac contains a translate of B(F,α/20|F |), minus at most 576α2 log |G|
points;

(ii) Ac contains an AP of length at least 2−14α3N1/|F |/|F | log |G|.
Before proving this theorem we show how Theorem 4 may be deduced

from it.
Proposition 21. Let A ⊆ ZN have |A| = αN . Let C be the complement
of A + A + A. Then there is a set F , |F | ≤ 250α−2 log(1/α), and a set G,
|G| ≤ α−3, such that C is (α,F,G)-RHNU.

Proof. If S ⊆ C then
∑

x S(x)(A ∗ A ∗ A)(x) = 0. Writing this in terms of
Fourier coefficients and using the triangle inequality and Parseval’s identity
just as in §3, we get

sup
r �=0

|Â(r)||Ŝ(r)| ≥ α|A||S| .

Thus |Ŝ(r)| ≥ α|S| for some r 
= 0 such that |Â(r)| ≥ α|A|. Let G be the
set of all r 
= 0 such that |Â(r)| ≥ α|A|. Paresval’s identity shows that
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|G| ≤ α−3. Furthermore Lemma 11 tells us that G is contained in E(F )
for some set F of size at most 250α−2 log(1/α). The proposition follows
immediately. �

Theorem 20, part (ii), applies and we see that A + A + A contains a
progression of length at least

2−24α5
(
log(1/α)

)−2
Nα2/250 log(1/α) , (7)

confirming Theorem 4.
We turn now to the proof of Theorem 20.

Lemma 22. There is a set X ⊆ ZN with |X| = 576α−2 log |G| and

sup
r∈G

|X̂(r)| ≤ α|X|/3 .

Choose a set Y at random by picking each element of ZN independently
at random with probability p = t/N . The Fourier coefficient Ŷ (r), r 
= 0,
is a sum of N independent random variables S

(r)
j = Y (j)ωrj with means 0

and variances at most p. It follows from Lemma 9 that

P
(|Ŷ (r)| ≥ αt/6

) ≤ 4e−α2t/288 . (8)

Similarly
P
(||Y | − t| ≥ αt/6

) ≤ 4e−α2t/288 . (9)

Thus if t ≥ 576α−2 log |G| there is a positive probability that Y satisfies
(8) for all r ∈ G and also (9). Take a specific Y satisfying these conditions.
By adding or deleting at most αt/6 elements from Y we can produce an X
satisfying the conclusion of the lemma. �

Proof of Theorem 20. Let B=B(F,α/20|F |). Observe that B⊆B(G,α/20)
because G ⊆ E(F ). Let X = {x1, . . . , x|X|} be as in the previous lemma
and let b1, . . . , b|X| be elements of B. Let S be the multiset {bj + xj | j =
1, . . . , |X|}. If r ∈ G then we have

∣∣Ŝ(r) − X̂(r)
∣∣ ≤

|X|∑
j=1

|ωr(bj+xj) − ωxj |

≤ |X| sup
j

|ωrbj − 1|

≤ α|X|/3 .

It follows that
sup
r∈G

|Ŝ(r)| ≤ 2α|S|/3 .
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Since A is (α,F,G)-RHNU, this means that there is no choice of the bj for
which S is a subset of A.

Consider, however, the possibility of using the following algorithm.
Choose b1∈B so that b1+x1∈A. Choose b2∈B so that b2+x2∈A\{b1+x1}.
Continue in this way; at the last stage choose b|X| ∈ B so that

b|X| + x|X| ∈ A \
|X|−1⋃
j=1

{bj + xj} .

If it worked, this algorithm would generate a choice of elements bj of the
type we argued couldn’t exist. However if the algorithm does not work
then there must be some choice of j for which B + xj is contained entirely
within Ac, except possibly for j−1 elements. Part (i) of Theorem 20 follows
immediately. Part (ii) of the theorem is an easy corollary of part (i), using
Lemma 10. �

7 Van der Waerden Numbers

In this section we show how to deduce a bound for the off-diagonal van der
Waerden number W (2; 3, k) from Theorem 3. The deduction is basically
straightforward, but there are some technical difficulties. Suppose then
that we have coloured {1, . . . , N} red and blue. Write A for the set of red
numbers, and suppose that |A| = αN . Let P = {a, a + d, . . . a + (m− 1)d}
be any arithmetic progression in {1, . . . , N}. Write

P1 = {a + 2λd | 1 ≤ λ ≤ m/4} ,

P2 =
{
a + (2λ + 1)d

∣∣ 0 ≤ λ ≤ m/4
}

,

P3 =
{
a + 2λd

∣∣ m/4 < λ ≤ m/2
}

and

P4 =
{
a + (2λ + 1)d

∣∣ m/4 < λ ≤ m/2
}

.

Thus P is the disjoint union of P1, P2, P3, P4.
Lemma 23. Suppose that N ≥ 212 and that α ≥ N−1/56. Then there is a
progression P ⊆ {1, . . . , N} of length at least

√
N such that each of A∩Pj

has size at least α|P |/8.
Suppose not. Let P (0) = {1, . . . , N}. Then some |A ∩ P

(0)
i | is at most

αN/8, and so some |A ∩ P
(0)
j | must be at least 7αN/24. Let P (1) = P

(0)
j .

Then P (1) has size at least N/6 and the density of A on P (1) is at least
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14α/13, provided that N ≥ 48 (these numbers arise from the slight dif-
ficulty caused by the P

(0)
k not all having size exactly N/4). Now proceed

inductively: at the tth stage we will have a progression P (t) of length at least
N/6t on which A has density at least (14/13)tα, provided that N ≥ 48 · 6t.
If t ≥ 14 log(1/α) then this would be impossible, and so we have a contra-
diction provided that N/6t ≥ √

N at this stage. It is easy to check that
the conditions on N in the statement of the lemma ensure this. �

Let us, then, pass to a progression P with this property. Write B =
A ∩ P and write Bj = B ∩ Pj for j = 1, 2, 3, 4. Suppose that A does not
contain a 3-term AP. Then neither does B, and so B must be disjoint from
1
2(B1 +B3), the subset of P containing all elements of the form (b1 + b3)/2.
We claim that this set contains a long arithmetic progression. To see this,
rescale P to {1, . . . ,M}, where M ≥ √

N . Regard the rescaled B1 and B3

as subsets of Zp for some prime p ∈ (2M, 4M ]. We know that |Bj | ≥ αp/32
for all j, and so by Theorem 7 B1 + B3 contains an AP of length at least
L(N) = exp(c(α(log N)1/2 − log log N)). Because of our choice of p this
will be a genuine AP, not just a mod p progression. Thus P \B contains a
long progression, and hence so does the set of blue numbers in our original
colouring.

To finish the argument we simply work out a few numbers. One can
check that if α ≥ C log log N/(log N)1/2 then L(N) � log N . Thus ei-
ther there is a red 3-AP or a blue AP of length at least c log N . If, how-
ever, α is smaller than this then there is a blue AP of length at least
(log N)1/2/C log log N for trivial reasons. Hence we have

Theorem 24. W (2; 3, k) ≤ eCk2(log k)2 .

As we have remarked, this is weaker than the best known result by a
logarithm in the exponent. We should also remark that using the argument
of this section one could deduce the bound W (2; 3, k) ≤ eCk2(log k)3 from
Bourgain’s 1990 paper [Bou1].
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